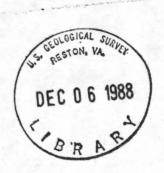


SEDIMENT CHARACTERISTICS OF NORTH CAROLINA STREAMS, 1970-79



SEDIMENT CHARACTERISTICS OF NORTH CAROLINA STREAMS, 1970-79

by Clyde E. Simmons

U.S. GEOLOGICAL SURVEY

Open-File Report 87-701

Prepared in cooperation with

NORTH CAROLINA DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT

Open-file herchi Geningical Sunwy U.S.

Raleigh, North Carolina

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

17) Ton Jalif-ne

District Chief U.S. Geological Survey Post Office Box 2857 Raleigh, North Carolina 27602 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Box 25425, Federal Center Denver, Colorado 80225

CONTENTS

					Page
Abstract					1
Introduction				97	2
Purpose and scope					2
Previous studies					3
Acknowledgments					6
Physical features of North Carolina significantly related t					
erosion and sediment transport					6
Slope					8
Physiographic provinces and drainage					8
Blue Ridge province					8
Piedmont province		0.0			10
Coastal Plain province					11
Soil characteristics					12
Land use					16
Effects of reservoirs					18
Hydrologic conditions during study period					19
Precipitation					19
Streamflow					22
Sediment-sampling network and methods of computation					25
Daily sampling stations					
Periodic sampling stations					28
Methods of sampling and laboratory analysis					32
Effects of land use on characteristics of sediment transport					35
Forested basins representing background conditions					35
Forested basins having minor development					40
Rural basins affected by agriculture					41
Rural basins affected by nonagricultural activities					55
Channelization					61
Highway and large-scale construction					62
Urbanization					62
Reservoirs					63
Urban basins					67

															F	Page
Comparisons	of susi	ended-sedime	nt trans	port	cha	rac	ter	ist	ics	5 W	ıit.	h				
		aracteristic												À.		74
		ge														74
		of suspended														79
																79
14		eam-slope ch														
		and sediment														88
		transport f														91
													dis	'n		98
														3.4		
References .			1	1939	90							18	100			103
			ILLUSTRA	TION	S											
															10	Page
Figures 1-4.	Maps	showing:														
	1.	Location of	sediment	-sam	plir	ng s	ite	s .				WC				4
	2.	Counties and	major p	opul	atio	on c	ent	ers								7
	3.	Hydrologic u														9
	4.	Generalized	soils of	Nor	th (Caro	lin	a.								15
5-8.	Grap	ns showing:														
	5.	Comparison o	f annual	pre	cip	itat	ion	du	ıri	ng	st	tud	y			
		period wit	h long-t	erm	aver	rage	s (das	he	d i	lir	ne)				
		at selecte	d points						٠.							21
	6.	Comparisons	of flow-	dura	tion	n cu	irve	s f	or	pe	eri	iod	of			
		record and														
		selected lo										ij.				23
	7.	Sediment-tra	CHARLES THE LAND													
	41	Durham, 19										16	N.			30
	8.	Flow-duratio														
	٠.	Durham, 19														31
		Durnum, 13			27			-			10					

		Page
9.	Map showing estimated annual sediment yield and median and maximum suspended-sediment concentrations for streams draining forested basins representing	
10.	Graph showing relation of the content of organic material in suspended sediment to concentration of suspended	38
11.	sediment for streams in selected forested basins Graph showing comparisons of mean annual suspended-sediment yields for forested basins with and	
2-17.	without minor development	43
	rural basins affected by agriculture	
	400 square miles in size	
	Cape Fear River basin	
	sites affected by agriculture	56
	basins affected by agriculture	57
18.	stream-sediment data	65
19.	River, during the storm of August 7-8, 1978 Graph showing sediment-transport curves for sampling stations on the Neuse and Haw Rivers showing	66
	changes in sediment discharge after construction of major reservoirs	
	immediately upstream from stations	68
	V	

	Pa	ge
20.	Map showing maximum observed concentration of suspended sediment and mean annual yield at urban	
	sampling sites	71
21-28.	Graphs showing:	
1	 Streamflow and suspended-sediment concentration hydrographs for Yadkin River at Yadkin 	
	College, October 1978 - April 1979	75
	at Twelve Mile Creek near Waxhaw, May 8, 1978 23. Mean annual suspended-sediment yield for selected pristine forest, rural-agriculture, and urban	76
	sites in the Piedmont province	82
	flow duration, for pristine forest, rural- agriculture, and urban sites in the	
	Piedmont province	83
	Fear Rivers when they reach the Coastal Plain 26. Comparison of mean annual suspended-sediment yield,	85
	by land-use category, for drainage areas of less than 400 square miles, with values of gross erosion computed on statewide basis	91
	27. Multiple-group clustering of rural-agricultural affected sediment sites obtained from comparing selected basin and sediment characteristics	
	by representative soil class	96
	and rural-agricultural affected basins	98

TABLES

	P	age
Table 1	[2] 사용 마음	
	sediment-sampling stations	115
2	• Guide for estimating erodibility K factors for soils in North Carolina	16
3	. Average discharge for selected index gaging stations for	
4	하는 사람이 하는데 이 경험에 살아가 되었다. 아이에 나가 되어서 이렇게 되었다면 하면 하면 하는데 이렇게 하는데 이렇게 하는데 이렇게 하는데 아니다 아니다. 아니는데 아니는데 나를 하는데 하는데 사람이 나를 하는데 하는데 아니는데 아니는데 아니는데 아니는데 아니는데 아니는데 아니는데 아니	24
	intensities for long-term and study (1970-79) conditions	26
5	. Computation of average annual suspended-sediment discharge and yield of the Eno River near Durham, 1970-79	33
6	경우 보통, 하는 사람들이 있는 것이 많아 보다 하나 없는 것 같아. 나는 사람들이 없는 것이 없는 것이 없어 없는 것이 없는 것이 없는 것이 없는 것이 없다.	33
7	without development, 1970-79	36
	with minor development, 1970-79	42
8	. Suspended-sediment characteristics for predominately rural basins affected by agriculture, 1970-79	44
9	어느 보고 하게 되어 보고 있어요? 아니는 아이들은 그 이 집에 되었다면 하고 있다면 하는데 하는데 되었다면 하는데 되었다.	
10	activities in addition to agricultural operations, 1970-79. Estimated trap efficiencies and related information for	58
	major reservoirs affecting suspended- sediment sampling sites, 1970-79	64
11	. Estimated trap-efficiency characteristics of Falls and Jordan Lakes, based on sampling data	
12	at downstream stations	69
	urban basins, 1970-79	70
13	selected stations to transport 25 and 50 percent of	70
14	sediment and water during 1970-79	78
	yield for long-term and 1970-79 periods	80
15	. Average particle-size distribution for suspended-sediment samples collected in North Carolina streams	
	during high flow	81

		Page
16.	Estimated sediment deposition in the floodplain and channel of the lower Neuse and Cape Fear Rivers	. 87
17.	Gross erosion and sediment-delivery ratio values for selected basins	. 89
18.	Relation of sediment discharge to selected stream basin parameters by soil groups for rural basins	. 94
19.	Relations for estimating suspended-sediment discharge from rural-agricultural and urban basins by soil class (unchannelized basins ranging in size from	
	1 to 400 square miles)	. 97
	All the Land Change Samuellan on all the transfer and any	

SEDIMENT CHARACTERISTICS OF NORTH CAROLINA STREAMS, 1970-79

By Clyde E. Simmons

ABSTRACT

Data collected at 152 sampling sites during 1970-79 were used to characterize fluvial sediment in North Carolina streams. On the basis of predominant land use in individual basins, sites were categorized into one of five groups: forested (7 sites), forested and affected by minor development (7 sites), rural-agricultural (83 sites), rural affected by nonagricultural activities (38 sites), and urban (17 sites). Results of more than 13,000 suspended-sediment samples collected during the study were used to determine sediment yield, sediment discharge, concentrations, and other site and basin characteristics.

Fluvial sediment characteristics, such as yields, are regionalized with lower values occurring in the Coastal Plain province. Statewide, when compared by predominant land use, minimum yields occur in forested basins and range from 5 to 58 tons per square mile per year; ratios of average annual yields for forested, rural, and urban sites in the Piedmont province are approximately 1:6:14, respectively. During high flow (0.1-percent flow duration) in Piedmont basins, the mean suspended-sediment concentration for large urban streams is about 1,600 milligrams per liter as compared to 870 milligrams per liter for rural-agriculture sites and 100 milligrams per liter for forested sites. Maximum sediment yields of rural-agriculture basins occur in predominately clay soil areas of the western Piedmont, with annual values of as much as 470 tons per square mile; whereas, minimum yields as small as 7 tons per square mile occur in the sandy soil of the Coastal Plain province. Considerable amounts of fluvial sediment are deposited on flood plains and streambeds as major rivers flow from the rolling Piedmont province into the flat Coastal Plain province. example, more than 130,000 tons are deposited annually in an 85-mile stretch of the Neuse River between stations at Smithfield and Kinston.

Mathematical relations were developed for estimating suspended-sediment transport characteristics at unmeasured rural-agricultural sites and urban sites in the Piedmont. Correlation coefficients for the relations range

from 0.75 to 0.98, and standard errors of estimate range from 25 to 74 percent. The best single variable equation used log-transformed values of drainage area.

INTRODUCTION

Recognized in the early 1900's as one of North Carolina's most urgent problems, erosion and fluvial sediment are still considered to be the most widespread water-quality problem in the State (North Carolina Department of Natural Resources and Community Development, 1979a). Stream-born sediment not only reduces the esthetic quality of our streams and lakes but causes other environmental and economic problems. For example, sediment deposition in stream-channels reduces their flow-carrying capacities and, as a result, increases overbank flooding. Sedimentation also reduces storage capacities of lakes and reservoirs. Sediment-laden waters have large effects on stream biology, ranging from burial of fish eggs to the destruction of the entire aquatic food chain. Relatively moderate levels of sediment in an otherwise healthy stream commonly reduce the variety and abundance of aquatic life. Although these diverse effects on the environment have been well documented by studies across the Nation, little effort has been devoted to the definition of sediment characteristics of streams in this State, especially on a statewide basis.

Purpose and Scope

The purpose of this report is to present findings of sediment data collected in North Carolina streams as part of a comprehensive statewide study that began almost 20 years ago in cooperation with the North Carolina Department of Natural Resources and Community Development. To help resolve the need for characterizing fluvial sediment, the U.S. Geological Survey established a network of 28 sampling sites in eastern North Carolina in 1969. Other sites were steadily added to the network, and by 1975 the network included about 152 sites located on major and minor streams throughout the State. All sampling sites were located at stream-gaging stations to assure continuous discharge data required for sediment transport computations. Although the collection of data for this study actually spanned a 13-year period, activities were most concentrated from 1970 to 1979; therefore, all computations of sediment transport and related values

have been adjusted to this 10-year base period. Information provided by the study resides in a comprehensive, detailed data base that was used to satisfy the following primary study objectives: (1) define the effect of land use on characteristics of sediment transport; (2) compare suspended-sediment transport characteristics with selected basin characteristics; and (3) develop relations for estimating suspended-sediment yield for unmeasured basins.

This report is the first attempt to characterize sediment transport on a statewide basis in North Carolina by using sample data. During the investigation, more than 13,000 samples that represent a wide range of flow conditions were collected at 152 stations comprising the sampling network (fig. 1; table 1, located at the back of this report).

Previous Studies

One of the first efforts to quantify suspended sediment in the State's streams began in 1906 as part of a nationwide network operated by the U.S. Geological Survey to investigate the quality of the Nation's major streams (Dole, 1909). Daily sampling stations were operated from 1906 to 1907 at Cape Fear River at Wilmington, Neuse River near Raleigh, and Pee Dee River near Pee Dee. Dole and Stabler (1909) used data from this network to discuss chemical and physical erosion, including total suspended-sediment loads carried by the major rivers; however, only general conclusions could be drawn from this study because of the few stations and short sample period. In 1943, after a lapse in North Carolina of almost 35 years, the U.S. Geological Survey resumed limited sampling on several major streams.

Numerous watershed-type investigations have been conducted in North Carolina by various organizations and agencies since the early 1900's. Most of these early studies were reservoir siltation surveys conducted in the 1920's and 1930's by the North Carolina Department of Conservation and Development, and the U.S. Department of Agriculture's Soil Conservation Service (Eakin, 1936; Eargle, 1937; Connaughton and Hough, 1938; and many others). By the late 1930's, a few studies whose objectives were more reflective of research or interpretive aspects of fluvial transport, such as the Soil Conservation Service High Point (North Carolina) Demonstration Project (Potter and Love, 1942), were underway. With the establishment of

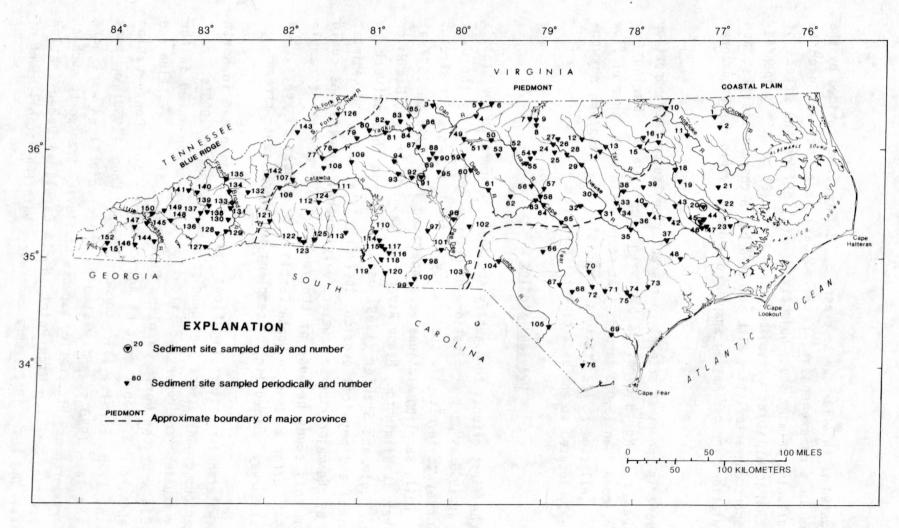


Figure 1.--Location of sediment-sampling sites.

the U.S. Forest Service's Coweeta Hydrologic Laboratory near Franklin in 1933, extensive studies were undertaken to determine the effects of man's use of forest land on streamflow, including erosion from clear-cut and construction areas.

In 1934, the Tennessee Valley Authority began sampling for suspended sediment at seven stream sites in the Blue Ridge province. The Tennessee Valley Authority also conducted several siltation surveys of western North Carolina reservoirs during the 1940's; and, during 1953-62, it conducted a detailed study of erosion and sediment transport in the 1,060-acre Parker Branch watershed located near Asheville (Tennessee Valley Authority, 1963).

The U.S. Geological Survey selected the Yadkin River at Yadkin College as one of the long-term Federal Index-Sediment Stations and began collecting daily sediment samples in 1951 for suspended concentrations and particle-size distribution; the station is still in operation today. Daily samples also were collected by the U.S. Geological Survey for several years in the late 1950's and early 1960's at sites on the South Yadkin and Tar Rivers; however, no interpretive report was prepared on these data.

Since the 1960's, an increasingly large number of reports dealing with various aspects of sediment transport and erosion have been prepared by university groups, consultants, State and Federal agencies, and others. As with previous studies, however, virtually all of these efforts were directed at relatively small, scattered watersheds having short-term data bases. Also, in most instances, the studies included coverage of various other constituents and parameters, and sediment received only cursory treatment.

Several relatively large-scale reports were released in the late 1970's. In 1976, the U.S. Geological Survey published results of a five-year study (1969-73) of sediment characteristics of streams in a 6,000-square-mile area of the eastern Piedmont and western Coastal Plain region of the State (Simmons, 1976). In late 1977, the Soil Conservation Service released a report which included estimates of erosion and stream-sediment transport values for the entire State (U.S. Department of Agriculture, 1977). The transport values were estimated from gross surface erosion values computed by the Universal Soil Loss Equation. The report, however, provided the first overview of stream-transport characteristics on a

statewide basis. In 1979, the U.S. Geological Survey released a report on water-quality characteristics of streams in forested basins of the State, which summarized efforts to define natural or background conditions, including fluvial sediment (Simmons and Heath, 1979).

Acknowledgments

This investigation was conducted in cooperation with the North Carolina Department of Natural Resources and Community Development (NRCD); however, sediment transport data for approximately a third of the sampling stations were collected as part of cooperative programs with other agencies, including the U.S. Army Corps of Engineers; the U.S. Department of Agriculture, Soil Conservation Service; Tennessee Valley Authority; the City of Charlotte; and Mecklenburg County. Funding support was also provided by the U.S. Geological Survey's Federal Research Program. Values of gross erosion for approximately 30 basins were provided by Mr. Emmett Waller of the Raleigh State Office, Soil Conservation Service, U.S. Department of Agriculture.

Several private citizens deserve special recognition for their devoted efforts in collecting suspended-sediment samples at daily stations including: Mr. J.C. Galloway (deceased, 1985), Greenville; Mr. Ervin Shoaf, Lexington; Messrs. Wayne and George Norman, Advance; and Ms. Vicki Cox, Vanceboro.

PHYSICAL FEATURES OF NORTH CAROLINA SIGNIFICANTLY RELATED TO EROSION AND SEDIMENT TRANSPORT

North Carolina, with almost 53,000 mi² (square miles) of surface area, is the third largest Atlantic Coast State and ranks eighth in the Nation in population. One hundred counties lie within its boundaries, which span almost 500 mi (miles) from the Atlantic Ocean westerly to Tennessee (fig. 2). Although the State is primarily rural, it contains more than 37 towns and cities having populations exceeding 15,000. Numerous factors, both natural and man-induced, affect sediment characteristics of the State's numerous streams; however, it is not within the scope of this report to discuss all factors. Rather, the following sections will deal only with factors that have a significant affect on erosion and sediment transport, such as slope, physiography, drainage, climate, and land use.

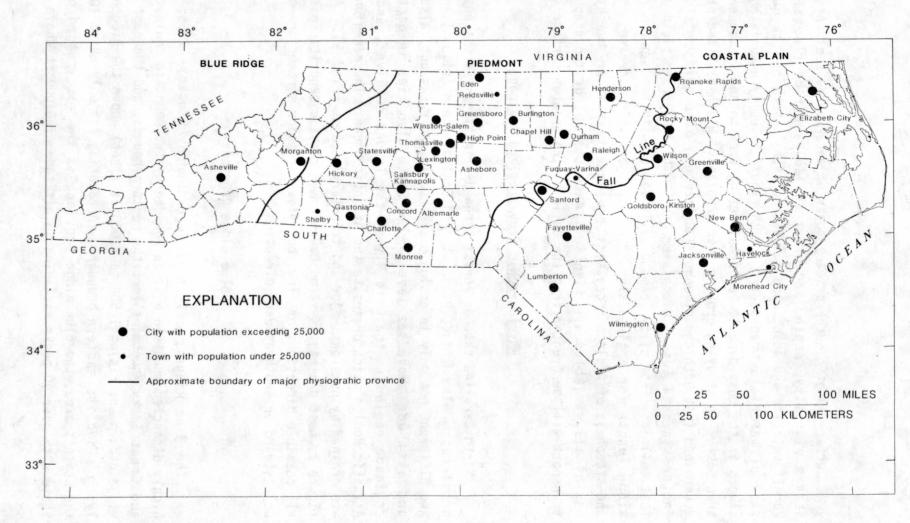


Figure 2.--Counties and major population centers.

Slope

Surface runoff is the primary mover of water-borne sediments, although stream viscosity, depth, and other variables affect fluvial transport. Runoff velocity and associated turbulence often determine the quantity and size of materials transported. High runoff velocity associated with steep slopes is the most dynamic factor affecting erosion and subsequent sediment transport. In studying erosion from croplands, Wischmeier and others (1958) determined that both the steepness and length of a surface slope are key factors in soil loss. Wischmeier and Smith (1965) used field data to show that soil loss from silty loams usually varies with the square root of the slope length for a given slope. Erosion generally increases as the length and steepness of a slope increases; consequently, if in two hypothetical basins all variables are identical except slope or topography, sediment transport will be greater from the basin having greater surface slopes.

Physiographic Provinces and Drainage

North Carolina extends across three distinctly different physiographic provinces: Blue Ridge, Piedmont, and Coastal Plain (figs. 1 and 2). They are different not only in geologic age, soils, and rocks but, also, in relief and altitude above sea level. The State also lies in parts of three drainage regions: the Ohio River, the Tennessee River, and the South Atlantic Region which drains to the Atlantic Ocean. These regions, in turn, are drained by numerous major and tributary streams (fig. 3). As shown in figure 3, most drainage systems have formed classic dendritic patterns, with all possible directions of flow, but flows of major streams are generally in an eastward or southeastward direction.

Blue Ridge Province

The Blue Ridge province is described by Stuckey (1965, p. 19) as a highly dissected mountain plateau bounded by two mountain chains: the Unaka and Great Smoky Mountains form the western bounds, and the east is the Blue Ridge escarpment rising 1,500 to 4,000 ft (feet) above the Piedmont province lying along its eastern boundary. Accounting for only about 10 percent of the State's area, the Blue Ridge province is the most rugged part of the State with over 40 peaks exceeding an altitude of 6,000 ft above sea level.

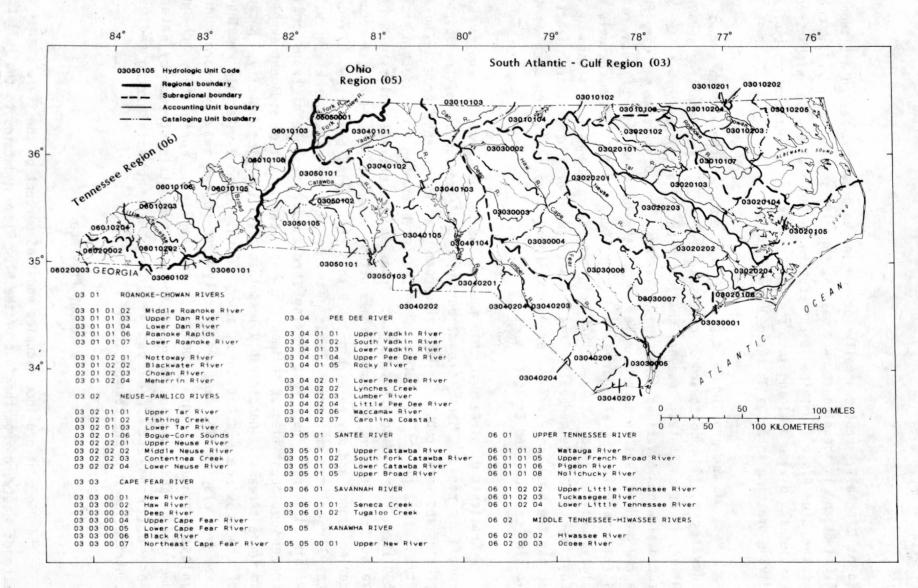


Figure 3.--Hydrologic units and major streams in North Carolina.

Mount Mitchell, about centrally located in the province, has an altitude of 6,684 ft and is the highest peak east of the Mississippi River. The crest of the Blue Ridge Mountains is the Eastern Continental Divide, with streams west of the divide draining into the Gulf of Mexico, and streams east of the divide draining into the Atlantic Ocean.

Most of the province's major rivers, such as the French Broad and Tuckasegee, flow northward or northwestward to join the Tennessee and Ohio Rivers in other States; however, smaller tributary and headwater streams are found flowing in various directions. Valleys of major streams may vary from a few hundred feet to several miles in width while valleys of most small streams are relatively narrow and often steep sided. Stream channels are always well defined. Streams that originate along the eastern slopes of the Continental Divide generally flow in an eastward or southeastward direction across the western Piedmont province, forming major rivers such as the Yadkin, Catawba, and Broad (fig. 3).

Gradients of streams in this mountainous terrain are steep and surface runoff is rapid. Many streams during floods are capable of transporting pebbles and large cobbles. Typical stream gradients range from 30 to 100 ft/mi (feet per mile), but those of smaller headwater streams often exceed 500 ft/mi. Excluding areas such as rapids and waterfalls, midstream flow velocities in many mountain streams often exceed 10 ft/s (feet per second) during floods and may be as high as 2 to 3 ft/s during base flow. Even on the larger streams, most floods peak sharply and pass quickly, usually within 24 hours. These fast flowing streams are capable of transporting tremendous quantities of sediment; however, the amount of sediment supplied to these streams is considerably less than their carrying capacity. of the province's steep topography, freshly exposed materials ranging in size from clay to fine sand are quickly transported away by storm runoff unless erosion-preventive measures are applied. Fortunately, channel degradation and migration is prevented in most mountain streams by natural rock outcrops and streambed armoring, thereby minimizing sediment contribution from the channel itself.

Piedmont Province

The Piedmont province occupies about 45 percent of the State's area and extends eastward from the foot of the Blue Ridge Mountains to the Fall Line

(fig. 2). The Fall Line is actually not a line, but rather is an area ranging from several miles to about 40 mi wide which drops rather abruptly, like a step or series of steps, down to the low-lying Coastal Plain province (Stuckey, 1965, p. 7-8). Altitudes in the Piedmont range from over 1,500 ft above sea level at many points along the western boundary to 300 to 600 ft along the Fall Line. The topography of the western Piedmont is characterized by steep prominent hills and low mountains; whereas, gentle well-rounded hills and long rolling ridges are characteristics of the eastern Piedmont.

Most of the streams which flow across the Piedmont also originate there (fig. 3). The Yadkin, Catawba, and Broad Rivers, whose headwaters begin on the slopes of the Blue Ridge Mountains, flow east and southeastward and drain the southwestern half of the province. The Tar, Neuse, and Cape Fear Rivers drain most of the central and eastern part of the province; and the northern part is drained by the Dan River, whose headwaters are in Virginia. Most major streams in the province flow either eastward or southeastward; however, tributary streams most often follow the lay of the land and are found flowing in all directions. Typical stream gradients range from 10 to 20 ft/mi, but extreme examples may range from 2 to 3 ft/mi to over 300 ft/mi.

Although topography of the Piedmont is not as rugged as that of the Blue Ridge, surface and stream gradients are sufficient to produce flood-flow velocities of 5 to 10 ft/s on many streams. The effects of intense rains combined with the province's steep gradients and highly erodible clayey soils produced some of the State's highest concentrations of fluvial sediment observed during this study. Depending on storm intensity and size of basin, streams might remain at flood stage from a few hours to several days.

Coastal Plain Province

The Coastal Plain province extends from the Fall Line to the Atlantic Ocean. Occupying almost 45 percent of the State's area, this province is characterized by gently rolling topography throughout most of its western boundary to relatively flat topography near the coast. Excluding the area immediately adjacent to the Fall Line, land surfaces decline eastward rather

uniformly from altitudes of 300 to 400 ft along the western bounds to sea level along the Atlantic Coast and shores of major estuaries. Abnormally high areas occur in the Sand Hills area of Moore, Montgomery, and Richmond Counties, where altitudes vary from 500 to over 700 ft. Compared to the remainder of the State, however, the Coastal Plain province is relatively flat, with altitudes averaging less than 20 ft over most of the province within 50 mi of the coast.

The major rivers flowing across the Coastal Plain, such as the Tar, Neuse, Cape Fear, and Roanoke, have their origins in other provinces; however, most of the smaller rivers, such as the Northeast Cape Fear, Waccamaw, Black, and Lumber, originate in the Coastal Plain province (fig. 3). Flow of these larger streams is generally in an eastward or southeastward direction. Unlike the well-defined channels of the Piedmont and Mountain provinces, streams in the Coastal Plain often flow through swamps and marshes where channels are indiscernible and flows are impeded. To increase drainage of low-lying lands, extensive networks of canals and cross-ditches have been constructed, which may alter "natural" runoff characteristics of entire watersheds. Many stream channels have been cleared of blockages or excavated. Vast areas along stream courses are susceptible to flooding; and, frequently, streams which may be a few tens of feet wide during low flow are often several thousand feet wide during floods of low magnitude. With stream gradients often less than 5 ft/mi, flow velocities are sluggish and rarely sufficient to transport (in suspension) sand-size particles greater than 0.125 mm (millimeter) diameter. Even during floods, main channel velocities at network stations seldom exceeded 6 ft/s and generally ranged from 2 to 5 ft/s. Primarily because of this flat topography, streams originating in the Coastal Plain province have the lowest concentrations of suspended sediment in the State.

Soil Characteristics

Most fluvial sediment in North Carolina streams is derived from the surface soil horizon, except in special cases such as land slides, large-scale construction or excavation, and various industrial waste activities. Usually, the erodibility of these soils depends primarily on sizes of the soil particles and, if present, nature of the material binding the particles. Other important soil characteristics influencing erodibility

include shape and specific gravity of particles, organic content, mineralology, porosity, and water storage capacity of the soil.

Generally, silty soils having low-clay content are the most erodible (Young, 1976); and soils having a low-silt content are less erodible regardless of whether the major component is sand or clay. Soils having high clay content are often less erodible because of increased cohesiveness attributed to the clay. The erodibility of silty soils may also be reduced by an increase in organic content; but, in soils with high clay content, the volume of organic matter has little affect on erodibility. Many factors influence erodibility; the relative clay, silt, and sand composition of a soil must be considered along with other variables in studying erodibility. For example, a loose, sandy soil is usually considered highly erodible. However, because of high infiltration capacity, this type of soil might be less erodible than a "nonerodible" clay soil on the same slope, if the slope is not steep and rainfall intensity is not much greater than the infiltration capacity of the sandy soil. On steep slopes, a surface cover of coarse pebbles or larger rock fragments will protect underlying fine material from erosion; but lacking this cover protection, all soil particle sizes are subject to detachment and eventual transport.

Although often not considered a part of the soil profile, the banks and beds of streams are frequently major sources of fluvial sediment. This is especially true in forested basins of the State where trees, brush, and forest litter provide total ground cover, thereby minimizing surface erosion, and stream channels are essentially the only sediment source. Head cutting, bank failure, and channel degradation are the primary contributors of channel-derived sediments. In various processes, such as bank failure, boulders or other large materials that are too heavy for transport are deposited in channels. These materials may slowly contribute sediment through the process of disintegration by physical and chemical means.

Soils comprise most of the eroded material in fluvial processes; therefore, it may be argued that geology is of limited concern in studies of erosion and sediment transport. This is especially true in North Carolina where soil coverage is extensive and exposed rock accounts for well below one percent of the State's surface area (H.E. LeGrand, Consultant, oral commun., 1984). Because soils are derived primarily through the weathering

and ultimate disintegration of rocks, the mineral composition of the rock largely controls the physical and chemical characteristics of resulting soils. Large differences exist between the more than two-hundred different soil types that have been identified in North Carolina (Clay and others, 1975). These differences are noticeable on a regional basis and range from light sands with little humus in the Sand Hills area of the Coastal Plain to the heavy plastic-like clays of the Piedmont and from the black organic soils of the Coastal Plain to the brown loams of the Blue Ridge.

A generalized soils map of the State is shown in figure 4. Major differences correspond to major changes in rock type. Considerable variation also exists within each region, and major changes in texture, color, or composition may occur within a few feet in many areas, especially throughout the Piedmont and Blue Ridge provinces. Soils in these latter two regions are derived primarily from the disintegration and chemical weathering of the underlying rock, which largely controls the physical and chemical characteristics of the soil. It is the complexity of geology in these regions, mentioned previously, that is responsible for the wide diversity of soil characteristics. For instance, soils derived from granites and gneisses are generally sandy-clay loams; metamorphosed volcanic rocks produce silty soils; and, rocks composed mostly of mica schists generally produce silty-clay loams (Lee, 1955).

In contrast, soils in most of the Coastal Plain region are formed from sediments deposited in former sounds, lagoons, rivers, and beaches. Topography or relief is one of the most important factors causing differences in Coastal Plain soils. Low-lying swampy areas, such as pocosins, have soils which are gray, contain large amounts of organic matter, and are often plastic; whereas, soils located in well-drained, higher areas are lighter in color, have relatively lower contents of organic matter, and are sandier in texture (Clay and others, 1975, p. 135).

Various properties of soils cause some to erode faster than others, although surface slope, rainfall, vegetative cover, and other factors might be identical. Wischmeier and others (1958) developed a soil erodibility factor, K, which is a measure of the rate at which specific soils erode when all other factors are constant. K values for North Carolina soils range from about 0.10 to 0.49 tons/acre for standardized conditions (U.S. Depart-

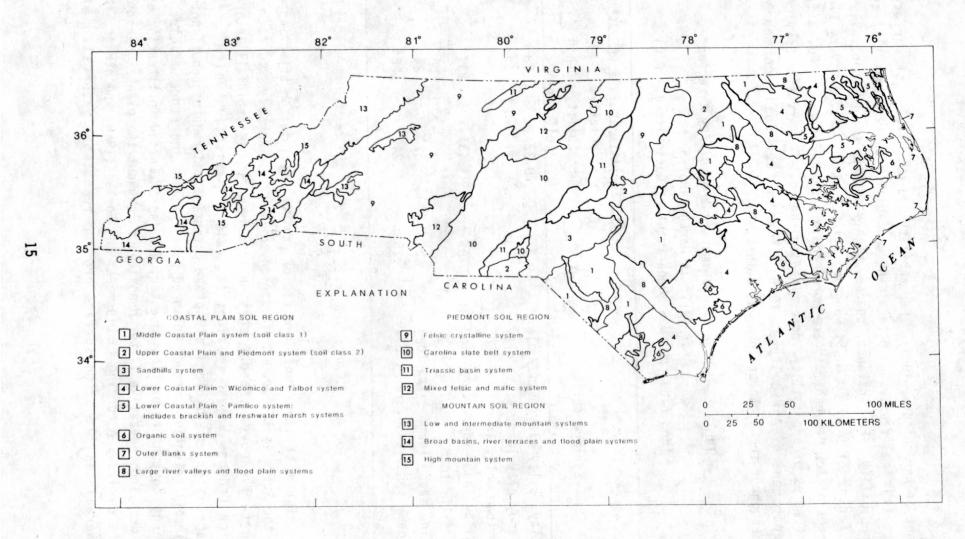


Figure 4.--Generalized soils of North Carolina. (Adapted from Daniels and others, 1984.)

ment of Agriculture, 1976). Permeability and composition of surface soils are critical factors in determining erodibility and are directly related to erodibility. For instance, coarse, highly permeable sands generally have a K factor of 0.10 to 0.15; whereas, silty loams, loams, and very fine sandy loams of low permeability are more erodible with factors of 0.43 to 0.49. Estimates of erodibility, determined by the Soil Conservation Service, (U.S. Department of Agriculture, 1976), for surface soils commonly found throughout the State are presented in table 2.

Table 2.--Guide for estimating erodibility K factors for soils in North Carolina
[Modified from U.S. Department of Agriculture, 1976]

	Erodibility, in tons per acre							
	Relative							
Surface soil	Very	permeabil	Very					
composition	low	soil	type	high				
Clay, silty clay, sandy clay	0.37	0.32	0.28	0.24				
Sandy clay loam, silty clay	.43	.37	.32	.28				
loam, clay loam								
Silty loam, loam, very fine silty loam	.49	.43	.37	.32				
Fine sandy loam, silty loam	.37	.32	.24	.20				
Loamy sand, sand, loamy clay sand	.28	.24	.20	.15				

Land Use

The most important land use or environmental factor affecting erosion in the State is the amount of exposed soil, or conversely, surface cover. Vegetative cover impedes erosion in many ways: (1) rainfall interception which reduces splash erosion; (2) rainfall retention which increases evaporation and biological uptake potential and reduces runoff potential; (3) soil retention through enhanced root systems and reduced velocity and energy components of flowing water; and (4) increased infiltration afforded by decaying vegetative litter deposited throughout the plants' seasonal and life cycles. According to Dissmeyer and Foster (1980) and others, there is generally little or no surface erosion from totally forested basins.

Erosion often increases proportionately to increases in the amount of exposed soil in a basin.

Statewide erosion data by the U.S. Department of Agriculture (1977) shows considerable differences in average annual rates of erosion for various rural conditions including: 0.1 tons/acre from forests, 1.3 tons/acre from grassed pasturelands, and 7.5 tons/acre from croplands. Obviously, these are average values for the State and should not be used to define conditions at specific locations; however, they illustrate the dramatic effects of vegetative cover.

Little research has been done in this State regarding historical changes in land use and the effects on erosion and fluvial sediment. Prior to the arrival of European settlers in the 1700's, North Carolina was almost totally forested and erosion was certainly minimal. Accounts by early explorers, historians, and geologists attest to the purity and clarity of the State's streams even during storm runoff. Many references to these early observations are presented in two reports by Trimble (1969 and 1974) which document land-use changes in the southern Atlantic Piedmont province. As pristine forests fell to the settlers' axes, these once clear streams ran muddy. Erosion during the first 150 years of settlement was related almost entirely to agricultural activities. Dramatic changes in socio-economic patterns in the State during the early 1900's, continuing up to today, have produced other major sources of sediment, such as urban and municipal developments, highways and bridge construction, aggregate and other mining operations, and large-scale silvicultural operations.

Although North Carolina is one of the South's most industrialized states, it also has the Nation's largest rural farm population (Clay and others, 1975, p. 3). Approximately 48 percent of the State's 5.9 million residents (1980 census) live in urban areas. Regionally, slightly over half of the population lives in the Piedmont and about 15 percent lives in the Blue Ridge province. Of the State's 31.3 million acres, approximate uses of land are as follows: urban, 5 percent; cropland, 23 percent; pasture, 5 percent; lakes and rivers, 1 percent; and, forests, 66 percent (U.S. Department of Agriculture, 1971). Although the physiographic provinces are often categorized as Blue Ridge and forests, Piedmont and industry, and Coastal Plain and agriculture, all classes of land use currently exist in

each province. Primarily because of the State's rapid population increase, almost 16 percent from 1970 to 1980 (North Carolina Office of State Budget and Management, 1982), significant changes in land use are underway. The greatest change is the conversion of forest and agricultural lands to urban and industrial developments. However, primarily in the Coastal Plain area, hundreds of thousands of acres of forest land were cleared during the project period for agricultural use (Sharitz and Gibbons, 1982).

Effects of Reservoirs

The sediment-trapping characteristics of lakes and reservoirs have been studied for many years and were the basis for some of the earliest sediment studies conducted in this State. One or more dams are located on most major rivers, and there are countless farm ponds, lakes, and reservoirs on smaller headwater streams and tributaries. An inventory of dams conducted in 1969 lists over 900 dams of significant size and over 33,000 impoundments classified as farm ponds or irrigation storage reservoirs (North Carolina Board of Water and Air Resources, 1969). According to an unpublished survey conducted in 1977 by the Soil Conservation Service, U.S. Department of Agriculture, there are approximately 80,000 water bodies in the State less than 40 acres in size (James Canterberry, Soil Conservation Service, written commun., 1984). In August 1984, the North Carolina Department of Natural Resources and Community Development (NRCD) indicated that approximately 3,850 unlicensed, privately owned dams are located in the State which are at least 15 ft in height and have storage capacities exceeding 10 acre/ft (Steven M. McEvoy, NRCD, oral commun., 1984). The reduction in sediment transport caused by this multitude of impoundments is unknown. According to Brune (1953), large reservoirs having storage capacities equal to or greater than the annual inflow volume of water often trap 95 to 100 percent of incoming sediment.

The U.S. Geological Survey is conducting studies related to the trapping characteristics of two in-stream sediment traps on Juniper Branch near Simpson, a small tributary to Chicod Creek, Pitt County, (site 20, fig. 1). Drainage areas at the two traps are approximately 2 mi² and 4 mi². Although the Juniper Branch traps have ratios of storage capacity to annual inflow volume less than 0.02, they trap 20 to 60 percent of the suspended sediment, with the lesser trapping rates occurring during storm runoff (U.S. Geological Survey, 1979, unpublished data).

HYDROLOGIC CONDITIONS DURING STUDY PERIOD

Generally, streamflows in North Carolina are greater during winter than in summer, although severe flooding might occur at any time during the year. Meteorological and streamflow conditions often differ considerably from day to day and year to year, a factor which greatly complicates definition of trends and other hydrologic comparisons. Numerous reports are available describing the State's hydrologic characteristics, and the reader is referred to these for detailed background information. Several of the most informative reports are by Forrest and Speer (1961), Goddard (1963), Speer and Gamble (1964a and 1964b), and Yonts (1971).

Precipitation

The long-term average annual (calendar year) precipitation for the State is about 49 in. (inches), although a large spatial variability exists across the State. The greatest variation occurs in the Blue Ridge where abrupt changes in topography drastically affect rainfall amounts in the space of a few miles. For instance, annual precipitation at Highlands (Macon County), altitude of 3,350 ft above sea level, is over 82 in., the greatest amount east of the Rocky Mountains. In contrast, the City of Asheville (fig. 2), which is located in a sheltered valley 50 mi away and at an altitude of 2,200 ft, averages only 38 in. per year (Elder and others, 1983, p. 30). Variations in annual precipitation across the Piedmont and Coastal Plain provinces are more subtle and range from about 44 to 54 in., with the greater amounts occurring along the coast.

The State has no pronounced rainy or dry seasons. Based on long-term records, July and August receive the most rainfall, while the least amount falls in October and November. Although intense rainfall can occur in North Carolina during any month, historically, the most intense occurs during the late summer months resulting from violent local thunderstorms or from hurricanes of tropical origin. The State's most destructive storm, Hurricane Hazel, occurred in October 1954 and produced record 24-hour rainfall amounts at 10 weather stations, ranging from 6.5 in. at Burlington to 9.7 in. at Carthage (Hardy and Carney, 1962). One of the most severe storms recorded nationally occurred during August 1969 immediately north in central Virginia when rains from Hurricane Camille exceeded 28 in. in 8

hours (Williams and Guy, 1973). Essentially, every long-term station in the State reports one or more summertime thunderstorms exceeding 4 in. in 24 hours during their history. According to records of the National Weather Service, rainfall for the 1970-79 study period was slightly above the long-term average for the State. Comparisons of annual totals to long-term mean values for selected cities are shown in figure 5. Although annual totals varied from -32 to +45 percent of long-term mean precipitation, means for the 10-year study period were within about 9 percent of long-term values (fig. 5).

The erosional processes begin when raindrops strike the exposed land surface, causing disintegration of soil aggregates. Rain splash moves soil particles in all directions, but the net movement is downslope. Except in coarse, sandy soils, the impact from raindrops also causes consolidation of surface particles and a subsequent reduction in infiltration potential. Sheet flow begins when the amount of precipitation exceeds the infiltration capacity of the soil. The erosive power of the sheet flow dislodges soil particles and transports them in addition to materials put into suspension by splash effect.

In North Carolina, the most important precipitation factors controlling sedimentation processes are magnitudes and intensity of rainfall. For example, a gentle, 3-inch rainfall spread over several days will not produce the amount of erosion or sediment transport as an intense 3-inch rain which occurs in several hours. Larger raindrops associated with intense rainfall produce greater splash erosion; the soil's infiltration rate is quickly exceeded and surface runoff is maximal; and, the erosive energy of the surface runoff is increased by turbulence caused by impacting raindrops. Surface runoff, the transport media, will not occur until the rate of rainfall exceeds the rate of infiltration.

Antecedent precipitation conditions also affect the sedimentation transport process. Rainfall following a lengthy dry period usually will produce more fluvial sediment than a similar event that immediately follows a flood, although the latter generally produces considerably more surface runoff. During dry weather, erodible material accumulates on the land surface through various processes such as wind erosion, chemical and physical weathering, atmospheric deposition, and disintegration of larger

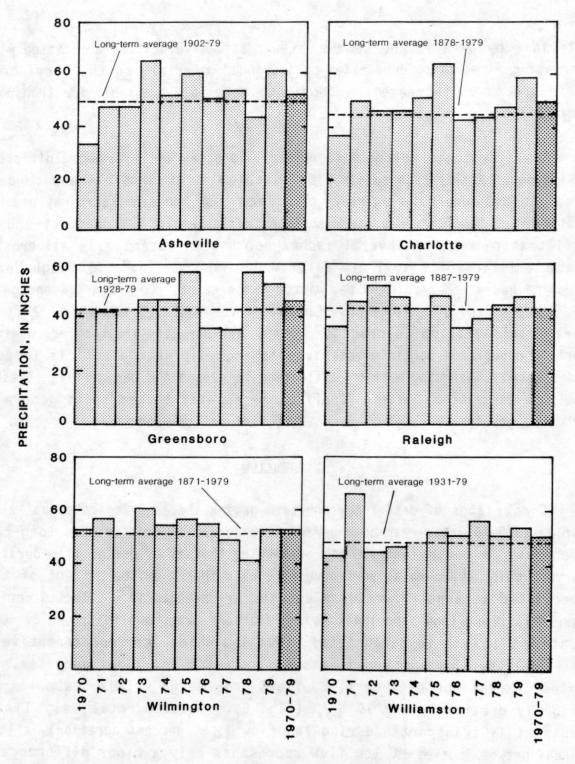


Figure 5.--Comparison of annual precipitation during study period with long-term averages (dashed line) at selected points.

materials by animals and humans. Lower stream velocities associated with decreasing flows cause deposition of suspended materials on the streambed. These processes increase the supply of materials available for transport during floods.

The hydrologic response to rainfall is often variable among different soil types. A clay-rich soil may be essentially impermeable and produce high surface runoff during heavy rains; whereas, the same storm may produce little or no runoff from a sandy soil having large storage capacity and an infiltration rate of several inches per hour. Essentially all erosive characteristics of a soil are altered during freezing. Although North Carolina has a moderate climate, winter temperatures are often low enough in the Piedmont and Blue Ridge provinces to freeze soils to depths of 2 ft or more. Infiltration, storage capacity, and porosity are reduced, whereas surface runoff and particle cohesiveness increase when a soil is frozen. Immediately following a thaw, soils tend to expand and become less cohesive and more permeable. Surface runoff from recently thawed soils generally produces greater-than-normal amounts of sediment transport.

Streamflow

Comparisons of data from long-term gaging stations indicate that flows during 1970-79 water-year base period were generally greater than long-term averages. A convenient method of showing this is by use of flow-duration curves, which are cumulative-frequency curves that show the percent of time specific discharge values were equaled or exceeded in a selected period. Curves for four long-term index gaging stations are shown in figure 6. Only stations that have unregulated flows and which are representative of relatively rural basin conditions are selected for index purposes. As noted, except for extreme flood flows, discharge values statewide are slightly greater during 1970-79 (fig. 6). Because relatively little sediment is transported during low flow (\geq 80 percent duration), a large spread between curves at low flow represents only a minor difference in annual sediment load.

Comparisons of average discharge data for these index stations are shown in table 3. These comparisons indicate that, while mean flows in the Coastal Plain's Contentnea Creek during 1970-79 were generally only a few

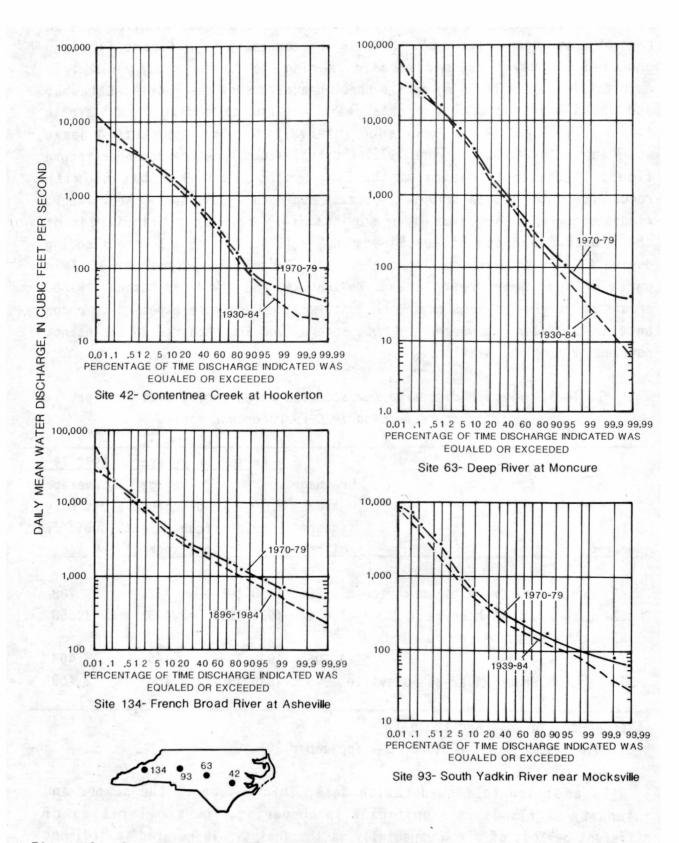


Figure 6.--Comparisons of flow-duration curves for period of record and the 1970-79 reference period at selected long-term index gaging stations.

percent above normal, flows in the Piedmont's South Yadkin River were 18 percent above normal (fig. 6). However, historically significant flooding occurred in only a few minor basins during the 10-year study period. In August 1970, heavy flooding in the upper headwaters of the Yadkin, Catawba, and Broad Rivers produced crests near, but not exceeding, the historic floods of 1916 and 1940. Recurrence intervals for the August 1970 peaks were about 20 years. In June 1972, tropical storm Agnes caused near-record floods in the upper basins of the Dan, Smith, and Yadkin basins with recurrence intervals on tributary streams approaching 50 years. Near record floods occurred in the Blue Ridge province along headwater tributaries of the French Broad and Pigeon Rivers in May 1973. The most severe flooding during 1970-79 occurred in the northern Blue Ridge during November 1977 in parts of the lower French Broad, Nolichucky, and New River basins. Flood crests on several streams during this storm exceeded those expected to occur once in 100 years; however, the most severe flooding occurred in basins not covered by sampling stations.

Table 3.--Average discharge for selected index gaging stations for period of record and 1970-79 reference period

	그 사람들은 이번 마시 아니는 아들이 되었다. 그는 사람들이 아니는		Period	of record $\frac{2}{}$	1970-79 ² /
Site number	Name	Drainage area (square miles)	Period	Average discharge (cubic feet per second)	
42	Contentnea Creek at Hookerton	729	1930-1984	772	788
	Deep River at Moncure	1,434	1930-1984	and the second second	1,650
93	South Yadkin River near				
	Mocksville	306	1939-1984	345	408
134	French Broad River at Ashevil	le 945	1896-1984	2,100	2,400

 $[\]frac{1}{Refers}$ to figure 1 and table 1.

In addition to flow-duration data, information on the number and intensity of floods is significant in comparing flow similarities of different periods of time, especially as the analysis is related to sediment

^{2/}Based on water years (October 1 - September 30).

transport. Using flood information from the U.S. Geological Survey WATSTORE peak-flow file and flood-frequency data from H.C. Gunter, (U.S. Geological Survey, written commun., 1987), a comparison of numbers of floods occurring at 28 long-term gaging stations is shown in table 4. Although numerous localized exceptions probably occured during the two periods, these data indicate that, compared to a 30-year reference period, the number and intensity of floods occurring in 1970-79 was near normal in the Coastal Plain province. In the Piedmont and Blue Ridge provinces, however, the number of floods was often twice that expected to occur during an average 10-year period (table 4).

In summary, analyzing the representativeness of a short-term hydrologic record (1970-79) to long-term conditions requires more than a mere review of flow-duration data. In general, however, because of the often close relationship between water discharge and sediment transport, comparative data indicate that values of fluvial sediment in this report, based on 10 years of record, might be slightly greater than values representative of a longer period of record. This is especially true for values for streams in the Blue Ridge and Piedmont provinces. One of the primary objectives of this report is to define sediment-related characteristics that occurred during 1970-79, but a general indication of the error one might incur by using these values to represent longer periods of record is discussed in a following section under, "Stream Discharge."

SEDIMENT-SAMPLING NETWORK AND METHODS OF COMPUTATION

Computations of average annual sediment discharge require the availability of continuous water-discharge data for the period under investigation. Fortunately, a large network of continuous stream-gaging stations was already in operation across the State in support of projects for various local, State, and Federal agencies. Most of these gaging stations were operated for defining long-term hydrologic characteristics, thereby assuring continuous-flow records needed for reliable transport computations. Streamflow records for 30 stations did not include all ten years of the base period (1970-79). Records for these short-term stations were adjusted by methods suggested by Searcy (1959) so that flow-duration and related sediment-transport data for all network stations were based on the complete 10-year base period. Because of the widespread nature of the

Table 4.--Numbers of floods at selected stations exceeding various intensities for long-term and study (1970-79) conditions

Site	Station	Province	Flood base	referen	of floods of ce period, ng stated c	study	r of floods during y period, 1970-79, ding stated criteria				
number (figure 1)	number (table 1)		discharge (cubic feet per second)	5-year recurrence interval	10-year recurrence interval	Base discharge		10-year recurrence interval	Base discharg		
126	03161000	Blue Ridge	2,600	7	1	68	4	1	33		
128	03441000	Blue Ridge	1,000	8	2	129	2	i	56		
130	03446000	Blue Ridge	1,000	7	2	100	4	i	44		
134	03451500	Blue Ridge	9,000	5	3	74	3	2	36		
141	03460000	Blue Ridge	1,000	6	4	54	2	2	30		
143	03479000	Blue Ridge		8	4	94	6	2			
146	03504000	Blue Ridge	2,000 1,500	6	5	77			40		
				9	4		3	2	34		
149	03512000	Blue Ridge	4,000		4	106	3	2	41		
152	03550000	Blue Ridge	1,700	8	-1	105	3	0_	37		
	Mean	number per sta	tion year	0.24	0.10	2.99	0.33	0.14	3.9		
3	02068500	Piedmont	2,000	4	1	87	4	1	37		
12	02081500	Piedmont	2,000	5	3	137	3	2	43		
27	02085500	Piedmont	4,500	8	3	62	6	2	28		
30	02087500	Piedmont	7,100	8	2		6	2	.23		
51	02095500	Piedmont	920	9	5	$\frac{1}{159}$	7	3	1/78		
60	02099500	Piedmont	2,600	6	2	75	4	2	35		
63	02102000	Piedmont	15,000	7	2	72	3	0	28		
79	02111500	Piedmont	2,000	5	1	53	4	1	22		
83	02113000	Piedmont	2,200	4	2	100	2	î	49		
111	02143000	Piedmont	2,800	5	1	54	4	<u>1</u>			
	Mean	number per sta	tion year	0.20	0.07	2.62	0.43	0.15	3.16		
17	02083000	Coastal Plain	- <u>- 1</u>	4	2		3	1			
22	02084500	Coastal Plain	120	10	3	104	4	1	31		
27	02088500	Coastal Plain	1,200	5	3	110	6	2	28		
42	02091500	Coastal Plain		4	2		0	0			
70	02106000	Coastal Plain		6	2		3	1			
73	02108000	Coastal Plain	03	8	4		2	0	4 - 4 - 4		
76	02109500	Coastal Plain	·	7	2		3	0	<u> -</u>		
104	02133500	Coastal Plain	850	4	3	81	1	1	31		
105	02134500	Coastal Plain		_6_	3		4				
	Mean number per station year				0.08	3.27	0.28	0.08	3.00		

 $[\]frac{1}{2}$ Excluded from computations of mean values.

gaging network and the fact that flows were available for basins, large and small, representative of various land-use effects, sediment sampling was conducted at 152, or approximately 90 percent, of the existing gaging stations. Location of stations in the sediment program are shown in figure 1, and site-descriptive information is provided in table 1 at the back of this report.

The large number of stations in the sampling network provided data from a wide variety of basin and flow conditions. The sizes of drainage basins sampled ranged from 0.64 to more than 8,000 mi² (table 1). At least one sampling station was located on every major river in the State. A large variety of different basin land uses was included, ranging from totally forested to 97 percent urban (table 1). Sediment discharge (and yield) at some stations was influenced by other factors such as upstream reservoirs, runoff from construction activities, channelization, and unpaved roads. The effect of these factors is discussed later in this report. Being statewide, the network was also designed to show regional variations in sediment caused by soils, topography, and other factors to be discussed in following sections. The network included three stations sampled on a daily basis (fig. 1); however, most stations were sampled only periodically, depending primarily on flow conditions and data requirements for defining transport characteristics.

Except for an in-house computer program, SEDQ, used to compute values of sediment discharge and yield at selected stations, values of flow, suspended sediment, and related statistics were computed using standard U.S. Geological Survey or SAS¹ (SAS Institute, Inc., 1985) programs. Because these methods are discussed in considerable detail in other reports, only brief explanations are included herein; however, pertinent references are provided should more information be desired.

Daily Sampling Stations

At daily stations, samples of suspended sediment are collected on a daily or more frequent basis. The network's daily stations included Creeping Swamp near Vanceboro (site 45, fig. 1), Chicod Creek near Simpson

¹Use of the brand/firm names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

(site 20), and Yadkin River at Yadkin College (site 91). The computational procedures for daily stations differ from those for periodic stations in that a sediment discharge value is computed for each day of record. These procedures, outlined by Porterfield (1972), require the development of a temporal concentration graph from which values of daily mean concentrations are determined. The mean concentration, in milligrams per liter, is then multiplied by the mean water discharge in cubic feet per second and the conversion factor 0.0027 to obtain the sediment discharge (in tons) for the day. During floods or other periods of rapidly changing flow or concentration, however, sediment discharge is determined by subdividing the day into specific time increments (Porterfield, 1972, p. 47-52), and summing the incremental products of discharge and suspended-sediment concentration to obtain an integrated value for each day. Annual values are then obtained by simply summing the daily values. Records for the Chicod Creek and Creeping Swamp stations did not cover the entire ten-year base period and were adjusted to the base period using methods described by Anttila and Tobin (1978, p. 24-27).

Transport values, such as annual sediment discharge, computed using daily sediment data, are generally considered to be more reliable than values computed from periodic data. Computations from daily stations are often used as the standard for comparisons of accuracy of other methods.

Periodic Sampling Stations

Periodic stations are those which were sampled on an intermittent basis ranging from once every 6 to 8 weeks to two or more samples during the same day for defining transport during floods. Of the 152 stations in the statewide sediment network, 149 stations were sampled periodically (fig. 1). A good relation generally exists between values of instantaneous water discharge and suspended-sediment discharge; and, the average curve obtained from plotting simultaneous values of each on logarithmic graph paper is expressed as a sediment-transport curve. Tables presented later in the report (tables 6, 7, 8, 9, 12) include the following information for each station transport curve: the number of actual samples used to define the curve; the range in values of these samples; and, an indication of the degree of fit (correlation coefficient) of these values to the curve. Miller (1951) and Colby (1956) discuss in detail how data values from

sediment-transport and flow-duration curves can be used to compute suspended-sediment discharge for a periodic station. Minor modifications of this method are discussed by Jones and others (1972), Simmons (1976), Anttila and Tobin (1978), and others. Compared to these methods, the computations in this study used a larger number of subdivisions of percentage time at high flows on streams that rise and fall quickly, thereby improving accuracy of the method (J.M. Knott and G.D. Glysson, U.S. Geological Survey, oral commun., 1981). The method is briefly described as follows using the Eno River near Durham (site 25, fig. 1) as an example for each step.

At each periodic-sampling station, sediment samples are collected at low, medium, and high flows. It is desirable that sufficient data values be available to define all ranges of flow which occurred during the ten-year base period. Additional samples are obtained on the rising and falling limbs of the storm hydrograph because a disproportionately large part of sediment is transported during high flows. The suspended-sediment concentration of each sample is converted to suspended-sediment discharge using the following equation:

$$Q_S = 0.0027 CQ$$
 (1)

where:

Q_s = Instantaneous suspended-sediment discharge in tons per day;

0.0027 = Conversion factor;

C = Concentration of sediment, in milligrams per liter; and,

Q = Instantaneous water discharge, in cubic feet per second.

Values of suspended-sediment discharge of the Eno River near Durham were calculated by the above equation and plotted on logarithmic graph paper versus the corresponding water discharge to develop a sediment-transport curve (fig. 7). Cumulative frequency distributions of daily discharges are determined for the sampling station. These distributions show the percentage of time for which discharges are equaled or exceeded and are calculated using standard statistical programs of the U.S. Geological Survey. The line connecting the data points is referred to as a flow-

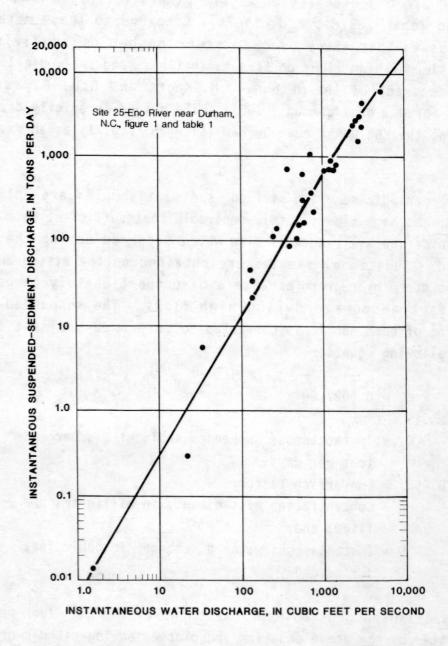


Figure 7.--Sediment-transport curve for Eno River near Durham, 1970-79.

duration curve. Cumulative-frequency data for the Eno River near Durham are plotted on a logarithmic probability graph in figure 8.

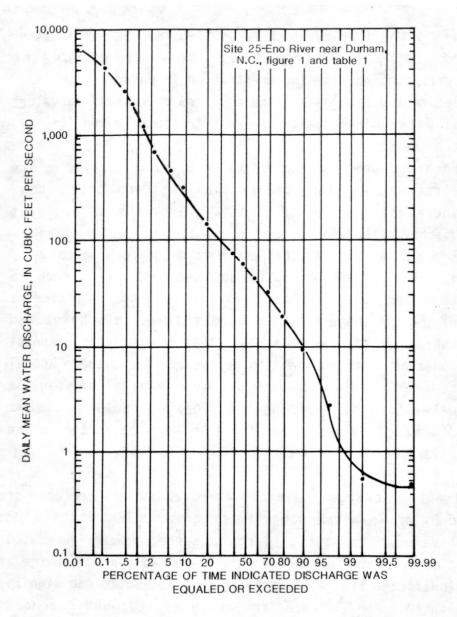


Figure 8.--Flow-duration curve for Eno River near Durham, 1970-79.

The computation of average annual sediment discharge is illustrated by the example shown in table 5. The process using the Eno River near Durham is as follows:

- Incremental percentage limits (column 1) are selected by the user and may vary between stations. It is desirable to minimize the percentage range of each increment (column 2) at high flows and gradually increase the range (columns 1 and 2) as values of discharge decrease;
- The midpoint of each increment (column 1) is shown in column 3;

- Using the flow-duration curve (fig. 8), values of water discharge (column 4) were determined for the corresponding time increment shown in column 3;
- 4. Sediment discharges determined from corresponding values of water discharge on sediment-transport curve (fig. 7) are shown in column 5;
- Each sediment discharge (column 5) is multiplied by the corresponding incremental flow-duration percentage increment (column 2) to attain incremental sediment discharge (column 7); and
- 6. The sum of incremental sediment discharges in column 7 is the daily average suspended-sediment discharge, in tons per day, for the 10-year base period. The product of the daily average suspended-sediment discharge and the number of days in a year (365) is the average annual sediment discharge in tons per year. The average annual sediment yield, in tons per square mile per year, is determined by dividing the average annual sediment discharge by the area of the drainage basin (in square miles).

Sediment-discharge and yield computations for periodic stations were performed by an in-house computer program, SEDQ, which did not round numerical values (table 5). Because these computer-generated values are considered as estimates, values of yield and sediment discharge are rounded to two significant figures if greater than 10 and to one significant figure if less than 10. For instance, the computed sediment-discharge value of 22,941 tons (table 5) is rounded to 23,000 tons.

Methods of Sampling and Laboratory Analysis

Suspended-sediment samples were collected using the methods outlined by Guy and Norman (1970). A hand-held sampler (DH-48) is used for streams that can be waded; larger samplers (DH-59, 22-lbs (pounds) and D-49, 62-lbs) are used for streams which are too deep or swift to wade. The latter two samplers may be suspended by a hand-held rope or by cable-and-reel equipment. Basically, the Equal Width Increment method (Guy and Norman, 1970, p. 32-37) for sampling suspended sediment was used throughout the

Table 5.--Computation of average annual suspended-sediment discharge and yield of the Eno River near Durham, $1970-79^1$

	(1)		(2)	(3)	(4) Water	(5)	(6) Water discharge	(7) Sediment
inc	ime		Interval between time increments (percent)	Midpoint of limits in column (1) (percent)	discharge equaled or exceeded ² (cubic feet per second)	Suspended sediment discharge ³ (tons per day)	multiplied by time interval (cubic feet per second)	discharge multiplied by time interval (tons)
0.00	-	0.02	0.02	0.01	6,210.00	8,512.60	1.24	1.703
0.02	-	.04	.02	.03	5,610.00	7,425.38	1.12	1.485
0.04	-	.06	.02	.05	4,690.00	5,835.90	.93	1.167
0.06	-	.10	.04	.08	4,570.00	5,635.98	1.82	2.254
0.10	-	.15	.05	.12	4,470.00	5,470.77	2.23	2.735
0.15	-	.30	.15	.22	3,680.00	4,211.80	5.52	6.318
0.30	-	.50	.20	.40	2,560.00	2,547.82	5.12	5.096
0.50	-	1.0	.50	.75	1,910.00	1,672.54	9.55	8.363
1	-	2	1.00	1.50	1,170.00	827.03	11.70	8.270
2	-	4	2.00	3.00	695.00	359.47	13.90	7.189
4	-	7	3.00	5.50	464.00	183.08	13.92	5.492
7		11	4.00	9.00	304.00	90.35	12.16	3.614
1		15	4.00	13.00	231.00	57.12	9.24	2.285
5		20	5.00	17.50	178.00	36.96	8.90	1.848
0		25	5.00	22.50	142.00	25.34	7.10	1.267
5		35	10.00	30.00	106.00	15.55	10.60	1.556
5		45	10.00	40.00	79.00	9.52	7.90	.952
5		55	10.00	50.00	59.00	5.84	5.90	.585
5		65	10.00	60.00	44.00	3.58	4.40	.358
5		75	10.00	70.00	31.00	1.99	3.10	.200
5		85	10.00	80.00	19.00	.88	1.90	.088
5		95	10.00	90.00	9.40	.27	.94	.027
5		98.5	3.50	96.80	2.90	.03	.10	.001
8.5	-	99.9	1.40	99.20	.58	.00	.00	.000
						Total ton	s (per day)	62.853

¹Average annual suspended-sediment discharge = $365 \times 62.853 = 22,941$ tons (rounded to 23,000). Drainage area of basin = 141 square miles.

Average annual sediment yield = 22,941 ÷ 141 = 162.70 tons per square mile (rounded to 160).

²Determined from figure 8.

³Determined from figure 7.

study. Depending on stream depth and velocity, the method utilizes the selection of a specific transit rate for raising and lowering the sampler at equally spaced verticals in the stream's cross section. The Equal Width Increment method, formerly called the Equal Transit Rate method, is discussed in considerable detail by Guy and Norman (1970, p. 32-37). It should be noted that the entire water column is not sampled. Depending on the type samplers, the intake nozzle is located from about 0.2-0.4 ft above the sampler's bottom; therefore, each vertical sampling transit has an unmeasured zone of this distance (0.2-0.4 ft) above the streambed.

The unmeasured part constitutes primarily the bedload discharge and a percentage of the suspended-sediment discharge. Because standard samplers now in use cannot accurately measure sediment closer than 2-4 in. above the streambed, values must be estimated using mathematical or predictive techniques. The perplexities of selecting a "workable" method from the numerous techniques available are discussed by Shulits and Hill (1968). Primarily because of the lack of detailed particle-size data and an acceptable sampler for verifying results, values of unmeasured discharge are not included in this report.

Concentrations of suspended sediment were determined in the U.S. Geological Survey sediment laboratory in Raleigh, N.C., using methods outlined by Guy (1969). Briefly, determinations were made by the filtration method, which involves weighing the sample and filtering, drying, and weighing the sediment. Filtration is accomplished by a 25-mL (milliliter) Gooch crucible and glass-fiber filter disks utilizing an electrical vacuum system. Analysis of particle sizes of suspended and bed materials were performed jointly in laboratories in Raleigh, North Carolina, and Baton Rouge, Louisiana. Size analyses were determined with sieves for material larger than 0.062 mm; the bottom-withdrawal tube method (Guy, 1969) was used for material finer than 0.062 mm.

Comparisons of data in this report with historical data, or with data collected by other organizations, should not be performed unless similarity in both field and laboratory techniques can be established. For instance, values of suspended-sediment concentrations collected by the U.S. Geological Survey prior to about 1951 in North Carolina did not employ currently recommended depth-integrating methods.

FFFECTS OF LAND USE ON CHARACTERISTICS OF SEDIMENT TRANSPORT

Comparative analyses of various sediment characteristics are more meaningful when site basins are categorized by major factors that influence sediment such as land use and development activities. Kennedy (1964), Vice and others (1969), Hindall (1976), Vanoni (1977), and others discuss the effects of various surface covers and land uses on sediment transport. For comparative purposes, each station in the sampling network was categorized into one of five classes:

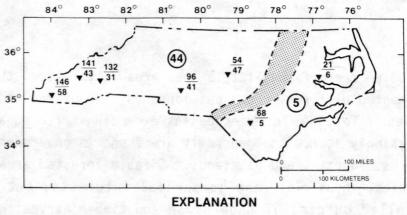
- 1. Forested basins representing background conditions,
- 2. Forested basins having minor developments,
- 3. Rural basins affected by agriculture,
- 4. Rural basins heavily affected by non-agricultural activities, and
- 5. Urban basins (table 1).

This categorization reflects the most influential land-use factors affecting erosion and sediment transport in North Carolina. Because of a fairly balanced distribution of population, industry, and farming interests across the State, it is difficult, indeed, to find basins exceeding several square miles in size which contain a single land-use activity. Information obtained from field inspection, aerial photographs, land-use maps, and topographic maps prepared since 1970 were used to determine land-use characteristics for study basins. The percentage of land use by major category is presented in table 1 for each sampling station.

Forested Basins Representing Background Conditions

This forested basin land-use category is intended to characterize sediment transport from forested areas for the purpose of defining background conditions. Only seven basins (table 6), ranging in size from 0.64 mi² to 51.9 mi², met the criteria of this category. Field reconnaissances indicated that 94 to 100 percent of land surface in the seven basins was forested; and, although a few basins contained roads and isolated houses, minimal erosional effects were contributed by these sources because activities were considerable distances from water courses. Except for natural pools along the stream reaches, the basins contained no lakes or other man-made detention structures.

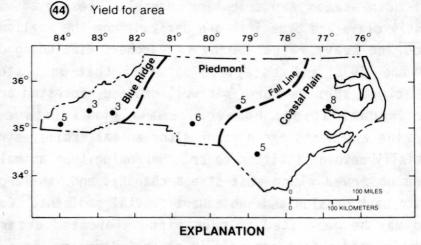
Table 6.--Suspended-sediment characteristics for forested basins without development, 1970-79

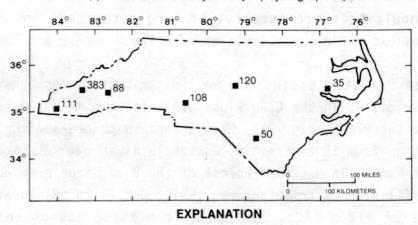

[Physiographic provinces: C, Coastal Plain; P, Piedmont; B, Blue Ridge. r, correlation coefficient for site sediment-transport curve defined by observed data]

Site number	Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sedi	indica iment e equale	ated s concer ed or	suspen ntrat: exce	nded- ion eded	coeffic (me	ient, a asured)	umples, corr and range in concentrat grams per li	observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
21	Black Swamp near Batts Crossroads	С	1.02	6	6	>1	17	16	13	8	6	17	0.88	35	2
54	Cane Creek 0.1 mile upstream near Buckhor	n P	0.64	30	47	>1	160	86	8	5	5	49	.76	120	2
68	Ellis Creek tributary near White Oak	С	1.81	9	5	>1	32	24	11	5	4	21	.80	50	4
96	Dutchmans Creek near Uwharrie	P	3.44	140	41	4	40	27	9	6	5	23	.80	108	4
132	Beetree Creek near Swannanoa	В	5.46	170	31	12	100	33	4	3	2	51	.83	88	1
141	Cataloochee Creek near Cataloochee	В	49.2	2,100	43	122	220	34	8	3	1	110	.87	383	0
146	Nantahala River near Rainbow Springs	В	51.9	3,000	58	232	58	40	16	5	1	34	.88	111	0

Although 64 percent of the State's land area is forested, this coverage is highly fragmented by farms, urban developments, and other land-disturbing type activities. Totally forested basins exceeding a few square miles in size are increasingly scarce and generally are found in government-owned (or controlled) parks, forests, and gamelands. Sizable forested areas are owned by paper companies, industrial, and commercial interests, but activities such as controlled burning of underbrush and timber harvesting generally preclude their use in defining background conditions.

The primary sources of fluvial sediment in the seven forested basins are related to bank caving, channel scour, and other more subtle changes in morphology of main-stream and tributary channels. Lesser amounts of fine materials, mostly clays and organics, are derived from the shallow root zone and surface during heavy rains. Many researchers (including Johnson and Swank, 1973; Dunne, 1978; and Mosley, 1979) argue that most storms cause little or no actual surface runoff in well-drained, forested areas having normal litter accumulation; however, small streamlets capable of transporting fine sediments often occur along animal trails, stream banks, and areas partially devoid of litter cover. Burrowing-type animals, such as muskrats, were observed along most stream channels and, in large numbers, could accelerate bank erosion and subsequent fluvial sediment. Considerable sediment load may be generated in mountainous forested areas by debris avalanches, such as those that occurred in central Virginia as a result of Hurricane Camille (Williams and Guy, 1973); but no hillside failures were noted during this investigation. Sediment characteristics presented herein, therefore, should be representative of long-term conditions in natural forested basins excluding the effects of rare flood events and landslides.


The seven forested basins are well distributed across the State with three stations located in the Blue Ridge province, two in the Piedmont, and two in the Coastal Plain (fig. 9). Mean annual suspended-sediment yields at these sites range from 58 tons/mi² at Nantahala River near Rainbow Springs (site 146), in Nantahala National Forest of the Blue Ridge province, to only 5 tons/mi² at Ellis Creek tributary near White Oak (site 68) located in the southern Coastal Plain (fig. 9). Data from these basins indicate mean annual yields of approximately 44 tons/mi² for streams in the Blue Ridge and Piedmont provinces and 5 tons/mi² in the Coastal Plain. A transition zone probably occurs in vicinity of the Fall Line; values of yield probably decrease in an eastward direction within this zone (fig. 9).


Transition zone between Piedmont and Coastal Plain provinces.

 $\frac{131}{\sqrt[3]{32}}$ Estimated annual suspended-sediment yield, in tons per square mile:

Upper number is site number Lower number is yield at site

- Estimated median suspended-sediment concentration, in milligrams per liter
- Approximate boundary of major physiographic province

88 Maximum measured suspended-sediment concentration, in milligrams per liter

Figure 9.--Estimated annual sediment yield and median and maximum suspended-sediment concentrations for streams draining forested basins representing background conditions.

The North Carolina Department of Natural Resources and Community Development (1979b) estimates that about 10 million acres of forest lands are in the Blue Ridge and Piedmont provinces and 9.5 million acres are in the Coastal Plain province. On the basis of these land-use statistics and mean annual sediment yield from figure 9, the annual suspended-sediment contribution to the State's stream systems from forested lands, excluding any effects from man, is approximately 0.9 million tons.

Because of variability, comparisons of sediment-concentration data between stations are most logically made during similar flow conditions. Concentrations of suspended sediment ranged from 1 to 8 mg/L (milligrams per liter) across the State (table 6) during low-flow periods when discharge was 50 to 90 percent duration. Large variations in suspended sediment occur during high-flow periods (0.1 percent discharge duration); estimated concentrations range from 17 mg/L at Black Swamp (site 21, fig. 1) in the Coastal Plain province to 220 mg/L at Cataloochee Creek (site 141, fig. 1) in the Blue Ridge province. Maximum instantaneous concentrations observed during floods ranged from 35 mg/L at Black Swamp to 383 mg/L at Cataloochee Creek (table 6). Simmons and Heath (1979), in a less comprehensive study, reported sediment concentrations in flood samples for 39 forested basins varying from 5 mg/L at a Coastal Plain site to 235 mg/L at a Piedmont site. They also reported (p. 30) an average suspended-sediment concentration for the State during base runoff of about 6 mg/L, which compares favorably with the median values shown in figure 9.

Suspended sediment transported by streams includes both mineral (rock) and organic matter. Selected in-stream samples for four forested sampling sites were analyzed for organic content (fig. 10). Organic matter is relatively abundant in forested areas, and it is readily waterborne. North Carolina streams transport varying amounts of natural organic materials, ranging in size from microscopic algae to tree trunks; however, because of sediment-sampler characteristics, the size of materials discussed herein is restricted to the diameter of the sampler's intake nozzle. As shown in figure 16, the percentage of organic material in suspended sediments generally decreases as sediment concentrations and flow increase. Using discharge-weighted mean concentrations of suspended sediment from Black Swamp (14 mg/L), Ellis Creek (14 mg/L), Cove Creek (45 mg/L), and Beetree Creek (14 mg/L), estimates of organic material average 30 to 50 percent of suspended-sediment transport in the Coastal Plain province and 10 to 30 percent in the Piedmont and Blue Ridge provinces.

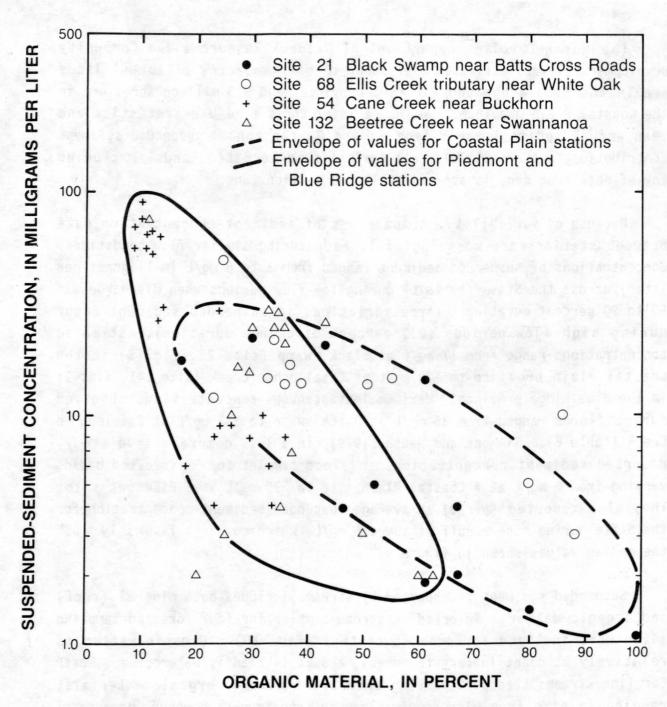


Figure 10.--Relation of the content of organic material in suspended sediment to concentration of suspended sediment for streams in selected forested basins.

Forested Basins Having Minor Development

Seven additional sites had essentially forested basins; however, reconnaissances through the basins indicated that each contained various

land-use activities that would possibly increase fluvial transport over natural conditions (table 7). For example, the drainage basin for Flat Creek near Inverness (site 66, fig. 1) is 99 percent forested and located on the Ft. Bragg military reservation; however, part of the basin was used periodically for military operations. The periodic fording of streams in trucks and various tracked vehicles may have accelerated bank erosion. Mean annual sediment yield of 60 tons/mi² for Flat Creek is significantly greater than yields of forested Piedmont sites shown in figure 9.

Forested area in the remaining six basins ranged from 88 to 96 percent but included paved and unpaved roads in close proximity to stream channels upstream of the sampling points. In addition to effects from roads, agricultural activities in the basins above Buckhorn Creek, Linville River, Jacob Fork, and South Toe River (sites 64, 107, 112, and 142, fig. 1) accounted for 6 to 12 percent of the basins' land area. Beginning in 1974, construction of summer resort homes and new roads in the Jacob Fork basin combined with existing land-use activities to produce a mean annual yield of 280 (tons/mi²), the greatest yield sampled for basins exceeding 88 percent forested. Even when forests cover over 90 percent of a basin, the presence of unpaved roads and farmlands may increase sediment considerably above background levels if surface runoff from development activities access waterways (fig. 11).

Rural Basins Affected by Agriculture

North Carolina can be classified as a rural State. Agriculture is the State's largest industry; 115,000 farms cover 42 percent of its land area (North Carolina Soil and Water Conservation Section, 1979). Recent studies indicate that as much as 64 percent of gross erosion occurring in the State might be attributed to cropland (U.S. Department of Agriculture, 1977). Gross erosion is the total amount of soil moved from one place to another; whereas, fluvial sediment, the subject of this report, is eroded soils which enter and are transported and/or deposited in streams. Other recent estimates indicate that agricultural lands of all types may be the source of 80 percent of the erosion in the State (North Carolina Department of Natural Resources and Community Development, 1979a). About 45 percent of the State's croplands are classified as lands having a water erosion hazard.

4

Table 7.--Suspended-sediment characteristics for forested basins with minor development, 1970-79

[Physiographic provinces: C, Coastal Plain; P, Piedmont; B, Blue Ridge. r, correlation coefficient for site sediment-transport curve defined by observed data]

Site number	Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sed: was	indica iment o equalo	concered or	susper ntrati excee	ded- on ded	coeffic (me	ient, a asured)	amples, corr and range in concentrat rams per li	observed
			a	(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
64	Buckhorn Creek near Corinth	P	76.3	5,800	76	81	190	120	51	23	9	26	0.98	329	5
66	Flat Creek near Inverness	С	7.63	460	60	15	100	85	35	7	3	32	.83	145	1
107	Linville River near Nebo	В	66.7	7,600	110	189	260	86	14	5	2	24	.74	277	1
112	Jacob Fork at Ramsey	P	25.7	7,200	280	54	710	140	19	7	3	28	.82	2,600	2
128	Davidson River near Brevard	В	40.4	2,400	60	148	160	59	10	3	2	29	.90	555	1
136	West Fork Pigeon River above Lake Logan	В	27.6	5,900	210	113	770	24	4	2	1	31	.98	721	0
142	South Toe River near Celo	В	43.3	5,500	130	169	300	180	5	2	1	44	.98	75	0

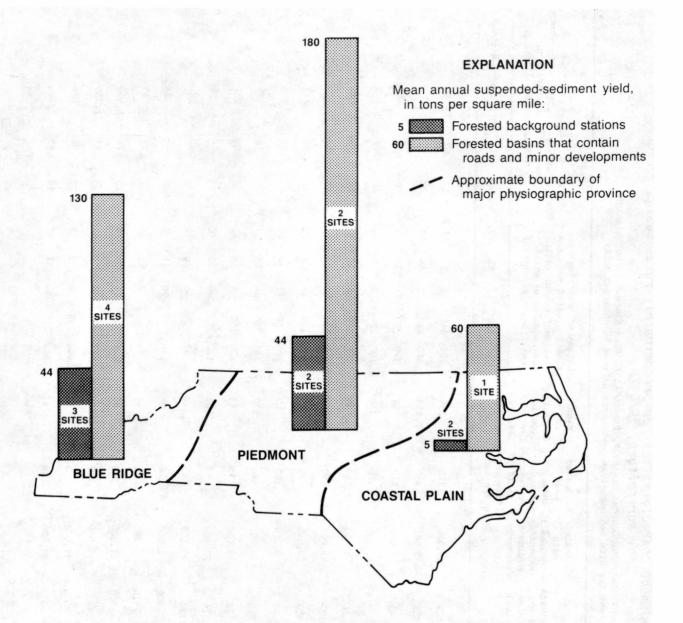


Figure 11.--Comparisons of mean annual suspended-sediment yields for forested basins with and without minor development.

The significance, therefore, of agricultural lands as a major source of sediment throughout the State is well documented. Rural basins affected by agriculture characterize fluvial sediment with regards to general land use and do not quantify transport from site-specific land uses.

In this report, rural basins are defined as those in which agricultural activities are the primary sources of fluvial sediments above background levels. Eighty-three sampling stations are in this category, the largest category in the sampling network (table 8). Most of these basins contain

Table 8.--Suspended-sediment characteristics for predominately rural basins affected by agriculture, 1970-79

[Physiographic provinces: C, Coastal Plain; P, Piedmont; B, Blue Ridge. r, correlation coefficient for site sediment-transport curve defined by observed data]

Site number (fig.	er Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sed: was	indi iment equa	perce cated conce led or ams pe	suspe entrat exce	nded- ion eded	coeffic:	ient, a easured	mples, corn nd range in) concentra grams per l	n observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
3	Dan River near						-					3- 30-	79		
4	Francisco Dan River near	P	129.0	35,000	270	224	1,400	360	98	33	12	20	0.97	1,040	2
7	Wentworth Hyco Creek near	P	1,053	460,000	440	1,450	1,400	840	240	98	47	28	.92	1,520	19
8	Leasburg Double Creek near	P	45.9	7,600	170	54	380	230	78	26	6	26	.86	379	3
9	Roseville South Hyco Creek	P	7.47	3,100	410	9	1,100	280	33	5	1	36	.99	1,780	1
1.3	near Roseville	P	56.5	10,000	180	66	450	270	93	39	14	21	.90	709	3
12	Tar River near Tar River	P	167	31,000	180	180	310	250	140	59	19	24	.87	463	7
13	Tar River at US 401 at Louisburg	P	427	30,000	70	465	120	110	46	25	23	36	.89	243	4
14	Cedar Creek near Louisburg	P	48.2	4,800	100	49	260	160	72	40	15	22	.98	446	2
15	Swift Creek at Hilliardston	P	166	14,000	84	170	290	200	64	23	8	26	.76	278	2
16	Little Fishing Creek near White Oak	P	177	17,000	96	183	220	150	79	38	12	26	.90	207	4
17	Fishing Creek near Enfield	С	526	22,000	42	522	120	80	40	18	8	33	.71	166	4
18	Tar River at Tarboro	С	2,183	93,000	43	2,370	67	59	45	26	12	115	.74	454	5
20	Chicod Creek near Simpson	С	45.0	2,000	44	59	130	51	20	11	9	1,568		254	1
23	Durham Creek at Edward	C	26.0	300	12	44	14	7	7	7	6	38	.82	43	1
24	Eno River at Hillsborough	P								16					100
25	Eno River near		66.0	11,000	170	67	600	310	97	35	10	25	.78	1,160	2
26	Little River near	P	141	23,000	160	141	450	290	110	37	11	33	.81	1,050	2
27	Orange Factory Flat River at	P	80.4	11,000	140	81	440	230	56	22	7	29	.96	686	5
	Bahama	P	149	28,000	190	167	480	280	94	37	12	22	.67	104	8

Table 8.--Suspended-sediment characteristics for predominately rural basins affected by agriculture, 1970-79--Continued

Site numbe	r Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sedi was	indica ment o equale	ercent ated st concent ed or	usper trati exce	nded- ion eded	coeffici	ent, ar	mples, corr nd range in concentra grams per 1	observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
28	Neuse River near		505.0	72 000		510	240	210	120		10	22	0.00	607	
32	Northside Middle Creek near	P	535.0	73,000	140	548	240	210	130	47	10	32	0.83	687	5
32	Clayton	P	83.5	4,500	54	89	97	78	55	27	12	32	.98	326	5
33	Little River near		03.3	4,500	34	0,	,,	,,	33	~ '		27	.,,	320	
	Kenly	С	191	7,900	42	198	83	66	41	23	10	26	.85	379	7
34	Little River near														
	Princeton	C	232	10,000	43	255	68	64	43	22	10	27	.90	266	4
36	Bear Creek near							198					194		
4.28	Parkstown	C	4.27	100	23	4	60	47	19	13	7	120	.88	88	8
40	Turner Swamp near								00				70	101	
12	Eureka Contentnea Creek at	С	2.10	94	45	3	150	46	20	9	6	31	.72	484	4
42	Hookerton	С	729	20,000	27	788	31	. 30	28	23	19	55	.89	76	6
43	Little Contentnea Creel		129	20,000	21	700	31	. 50	20	23	1,	33	.07	70	
, ,	near Farmville	С	93.3	3,300	35	121	52	42	27	14	8	39	.97	362	3
44	Creeping Swamp near			Sales Line											
	Calico	C	9.80	280	29	17	30	22	16	10	7	48	.86	97	1
45	Creeping Swamp near														
1.85	Vanceboro	C	27	920	34	44	49	29	17	11	7	1,543		110	3
47	Palmetto Swamp near					20	70	20	21	10	-		00	159	. 4
	Vanceboro	С	24.2	1,000	41	39	70	39	21	12	7	56	.92	159	4
48	Trent River near Trenton	C	168	1,900	11	210	17	17	10	5	2	48	.91	84	1
49	Reedy Fork near	C	100	1,900	11	210	1,		10	-		40	.,,		
	Oak Ridge	P	20.6	5,200	250	26	1,100	390	75	45	14	35	.86	3,800	11
53	Big Alamance Creek														
	near Elon College	P	116	23,000	200	124	550	340	110	38	12	34	.80	975	6
55	Cane Creek near							100					100		
	Teer	P	33.7	4,900	150	32	320	230	120	66	15	19	.90	578	3
56	Haw River near			100.000		1 100	110	210		10		22	90	922	3
E 7	Bynum	P	1,277	180,000	140	1,400	460	310	66	19	8	33	.80	922	3
57	New Hope River near Pittsboro	P	288	23,000	80	327	110	96	81	67	31	29	.71	352	26
60	Deep River near		200	23,000	80	321	110	90	01	07	31	23	.,,	332	20
	nech utaer near	P	125	26,000	210	154	580	360	75	30	17	26	.89	508	7

Table 8.--Suspended-sediment characteristics for predominately rural basins affected by agriculture, 1970-79--Continued

Site number (fig. 1		Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sed was	mated indic iment equal lligra	cated conce	suspentrate exce	ended- ion eded	coeffici	ent, a	mples, corn nd range in) concentra grams per l	observed
	Approximation			(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
61	Deep River at			N 1 2 5 7			1-15			(a re		X.	18		100
62	Ramseur Tick Creek near Mt.	P	349.0	62,000	180	414	650	290	60	28	15	24	.91	941	9
63	Vernon Springs Deep River at	P	15.5	4,200	270	17	1,200	260	41	22	11	30	.94	319	5
	Moncure	P	1,434	190,000	130	1,650	180	180	120	38	8	34	.95	690	2
	Cape Fear River at Lillington	P	3,464	420,000	120	3,840	350	270	96	20	5	49	.82	618	2
	Cape Fear River near Tarheel	С	4,852	330,000	68	5,410	210	160	66	26	8	29	.83	334	6
	Cape Fear River near Kelly	С	5,255	290,000	55	6,100	100	83	55	27	15	114	.86	186	4
	Little Coharie Creek near Roseboro	С	92.8	1,200	13	128	13	11	10	8	6	35	.81	50	2
	Black River near Tomahawk	С	676	8,400	12	868	16	13	11	8	5	32	.82	26	1
	South River near Parkersburg	С	379	2,500	7	445	8	7	6	5	5	31	.88	30	1
	Northeast Cape Fear River near Chinquapin	С	599	9,000	15	822	16	15	12	9	4	31	.74	226	1
	Jaccamaw River at Freeland Jackin River at	С	680	5,500	8	812	8	7	7	7	6	34	.57	47	1
	Patterson	P	28.8	11,000	380	60	2,500	630	50	10	5	32	.81	2,050	1
	Elkville Coaring River at	P	48.1	21,000	440	119	1,200	480	81	14	4	27	.97	1,520	1
	Roaring River adkin River at	P	128	42,000	330	219	1,700	870	55	19	4	25	.99	2,180	3
	Elkin itchell River near	P	869	300,000	350	1,630	1,100	710	160	37	19	25	.97	1,210	8
139	State Road State River near	P	78.8	17,000	220	143	1,500	300	40	15	7	31	.94	2,190	3
	Copeland adkin River at	P	128	45,000	350	211	1,600	650	69	18	7	25	.92	3,730	2
04 1	Siloam	P	1,226	480,000	390	2,180	1,200	710	240	46	19	26	.97	2,240	13

Table 8.--Suspended-sediment characteristics for predominately rural basins affected by agriculture, 1970-79--Continued

Site numbe	r Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	was e	indica ment c equale		rati excee	ded- on ded	coeffici (me	ent, an	nples, corr nd range in) concentra grams per 1	observed
10				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
85	Ararat River at				and pro		But							G	
87	Ararat Yadkin River at	P	231.0	99,000	430	351	2,600	720	81	23	8	29	0.96	2,400	5
92	Enon Humpy Creek near	P	1,694	800,000	470	2,930	906	750	390	66	30	21	.99	1,140	17
93	Fork South Yadkin River	P	1.05	200	190	1	740	310	31	18	13	25	.98	746	8
at:	near Mocksville	P	306	90,000	290	408	640	510	210	97	33	33	.94	1,310	12
94	Hunting Creek near Harmony	P	155	68,000	440	247	1,200	830	160	42	19	43	.92	1,860	11
95	Leonard Creek near Bethesda	P	5.16	2,000	390	5	1,300	850	90	27	7	131	.96	1,750	12
97	Big Bear Creek near Richfield	P	55.6	11,000	200	61	860	210	22	6	3	28	.97	982	1
98	Gourdvine Creek near Olive Branch	P	8.75	78.50	290	9	690	210	21	18	10	146	.95	730	2
99	Lane Creek near	P	4.92		220	5	450	210	41		12	124	.94	1,040	4
100	Trinity Wicker Branch near														
101	Trinity Rocky River near	P	5.83		150	6	210		24	8	6	135	.96	761	4
102	Norwood Little River near	P	1,372	270,000	200	1,570	420	340	100	20	10	33	.90	538	3
104	Star Drowning Creek near	P	106	15,000	140	128	570	260	26	14	9	29	.86	971	5
105	Hoffman Lumber River at	С	183	2,000	11	275	11	10	8	7	5	30	.93	31	1
	Boardman	С	1,228	15,000	12	1,500	11	11	10	9	9	39	.73	24	2
106	Catawba River near Marion	P	172	61,000	360	413	1,200	540	100	21	6	32	.98	1,760	3
111	Henry Fork near Henry River	P	83.2	13,000	160	157	630	180	29	8	.3	26	.81	1,120	1
113	Long Creek near Bessemer City	P	31.8	11,000	340	42	1,100	540	100	39	14	28	.87	1,820	9
120	Twelve Mile Creek near Waxhaw	P	76.5	18,000	240	76	550		100		9		.92	904	3

Table 8.--Suspended-sediment characteristics for predominately rural basins affected by agriculture, 1970-79--Continued

Site number (fig.	er Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sed: was	indiciment equal	ated s concer ed or	uspe trat exce	nded- ion eded	coeffici	ent, a	mples, corr nd range in) concentra grams per l	observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
121	Cove Creek near			100				11/4				130		2 de gara	
122	Lake Lure Second Broad River	P	79.0	30,000	380	166	1,400	680	110	28	8	25	0.96	2,270	4
122	at Cliffside	P	220	50,000	230	374	1,100	420	56	23	12	36	.98	1,080	7
124	First Broad River			10.48				e de la companya de l	7-10	1	1	1100			
	near Casar	P	60.5	15,000	250	102	1,700	280	27	7	2	29	.94	1,290	1
127	French Broad River at Rosman	В	67.9	13,000	190	274	380	160	29	11	4	31	.87	2,080	2
129	French Broad River		07.5	13,000	170	-17	300	100		1				1000	
	at Blantyre	В	296	78,000	260	1,210	400	190	65	31	15	33	.60	643	3
130	Mills River near		100	100						011		100			The Man
121	Mills River	В	66.7	6,700	100	200	200	130	33	9	2	29	.89	471	1
131	French Broad River at Bent Creek	В	676	160,000	240	1,950	710	300	77	24	9	32	.87	820	4
138	East Fork Pigeon River		070	100,000	240	1,,50	,,,,	300	100					- / - / - / - / - / - / - / - / - / - /	
	near Canton	В	51.5	4,600	89	163	210	75	16	5	2	35	.87	1,230	1
143	Watauga River near			15000			7 7 7 7 7	110	35.	130	4000	38	2017		
	Sugar Grove	В	92.1	13,000	140	221	190	96	54	31	9	32	.84	1,200	2
144	Cartoogechaye Creek near Franklin	В	57.1	11,000	190	155	620	210	57	19	8	28	.75	826	4
149	Oconaluftee River	В	37.1	11,000	190	133	020	210	31	1,		20	.,,	020	The state of
,	at Birdtown	В	184	23,000	130	560	430	170	31	7	2	37	.83	474	1

residential areas, farm ponds, roads, forests, various land-clearing operations, and other activities of man. Field inspections indicate, however, that agricultural-type activities are the primary source of increased sediment. The denuding and tillage of croplands increase erosion potential, but applied land-management practices and various physical factors such as soil type are controlling factors. Farm animals, such as cattle and swine, contribute to the erosional problem by destroying or altering ground cover, creating trails, and damaging stream banks. Logging trails and timber-harvesting activities related to silvicultural practices, in most instances, also increase sediment production (Harris, 1977).

The proximity of the erosional sources to streams causes significant variations in sediment yields from one basin to another. The proximity of tilled land to streams was not evaluated in this report; however, most farmlands in the Blue Ridge and western Piedmont provinces are located in valleys and, as a rule, are in closer proximity to streams than in other areas of the State.

Basins in an otherwise rural environment, but having the following conditions, are excluded from this category: channelized main reach or major tributary reaches, upstream lakes and reservoirs which significantly affect flows and sediment transport at the sampling sites, major construction activities in close proximity to water courses, land use exceeding 15 percent as urban development, and basins near or totally forested included in the preceding forested categories.

Sampling stations for monitoring rural basins affected by agriculture were quite uniformly located across the State with 8 sites in the Blue Ridge, 52 sites in the Piedmont, and 23 sites in the Coastal Plain (fig. 1). This large network of sites permitted coverage of extreme ranges in rural basin characteristics. For instance, the size of project basins ranges from 1.05 to 5,255 mi² (table 8), and percentage of land used for row crops ranges from 5 to 59 percent (table 1). Data coverage of rural sites is also sufficient in some instances to show the effects of soil type, topography, land use, and other basin characteristics on sediment transport. Unless stated otherwise, however, the computation of mean values by physiographic province is generally restricted to data for sites of less than 400 mi² throughout the remainder of this report. The primary reasons for this

restriction are (1) the complexities associated with the categorization increase with basin size, and proper categorization is often unsure for basins greater than several hundred square miles, and (2) most of the larger streams that originate in one province and flow into another generally tend to retain transport characteristics of the headwaters province.

The suspended-sediment concentration data listed in table 8 illustrate the variability of sediment in predominately rural basins across the State. Concentrations during low baseflow periods, 90-percent flow duration in streams having drainage areas less than 400 mi², are fairly consistent and range from 1 to 19 mg/L except for New Hope River near Pittsboro (31 mg/L) and South Yadkin River near Mocksville (33 mg/L), sites 57 and 93, respectively. Minimum observed concentrations, in streams with less than 400 mi² of drainage area, range from 1 to 12 mg/L during extreme low-flow periods, except New Hope River near Pittsboro (26 mg/L), and are generally lower than those for 90-percent flow duration. Comparisons of mean concentrations by physiographic province (fig. 12) indicate little difference in values during low flow (90 percent flow duration). Variations are more pronounced for median and high flow conditions (50 and 0.1 percent flow duration, respectively).

The effects of basin characteristics, such as soil types, topography, and land use, on sediment transport are markedly evident during intense storm runoff. For sites less than 400 mi², concentrations of suspended sediment in rural basins affected by agriculture for high-flow conditions (0.1 percent flow duration) ranged from 8 mg/L at South River near Parkersburg (site 72, fig. 1) and at Waccamaw River at Freeland (site 76, fig. 1) in the Coastal Plain province to 2,600 mg/L at Ararat River at Ararat (site 85) in the western Piedmont province. Variation of mean concentration of suspended sediment for rural stations during high-flow conditions is shown in figure 13; iospleths closely reflect boundaries of major soil groups discussed previously (fig. 4). Concentrations are also somewhat regionalized with maximum values occurring primarily in the western Piedmont and minimum values in the Coastal Plain. For sites less than 400 mi² in size, maximum observed instantaneous concentrations for storms range from 30 mg/L at South River near Parkersburg (site 72) in the southern Coastal Plain to 3,800 mg/L at Reedy Fork near Oak Ridge (site 49) in the central Piedmont (table 8).

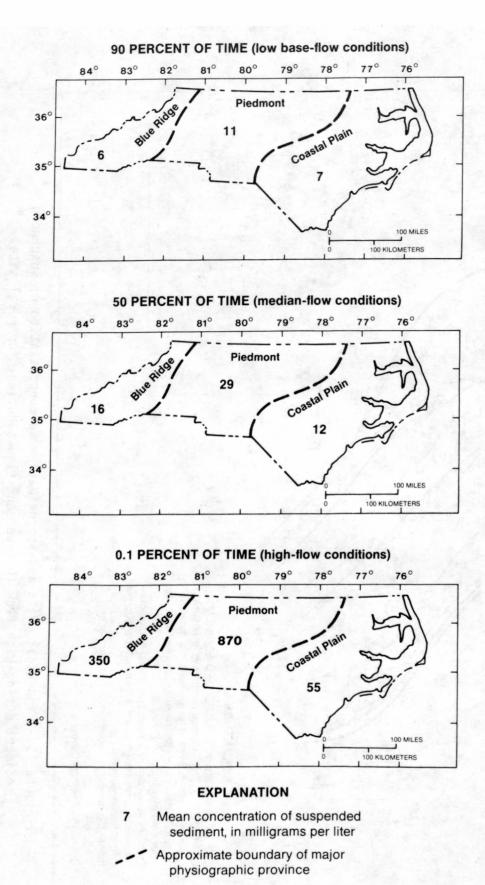


Figure 12.--Percentage of time indicated mean concentration of suspended sediment was equaled or exceeded in rural basins affected by agriculture.

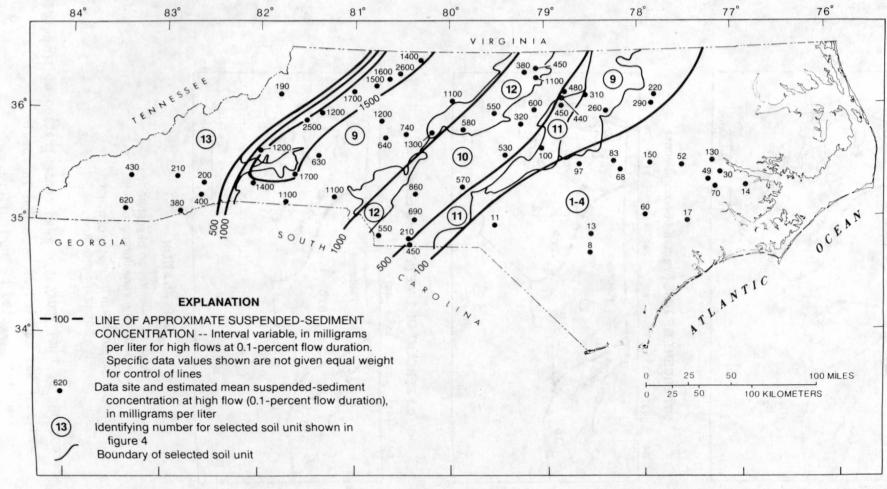


Figure 13.--Major soil units and approximate mean concentration of suspended sediment during high flow (0.1-percent flow duration) for rural sites affected by agriculture and less than 400 square miles in size.

Concentrations of sediment at subject network stations are not representative of conditions at small acreage, site-specific locations. For example, suspended-sediment samples collected in 1985 during storms at two 6-acre agricultural sites in the Reedy Fork basin, 6 miles northeast of Greensboro (fig. 2), had maximum concentrations greater than 50,000 mg/L (U.S. Geological Survey, unpublished data, 1985). These values contrast sharply with the maximum sampled concentration of 3,800 mg/L for site 49 on Reedy Fork near Oak Ridge, only a few miles away, which occurred during a much more intense storm than for the preceding event. The drainage area of the Reedy Fork near Oak Ridge site is 20.6 mi², or 13,200 acres, as compared to 6 acres for the two agricultural sites. In 1982, Blake (1984) measured suspended-sediment concentrations during storm runoff from a 10-acre soy bean field located in the upper Neuse River basin about 12 mi northeast of Raleigh (fig. 2). Maximum concentrations reported by Blake for two storms exceeded 20,000 mg/L, or more than 10 times greater than maximum values observed at nearby sites with larger basins in the statewide network. The ability of small acreage watersheds to produce greater unit concentrations of fluvial sediment than much larger watersheds is not unique to North Carolina. Maner, (1962), Roehl (1962), Guy (1970a), and others discuss similar findings throughout much of the Nation. High concentrations produced by small acreage sources diminish rapidly in a downstream direction as suspended materials are entrapped by vegetation or redeposited at toes of slopes, on floodplains, and in channels. This point is raised to again emphasize that the sediment characteristics discussed herein are representative of the State's perennial streams and are reflective of conditions at sampling sites exceeding 1 mi² in size.

Except during prolonged periods of low flow, sediment concentrations in rural Coastal Plain streams that are affected by agriculture and originate in the Piedmont are often greater than simultaneous concentrations in those streams originating in the Coastal Plain. As shown in figure 14, concentrations in the Cape Fear River during high flow conditions (0.1 percent flow duration) are 2 to 30 times greater than those of Coastal Plain tributary streams. The addition of lower-concentration waters from Coastal Plain tributaries has a diluting effect on sediment characteristics of the Cape Fear River; but concentrations of the most downstream station, Cape Fear River near Kelly (site 69, fig. 1), are still not representative of streams originating in the Coastal Plain. Similar differences occur in the

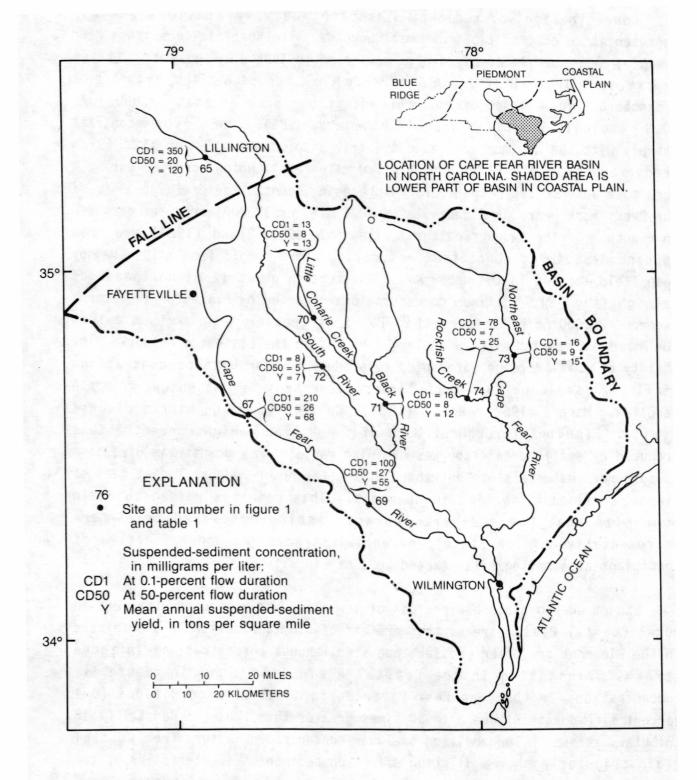


Figure 14.--Suspended-sediment characteristics in the lower Cape Fear River basin.

Neuse, Tar, and probably other larger Piedmont streams that cross the Coastal Plain. The abundance of clayey soils in the Piedmont province is a major contributing factor. Stream velocities decrease considerably as Piedmont streams, such as the Cape Fear River, flow across the broad Coastal Plain; but velocities are usually sufficient to keep clay-sized materials from the Piedmont in suspension well into the coastal estuaries.

A statewide plot of yield values from table 8 is shown in figure 15 for rural sites affected by agriculture and having drainage areas less than 400 mi² in size. As with concentration data shown previously in figure 13, values of mean annual suspended-sediment yield are greatest in the northwestern Piedmont and minimal in the southern and extreme eastern Coastal Plain. The maximum difference between site values ranges from 7 tons/mi² at South River near Parkersburg (site 72, fig. 1) to 440 tons/mi² at Elk Creek at Elkville (site 78) and Hunting Creek near Harmony (site 94). The range in yield values is further highlighted by the isopleths shown in figure 15, which indicate a dramatic twelve-fold increase in yields from the Coastal Plain to the western Piedmont. Locations of these isopleths are also in close agreement with boundaries of major soils units (fig. 4). Most likely an even greater range in yield values would exist if small acreage sites had been included in the network; however, the minimum basin size (site 92, table 8) was 1.05 mi² (670 acres).

Differences in sediment characteristics between major river basins are dramatically shown in figure 16. These data reflect conditions in rural, unregulated basins affected by agriculture of less than 400 mi² in size.

Rural Basins Affected by Nonagricultural Activities

In addition to being affected by row-cropping and related agricultural operations, sediment characteristics at 38 predominately rural study basins were also heavily affected by non-agricultural type activities such as channelization and highway construction (table 9). Quantification of sediment by specific activity was not possible, as nearly all sites were affected by more than one activity. In some instances, the effects of upstream reservoirs were pronounced, and effects of urban activities were noticeable at several sites.

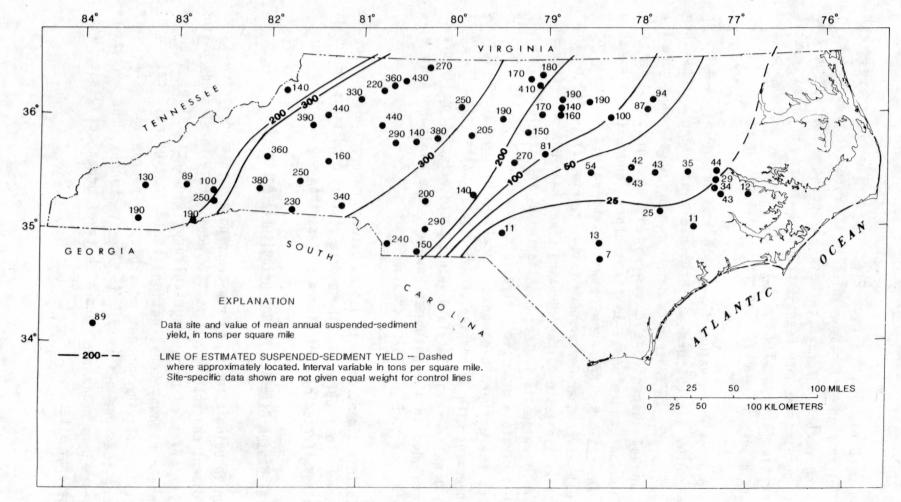


Figure 15.--Mean annual suspended-sediment yield for rural sites affected by agriculture.

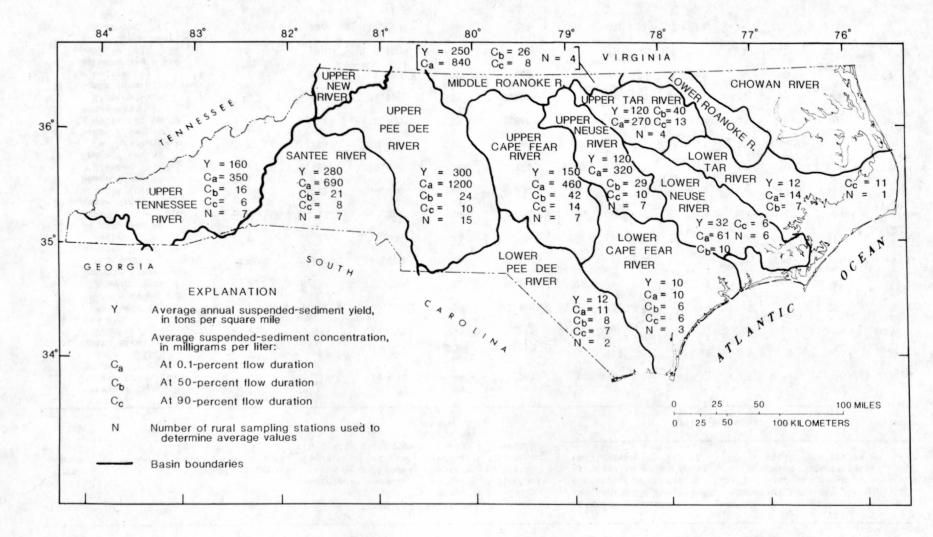


Figure 16.--Selected suspended-sediment characteristics, by major river basin, for predominately rural basins affected by agriculture.

Table 9.--Suspended-sediment yields and related characteristics of rural basins heavily affected by nonagricultural activities in addition to agricultural operations, 1970-79

[Physiographic provinces: C, Coastal Plain; P, Piedmont; B, Blue Ridge. r, correlation coefficient for site sediment-transport curve defined by observed data. Letter(s) following site name indicate(s) primary source of nonagricultural activity affecting sediment characteristics: c, channelization; h, highway or other large-scale construction; r, reservoir trapping effect; u, urban and municipal construction]

Site number (fig.	er Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sedi was	nated prindical ment of equals alignament	ated s concen ed or	uspen trati excee	ded- on ded	coeffici	ient, a sured)	mples, corn nd range in concentrat rams per li	observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
1	Potecasi Creek	001		1,0							7.79				
	near Union (c)	C	225.0	10,000	44	264	62	54	41	24	11	26	0.87	255	8
2	Ahoskie Creek at														
	Ahoskie (c,u)	C	63.3	4,500	71	70	130	110	55	21	11	41	.79	404	4
5	Smith River at														
	Eden (u.h)	P	538	130,000	240	741	2,000	760	71	25	11	26	.84	1,600	2
6	Dan River near	A STATE OF THE PARTY OF													
	Mayfield (h,u)	P	1,778	630,000	350	2,380	1,500	930	180	55	19	48	.86	2,290	5
10	Roanoke River at														
	Roanoke Rapids (r)	P	8,384	100,000	12	9,270	16	16	13	9	6	91	.84	41	1
11	Roanoke River near														
	Scotland Neck (r)	C	8,671	160,000	18	9,550	19	19	18	17	15	38	.89	31	8
19	Conetoe Creek near								E.	1.74					
	Bethel (c)	C	78.1	5,600	72	88	200	210	30	10	3	26	.76	579	1
22	Herring Run near												17.0		
-	Washington (c,u)	C	15.1	2,900	190	11	1,500	480	100	17	5	33	.85	2,340	3
29	Neuse River near			-,			-,								
	Falls (u,h)	P	772	140,000	180	831	400	320	150	31	8	74	.68	926	4
30	Neuse River near			140,000	100	031		020		E Good		COLUMN TO SERVICE	A 347		
	Clayton (u,h)	P	1,150	220,000	190	1,170	570	460	160	20	5	95	.90	1.770	3
31	Neuse River at		1,130	220,000		.,	0.0			-	TO VISIO				
-	Smithfield (u,h)	P	1,206	220,000	180	1,340	400	330	170	39	11	38	.84	544	10
35	Neuse River near		.,	,			The same		234.6	7 14	1990		297		
	Goldsboro (u,h)	С	2,399	150,000	63	2,660	69	69	63	44	19	30	.58	386	19
37	Neuse River at		-,0	,					4700	1	7.7		A STATE		
	Kinston (u,h)	C	2,690	84,000	31	3,010	28	28	26	25	25	123	.82	78	8
38	Contentnea Creek near				The sales of the sales	Region Lagran			- 16			Solon.	91 2 50	AND THE RESERVE	
	Lucama (r)	C	161	7,600	47	162	68	67	50	28	12	19	.88	74	7
41	Nahunta Swamp near	79.70		William Co.		A	J- 17	2011				V			
	Shine (c)	C	80.4	5,100	63	92	160	110	51	25	12	27	.87	375	4
46	Swift Creek near			5,100											
	Vanceboro (c)	С	182	12,000	66	234	110	81	51	32	19	29	.76	303	5
	ranceboro (c)		102	12,000	00	234	110	0.1	3.	34					

Table 9.--Suspended-sediment yields and related characteristics of rural basins heavily affected by nonagricultural activities in addition to agricultural operations, 1970-79--Continued

Site number fig.	Name	: nysiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	sediment yield	Mean daily discharge (cubic feet per second)	time i sedim was e	nted per indicat ment co equaled ligrams	ed suncent	spenderation xceed	ed- n ed	coefficion (mea	ent, and sured)	ples, corred range in concentrat ams per li	observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimu
50	Reedy Fork near					Aug.					5				
traff.	Gibsonville (r)	P	131.0	13,000	99	102	500	290	28	19	16	35	0.97	611	7
52	Haw River at Haw					talke I'm		A 222	TOTAL !	1.5					
130	River (u,h)	P	606	160,000	260	647	750	560	170	36	12	33	.73	1,620	8
58	Haw River near	A 2 2 4 4							-116				200	1200	
	Haywood (u,h)	P	1,689	280,000	170	1,840	400	320	160	45	16	37	.88	959	8
74	Rockfish Creek near			200							_				200
70	Wallace (c)	C	69.3	1,700	25	102	78	30	9	7	7	30	.56	91	1
79	Reddies River at North										2			0.070	
	Wilkesboro (h,u)	P	89.2	44,000	490	181	2,900	1,000	31	9	5	28	.99	3,970	3
86	Little Yadkin River at			04 000	(10		2 /00	1 200		16		27	01	3,020	6
	Dalton (h)	P	42.8	26,000	610	54	2,400	1,200	55	16	8	21	.94	3,020	0
91	Yadkin River at Yadkin		2 222		500	2 550	1 500	1,000	380	110	28	3,821		1,670	5
102	College (u,h) Pee Dee River near	P	2,280	1,200,000	530	3,550	1,500	1,000	380	110	20	3,821	2 70.	1,070	3
103			6 060	200 000	55	0.640	70	70	48	25	17	97	.90	147	5
100	Rockingham (r)	P	6,860	380,000	55	9,640	70	70	48	25	17	91	.90	147	3
109	Lower Little River near	\ D	28.2	22 000	790	45	2,400	670	81	25	9	31	.74	5,600	8
123	All Healing Springs (1 Broad River near Boiling		28.2	22,000	790	45	2,400	070	01	23	9	31	. 74	3,000	0
123	Springs (h,u)	P	875	340,000	390	1,850	780	710	210	48	11	32	.96	1,710	8
126	South Fork New River	r	6/3	340,000	390	1,630	700	110	210	40	11	32	. 30	1,710	
120	near Jefferson (h)	P	205	75,000	370	527	1,700	320	44	17	8	27	.82	1,840	1
134	French Broad River at	. 4 17 94 17 9	203	73,000	370	321	1,700	320	-			-		.,	
134	Asheville (u,h)	В	945	390,000	410	2,400	1,100	640	160	43	12	2 28	.96	1,510	6
135	French Broad River at		, , ,	370,000	110	2,100	1,100	A COM							
133	Marshall (u,h)	В	1,332	670,000	500	2,820	3,000	950	170	44	13	85	.72	10,800	3
137	West Fork Pigeon River	1000	1,552	0,0,000	303	2,020	5,500						A ARREST		
	below Lake Logan (r)	В	55.3	1,500	27	179	77	26	6	3		30	.99	331	1
139	Pigeon River at	-		2,500				1975			TO I				
	Canton (r,h)	В	133	7,200	54	372	150	55	13	4		2 30	.94	851	1
140	Pigeon River near			,,200					17						
	Hepco (u,h)	В	350	65,000	190	772	610	260	68	31	1	8 59	.86	1,500	6

Table 9.--Suspended-sediment yields and related characteristics of rural basins heavily affected by nonagricultural activities in addition to agricultural operations, 1970-79--Continued

Site number	er Name	Physiographic province	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sedi was	ated pindica ment c equale	ted soncen	uspend tration	ded- on ded	coeffici (mea	ent, assured)	mples, corn nd range in concentrat rams per la	observed
				(tons)	(tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum
145	Little Tennessee at Needmore (h)	В	436.0	110,000	250	1,190	670	350	83	22	7	31	0.81	705	3
147	Nantahala River at	В	144	5,900	41	546	150	46	9	5	2	23	.99	251	1
148	Nantahala (r) Tuckasegee River at Dillsboro (r,h)	В	347	100,000	290	909	1,600	440	110	22	5	25	.67	1,590	1
150	Tuckasegee River at Bryson City (h,u)	В	655	150,000	230	1,810	840	270	90	32	12	32	.94	1,650	4
151	Hiwassee River above Murphy (r)	В	406	28,000	69	1,026	140	87	34	13	6	23	.92	397	3
152	Valley River at Tomotla (h,u)	В	104	27,000	260	280	520	270	88	31	10	26	.84	1,420	5

The categorization of rural sites was often difficult because of the diverse land-use activities underway in many of the larger basins. For example, the Yadkin River at Patterson (site 77, fig. 1) was relatively simple to classify as rural, because land use in this 28.8 mi² basin was 16 percent agricultural and 5 percent urban; no major construction or other development occurred during the study period. However, the Yadkin River at Yadkin College basin (site 91) is 2,280 mi² in size and includes runoff from many small towns and part of a major city, Winston Salem (population 132,000 in 1980). Land use upstream of Yadkin College is approximately 30 percent agricultural and 7 percent urban. Although only a relatively small part of the basin is urbanized, many large-scale developments occur along or near stream courses and may increase fluvial sediment considerably more than the small urban land-use percentage implies. Therefore, data from the Yadkin College site and similar sites shown in table 9 were not used to categorize rural-agricultural conditions but to show the effects on sediment of nonagricultural activities in an otherwise rural environment. A brief discussion of rural basins heavily affected by non-agricultural activities follows.

Channelization

Seven sampling sites (nos. 1, 2, 19, 22, 41, 46, and 74, fig. 1), located in the Coastal Plain province, were affected by channelization of main stem and tributary channels (table 9, symbol c). No large-scale channel excavation occurred during 1970-79; therefore, data for these sites reflect post channel construction conditions. A study of the Black River in Harnett County (Simmons and Watkins, 1982) showed that levels of suspended sediment increased more than tenfold during the excavation phase; but within a year following excavation, levels had decreased to about 5 times those of pre-excavation levels. Although channel excavations at the subject sites generally occurred in the 1950's and early 60's, mean concentrations and yields of sediment during the 1970-79 study period were generally several times greater than for nearby unchannelized rural streams. Factors associated with channel excavations in the Coastal Plain which tend to increase sediment transport include alteration of the natural pool and ripple characteristics, washoff from spoil piles, failure of excavated channel banks, and increased flow velocities and are discussed in detail by Simmons and Watkins (1982) and Watkins and Simmons (1984).

Using preceding data, an approximation may be made of the long-term effects of channelization on sediment transport. For this example, the Swift Creek near Vanceboro (site 46, table 9), which is a rural site affected primarily by agricultural operations and channelization, was used. Swift Creek is located in the eastern Coastal Plain region in the lower Neuse River basin. The main reach and major tributaries of Swift Creek were channelized in 1964. Using information from figure 9, the mean annual yield for background conditions in the vicinity of Swift Creek is about 5 tons/mi². From figure 16, the estimated average yield for rural sites (affected primarily by agriculture) is about 32 tons/mi² for sites in the lower Neuse River basin. Using the estimated yield of 66 tons/mi² for the Swift Creek station (table 9), the effects of channelization (as compared to rural-agriculture sites) have about doubled the yield at the site.

Highway and Large-Scale Construction

Basin reconnaissances indicated that erosion from large-scale construction for highways, reservoir sites, heavy industry, and related land-clearing operations most likely affected transport at 23 sites ranging in size from 28.2 to 2,690 mi² (table 9, symbol h). Sediment contributed by these activities to fluvial sediment derived from rural agricultural sources is undefinable. Fluvial sediment was increased at a number of sites, such as sites 5 and 6, table 9, fig. 1, by urban developments in addition to the previously mentioned activities. Mean annual yield at the 23 affected stations was generally 1 1/2 to 4 times greater than yields of nearby rural sites affected only by agriculture.

Urbanization

In this report, urban activities are not restricted entirely to the housing industry but also to municipal streets and highways, shopping centers, and other land uses associated with a populated area. Twenty of the 38 sampling sites listed as "rural affected by nonagriculture activities" (table 9) are affected by urban development but not to the extent that would warrant categorization as urban. As noted in table 9, sediment characteristics at the 20 sites also are affected by other activities such as highway construction. Comparison of data from rural sites affected by agriculture (table 8) to rural sites affected by

nonagriculture (table 9) show that sediment yields generally are greater for the latter sites having some urban development. Urbanization, even when minimal, has a major effect on sediment yield, especially during the construction phase if in close proximity to stream courses.

Reservoirs

Characteristics at 10 sampling stations are affected by the trapping effects upstream of main-stream reservoirs (table 9, symbol r). As discussed by Brune (1953), the trapping ability of a reservoir is affected by many factors; generally, however, the trap efficiency increases as the ratio of reservoir capacity to annual inflow increases. Estimated values of trap efficiency for major reservoirs in the subject 10 basins are given in table 10. The two Roanoke River sites (10 and 11) are also further affected by John H. Kerr Reservoir (capacity, 120 x 10^9 ft³) (cubic feet) that lies primarily in Virginia immediately upstream of Lake Gaston (fig. 17). The impoundments listed in table 10 are not necessarily the only ones in the subject basins but are believed to be the most significant regarding sediment transport at the subject sampling sites. Approximate locations of reservoirs and lakes discussed herein are shown in figure 17.

As noted in table 10, the effect of an upstream reservoir on fluvial sediment is largely dependent on the trap efficiency of the reservoir and its distance upstream from the sampling point. Reservoir effects often appear to diminish rapidly downstream. For example, the mean annual sediment discharge increases approximately 60,000 tons on the Roanoke River from Roanoke Rapids (site 10, fig. 1) to Scotland Neck (site 11), a distance of about 31 river miles. The sediment contribution from rural streams in the intervening area is approximately 14,000 tons (fig. 16); the remaining 46,000 tons is attributed primarily to degradation of the Roanoke River channel.

Of all sites listed in table 10, the Roanoke River at Roanoke Rapids (site 10, fig. 1) shows the greatest reservoir effect. Based on data from figure 16 for the middle Roanoke basin, the average annual yield should be a minimum of about 250 tons/mi² without the effect of reservoirs. The combined trapping effects of John H. Kerr, Lake Gaston, and Roanoke Rapids Lake, however, reduce the yield at Roanoke Rapids (site 10) to only 12

Table 10.--Estimated trap efficiencies and related information for major reservoirs affecting suspended-sediment sampling sites, 1970-79

3.5		Reservoir		nd storage ch	aracteristics	
Sampling site number ³	Sampling site	Reservoir name	Distance upstream from sampling site (miles)	Normal capacity (cubic feet)	Estimated average annual water inflow (cubic feet)	Estimated trap efficiency (percent)
10	Roanoke River at Roanoke Rapids	Roanoke Rapids Lake	3	3 x 10 ⁹	210 x 10 ⁹	52
10	Roanoke River at Roanoke Rapids	Lake Gaston	12	22 x 10 ⁹	210 x 10 ⁹	86
11	Roanoke River near Scotland Neck	Lake Gaston	34	22 x 10 ⁹	210 x 10 ⁹	86
38	Contentnea Creek near Lucama	Buckhorn Reservoir	1	69 x 10 ⁶	5 x 10 ⁹	53
50	Reedy Fork near Gibsonville	Lake Brandt	14	290 x 10 ⁶	2 x 10 ⁹	90
103	Pee Dee River near Rockingham	Blewett Falls Reservoir	3	4 x 10 ⁹	255 x 10 ⁹	60
137	West Fork Pigeon River below Lake Logan	Lake Logan	3	90 x 10 ⁶	5 x 10 ⁹	58
139	Pigeon River at Canton	Lake Logan	11	90 x 10 ⁶	5 x 10 ⁹	58
147	Nantahala River at Nantahala	Nantahala Lake	12	6 x 10 ⁹	16 x 10 ⁹	95
148	Tuckasegee River at Dillsboro	Dillsboro Powerplant	1	Unknown	25 x 10 ⁹	Unknown
151	Hiwassee River above Murphy	Chatuge Lake	22	10 x 10 ⁹	14 x 10 ⁹	97

¹Capacity at usable storage. ²Estimated from Brune (1953, fig. 6). ³Table 1 and figure 1.

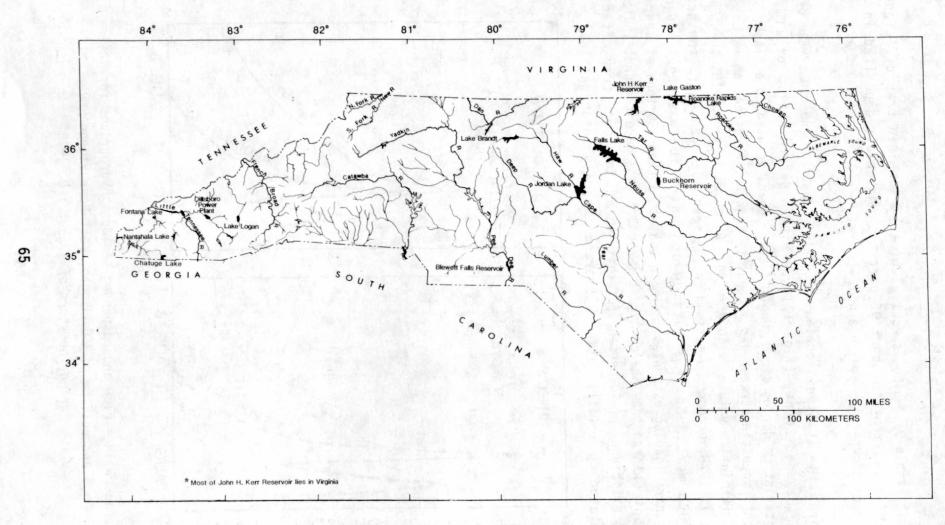


Figure 17.--Locations of reservoirs that affect reported stream-sediment data.

tons/mi² (table 9), which is equivalent to a combined trap efficiency of suspended sediment to about 95 percent. Materials deposited in these impoundments generally are retained.

Sampling stations located immediately upstream and downstream of Lake Logan, Haywood County (fig. 17), permitted determination of trapping characteristics during storm runoff. Lake Logan, located on a flashy, high-gradient, mountain stream, has a capacity of 2,060 acre feet and a capacity to annual inflow volume ratio of 0.04. As shown in figure 18, the storm of August 7, 1978, produced a maximum inflow suspended concentration greater than 600 mg/L. Maximum outflow concentration was about 160 mg/L. Preliminary loading estimates indicate that more than 550 tons of suspended sediment entered the lake on August 7 and 375 tons were trapped, indicating a trap efficiency of 70 percent for this storm. The lower trap efficiency is related to a small ratio of storage capacity to annual inflow that

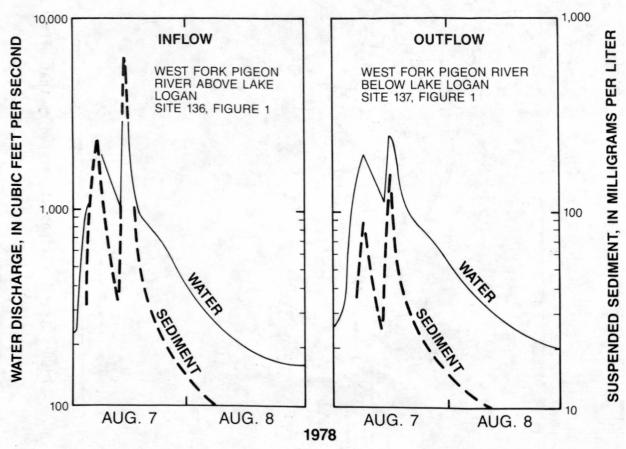


Figure 18.--Flow and suspended-sediment hydrographs for inflow and outflow of Lake Logan, West Fork Pigeon River, during the storm of August 7-8, 1978.

permits greater flow velocities through the reservoir, thus carrying more sediment in suspension as discharge from the reservoir. Ratios of storage capacity to annual inflow volume for major reservoirs such as Fontana and Kerr Lakes (fig. 17) are greater and trap efficiencies might exceed 95 percent; however, computations for these two lakes are not included in this report.

Sediment data downstream from two recently completed reservoirs provides a unique comparison of transport characteristics at two sampling sites before and after construction. The 12,500-acre Falls Lake (fig. 17), about 1/2 mile upstream of the Neuse River near Falls (site 29, fig. 1) was filled in June 1983. The Haw River near Haywood sampling station (site 58) is only 300 ft downstream from the dam of 13,900-acre Jordan Lake, filled in February 1982. Sediment data were collected during 1984-85 at both sites as part of a cooperative study with the U.S. Army Corps of Engineers, and sediment-transport curves for both periods, 1970-79 and 1984-85, are shown in figure 19. Using the sediment transport-flow duration method discussed previously, the curves for 1984-85 were applied to water discharge data for the 1970-79 base period. By applying pre- and post-curves to the same water-discharge period, an estimate of the sedimenttrapping ability of each reservoir can be made. As shown in table 11, had the reservoirs been in place during 1970-79, average annual deposition of suspended sediment in Falls and Jordan Lakes would have been approximately 126,000 and 240,000 tons annually.

Recent studies which discuss trapping effects of other reservoirs across the State include Simmons (1976), Dendy and Champion (1978), U.S. Army Corps of Engineers (1980), and Harned and Meyer (1983).

Urban Basins

Seventeen stations in the sampling network are classified as urban (table 12). One station is located in the Blue Ridge province and two in the Coastal Plain; the remaining 14 stations are scattered across the central and western Piedmont (fig. 20). Land-use activities directly related to urban and municipal development probably are the primary sources of fluvial sediment in these basins, although several basins (sites 89, 119, 133, fig. 20) have drainage areas greater than 100 mi², with subtantial percentage as farmlands (tables 1 and 12). Urban study basins ranged in size from 1.42 to 262 mi², averaging about 60 mi².

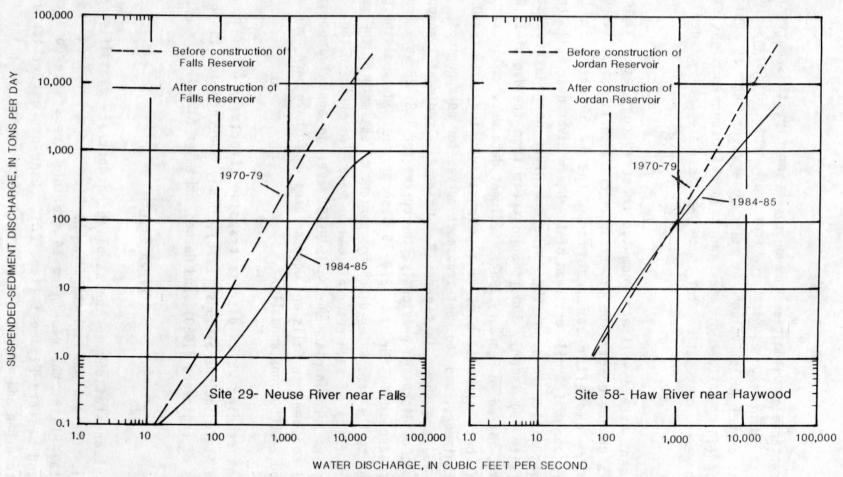


Figure 19.--Sediment-transport curves for sampling stations on the Neuse and Haw Rivers showing changes in sediment discharge after construction of major reservoirs immediately upstream from stations.

Table 11.--Estimated trap-efficiency characteristics of Falls and Jordan Lakes, based on sampling data at downstream stations

		Estimated ave sediment dischar	0	Estimated amount of suspended sediment	Estimated trap
Sampling station ¹	Reservoir upstream from station ²	Based on 1970-79 curve (figure 19) (tons)	Based on 1984-85 curve (figure 19) (tons)	trapped by reservoir annually (tons)	efficiency of reservoir (percent)
Neuse River near Falls (site 29)	Falls Lake	140,000	14,000	126,000	90
Haw River near Haywood (site 58)	Jordan Lake	280,000	40,000	240,000	86

¹Table 1 and figure 1. ²Figure 17.

Table 12.--Suspended-sediment characteristics for predominately urban basins, 1970-79

[Physiographic provinces: C, Coastal Plain; P, Piedmont; B, Blue Ridge. r, correlation coefficient for site sediment-transport curve defined by observed data]

Site	Name province.	Physiographic province.	Drainage area (square miles)	Estimated mean annual suspended- sediment discharge	Estimated mean annual suspended- sediment yield	Mean daily discharge (cubic feet per second)	time sed: was	mated prindication indication ind	ted soncen	uspen trati excee	ded- on ded	coeffici (mea	ient, a	mples, corr nd range in concentrat rams per li	observe
			(tons)	(tons) (tons per square mile)		0.1	1.0	10	50	90	Number	r	Maximum	Minimum	
39 I	Hominy Swamp at		-4,-												
	Wilson	С	7.90	880	110	7	300	120	42	25	12	33	0.81	779	9
51 1	North Buffalo Creek near Greensboro	P	37.1	7,000	190	75	300	210	62	21	15	32	.88	691	8
59 1	East Fork Deep River	r	37.1	7,000	190	13	300	210	02	21	13	32	.00	0,11	
,,,	near High Point	P	14.8	7,000	470	22	1,000	530	61	24	15	25	.71	1,040	7
75 1	Little Rockfish Creek			W. 10			61								
	near Wallace	C	7.83	340	43	12	120	56	17	7	5	31	.62	122	2
88 5	Salem Creek near														100
	Atwood	P	65.6	27,000	410	78	1,200	800	250	24	8	26	.73	2,520	8
89	Muddy Creek near							010			20	0.7	00	1 /20	16
00	Muddy Creek	P	186	76,000	410	261	1,300	810	140	46	26	27	.83	1,430	10
90	South Fork Muddy	D	42.9	20,000	470	52	1 600	1,100	140	40	21	28	.78	2,490	11
108	Creek near Clemmons Lower Creek at Lenoir	P P	28.1	18,000	640	47		1,700	110	28	20	23	.83	2,320	15
	Long Creek near Paw		20.1	18,000	040	47	1,000	1,700	110	20	20	23	.05	2,520	13
110	Creek	P	16.4	7,200	440	20	1,400	500	110	38	15	31	.90	1,320	8
114	Irwin Creek near		10.4	,,200			-,		Carried !					Andrew Control	
	Charlotte	P	30.7	46,000	1,500	50	5,000	1,800	140	17	5	25	.90	5,280	3
115	Little Sugar Creek														
	at Archdale Road														
	near Charlotte	P	42.6	27,000	630	65	1,800	860	66	10	3	26	.94	2,480	10
116	McAlpine Creek at														
	Sardis Road near		20.6		100	47	1 /00	680	110	26	12	21	.86	1,420	6
117	Charlotte McMullen Creek near	P	39.6	19,000	480	47	1,400	680	110	20	12	21	.00	1,420	
117	Charlotte	P	6.95	4,400	630	9	2,100	530	74	24	23	33	.80	7,500	6
118	McAlpine Creek near		0.93	4,400	030		2,100	330			Dist	to the		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 10 10 10
110	Pineville	P	92.4	32,000	350	122	420	420	230	32	11	27	.97	2,220	5
119	Sugar Creek near			32,000											
	Fort Mill	P	262	100,000	380	285	1,200	710	95	15	10	42	.90	2,240	9
125	Sugar Branch near														
	Boiling Springs	P	1.42	780	550	2	1,400	370	25	9	4	29	.97	3,100	1
133	Swannanoa River at	THE STATE OF THE STATE OF	STEPPEN T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	March Marks					UK.		20	00	2 000	2
	Biltmore	В	130	45,000	350	187	1,300	610	210	54	10	32	.92	2,880	3

¹Table 1 and figure 1.

80°

79°

78°

76°

82°

81°

83°

84°

Figure 20.--Maximum observed concentration of suspended sediment and mean annual yield at urban sampling sites.

The effects of urbanization on sediment yield are documented in numerous reports. Wolman and Schick (1967), Guy (1970b), Yorke and Davis (1972), and others report annual yields exceeding 100,000 tons/mi² in small-acreage urban basins in Virginia and Maryland. Wolman and Schick (1967) reported that urban areas in the Piedmont of Maryland commonly produced up to 200 times more sediment than comparable rural or forested areas. Yorke and Herb (1978) reported average annual sediment loads of 33 tons/acre from small acreage urban construction sites as compared to 0.03 tons/acre from nearby small forested sites, or 21,000 tons/mi² and 19 tons/mi², respectively.

Numerous factors affect sediment delivery from urban areas. instance, Wolman and Schick (1967) have demonstrated that a new developing urban area produces far more sediment than an older, established area of the same size. They, and others, have shown that sediment yield from a newly developed area rapidly decreases as development is completed and the land stabilized. Yields from construction areas increase with proximity to streams, especially in steep topographic terrains. Independent studies conducted in North Carolina (Putnam, 1972) and Virginia (Anderson, 1970) show that urbanization also causes an increase in flood peaks. These increased flows not only transport considerably more sediment but also erode and widen formerly stable stream channels; this turns the channel into an additional sediment source. Yorke and Herb (1978, p. 69) estimated that erosion of stream channels in one urban project area in Maryland contributed one ton of sediment per foot of channel length to the total sediment yield of the basin between 1967 and 1974. The trend to develop lands adjacent to streams and lakes will increase the sediment yield potential of a basin.

Field reconnaissances of urban basins in this study showed that, while all of the urban basins were undergoing various degrees of development, the extent of new construction and land-use activities varied between basins. Transport data for these basins reflect effects from various land uses, including industrial, residential, municipal, roads and highways, recreational, and agricultural. Numerous sources of sediment were found throughout most basins, and no basin contained an apparent dominant source of sediment.

Suspended-sediment concentration and related data are shown in table 12 for urban sites. Maximum observed sediment concentrations during the study occurred in streams in and around Charlotte, including 7,500 mg/L in McMullen Creek (site 117, fig. 20) and 5,280 mg/L in Irwin Creek (site 114). Urbanization is significant in the McMullen and Irwin Creek basins, accounting for 93 and 85 percent, respectively, of land use. Minimum concentrations at sites, obtained by samples during prolonged low-flow periods, ranged from 1 to 16 mg/L and agree closely with values reported previously for rural basins across the State. It should be noted that four of the 17 urban sites are located in Charlotte, and three other urban sites are within a radius of 10 miles of Charlotte (table 12 and fig. 20). This uneven distribution of sites, most of which are in the Piedmont, precludes the development of statewide urban sediment-transport relations.

As shown in figure 20, concentrations of suspended sediment for storms at the Piedmont urban sites commonly are 10 to 60 times greater than for urban sites in the Coastal Plain. Concentrations at network sites, however, are considerably less than those for small acreage urban construction sites. For example, Wolman and Schick (1967) reported concentrations that ranged from 3,000 to 150,000 mg/L in storm runoff from urban sites under development in the eastern Piedmont province of Maryland. Undoubtedly, similar concentrations are probably derived from urban construction areas of several acres or less in size in North Carolina's western Piedmont and possibly other parts of the State; however, comparative data are not available. Guy (1970a) and other researchers note that large quantities of eroded materials are redeposited on or near these small acreage sources, on flood plains, and in channels; this dramatically reduces concentrations that might occur in the larger streams.

Mean annual sediment yield also is highly variable across the State (table 12), ranging from 43 tons/mi² at Little Rockfish Creek near Wallace (site 75, fig. 20) in the Coastal Plain province to 1,500 tons/mi² at Irwin Creek (site 114) in the Piedmont province.

The most detailed urban sediment data are available as part of the stream-quality program (Eddins and Crawford, 1984) in the City of Charlotte and Mecklenburg County. As shown in table 12 and figure 20, annual yields at seven sites in and around Charlotte range from 350 to 1,500 tons/mi² for

basins having drainage areas of 6.95 to 262 mi^2 . The three sites having greatest yields (sites 114, 115, and 117) also had the greatest percentage of urban land use (85, 97, and 93 percent, respectively).

COMPARISONS OF SUSPENDED-SEDIMENT TRANSPORT CHARACTERISTICS WITH SELECTED BASIN CHARACTERISTICS

The abundance of data covering almost the entire State permits the comparison of various transport characteristics that until now has not been possible on a statewide basis. The information in this section is not a summary of but rather is a supplement to the information and data findings of the preceding sections.

Stream Discharge

Concentration of suspended sediment in North Carolina streams generally varies with stream discharge as shown in figure 21 by the daily hydrographs for the Yadkin River at Yadkin College (site 91, fig. 1). The hydrographs are similar and highs and lows occur almost simultaneously; at several points, the graphs seem to coincide. Even subtle changes in discharge during low-flow periods are often followed by similar changes in sediment. Most streams throughout the State exhibit a similar relation, but many low-gradient coastal streams and main-channel streams immediately downstream of reservoirs do not. Low velocities, flat terrain, and permeable (sandy) soils along much of the State's coastal area produce consistently low concentrations of suspended-sediment regardless of flow conditions. Conversely, the input of sediment by construction and other earth-moving activities, in or immediately adjacent to the stream channel, can cause increased levels even during low-flow periods.

Variation of suspended sediment with stream discharge is most pronounced during flood periods. According to Colby (1963), the maximum sediment concentration will occur (1) simultaneously with the maximum flow, (2) in advance of the maximum flow, or (3) following the maximum flow. Samples collected during this study show that maximum sediment concentration occurred prior to maximum flow for approximately 80 percent of the network stations; the remaining stations, most of which are high-gradient mountain streams in the Blue Ridge province, respond simultaneously. Generally, the

response characteristics of a specific stream are consistent; however, concentrations may peak in advance of maximum flow during one storm and simultaneously during the next storm because of unusual rainfall patterns or variations in source and amount of available sediment. Some Coastal Plain streams, such as the Waccamaw River at Freeland (site 76) and Lumber River at Boardman (site 105), are exceptions to the above, wherein concentrations are minimal and only minor fluctuations in concentrations occur even during severe floods (table 8).

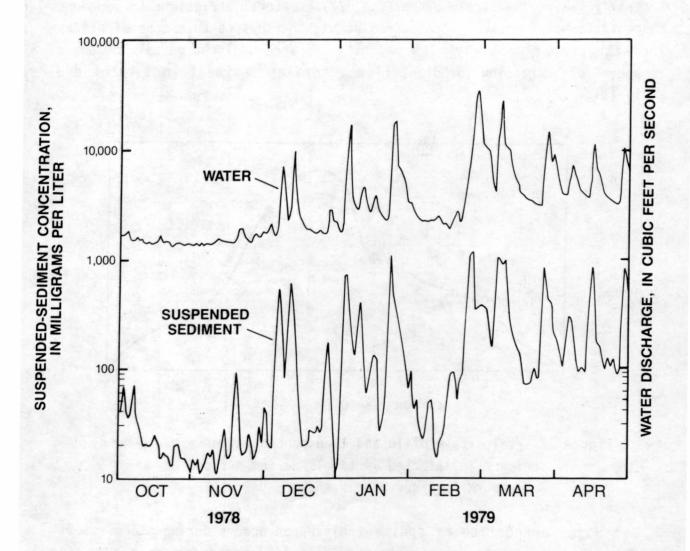


Figure 21.--Streamflow and suspended-sediment concentration hydrographs for Yadkin River at Yadkin College, October 1978 - April 1979.

In the stream cross section, concentrations of suspended sediment vary laterally and vertically with time and flow conditions. Variations exist in all streams throughout the State. The most pronounced variations occur in Piedmont and Blue Ridge province streams where concentrations are greatest. Concentrations may vary greatly under constant flow conditions at a fixed point in the cross section because sediment often moves in so-called clouds or waves. Except for the large rivers and estuaries of the coastal counties, sediment concentrations are generally greatest near mid-stream, where flow velocities and turbulence are usually greatest, and decrease laterally toward the stream banks (fig. 22). Lateral variations in sediment concentration are markedly pronounced at higher flows because concentrations increase proportionately with velocity and stream discharge as the upward component of increasing turbulent flow maintains sediment in a suspended state (fig. 22).

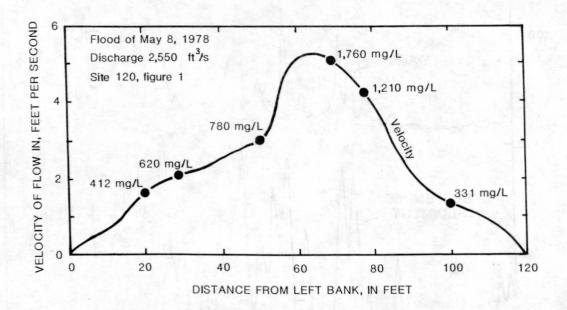


Figure 22.--Velocity profile and mean concentration of suspended sediment in selected verticals during a flood at Twelve Mile Creek near Waxhaw, May 8, 1978.

A major proportion of sediment discharge occurs during storm runoff. As discussed previously, transport computations prepared for each sampling station include quantities of sediment and water discharge representative of various time intervals (columns 1-3, table 5) that specific quantities are exceeded. Estimates of the percentage of time required for selected

quantities of transport can be determined by summing incremental quantities (columns 6 and 7, table 5) to obtain the selected percentage of the total quantity. Using data for selected streams, percentages of time are presented in table 13 which are required for the higher flow regimes to transport 25 and 50 percent of the total water and sediment discharged during the period 1970-79. For instance, in only 0.2 percent of the entire 10-year period (about 7 days), the French Broad River at Rosman (site 127) transported approximately 25 percent of the suspended sediment discharged during 1970-79 (table 13); approximately 50 percent was transported in 0.7 percent of the 10-year period. As shown in table 13, high flows in Piedmont and Blue Ridge streams generally transported a quarter or more of the total sediment in less than 1 percent of the period. Of the nine Coastal Plain stations shown in table 13, an average of approximately 2.6 percent (95 days) of the 10-year period was required to transport 25 percent of the sediment. Information in table 13 is useful in showing that floods and high flows of relatively short duration generally transport the bulk of fluvial sediments.

In addition to variations caused by discharge, numerous other natural and man-induced factors often cause variations in sediment distribution in a stream reach, including abrupt changes in stream-bed cross section, sharp meanders, braided channels, and deep natural pools. On large streams, eroded materials from landslides or bank failures often cause short-term elevated concentrations for considerable distances downstream. Man-induced variations are caused by a variety of factors, varying from engineering structures to influxes from point and non-point sources. Runoff, especially during heavy rains from construction projects, municipal storm sewers, unpaved road ditches, and lands cleared of vegetation, almost always has greater concentrations of sediment than receiving waters and thereby elevates downstream levels.

In a previous section of this report, comparisons of mean flow for long-term stations indicated above normal conditions for much of the State during the study. Because sediment sampling did not begin at most sites until after 1970, similar comparisons of sediment transport using actual sediment data are not possible. By assuming, however, that sediment-transport curve data for 1970-79 are also representative of long-term conditions, estimates of yield can be computed for comparing the effects of

Table 13.--Estimated percentage of time required for higher flows at selected stations to transport 25 and 50 percent of sediment and water during 1970-79

		Drainage area	Percentage of time required for higher flows to transport 25 and 50 percent of suspended sediment and water discharge during 1970-79					
Site		(square	25 perce		50 percent			
number1	Name	miles)	of total t	ransport	of total transpo			
-		Arthrida V	Sediment	Water	Sediment	Water		
	Blue	Ridge provi	nce					
127	French Broad River at Rosman	67.9	0.2	9	0.7	30		
130	Mills River near Mills River	66.7	.2	9	2.0	24		
131	French Broad River at Bent Creek	676	.5	7	3.9	22		
138	East Fork Pigeon River near Canton	51.5	.2	7	.6	20		
143	Watauga River near Sugar Grove	92.1	.4	3	3.0	17		
149	Oconaluftee River at Birdtown	184	.2	6	1.5	22		
	Pie	dmont provi	nce					
4	Dan River near Wentworth	1,053	.3	4	.9	17		
7	Hyco Creek near Leasburg	45.9	.2	1	.8	6		
12	Tar River near Tar River	167	.4	1	1.6	4		
25	Eno River near Durham	141	.2	1	.8	6		
32	Middle Creek near Clayton	83.5	.8	2	4.5	10		
49	Reedy Fork near Oak Ridge	20.6	.1	2	.4	13		
55	Cane Creek near Teer	33.7	.4	1	1.5	5		
56	Haw River near Bynum	1,277	.3	2	.9	9		
61	Deep River near Ramseur	349	.2	1	.7	6		
65	Cape Fear River at Lillington	3,464	.7	3	2.2	10		
78	Elk River at Elkville	48.1	.1	3	.4	19		
81	Yadkin River at Elkin	869	.5	6	2.4	24		
93	South Yadkin River near Mocksville		.7	3	2.6	17		
97	Big Bear Creek near Richfield	55.6	.1	1	.6	4		
111	Henry Fork near Henry River	83.2	.1	4	.4	17		
122	Second Broad River at Cliffside	220	.1	5	.4	22		
	Coasta	al Plain pro	ovince					
17	Fishing Creek near Enfield	526	.8	3	3.0	11		
18	Tar River at Tarboro	2,183	2.3	4	7.2	13		
23	Durham Creek at Edward	26.0		2	8.1	9		
43	Little Contentnea Creek near Farmy		1.1	3	4.6	8		
45	Creeping Swamp near Vanceboro	27.0	140	2	2.4	4		
71	Black River near Tomahawk	676	3.9	6	13	18		
72	South River near Parkersburg	379	3.4	5	13	16		
76	Waccamaw River at Freeland	680	4.2	4	14	15		
105	Lumber River at Boardman	1,228	5.5	6	17	20		
103	Lumber Wiver at Doardman	1,220	3.5		SUPPLEMENT OF	210		

¹Table 1 and figure 1.

short and long-term flow conditions. Computations for selected sites having 40 or more years of flow record indicate that mean values for the study period might range from about 4 to 26 percent greater than long-term values (table 14). Because of increased inaccuracies and unknowns associated with extending records, transport and flow values herein are not adjusted to long-term conditions and reflect characteristics representative of the study period only.

Particle Size of Suspended Sediment

Samples for determination of particle size of suspended materials were collected randomly during high-flow periods at approximately a third of the sites. Detailed size analyses of these samples were published in annual reports of the Survey for the year during which specific samples were collected (U.S. Geological Survey, 1970-79). Although collected on an infrequent, limited basis, particle size data are sufficient to show that significant differences exist across the State (table 15). For example, during high flow, silts and sands generally comprise about 84 percent of suspended materials in Blue Ridge streams, but only about 47 percent in Coastal Plain streams (table 15). Surprisingly, the percentage of silt in suspended sediments in Blue Ridge and Piedmont streams is about the same, 36 percent; however, clay accounts for more than 40 percent of suspended material in Piedmont streams but only about 16 percent in the Blue Ridge.

Land Use

Comparisons of yields between predominant land-use categories, pristine forest, rural-agricultural, and urban, must give consideration to various regional and basin factors to improve validity of findings. For instance, mean values of yield and other variables for characterizing rural basins were computed by using data only from sites that are unregulated, unchannelized, less than 400 mi² in drainage area, and in which agriculture is believed to be the major source of fluvial sediment. Consideration of these basin variables, and others mentioned in the report, then permits comparisons of fluvial sediment characteristics such as the comparisons of yields by land use category shown in figure 23. Assuming that the sediment derived from forested sources is the natural or background contribution, the

Table 14.--Comparison of estimated mean annual suspended-sediment yield for long-term and 1970-79 periods

[tons/mi², tons per square mile]

		Long	g-term	1970-79		
Site number (fig.1)	Name	Period of record	Estimated 1/mean annual yield (tons/mi²)	Estimated mean annual yield (tons/mi²)	Percentage of long- term yield	
	Blue	Ridge province	2 53 2 3 4 4 4		12 12	
2/ ₁₃₄ 150	French Broad River at Asheville Tuckasegee River at Bryson City	1897-1979 1899-1979	350 220	410 230	117 105	
	Pied	mont province			2 4 4 4	
30 52	Neuse River near Clayton Haw River at Haw River	1928-1979 1929-1979	180 210	190 260	106 124	
$\frac{2}{63}$	Deep River at Moncure	1931-1979	110	130	118	
<u>2</u> / ₉₃	South Yadkin River near Mocksville	1940-1979	230	290	126	
	Coastal	Plain province	9			
18	Tar River at Tarboro	1931-1979	40	43	108	
2/ ₄₂ 105	Contentnea Creek at Hookerton Lumber River at Boardman	1928-1979 1930-1979	26 11	27 12	104 109	
		TOTAL BOX				

 $[\]frac{1}{2}$ Computed from long-term flow duration data and sediment-transport curve for 1970-79.

 $\frac{2}{\text{Long-term}}$ index gaging station (see figure 6).

Table 15.--Average particle-size distribution for suspended-sediment samples collected in North Carolina streams during high flow

[mm, millimeter]

	Number	Number			Per	rcentage f:		ended-sed n indica				wy - H	
Physiographic	of stations	of samples	Cla	ay	1 3 01	Si	lt			Til 3	Sand	102.13	
province	sampled	used in mean	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.00	2.00
			mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
Blue Ridge	9	12	12	16	22	32	40	52	67	86	98	99	100
Piedmont	40	74	30	41	52	62	70	77	86	94	98	99	100
Coastal Plain	11	9	39	53	64	70	75	82	90	96	99	100	100

additional amount is that part derived from man's activities. It should be noted that values presented in figure 23 reflect characteristics in the Piedmont province which is the only province having sufficient data to make such a comparison. As shown, mean suspended-sediment yields for rural and urban Piedmont basins are approximately 6 and 14 times, respectively, greater than yields from forested basins. In contrast, Wolman and Schick (1967) reported that yields from urban areas of Maryland's Piedmont are up to 200 times greater than yields for comparable rural or forested areas. Guy (1970b), Yorke and Davis (1972), and others report similar findings in the Piedmont of Virginia and Maryland; however, these astronomical values are derived from small study basins generally ranging in size from less than 10 to about 50 acres which are undergoing intense construction activity related to the housing industry. Similar detailed studies of small acreage sites are lacking in North Carolina, but it is logical that equally large values of transport occur in this State's developing Piedmont region. Based on findings of this study, however, although large yields are probably produced from these small development sites, most of the eroded material is apparently redeposited near its source, because these exaggerated values are not reflected in yields computed from actual data collected at this project's sampling sites.

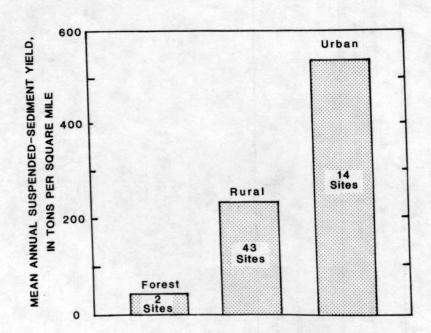
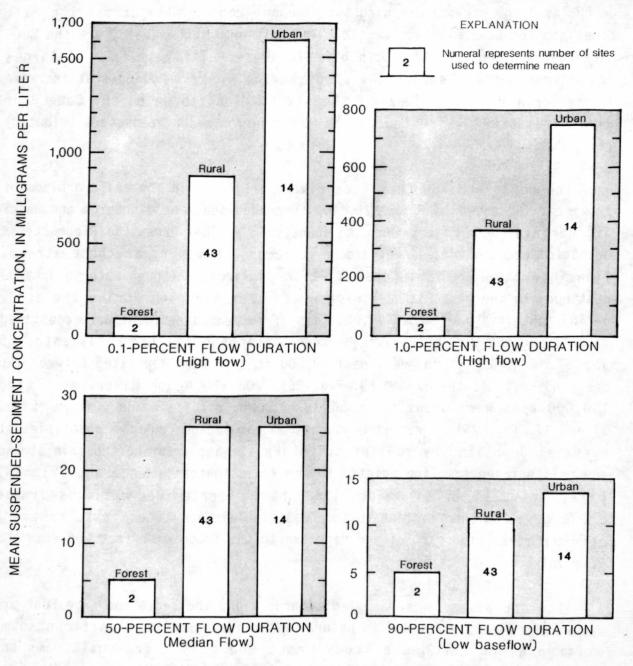
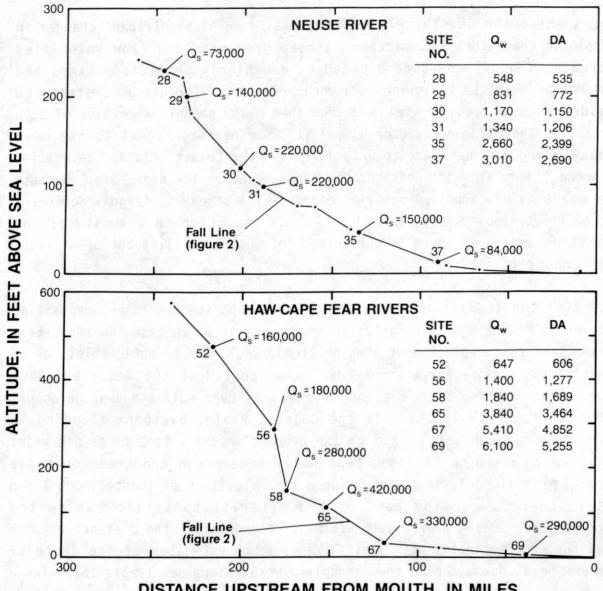


Figure 23.--Mean annual suspended-sediment yield for selected pristine forest, rural-agriculture, and urban sites in the Piedmont province.

Suspended-sediment data for Piedmont stations indicate that during the highest flows (0.1 percent duration), the mean concentration for large urban streams is approximately 1,600 mg/L as compared to 870 mg/L for rural sites and 100 mg/L for forested sites (fig. 24). Levels during low flows are substantially reduced at all Piedmont sites with mean concentrations near 14 mg/L at Piedmont urban sites, 11 mg/L at rural sites, and 5 mg/L at forested sites.




Figure 24.--Mean suspended-sediment concentration, by percent flow duration, for pristine forest, rural-agriculture, and urban sites in the Piedmont province.

Effects of Stream-Slope Change across Fall Line

Comparisons of sediment discharge, mean concentrations, and related data along a stream reach often indicate locations of major sources of sediment, the trapping effects of reservoirs, evidence of natural aggradation or degradation, and other phenomena. Data collected during this study show that a significant decrease in suspended-sediment discharge occurs as large streams draining the Piedmont region flow across the Fall Line into the Coastal Plain region. The most dramatic examples are the Haw-Cape Fear and Neuse Rivers, both of which were relatively free of large-scale impoundments during the study period. Six sampling stations were located on each river. Three of the six stations shown on the Cape Fear River are actually located on the Haw River, a major headwaters tributary (fig. 25).

The Neuse and Haw-Cape Fear Rivers originate in the eastern Piedmont province. As shown in figure 25, the suspended-sediment discharge and water discharge of both rivers increase downstream as they cross the Piedmont. A dramatic decrease in sediment discharge occurs, however, as these streams flow into the low, flat Coastal Plain province, although water discharge continues to increase with drainage area. For example, during the study period, an average of about 90,000 tons of suspended sediment were deposited annually in the Cape Fear River between Lillington and Tar Heel (sites 65 and 67, fig. 25). An additional 40,000 tons/yr were deposited between Tar Heel and Kelly (sites 67 and 69, fig. 25). On the Neuse River, more than 130,000 tons were deposited annually between Smithfield and Kinston (sites 31 and 37, fig. 25). Deposited amounts do not include unknown quantities of material deposited by smaller tributary streams entering the main stream channels between sampling points. Other investigators (Meade and Trimble, 1974; Trimble, 1974; Meade, 1982) have reported decreasing sediment discharges from the Piedmont to the Coastal Plain province; most, however, attribute at least part of the decrease to the trapping effects of dams and reservoirs.

The decreases in sediment discharge along the Neuse and Cape Fear are apparently directly related to natural basin factors. No significant dams existed along the Neuse study reach and only a few small dams and navigational locks were on the Cape Fear River. As the Neuse and Cape Fear

DISTANCE UPSTREAM FROM MOUTH, IN MILES

EXPLANATION

- •28 Site and number in figure 1 and table 1
- Approximate channel profile
- DA Drainage area, in square miles
- Q_s Mean annual suspended-sediment discharge for 1970-79, in tons per year
- Q_w Mean annual flow during 1970-79, in cubic feet per second

Figure 25.--Effects of low channel slope on the suspended-sediment discharge of the Neuse and Cape Fear Rivers when they reach the Coastal Plain.

Rivers enter the Coastal Plain provinces, several significant changes in hydrologic characteristics occur: stream gradients and flow velocities decrease; floodplains become broader; and highly vegetated swamps and lowlands adjacent to the rivers are more prevalent. For example, discharge measurements at gaging stations show that main channel velocities of both streams in the Piedmont average 6 to 7 ft/s during flows equal to the mean annual flood but decrease to 3 to 4 ft/s in the Coastal Plain. Velocities on broad floodplains are considerably less and often are near zero. Because the quantity of suspended material carried by a stream is largely dependent on the flow velocity (Guy, 1970a, p. 15), a reduction in velocity of the magnitude mentioned above is sufficient to cause a settling out of at least the larger particles.

Although the amount of sediment being deposited is large, deposition apparently occurs over a relatively large area; in which case the short-term accumulation, except that of a major flood, would not be noticeable. As on other North Carolina streams, material transported in the Neuse and Cape Fear Rivers during floods accounts for well over half the average annual suspended load (table 13). In the Coastal Plain, overbank flooding is common along both rivers and on the average occurs 1 to 2 times per year. It is during overbank flooding that heavy underbrush and trees on these broad, flat floodplains further reduce the velocities of the sediment-laden waters thereby causing part of the material to settle out on the floodplains. Using approximate widths of floodplains, the distance between stations, and estimates of annual storage, rough estimates of the depth of the material deposited on the floodplain were determined (table 16). These estimates assume uniform deposition across the floodplain and a mean specific weight of 52 lbs/ft3 (pounds per cubic foot) for dry sediment (Dendy and Champion, 1978). A more accurate estimate of the rate of floodplain deposition would have to account for loss of material by decomposition and chemical weathering, erosion of material from floodplains during non-floodproducing rains, and quantification of materials eroded and deposited during historical and extreme floods.

Sediment transport and depositional characteristics in the State's sounds and estuaries are relatively unknown. The preceding findings, however, indicate that most of the fluvial sediment derived from sources in the Piedmont and upper Coastal Plain is deposited on floodplains and along stream courses and probably never reaches the sounds and estuaries.

Table 16.--Estimated sediment deposition in the floodplain and channel of the lower Neuse and Cape Fear Rivers
[mi, mile; ft, foot; ft², square foot]

Site and number 1/	Distance between sites (mi)	Average channel width (ft)	Surface area of channel (ft ²)	Average flood plain width (ft)	Surface area of flood plain (ft ²)	Annual sediment storage (tons)	Annual deposition in channel (ft)	Annual deposition on flood plain (ft)
				Neuse Riv	er			
At Smithfield (31) At Goldsboro	43	175	4.0x10 ⁷	800	14.2x10 ⁷	70,000	0.067	0.019
(35) At Kinston (37)	45	225	5.3x10 ⁷	1,000	18.5×10 ⁷	66,000	.048	.014
				Cape Fear R	iver			
At Lillington (65) Near Tar Heel	} 55	300	8.7x10 ⁷	1,000	20.3x10 ⁷	90,000	.040	0.017
(67) Near Kelly (69)	56	325	9.6x10 ⁷	1,000	20.0x10 ⁷	40,000	.016	.008

 $[\]frac{1}{F}$ Figure 25 and table 1.

Gross Erosion and Sediment-Delivery Ratio

For many years, the U.S. Soil Conservation Service and others have used various techniques for estimating soil losses. Most of these techniques, such as the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965), are intended to predict quantities of soil moved by sheet and rill erosion on a particular area having known physical properties; however, users of erosion data quite often misunderstand the true definition and applicability of the erosion data. According to Wischmeier (1976, p. 371), the USLE does not account for the eroded material deposited in depressions within a field or at the toe of slopes, along field boundaries, and in terrace channels. Consequently, the USLE predicts the total amount of material, called gross erosion, displaced in an area, regardless of whether the individual soil particles move only a few inches or feet or are transported to a stream channel by overland-flow processes. Predicted values, while representing the quantity of material eroded in a specific area, are considerably greater than the amount of material actually transported from the area.

The ratio of annual sediment discharge to gross erosion is the sediment-delivery ratio. For example, a sediment-delivery ratio of 0.1 means that one-tenth (or 10 percent) of the material eroded in an area is actually transported as sediment from the area. Some researchers indicate that if approximate sediment delivery ratios are available for an area, estimates of sediment discharge or gross erosion may be determined if either quantity is known; however, they generally agree that considerable judgement and knowledge of land use and other basin-wide variables are required if reliable estimates are to be made using this method.

As a special contribution to the report, quantities of gross erosion for 30 network basins ranging in size from 4.92 mi² (site 99) to 5,255 mi² (site 69) were computed by the Soil Conservation Service (Emmett R. Waller, Jr., Soil Conservation Service, written commun., 1984) (table 17). These values are used with corresponding values of sediment discharge to compute sediment-delivery ratios presented in table 17. According to data presented in table 17, sediment-delivery ratios apparently vary statewide. On the average, minimum delivery ratios occur in the Coastal Plain. As indicated by ratios for sites 18, 43, and 69 (values of 0.02, 0.03 and 0.04,

Table 17.--Gross erosion and sediment-delivery ratio values for selected basins

[mi², square mile; tons/yr, tons per year. Letter(s) following predominant land use indicate(s): R, rural; RD, rural impacted by nonagricultural development; FD, forested impacted by minor development; U, urban; F, forested]

100			Drainage	Sediment	Gross	Sediment	Predominar
Site	Name	Physiographic	area	discharge	erosion ² /	delivery	land
umber 1/		province	(mi ²)	(tons/yr)	(tons/yr)	ratio3/	use
8	Double Creek near Roseville	Piedmont	7.47	3,100	22,400	0.14	R
13	Tar River at Louisburg	Piedmont	427	30,000	275,000	.11	R
18	Tar River at Tarboro	Coastal Plain	2,183	93,000	4,520,000	.02	R
26	Little River near Orange Factory	Piedmont	80.4	11,000	144,000	.08	R
27	Flat River at Bahama	Piedmont	149	28,000	262,000	.11	R
29	Neuse River near Falls	Piedmont	772	140,000	990,000	.14	RD
43	Little Contentnea Creek near Farmville	Coastal Plain	93.3	3,300	130,000	.03	R
49	Reedy Fork near Oak Ridge	Piedmont	20.6	5,200	66,300	.08	R
58	Haw River near Haywood	Piedmont	1,689	280,000	1,060,000	.26	RD
61	Deep River at Ramseur	Piedmont	349	62,000	603,000	.10	R
62	Tick Creek near Mt. Vernon Springs	Piedmont	15.5	4,200	47,200	.09	R
63	Deep River at Moncure	Piedmont	1,434	190,000	2,080,000	.09	R
64	Buckhorn Creek near Corinth	Piedmont	76.3	5,800	41,000	.14	FD
65	Cape Fear River near Lillington	Piedmont	3,464	420,000	5,710,000	.07	R
66	Flat Creek near Inverness	Coastal Plain	7.63	460	1,600	.29	FD
69	Cape Fear River near Kelly	Coastal Plain	5,255	290,000	7,040,000	.04	R
77	Yadkin River at Patterson	Piedmont	28.8	11,000	30,000	.37	R
'81	Yadkin River at Elkin	Piedmont	869	300,000	1,440,000	.21	R
95	Leonards Creek near Bethesda	Piedmont	5.16	2,000	13,500	.15	R
99	Lanes Creek near Trinity	Piedmont	4.92	1,100	22,400	.05	R
101	Rocky River near Norwood	Piedmont	1,372	270,000	4,030,000	.07	R
108	Lower Creek at Lenoir	Piedmont	28.1	18,000	28,400	.63	U
110	Long Creek near Paw Creek	Piedmont	16.4	7,200	13,900	.52	U
113	Long Creek near Bessemer City	Piedmont	31.8	11,000	76,600	.14	R
123	Broad River near Boiling Springs	Piedmont	875	340,000	1,070,000	.32	RD
124	First Broad River near Casar	Piedmont	60.5	15,000	167,000	.09	R
129	French Broad River at Blantyre	Blue Ridge	296	78,000	254,000	.31	R
135	French Broad River at Marshall	Blue Ridge	1,332	670,000	1,860,000	.36	RD
145	Little Tennessee River at Needmore	Blue Ridge	436	110,000	1,120,000	.10	RD
146	Nantahala River near Rainbow Springs	Blue Ridge	51.9	3,000	46,300	.06	F

 $[\]frac{1}{F}$ Figure 1 and table 1.

 $[\]frac{2}{N}$ Waller, E.R., Jr., U.S. Department of Agriculture, Soil Conservation Service, Raleigh, N.C., written commun., 1984.

 $[\]frac{3}{R}$ Ratio of sediment discharge to gross erosion.

respectively) (table 17), only a small fraction of the soils eroded in the Coastal Plain is actually transported out as suspended sediment. Conversely, because of steeper slopes, greater surface runoff, and more erodible soils, larger delivery ratios, generally exceeding 0.10, occur in Piedmont and Blue Ridge watersheds.

For comparative purposes, a statewide mean value of suspended-sediment yield was computed using data presented herein for each major land-use category. Because of a well balanced distribution of sites across the State, mean values for rural-agricultural and pristine forested basins should be fairly representative of a statewide average. The statewide mean urban value was computed from yield values for the one Blue Ridge site (no. 133), the two Coastal Plain sites (nos. 39, 75), and the two Piedmont sites having the second highest and lowest yield values (nos. 117, 118). With 14 of the 17 urban sites located in the Piedmont province, the statewide mean value would have been unfavorably biased had all sites been used. Average values of gross erosion were recently computed for the State (U.S. Department of Agriculture, 1977). The U.S. Department of Agriculture (1977) did not provide a gross erosion value for rural-agricultural basins; instead, erosion values were provided for specific land uses, such as forests, row crops, and pasturelands. Using average values of 62 percent forest, 34 percent row crop and pasturelands, and 4 percent urban for the 63 rural-agricultural study basins used in this analysis, a weighted statewide mean value for gross erosion of about 1,700 tons/mi² is computed (fig. 26). Comparisons of statewide mean values are shown in figure 26, which indicates that for pristine forested basins sediment discharge was about 40 percent of gross erosion; however, this value is only about 20 percent for urban areas and 10 percent for rural-agricultural areas with less than 400 mi² drainage basins. It is logical that a relatively greater percentage of material eroded in a forested basin would become streamborne since most erosion in forested basins occurs along stream channels. While the reader should consider these values as estimates, the main conclusion here is that only a small percentage of eroded material is actually delivered to the State's larger streams. The major bulk of the material is stored on flood plains, in stream channels, on upland slopes, and countless other temporary resting places.

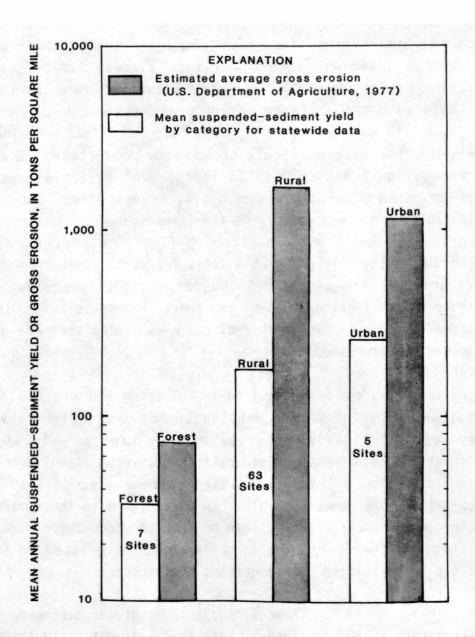


Figure 26.--Comparison of mean annual suspended-sediment yield, by land-use category, for drainage areas of less than 400 square miles, with values of gross erosion computed on statewide basis.

ESTIMATING SEDIMENT TRANSPORT FROM BASINS

Since about 1950, many techniques have been developed for estimating sediment yield and discharge from various basins across the Nation. Most of these techniques, however, were developed for specific locations and have little transfer value to streams in North Carolina. Hindall (1976) developed predictive equations for streams in Wisconsin, but vast

differences in physiography, land use, and soils negate their use for estimating sediment transport in North Carolina. Flaxman (1972) developed an equation for estimating yields from small watersheds in western states, but it is applicable primarily to desert and grass and brush-covered rangelands. As with numerous other studies, these equations contained five or more variables that were difficult to measure accurately. One study derived a regression equation with 34 independent variables including functions of watershed topography, roads, soil, forest fires, landslides, and geologic faults (Anderson, 1976). A few investigators, however, such as Kircher and Von Guerard (1982) and Lambing (1984), reported reliable predictive results using only one or two variables; but, again, the work was conducted in arid western states. An objective of this project was to develop methods for estimating sediment transport values applicable to North Carolina streams using a minimum number of basin variables that are already available or easily determined.

A progression of steps were required in selecting and organizing data and information pertinent to the development of predictive equations. Preliminary analysis already discussed in this report indicate that predictive equations should give consideration to several dimensionless-type basin variables including type and extent of land use, soil type, and geography. Although no numerical value can be assigned to these variables, various techniques, such as grouping, can be used to account for nonnumeric characteristics. Other variables considered to be related to sediment transport could be quantified by measurement and include:

drainage area (DA);
channel slope (SLOPE);
soil infiltration ratio (SIR);
average water discharge (AVGQ);
percentage in forests (FOR);
percentage in urban
 developments (URB);
average percentage surface
 slope in basin (PSS);

annual suspended-sediment discharge (SEDQ);
annual suspended-sediment yield (YIELD);
maximum observed stream velocity (VMAX);
U.S. Soil Conservation Service rainfall
factor (SCS-R);
percentage of basin's land area in row
crops (ROW);
water discharge for the 2-year (Q2YR),
10-year (Q10YR), and
25-year (Q25YR) floods.

These data and selected basin information were assembled into a computerized data base along with other supplementary data, such as estimated mean concentrations and loads of suspended sediment for various percentages of time, periods of record, average precipitation, and codes for sources of various information. As previously discussed, all flow- and sediment-related data are drawn from the 10-year reference period, 1970-79.

The Statistical Analysis System, SAS, was used to evaluate the data and determine the significance of different variables in predictive processes (SAS Institute, Inc., 1985). As demonstrated previously in this report, visual examination of sediment yields and other data on map plots of the State indicates close similarity of sediment characteristics within certain areas when consideration is given to soil class, basin size, land use, and several additional characteristics. Possible combinations of data and basin characteristics were evaluated for all sites using multiple regression analysis computer program PROC STEPWISE/MAXR (SAS Institute, Inc., 1985). This determined the most significant variables from all independent variables examined. One-variable and multiple-variable models producing the greatest coefficient of determination (R²) values were selected. Arithmetic and log-transformed operations also were performed. The dependent variables were sediment yield and sediment discharge. Results of this analysis indicated that the most reliable sediment relation could be developed by using the following guidelines:

- Drainage area should not exceed 400 mi²;
- Individual analyses should be grouped by predominate land-use category and soil class;
- Basins containing major reservoirs and large-scale channelization should be omitted from analysis;
- 4. The independent variables that provide the greatest R² and smallest standard error of estimate were drainage area, average water discharge, 2-year flood, and the 10-year flood (in decreasing order of significance);
- 5. Reliable predictive equations were possible for determining values of sediment discharge for specific land-use categories; and
- 6. Data in logrithmic format provided best statistical results.

Another SAS program, PROC CORR (SAS Institute, Inc., 1985), was used to compute correlation coefficients and other statistics between independent variables. Correlation is a measure of goodness of fit of a linear relation between two variables, where a value of ± 1 indicates a perfect fit. A value of zero indicates that there is no linear relation (variables are independent). Correlation coefficients computed by soil class (eight classes combined into five groups) for rural, agricultural affected basins less than 400 mi² in size are shown in table 18. Coefficients greater than about 0.8 indicate a high probability that a relation between variables

Table 18.--Relation of sediment discharge to selected stream basin parameters by soil groups for rural basins

[SEDQ, annual suspended-sediment discharge; DA, drainage area; AVGQ, average water discharge; VMAX, maximum observed stream velocity; Q2YR, water discharge for the 2-year floods; Q10YR, water discharge for the 10-year floods; SCS-R, U.S. Soil Conservation Service rainfall factor; ROW, percentage of basin's land area in row crops; URB, percentage in urban developments; FOR, percentage in forests; PSS, average percentage surface slope in basin; SIR, U.S. Soil Conservation Service soil infiltration ratio; N, number of sampling stations used in analysis]

	C	orrelation c	oefficients	
	S	oil class (s	ee figure 4)	
	1,3,4	10,13	11	14
SEDQ	1.0000	1.0000	1.0000	1.0000
DA	.8811	.9750	.9782	.7456
AVGQ	.8616	.9731	.9759	.6390
VMAX	.0869	.5686	.3525	6151
Q2YR	.9142	.9336	.9585	.4555
Q10YR	.8607	.9293	.9572	.4135
SCS-R	5659	1239	8084	0169
ROW	.2298	.2226	.8017	.5241
URB	.1700	.3246	.0722	0710
FOR	.3141	.3684	.7695	.3079
PSS	.3533	.3859	0080	5679
SIR	.1190	.0077	3624	.3641
N	16	20	15	12

exists. As shown in table 18, drainage area (DA) is the most significant single variable, and average discharge (AVGQ) is second most significant. While correlation coefficients are good indicators of the significance of variables, other statistical tests along with an understanding of sediment hydrology are required to fully interpret results.

Although various methods exist for substantiating multiple group similarities and boundaries, the SAS program CANDISC (SAS Institute, Inc., 1985) provides a visual display of discriminant analysis. Given a classification variable (soil class) and several quantitative variables (yield, slope, and suspended-sediment concentration at 0.1-percent flow duration) for each study basin, CANDISC produces a plot of these data that shows optimal separation of similar groups. Figure 27 is a plot derived from using the preceding variables for sites having drainage areas less than 400 mi² that are affected by rural-agricultural land use. Each letter on the plot represents the plotting position for data from an individual data site. Its position was determined by statistical evaluation of the variables with regards to the various soil classes. As shown in figure 27, the close grouping of sites that lie in the same soil class indicates a similarity of sediment characteristics within each class; this interpretation of basin and sediment data by soil class is logical.

Final analysis and development of equations was performed with program PROC GLM (SAS Institute, Inc., 1985), which uses the method of least squares to fit general linear models. PROC GLM not only produces an equation but also gives statistical information for determining the predicted reliability of the equation. On the basis of data availability, the range in parametric values, and evaluation of statistical results, reliable predictive equations were developed for estimating sediment discharge for rural-agricultural affected basins in soil classes of the State and in urban basins of soil classes 10 and 13. Equations and corresponding statistics are shown in table 19. Equations developed for rural basins affected by agriculture using the single variable, drainage area, show little or no statistical improvement when additional independent variables are included in the analysis (table 19). In keeping with the objectives of this study, estimated values of sediment discharge were computed using the single variable equations. Estimates for soil classes 10, 11, and 13 are quite reliable (standard error of estimate ranging from 25 to 46 percent); however, estimates for remaining soil groups are somewhat less reliable.

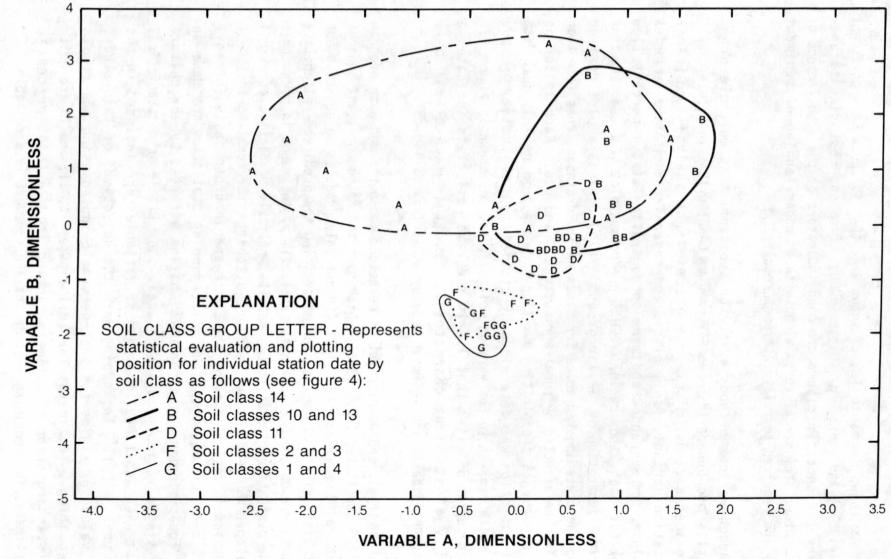


Figure 27.--Multiple-group clustering of rural-agricultural affected sediment sites obtained from comparing selected basin and sediment characteristics by representative soil class.

Table 19.--Relations for estimating suspended-sediment discharge from ruralagricultural and urban basins by soil class (unchannelized
basins ranging in size from 1 to 400 square miles)

[SEDQ, annual suspended-sediment discharge; DA, drainage area; AVGQ, average
water discharge; ROW, percentage of basin's land area in row crops]

			Rural basins		
Condition	Soil class (fig. 4)		Regression equation	R-square	Standard error of estimate (percent)
Best	1,3,4		$SEDQ = 52.9 DA^{0.801}$	0.776	74
single	10,13		$SEDO = 204 DA^{1.00}$.951	35
variable	11		SEDQ = 279 DA .893	.957	25
	14		SEDQ = 258 DA .952	.560	66
Best	1,3,4	SEDQ :	88.4 DA ^{2.84} AVGQ ^{-2.20} ROW .252		72
three	10,13	SEDQ =		5 .952	35
variables	11	SEDQ =	31.0 DA ^{2.23} AVGQ 1.18 ROW .459	.966	25
	14	SEDQ =	1,980 DA ^{2.43} AVGQ ^{-1.37} ROW ⁵⁴³	.661	65
			Urban basins		
Best single variable	10,13		SEDQ = 671 DA .909	.885	46

The relation of mean annual suspended-sediment discharge to drainage area for specific soil classes shown in figure 28 was developed from the best single variable equations (table 19). Differences in transport characteristics, such as the approximate two-log cycle spread between curves for Coastal Plain group (soil classes 1, 3, and 4) and Piedmont urban group (soil classes 10 and 13), are highlighted in figure 28. The fact that most of the curves are near a 1:1 slope indicates that sediment yields for study basins within specific soil classes are relatively uniform. For reasons discussed previously, the relations discussed in this section are not applicable to small acreage basins of less than 1 mi² in size.

Efforts to develop transport equations for other categories of network stations were unsuccessful, generally because of insufficient numbers of

sites per category. The uniqueness of some basins, such as those channelized or regulated (reservoir), also precluded their use in developing areal or regional equations.

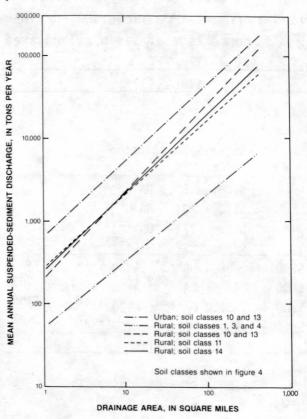


Figure 28.--Relation of mean annual suspended-sediment discharge to drainage area by soil class for urban and rural-agricultural affected basins.

ADDITIONAL STUDIES

Although the findings in this report provide new information and answer many questions, further study is needed to resolve additional issues, such as:

- No sampling stations were located in the State's sounds and estuaries; therefore, fluvial sediment transport into and through these coastal systems is unquantified and relatively unknown.
- The millions of tons of sediment transported annually by the State's streams serve as a transport mechanism for various chemical

constituents, many of which are toxic. Although legislative or other actions may help improve quality of flow in a stream, toxic laden sediments may remain in the stream for decades. More information is needed regarding the quantity, quality, resuspension potential, and ultimate fate of these constituents.

- 3. During the erosion processes, only a small percentage of eroded materials reaches the stream system. This conclusion is based primarily on estimates of gross erosion generated from the Universal Soil Loss Equation and from site-specific projects conducted in other states. How representative are these erosion values to actual conditions in North Carolina?
- 4. As shown in this study, hundreds of thousands of tons of sediment are deposited annually along the lower reaches of major coastal streams. Many questions remain unanswered regarding where and how these sediments are deposited.
- 5. More data are needed from additional forested basins; seven sites were insufficient for making statistically sound generalizations regarding background characteristics.
- 6. Quantities of bed-load discharge in the State's streams are unknown. Instream measurements of bed-load discharge, using the Helly-Smith or other type samplers, need to be made to provide estimates of total sediment discharge.
- 7. The effect of the State's 80,000 small farm ponds and impoundments on sediment yields in rural areas needs to be studied.
- 8. The lack of long-term sediment data prevented evaluation of historical trends. Presently, it cannot be shown with any certainty that sediment conditions in our streams have improved or deteriorated with respect to time. Data obtained in conjunction with this study can serve as a base for future trend analyses.
- 9. More data are needed from small drainage-area sites (0.1-1.0 mi²) affected primarily by a single land-use category to better define characteristics of small headwater streams, and to improve reliability of predictive equations.

SUMMARY

Data collected at 152 sampling sites during 1970-79 were used to characterize fluvial sediment in North Carolina. The study indicated that suspended-sediment characteristics across the State during 1970-79 were extremely variable. Variations were largely influenced by differences in the soils, topography, and land-use patterns. Data for the 152 sites were grouped according to predominate land use in the basin, including: 7 sites as forested (pristine), 83 sites as rural-agricultural, and 17 sites as urban. In addition, the network included 7 forested basins affected by runoff from interbasin roads and minor development, and 38 predominately rural basins heavily affected by nonagricultural activities. Suspended-sediment discharge, yield, mean concentrations by time class, and other characteristics were determined from more than 13,000 samples of suspended sediment collected during the 10-year study.

Comparisons of stream-discharge data for the 1970-79 study period with long-term data indicate that mean flows generally were 10 to 20 percent greater than the long-term average in the Blue Ridge and Piedmont provinces and near long-term average in the Coastal Plain. The absence of widespread record floods during the 10-year study, however, probably makes the sediment values in this report more representative of long-term averages than indicated by flow comparisons.

Data from the network's seven forested basins were used to characterize pristine or background conditions. Comparisons of these data with data from developed basins indicate the degree of changes over background levels caused by human activities. Fluvial sediment in forested basins is extremely sensitive to even minor development in relatively close proximity to water courses. Annual suspended-sediment yields for five forested sites in the Piedmont and Blue Ridge provinces were comparable, ranging from 31 to 58 tons/mi² and having a mean value of 44 tons/mi²; however, yields for two Coastal Plain sites were considerably lower with a mean value of 5 tons/mi². Forested basins were relatively small in drainage area, ranging from 0.64 to 51.9 mi² and were generally representative of a single province and single major soil class.

Comparisons of yields between predominant land-use categories, forested (pristine), rural-agriculture, and urban, were made for sites with less than 400 mi² in drainage area. Mean suspended-sediment yields for ruralagriculture and urban Piedmont basins are about 6 and 14 times. respectively, greater than yields from forested basins. In contrast, studies conducted in the Piedmont of Maryland and Virginia in small basins that range from about 10 to 50 acres reported yields from urban areas as much as 200 times greater than yields from comparable forested or ruralagricultural areas; however, these extremely high values were derived from areas undergoing intense construction activities related to the housing industry. Similar detailed studies of small acreage sites are lacking in North Carolina, but it is logical that equally large values of transport probably occur in this State's developing area of the Piedmont province. Although large yields are produced from small development sites, most of the eroded material is apparently redeposited near the source and are not reflected in yields computed for sampling sites in this study.

During high flow (0.1-percent flow duration) in Piedmont basins, the mean suspended-sediment concentration for large urban streams is about 1,600 mg/L as compared to 870 mg/L for rural-agriculture sites and 100 mg/L for forested sites. Concentrations during low-flow periods are minimal at Piedmont sites, with mean concentrations near 14 mg/L at urban sites, 11 mg/L at rural sites, and 5 mg/L at forested sites.

Results of this study indicated a relation between major soil types and sediment transport. Maximum sediment yields of rural-agriculture basins occur in predominately clay soil areas of the western Piedmont, with annual values of as much as 470 tons/mi², whereas, minimum yields as small as 7 tons/mi² occur in the sandy soil of the Coastal Plain province. Particlesize data collected during floods indicate that silts and sands comprise an average of 85 percent of suspended materials in Blue Ridge streams and about 45 percent of materials in the Coastal Plain. Clay-sized material comprise more than 40 percent of suspended materials in Piedmont streams during high flows but only about 15 percent in streams of the Blue Ridge province.

Large main streams, such as the Neuse and Cape Fear Rivers, which originate in the Piedmont and flow across the Coastal Plain, maintain greater concentrations of sediment than tributary streams that originate in

the Coastal Plain. However, vast quantities of sediment are deposited in the Coastal Plain along their routes to the sea. For example, on the average, more than 130,000 tons/yr of sediment is deposited along an 85-mile reach of the Neuse River between Smithfield and Kinston, and about 90,000 tons/yr is deposited by the Cape Fear River between Lillington and Tar Heel. This phenomenon probably is caused by a reduction in gradients and stream velocities as the streams flow from the Piedmont across the Coastal Plain. On other major rivers, such as the Pee Dee and Roanoke, dramatic reductions in transport are caused by the trapping effects of reservoirs. The combined effects of Kerr, Lake Gaston, and Ronaoke Rapids Lakes on the Roanoke River are estimated to trap more than 90 percent of the river's suspended sediment and all of the bed-material discharge. These estimates indicate that the 80,000 farm ponds, reservoirs, and lakes in North Carolina probably trap millions of tons of sediment annually.

Only a small percentage of eroded material becomes suspended sediment in larger streams. Comparison of statewide yields by the three major landuse categories indicates that about 40 percent of gross erosion from forested basins, 20 percent for urban basins, and 10 percent for rural-agriculture basins were actually transported past the sampling station as suspended sediment. The overwhelming bulk of eroded material is stored on flood plains, in stream channels, on upland slopes, and countless other temporary resting places. Compared to mean annual values of suspended-sediment discharge, less than 5 percent of materials eroded in the rural-agriculture basins of the Coastal Plain, and about 16 percent in the rural-agriculture basins of the Piedmont and Blue Ridge provinces become streamborne.

Regional relations were developed for estimating sediment discharge in rural-agriculture and urban basins with drainage areas that range from 1 to 400 mi². The best single variable equation used log-transformed values of drainage area. Standard errors of estimate for these equations, limited to specific major soil units, ranged from 25 to 74 percent. The addition of other seemingly important variables, such as percentage of land use and water discharge values, to these equations showed little or no statistical improvement.

REFERENCES

- Antilla, P.W., and Tobin, R.L., 1978, Fluvial sediment in Ohio: U.S. Geological Survey Water-Supply Paper 2045, 58 p.
- Anderson, D.G., 1970, Effects of urban development on floods in northern Virginia: U.S. Geological Survey Water-Supply Paper 2001-C, 22 p.
- Anderson, H.W., 1976, Reservoir sedimentation associated with catchment attributes, landslide potential, geologic faults, and soil characteristics in Proceedings of the Third Federal Interagency Sediment Conference, 1976: Sedimentation Committee, Water Resources Council, p. 1.35-1.46.
- Blake, J.B., 1984, Agricultural nonpoint source control case studies in North Carolina--part IV, Wake County demonstration farm: Raleigh, Biological and Agricultural Engineering Department, North Carolina State University, 119 p.
- Brune, G.M., 1953, Trap efficiency of reservoirs *in* Transactions: American Geophysical Union, June 1953, v. 34, no. 3, p. 407-418.
- Clay, J.W., Orr, D.M., and Stuart, A.W., 1975, North Carolina atlas, portrait of a changing southern state: Chapel Hill, University of North Carolina Press, 331 p.
- Colby, B.R., 1956, Relationship of sediment discharge to streamflow: U.S. Geological Survey Open-File Report, 170 p.
- ____1963, Fluvial sediments--a summary of source, transportation, deposition, and measurement of sediment discharge: U.S. Geological Survey Bulletin 1181-A, 47 p.
- Connaughton, M.P., and Hough, J.L., 1938, Advance report on the sedimentation survey of Burlington Reservoir, Burlington, North Carolina: U.S. Department of Agriculture Division of Research Report SCS-SS-38, December 1938, 25 p.

- Daniels, R.B., Kleiss, H.J., Buol, S.W., Byrd, H.J., and Phillips, J.A., 1984, Soil systems in North Carolina: North Carolina Agricultural Research Service, N.C. State University, Bulletin 467, 77 p.
- Dendy, F.E., and Champion, W.A., 1978, Sediment deposition in U.S. reservoirs, Summary of data reported through 1975: U.S. Department of Agriculture, miscellaneous publication no. 1362, 84 p.
- Dissmeyer, G.E., and Foster, G.R., 1980, A guide for predicting sheet and drill erosion on forest land: U.S. Department of Agriculture Technical Publication SA-TP11, p. 7.
- Dole, R.B., 1909, The quality of surface waters in the United States: U.S. Geological Survey Water-Supply Paper 236, 123 p.
- Dole, R.B., and Stabler, Herman, 1909, Denundation, in papers on the conservation of water resources: U.S. Geological Survey Water-Supply Paper 234, p. 78-93.
- Dunne, T., 1978, Field studies of hillslope flow processes, in Kirby, M.J., ed., Hillslope hydrology: New York, John Wiley and Sons, p. 227-293.
- Eakin, H.M., 1936, Silting of reservoirs: U.S. Department of Agriculture Technical Bulletin 524, p. 28-45.
- Eargle, D.H., 1937, Advance report on the sedimentation survey of High Rock Reservoir, Salisbury, North Carolina: U.S. Department of Agriculture Technical Bulletin 524, p. 28-45.
- Eddins, W.H., and Crawford, J.K., 1984, Reconnaissance of water-quality characteristics of streams in the city of Charlotte and Mecklenburg County, North Carolina: U.S. Geological Survey Water Resources Investigations Report 84-4308, 105 p.
- Elder, B.K., Davis, J.M., and Robinson, P.J., 1983, Variations in monthly precipitation over North Carolina: North Carolina Water Resources Research Institute Report 185, 50 p.

- Flaxman, E.M., 1972, Predicting sediment yields in western United States *in* Proceedings of the American Society of Civil Engineers: Journal Hydraulics Division, v. 98, no. HY 12, p. 2073-2085.
- Forrest, W.E., and Speer, P.R., 1961, Floods in North Carolina, magnitude and frequency: U.S. Geological Survey Open-File Report, 195 p.
- Goddard, G.C., Jr., 1963, Water-supply characteristics of North Carolina streams: U.S. Geological Survey Water-Supply Paper 1761, 223 p.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, chap. C1, book 5, p. 58.
- _____1970a, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigations, chap. Cl, book 3, 55 p.
- ____1970b, Sediment problems in urban areas: U.S. Geological Survey Circular 601-E, 8 p.
- Guy, H.P., and Norman, V.W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, chap. C2, book 3, 59 p.
- Hardy, A.V., and Carney, C.B., 1962, North Carolina hurricanes: U.S. Department of Commerce, Weather Bureau, November 1962, 26 p.
- Harned, D.A., and Meyer, Dann, 1983, Water quality of North Carolina streams: U.S. Geological Survey 2-185-E, 71 p.
- Harris, D.D., 1977, Hydrologic changes after logging in two small Oregon coastal watersheds: U.S. Geological Survey Water-Supply Paper 2037, 31 p.
- Hindall, S.M., 1976, Measurement and prediction of sediment yields in Wisconsin streams: U.S. Geological Survey Water-Resources Investigations 54-75, 27 p.

- Johnson, P.L., and Swank, W.T., 1973, Studies of cation budgets in southern Appalachians on four experimental watersheds with contrasting vegetation: Ecology, v. 54, no. 1, p. 70-80.
- Jones, B.L., Hawley, N.L., and Crippen, J.R., 1972, Sediment transport in the western tributaries of the Sacramento River, California: U.S. Geological Survey Water-Supply Paper 1798-J, 27 p.
- Kennedy, V.C., 1964, Sediment transported by Georgia streams: U.S. Geological Survey Water-Supply Paper 1668, 101 p.
- Kircher, J.E., and Von Guerard, P., 1982, Evaluation of sediment yield and sediment data-collection network in the Piceance basin, northwestern Colorado: U.S. Geological Survey Water-Resources Investigations 82-4046, 25 p.
- Lambing, J.H., 1984, Sediment yields in eastern Montana: U.S. Geological Survey Water-Resources Investigations Report 84-4200, 45 p.
- Lee, W.D., 1955, The soils of North Carolina: North Carolina Agriculture Experiment Station Technical Bulletin 115, 187 p.
- Maner, S.B., 1962, Factors influencing sediment delivery ratios in the Blackland Prairie resource area: Fort Worth, Tex., U.S. Department of Agriculture, Soil Conservation Service special publication, 10 p.
- Meade, R.H., 1982, Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States: Journal of Geology, v. 90, no. 3, p. 235-252.
- Meade, R.H., and Trimble, S.W., 1974, Changes in sediment loads in rivers of the Atlantic drainage of the United States since 1900: International Association of Hydrologic Sciences publication no. 113, p. 99-104.
- Miller, C.R., 1951, Analysis of flow-duration, sediment-rating curve method of computing sediment yield: U.S. Bureau of Reclamation, Hydrology Branch, 55 p.

- Mosley, M.P., 1979, Streamflow generation in a forested watershed, New Zealand: Water Resources Branch, v. 15, no. 4, p. 795-806.
- North Carolina Board of Water and Air Resources, 1969, Register of dams and dam sites in North Carolina: Department of Water and Air Resources, August 1969, 123 p.
- North Carolina Department of Natural Resources and Community Development, 1979a, Water quality management plan, executive summary: Division of Environmental Management Special Report, 27 p.
- _____1979b, Water quality and forestry, a management plan: Division of Environmental Management Special Report, 52 p.
- North Carolina Office of State Budget and Management, 1982, North Carolina municipal population 1980: Raleigh, Office of State Budget and Management annual report, January 1982, p. 3.
- North Carolina Soil and Water Conservation Section, 1979, Water quality and agriculture, a management plan: Raleigh, Division of Land Resources Special Report, 106 p.
- Potter, W.D., and Love, S.K., 1942, Hydrologic studies at the High Point demonstration project SCS-NC-1, High Point, North Carolina: U.S. Department of Agriculture Hydrologic Division Report SCS-TP-48, March 1942, 229 p.
- Porterfield, George, 1972, Computation of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, chap. C3, book 3, 66 p.
- Putnam, A.L., 1972, Effect of urban development of floods in the Piedmont province of North Carolina: U.S. Geological Survey Open-File Report, 87 p.
- Roehl, J.N., 1962, Sediment source areas, delivery ratios, and influencing morphological factors; IASH Commission of Land Erosion, no. 59, p. 202-213.

- SAS Institute, Inc., 1985, SAS users's guide, statistics, version 5 edition: Cary, North Carolina, 956 p.
- Searcy, J.K., 1959, Flow-duration curves: U.S. Geological Survey Water-Supply Paper 1542-A, 33 p.
- Sharitz, R.R., and Gibbons, J.W., 1982, The ecology of southeastern shrub bogs (pocosins) and Carolina bays: U.S. Department of the Interior, Fish and Wildlife Service, Report No. FWS/OBS-82/04, 93 p.
- Shulits, S., and Hill, R.D., 1968, Bedload formulas: Hydraulics Laboratory Bulletin, Pennsylvania State University, 153 p.
- Simmons, C.E., 1976, Sediment characteristics of streams in the eastern Piedmont and western Coastal Plain regions of North Carolina: U.S. Geological Survey Water-Supply Paper 1798-0, 32 p.
- Simmons, C.E., and Heath, R.C., 1979, Water-quality characteristics of streams in forested and rural areas of North Carolina: U.S. Geological Survey Water-Resources Investigations 79-108, 49 p.
- Simmons, C.E., and Watkins, S.A., 1982, The effects of channel excavation on water-quality characteristics of the Black River and on ground-water levels near Dunn, North Carolina: U.S. Geological Survey Water-Resources Investigations 92-4083, 28 p.
- Speer, P.R., and Gamble, C.R., 1964a, Magnitude and frequency of floods in the United States, Part 2-A, south Atlantic slope basins, James River to Savannah River: U.S. Geological Survey Water-Supply Paper 1676, 340 p.
- _____1964b, Magnitude and frequency of floods in the United States, Part 3-B, Cumberland and Tennessee River basins: U.S. Geological Survey Open-File Report, 195 p.
- Stuckey, J.L., 1965, North Carolina: Its geology and mineral resources:

 North Carolina Department of Conservation and Development, 550 p.

- Tennessee Valley Authority, 1963, Parker Branch Watershed, Project Report, 1953-1962: Knoxville, Tennessee Valley Authority, Project Authorization No. 700, 101 p.
- Trimble, S.W., 1969, Culturally accelerated sedimentation on the middle Georgia Piedmont: Athens, Master of Arts Thesis, University of Georgia, 110 p.
- _____1974, Man-induced soil erosion on the southern Piedmont 1700-1970:
 Aukeny, Iowa, Soil Conservation Society of America, 180 p.
- U.S. Department of Agriculture, 1971, North Carolina conservation needs inventory: Soil Conservation Service, 194 p.
- _____1976, The universal soil loss equation with factor value for North Carolina: Soil Conservation Service, Technical Guide Section II-D, October 1976, 97 p.
- _____1977, Erosion and sediment inventory for North Carolina: Soil Conservation Service, Special Report, August 1977, 11 p.
- U.S. Army Corps of Engineers, 1980, Report of sedimentation resurvey, John H. Kerr Reservoir, Roanoke River Basin: Wilmington, North Carolina, 37 p.
- U.S. Geological Survey, 1970-79, Water resources data for North Carolina: U.S. Geological Survey Water-Data Report, issued annually.
- Vanoni, V.A., 1977, Sedimentation engineering: New York, American Society of Civil Engineers, Manuals and Reports on Engineering Practices, no. 54, 745 p.
- Vice, R.B., Guy, H.P., and Ferguson, G.E., 1969, Sediment movement in an area of suburban highway construction, Scott Run basin, Fairfax County, Virginia, 1961-64: U.S. Geological Survey Water-Supply Paper 1591-E, 41 p.

- Watkins, S.A., and Simmons, C.E., 1984, Hydrologic conditions in the Chicod Creek basin, North Carolina, before and during channel modifications, 1975-81: U.S. Geological Survey Water-Resources Investigations Report 84-4025, 36 p.
- Williams, G.P., and Guy, H.P., 1973, Erosional and depositional aspects of Hurricane Camille in Virginia, 1969: U.S. Geological Survey Professional Paper 804, 80 p.
- Wischmeier, W.H., 1976, Use and misuse of the universal soil loss equation: Journal of Soil and Water Conservation, v. 31, no. 1, p. 5-9.
- Wischmeier, W.H., and Smith, D.D., 1965, Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: U.S. Department of Agriculture, Soil Conservation Service Handbook 282.
- Wischmeier, W.H., Smith, D.D., and Uhland, R.E., 1958, Evaluation of factors in the soil loss equation: American Association of Agricultural Engineers, v. 39, no. 8, p. 458-462.
- Wolman, M.G., and Schick, A.P., 1967, Effects of construction on fluvial sediment urban and suburban areas of Maryland: Water Resources Research, v. 3, no. 2, p. 451-464.
- Yonts, W.L., 1971, Low-flow measurements of North Carolina streams: Raleigh, U.S. Geological Survey Special Report, July 1971, 236 p.
- Yorke, T.H., and Davis, W.J., 1972, Sediment yields of urban construction sources, Montgomery County, Maryland: U.S. Geological Survey Open-File Report, 39 p.
- Yorke, T.H., and Herb, W.J., 1978, Effects of urbanization on streamflow and sediment transport in the Rock Creek and Anacostia River basins, Montgomery County, Maryland, 1962-74: U.S. Geological Survey Professional Paper 1003, 71 p.
- Young, K.K., 1976, Erosion potential of soils *in* Proceedings of the Third Federal Interagency Sediment Conference: Denver, Colo., Sedimentation Committee, Water Resources Council, p. 1-5.

GLOSSARY

Because many of the terms related to fluvial sediment are not completely standardized, the following definitions are included as a guide to the terminology used in this report:

Bed material: The sediment mixture of which the bed is composed.

<u>Bedload or sediment discharged as bedload</u>: Includes both the sediment that moves in continuous contact with the streambed and the material that bounces along the bed in short skips or leaps.

<u>Drainage area of a stream at a specified location</u>: That area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area.

<u>Erosion</u>: The wearing away of the land surface by detachment and movement of soil and rock fragments through the action of moving water, wind, and other natural means.

<u>Flood base discharge</u>: A value of high flow usually computed during the first 5 years of station operation which, on the average, is exceeded about three times per year.

<u>Gross erosion</u>: The total of all sheet, gully, and channel erosion in a drainage basin, usually expressed in units of mass.

<u>Particle size</u>: The diameter, usually the intermediate diameter, in millimeters, of suspended sediment or bed material determined by either sieve or other sedimentation methods.

<u>Particle-size classification</u>: Agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classi	fi	ca	ti	on							P	art	icle size	(n	millimeters)
Clay .													0.00024	-	0.004
Silt .													.004	-	.062
Sand .													.062	0.0	2.0
Gravel							7.		n	10	4	13	2.0	_	64.0

<u>Sediment</u>: Solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus.

<u>Sediment delivery ratio</u>: The ratio of sediment yield to gross erosion expressed in percent.

<u>Sediment-transport curve</u>: Usually the relation between water discharge and suspended-sediment discharge, but it can be between water discharge and bedload discharge, unmeasured sediment discharge, or total sediment discharge.

<u>Suspended sediment</u>: The sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u>: The ratio of the mass of dry sediment in a water-sediment mixture to the mass of the water-sediment mixture. In this report, it is that sediment in the sampled zone (from the water surface to a point approximately 0.1 meter (0.3 foot) (above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture.

<u>Suspended-sediment discharge</u>: The quantity of suspended sediment passing a transect in a unit of time. When expressed in tons per day, it is computed by multiplying water discharge, in cubic feet per second, times the suspended-sediment concentration, in milligrams per liter, times the factor 0.0027.

<u>Total sediment discharge</u>: The total quantity of sediment passing a section in a unit of time.

<u>Unmeasured sediment discharge</u>: The difference between total sediment discharge and measured suspended-sediment discharge.

<u>Water discharge</u>: The amount of water and sediment flowing in a channel expressed as volume per unit of time. The water contains both dissolved solids and suspended sediment.

Table 1.--Name, location, and physical characteristics of sediment-sampling stations

[Categorization symbols: F, forested; D, forested with minor development; R, rural; N, rural impacted by nonagricultural-type activities; and U, urban]

							use, tal dr			tion
Site number figure 1) Stati	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	00000000
1	02053200	Potecasi Creek near Union	Lat 36°22'14", long 77°01'86", Hertford County, on right bank at downstream side of bridge on State Hwy. 11, and 2.8 mi N of Union.	03010204	225	28	4	67	1	
2	02053500	Ahoskie Creek at Ahoskie	Lat 36°16'50", long 77°00'00", Hertford County, on right bank 10 ft downstream from bridge on State Hwy. 350, and 0.8 mi SW of Ahoskie.	03010203	63.3	27	6	51	16	
3	02068500	Dan River near Francisco	Lat 36°30'53", long 80°18'11", Stokes County, on left bank 200 ft upstream from bridge on State Hwy. 704, and 3.0 mi E of Francisco.	03010103	129	24	7	63	6	
4	02071000	Dan River near Wentworth	Lat 36°24'47", long 79°49'45", Rockingham County, on right bank 600 ft downstream from Settles Bridge on Secondary Rd. 2150, and 3.5 mi NW of Wentworth.	03010103	1,053	17	6	76	1	
5	02074000	Smith River at Eden	Lat 36°31'31", long 79°45'57", Rockingham County, on right bank at Eden, and 0.3 mi downstream from bridge on State Hwy. 14.	03010103	538	19	5	75	1	
6	02074218	Dan River near Mayfield	Lat 36°32'29", long 79°36'21", Rockingham County, near right bank on downstream end of bridge pier on Secondary Rd. 1761, and 3.0 mi NW of Mayfield.	03010103	1,778	24	6	65	5	
7	02077200	Hyco Creek near Leasburg	Lat 36°24'07", long 79°12'13", Caswell County, on right bank 10 ft upstream from bridge on U.S. Hwy. 158, and 2.5 mi W of Leasburg.	03010104	45.9	25	6	66	3	
8	02077240	Double Creek near Roseville	Lat 36°21'44", long 79°05'48", Person County, on left bank 21 ft downstream from culvert on Secondary Rd. 1166, and 3.0 mi NW of Roseville.	03010104	7.47	27	7	65	1	
9	02077250	South Hyco Creek near Roseville	Lat 36°23'12", long 79°06'22", Person County, on right bank at downstream side of bridge on U.S. Hwy. 158, and 4.2 mi NW of Roseville.	03010104	56.5	35	7	57	1	
10	02080500	Roanoke River at Roanoke Rapids	Lat 36°28'04", long 77°37'18", Halifax County, on right bank 2.8 mi downstream from Roanoke Rapids dam.	03010107	8,384	24	6	66	4	

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

	4 142							, in pedrainas		ea :
Site number figure	1) Stati	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	ea ·
11	02081000	Roanoke River near Scotland Neck	Lat 36°12', long 77°23', Halifax County, on right bank 5.0 ft upstream from Hwy. 258, and 5.75 mi N of Scotland Neck.	03010107	8,671	25	5	66	4	1
12	02081500	Tar River near Tar River	Lat 36°11'41", long 78°35'00", Granville County, on right bank 90 ft upstream from bridge on State Hwy. 96, and 2.5 mi E of Town of Tar River.	03020101	167	18	8	72	2	F
13	02081747	Tar River at U.S. 401 at Louisburg	Lat 36°05'34", long 78°17'48", Franklin County, on left bank 0.1 mi downstream from bridge on U.S. Hwy. 401 (Bickett Blvd.) at Louisburg.	03020101	427	20	8	66	6	R
14	020801800	Cedar Creek near Louisburg	Lat 36°03', long 78°20', Franklin County, on downstream end of center pier of bridge on U.S. Hwy. 401, and 3.7 mi SW of Louisburg.	03020101	48.2	30	7	62	1	R
15	02082770	Swift Creek at Hilliardston	Lat 36°06'42", long 77°55'16", Nash County, near left bank at downstream side of bridge on Secondary Rd. 1310, and 0.7 mi NE of Hillardston.	03020101	166	30	5	64	1	R
16	02082950	Little Fishing Creek near White Oak	Lat 36°11'08", long 77°52'34", Halifax County, on right bank 8.0 ft downstream from bridge on Secondary Rd. 1338, and 1.1 mi W of White Oak.	03020101	177	25	4	70	1	R
17	02083000	Fishing Creek near Enfield	Lat 36°09'03", long 77°41'35", Edgecombe County, on right bank 15 ft downstream from bridge on U.S. Hwy. 301, and 2.0 mi SW of Enfield.	03020102	526	28	5	63	4	R
18	02083500	Tar River at Tarboro	Lat 35°53'38", long 77°32'00", Edgecombe County, nr right bank on downstream end of pier of bridge on U.S. Hwy. 64 in Tarboro.	03020103	2,183	29	5	58	8	R
19	02083800	Conetoe Creek near Bethel	Lat 36°46'33", long 77°27'45", Pitt County, on right bank 5.0 ft downstream from bridge on Secondary Rd. 1409, and 5.5 mi W of Bethel.	03020103	78.1	31	8	59	2	N
20	02084160	Chicod Creek near Simpson	Lat 35°33'47", long 77°13'43", Pitt County, on left bank at downstream side of bridge on Secondary Rd. 1760, and 2.8 mi ESE of Simpson.	03020103	45	46	6	46	2	R

Table 1.--Name, location, and physical characteristics of sediment-sampling stations--Continued

		The state of the s						in perc		tion
Site number figure 1) Statio	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Categoriza
21	02084317	Black Swamp near Batts Crossroads	Lat 35°42'32", long 77°05'53", Beaufort County, on left bank at upstream side of culvert on Secondary Rd. 1420, and 1.8 mi NW of Batts Crossroads.	03020104	1.02	0	0	100	0	F
22	02084500	Herring Run near Washington	Lat 35°34'03", long 77°01'09", Beaufort County, on left bank 10 ft downstream from bridge on Secondary Rd. 1506, and 2.8 mi NE of Washington.	03020104	15.1	17	4	78	1	1
23	02084540	Durham Creek at Edward	Lat 35°19'25", long 76°52'26", Beaufort County, on left bank 5.0 ft downstream from bridge on Secondary Rd. 1949, and at Edward.	03020104	26	34	5	60	1	
24	02085000	Eno River at Hillsborough	Lat 36°04'20", long 79°06'30", Orange County, 1,000 ft downstream from U.S. Hwy. 70 at Hillsborough.	03020201	66.9	35	8	49	8	
25	02085070	Eno River near Durham	Lat 36°04'21", long 78°54'24", Durham County, on right bank 275 ft downstream from bridge on U.S. Hwy. 501, and 5.0 mi N of Durham.	03020201	141	29	7	60	4	
26	02085220	Little River near Orange Factory	Lat 36°08'20", long 78°54'24", Durham County, on right bank 125 ft upstream from bridge on U.S. Hwy. 501, and 1.2 mi NW of Orange Factory.	03020201	80.4	20	13	64	3	
27	02085500	Flat River at Bahama	Lat 36°10'57", long 78°52'44", Durham County, on right bank 0.5 mi upstream from Lake Michie, and 1.2 mi N of Bahama.	03020201	149	24	7	65	4	
28	02087000	Neuse River near Northside	Lat 36°02'54", long 78°44'59", Durham County, on right bank 25 ft upstream from Fish Dam bridge on Secondary Rd. 1801, and 2.5 mi S of Northside.	03020201	535	15	6	72	7	
29	02087183	Neuse River near Falls	Lat 35°56'24", long 78°34'32", Wake County, on left bank 0.3 mi downstream from bridge on Secondary Rd. 2000, and 0.4 mi NE of Falls.	03020201	772	14	7	67	12	
30	02087500	Neuse River near Clayton	Lat 35°38'50", long 78°24'21", Johnston County, on left bank at downstream side of bridge on State Hwy. 42, and 3.0 mi E of Clayton.	03020201	1,150	23	7	60	10	

Table 1.--Name, location, and physical characteristics of sediment-sampling stations -- Continued

							d use, otal d			a :
Site number figure	1) Stati	ion number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	a incorporation
31	02087570	Neuse River at Smithfield	Lat 35°30'46", long 78°21'00", Johnston County, on left bank 10 ft downstream from bridge on U.S. Hwy. 70, and at Smithfield.	03020201	1,206	23	6	61	10	N
32	02088000	Middle Creek near Clayton	Lat 35°34'12", long 78°35'30", Johnston County, on right bank 300 ft downstream from bridge on State Hwy. 50, and 9.5 mi SW of Clayton.	03020201	83.5	41	8	49	2	I
33	02088470	Little River near Kenly	Lat 35°35'18", long 78°11'12", Johnston County, nr left bank on downstream side of bridge on Secondary Rd. 1934, and 3.7 mi W of Kenly.	03020201	191	43	8	47	2	F
34	02088500	Little River near Princeton	Lat 35°30'40", long 78°09'36", Johnston County, on left bank 600 ft downstream from bridge on Secondary Rd. 2320, and 3.0 mi N of Princeton.	03020201	232	38	7	50	5	I
35	02089000	Neuse River near Goldsboro	Lat 35°20'14", long 77°59'51", Wayne County, on left bank at downstream side of bridge on Secondary Rd. 1915, 0.2 mi upstream from Stony Cr., and 3.2 mi S of Wayne County Courthouse in Goldsboro.	03020202	2,399	27	4	62	7	N
36	02089222	Bear Creek near Parkstown	Lat 35°22'22", long 77°48'10", Greene County, on left bank at upstream side of culvert on Secondary Rd. 1136, and 0.9 mi E of Parkstown.	03020203	4.27	63	4	33	0	R
37	02089500	Neuse River at Kinston	Lat 35°15'29", long 77°35'09", Lenoir County. on left bank at Kinston, and 600 ft downstream from bridge on State Hwy. 11.	03020202	2,690	30	4	60	6	N
38	02090380	Contentnea Creek near Lucama	Lat 35°41'29", long 78°06'29", Wilson County, on right bank 250 ft upstream from bridge on State Hwy. 581, and 6.5 mi NW of Lucama.	03020203	161	32	5	62	1	N
39	02090512	Hominy Swamp at Wilson	Lat 35°42'29", long 77°55'00", Wilson County, on left bank 17 ft upstream from culvert on Phillips St., at Wilson.	03020203	7.90	17	8	13	62	U
40	02090625	Turner Swamp near Eureka	Lat 35°34'10", long 77°52'40", Wayne County, on right bank at downstream side of bridge on Secondary Rd. 1505, and 2.0 mi N of Eureka.	03020203	2.1	26	5	68	1	R

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

								in per ainage		tion
Site number (figure	l) Stati	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Categoriza
41	02091000	Nahunta Swamp near Shine	Lat 35°29'20", long 77°48'22", Greene County, on right bank 10 ft downstream from bridge on Secondary Rd. 1058, and 3.5 mi N of Shine.	03020203	80.4	54	4	41	1	N
42	02091500	Contentnea Creek at Hookerton	Lat 35°25'38", long 77°35'09", Greene County, on right bank at Hookerton, and 0.3 mi upstream from bridge on State Hwy. 123.	03020203	729	42	3	51	4	R
43	02091700	Little Contentnea Creek near Farmville	Lat 35°32'08", long 77°30'41", Pitt County, near center of span on downstream side of bridge on U.S. Hwy. 264, and 5.5 mi SE of Farmville.	03020203	93.3	43	2	50	5	R
44	02091960	Creeping Swamp near Calico	Lat 35°25'42", long 77°11'12", Beaufort County, on left bank at downstream side of bridge on State Hwy. 102, and 4.2 mi NE of Calico.	03020202	9.8	20	4	71	5	R
45	02091970	Creeping Swamp near Vanceboro	Lat 35°23'30", long 77°13'46", Craven County, on left bank at downstream side of bridge on State Hwy. 43, and 7.9 mi NW of Vanceboro.	03020202	27	29	3	66	2	F
46	02092000	Swift Creek near Vanceboro	Lat 35°20'42", long 77°11'45", Craven County, on left bank at downstream side of bridge on Secondary Rd. 1478, and 3.5 mi NW of Vanceboro.	03020202	182	31	4	63	2	N
47	02092020	Palmetto Swamp near Vanceboro	Lat 35°20'18", long 77°10'16", Craven County, on left bank at upstream side of bridge on State Hwy. 43, and 2.5 mi NW of Vanceboro.	03020202	24.2	27	3	64	6	F
48	02092500	Trent River near Trenton	Lat 35°03'55", long 77°27'25", Jones County, on left bank 50 ft downstream from Free Bridge on Secondary Rd. 1129, and 6.0 mi W of Trenton.	03020204	168	20	2	77	1	I
49	02093800	Reedy Fork near Oak Ridge	Lat 36°10'24", long 79°57'15", Guilford County, on left bank at downstream side of bridge on Secondary Rd. 2128, and 2.0 mi E of Oak Ridge.	03030002	20.6	37	12	45	6	1
50	02094500	Reedy Fork near Gibsonville	Lat 36°10'31", long 79°36'57", Guilford County, on right bank 0.2 mi downstream from Huffines Mill on Secondary Rd. 2719, and 6.0 mi NW of Gibsonville.		131	27	12	53	8	1

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

31. 31	-67,59	Section 2001 - William Constitution	The Control of the Co				nd use			a f
Site number figure	1) Stat	ion number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Catogoda
51	02095500	North Buffalo Creek near Greensboro	Lat 36°07'13", long 79°42'30", Guilford County, on left bank 5.0 ft downstream from bridge on Secondary Rd. 2832, and 5.8 mi NE of Post Office in Greensbord		37.1	3	0	9	88	ı
52	02096500	Haw River at Haw River	Lat 36°05'13", long 79°22'02", Alamance County, on left bank at Town of Haw River, 600 ft downstream from bridge on U.S. Hwy. 70 and State Hwy. 49.	03030002	606	24	9	56	11	N
53	02096700	Big Alamance Creek near Elon College	Lat 36°02'21", long 79°31'45", Alamance County, on right bank at downstream side of bridge on Secondary Rd. 1149, and 4.5 mi S of Elon College.	03030002	116	25	10	52	13	F
54	02096842	Cane Creek near Buckhorn	Lat 36°01'33", long 79°10'30", Orange County, on right bank 0.1 mi upstream from culvert on Secondary Rd. 1126, and 2.5 mi SE of Buckhorn.	03030002	0.64	0	5	95	0	F
55	02096850	Cane Creek near Teer	Lat 35°56'34", long 79°14'46", Orange County, on left bank at downstream side of bridge on N.C. Hwy. 54, and 1.5 mi SW of Teer.	03030002	33.7	19	9	71	1	R
56	02096960	Haw River near Bynum	Lat 35°45'48", long 79°08'02", Chatham County, on right bank 500 ft upstream from Pokeberry Cr., 0.9 mi SSE of Bynum, and 1.1 mi downstream from U.S. Hwy. 15 and 501.	03030002	1,277	27	9	61	3	R
57	02098000	New Hope River near Pittsboro	Lat 35°44'12", long 79°01'36", Chatham County, on right bank at downstream side of bridge on U.S. Hwy. 64, and 8.8 mi E of Pittsboro.	03030002	288	15	6	72	7	R
58	02098198	Haw River near Moncure	Lat 35°38'56", long 79°03'59", Chatham County, 0.4 mi downstream from B. Everett Jordan dam, on right bank 1.3 mi upstream from bridge on U.S. Hwy. 1, and 2.1 mi N of Haywood.	03030002	1,689	22	9	56	13	N
59	02099000	East Fork Deep River near High Point	Lat 36°02'15", long 79°56'46", Guilford County, on left bank 5.0 ft upstream from bridge on Secondary Rd. 1541, and 5.2 mi NE of High Point College.	03030003	14.8	43	16	26	15	U
60	02099500	Deep River near Randleman	Lat 35°54'06", long 79°51'05", Randolph County, on left bank 500 ft downstream from bridge on Secondary Rd. 1929, and 7.0 mi N or Randleman.	03030003	125	24	6	55	15	R

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

	Section 4	er om a men ger groener og er ge	Mary the second of the second		- M		d use, otal dr			+
Site number figure	l) Stati	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Categoriza
61	02100500	Deep River at Ramseur	Lat 34°43'40", long 79°39'10", Randolph County, on right bank 0.2 mi downstream from Main St. bridge in Ramseur.	03030003	349	22	5	56	17	F
62	02101800	Tick Creek near Mount Vernon Springs	Lat 35°39'37", long 79°20'08", Chatham County, on right bank 200 ft upstream from bridge on U.S. Hwy. 421, and 1.5 mi E of Mount Vernon Springs.	03030003	15.5	36	20	41	3	1
63.	02102000	Deep River at Moncure	Lat 35°37'41", long 79°06'48", Lee County, on right bank, 1.2 mi upstream from bridge on U.S. Hwy. 1, and 1.5 mi NW of Moncure.	03030003	1,434	17	5	65	13	
64	02102192	Buckhorn Creek near Corinth	Lat 35°34'28", long 78°58'09", Chatham County, on left bank at upstream side of bridge on State Hwy. 42, and 2.0 mi E of Corinth.	03030004	76.3	5	1	93	1	
65	02102500	Cape Fear River at Lillington	Lat 35°24'30", long 78°48'48", Harnett County, on right bank 60 ft downstream from downstream bridge on U.S. Hwy. 401, and 0.5 mi N of Lillington.	03030004	3,464	21	7	61	11	
66	02102908	Flat Creek near Inverness	Lat 35°10'54", long 79°10'40", Hoke County, Fort Bragg Military Reserv., on left bank 15 ft downstream from culvert on Manchester Rd., and 3.6 mi E of Inverness.	03030004	7.63	0	0	99	1	
67	02105500	Cape Fear River near Tarheel	Lat 34°50'05", long 78°49'27", Bladen County, on right bank 100 ft upstream from William O. Huske Lock, and 7.0 mi N of Tarheel.	03030005	4,852	27	5	61	7	
68	02105524	Ellis Creek tributary near White Oak	Lat 34°46'02", long 78°41'24", Bladen County, on right bank 15 ft upstream from culvert on Secondary Rd. 1325, and 3.0 mi NE of White Oak.	03030005	1.81	0	0	100	0	
69	02105769	Cape Fear River near Kelly	Lat 34°24'15", long 78°17'38", Bladen County on right bank near upstream end of Lock No. 1, 4.6 mi SE of Kelly.	03030005	5,255	29	5	61	5	
70	02106000	Little Coharie Creek near Roseboro	Lat 34°57'13", long 78°29'17", Sampson County, on downstream end of center pier of bridge on State Hwy. 24, and 1.2 mi E of Roseboro.	03030006	92.8	44	5	50	1	

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

Site				4,778				in pe rainag		a i
Site number figure	1) Stat	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	a
71	02106500	Black River near Tomahawk	Lat 34°45'17", long 78°17'21", Sampson County, on left bank 30 ft upstream from bridge on State Hwy. 411, and 3.8 mi NE of Tomahawk.	03030006	676	40	4	55	1	F
72	02107000	South River near Parkersburg	Lat 34°48'45", long 78°27'26", Bladen County, near center of span on downstream side of bridge on Secondary Rd. 1503, and 1.9 mi SW of Parkersburg.	03030006	379	35	6	58	1	1
73	02108000	Northeast Cape Fear River near Chinquapin	Lat 34°49'45", long 77°49'57", Duplin County, on right bank 540 ft downstream from bridge on State Hwy. 41, and 1.2 mi W of Chinquapin.	03030007	599	38	6	54	2	I
74	02108500	Rockfish Creek near Wallace	Lat 34°44'32", long 78°02'22", Duplin County, on right bank at downstream side of bridge on State Hwy. 41, and 2.5 mi W of Wallace.	03030007	69.3	41	3	55	1	1
75	02108548	Little Rockfish Creek near Wallace	Lat 34°44'02", long 77°59'03", Duplin County, on right bank 0.4 mi downstream from bridge on State Hwy. 41, and 0.6 mi ESE of Wallace.	03030007	7.83	37	5	34	24	,
76	02109500	Waccamaw River at Freeland	Lat 34°05'43", long 78°32'56", Brunswick County, on left bank 150 ft downstream from New Britton bridge on State Hwy. 130, and 1.0 mi SW of Freeland.	03040206	680	20	2	77	1	I
77	02111000	Yadkin River at Patterson	Lat 35°59'29", long 81°33'30", Caldwell County, on left bank 200 ft upstream from bridge on State Hwy. 268, and 0.5 mi S of Patterson.	03040101	28.8	8	8	79	5	F
78	02111180	Elk Creek at Elkville	Lat 36°04'16", long 81°24'13", Wilkes County, on left bank 700 ft upstream from bridge on State Hwy. 268, and in community of Elkville.	03040101	48.1	8	5	86	1	R
79	02111500	Reddies River at North Wilksboro	Lat 36°10'29", long 81°10'09", Wilkes County, on left bank 400 ft upstream from bridge on Secondary Rd. 1517, and 1.2 mi NW of North Wilkesboro.	03040101	89.2	11	7	81	1	N
80	02112120	Roaring River at Roaring River	Lat 36°14'59", long 81°02'41", Wilkes County, 800 ft upstream from bridge on Secondary Rd. 1990, and 3.8 mi NW of village of Roaring River.	03040101	128	9	6	84	1	R

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

			The second of th				l use, stal dr			+
Site number figure	1) Stati	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	
81	02112250	Yadkin River at Elkin	Lat 36°14'28", long 80°50'49", Yadkin County, on right bank at downstream side of bridge on U.S. Hwy. 21 at Elkin.	03040101	869	9	9	72	10	1
82	02112360	Mitchell River near State Road	Lat 36°18'58", long 80°48'36", Surry County, on right bank 18 ft upstream from bridge on Secondary Rd. 1001, and 3.3 mi E of State Road.	03040101	78.8	13	9	77	1	
83	02113000	Fisher River near Copeland	Lat 36°20'27", long 80°41'10", Surry County, on left bank 500 ft upstream from bridge on State Hwy. 268, and 2.0 mi NW of Copeland.	03040101	128	9	6	84	1	
84	02113500	Yadkin River at Siloam	Lat 35°16'42", long 80°33'18", Yadkin County, on right bank at upstream side of bridge on Secondary Rd. 1003, and at Siloam.	03040101	1,226	9	6	82	3	
85	02113850	Ararat River at Ararat	Lat 36°24'16", long 80°33'43", Surry County, on right bank at upstream side of bridge pier on Secondary Rd. 2019, and at Ararat.	03040101	231	24	12	59	5	
86	02114450	Little Yadkin River at Dalton	Lat 36°17'56", long 80°24'53", Stokes County, on left bank 1,200 ft downstream from bridge on U.S. Hwy. 52, and 1.0 mi SW of Dalton.	03040101	42.8	30	23	46	1	
87	02115360	Yadkin River at Enon	Lat 36°07'55", long 80°26'39", Forsyth County, on left bank 100 ft upstream from bridge on Secondary Rd. 1525, and 1.5 mi E of Enon.	03040101	1,694	13	8	76	3	
88	02115856	Salem Creek near Atwood	Lat 36°02'16", long 80°18'18", Forsyth County, on left bank 5.0 ft upstream from bridge at Winston-Salem Elledge Wastewater Treatment Plant, and 1.4 mi SE of Atwood.	03040101	65.6	8	12	26	54	
89	02115860	Muddy Creek near Muddy Creek	Lat 36°00'01", long 80°20'25", Forsyth County, on right bank 100 ft upstream from bridge on Secondary Rd. 2995, and 1.8 mi E of community of Muddy Creek.	03040101	186	7	10	37	46	
90	02115900	South Fork Muddy Creek near Clemmons	Lat 36°00'22", long 80°18'07", Forsyth County, on right bank 5.0 ft upstream from bridge on Secon- dary Rd. 2902, and 4.2 mi SE of Clemmons	03040101	42.9	27	20	26	27	

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

			Later than the second of the s					, in pe drainag		
Site number figure	1) Stat	ion number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	
91	02116500	Yadkin River at Yadkin College	Lat 35°51'24", long 80°23'10", Davidson County, near left bank on downstream side of pier of bridge on U.S. Hwy. 64, and 1.5 mi S of Yadkin College.	03040101	2,280	20	10	63	7	
92	02117030	Humpy Creek near Fork	Lat 35°51'17", long 60°26'24", Davie County, on left bank 9.0 ft upstream from culvert on Secondary Rd. 1813, and 1.9 mi S of Fork.	03040101	1.05	20	30	49	1	
93	02118000	South Yadkin River near Mocksville	Lat 35°50'39", long 80°39'38", Rowan County, on right bank at downstream side of bridge on Secondary Rd. 1972, and 6.5 mi SW of Mocksville.	03040102	306	27	14	53	6	
94	02118500	Hunting Creek near Harmony	Lat 36°00'01", long 80°44'45", Iredell County, on right bank at downstream side of bridge on Secondary Rd. 2115, and 3.5 mi NE of Harmony.	03040102	155	23	12	62	3	
95	02121493	Leonard Creek near Bethesda	Lat 35°53'14", long 80°12'30", Davidson County, on left downstream wingwall of bridge on Secondary Rd. 1837, and 2.2 mi E of Bethesda.	03040103	5.16	50	11	37	2	
96	02123567	Dutchmans Creek near Uwharrie	Lat 35°22'05", long 80°01'49", Montgomery County, near midstream at upstream end of two 6-foot corrugated metal pipe culverts on Secondary Rd. 1150, and 3.0 mi SW of Uwharrie.	03040103	3.44	0	2	98	0	1
97	02125000	Big Bear Creek near Richfield	Lat 35°20'02", long 80°20'09", Stanly County, on left bank 400 ft upstream from bridge on Secondary Rd. 1134, and 10 mi SW of Richfield.	03040105	55.6	38	26	34	2	F
98	02125557	Gourdvine Creek near Olive Branch	Lat 35°06'02", long 80°20'11", Union County, on right bank 3.0 ft downstream from bridge on Secondary Rd. 1715, 0.8 mi downstream from Secondary Rd. 1006, and 0.9 mi SW of Olive Branch.	03040105	8.75	49	13	35	3	R
99	02125696	Lane Creek near Trinity	Lat 34°50'39", long 80°28'49", Union County, on left bank downstream of culvert on Secondary Rd. 2115, and 3.0 mi SE of Trinity.	03040105	4.92	59	7	31	3	R
100	02125699	Wicker Branch near Trinity	Lat 34°52'53", long 80°26'24", Union County, on left bank at upstream side of bridge on Secondary Rd. 1940, and 4.0 mi NE of Trinity.	03040105	5.83	43	15	36	6	R

Table 1.--Name, location, and physical characteristics of sediment-sampling stations -- Continued

			was the second of the second o				d use, otal dr			tion
Site number (figure	l) Stati	on number and name	Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Categoriza
101	02126000	Rocky River near Norwood	Lat 35°08'54", long 80°10'33", Stanly County, on left bank 1.5 mi upstream from bridge on Secondary Rd. 1935, and 6.0 mi SW of Norwood.	03040104	1,372	29	12	57	2	F
102	02128000	Little River near Star	Lat 35°23'11", long 79°49'56", Montgomery County, on left bank 9.0 ft downstream from bridge on Secondary Rd. 1340, and 3.0 mi W of Star.	03040104	106	18	10	71	1	1
103	02129000	Pee Dee River near Rockingham	Lat 34°56'46", long 79°52'11", Richmond County, on left bank at bridge on U.S. Hwy. 74, 3.3 mi downstream from Blewett Falls Hydroelectric Plant, 6.0 mi W of Rockingham.	03040201	6,860	20	10	68	2	_1
104	02133500	Drowning Creek near Hoffman	Lat 35°03'38", long 79°29'39", Richmond County, on right bank 10 ft downstream from bridge on U.S. Hwy. 1, and 4.0 mi NE of Hoffman.	03040203	183	14	3	79	4	
105	02134500	Lumber River at Boardman	Lat 34°26'32", long 78°57'38", Robeson County, on right bank 50 ft downstream from bridge on U.S. Hwy. 74, and at Boardman.	03040203	1,228	17	2	79	2	
106	02138000	Catawba River near Marion	Lat 35°42'26", long 82°02'00", McDowell County, on right bank 15 ft downstream from bridge on U.S. Hwy. 221, and 2.2 mi NW of Marion.	03050101	172	7	4	86	3	
107	02138500	Linville River near Nebo	Lat 35°47'43", long 81°53'27", Burke County, in Pisgah National Forest, on right bank 370 ft upstream from bridge on State Hwy. 126, and 6.0 mi NE of Nebo.	03050101	66.7	6	3	90	1	
108	02141150	Lower Creek at Lenoir	Lat 35°54'20", long 81°31'59", Caldwell County, on left bank at upstream side of bridge on Mulberry Street, and 0.8 mi SE of Courthouse, Lenoir.	03050101	28.1	5	8	67	20	
109	02142000	Lower Little River near All Healing Springs	Lat 35°56'44", long 81°14'13", Alexander County, on left bank at upstream side of bridge on Secondary Rd. 1313, 2.2 mi NE of All Healing Springs.	03050101	28.2	15	8	75	2	
110	02142900	Long Creek near Paw Creek	Lat 35°19'42", long 80°54'35", Mecklenburg County, on left bank at upstream side of bridge on Secondar Rd. 2042, and 3.6 mi N of Community of Paw Creek.	03050101 ry	16.4	3	9	65	23	

Table 1.--Name, location, and physical characteristics of sediment-sampling stations -- Continued

		the state of the second	es rave; ev						: :a ·
1) Stat	on number and name Location		Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	ea ·
02143000	Henry Fork near Henry River	Lat 35°41'06", long 81°24'03", Catawba County, on left bank 325 ft downstream from bridge on Secondary Rd. 1124, and 2.0 mi SE of village of Henry River.	03050102	83.2	14	8	77	1	
02143040	Jacob Fork at Ramsey	Lat 35°35'26", long 81°34'02", Burke County, on left bank 16 ft downstream from bridge on Secondary Rd. 1924, and 0.67 mi N of Ramsey.	03050102	25.7	6	4	88	2	1
02144000	Long Creek near Bessemer City	Lat 35°18'23", long 81°14'03", Gaston County, on right bank 700 ft upstream from bridge on Secondary Rd. 1456, and 2.0 mi NE of Bessemer City limits.	03050102	31.8	29	21	43	7	R
02146300	Irwin Creek near Charlotte	Lat 35°11'51", long 80°54'10", Mecklenburg County, on left bank at City of Charlotte's sewage disposal plant, and 4.2 mi SW of City Hall, Charlotte.	03050103	30.7	4	5	6	85	τ
02146507	Little Sugar Creek at Arch- dale Road near Charlotte	Lat 35°08'52", long 80°51'29", Mecklenburg County, on left bank at downstream side of bridge on Secondary Rd. 3657 (Archdale Dr.) in Charlotte, and 5.3 mi S of City Hall, Charlotte.	03050103	42.6	0	1	2	97	U
02146600	McAlpine Creek at Sardis Road near Charlotte	Lat 35°08'13", long 80°46'06", Mecklenburg County, near left bank on downstream end of bridge pier at Secondary Rd. 3356 (Sardis Rd.), and 7.0 mi SE of City Hall, Charlotte.	03050103	39.6	2	6	41	51	U
02146700	McMullen Creek near Charlotte	Lat 35°08'26", long 80°49'12", Mecklenburg County, on left downstream side of culvert wingwall at Secondary Rd. 3673 (Sharon View Rd.), Charlotte.	03050103	6.95	1	1	5	93	U
02146750	McAlpine Creek near Pineville	Lat 35°03'59", long 80°52'12", Mecklenburg County, on right bank at City of Charlotte's waste treatment plant, and 2.1 mi S of Pineville.	03050103	92.4	4	7	38	51	U
02146800	Sugar Creek near Fort Mill, South Carolina	Lat 35°00'21", long 80°54'09", York County, on right bank at downstream side of bridge on State Hwy. 160, and 2.6 mi E of Fort Mill, S.C.	03050103	262	5	10	33	52	U
02146900	Twelve Mile Creek near Waxhaw	Lat 34°57'06", long 80°45'23", Union County, on left bank 90 ft upstream from bridge on State Hwy. 16, and 2.5 mi N of Waxhaw.	03050103	76.5	20	16	60	4	R
	02143000 02143040 02144000 02146300 02146507 02146600 02146700 02146750 02146800	02143000 Henry Fork near Henry River 02143040 Jacob Fork at Ramsey 02144000 Long Creek near Bessemer City 02146300 Irwin Creek near Charlotte 02146507 Little Sugar Creek at Archdale Road near Charlotte 02146600 McAlpine Creek at Sardis Road near Charlotte 02146700 McMullen Creek near Charlotte 02146700 McAlpine Creek near Pineville 02146800 Sugar Creek near Fort Mill, South Carolina	Deliver River Color Color Color	1) Station number and name Location O2143000 Henry Fork near Henry River D2143000 Henry Fork near Henry River O2143000 Jacob Fork at Ramsey D2143040 Jacob Fork at Ramsey D2144000 Long Creek near Bessemer City Rk. 1924, and 0.67 mt N of Ramsey. D2144000 Long Creek near Bessemer City Jimits. D2144000 Long Creek near Charlotte D2146300 Irwin Creek near Charlotte D2146300 Irwin Creek near Charlotte D2146507 Little Sugar Creek at Archdale Road near Charlotte D2146600 McAlpine Creek at Sardis Road near Charlotte D2146600 McAlpine Creek near Charlotte D2146700 McMullen Creek near Fort Mill, South Carolina D2146700 McMullen Creek near Fort Mill, South Carolina D2146700 McMullen Creek near Fort Mill, South Carolina D2146700 Twelve Mile Creek near Fort Mill, South Carolina D2146700 Twelve Mile Creek near Lat 35°00'21", Jong 80	1) Station number and name Location Hydrologic unit (mi²) 02143000 Henry Fork near Henry River 02143040 Henry Fork near Henry River 02143040 Jacob Fork at Ramsey 02143040 Jacob Fork at Ramsey 02144000 Long Creek near Bessemer City and 16ft bank 10 ft upstream from bridge on Secondary Rd. 1244, and 2.0 mi SE of village of Henry River. 02144000 Long Creek near Bessemer City and 1.55°81'23", long 81°34'02", Burke County, on right bank 700 ft upstream from bridge on Secondary Rd. 1258'23", long 81°14'03", Gaston County, on right bank 700 ft upstream from bridge on Secondary Rd. 1456, and 2.0 mi N of Ramsey. 02146300 Irwin Creek near Charlotte 02146507 Little Sugar Creek at Archdale Road near Charlotte 02146600 McAlpine Creek at Sardis Road near Charlotte 02146600 McAlpine Creek at Sardis Road near Charlotte 02146700 McMullen Creek near Charlotte 02146700 McMullen Creek near Charlotte 02146700 McAlpine Creek near Possible Creek at Sardis Road near Charlotte 02146700 McMullen Creek near Possible Creek near Charlotte Secondary Rd. 3356 (Sardis Rd.), and 7.0 mi SE of City Hall, Charlotte. 02146700 McAlpine Creek near Possible Creek near Charlotte Secondary Rd. 3063 (Sardis Rd.), and 7.0 mi SE of City Hall, Charlotte. 02146700 McAlpine Creek near Possible Creek near Pineville 02146700 McAlpine Cre	Station number and name Location Bydrologic Drainage area 28	Station number and name Location Locat	Station number and name Location Hydrologic Drainage area area area Location Hydrologic Drainage area area Location Hydrologic Drainage area Location Hydrologic Drainage Location Location Location Hydrologic Drainage Location Location	Decation Location Location

Table 1.--Name, location, and physical characteristics of sediment-sampling stations -- Continued

	r A	The state of the s	The same of the sa	96° 11'S	hige ca			in per		tion
Site number figure 1) Station number and name		ation number and name Location		Hydrologic unit	Drainage area (mi²)	Row crop	Pasture Forest	Forest	Urban	Categoriza
121	02149000	Cove Creek near Lake Lure	Lat 35°25'24", long 82°06'42", Rutherford County, on left bank 40 ft upstream from bridge on U.S. Hwys. 64 and 74, and 5.0 mi E of Town of Lake Lure.	03050105	79	8	5	86	1	R
122	02151000	Second Broad River at Cliffside	Lat 35°14'08", long 81°45'57", Rutherford County, on left bank 0.2 mi downstream from dam at Cliffside Mills, and at Cliffside.	03050105	220	16	5	75	4	R
123	02151500	Broad River near Boiling Springs	Lat 35°12'39", long 81°41'52", Cleveland County, on right bank 0.5 mi upstream from bridge on Secon- dary Rd. 1186, and 3.5 mi SW of Boiling Springs.	03050105	875	15	6	71	8	N
124	02152100	First Broad River near Casar	Lat 35°29'35", long 81°40'56", Cleveland County, on right bank 570 ft upstream from bridge on Secon- dary Rd. 1530, and 4.0 mi SW of Casar.	03050105	60.5	30	10	53	7	I
125	02152610	Sugar Branch near Boiling Springs	Lat 35°15'00", long 81°37'20", Cleveland County, or left downstream wingwall of culvert on State Hwy. 150, and 2.8 mi E of Boiling Springs.	03050105	1.42	38	28	17	17	1
126	03161000	South Fork New River near Jefferson	Lat 36°23'40", long 81°24'27", Ashe County, on right bank 600 ft upstream from bridge on State Hwys. 16 and 88, and 4.0 mi SE of Jefferson.	05050001	205	18	22	56	4	1
127	03439000	French Broad River at Rosman	Lat 35°08'32", long 82°49'28", Transylvania County on left bank at upstream side of bridge on U.S. Hwy. 178 at Rosman.	06010105	67.9	9	12	78	1	1
128	03441000	Davidson River near Brevard	Lat 35°16'23", long 82°42'21", Transylvania County on right bank 150 ft upstream from bridge on State Hwy. 280, and 3.3 mi NE of Brevard.	06010105	40.4	0	4	96	0	1
129	03443000	French Broad River at Blantyre	Lat 35°17'56", long 82°37'27", Transylvania County on left bank 40 ft upstream from bridge on Secondary Rd. 1503, and at Blantyre.	, 06010105	296	5	4	86	5	
130	03446000	Mills River near Mills River	Lat 35°23'56", long 82°35'46", Henderson County, or right bank 1.5 mi downstream from confluence of North and South Forks, and 1.8 mi NW of Mills River.	06010105	66.7	8	6	83	3	

Table 1.--Name, location, and physical characteristics of sediment-sampling stations -- Continued

				Ya.				in pe Irainag		a :
Site number figure 1) Station number and name			Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Catogorias
131	03448000	French Broad River at Bent Creek	Lat 35°30'07", long 82°35'35", Buncombe County, on left bank 50 ft downstream from Bent Creek, and 6.7 mi S of Asheville.	06010105	676	12	12	72	4	F
132	03450000	Beetree Creek near Swannanoa	Lat 35°39'11", long 82°24'20", Buncombe County, on left bank 0.8 mi upstream from Beetree Reservoir dam, and 3.8 mi N of Swannanoa.	06010105	5.46	0	0	100	0	I
133	03451000	Swannanoa River at Biltmore	Lat 35°34'06", long 82°32'42", Buncombe County, on left bank at Biltmore, and 100 ft downstream from Biltmore Ave. bridge.	06010105	130	4	5	79	12	υ
134	03451500	French Broad River at Asheville	Lat 35°36'32", long 82°34'41", Buncombe County, on right bank 27 ft upstream from Pearson Bridge (Secondary Rd. 1348) at Asheville.	06010105	945	9	9	76	6	N
135	03453500	French Broad River at Marshall	Lat 35°47'10", long 82°39'39", Madison County, on right bank upstream from Hayes Creek, and 1.5 mi SE of Marshall.	06010105	1,332	9	9	73	9	N
136	03455500	West Fork Pigeon River above Lake Logan near Hazelwood	Lat 35°23'46", long 82°56'17", Haywood County, on right bank at upstream side of bridge on Secondary Rd. 1216, 600 ft upstream from Big Creek, and 6.7 mi SE of Hazelwood.	06010106	27.6	1	1	98	0	E
137	03456000	West Fork Pigeon River below Lake Logan near Waynesville	Lat 35°26'38", long 82°54'46", Haywood County, on right bank at downstream side of bridge on Secondary Rd. 1111 at Riverside Church, 3.4 mi downstream from Lake Logan, and 5.3 mi SE of Waynesville.		55.3	1	1	95	3	N
138	03456500	East Fork Pigeon River near Canton	Lat 35°27'42", long 82°52'12", Haywood County, on right bank 800 ft upstream from bridge on U.S. Hwy. 276, and 5.2 mi SW of Canton.	06010106	51.5	7	4	86	3	R
139	03457000	Pigeon River at Canton	Lat 35°31'30", long 82°50'28", Haywood County, on left bank 200 ft downstream from Pigeon Street bridge, and at Canton.	06010106	133	6	6	82	6	N
140	03459500	Pigeon River near Hepco	Lat 35°38'05", long 82°59'21", Haywood County, on left bank 95 ft E of Interstate Hwy. 40, 0.8 mi downstream from Jonathan Creek, and 2.0 mi S. of Hepco.	06010106	350	8	7	80	5	N

Table 1.--Name, location, and physical characteristics of sediment-sampling stations --Continued

							d use, otal di			ation
Site number (figure 1) Station number and name		Station number and name Location		Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban	Categoriza
141	03460000	Cataloochee Creek near Cataloochee	Lat 35°40'02", long 83°04'23", Haywood County, in Great Smoky Mountains National Park, on left bank 20 ft downstream from bridge on State Hwy. 284, and 2.0 mi N of Cataloochee.	06010106	49.2	1	. 5	94	0	F
142	03463300	South Toe River near Celo	Lat 35°49'52", long 82°11'04", Yancey County, on right bank on Secondary Rd. 1168, 800 ft upstream from bridge on Secondary Rd. 1167, and 1.9 mi SE of Celo.	06010108	43.3	5	7	88	0	D
143	03479000	Watauga River near Sugar Grove	Lat 36°14'18", long 81°49'22", Watauga County, on right bank 250 ft upstream from bridge on Secon- dary Rd. 1121, and 2.3 mi SW of Sugar Grove.	06010103	92.1	9	18	70	3	R
144	03500240	Cartoogechaye Creek near Franklin	Lat 35°09'31", long 83°23'39", Macon County, on downstream side of center pier of bridge on Secondary Rd. 1152, and 1.8 mi S of Franklin.	06010202	57.1	7	4	85	4	F
145	03503000	Little Tennessee at Needmore	Lat 35°20'11", long 83°31'39", Swain County, on left bank 0.8 mi downstream from Dehart Creek, and 0.8 mi N of Needmore.	06010202	436	6	5	85	4	N
146	03504000	Nantahala River near Rainbow Springs	Lat 35°07'35", long 83°37'11", Macon County, on right bank on Nantahala Forest Service Rd. 437, 300 ft upstream from Roaring Fork, and 5.0 mi downstream from Town of Rainbow Springs.	06010202	51.9	2	3	95	0	F
147	03505500	Nantahala River at Nantahala	Lat 35°17'55", long 83°39'22", Swain County, on left bank on U.S. Hwy. 19, 1.0 mi NE of Nantahala, and 2.8 mi downstream from Nantahala Dam powerhouse	06010202	144	6	5	80	9	N
148	03510500	Tuckasegee River at Dillsboro	Lat 35°21'59", long 83°15'38", Jackson County, on left bank on Secondary Rd. 1377, 0.5 mi downstream from bridge on U.S. Hwy. 23 at Dillsboro.	06010203	347	9	8	80	3	N
149	03512000	Oconaluftee River at Birdtown	Lat 35°27'42", long 83°21'13", Swain County, in Cherokee Indian Reservation, on left bank 200 ft upstream from bridge on Secondary Rd. 1359, and 0.5 mi S of Birdtown.	06010203	184	6	7	86	1	F
150	03513000	Tuckasegee River at Bryson City	Lat 35°25'40", long 83°26'50", Swain County, on left bank 400 ft downstream from bridge on Secondary Rd. 1364, Everett St., in Bryson City.	06010203	655	5	4	89	2	N

Table 1.--Name, location, and physical characteristics of sediment-sampling stations -- Continued

								in per	
Site number (figure	l) Stati		Location	Hydrologic unit	Drainage area (mi²)	Row crop	Pasture	Forest	Urban
151	03548500	Hiwassee River above Murphy	Lat 36°04'49", long 84°00'10", Cherokee County, on right bank of U.S. Hwy. 64, and 2.0 mi SE of Murphy.	06020002	406	7	7	85	1
152	03550000	Valley River at Tomotla	Lat 35°08'20", long 83°58'50", Cherokee County, on right bank 15 ft downstream from bridge on Secondary Rd. 1373 at Tomotla.	06020002	104	6	5	87	2

INTERNATIONAL SYSTEM UNITS

The following factors may be used to convert inch-pound units used in this report to metric (International System) units.

Multiply inch-pound unit	By	To obtain metric unit
	Length	
inch (in.) foot (ft) mile (mi)	25.4 0.3048 1.609	millimeter (mm) meter (m) kilometer (km)
	Area	
acre square mile (mi ²)	0.4047 0.004047 2.590	square meter (m ²) hectare (ha) square kilometer (km ²) square kilometer (km ²)
	<u>Volume</u>	
gallon (gal)	3.785 0.003785	liter (L) cubic meter (m ₃)
million gallons ₃ (Mgal) cubic foot (ft ³) acre-foot (acre-ft)	3785 0.02832 1233.5	cubic meter (m ₃) cubic meter (m ₃) cubic meter (m ₃)
	Flow	
cubic foot per second (ft^3/s)	28.317 0.02832	liter per second (L/s)
million gallons per day (Mgal/d gallon per day (gal/d)		cubic meter per second (L/s) cubic meter per second (m ₃ /s) cubic meter per second ₃ (m ³ /s) cubic meter per day (m ³ /d)
E	low per area	
<pre>cubic foot per second per squar mile [(ft³/s)/mi²]</pre>	re 0.01093	cubic meter per second ₃ per square kilometer [(m ³ /s)/km ²]
	<u>Temperature</u>	
degree Fahrenheit (^O F.)	5/9(^o F-32)	degree Celsius (°C.)
	Mass	
ton (short, 2,000 pounds)	0.9072	megagram (Mg), or metric ton (t)
pounds (1b)	453.59	grams (g)

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929."

