
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Modifications to the VAX/VMS DR11-W/DRV11-WA
Interface Driver for High Speed,

Real-Time Data Acquisition

Lawrence M. Baker

Open-File Report 87-642

This report is preliminary and has not been reviewed for conformity
with U. S. Geological Survey editorial standards and stratigraphic
nomenclature. Any use of trade names is for descriptive purposes only
and does not imply endorsement by the USGS.

DEC, MicroVAX, MicroVMS, Q-bus, UNIBUS, VAX, VAX/VMS and VMS are
trademarks of Digital Equipment Corporation.

Although this program has been tested by the Geological Survey, United
States Department of the Interior, no warranty, expressed or implied,
is made by the Geological Survey as to the accuracy and functioning of
the program and related program material, nor shall the fact of
distribution constitute any such warranty, and no responsibility is
assumed by the Geological Survey in connection therewith.

Hlenlo Park, California 94025

1987

ERRATA

United States Geological Survey
Open-File Report No. 87-642

Modifications to the VAX/VMS DR11-W/DRV11-WA
Interface Driver for High Speed,

Real-Time Data Acquisition

by

Lawrence M. Baker

1. Page B-6, line 52 (the second machine instruction after the
label DO_READ_WRITE:) -- Change BBC to BBS:

BBC #IO$V_WORD,R1,290$; Only matters if block mode

to

BBS #IO$V_WORD,R1,290$; Only matters if block mode

Abstract

This report describes changes made to XADRIVER (version X-6),
the VAX/VMS device driver for the UNIBUS DR11-W and Q-bus
DRV11-WA parallel DMA interfaces. Enhancements include
preallocation of bus adapter resources, driver execution at
elevated fork IPL, and elimination of faulty driver behavior due
to incorrect I/O requests. The result is improved driver
performance for high speed, real-time data acquisition,
especially on machines with a heavy timesharing load. Care has
been taken to preserve the previous driver interface to allow
the execution of most existing programs without requiring
alterations.

1 Introduction

This report describes modifications developed by the USGS to
XADRIVER (version X-6), the device driver supplied with the Digital
Equipment Corp. (DEC) VAX/VMS and MicroVMS operating systems for the
UNIBUS DR11-W and Q-bus DRV11-WA parallel DMA interfaces. These
modifications improve the driver's suitability for high speed,
real-time data acquisition by reducing the time between a device
interrupt request and the start of the next data transfer. The
program interface to the previous driver has been preserved for
correctly behaved programs (see Section 4.2), enabling them to execute
unmodified with the new driver.

The same driver is used with both VMS and MicroVMS. Although no
further mention of MicroVMS is made in this report, references to VMS
apply equally well to MicroVMS.

This report consists of seven sections and two appendices:

1. Introduction
2. Requirements for High Speed, Real-Time Data Acquisition
3. Summary of Modifications
4. Documentation Changes
5. Preliminary Results
6. References
7. Acknowledgements
A. XADRIVER Modifications
B. XADRIVER Update Procedure

The information in Sections 1 through 6 will be useful to all
readers. Application programmers may wish to browse through the
appendices for a technical description of the modifications. System
programmers and system managers should read the description of the
modifications in Appendix A before , applying the driver update in
Appendix B.

Modifications to the VAX/VMS DR11-W/DRV11-WA Interface Driver

2 Requirements for High Speed, Real-Time Data Acquisition

A distinguishing aspect of real-time systems is the requirement to
bound the time it takes to service program requests, especially data
input and output (I/O) requests. This is a consequence of the
requirement in many real-time systems to perform actions based on the
data values sampled from one or more external signals.

Sampled data values have finite useful lifetimes. To prevent
incorrect actions based on stale information, the program variables
storing these values must be refreshed before they have become
invalid. (This is particularly critical for the proper detection of
process or equipment failure and the initiation of safety-related
recovery procedures.) A real-time operating system must provide
features that the application may use to synchronize data sampling
with the external system being measured (whether sampling is
triggerred or periodic), and must complete these I/O requests within
time limits acceptable to the application.

Acceptable response times in high speed data acquisition systems
are typically very small, since the data values remain valid for a
very short period of time. (For example, the system for which these
changes were made can tolerate at most a 40 ms delay between the end
of one DMA transfer and the start of the next. Other USGS
applications restrict this time to less than 4 ms.) On a system
dedicated to one application, this may be of little concern. However,
if the application requires very small response times, it is important
to assess the potential sources of delay and minimize the effect of
those which adversely impact the real-time portions of the
application.

Any time there is contention for shared resources, the possibility
exists that a process will be blocked an indefinite amount of time
while waiting for one or more resources to become available. In
pathological cases, resource starvation can occur, which can lead to a
failure of the entire application.* In addition, the overhead
required to manage the allocation and deallocation of shared resources
introduces additional delays which are undesireable in high speed,
real-time systems.

Application programs can control to a certain extent the time it
takes to allocate shared resources on demand (such as memory or
processor cycles) with appropriate operating system calls (assuming
adequate privileges and quotas). Often, shareable resources can be
preallocated in advance, and retained until they are actually needed,
thereby eliminating the allocation delay time altogether. However,

* Competition need not come from other users. For example, any
process that causes I/O activity is a potential competitor for the
resources required to service its I/O requests. Such activities
may be an unavoidable part of the real-time application itself,
such as the process responsible for storing data on disk or tape in
a data acquisition system.

Modifications to the VAX/VMS DR11-W/DRV11-WA Interface Driver

few mechanisms are typically available to control the allocation of
resources that are shared within the operating system itself.

The modifications described in this report provide application
programs with the ability to control the allocation of these internal
operating system resources when using a DR11-W or DRV11-WA parallel
DMA interface. With suitable privilege, a program can permanently
allocate (or deallocate) the data channel resources required to
perform DMA transfers to a particular device, thereby eliminating the
allocation delay time when these resources are actually needed. As a
byproduct of this preallocation, the device driver is permitted to
raise its execution priority relative to the other device drivers in
the system to further reduce the delay in servicing subsequent data
transfer requests.

3 Summary of Modifications

In the discussion which follows, the reader is assumed to be
familiar with the material in Chapter 3 of the VAX/VMS I/O User's
Reference Manual: Part II, "DR11-W and DRV11-WA Interface Driver",
and to be generally familiar with the resources provided by VAX bus
adapters, i.e., buffered data paths and I/O mapping registers.

Actions described as being performed by the driver refer implicitly
to the particular driver fork process executing on behalf of a single
DR11-W or DRV11-WA interface. Actions performed by the driver on
behalf of one DR11-W or DRV11-WA have no effect on the others in the
system, except to the extent they are affected by changes in the pool
of available bus adapter resources (as are all the other devices
sharing the same bus adapter) .

3.1 Per formance Enhancements

A new modifier to the IO$_SETCHAR I/O function has been
implemented, IO$M-JJOWAIT, which invokes the features described, below
to reduce the latency between successive data transfers (i.e., the
time between a device interrupt request and the start of the next data
transfer):

1. To minimize delays caused by contention with other devices on
the same UNIBUS or Q-bus adapter, the driver

o optionally allocates a buffered data path and locks it for
the exclusive use of the device (direct data paths are
always shareable), and

o allocates and locks a sufficient number of UNIBUS or Q-bus
I/O mapping registers for transfer sizes up to the device
buffer size.

Modifications to the VAX/VMS DR11-W/DRV11-WA Interface Driver

2. To minimize delays caused by contention with other executive
processes executing at the same Interrupt Priority Level (IPL),
the driver

o raises it's fork IPL to the highest fork IPL available.

The bus adapter resources are allocated after any changes to the
data path and device buffer size requested in the same IO$_SETCHAR
call. They remain locked until explicitly unlocked and deallocated by
an IO$_SETCHAR call without the IO$M_NOWAIT modifier. This allows the
system manager to assign resources to devices in the system startup
command procedure. Users of those devices will benefit from the
performance improvements, without requiring any special privileges ,
and without introducing a risk to the security of the system.

3.2 Bug Fixes

The driver has been modified to protect the system from faulty I/O
requests and to correct several minor errors:

1. The Unit Control Block (UCB) device type field, UCB$B_DEVTYPE,
is used to distinguish between the UNIBUS DR11-W and the Q-bus
DRV11-WA. The driver sets the appropriate value in this field
(either DT$_DR11W or DT$_XA_DRV11WA) when the device is
initialized, and modifies it whenever an IO$_SETCHAR I/O
function call is issued.

The original driver uses the value in UCB$_DEVTYPE at various
points to select the proper code path to follow. Since any
value for this field is allowed in an IO$_SETCHAR call, the
system can become corrupted and behave erratically or crash if
an incorrect value is supplied. (Correctly behaved programs
first issue an IO$_SENSECHAR to read the previous device
characteristics, and preserve any unmodified fields before
issuing the IO$_SETCHAR call.) Since the potential for such an
error did not exist until support was added to the driver for
the DRV11-WA, there may be many programs that do not correctly
preserve the device type field which used to work fine, but
will eventually cause a system failure.

To ensure correct operation, the modified driver uses a
separate mechanism to select the proper code paths that does
not depend on the value in the UCB device type field.

2. Several other minor bug fixes were made to the original driver
that do not affect normal device operations. These include:

o Correctly copy the I/O adapter mapping registers into the
error logging packets.

Modifications to the VAX/VMS DR11-W/DRV11-WA Interface Driver

o Correctly transfer byte-aligned buffers.
o Preserve the data path selection when the driver is

reloaded,
o Correctly call the device reset routine from the device

initialization routine,
o Use instructions with the correct operand context when

accessing the I/O page.
o Correctly handle a DRV11-WA in 18-bit mode,
o Restart a DMA transfer if power fails during the device

setup sequence.

3.3 Optional Enhancements

Several enhancements were made to the original driver that are not
necessary to obtain the performance benefits described in this report.
These include:

o Cosmetic changes to the driver, such as correcting comments and
removing unneeded extended local symbol blocks.

o Minor code optimizations.
o Changes to the driver behavior, such as leaving the device

offline instead of BUGCHECKing, and guaranteeing the
serialization of all I/O requests.

4 Documentation Changes

The following modifications should be made to Chapter 3 of the
VAX/VMS I/O User's Reference Manual: Part II, "DR11-W and DRV11-WA
Interface Driver":

1. Section 3.3, Table 3-4 -

o IO$_SETCHAR - Add the IO$M__NOWAIT I/O function modifier,
o IO$_SENSEMODE (no parameters; logical I/O function)

Returns the device-dependent characteristics
(UCB$L__DEVDEPEND) in the second longword of the I/O status
block (IOSB).

o IO$_SENSECHAR (no parameters; physical I/O function) - Same
as IO$_SENSEMODE.

2. Section 3.3, "P2" - If I/O mapping registers are locked (see
section 3.3.3.1), the maximum block-mode transfer size is the
device buffer size in effect (UCB$W__DEVBUFSIZ) when the
IO$_SETCHAR!IO$M_NOWAIT call was made (see Figure 3-2).
SS$_IVBUFLEN is returned in the I/O status block (IOSB) if the
transfer size exceeds the maximum size.

Modifications to the VAX/VMS DR11-W/DRV11-WA Interface Driver

3. Section 3.3.3, Figure 3-2 - Bits 16..31 in the first longword
of the PI device characteristics buffer specify the device
buffer size.

4. Section 3.3.3.1 - Add the IO$M_NOWAIT i/o function modifier to
preallocate bus adapter resources:

If IO$M_NOWAIT is set:

1. If XA$MJDATAPATH is set, a buffered data path is allocated
and locked; and

2. a sufficient number of I/O mapping registers are allocated
and locked to accomodate DMA transfers up to the device
buffer size.

Allocation requests are made after first updating the data path
selection and device buffer size. If all locking is
successful, the device fork IPL is raised to the highest level
allowed (11) to minimize the delay while VMS services fork
queue requests from higher priority devices.

If IO$M_NOWAIT is clear:

1. Any previously locked bus adapter resources are unlocked
and released after first lowering the fork IPL back to the
default level (8).

5 Preliminary Results

The purpose of this report is only to describe the modifications
made to XADRIVER; a detailed analysis of the performance gains
resulting from these changes has not been made. However, preliminary
results from two systems can be presented: a VAX-11/750 using a
UNIBUS DR11-W and a MicroVAX II using a Q-bus DRV11-WA.

The application is the same in both cases: a high speed
analog-to-digital (A/D) converter is connected to the DR11-W or
DRV11-WA for seismic data acquisition and recording. The VAX-11/750
system is used both to digitize analog recprdings and for general
time-sharing and batch processing. (Even though this is not an
"on-line" digitizing system, the application is real-time, since it is
the analog tape transport that determines the incoming data rate, not
the computer.) The maximum delay that can be tolerated between
successive DMA transfers from the A/D converter is 40 ms. If it is
exceeded, the digitizing application must be restarted at a point on
the analog tape prior to the seismic event that was being digitized.

Using the original driver, such failures often occurred several
times during a multi-hour digitizing session, which forced the
technicians performing the digitizing to restart the application or,

Modifications to the VAX/VMS DR11-W/DRV11-WA Interface Driver

if the failures persisted, to delay working until the load on the
VAX-11/750 was reduced. Using the modified driver, successive data
transfers are routinely reissued every 10 ms, and there has never been
a failure due to a missed data transfer, regardless of the load on the
VAX-11/750.

The second system is a MicroVAX II currently being developed to
digitize, detect, and record seismic events on-line. Using the
original driver, delays between successive DMA transfers from the A/D
converter of over 30 ms have been measured with an artificial load on
the system. Using the modified driver and the same load, the delays
have been reduced to no more than 6 ms. In addition, the minimum time
between the completion of one data transfer and the start of the next
was reduced from 2 ms to 1 ms with no load on the system.

6 Re ferences

1. VAX Hardware Handbook, Volume 1-1986, 1985 (Order No.
EB-25949-46); Chapter 11, "VAX Input/Output Subsystems".

2. VAXBI Options Handbook, 1986 (Order No. EB-27271-46); Chapter
9, "DWBUA Adapter".

3. VAX Realtime User's Guide, November 1986 (Order No.
EK-VAXRT-UG001) .

4. VAX/VMS I/O User's Reference Manual: Part II, April 1986
(Order No. AA-Z601B-TE); Section 3, "DR11-W and DRV11-WA
Interface Driver".

5. Writing a Device Driver for VAX/VMS, April 1986 (Order No.
AA-Y511B-TE) .

6. VAX/VMS SUMSLP Utility Reference Manual, September 1984 (Order
No. AA-Z432A-TE).

7 Acknowledgements

Thanks are due to Bob Dollar and Tom Jackson for testing the new
driver on their MicroVAX II and VAX-11/750, respectively, and to the
reviewers, Gary Maxwell, Tim MacDonald, Bob Dollar, and Peter Johnson
for wading through such dry prose.

This work was funded by U. S. Nuclear Regulatory Commission
Interagency Agreement number RES-82-001.

APPENDIX A

XADRIVER Modifications

This appendix describes the modifications made to XADRIVER (version
X-6) . Appendix B contains a command procedure, XADRIVER.sip, with the
source code to update the driver using the VAX/VMS SUMSLP editor
utility. Each update command in XADRIVER.sip is identified by an
audit trail, consisting of the initials "LMB", followed by a three
digit sequence number, and corresponds to one of the sections below.
The comments at the head of XADRIVER.sip identify the driver changes
associated with each audit trail, and are used in shortened form as
subsection headings in the sections below.

The reader is assumed to have experience reading Macro-32 assembly
language, and to be generally familiar with the VMS I/O subsystem, VMS
device drivers, VAX UNIBUS and Q-bus adapters, and DMA device
interfaces for the UNIBUS and Q-bus.

A.I LMB001

LMB001 contains the bug fixes for the driver outside of the
controller/unit initialization routine.

A.1.1 Correct driver operation for invalid UCB$B_DEVTYPE

The original driver uses the value in the UCB device type field
(UCB$BJ>EVTYPE) for proper code path selection. Since IO$_SETCHAR
calls modify UCB$B_DEVTYPE, unpredictable results can occur if an
incorrect or illegal value is supplied. The driver was modified to
use a single status bit in the low-order byte of the second
device-dependent characteristics longword (UCB$L_DEVDEPND2) for the
code selection, both to shorten the instruction sequence and to remove
the dependence for correct operation of the driver on a field in the
UCB which can be modified by a user program. (This byte is defined
symbolically as UCB$B_J}RV11WA.) Bit 0 of UCB$B_DRV11WA is used with
the BLBC and BLBS instructions (Branch on Low Bit Clear/Set) as a
replacement for the original CMPB...BEQL two-instruction sequences
(Compare Byte...Branch on Equal) .

A-l

XADRIVER Modifications

A.1.2 Correctly save previous map register contents

The original driver contains a typographical error that results in
incorrect values stored in the error logging packet for the final and
previous I/O mapping register contents (UCB$L_XAta_FMPR and
UCB$L_XAWPMPR) when more than one register is allocated. (The
previous I/O mapping register contents are stored in the field for the
final I/O mapping register, and the field for the previous I/O mapping
register contains zero.) The faulty instruction was modified to
reference UCB$L_XA_PMPR instead of UCB$L_XA_FMPR.

A.1.3 Correctly transfer byte-aligned buffers

The original driver will not properly handle all data transfers
that are byte-aligned in memory. Byte-aligned buffers are rejected
for block-mode transfers when the direct data path has been selected
by the Function Decision Table (FDT) routine handling reads and
writes. The original driver incorrectly handles the following cases:

1. For block-mode transfers:

o The data path selection bit (XA$M_DATAPATH) in the
device-dependent characteristics (UCB$LJDEVDEPEND) is tested
to determine which data path has been selected. However,
since the test is performed in an FDT routine, there is no
guarantee that the same data path will be selected when the
transfer is actually performed. (E.g., an IO$_SETCHAR that
is still in the device I/O request queue could change the
data path selection.) This test must be properly serialized
with other requests that have the potential for modifying
the data path selection.

o The XA$MJDATAPATH bit is not a reliable indicator of the
current data path selection. XA$MJDATAPATH is modified by
every IO$_SETMODE and IO$_SETCHAR call, whether or not the
IO$M_J)ATAPATH modifier has been specified. Without the
IO$M_J)ATAPATH modifier, XA$M_DATAPATH will have no effect on
the selection of the data path, but the driver makes no
effort to preserve this bit in UCB$LJDEVDEPEND when the
IO$MJDATAPATH modifier is not specified.

o The bus adapter may have no buffered data paths, as is the
case for the Q-bus adapter on the MicroVAX II. The
documentation correctly states that requests for the
buffered data path are ignored on such processors, but it
fails to reject byte-aligned buffers in that case.

2. For word-mode transfers:

o The FDT routine allows byte-aligned buffers because the
driver performs word-mode transfers to and from memory
itself. When updating the user buffer pointers in the
driver routines MOVEFRUSER and MOVETOUSER, the original

A-2

XADRIVER Modifications

driver uses an incorrect test when the word being
transferred straddles a page boundary. The result is an
incorrect data transfer at best, and corrupted memory at
worst.

The simplest fix for these problems is to disallow byte-aligned
buffers by moving the test for illegal byte-alignment ahead of the
test for word-mode transfers (move line 463 immediately after line
458), and remove the test for buffered data path selection, since it
is no longer needed (delete lines 461-462).

However, if the intention is to support byte-aligned buffers, the
changes in Appendix B must be used. For block mode transfers, the
test was moved from an FDT routine to the point in the driver where
the data path is actually allocated. This is required to handle bus
adapters that have no buffered data paths. (The test is performed in
a way that is independent of the CPU type, so no modifications should
be required to support future VAX processors.) For word mode
transfers, the buffer pointer update logic in MOVETOUSER was corrected
to properly detect page overflow of byte-aligned buffers.

A.1.4 Restart DMA transfer if power fails during device setup

The original driver does not detect a power fail during the device
setup sequence in XA^START. As Section 9.3.7 of Writing a Device
Driver for VAX/VMS points out, if one occurs between the time the
device registers are loaded and the CSR GO bit is set for a block-mode
(DMA) transfer, the result is unpredictable device behavior. In the
worst case, the word count and bus address registers will be cleared
and a 64KW transfer to address 0 will be initiated (overwriting memory
until the VMS power fail recovery routine can call the device
initialization routine to stop the transfer). The driver was modified
to detect a powerfail just before setting the CSR GO bit and branch
back to XA^START in that case to retry the transfer.

A.2 LMB002

LMB002 contains the bug fixes for the driver within the
controller/unit initialization routine.

A.2.1 Preserve the data path selection when the driver is reloaded

The original driver unconditionally locks the direct data path when
the driver is reloaded, even if the device has been configured to
share the buffered data paths (VEC$M_PATHLOCK in VEC$BJDATAPATH is
clear). One difference between controller and unit initialization

A-3

XADRIVER Modifications

routines is that the controller initialization routine is called for
both the initial driver load (or system boot), and for driver reloads.
The unit initialization routine is only called for the initial load,
not for reloads. To avoid disturbing the data path locking context in
the CRB/VEC, the controller intialization routine in the original
driver was converted to a unit initialization routine, which prevents
execution of this code when the driver is reloaded.

A.2.2 Correctly call device reset routine during initialization

The device reset routine, XAJDEV^RESET, expects R5 to contain the
UCB address to access the device type field (UCB$B^DEVTYPE). However,
when the original driver calls XA^DEV^RESET from the controller
initialization routine, R5 contains the address of the IDB; RO
contains the UCB address. By converting the controller initialization
routine to a unit initialization routine, VMS supplies the UCB address
in R5 and the CSR address in R4, which are the register contents
specified for entry into XAJDEV_JRESET.

A.2.3 Change I/O page access to word context

The original driver uses a BBS instruction (Branch on Bit Set) in
the controller initialization routine to test the CSR interrupt enable
bit. This instruction has longword context, which is illegal when
accessing I/O page registers. This instruction was replaced with an
equivalent two-instruction sequence that uses word context to access
the I/O page.

A.2.4 Validate 22-bit mode DRV11-WA on a MicroVAX II

The original driver assumes that a DRV11-WA is in 22-bit mode. The
consequences of an incorrect assumption are possible system corruption
and either erratic behavior or a crash. The driver was modified to
determine whether a DRV11-WA is in 18- or 22-bit mode using the
following differences between the two modes:

o In 18-bit mode, the extended address bits in the CSR
(XAta_CSR$M_XBA in XA^CSR) are read/write, and there is no bus
address extension register (XAJ3AE); and

o in 2 2-bit mode, the extended address bits in XA^CSR are
read-only copies of the two low-order address bits in XAJ3AE,
and two successive accesses to the bus address register (XA^_BAR)
with no intervening references to another device register will
access XA^BAR and XA^BAE, respectively.

A-4

XADRIVER Modifications

Two successive instructions are used to clear XAJAR and XA_BAE.
An attempt is then made to set the extended address bits in XA..CSR.
If the DRV11-WA is in 22-bit mode, clearing XA^BAE will clear the
extended address bits in XA^CSR, and they will not be modified by the
attempt to set them through XA^CSR. If the DRV11-WA is in 18-bit
mode, clearing XA^BAE is superfluous, and the extended address bits in
XA^CSR will be set.

The extended address bits in the CSR are tested to determine if
they are set or cleared. If they have remained clear, the DRV11-WA is
in 22-bit mode and execution continues. Otherwise, the DRV11-WA is in
18-bit mode, and the driver either BUGCHECKs or leaves the device
offline, depending on whether the optional enhancements have been
included in the driver update.

NOTE

The optional enhancements are strongly recommended.
If the BUGCHECK is left in the driver, the system will
never successfully boot VMS as long as the DRV11-WA is
incorrectly configured in 18-bit mode. Since there is
no way to analyze the system dump file, the failure
detected by the driver cannot be differentiated from
any other type of failure that leaves the system
unusable. With the optional enhancements in place,
the driver leaves the unusable device controller
off-line (which prevents its use), leaving the
remainder of the system completely available.

A. 3 LMB003

The changes in LMB003 implement the performance enhancements to the
driver.

A.3.1 Lock selected data path and I/O mapping registers

If the data path is locked, REQDPR will return immediately.* This
feature is used in the driver to select between the direct data path
(data path zero) and a buffered data path. If the direct data path
has been selected, it is locked to prevent a buffered data path from
ever being allocated. If a buffered data path has been selected,

* The method for permanently allocating a buffered data path is
documented in section 10.1.2 in Writing a Device Driver for
VAX/VMS; the macro issued by a device driver to allocate a data
path, REQDPR, is described in Appendix B; and the executive routine
that performs the allocation, IOC$REQDATAP(NW), is described in
Appendix C.

A-5

XADRIVER Modifications

REQDPR will return one, if the bus adapter has buffered data paths, or
the call will fail because the bus adapter has none, leaving zero in
the data path field (VEC$B__PATAPATH) . Since the direct data path is
always shareable, the data path can be locked in either case (ignoring
the failure if the bus adapter has no buffered data paths) . The data
path is locked by setting VEC$MJPATHLOCK in VEC$B_PATAPATH.

The device buffer size (UCB$W_J)EVBUFSIZ) is used to calculate the
number of I/O mapping registers to permanently allocate to the
device.* Since data buffers are not necessarily page aligned, the
number requested is UCB$W_JDEVBUFSIZ, rounded up to pages, plus one to
account for page spillover, plus the extra page required by LOADUBA to
trap runaway transfers. The I/O mapping registers are locked by
setting VEC$M_MAPLOCK in VEC$W_MAPREG. The current value in
UCB$W_PEVBUFSIZ is saved in UCB$LJDEVDEPND2+2 for use later when
validating the size of a transfer request. (This word is defined
symbolically as UCB$W_MPRBUFSIZ.)

Since an IO$_SETCHAR call may alter the data path selection or the
device buffer size, the driver must release any locked resources
before modifying the UCB database. The VEC$M_MAPLOCK bit in
VEC$W__MAPREG is used by the driver as an indicator that adapter
resources have been locked. If it is clear, the code to release the
locked resources is bypassed. If it is set, VEC$H_MAPLOCK is cleared
and the I/O mapping registers are released.

The VEC$MJPATHLOCK bit in VEC$BJDATAPATH must be cleared to do the
same for a locked buffered data path, but not if the direct path has
been selected. The allocated data path number is examined to
determine which data path is locked. If it is zero, i.e., the direct
data path, then the code to release the data path is bypassed.
Otherwise, VEC$M_J>ATHLOCK is cleared and the buffered data path is
released.

Any changes to the UCB database are then made, followed by a
determination of whether to preallocate the (possibly modified) device
configuration.

Code was added to the new driver to restrict the size of a DMA
transfer to guarantee the buffer can be mapped when I/O mapping
registers are locked. The device buffer size in effect at the time
the I/O mapping registers were locked (UCB$WJMPRBUFSIZ) is used as the
limit to simplify the calculation, even though it is a conservative
estimate of the maximum buffer size that could be mapped.

* The method for permanently allocating I/O mapping registers is
documented in section 10.2.2 in Writing a Device Driver for
VAX/VMS; the macro issued by a device driver to allocate I/O
mapping registers, REQMPR, is described in Appendix B; and the
executive routine that performs the allocation, IOC$ALOUBAMAP(N),
is described in Appendix C.

A-6

XADRIVER Modifications

A. 4 LMB004

The changes in LMB004 implement additional performance enhancements
to the driver, especially for heavy timesharing or networking
environments.

A.4.1 Raise fork IPL when bus adapter resources are locked

All devices on the same UNIBUS or Q-bus adapter compete for the
adapter's resources, e.g., buffered data paths and I/O mapping
registers. Each adapter has a corresponding data structure in the
executive, called an Adapter-Control Block (ADB), which describes the
current state of these shared resources for allocation and
deallocation requests. Access to shared executive databases are
serialized in VMS through the use of a pseudo process context, the
fork process, which has an associated priority level, called fork IPL
(FIPL), which is analagous to the execution priority of a normal VMS
process. VMS guarantees that a fork process cannot be preempted by
another fork process at the same (or lower) level; the CPU hardware
gives preference to fork processes executing at higher IPLs.

VMS device drivers perform all non-time-critical work as fork
processes, including interrupt post-processing and initiation of the
next I/O request. There is no limit to the amount of time a driver
may spend executing as a fork process. Since fork processes executing
at the same level are serialized, this can lead to a variable and
indeterminate amount of time between succesive transfers.

Since they must share access to a single bus adapter database, all
driver processes for devices on the same bus adapter must run at the
same fork level. As a result of the changes introduced in LMB003,
however, a device that has locked bus adapter resources is no longer
competing for those resources, and therefore does not require
synchronized access to the the bus adapter database as long as they
remain locked.

The driver was modified to take advantage of this situation by
raising it's fork IPL (UCB$B__FIPL, normally 8) to the highest level
available (XAJTOP_FIPL), thereby raising it's execution priority to
the highest level within all fork processes. (The modified driver
symbolically defines XAJTOP_FIPL as 11.) The only other driver in a
standard VMS system that normally executes at this level is the
mailbox driver.

The current value in UCB$B__FIPL is saved in UCB$L_PEVDEPND2+1
before it is raised to XAJTOP_FIPL. (This byte is defined
symbolically as UCB$B_DEFFIPL.) A corresponding modification to lower
the fork IPL back to the value stored in UCB$BJDEFFIPL was made before
unlocking any bus adapter resources to reestablish serialized access
to the bus adapter database.

A-7

XADRIVER Modifications

A.5 LMB005

The changes in LMB005 are optional. They are not necessary to
obtain the performance benefits described in this report. In general,
they represent alternate choices for driver behavior that are
preferable to the choices made in the original driver.

A.5.1 Correct comments describing IO$__SETCHAR outputs

The original driver mispelled the symbolic name for the
device-dependent characteristics bit indicating the choice of data
path (XA$M_JDATAPATH) , and was missing the reference to the bit
indicating link mode versus user device mode operation (XA$M_LINK) .

A.5.2 Leave DRV11-WA offline instead of BUGCHECKing

The original driver BUGCHECKs if it is running on a MicroVAX I. It
is preferable to make the device unavailable, leaving the user with an
otherwise fully functional system. This is done in the unit
initialization routine by clearing the device on-line bit
(UCB$MLONLINE) in the device status longword (UCB$L_STS), and
returning control to the executive. (The same code is used in the
modified driver when an 18-bit mode DRV11-WA is identified.)

A.5.3 Serialize IO$_SETMODE and IO$_SETCHAR with all requests

The original driver makes some attempts to serialize I/O requests,
but it is inconsistent and only partially successful. Several changes
were made to the driver to guarantee serialization of all I/O
requests, not just requests to change the data path and data transfer
requests.

The original driver processes requests to change device
characteristics that do not specify data path selection in an FDT
routine, instead of queueing them to the driver. Thus, a program that
sequences several IO$_SETCHAR calls and waits on the last one could
mistakenly assume they all had completed if the last one does not
specify the IO$M_J)ATAPATH modifier.

The driver was modified to queue all IO$_J3ETMODE and IO$_J3ETCHAR
requests to the driver to provide the normally assumed serial
completion of I/O requests to the same device. A routine to handle
IO$_SETMODE calls was added in XA^START that modifies the UCB device
buffer size (UCB$W_DEVBUFSIZ) and the device-dependent characteristics
(UCB$L_DEVDEPEND).

A-8

XADRIVER Modifications

A.5.4 Serialize IO$_SENSEMODE and IO$_SENSECHAR with all requests

The original driver supports two undocumented I/O functions:
IO$_SENSEMODE and IO$_SENSECHAR. These return the device-dependent
characteristics (UCB$L_J>EVDEPEND) in the second longword of the I/O
status block (IOSB). The original driver completes these in the
executive FDT routine, EXE$SENSEMODE. By completing the request in an
FDT routine, the driver runs the risk of returning incorrect values if
a previously issued IO$_SETCHAR request is still in the device's I/O
request queue.

The FDT table was modified to pass IO$_SENSEMODE and IO$_SENSECHAR
requests to the driver's start I/O routine using EXE$ZEROPARM / and a
routine was added in XA^START that returns the device-dependent
characteristics (UCB$L_DEVDEPEND) in the second I/O status longword.
This guarantees that such requests will be properly serialized with
IO$_SETCHAR requests, and stale values will not be returned.
(Programs can call the SYS$GETDVI(W) system service to obtain an
immediate copy of the device-dependent characteristics, if
serialization with previous I/O requests to the device is not
required.)

A.5.5 Remove unnecessary extended local symbol block

In the original driver, no references to local symbols are made
outside of, or into, the extended local symbol block surrounding the
XA^START and BLOCK_MODE routines. The driver was modified to remove
the extended local symbol block to reduce the chance of an
unintentional reference to a distant statement label by causing such
an error to generate an undefined reference.

A.5.6 Unroll short loop in X/CREGDUMP

The original driver used a loop to execute three succcessive MOVL
instructions (Move Longword), for a total of seven instructions
altogether. The driver was modified to use a MOVL. . .MOVQ
two-instruction sequence (Move Longword...Move Quadword) instead. In
addition, the three instructions following the loop were optimized to
take advantage the adjacency assumed in the definition of the UCB
extension.

A-9

APPENDIX B

XADRIVER Update Procedure

B.1 Source Code Update

The following DCL command procedure, XADRIVER.sip, includes an
inline driver source code update file for the SUMSLP batch editor that
generates a new version of XADRIVER.mar in the default directory.
Version X-6 of XADRIVER.mar (supplied in Sys$Examples) is required.

Standard Macro-32 syntax is used, i.e., fields are separated by
tabs. <FF> represents the ASCII formfeed character.

NOTE

To fit all the text on the page, the first two tab
stops in the listing below are 7 spaces each, instead
of the normal 8 spaces. When the text is entered at a
terminal with standard DEC tabs stops, there will be
some visual differences from what is printed below.

XADRIVER.sip

$Edit/SUM /Output=XADRIVER.mar /List=XADRIVER.sum -
Sys$Examples:XADRIVER.mar/Update=Sys$Input

\-2,2
.IDENT 'X-6E 1

-57
X-6E LMB005 L. M. Baker 17-Aug-1987

Correct comments describing IO$_SETCHAR outputs.
If MicroVAX I or 18-bit DRV11-WA, leave unit offline

instead of BUGCHECKing.
Serialize IO$_SETMODE/IO$_SETCHAR w/ all requests.
Serialize IO$_SENSEMODE/IO$_SENSECHAR w/ all requests.
Remove unnecessary extended local symbol block.
Unroll short loop in XA_£EGDUMP.

X-6D LMB004 L. M. Baker 10-Aug-1987
Raise fork IPL to 11 if UBA resources have been locked

B-l

XADRIVER Update Procedure

(IO$_SETCHAR!IO$M_NOWAIT); save default FIPL in
UCB$LDEVDEPND2+1; restore to default fork IPL when
UBA resources are unlocked for proper synchronized
fork-level access to the UBA resource database.

X-6C LMB003 L. M. Baker 10-Aug-1987
Implement IO$__SETCHAR modifier IO$M_NOWAIT to lock data

paths and UBA mapping registers; reject transfers that
exceed UCB$W_J)EVBUFSIZ when UBA mapping registers are
locked.

X-6B LMB002 L. M. Baker 27-Aug-1987
Preserve data path selection when the driver is

reloaded (convert controller initialization routine
to a unit initialization).

Correctly call device reset routine from controller/
unit initialization routine.

Change instructions in controller/unit initialization
that acces the I/O page to use word context instead
of longword context.

Validate 22-bit mode DRV11-WA if MicroVAX II.

X-6A LMB001 L. M. Baker 25-Aug-1987
Maintain correct driver operation when IO$_SETCHAR

modifies UCB$B_J)EVTYPE (define bit 0 of
UCB$L_DEVDEPND2 =0 if DR11-W, =1 if DRV11-WA;
replace CMPB...BEQL instructions with BLBC or
BLBS) .

Correctly save previous map register contents in
error log packet.

Correctly transfer byte-aligned buffers.
Restart transfer if power fails during device setup.

-186,,/; LMB001/

; Fields in second device-dependent status word in UCB (UCB$L_DEVDEPND2)

UCB$B_J)RV11WA = UCB$L_DEVDEPND2 ; DRV11-WA flag (=1, DR11-W =0)
-,,/; LMB004/
UCB$B_DEFFIPL = UCB$L_DEVDEPND2-H ; Saved default FIPL
XAJTOP_FIPL =11 ; Highest fork IPL allowed
-,,/; LMB003/
UCB$W__MPRBUFSIZ = UCB$L_J)EVDEPND2-i-2 ; Largest mapped buffer size
-279,280V; LMB002/

DPT_STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,- ; Address of unit
D,XAta_UNIT_INIT ; initialization routine

-308,308V; LMB005/
FUNCTAB +EXE$ZEROPARM,<SENSEMODE,SENSECHAR>

-310,310V; LMB002/
.SBTTL XA^UNIT.INIT, Unit initialization

-313,314V; LMB002/
; XA^UNIT^INIT is called when driver is loaded, system is booted, or power
; failure recovery.

B-2

XADRIVER Update Procedure

-326,328,7; LMB002/
R5 = address of UCB

-338,341,7; LMB002/
XA_UNIT_INIT:

MOVL R8,-(SP) ; Save R8
MOVL UCB$L_CRB(R5) ,R8 ; Address of CRB
MOVL CRB$L_INTD+VEC$L_IDB(R8) ,RO ; Address of IDB
MOVL R5, IDB$L_OWNER(RO) ; Make permanent controller owner
MOVL R5,RO ; Use RO for address of UCB

-343,,/; LMB001/
CLRB UCB$B_JDRV11WA(RO) ; Assume DR11-W (clear bit 0)

-348,348,/; LMB005/

; MicroVAX I or 18-bit mode DRV11-WA (see test below)

3$: BBSC #UCB$V_ONLINE,-
UCB$L_STS (RO) ,20$

-350,,/; LMB001/
INCB UCB$B_JDRV11WA (RO)

-,,/; LMB002/

; Verify DRV11-WA is in 22-bit mode

CLRW XA_BAR (R4)
CLRW XA_BAE (R4)
BISW #XA_CSR$M_JCBA, XA^CSR (R4)
BITW #XA_CSR$M_XBA, XA^CSR (R4)
BNEQ 3$

Set device status "off-line"
and return to exec

Bit 0 =1 for DRV11-WA

Clear low order address bits
Clear high order address bits
"Set" read-only addr bits in CSR
If clear, DRV11-WA is 22-bit
If set, DRV11-WA is 18-bit

IE already set?
If NE, yes

Reference label

Restore R8

-359,360,/; LMB002/
BITW #XA_CSR$M_IE, XA_CSR (R4)
BNEQ 9$

-373,,/; LMB005/
20$:
-,,/; LMB002/

MOVL (SP)+,R8
-454,457,/; LMB001/
-461,463,/; LMB001/
-514,514,/; LMB002/
; If either I/O function modifier IO$MLDATAPATH or IO$M_NOWAIT is set,
-518,518,/; LMB003/
20$: BITL #IO$M_DATAPATH! IO$M_-NOWAIT,RO ; If BDP or NOWAIT modifier,

BNEQ 30$; queue packet
-519,520,/; LMB005/

BRB 40$; Queue packet to start I/O
-525,,/; LMB005/
40$: ; Reference label
-540,540,/; LMB005/

This routine has four major functions:
-546,547,/; LMB003/

2) Set Characteristics. If the function is change data path
; or lock resources, the UCB is updated with the data path

and/or UBA resources are locked.
-,,/; LMB005/

B-3

XADRIVER Update Procedure

3) Set Mode. Modifies UCB$W_J>EVBUFSIZ and UCB$LJDEVDEPEND
fields and finishes I/O with success.

4) Sense Mode/Characteristics. Returns UCB$L_J)EVDEPEND field
in Rl and finishes I/O with success.

-562,562,/; LMB005/
-570,571,/; LMB003/
-580,580V: LMB003/
; select a data path and/or UBA mapping registers for future use.
-585,585,/; LMB003/

BEQL DO_SETCHAR
-,,/; LMB005/

CMPB #IO$_SETMODE,R2 ; Set mode?
BEQL DO_SETMODE
CMPB #IO$_SENSECHAR,R2 ; Sense characteristics?
BEQL DO_SENSECHAR
CMPB #IO$_SENSEMODE,R2 ; Sense mode?
BEQL DO_SENSECHAR

-,,/; LMB003/
BRW DO_READ_WRITE

<FF>
-,,/; LMB005/

+
SENSE CHARACTERISTICS - Process Sense Mode and Sense Characteristics

QIO functions

Note: IO$_SENSEMODE and IO$_SENSECHAR are processed here (instead of
by the executive EXE$SENSEMODE routine) to properly serialize
such requests with changes requested by IO$_SETMODE/IO$_SETCHAR

DO_SENSECHAR:

MOVL UCB$L_DEVDEPEND(R5),R1 ; Read device characteristics
BRB XA^FINISHIOJRO ; Finish w/ success

+
SET MODE - Process Set Mode QIO function

Note: IO$_SETMODE is processed here (instead of by the executive
EXE$SETCHAR routine) to properly serialize such requests with
changes requested by IO$_SETCHAR.

/

DO_SETMODE:

MOW IRP$L_MEDIA+2(R3),- ; Set device buffer size
UCB$W_JDEVBUFSIZ (R5)

MOVL IRP$L_MEDIA+4(R3),- ; Set device-dependent
UCB$L_DEVDEPEND(R5) ; characteristics

CLRL Rl ; Finish w/success (fall through)

XA_FINISHIO_RO:

MOVZWL #SS$_NORMAL,RO ; Show successful return

B-4

XADRIVER Update Procedure

REQCOM ; Complete I/O
-594, ,//* LMB003/

IO$M_NOWAIT I/O function modifier specifies whether to lock
(IO$M_NOWAIT=1) or unlock (IO$M_tfOWAIT=0) UBA resources.

IO$_SETCHAR! IO$M^OWAIT:

Lock the currently selected data path and enough UBA
mapping registers for the current device buffer size.

,,/; LMB004/
Raise fork IPL to the highest fork IPL available (11).

-,,/; LMB003/

IO$_SETCHAR:

-,,/; LMB004/
If UBA resources are currently locked, lower fork IPL
back to the default fork IPL, and release locked UBA

-,,/; LMB003/
resources.

-598,,/; LMB003/
UBA resources are locked in the CRB/VEC, if requested.

-,,/; LMB004/
UCB$B_FIPL is raised or lowered, if necessary.

-600,601,/; LMB005/
XA$M_J)ATAPATH = 1 -> buffered data path in use
XA$M_DATAPATH = 0 -> direct data path in use
XA$M_LINK = 1 -> interprocessor link mode
XA$M_LINK = 0 -> user device mode

-603,,/; LMB003/

DO_SETCHAR:

; Release UBA resources previously locked

MOVZWL #SS$_NORMAL,RO ; Assume success
BBCC #VEC$V_MAPLOCK,- ; UBA resources locked?

CRB$L_INTD+VEC$WJVIAPREG(R4) ,220$
-,,/; LMB004/

MOVB UCB$B_DEFFIPL(R5), -

FORK
UCB$B_FIPL(R5)

Restore IPL to synchronize
access to UBA resources

Synchronize processing

-,,/; LMB003/
RELMPR ; Yes, deallocate private MPRs
CMPZV #VEC$V_DATAPATH,- ; Buffered data path locked?

#VEC$S_DATAPATH,-
CRB$L_INTD+VEC$B_DATAPATH(R4), #0

BEQL 210$; No, direct path is shareable
BICB #VEC$MLPATHLOCK,- ; Yes, unlock BDP

CRB$L_INTD+VEC$B_DATAPATH (R4)
RELDPR ; Deallocate private BDP

B-5

XADRIVER Update Procedure

210$: MOVZWL IRP$W_FUNC(R3),R1 ; Restore entire function c

; Select UBA data path and set device characteristics

220$: BBC #IO$V_DATAPATH,R1,2$; If data path modifier set
-610,,/; LMB003/

MOVZWL #SS$_JJORMAL,RO ; Restore successful status

Lock UBA resources

BBC #IO$V_NOWAIT,R1,-
X/L.FINISHICLR1

MOVZWL UCB$W_JDEVBUFSIZ(R5) ,R3
MOVW R3,UCB$W_MPRBUFSIZ(R5)
ADDL #511,R3
DIVL #512,R3
ADDL #2,R3
JSB G~IOC$ALOUBAMAPN
BLBC RO,XA_FINISHIO_£1
BISW #VEC$M_MAPLOCK,-

Lock UBA resources?

Buffer size in bytes
To validate transfers latt
Rounded up to pages, allo

for page spillover and
invalid trailer page

Allocate private MPRs
Failed
Lock mapping registers

CRB$L_INTD+VEC$W_MAPREG (R4)

If the direct data path is selected, it's already locked and RE
return immediately. If a buffered data path is selected, we'll
get one (possibly after waiting for one to become available), o
fail because the processor has none. We can lock the data path
way (ignoring failures), since the direct data path is always s"

REQDPR ; Request data path registe
BISB #VEC$M_J>ATHLOCK, - ; Lock the data path

CRB$L_INTD+VEC$B_DATAPATH (R4)
-,,/; LMB004/

MOVE UCB$B_FIPL(R5),-
UCB$B_DEFFIPL(R5)

MOVE #XAJTOP_FIPL,-

FORK
UCB$B_FIPL(R5)

Save default fork IPL

Raise fork IPL (no need t
synchronize access to

Fork to new IPL
-,,/; LMB003/

XA_FINISHIO_£1:

-612,612,/; LMB003/
-613,,/; LMB003/
<FF>
; Validate transfer size if UBA mapping registers have been locke

DO_£EAD_WRITE:

BBC #VEC$V_MAPLOCK,- ; UBA resources locked?
CRB$L_INTD+VEC$W_MAPREG(R4) ,290$

BBC #IO$V_WORD,R1,290$; Only matters if block mod
CMPW UCB$W_BCNT(R5),- ; Request too large?

UCB$W_MPRBUFSIZ(R5)

B-6

XADRIVER Update Procedure

BLEQU 290$
MOVZWL #SS$_IVBUFLEN,RO
BRB X/L_FINISHIO_Jll

No, process request
Yes, invalid buffer length
Finish w/error status

290$: MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4 ; Address of CSR
-695,,/; LMB001/

BLBC UCB$W_BOFF(R5),251$; Word-aligned transfers OK
MOVL UCB$L_CRB (R5) ,R2 ; Address of CRB
CMPZV #VEC$V_PATAPATH,- ; Buffered data path allocated?

#VEC$S_PATAPATH,-
CRB$L_INTD+VEC$BJDATAPATH(R2) ,#0

BNEQ 251$
RELDPR
MOVZWL #SS$_BADPARAM,RO
CLRL Rl
REQCOM

251$:
-707,709,7; LMB001/

BLBC UCB$B_DRV11WA(R5),100$
-736,738,/; LMB001/

BLBC UCB$B_DRV11WA(R5),200$
-743,,/; LMB001/

SETIPL UCB$B_DIPL(R5)
BBCC #UCB$VJPOWER, -

UCB$L_STS(RO),260$
ENBINT
PURDPR
RELMPR
RELDPR
BRW XA^START

260$:
-771,773,/; LMB001/

BLBC UCB$BJDRV11WA(R5),300$;
-786,786,/; LMB001/

MOVL (R2) [RO] , UCB$L_XAJPMPR (R5)
-802,804,/; LMB001/

BLBC UCB$BJDRV11WA(R5),37$

Yes, byte-alignment OK
No, release data path
Set error status code

Abort I/O
Reference label

If this is a DR11-W, then branch

If this is a DR11-W, then branch

Allow powerfail interrupts
Branch if no powerfail and

clear powerfail indicator
Enable interrupts
Purge buffered data path
Release I/O mapping registers
Release buffered data path
Restart transfer (R3 & R5 are OK)

If this is a DR11-W, then branch

; Save prev map register contents

Branch if this is a DR11-W

Branch if this is a DR11-W

and the operation is incomplete,
in which case it is an expected
error and not worth logging.

-819,820,/; LMB005/
-873,87s,/; LMB001/

BLBC UCB$BJDRV11WA(R5),17$
-940,942,/; LMB001/

BLBC UCB$BJDRV11WA(R5),1037$
-1014,,/; LMB001/

BITW 4TC<~X01FF>,UCB$W_BOFF(R5) ; page overflow?
BEQL 30$; If EQ, not yet

-1016,1016,/; LMB001/
-1175,1177,/; LMB001/

BLBS UCB$B_DRV11WA(R5) ,57$; If this is a DRV11-WA, then branch
-1192,1194,/; LMB001/

BLBC UCB$B_DRV11WA(R5) ,70$; If this is a DR11-W, then branch
-1362,1362,/; LMB005/
-1364,1367,/; LMB005/

B-7

XADRIVER Update Procedure

MOVQ (Rl)+, (R0) +
INCL Rl
MOVZBL (Rl)+, (R0) +
MOVZWL (Rl) +, (RO) +
MOVZWL (Rl)+, (R0) +

1393,1395,/; LMB001/
BLBC UCB$B_DRV11WA(R5),20$

(3 longwords total)
Point to UCB$W_XA_DPRN+1
Save Datapath Parity Error Flag
Save BAE stored prior to xfer
Save BAE stored following xfer

If this is a DR11-W, then branch

B.2 Update Command Procedure

The following DCL command procedure, XADRIVER.com, generates a new
version of XADRIVER.exe in the default directory.

XADRIVER.com

$ ©XADriver.slp
$ Macro /List XADRIVER + Sys$Library:LIB.mlb/Library
$ Link /Map XADRIVER,Sys$System:SYS.stb/Selective_search, -

Sys $Input/Options
Base=0
$

To install the new driver, copy it to Sys$System and reboot the
system.

NOTE

Readers who wish to obtain machine-readable copies of
these files may contact the author at

U. S. Geological Survey
Office of Earthquakes, Volcanoes, and Engineering
345 Middlefield Road MS977
Menlo Park, CA 94025
(415) 329-5608 or FTS 459-5608

B-8

