
TECHNIQUES FOR ESTIMATION OF STORM-RUNOFF LOADS, VOLUMES, AND SELECTED CONSTITUENT CONCENTRATIONS IN URBAN WATERSHEDS IN THE UNITED STATES

U.S. GEOLOGICAL SURVEY

Open-File Report 88-191

QE 75 .U58of no.88-191 1988

LIBRARY

RECLAMATION LIBRARY
DO NOT BELLEVILLE OF Reclamation
Denver, Colorado

TECHNIQUES FOR ESTIMATION OF STORM-RUNOFF LOADS,

VOLUMES, AND SELECTED CONSTITUENT CONCENTRATIONS

IN URBAN WATERSHEDS IN THE UNITED STATES

By Nancy E. Driver and Gary D. Tasker

U.S. GEOLOGICAL SURVEY

Open-File Report 88-191

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division Box 25046, Mail Stop 415 Federal Center Denver, CO 80225-0046 Copies of this report can be purchased from:

U.S. Geological Survey
Books and Open-File Reports Section
Federal Center
Box 25425
Denver, CO 80225-0425
[Telephone: (303) 236-7476]

CONTENTS

	Page
Abstract	1
Introduction	1
Purpose and scope	
Acknowledgments	3
Data base	3
Estimating procedures for storm-runoff loads and storm-runoff volumes	6
Methods	6
Selection of response and explanatory variables	7
Definition of homogeneous regions	9
Selection of model form	9
Models	11
Three-variable models	18
Comparisons of all storm-runoff-load and storm-runoff-volume models-	18
Storm-runoff-load models for region I	24
Storm-runoff-load models for region II	25
Storm-runoff-load models for region III	26
Storm-runoff-volume models	33
Three-variable models for storm-runoff loads	34
Limitations of significant explanatory variables	35
Other potentially useful explanatory variables	36
Validation, testing, and application of regression models	36
Split-sample analysis	37
Standardized beta coefficients	
Application of regression models	38
Estimating procedures for storm-runoff mean concentrations	39
Methods	39
Models	40
Estimating procedures for mean seasonal or mean annual loads	43
Response variablemean load for a storm	44
Explanatory variables	46
Methods	47
Models	53
Example	58
Summary	59
References cited	60
Supplemental information	64

FIGURES

		age
Figure	1. Map showing locations of urban-storm-runoff study areas and mean annual rainfall regions in the United States 2-5. Graphs showing:	5
	 Standard errors of estimate for regression models of water- quality constituents and total runoff in three mean annual 	10
	rainfall regions 3. Relation between total storm rainfall and total contributing	19
	drainage area for storms in all three regions 4. Relation between total storm rainfall and total contributing	25
	drainage area for storms in region I	26
	5. Relation between total storm rainfall and total contributing drainage area for storms in region II	32
	6. Relation between total storm rainfall and total contributing drainage area for storms in region III	34
	TABLES	
		age
Table	1. Summary of regression models for storm-runoff loads and volumes	12
	2. Summary of statistics and information for regression models of storm-runoff loads and volumes	13
	3. Summary of three-variable models for storm-runoff loads	20
	4. Ranges of values, standardized beta coefficients, and standard	20
	deviations of log of each explanatory variable in regression models	27
	5. Summary of regression models for storm-runoff mean concentra-	41
	6. Summary of statistics for regression models of storm-runoff mean concentrations	42
	7. Location and long-term rainfall-record data for stations used in a nationwide study of urban mean seasonal and mean	42
	annual loads	45
	8. Explanatory variables used in regression models for mean seasonal or mean annual loads	48
	9. Range of explanatory variables used in regression models of mean seasonal or mean annual loads for indicated response	
	variables	51
	10. Results of regression models of mean loads of a storm for indicated constituents on physical, land-use, or climatic	
	characteristics of the watershed	54
	11. Variance-covariance matrix for regression parameter estimates	
	for each of the 10 regression models 12A-J. Mean seasonal or mean annual loads, mean load for a storm,	56
	and at-site regression results for:	
	12A. Chemical oxygen demand for the stations used in a nationwide	
	study of urban mean seasonal and mean annual loads	65
	12B. Suspended solids for the stations used in a nationwide study of urban mean seasonal and mean annual loads	67

			Page
Tables	12 A- J.	Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for:Continued	
	12C.	Dissolved solids for the stations used in a nationwide	
		study of urban mean seasonal and mean annual loads	69
	12D.	Total nitrogen for the stations used in a nationwide	
		study of urban mean seasonal and mean annual loads	70
	12E.	Total ammonia plus organic nitrogen as nitrogen for the	
		stations used in a nationwide study of urban mean	
		seasonal and mean annual loads	72
	12F.	Total phosphorus for the stations used in a nationwide	
		study of urban mean seasonal and mean annual loads	74
	12G.	Dissolved phosphorus for the stations used in a nationwide	
		study of urban mean seasonal and mean annual loads	76
	12H.	Total recoverable copper for the stations used in a nationwide study of urban mean seasonal and mean annual	
		loads	77
	121.	Total recoverable lead for the stations used in a nationwide study of urban mean seasonal and mean annual loads	78
	12 <i>J</i> .	Total recoverable zinc for the stations used in a nationwide study of urban mean seasonal and mean annual loads	

CONVERSION FACTORS AND ABBREVIATIONS

Readers who prefer metric (International System) units of measurement rather than the inch-pound units used in this report may use the following conversion factors:

Multiply inch-pound unit	By	To obtain metric unit
inch	25.40	millimeter
mile	1.609	kilometer
pound	0.4536	kilogram
pound per acre	544.75	kilogram per square kilometer
square mile	2.589	square kilometer
cubic foot	0.0283	cubic meter

Temperature can be converted to degree Celsius (°C) by the following equation:

$$^{\circ}F = 9/5(^{\circ}C) + 32.$$

Abbreviations used in this report are:

 $\hat{\beta}_0.\text{--Regression}$ coefficient that is the intercept in the regression model, $\hat{\beta}_0{}^\prime \ = \ 10^{\hat{\beta}_0}.$

BCF.--Bias correction factor. A factor that is included in the detransformed regression model to provide a consistent estimator of the mean response.

- CD.--Total recoverable cadmium in storm-runoff load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- COD.--Chemical oxygen demand in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- CU.--Total recoverable copper in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- DA. -- Total contributing drainage area, in square miles.
- DP.--Dissolved phosphorus in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- DRN.--Duration of each storm, in minutes, for storm-runoff load and mean concentration models, and, in hours, for mean seasonal or mean annual load models.
- DS.--Dissolved solids in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- IA. -- Impervious area, as a percent of total contributing drainage area.
- INT.--Maximum 24-hour precipitation intensity that has a 2-year recurrence interval, in inches.
- LUC. -- Commercial land use, as a percent of total contributing drainage area.
- LUI. -- Industrial land use, as a percent of total contributing drainage area.
- LUN. -- Nonurban land use, as a percent of total contributing drainage area.
- LUR. -- Residential land use, as a percent of total contributing drainage area.
- MAR. -- Mean annual rainfall, in inches.
- MJT.--Mean minimum January temperature, in degrees Fahrenheit.
- MNL. -- Mean annual nitrogen load in precipitation, in pounds of nitrogen per acre.
- PB.--Total recoverable lead in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- PD. -- Population density, in people per square mile.
- R^2 .--Coefficient of multiple determination; it measures the proportion of total variation about the mean \overline{Y} explained by the regression.
- RUN. -- Storm-runoff volume, in cubic feet.
- SS.--Suspended solids in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- TKN.--Total ammonia plus organic nitrogen as nitrogen in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- TN.--Total nitrogen in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter
- TP.--Total phosphorus in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- TRN. -- Total storm rainfall, in inches.
- ZN.--Total recoverable zinc in storm-runoff load or mean seasonal or mean annual load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- I.--Region I representing areas that have mean annual rainfall less than 20 inches.
- II.--Region II representing areas that have mean annual rainfall of 20 to less than 40 inches.

III.--Region III representing areas that have mean annual rainfall equal to or greater than 40 inches.

TECHNIQUES FOR ESTIMATION OF STORM-RUNOFF LOADS, VOLUMES, AND SELECTED CONSTITUENT CONCENTRATIONS IN URBAN WATERSHEDS IN THE UNITED STATES

By Nancy E. Driver and Gary D. Tasker

ABSTRACT

Urban planners and managers need information on the quantity of precipitation and the quality and quantity of runoff in their cities and towns if they are to adequately plan for the effects of storm runoff from urban areas. As a result of this need, four sets of linear regression models were developed for estimating storm-runoff constituent loads, storm-runoff volumes, storm-runoff mean concentrations of constituents, and mean seasonal or mean annual constituent loads from physical, land-use, and climatic characteristics of urban watersheds in the United States. Thirty-four regression models of storm-runoff constituent loads and storm-runoff volumes were developed, and 31 models of storm-runoff mean concentrations were developed. Ten models of mean seasonal or mean annual constituent loads were developed by analyzing long-term storm-rainfall records using at-site linear regression models.

Three statistically different regions that were delineated on the basis of mean annual rainfall were used to improve linear regression models where adequate data were available. Multiple regression analyses, including ordinary least squares and generalized least squares, were used to determine the optimum linear regression models. These models can be used to estimate storm-runoff constituent loads, storm-runoff volumes, storm-runoff mean concentrations of constituents, and mean seasonal or mean annual constituent loads at gaged and ungaged urban watersheds.

The most significant explanatory variables in all linear regression models were total storm rainfall and total contributing drainage area. Impervious area, land-use, and mean annual climatic characteristics also were significant explanatory variables in some linear regression models. Models for estimating loads of dissolved solids, total nitrogen, and total ammonia plus organic nitrogen as nitrogen generally were the most accurate, whereas models for suspended solids were the least accurate. The most accurate models were those for application in the more arid Western United States, and the least accurate models were those for areas that had large mean annual rainfall.

INTRODUCTION

As a result of the Clean Water Act of 1977 (PL 95-217), the Nationwide Urban Runoff Program (NURP) was developed to assess the nature and cause of urban runoff and its effects on surface and ground water. The goals of NURP were to develop information to determine whether or not urban runoff was affecting water quality and to provide the means to control nonpoint sources of pollution from urban areas. In response to this need, the U.S. Geological Survey and the U.S. Environmental Protection Agency in cooperation with State and local governments conducted programs to collect and analyze storm

rainfall, runoff, and water-quality data in numerous cities throughout the United States. The objective was to provide needed data for cities to properly plan, zone, and design storm-runoff areas.

Urban storm runoff is becoming a substantial source of surface-water pollution in the United States. Because collection and analysis of urbanstorm-runoff data are expensive and time consuming, city planners and engineers need techniques to estimate: (1) Discharge-weighted storm-runoff constituent loads (hereinafter referred to as storm-runoff loads), (2) stormrunoff volumes, (3) mean concentrations of constituents during storm runoff (hereinafter referred to as storm-runoff mean concentrations), and (4) mean seasonal or mean annual constituent loads (hereinafter referred to as mean seasonal or mean annual loads) where minimal or no data exist. Current (1988) and past storm-runoff data-collection and analysis projects are site oriented and isolated cases. Pollutants need to be categorized and characterized on the basis of climatic properties, physical and land-use characteristics, and geographic locations. Colyer and Yen (1983) identified the need for a generalized pollution prediction method, based on a sufficient quantity of data, for use at ungaged watersheds or watersheds with future urbanization. To fulfill this need, regression models based on a national urban waterquality data base were developed to relate storm-runoff loads and volumes, storm-runoff mean concentrations, and mean seasonal or mean annual loads to urban physical, land-use, and climatic characteristics to predict these variables at ungaged urban watersheds.

Previous studies about estimating storm-runoff loads and mean seasonal or mean annual loads have been done on a site-specific basis in metropolitan areas throughout the United States. Selected references for U.S. Geological Survey studies are listed in Driver and others (1985), and selected references for U.S. Environmental Protection Agency site-specific studies are described by the U.S. Environmental Protection Agency (1983). Additional generalized techniques have been developed to estimate pollutant loads at urban watersheds. Young and others (1979) devised a simplified method to evaluate the severity of nonpoint-source loads for urban watersheds. The U.S. Environmental Protection Agency (1983) provided a national summary of urban-runoff characteristics in a table for planning-level purposes. These characteristics were intended for use as estimates to be used in the absence of any local information. A derived distribution approach to identify the effects of urbanization on frequencies of overflows and pollutant loadings from storm sewer overflows was developed by Loganathan and Delleur (1984). Preliminary findings for the national estimation of urban storm-runoff loads were reported by Driver and Lystrom (1986; 1987).

A variety of deterministic urban water-quality models are available for estimating pollutant loadings. Reviews of available models were done by Huber and Heaney (1982), Kibler (1982), and Whipple and others (1984). Huber (1986) reviewed deterministic urban-runoff-quality estimating procedures in detail.

Purpose and Scope

The purpose of this report is to describe the methods and models of three procedures for estimating: (1) Storm-runoff loads and storm-runoff volumes,

(2) storm-runoff mean concentrations, and (3) mean seasonal or mean annual loads. The first phase involved the development of linear regression models (hereinafter referred to as regression models) to estimate selected stormrunoff loads and volumes for urban watersheds on a regional basis. For this analysis, the United States was divided into three regions on the basis of mean annual rainfall. For each region, a regression model was developed that related 11 storm-runoff loads and volumes to physical, land-use, and climatic characteristics. Coefficients of multiple determination (R2) and standard errors of estimate are presented to provide indicators of adequacy of fit of the regression model to the data and of the accuracy of estimates. Stormrunoff loads for 11 constituents -- including chemical oxygen demand, suspended solids, dissolved solids, total nitrogen, total ammonia plus organic nitrogen as nitrogen (total Kjeldahl nitrogen), total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, and total recoverable zinc -- and storm-runoff volumes have been analyzed. Thirty-four models and corresponding statistics for storm-runoff loads and volumes are included in this report.

The second phase involved developing regression models to estimate storm-runoff mean concentrations, defined as the storm-runoff load divided by the storm-runoff volume. The same regions, water-quality constituents, and sets of explanatory variables for each storm-runoff-load model that was developed in the first phase of this report were used in the second phase. For each region, a regression model also was developed that related 11 storm-runoff mean concentrations to physical, land-use, and climatic characteristics. These regression models and corresponding statistics for the storm-runoff mean concentrations are presented.

The third phase involved determining values of mean seasonal or mean annual loads for selected watersheds and developing regional regression models for estimation of mean seasonal or mean annual loads that enter receiving water in urban watersheds. The water-quality constituents for the mean seasonal or mean annual loads include chemical oxygen demand, suspended solids, dissolved solids, total nitrogen, total ammonia plus organic nitrogen as nitrogen (total Kjeldahl nitrogen), total phosphorus, dissolved phosphorus, total recoverable copper, total recoverable lead, and total recoverable zinc. The regression models were based on physical, land-use, and climatic characteristics of urban watersheds.

Acknowledgments

The authors gratefully acknowledge several U.S. Geological Survey personnel: Brent Troutman for his advice on and review of statistical analyses of the data; David J. Lystrom, Wilbert O. Thomas, Jr., and Kenneth L. Wahl for their review of the statistics and hydrology; and Marshall E. Jennings for technical support.

DATA BASE

The urban storm-runoff data base used for this report was developed by combining U.S. Geological Survey and U.S. Environmental Protection Agency

urban storm-runoff data bases. The Survey data base consists of two complementary data bases. Driver and others (1985) compiled a national urban-storm-runoff data base that contains time-series values of rainfall and runoff, water-quality analyses, and physical and land-use characteristics for 99 watersheds monitored by the Survey. In a related effort, watershed maps that depict topographic, drainage, and land-use characteristics were compiled for most of the same urban watersheds (M.E. Jennings, U.S. Geological Survey, oral commun., 1987). The second data base, compiled by Mustard and others (1987), is composed of computed storm-runoff loads and characteristics of rainfall and runoff and includes physical, land-use, and antecedent conditions data for 98 of the 99 previously mentioned urban stations where streamflow, stream water-quality, precipitation, and limited precipitation-quality data were collected. The Survey data base used in this report includes data for 1,123 storms for 98 urban stations in 20 metropolitan areas (fig. 1).

The U.S. Environmental Protection Agency data base (U.S. Environmental Protection Agency, 1983) consists of similar data for 1,690 storms for 75 urban stations in 15 metropolitan areas (fig. 1). (The U.S. Geological Survey and U.S. Environmental Protection Agency data bases have five metropolitan areas in common.) Storm-runoff loads were computed by the Survey using published values of total storm runoff and storm-runoff mean concentrations. Information for a U.S. Environmental Protection Agency station was included in the combined data base for joint analysis if adequate data existed for one or more storms at each station. The minimal data included (1) storm-runoff mean concentration values; (2) total rainfall and storm-duration values; and (3) total contributing drainage-area, impervious-area, and land-use values.

The U.S. Geological Survey and U.S. Environmental Protection Agency data bases were combined to create a common set of water-quality constituents-biochemical oxygen demand, chemical oxygen demand, total suspended solids, total nitrite plus nitrate, total ammonia plus organic nitrogen as nitrogen, fecal coliform bacteria, total phosphorus, dissolved phosphorus, total recoverable copper, total recoverable lead, and total recoverable zinc. Total nitrogen was calculated by adding total ammonia plus organic nitrogen as nitrogen and total nitrite plus nitrate. Common physical and land-use characteristics included total contributing drainage area, basin slope, percent of impervious area, five categories of land use--residential, commercial, industrial, open, and other--and population density. In the analyses, open and other land uses were combined to create a nonurban land-use category. Common storm characteristics included total storm rainfall, total storm runoff, and storm duration.

Data for stations that were included in both data bases were compared to indicate how well the data bases coincided. Runoff loads and characteristics for storms that were common to both data sets were compared. Basin characteristics also were compared. Generally, there was little difference between the two data sets.

The values of storm-runoff mean concentrations for the Survey data were calculated by dividing the storm-runoff load, in pounds, by the average storm-runoff depth over the basin, in inches, and the total contributing drainage area, in square miles, multiplied by a conversion factor. The values of storm-runoff mean concentrations for the U.S. Environmental Protection Agency data

were cited from the results of NURP (U.S. Environmental Protection Agency, 1983). In the U.S. Environmental Protection Agency study, the concentration of the flow-weighted composite sample was used to represent the storm-runoff mean concentration. Where sequential discrete samples were collected over the hydrograph, the storm-runoff mean concentration was determined by calculating the area under the curve of concentration multiplied by discharge rate over time and dividing it by the area of the curve of runoff volume over time. Comparisons of values of storm-runoff mean concentration for storms that were common to both data sets were made. Generally, there was little difference between the two data sets.

Figure 1.--Locations of urban-storm-runoff study areas and mean annual rainfall regions in the United States.

Mean seasonal and mean annual loads were based on storm-runoff loads obtained from the U.S. Geological Survey and U.S. Environmental Protection Agency data bases described in the preceding paragraphs. Long-term rainfall characteristics, used to calculate long-term mean seasonal and mean annual loads, were obtained from National Oceanic and Atmospheric Adminstration weather tapes (Warren, 1983). Procedures for calculating mean seasonal and mean annual loads are discussed in the "Estimating Procedures for Mean Seasonal or Mean Annual Loads" section.

ESTIMATING PROCEDURES FOR STORM-RUNOFF LOADS AND STORM-RUNOFF VOLUMES

Methods

Storm-runoff loads or storm-runoff volumes can be estimated by either deterministic or statistical models. Because of the costs and uncertain accuracy of deterministic models for ungaged sites, statistical models, which should be sufficient for planning purposes at most ungaged sites, were selected to develop the relation of physical, land-use, and climatic characteristics to storm-runoff loads and volumes. Troutman (1985) states that "a model, no matter how simple, complex, or physically based, becomes a statistical model simply by representing the errors in the model as random variables and imposing a probablistic structure on them." A study comparing results of deterministic and regression models of storm-runoff loads and volumes in Denver, Colo., indicated that neither type of model consistently was more accurate than the other when applied to a particular basin (Lindner-Lunsford and Ellis, 1987). A study assessing commonly used flood-frequency methods compared deterministic and regression models for determining peak flood-flow frequencies for rural ungaged watersheds (Newton and Herrin, 1982). The study was based on information developed during a pilot test that evaluated the feasibility of a nationwide test to discriminate between procedures for estimating peak flood-flow frequencies for ungaged watersheds. The authors concluded that the most accurate and reproducible procedures evaluated were regression-based procedures in which estimating models are calibrated to flood-frequency determinations at gaged locations.

In this study, regional regression models were developed that related storm-runoff loads and volumes to easily measured physical, land-use, and climatic characteristics. In regression analysis, the storm-runoff loads or volumes were response variables, and selected physical, land-use, and climatic characteristics were explanatory variables. Accuracy of the estimates of storm-runoff loads or volumes (standard error of estimate) is a function of the difference between measured and estimated storm-runoff loads or volumes.

In a simplistic assessment, storm-runoff loads or volumes could be estimated from their mean values for each region. However, more accurate estimates of storm-runoff loads or volumes can result by using multiple-regression analysis to relate these response variables to physical, land-use, and climatic characteristics. Regional analyses account for spatial variations in storm-runoff loads or volumes that are caused by regional differences in characteristics directly or indirectly affecting storm-runoff loads or volumes.

Selection of Response and Explanatory Variables

The data base for this report, as described in the "Data Base" section, is comprised of 2,813 storms at 173 urban stations in 30 metropolitan areas throughout the United States. (The U.S. Geological Survey and U.S. Environmental Protection Agency data bases have five metropolitan areas in common.) For analysis, storms were selected from the data base according to certain assumptions and availability of specific variables. When a variable selected for a specific analysis was unavailable for a storm, that storm was omitted from the analysis. No attempts were made to estimate missing variables. Because of missing data, less than 2,813 storms were used for most analyses.

Regional regression models were developed for 11 storm-runoff loads plus storm-runoff volume. The 11 storm-runoff loads, expressed in pounds, are chemical oxygen demand (COD), suspended solids (SS), dissolved solids (DS), total nitrogen (TN), total ammonia plus organic nitrogen as nitrogen (TKN), total phosphorus (TP), dissolved phosphorus (DP), total recoverable cadmium (CD), total recoverable copper (CU), total recoverable lead (PB), and total recoverable zinc (ZN). Storm-runoff volumes (RUN) are expressed in inches. Storm-runoff loads of DS and CD are available only in the Survey data base. All abbreviations are described in the "Conversion Factors and Abbreviations" section and will be used throughout the report.

The response variables (storm-runoff loads and volumes) were selected according to the frequency of that variable in the data base and according to the general importance of the variable in urban planning. Although one of the assumptions of regression analysis is that the errors are uncorrelated in time, some storm-runoff loads and volumes may be slightly correlated because some storms were sampled consecutively in a watershed. This correlation in the response variable is negligible in this analysis, because most storms were well separated in time.

Explanatory variables used in the regression models of storm-runoff loads and volumes include the following:

Physical and land-use characteristics:

- 1. Total contributing drainage area (DA), in square miles.
- 2. Impervious area (IA), as a percent of total contributing drainage area.
- 3. Industrial land use (LUI), as a percent of total contributing drainage area.
- 4. Commercial land use (LUC), as a percent of total contributing drainage area.
- 5. Residential land use (LUR), as a percent of total contributing drainage area.
- 6. Nonurban land use (LUN), as a percent of total contributing drainage area.

7. Population density (PD), in people per square mile.

Climatic characteristics:

- 1. Total storm rainfall (TRN), in inches.
- 2. Duration of each storm (DRN), in minutes.
- 3. Maximum 24-hour precipitation intensity that has a 2-year recurrence interval (INT), in inches.
- 4. Mean annual rainfall (MAR), in inches.
- 5. Mean annual nitrogen load in precipitation (MNL), in pounds of nitrogen per acre.
- 6. Mean minimum January temperature (MJT), in degrees Fahrenheit.

Highly correlated explanatory variables were identified so they would not be combined in the same model. Alley and Veenhuis (1979) reported a high correlation between land use and percent effective impervious area. In this report, because the correlation between land use and impervious area was high, the most significant of these explanatory variables was selected for each model. Explanatory variables also were selected on the basis of the frequency of availability of the variables in the data base, on the ease of measurement of the variables by urban planners, and on the basis that various combinations of explanatory variables were physically logical. For instance, mean annual climatic characteristics were not combined in a model because rainfall, temperature, and rainfall intensity all are highly related to one another. Also, impervious area and land uses were not combined in a model because the variables explain similar physical processes. Although storm-runoff volume generally fulfilled the explanatory-variable selection criteria, storm-runoff loads (constituent concentration multiplied by storm-runoff volume) are not regressed against storm-runoff volume because storm-runoff data are more difficult and expensive to collect than physical, land-use, and storm characteristics.

Selection of explanatory variables for each regression model was made using stepwise regression procedures available through the Statistical Analysis System¹ (SAS Institute, 1985). The primary criterion for selecting the most appropriate set of explanatory variables was that regression coefficients were significantly different from zero (Draper and Smith, 1981) at a 5-percent level. Several other criteria were applied to distinguish between explanatory variable sets that fulfilled the primary criterion. These were: (1) The mean square error (δ^2) , the variance about the regression, which represents a measure of error with which any observed value of Y could be predicted from a given value of X using the determined model; (2) the coefficient of multiple determination (R2), which measures the proportion of total variation about the mean \overline{Y} explained by the regression; (3) Mallows' Cp statistic, which is a measure of the squared bias and variance of the error (Draper and Smith, 1981); (4) the signs on the coefficients of the explanatory variables; and (5) correlation among the explanatory variables, which was intended to decrease the multicollinearity among the explanatory variables.

Definition of Homogeneous Regions

Initially, all data were analyzed together, and the most accurate regression models were selected for each constituent. Then the data were analyzed on a regional/stratified basis to evaluate if the regression models could be improved. Regionalization on the basis of statistically aggregated patterns and physical settings has been beneficial in many hydrologic studies including Waylen and Woo (1984), Kircher and others (1985), and Schuster and Yakowitz (1985).

The optimum regional divisions were selected after testing the following possible basis for regionalization or stratification: physiographic divisions, geographic divisions, total contributing drainage areas, impervious areas, 2-year 24-hour rainfall, mean annual rainfall, and mean minimum January temperatures. The resultant regionalized models were compared with the regression models representing all the data. Regionalization improved the accuracy of the regression models. According to the smallest standard errors of estimate, the regional breakdown that provided the best regression results was based on mean annual rainfall. Analysis of covariance was done on data in regions based on mean annual rainfall to determine if the regions were significantly different from one another. The three regions were different statistically from one another at a 1-percent or better significance level, according to a F-test. The F-test is used to test if the variation observed between the regions is greater than would be expected by chance in $100(1-\alpha)$ percent similar sets of data with the same values of n and X. The coefficients for each explanatory variable in the regression models differed significantly between regions. The F-test further verified that regionalization was appropriate.

The United States was divided into three geographically distinguishable regions (fig. 1) that represented areas that have mean annual rainfall less than 20 inches (region I), mean annual rainfall of 20 to less than 40 inches (region II), and mean annual rainfall equal to or greater than 40 inches (region III). Geographically, metropolitan areas in region I included the Western United States, excluding Hawaii, Oregon, and Washington; metropolitan areas in region II included the Mideastern and Northwestern United States, and Hawaii; and metropolitan areas in region III included the Southern United States and the coastal Northeastern United States. Values of mean annual rainfall can be determined from data listed in the National Oceanic and Atmospheric Administration (1980).

Selection of Model Form

Coinciding with selection of the best explanatory-variable sets and regions, the best transformations for each regression model were determined. Transformations are used to achieve linearity of the regression function, normality of residuals, and to stabilize the error variance. The Box and Cox maximum-likelihood method (Draper and Smith, 1981) was used for selecting the best transformation for the response variable. For all regression models of

¹Use of the firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

storm-runoff loads and volumes, the best transformation for the response variable was the logarithmic transformation. The logarithmic transformation is appropriate because there generally is more uncertainty associated with larger storm-runoff volumes and, therefore, with larger storm-runoff loads than with smaller storm-runoff loads or volumes (lack of homoscedasticity). Homoscedasticity, which is one of the standard assumptions of least-squares theory infers constancy of error variance for all observations. The net effect of the transformation is to assign less weight to the more uncertain, large storm-runoff loads or volumes; as a result, during the calibration period, the fit will seem worse for larger storm-runoff loads or volumes than if the calibration had been done without transformation. However, estimates of regression coefficients probably are more accurate (Troutman, 1985).

Plots of residuals, which are the differences between the measured values and the regression predictions, were examined to determine the best transformation for the explanatory variables. On the basis of minimizing the standard error of estimate, logarithmic transformation also was found generally to be more suitable for the explanatory variables in all models of storm-runoff loads and volumes. Multiple regression models that use the power regression function, which is based on logarithmic transformations of the response and explanatory variables, are in the following form:

$$\log \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \times \log X_1 + \hat{\beta}_2 \times \log X_2 + \ldots + \hat{\beta}_n \times \log X_n , \qquad (1)$$

where

 \hat{Y} = estimated storm-runoff load or volume (response variable);

 $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_n$ = regression coefficients;

 X_1 , X_2 , ..., X_n = physical, land-use, or climatic characteristics (explanatory variables); and

n = number of physical, land-use, and climatic characteristics
 in the regression model.

The most appropriate regression models were selected using stepwise regression and the criteria noted earlier. All models were tested further to ensure that they satisfied the assumptions of regression. One necessary assumption for obtaining accurate results from ordinary least-squares regression is that the random errors (residuals), which are the differences between the measured values and the regression predictions, have constant variance throughout the range of the explanatory variables (homoscedasticity). Some violations of the constant-variance assumption can be detected by plotting the residual values against the predicted values. Residual plots for all the regression models in each region indicated that the variance of the residuals seems to be reasonably constant throughout the entire range of prediction.

When equation 1 is detransformed it becomes:

$$\hat{Y} = \hat{\beta}_0' \times X_1^{\hat{\beta}_1} \times X_2^{\hat{\beta}_2} \dots X_n^{\hat{\beta}_n}, \qquad (2)$$

where

$$\hat{\beta}_0' = 10^{\hat{\beta}_0}.$$

Miller (1984), Koch and Smillie (1986), and Ferguson (1986) reported that detransformation of a fitted regression model provides a consistent estimator of median response, but the detransformation systematically underestimates the mean response. Therefore, a bias-correction factor needs to be included in the detransformed regression model if an unbiased estimate of the mean is to be obtained. Bias-correction factors were estimated using a parametric method (Miller, 1984) and using a nonparametric method (Duan, 1983). The values were similar, and the nonparametric method was used. A bias-correction factor (BCF) was calculated for each model by using a smearing estimate that is a nonparametric method based on the average residuals in original units according to suggestions in Duan (1983). As a result of this BCF, the form of the regression model that applies to all models of storm-runoff loads and volumes (equation 1) is:

$$\hat{Y} = \hat{\beta}_0' \times X_1^{\hat{\beta}_1} \times X_2^{\hat{\beta}_2} \dots X_n^{\hat{\beta}_n} \times BCF . \tag{3}$$

Models

Thirty-one storm-runoff-load models and three storm-runoff-volume models were developed for metropolitan areas throughout the United States. The models were developed using ordinary least-squares regression. Except for dissolved solids and cadmium, there was one regression model for each of the storm-runoff loads and volumes in each of the three mean annual rainfall regions. The regression models for dissolved solids and cadmium in region III were omitted because only one metropolitan area was represented. One metropolitan area in a region was not adequate for development of a regression model because four of the explanatory variables (INT, MAR, MNL, MJT) had only one common value for all watersheds in a metropolitan area.

The regression models and their corresponding BCF's are listed in table 1. Equation 3 defines the regression model used to compute these storm-runoff loads and volumes. The metropolitan areas, R^2 , standard errors of estimate (expressed in percent and in logs), standard deviations of log of response variable, mean of log of response variable, average prediction errors, and number of storms and stations corresponding to each regression model are listed in table 2. R^2 indicates the proportion of the

Table 1.--Summary of regression models for storm-runoff loads and volumes

 $[\hat{\beta}_0]$ is the regression coefficient that is the intercept in the regression model; TRN is total storm rainfall; DA is total contributing drainage area; IA is impervious area; LUI is industrial land use; LUC is commercial land use; LUR is residential land use; LUN is nonurban land use; PD is population density; DRN is duration of each storm; INT is maximum 24-hour precipitation intensity that has a 2-year recurrence interval; MAR is mean annual rainfall; MNL is mean annual nitrogen load in precipitation; MJT is mean minimum January temperature; BCF is bias correction factor; COD is chemical oxygen demand in storm-runoff load, in pounds; I is region I representing areas that have mean annual rainfall less than 20 inches; II is region II representing areas that have mean annual rainfall equal to or greater than 40 inches; SS is suspended solids in storm-runoff load, in pounds; DS is dissolved solids in storm-runoff load, in pounds; TN is total nitrogen in storm-runoff load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in storm-runoff load, in pounds; TP is total phosphorus in storm-runoff load, in pounds; DP is dissolved phosphorus in storm-runoff load, in pounds; CD is total recoverable cadmium in storm-runoff load, in pounds; CU is total recoverable copper in storm-runoff load, in pounds; ZN is total recoverable zinc in storm-runoff load, in pounds; RUN is storm-runoff volume, in cubic feet; dashes (--) indicate that the variable is not included in the model; equation form is:

$$Y = \hat{\beta}_0' \times X_1^{\beta^1} \times X_2^{\beta^2} \dots X_n^{\beta_n} \times BCF$$

						Regr	ession coe	efficient	s						
Response variable and region		TRN (inches)	DA (square miles)	IA +1 (per- cent)	LUI +1 (per- cent)	LUC +1 (per- cent)	LUR +1 (per- cent)	LUN +2 (per- cent)	PD (people per square mile)	e DRN (minutes)	INT (inches)	MAR	MNL (pounds of nitrogen per acre)	M.JT (degrees Fahren- heit)	ВСЕ
COD II	7,111 36.6 479	0.671 .878 .857	0.617 .696 .634		0.415 .072 .321	0.267 .261 .217		-0.156 056 111				-0.683 .866			1.304 1.389 1.865
SS I SS II SS III	1,518 2,032 1,990	1.211 1.233 1.017	.735 .439 .984	0.274	.226	.228	==	 286	0.041	-0.463 	==	Ξ	==	-0.590	2.112 1.841 2.477
OS I	54.8 2,308	.585 1.076	1.356 1.285	1.383 1.348								718 		 -1.395	1.239
TN I TN II TN III	1,132 3.173 .361		.960 .939 .474	.672 .611	.462 	.260 	 	194 	==	==		951 	0.196 .863		1.139 1.372 1.709
CKN I CKN II CKN III	18.9 2.890 199,572	.670 .906 .875	.831 .768 .393	.545	.378	.258	 	219 .082		==	=	 -2.643	1.350 .225		1.200 1.513 1.730
P II P III	262 .153 53.2	.828 .986 1.019	.645 .649 .846	 .479	.583	.181	 0.103	235 '160	Ξ		1.543	-1.376 		 -0.754	1.54 1.48 2.05
OP II OP III	588 .025 .369		.726 .699 .471	.649	.642	.096		238 .364	=	=	1.024	-1.899 		==	1.40 1.59 2.02
D I	.039	.845 1.168	.753 1.265	==	.138	.248	==	374		Ξ	=	Ξ		.965	1.24
U II U III	.141 .013 4.508		.590 .585 .609	.816	.424	.274	==	061* 328	=	= .	.928 -2.071	=		==	1.50 1.53 2.14
PB II PB III	478 .076 .081		.918 .381 .857	.999	161 	.276 .243	.087	282 181		=	Ï	-1.829 .574	==		1.58 1.58 2.31
ZN I ZN II ZN III	224 .002 4.355		.792 .667 .555	1.009	 .402	.172 .287	195 191	142 			Ξ	-1.355 	=	1.149 500	1.44 1.75 1.94
RUN I RUN II RUN III	1,123,052 62,951 32,196	1.016 1.127 1.042	.916 .809 .826	.677 .522 .669				==			==	-1.312	Ξ	=	1.29 1.21 1.52

Table 2.--Summary of statistics and information for regression models of storm-runoff loads and volumes

[This table corresponds to models in table 1; COD is chemical oxygen demand in storm-runoff load, in pounds; I is region I representing areas that have mean annual rainfall less than 20 inches; II is region II representing areas that have mean annual rainfall of 20 to less than 40 inches; III is region III representing areas that have mean annual rainfall equal to or greater than 40 inches; SS is suspended solids in storm-runoff load, in pounds; DS is dissolved solids in storm-runoff load, in pounds; TN is total nitrogen in storm-runoff load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in storm-runoff load, in pounds; TP is total phosphorus in storm-runoff load, in pounds; DP is dissolved phosphorus in storm-runoff load, in pounds; CD is total recoverable cadmium in storm-runoff load, in pounds; CD is total recoverable lead in storm-runoff load, in pounds; Zn is total recoverable zinc in storm-runoff load, in pounds; RUN is storm-runoff volume, in cubic feet]

Response variable and			Standard error of estimate		Standard deviation of log of response variable	Mean of log of response variable	Average prediction error	Number of	Number of
region	Metropolitan areas	R ²	(percent)	(log)	(pound)	(pound)	(percent)	storms	stations
COD I	Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	0.76	86	0.324	0.653	2.479	104	216	21
COD II	Honolulu, Hawaii; Champaign-Urbana, Ill.; Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Kansas City, Mo.; Rochester, N.Y.; Columbus, Ohio; Portland, Oreg.; Bellevue, Wash.; Milwaukee, Wis.	.71	97	.355	. 659	2.078	98	793	57
COD III	Washington, D.C.; Miami, Fla.; Tampa, Fla.; Boston, Mass.; Baltimore, Md.; Winston-Salem, N.C.; Durham, N.H.; Long Island, N.Y.; Knoxville, Tenn.	.51	169	.505	.723	1.695	150	567	33
SS I	Denver, Colo.; Salt Lake City, Utah	.55	230	.589	.876	2.659	334	176	19
SS II	Champaign-Urbana, Ill.; Glen Ellyn, Ill.; Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Kansas City, Mo.; Rochester, N.Y.; Austin, Tex.; Bellevue, Wash.; Milwaukee, Wis.	.62	165	.498	.807	2.303	327	964	44
SS III	Washington, D.C.; Tampa, Fla.; Boston, Mass.; Baltimore, Md.; Winston-Salem, N.C.; Durham, N.H.; Knoxville, Tenn.; Houston, Tex.	.56	265	.627	.943	1.708	269	528	29

Table 2.--Summary of statistics and information for regression models of storm-runoff loads and volumes--Continued

Response variable and			of es	d error stimate	Standard deviation of log of response variable	Mean of log of response variable	Average prediction error	Number of	Number of
region	Metropolitan areas	R ²	(percent)	(log)	(pound)	(pound)	(percent)	storms	stations
DS I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Albuquerque, N. Mex.; Salt Lake City, Utah	0.93	73	0.285	1.096	2.346	152	175	17
DS II	Honolulu, Hawaii; Glen Ellyn, Ill.; Columbus, Ohio; Portland, Oreg.; Bellevue, Wash.; Milwaukee, Wis.	.92	69	.272	.993	2.260	77	281	21
TN I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Albuquerque, N. Mex.	.95	57	.230	1.020	.997	56	121	16
TN II	Honolulu, Hawaii; Glen Ellyn, Ill.; Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Lake George, N.Y.; Columbus, Ohio; Austin, Tex.; Milwaukee, Wis.	.77	97	.353	.741	.718	86	574	45
TN III	Washington, D.C.; Miami, Fla.; Tampa, Fla.; Boston, Mass.; Baltimore, Md.; Winston-Salem, N.C.; Durham, N.H.; Long Island, N.Y.; Knoxville, Tenn.	.35	165	.498	.617	.240	219	617	37
TKN I	Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	.86	71	.277	.723	.853	68	188	23
TKN II	Honolulu, Hawaii; Champaign-Urbana, Ill.; Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Lake George, N.Y.; Rochester, N.Y.; Columbus, Ohio; Portland, Oreg.; Austin, Tex.; Bellevue, Wash.; Milwaukee, Wis.	.75	106	.377	.751	.471	87	859	62
TKN III	Washington, D.C.; Miami, Fla.; Tampa, Fla.; Boston, Mass.; Winston-Salem, N.C.; Baltimore, Md.; Durham, N.H.; Long Island, N.Y.; Knoxville, Tenn.; Houston, Tex.	.40	165	.498	. 639	.098	116	613	35

Table 2.--Summary of statistics and information for regression models of storm-runoff loads and volumes--Continued

Response variable and			Standard of est		Standard deviation of log of response variable	Mean of log of response variable	Average prediction error	Number of	Number of stations
region	Metropolitan areas	R ²	(percent)	(log)	(pound)	(pound)	(percent)	storms	
TP I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	0.72	128	0.427	0.794	-0.086	131	186	19
TP II	Honolulu, Hawaii; Champaign-Urbana, Ill.; Ann Arbor, Mich.; Lansing, Mich.; Kansas City, Mo.; St. Paul, Minn.; Lake George, N.Y.; Rochester, N.Y.; Columbus, Ohio; Portland, Oreg.; Austin, Tex.; Bellevue, Wash.; Milwaukee, Wis.	.64	116	.401	. 669	393	96	1,091	60
TP III	Washington, D.C.; Tampa, Fla.; Miami, Fla.; Boston, Mass.; Baltimore, Md.; Winston-Salem, N.C.; Durham, N.H.; Knoxville, Tenn.; Houston, Tex.	.54	192	.540	. 795	604	203	639	35
DP I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	.76	100	.363	.727	372	103	248	23
DP II	Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Kansas City, Mo.; Lake George, N.Y.; Bellevue, Wash.; Milwaukee, Wis.	.64	119	.408	.679	-1.035	169	469	31
DP III	Washington, D.C.; Boston, Mass.; Baltimore, Md.; Knoxville, Tenn.	.39	180	.523	.667	-1.020	171	247	16
CD I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	.80	82	.311	.678	-2.648	85	65	15
CD II	Rochester, N.Y.; Columbus, Ohio	.65	105	.374	.608	-1.793	87	47	5

Table 2.--Summary of statistics and information for regression models of storm-runoff loads and volumes--Continued

Response variable and			Standard of est	imate	Standard deviation of log of response variable	Mean of log of response variable	Average prediction error	of	Number of stations
region	Metropolitan areas	R ²	(percent)	(log)	(pound)	(pound)	(percent)	storms	
CU I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	0.67	110	0.388	0.672	-1.232	195	212	22
CU II	Champaign-Urbana, Ill.; Lansing, Mich.; Kansas City, Mo.; Rochester, N.Y.; Columbus, Ohio	.55	123	.417	.617	-1.324	117	298	17
CU III	Washington, D.C.; Miami, Fla.; Tampa, Fla.; Boston, Mass.; Baltimore, Md.; Winston-Salem, N.C.; Durham, N.H.; Knoxville, Tenn.	.56	175	.515	.774	-1.525	238	464	30
PB I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	.66	141	.455	.773	585	211	239	23
PB II	Honolulu, Hawaii; Champaign-Urbana, Ill.; Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Kansas City, Mo.; Lake George, N.Y.; Rochester, N.Y.; Columbus, Ohio; Bellevue, Wash.; Milwaukee, Wis.	. 45	131	.435	.586	751	126	943	54
PB III	Washington, D.C.; Tampa, Fla.; Boston, Mass.; Baltimore, Md.; Durham, N.H.; Long Island, N.Y.; Knoxville, Tenn.	.54	227	.586	.864	837	196	418	31
ZN I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Salt Lake City, Utah	.70	119	.407	.728	433	181	224	21
ZN II	Champaign-Urbana, Ill.; Ann Arbor, Mich.; Lansing, Mich.; Kansas City, Mo.; Rochester, N.Y.; Columbus, Ohio Milwaukee, Wis.	.53	160	.490	.709	367	138	357	31
ZN III	Washington, D.C.; Tampa, Fla.; Miami, Fla.; Boston, Mass.; Baltimore, Md.; Winston-Salem, N.C.; Durham, N.H.; Knoxville, Tenn.	.49	181	.523	.728	919	142	591	30

Table 2.--Summary of statistics and information for regression models of storm-runoff loads and volumes--Continued

Response variable and			Standard of est		Standard deviation of log of response variable	Mean of log of response variable	Average prediction error	Number of	Number of
region	Metropolitan areas	R ²	(percent)	(log)	(pound)	(pound)	(percent)	storms	stations
RUN I	Anchorage, Alaska; Fresno, Calif.; Denver, Colo.; Albuquerque, N. Mex.; Salt Lake City, Utah	0.87	84	0.316	0.895	4.417	79	348	27
RUN II	Honolulu, Hawaii; Champaign-Urbana, Ill.; Glen Ellyn, Ill.; Ann Arbor, Mich.; Lansing, Mich.; St. Paul, Minn.; Kansas City, Mo.; Lake George, N.Y. Rochester, N.Y.; Columbus, Ohio; Portland, Oreg.; Austin, Tex.; Bellevue, Wash.; Milwaukee, Wis.	.88	69	.270	.789	4.468	69	1,353	69
RUN III	Washington, D.C.; Little Rock, Ark.; Miami, Fla.; Tampa, Fla.; Baltimore, Md.; Boston, Mass.; Durham, N.H.; Long Island, N.Y.; Winston-Salem, N.C.; Knoxville, Tenn.; Houston, Tex.	.70	118	. 406	.740	4.239	119	690	46

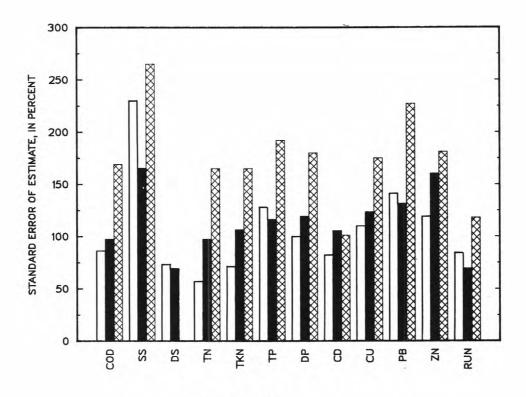
total variation of the response variable that is explained by the explanatory variables. Therefore, the value of \mathbb{R}^2 is used as a summary measure to judge the fit of the regression model to the data. The standard error of estimate of the mean is an estimate of the standard deviation about the regression. The smaller the standard error of estimate, the more precise will be the predictions. The standard error of estimate, in percent, was calculated for all the regression models using the following equation:

SE =
$$100[(e^{(\sigma^2 \times 5.302)} - 1]^{\frac{1}{2}}$$
 (4)

where SE = the standard error of estimate, in percent; and σ^2 = the mean square error in log (base 10) units.

Average prediction errors are discussed in the "Validation, Testing, and Application of Regression Models" section.

The values of R^2 in the models that use ordinary least squares range from 0.35 to 0.95 (table 2). Standard errors of estimate range from 57 to 265 percent (table 2 and fig. 2). Accuracy of the models are discussed further in the "Comparisons of All Storm-Runoff Load and Storm-Runoff Volume Models" section.


Three-Variable Models

The three-variable models are simplified regression models for the 11 storm-runoff loads. The explanatory variables always are TRN, DA, and IA. The 31 three-variable models are listed in table 3. Equation 3 defines the regression model used to compute the storm-runoff loads listed in table 3. The BCF's, R², standard errors of estimate (expressed in percent and in logs), and number of storms also are listed.

These three-variable models are simplified alternatives to the regression models listed in table 1. City planners or engineers can use the three-variable models if they want an approximate estimate of the storm-runoff loads for urban watersheds. However, if more accurate estimates are desired, the regression models listed in table 1 need to be applied. The three-variable models were derived using ordinary least squares.

Comparisons of All Storm-Runoff-Load and Storm-Runoff-Volume Models

Many consistent patterns are apparent when all storm-runoff load models are compared. The two most significant explanatory variables in the 31 storm-runoff load models were TRN and DA. According to an F-test, the coefficients of these explanatory variables were significant at a 1-percent or better level for all models. These two explanatory variables always were the first to enter the model in a forward-stepwise regression.

EXPLANATION

- ☐ REGION I Mean annual rainfall less than 20 inches
- REGION II Mean annual rainfall 20 to less than 40 inches
- REGION III Mean annual rainfall equal to or greater than 40 inches
- COD Chemical oxygen demand in storm-runoff load, in pounds
- SS Suspended solids in storm-runoff load, in pounds
- DS Dissolved solids in storm-runoff load, in pounds
- TN Total nitrogen in storm-runoff load, in pounds
- TKN Total ammonia plus organic nitrogen in storm-runoff load, in pounds
- TP Total phosphorus in storm-runoff load, in pounds
- DP Dissolved phosphorus in storm-runoff load, in pounds
- CD Total recoverable cadmium in storm—runoff load, in pounds
- CU Total recoverable copper in storm-runoff load, in pounds
- PB Total recoverable lead in storm-runoff load, in pounds
- ZN Total recoverable zinc in storm-runoff load, in pounds
- RUN Storm-runoff volume, in cubic feet

Figure 2.--Standard errors of estimate for regression models of water-quality constituents and total runoff in three mean annual rainfall regions.

 $[\hat{\beta}_0]$ is the regression coefficient that is the intercept in the regression model; TRN is total storm rainfall; DA is total contributing drainage area; IA is impervious area; BCF is bias correction factor; COD is chemical oxygen demand in storm-runoff load, in pounds; I is region I representing areas that have mean annual rainfall less than 20 inches; II is region II representing areas that have mean annual rainfall of 20 to less than 40 inches; III is region III representing areas that have mean annual rainfall equal to or greater than 40 inches; SS is suspended solids in storm-runoff load, in pounds; TN is total nitrogen in storm-runoff load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in storm-runoff load, in pounds; TP is total phosphorus in storm-runoff load, in pounds; DP is dissolved phosphorus in storm-runoff load, in pounds; CD is total recoverable cadmium in storm-runoff load, in pounds; CU is total recoverable copper in storm-runoff load, in pounds; PB is total recoverable lead in storm-runoff load, in pounds; ZN is total recoverable zinc in storm-runoff load, in pounds; asterisk (*) indicates that the explanatory variable is not significant at the 5-percent level; equation form is:

$$Y = \hat{\beta}_0' \times X_1^{\beta^1} \times X_2^{\beta^2} \dots X_n^{\beta}_n \times BCF$$

Response	Re	gression		nts					
variable		mpar	DA	TA			Standard		Numbe
and region	βo'	TRN (inches)	(square miles)	IA +1 (percent)	BCF	R ²	of estimates of	(log)	of storm
	P0	(Inches)		(percenc)			(percent)	(108)	
COD I	407	0.626	0.710	0.379	1.518	0.62	116	0.403	216
COD II	151	.823	.726	.564	1.451	.67	106	.376	793
COD III	102	.851	.601	.528	1.978	. 46	186	.531	567
SS I	1,778	.867	.728	.157*	2.367	.52	251	.613	176
SS II	812	1.236	.436	.202	1.938	.60	173	.512	964
SS III	97.7	1.002	1.009	.837	2.818	.53	290	.651	528
DS I	20.7	.637	1.311	1.180	1.249	.93	75	.293	175
DS II	3.26	1.251	1.218	1.964	1.434	.86	101	.367	281
TN I	20.2	.825	1.070	.479	1.258	.92	72	.286	121
TN II	4.04	.936	.937	.692	1.373	.77	97	.353	574
TN III	1.66	.703	. 465	.521	1.845	.31	178	.518	617
TKN I	13.9	.722	.781	.328	1.722	.65	129	.431	188
TKN II	3.89	.944	.765	.556	1.524	.75	107	.381	858
TKN III	3.56	.808	.415	.199	1.841	.32	184	.529	613
TP I	1.725	.884	.826	.467	2.130	.56	184	.529	186
TP II	.697	1.008	.628	. 469	1.790	.62	120	.411	1,091
TP III	1.618	.954	.789	.289	2.247	.50	210	.565	639
DP I	.540	.976	.795	.573	2.464	.55	161	.492	248
DP II	.060	.991	.718	.701	1.757	.63	121	.412	467
DP III	2.176	1.003	.280	448	2.254	.35	193	.542	247

Table 3.--Summary of three-variable models for storm-runoff loads--Continued

Response variable and region	Regression coefficients								
		TRN	DA (square	IA +1	BCF	R ²	Standard error of estimate		Number of
	β̂ο'	(inches)	miles)	(percent)			(percent)	(log)	storms
CD I	0.00001	0.886	0.821	2.033	1.425	0.72	101	0.365	65
CD II	.021	1.367	1.062	.328*	1.469	.62	109	.386	47
CU I	.072	.746	.797	.514	1.675	.58	134	.440	212
CU II	.013	.504	.585	.816	1.548	.55	123	.417	298
CU III	.026	.715	.609	.642	2.819	.35	263	.625	464
PB I	.162	.839	.808	.744	1.791	.59	166	.500	239
PB II	.150	.791	.426	.522	1.665	.43	135	.442	943
PB III	.080	.852	.857	.999	2.826	.54	228	.586	418
ZN I	.320	.811	.798	.627	1.639	.60	146	.465	224
ZN II	.046	.880	.808	1.108	1.813	.51	166	.500	357
ZN III	.024	.793	.628	1.104	2.533	.43	200	.551	591

In addition to these 2 explanatory variables, the 31 regression models in table 1 generally included a combination of land uses or impervious area. In regression models where a combination of land-use variables was significant, only three of the four land-use categories (industrial, commercial, and nonurban) generally were significant at a 15-percent or better level in a forward-stepwise regression, and the fourth, residential land use, generally was not significant. Although many urban studies have not reported land use to be significant in estimating storm-runoff loads, many of the regression models in this report include land-use variables that are significant at the 0.05 level. The U.S. Environmental Protection Agency nationwide urban study reported that land-use category does not provide a useful basis for predicting differences in values of storm-runoff mean concentrations at sites (U.S. Environmental Protection Agency, 1983). Lystrom and others (1978) reported that in the Susquehanna River basin, land use had a significant impact on some water-quality characteristics. In a Denver urban study, land use was not significant (Ellis and others, 1984). However, on a national basis, land use explained a significant quantity of variability in the storm-runoff loads for 18 of the 31 storm-runoff-load models. Impervious area was a significant explanatory variable in 12 storm-runoff-load models. Mean annual climatic variables also were significant in 25 regression models.

Signs of the coefficients for each of the regression models generally were hydrologically logical; however, signs sometimes are difficult to interpret in multiple regression models because some correlation between explanatory variables exists. Although regression models cannot directly define cause-effect relations, explanatory variables and regression coefficients of each regression model need to be evaluated from the standpoint of conceptual knowledge of the water-quality processes. If the sign of a regression coefficient is contrary to intuitive understanding of the process involved, the following causes are possible explanations:

- 1. Significant cross-correlation between explanatory variables causes multicollinearity problems in the regression models.
- 2. The process involving the effect of the explanatory variables on the water-quality constituents is not well understood.
- 3. The explanatory variable is a surrogate for another variable.
- 4. Large data-input errors occurred during compilation of the response or explanatory variables.
- 5. The apparent significance of an explanatory variable may be due to chance and, therefore, the relation would be spurious.

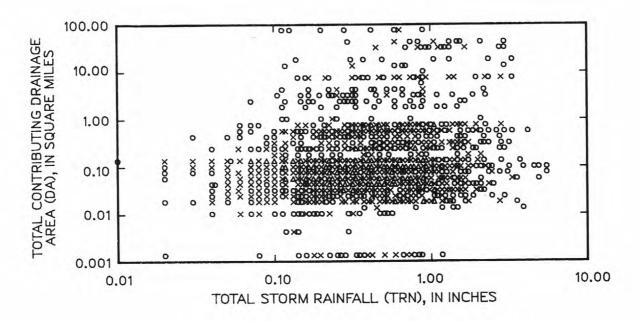
These causes were considered during the selection of variables and the analysis of the regression models.

The explanatory variables expected to have a positive sign were: TRN, DA, IA, LUI, LUC, LUR, PD, and MNL. Explanatory variables expected to have a negative sign were: LUN, DRN, INT, MAR, and MJT. The explanatory variables included in each regression model generally had the expected signs on the coefficients. However, because of the effects of multicollinearity, signs on

individual terms in a regression model may seem counter intuitive while the regression model is still statistically correct. The reason is that the sign on an individual term indicates the direction of change in the prediction corresponding to a change in the individual explanatory variable with other explanatory variables held constant. However, in a natural setting, certain variables are never held constant; rather, changes in all the explanatory variables usually occur simultaneously. DRN has an inverse relation with storm-runoff loads in region I because the shorter storms in the West generally are more intense thunderstorms that have greater rainfall and result in larger storm-runoff loads. MAR generally has a negative relation to storm-runoff loads, which may indicate that longer periods between storms in drier climates enable more residue to build up on impervious surfaces; therefore, a smaller MAR would produce greater storm-runoff loads. Values of MJT are inversely related to storm-runoff loads of SS and DS for region II. This inverse relation may reflect the effects of salting the roads in this region.

Ranges of R^2 and standard errors of estimate indicate that all of the regression models have significant unexplained errors. However, because the coefficients of the regression models are significant at the 5-percent level, more variability is explained by the regression model than by the mean of the response variable. The significance of regression is determined by hypothesis testing on the slopes and intercept at some predetermined level. In this report we applied an α level of 0.05. Standard errors of estimate generally are less than 160 percent except for the models for storm-runoff loads of SS and several regression models in region III. In models where the standard errors of estimate are large, the BCF's are correspondingly large, which indicates that the mean is substantially larger than the median.

Values of R² and corresponding standard errors of estimate for the models of storm-runoff loads of SS indicate that these regression models have significant unexplained errors. The BCF's are significantly larger than the BCF's for all other models. In the U.S. Environmental Protection Agency national urban study, the values of storm-runoff mean concentrations of SS had coefficients of variations that ranged between 100 and 250 percent, and all other constituents had coefficients of variation that ranged between 50 and 100 percent (U.S. Environmental Protection Agency, 1983). SS values are difficult to estimate because sampling techniques are poor, and there is considerable variation in the composition of suspended-solids samples. Some of the unexplained error may be because samples collected from man-made and natural channels have been combined in this data base.


The values of R^2 for the two models of storm-runoff loads of DS, 0.92 and 0.93, indicate that most of the variability in the storm-runoff loads is explained by the regression model. A large value of R^2 simply may result because the explanatory variables have a large range; however, ranges of the explanatory variables in these regression models correspond with those in other models. Standard errors of estimate are relatively small for estimations of storm-runoff loads throughout large geographical areas.

Values of R² are small and corresponding standard errors of estimate generally are large for the models of storm-runoff loads of trace metals. These values indicate that there is much unexplained variability and error in these regression models, which may partly be a factor of the analytical technique. Varying analytical recovery of metals from water samples that contain different sediment minerology occurs because of differences in digestion rates. This variation can cause differences in analytical results of trace-metal concentrations and cause problems in the interpretation of total-recoverable data. In addition, the trace-metal analyses lack any specific relation to biotic uptake because the total-recoverable method greatly overestimates the bioavailable concentrations. Therefore, Davies (1986) recommends that concentrations of trace metals be analyzed in effluent samples and in samples used to measure the effects of nonpoint sources of pollution based on the "potentially dissolved method." Future urban studies need to examine this analytical method.

Storm-Runoff-Load Models for Region I

In region I models, values of R² generally were larger and standard errors of estimate (table 2 and fig. 2) were smaller than those in the region II and region III models. As mean annual rainfall increased, the ability to estimate storm-runoff loads decreased. Therefore, the most accurate models for storm-runoff loads generally were those for the more Western United States, and the least accurate models were those for areas that had larger quantities of mean annual rainfall. A possible statistical explanation for the larger values of R² in region I is that the range of the explanatory variables is larger than the range in regions II and III. However, although TRN had the smallest range in region I and DA had the largest range in region I (figs. 3 and 4), most of the models for region I were developed from values of TRN and DA that were comparable to the other two regions (table 4). A plausible physically based explanation for the larger values of R2 in region I is that, in urban areas that have small mean annual rainfall, the pollutants accumulate and are never washed off completely during any storm. In areas that have larger mean annual rainfall, the pollutant accumulation can be washed off completely by more frequent storms. As a result, the succeeding storm may produce the same quantity of rainfall as the preceding storm but may produce considerably smaller storm-runoff loads. The variable, antecedent dry days, which is discussed in the "Storm-Runoff-Load Models for Region III" section, could explain some of this variability.

The most accurate models in region I were for storm-runoff loads of DS, TN, and TKN. The values of R^2 in these models ranged from 0.86 to 0.95 and standard errors of estimate ranged from 57 to 73 percent (table 2 and fig. 2). The least accurate model was for storm-runoff loads of SS. The other storm-runoff-loads models produced values of R^2 and standard errors of estimate between these values.

EXPLANATION

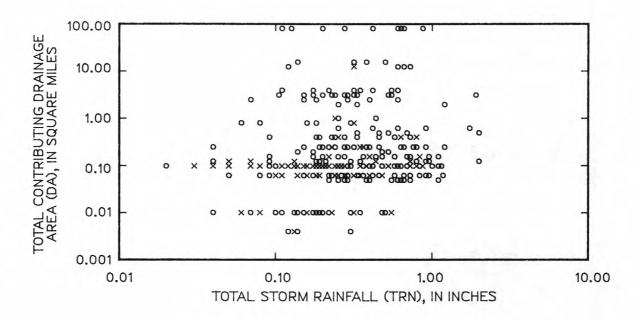

- 1 OBSERVATION
- × 2 TO 5 OBSERVATIONS
- MORE THAN 5 OBSERVATIONS

Figure 3.--Relation between total storm rainfall and total contributing drainage area for storms in all three regions.

TRN and DA are plotted in figure 4 to compare the range of these two explanatory variables and to show the lack of correlation between them. DA ranges from less than 1 to about 80 square miles; most of the observations plot in the range of less than 1 square mile. TRN ranges from less than 1 to 2 inches, but most TRN is less than 0.4 inch. Therefore, most urban watersheds in region I have small drainage areas and the storms also are small.

Storm-Runoff-Load Models for Region II

In region II, model values of R^2 were smaller than those in region I models, and standard errors of estimate (fig. 2) were comparable to those in region I models. The most accurate models in region II were those for storm-runoff loads of COD, DS, TN, and TKN. The values of R^2 ranged from 0.71 to 0.92 and standard errors of estimate ranged from 69 to 106 percent (table 2). The least accurate models were those for storm-runoff loads of SS, PB, and ZN. The value of R^2 was small for the storm-runoff load of PB. Standard errors of estimate were large for storm-runoff loads of SS and ZN. An explanation for the inaccuracy of the models for storm-runoff loads of SS were described in the "Region I" section; however, the large standard error of estimate for ZN and the small value of R^2 for PB are difficult to explain. Several

EXPLANATION

1 OBSERVATION

× 2 TO 7 OBSERVATIONS

Figure 4.--Relation between total storm rainfall and total contributing drainage area for storms in region I.

factors, including the following, were considered but deemed to be inconsequential. The range of the explanatory variables compared with ranges for other storm-runoff-loads models in region II and were not different. The number of storms, stations, and metropolitan areas were sufficient to explain the variability of the response variable throughout the region (table 2). The data of storm-runoff loads for PB before 1979, when laws were passed requiring unleaded fuel in automobiles, were deleted to eliminate major discrepancies in the PB data.

TRN and DA are plotted in figure 5 to compare the range of these two explanatory variables and to show the lack of correlation between them. TRN ranges from less than 0.1 to 5 inches, but most TRN is less than 1.5 inches. DA ranges from less than 1 to about 45 square miles; most of the observations plot in the range of less than 1 square mile. Therefore, most urban watersheds in region II have small drainage areas, and the average storms are larger than storms that occur in region I.

Storm-Runoff-Load Models for Region III

In region III, model values of \mathbb{R}^2 were substantially smaller than those in region I and region II; standard errors of estimate (fig. 2) were either

Table 4.--Ranges of values, standardized beta coefficients, and standard deviations of log of each explanatory variable in regression models

[This table corresponds to models in table 1; COD is chemical oxygen demand in stormrunoff load, in pounds; I is region I representing areas that have mean annual rainfall less than 20 inches; II is region II representing areas that have mean annual rainfall of 20 to less than 40 inches; III is region II representing areas that have mean annual rainfall equal to or greater than 40 inches; SS is suspended solids in storm-runoff load, in pounds; DS is dissolved solids in storm-runoff load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in storm-runoff load, in pounds; TP is total phosphorus in storm-runoff load, in pounds; DP is dissolved phosphorus in storm-runoff load, in pounds; CD is total recoverable cadmium in storm-runoff load, in pounds; CU is total recoverable copper in storm-runoff load, in pounds; PB is total recoverable lead in stormrunoff load, in pounds; ZN is total recoverable zinc in storm-runoff load, in pounds; RUN is storm-runoff volume, in cubic feet; TRN is total storm rainfall, in inches; DA is total contributing drainage area, in square miles; IA is impervious area, in percent; LUI is industrial land use, in percent; LUC is commercial land use, in percent; LUR is residential land use, in percent; LUN is nonurban land use, in percent; PD is population density, in people per square mile; DRN is duration of each storm, in minutes; INT is maximum 24-hour precipitation intensity that has a 2-year recurrence interval, in inches; MAR is mean annual rainfall, in inches; MNL is mean annual nitrogen load in precipitation, in pounds of nitrogen per acre; MJT is mean minimum January temperature, in degrees Fahrenheit]

Response variable and region	Explana- tory vari- ables	Minimum	Maximum	Mean	Median	Standardized beta coefficient	Standard deviation of log of explanatory variable
COD I	TRN	0.02	1.99	0.38	0.28	0.385	0.374
COD I	DA	.05	17.50	1.18	.12	.599	.634
COD I	LUI	0	65.80	4.32	0	.303	.477
COD I	LUC	0	100	28.55	10.40	.321	.785
COD I	LUN	0	100	14.89	9	128	.537
COD I	MAR	10.24	19.00	14.75	15.51	092	.088
COD II	TRN	.01	4.87	.59	.43	.538	.404
COD II	DA	.02	44.40	.91	.09	.636	.601
COD II	LUI	0	100	4.44	0	.054	.493
COD II	LUC	0	100	27.49	6.80	.303	.765
COD II	LUN	0	90.30	10.60	0	045	.532
COD II	MAR	26.69	37.61	32.72	30.50	.063	.048
COD III	TRN	.02	5.65	.66	.45	.464	.392
COD III	DA	.0012	2.64	.13	.06	.511	.583
COD III	LUI	0	10.70	0.38	0	.259	. 195
COD III	LUC	0	100	28.88	1.90	.087	.862
COD III	LUN	0	71.70	11.74	2.10	081	.529
SS I	TRN	.03	1.99	.39	.29	.546	.395
SS I	DA	.05	17.50	1.45	.12	.572	. 681
SS I	DRN	10	2,220	358.39	231	264	.499
SS II	TRN	.01	4.87	.58	.43	.640	.419
SS II	DA	.02	44.40	.98	.09	.341	.628
SS II	IA	3.60	100	46	37.90	.100	. 295
SS II	PD	1	13,889	5,302	5,001	.076	1.490
SS II	MJT	3.20	39.30	15.86	15.30	194	.279
SS III	TRN	.03	5.65	.65	.44	.420	.389
SS III	DA	.0012	.94	.14	.05	.641	.614
SS III	LUI	0	100	1.46	0	.069	.288
SS III	LUC	0	100	25.29	.95	.201	.829
SS III	LUN	0	52.20	8.04	1.80	143	.472

Table 4.--Ranges of values, standardized beta coefficients, and standard deviations of log of each explanatory variable in regression models--Continued

Response variable and region	Explana- tory vari- ables	Minimum	Maximum	Mean	Median	Standardized beta coefficient	Standard deviation of log of explanatory variable
DS I	TRN	0.02	1.23	0.36	0.28	0.170	0.318
DS I	DA	.01	80.54	4.92	.12	1.059	.856
DS I	IA	11	98.90	60.63	57	.235	.187
DS I	MAR	7.77	19.00	12.80	10.24	076	.117
DS II	TRN	.02	2.90	.48	.36	.428	.391
DS II	DA	.02	2.37	.35	. 15	.741	.569
DS II	IA	19	99.40	50.25	36.10	. 245	.178
DS II	MJT	11.40	67.60	23.68	20.40	289	.204
TN I	TRN	.03	1.99	.41	.29	. 295	.378
TN I	DA	.01	80.54	6.37	.11	.843	.896
TN I	LUI	0	65.80	2.18	0	.148	.328
TN I	LUC	0	100	22.02	2	.201	.790
TN I	LUN	Ö	100	18.12	5	119	.625
TN I	MAR	7.77	15.51	14.53	15.51	082	.088
TN II	TRN	.01	4.87	.63	.47	.466	.369
TN II	DA	.02	12.30	.90	.22	.867	.684
TN II	IA	1.22	100	43.43	35.00	.408	. 449
TN II	MNL	.39	6.10	5.11	5.60	.032	.121
TN III	TRN	.03	5.65	.67	.46	.484	.385
TN III	DA	.0012	.94	.12	.06	.389	.506
TN III	IA	4.70	98.80	41.64	33.90	.273	.276
TN III	MNL	2.60	7.00	4.79	5.20	. 244	.174
TKN I	TRN	.03	1.99	.37	.28	.343	.368
TKN I	DA	.05	80.54	4.79	.12	.734	.812
TKN I	LUI	0	65.80	5.56	0	.283	.530
TKN I	LUC	0	100	26.07	12.20	.271	.748
TKN I	LUN	0	100	17.54	9.00	163	.537
TKN I	MNL	1.00	4.00	1.90	1.80	.359	.188

Table 4.--Ranges of values, standardized beta coefficients, and standard deviations of log of each explanatory variable in regression models--Continued

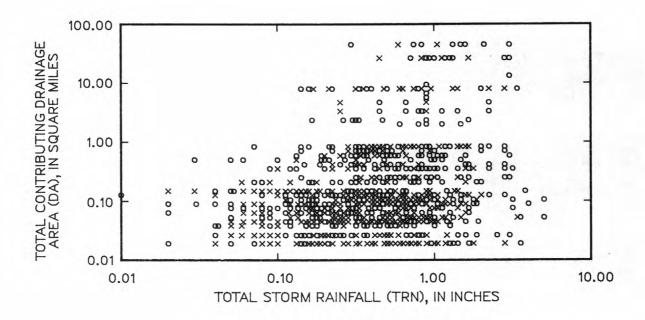

Response variable and region	Explana- tory vari- ables	Minimum	Maximum	Mean	Median	Standardized beta coefficient	Standard deviation of log of explanatory variable
							-14 -0.00
TKN II	TRN	0.01	4.87	0.60	0.43	0.488	0.404
TKN II	DA	.02	44.40	1.57	.12	.739	.723
TKN II	IA	1.22	100	40.79	36.10	.294	.406
TKN II	MNL	.39	6.10	4.40	4.50	.076	.253
TKN III	TRN	.04	5.65	.66	.46	.522	.381
TKN III	DA	.0012	2.64	.13	.06	.321	.522
TKN III	LUN	0	71.70	11.10	2.10	067	.522
TKN III	MAR	40.00	62.00	45.76	41.36	277	.067
TP I	TRN	.03	1.99	.38	.28	.401	.385
TP I	DA	.01	4.00	.49	.12	.450	.553
TP I	LUI	0	65.80	5.94	0	.399	.544
TP I	LUC	0	100	26.01	8	.182	.802
TP I	LUN	0	100	15.75	9	166	.561
TP I	MAR	10.24	19.00	15.05	15.51	130	.075
TP II	TRN	.01	3.66	.57	.43	.574	.389
TP II	DA	.02	8.34	.62	.10	.621	.643
TP II							
TP II	IA INT	1.22	100 5.00	46.38 2.67	38.40 2.60	.294	.411 .059
TP III	TRN	.02	4.13	.65	.46	.487	.380
TP III	DA	.0012	1.79	.13	.06	.598	.562
TP III	LUC	0	100	28.17	2.90	.202	.850
TP III	LUR	0	100	60.00	85.00	.113	.872
TP III	LUN	0	60	12.67	2.1	104	.515
TP III	MJT	12.40	58.70	34.02	28.50	162	.171
DP I	TRN	.03	1.99	.39	.28	.397	0.357
DP I	DA	.01	4.00	.50	.11	.522	.522
DP I	LUI	0	65.80	4.34	0	.423	.477
DP I	LUC	0	100	29.24	10.40	.110	.835
DP I	LUN	0	100	15.06	9	172	.527
DP I	MAR	10.24	19.00	13.88	15.51	252	.096

Table 4.--Ranges of values, standardized beta coefficients, and standard deviations of log of each explanatory variable in regression models--Continued

Response variable and region	Explana- tory vari- ables	Minimum	Maximum	Mean	Median	Standardized beta coefficient	Standard deviation of log of explanatory variable
DD 11	mp.v.				- 11		0.070
DP II	TRN	0.03	3.31	0.61	0.46	0.502	0.372
DP II	DA	.02	8.34	1.03	.12	.731	.712
DP II	IA INT	1.22 2.00	99.40 3.50	40.53 2.55	36.10 2.50	.436 .099	.457
DP III	TRN	.04	2.34	.58	.41	.530	.370
DP III	DA	.03	2.64	. 14	.06	.262	.371
DP III	LUN	0	71.70	9.07	7	. 245	. 449
CD I	TRN	.03	.93	.26	.22	. 463	.372
CD I	DA	.01	3.03	.36	.12	.531	.478
CD I	LUI	0	37	17.79	0	.138	.675
CD I	LUC	0	100	39.16	30	.312	.854
CD I	LUN	0	65.8	10.44	13	325	.590
CD II	TRN	.03	3.08	1.03	.79	.708	.346
CD II	DA	.04	.60	.42	.36	.437	.177
CD II	MJT	3.2	33.90	17.80	16.70	. 195	. 105
CU I	TRN	.02	1.99	.37	.27	. 447	.372
CU I	DA	.01	4.00	.55	.12	.471	.537
CU I	LUI	0	65.80	6.05	0	.346	.548
CU I	LUC	0	100	29.61	12.20	.329	.806
CU I	LUN	0	100	15.29	9.00	049	.542
CU I	INT	. 15	.32	.22	.15	.121	.087
CU II	TRN	.02	4.08	.55	.43	.307	.377
CU II	DA	.03	.83	.26	.09	.502	.533
CU II	IA	17.50	97.10	42.15	36.50	.277	.209
CU III	TRN	.02	4.13	.69	.50	. 456	.394
CU III	DA	.001	.94	. 14	.05	.512	.651
CU III	LUI	0	10.70	.58	0	.196	.232
CU III	LUC	0	100	38.78	16.40	.276	.839
CU III	LUN	0	60	11.51	1.8	228	.539
CU III	INT.	. 48	.76	.59	.56	272	.102
PB I	TRN	.02	1.99	.39	.28	.374	.378
PB I	DA	.004	4.00	.47	.11	.677	.896
PB I	LUI	0	65.8	5.92	0	113	.328
PB I	LUC	0	100	28.38	8	.295	.790
PB I	LUN	0	100	14.23	9	198	.625
PB I	MAR	10.24	19.00	14.36	15.51	214	.088

Table 4.--Ranges of values, standardized beta coefficients, and standard deviations of log of each explanatory variable in regression models--Continued

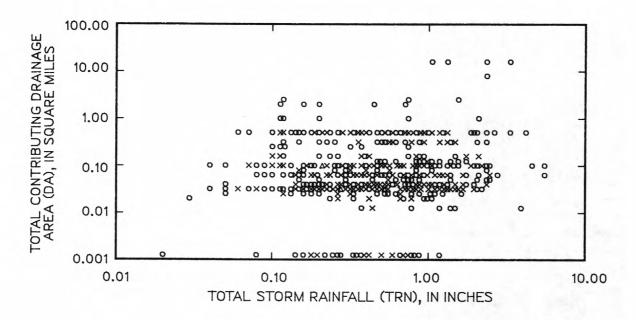
Response variable and region	Explana- tory vari- ables	Minimum	Maximum	Mean	Median	Standardized beta coefficient	Standard deviation of log of explanatory variable
DD 77	mpy					0.500	0. / 0.0
PB II	TRN	0.01	4.87	0.55	0.41	0.582	0.409
PB II	DA	.02	8.34	.54	.09	.407	.625
PB II	LUC	0	100	28.69	6.8	.316	.760
PB II	LUR	0	100	52.88	53.2	.109	.731
PB II	LUN	0	98.2	15.00	0	187	.601
PB II	MAR	26.69	37.21	32.21	30.39	.043	.044
PB III	TRN	.02	5.65	.71	.50	.393	.399
PB III	DA	.001	1.79	.17	.06	.697	.702
PB III	IA	4.70	98.80	42.60	29.00	.372	.322
ZN I	TRN	.02	1.99	.39	.28	.387	.378
ZN I	DA	.01	4.00	.53	.12	.605	.556
ZN I	LUC	0	100	29.57	10.40	. 191	.811
ZN I	LUR	0	100	50.74	44.00	220	.821
ZN I	LUN	0	100	16.95	9.00	107	.548
ZN I	MAR	10.24	19	14.36	15.51	162	.087
ZN II	TRN	.03	4.87	.70	.58	.388	.346
ZN II	DA	.02	4.49	.38	.10	.588	.626
ZN II	IA	3.60	100	59.03	51.40	.327	.230
ZN II	MJT	3.20	20.40	14.93	15.30	.178	.110
ZN III	TRN	.02	3.90	.65	. 45	.443	.388
ZN III	DA	.001	.94	.13	.05	. 452	.593
ZN III	LUI	0	10.7	. 44	0	.339	.208
ZN III	LUC	0	100	30.81	1.90	.115	.858
ZN III	LUR	0	100	57.53	79.10	111	.885
ZN III	MJT	12.40	58.7	32.80	28.50	117	.170
RUN I	TRN	.02	1.99	.36	.26	.390	.356
RUN I	DA	.004	80.54	2.93	.11	.820	.831
RUN I	IA	0	98.90	58.68	57	.194	.266
RUN I	MAR	7.77	19.00	14.02	15.50	138	.098
RUN II	TRN	.01	4.87	.61	.43	.592	.417
RUN II	DA	.02	44.40	1.33	.10	.729	.714
RUN II	IA	1.22	100	44.54	37.50	.258	.392
RUN III	TRN	.02	5.65	.69	.48	.554	.395
RUN III	DA	.0012	15.74	. 25	.06	.698	.623
RUN III	IA	3.50	98.80	42.09	33.90	. 259	.288

EXPLANATION

- 1 OBSERVATION
- × 2 TO 7 OBSERVATIONS

Figure 5.--Relation between total storm rainfall and total contributing drainage area for storms in region II.

comparable or larger. The values of R² ranged from 0.35 to 0.58 (table 2). The standard errors of estimate ranged from 165 to 265 percent, which were the largest standard errors of estimate for the three regions. Because less variation is explained in areas of large mean annual rainfall, it is important to collect site-specific information to estimate storm-runoff loads. The magnitude of R² indicates predictive capability of use of the regression model over use of the mean of the response variable. Mean load per unit area represents the state-of-the-art in estimating urban storm-runoff loads. Because R² values in region III tend to be low, use of the regression models for region III is not much improvement over use of the mean load per unit area. A reason for these poor relations could be that areas that have large quantities of precipitation generally have fewer dry days between storms, and pollutants accumulate at different rates depending on the number of days between storms. Antecedent dry days are not available in the data base, and there are conflicting views in the literature on the importance of dry days in predicting water quality. Miller and Mattraw (1982) reported that in a Florida study antecedent dry periods correlated highly with storm-runoff loads for the residential basin but not for the highway or commercial basins. Ellis and others (1986) reported that in London, United Kingdom, antecedent dry days were not important in controlling the removal of particle-associated pollutants from a highway catchment. Halverson and others (1984) stated that antecedent conditions had little linear correlation with storm-runoff quality.


Athayde and others (1982) suggested that antecedent dry periods were important regulators for pollutant concentrations. In Denver (Ellis and others, 1984) and Portland (Miller and McKenzie, 1978), antecedent dry days were apparently unimportant; but, in Missouri (Blevins, 1984), an extended dry period tended to increase the lead and zinc concentrations near the beginning of storm runoff. Although these findings are conflicting, the locality of the urban area may determine the importance of antecedent dry days, and in regions that have large mean annual rainfall these antecedent dry days may be important in explaining variations in storm-runoff loads.

TRN and DA are plotted in figure 6 to compare the range and relation of these two explanatory variables to one another and to show the lack of correlation between them. TRN ranges from less than 0.1 to 5.8 inches, but most TRN is less than 2.5 inches. DA ranges from less than 1 to 14 square miles; most of the observations plot in the range of less than 1 square mile. Therefore, most urban watersheds in region III have small drainage areas, and average storms generally are larger than storms in regions I and II.

Storm-Runoff-Volume Models

In storm-runoff-volume (RUN) models, values of R^2 generally are larger and standard errors of estimate generally are smaller than those for storm-runoff-load models. In the region I model for RUN, the value of R^2 is greater than all the models of storm-runoff loads except for DS and TN, and the standard error of estimate is smaller than all the models of storm-runoff loads except for TN and TKN. In the region II model for RUN, the value of R^2 is larger than all the models of storm-runoff loads except for DS, and the standard error of estimate is smaller than all the models of storm-runoff loads. In the region III model for RUN, the value of R^2 is larger than all the models of storm-runoff loads, and the standard error of estimate is smaller than all the models of storm-runoff loads. Typically, storm-runoff volumes are more accurately estimated than water-quality constituents. A national urban study presented models for estimating flood-peak characteristics (Sauer and others, 1983), and the standard errors of estimate were much smaller than those for storm-runoff-load models in this report.

In models for RUN, region I and region II models are similar in accuracy, whereas the region III model is less accurate. Therefore, the most accurate models for RUN are those for the more arid Western United States and for the Northwestern and Mideastern United States, and the least accurate models are those for the wetter coastal Northeastern and Southern United States. However, in other rainfall-runoff studies, such as Lichty and Liscum (1978), estimates of runoff generally improve as rainfall increases. This anomaly could be attributed to limitations in the data base. For instance, the data base for region III is less homogeneous than the data base for region I and region II because the number of storms measured per metropolitan area is smaller. Also the explanatory variables to estimate runoff may be inadequate. For instance, in region III one might expect more pervious area runoff than in region I, but the antecedent conditions, which are unavailable in this data base, may strongly control the rainfall-runoff relations. Also, region III has significantly more pervious area than regions I or II.

EXPLANATION

- 1 OBSERVATION
- × 2 TO 5 OBSERVATIONS
- MORE THAN 5 OBSERVATIONS

Figure 6.--Relation between total storm rainfall and total contributing drainage area for storms in region III.

TRN and DA are again the two most significant explanatory variables in the RUN models. Also, IA always was significant in explaining the variability of RUN.

Three-Variable Models for Storm-Runoff Loads

Generally, the values of R^2 are smaller and the standard errors of estimate are larger in the three-variable models (table 3) when compared with the more accurate models listed in table 1. In the three-variable models, the values of R^2 range from 0.31 to 0.93 and the standard errors of estimate range from 72 to 290 percent, whereas in the more accurate models the values of R^2 range from 0.35 to 0.95 and the standard errors of estimate range from 57 to 265 percent.

TRN and DA always were significant at the 5-percent level. IA was significant at the 5-percent level for most of the models except those that have an asterisk next to IA in table 3.

Signs of the coefficients for each of the explanatory variables in the three-variable models generally were positive, which indicated an increase in storm-runoff loads resulting from an increase in the explanatory variables. However, the model for estimating storm-runoff loads of DP in region III had an unexpected negative sign on the coefficient for IA. Frequently, pervious land surface and its associated fertilizers can be a primary source for DP.

Limitations of Significant Explanatory Variables

For regression models listed in tables 1 and 3, the ranges for the physical, land-use, and climatic-characteristics (explanatory) variables are listed in table 4 for each model. If values outside these ranges are used in the regression models, the standard errors of estimate and the average prediction errors may be considerably larger than values reported in table 2. The graphs in figures 3 through 6 show the limited range of the data for the two most significant explanatory variables. As the user applies these regression models to larger drainage areas and larger storms, the accuracy of the estimated storm-runoff loads decreases.

Application of the regression models and interpretation of results are subject to a number of limitations. Each application needs to be evaluated on the basis of the following considerations.

- The regression models developed in the study are limited to conditions in the 30 metropolitan areas within the three mean annual rainfall regions that have similar physiographic and hydrologic properties.
- 2. The regression models can only define the effects of the explanatory variables that are statistically significant for each regression model. Models do not include physical or land-use characteristics that define the effects of major industrial point sources, localized nonpoint sources, or atmospheric sources of pollution. Consequently, the possible effects of these variables on estimates from each model should be considered when applying the model.
- 3. Causal effects of the explanatory variable need to be interpreted carefully. Surrogate variables indirectly can explain the effect of another variable and, therefore, can be misleading. All explanatory variables in the models can be surrogates for another variable because a regression model does not account for all the physically based processes that explain the variation in the response variable. Therefore, each explanatory variable also may indirectly explain other processes in the model, and the limitations of such variables need to be known before applying the models for decision-making processes.
- 4. Expected errors in predicted storm-runoff loads or volumes are indicated by standard errors of estimate (table 2) for watersheds included in the calibration data set. For ungaged watersheds or

watersheds not included in the calibration data set, average prediction errors (table 2) indicate the expected errors.

Other Potentially Useful Explanatory Variables

The explanatory variables of physical, land-use, and climatic characteristics used in the regional analyses were hydrologically relevant and statistically significant. Certain explanatory variables such as basin slope and other land uses were included in the analyses but failed to improve the accuracy of the regression model. Many explanatory variables such as street density, antecedent conditions, rainfall intensity, and main channel conveyance were limited in the number of observations in the data base. However, these explanatory variables are potentially significant and need to be considered in future studies.

In the Milwaukee, Wis., NURP project, street-refuse deposition, traffic emissions on roadways with a high traffic density, and urban erosions contributed the largest quantities of pollutants to urban storm runoff (Novotny and others, 1985). In Bellevue, Wash., the habitat adjacent to the streets and drainage channels were the major sources of sediment and pollutants to receiving water (Bissonnette, 1986). Studies have indicated that the areas that contributed the largest loads of pollution were either highly erodible, such as plowed land or construction sites, or those that were highly impervious, such as shopping malls (Randall, 1982). On the basis of these studies, perhaps more precisely defined land-use characteristics, such as area under construction, agricultural, or park, or other physical characteristics could explain more of the variation about the storm-runoff loads.

Regression models of urban storm-runoff quality need to include atmospheric contributions of ammonia and nitrate to more completely define the system (Halverson and others, 1984). Only extremely limited data were available on rainfall quality, but MNL was tested in all the nitrogen models as a means to define atmospheric contribution. Ellis and others (1986) determined that storm duration was significant in explaining the observed variance in lead, cadmium, manganese, and sediment in storm-runoff loads. A variety of climatic characteristics would have been tested if the data base had had sufficient data for the intensity and duration of storms and for antecedent dry days. If the data for these limited explanatory variables become available nationally, many of these other physical, land-use, and climatic characteristics need to be tested to improve the models.

Validation, Testing, and Application of Regression Models

Several tests were made to determine the soundness of the most accurate models. These tests included split-sample analysis and standardized beta coefficients. The results of each of the tests are described briefly in the following sections. Also two examples of model application are described.

Split-Sample Analysis

The usefulness of the regression models may be assessed by comparing model results with observed storm-runoff loads or volumes for several independent watersheds not used in model calibration. However, all available data for the analysis were used in developing the models. Consequently, split-sample analyses were done on the 34 storm-runoff-loads and volumes models to assess the accuracy of these models at ungaged watersheds and watersheds not included in the calibration data set. Model validation is important because, even though a model seems to perform well for a calibration data set, it may not perform well for a noncalibration data set and vice versa (Troutman, 1985).

The relative accuracy of the various models presented in this report is judged by the standard error of estimate, which is a measure of how well the regression models estimate the response variables at calibration stations. In contrast, the standard error of prediction is a measure of how well the regression models estimate the response variables at other than calibration stations. Standard error of prediction usually is larger than standard error of estimate because of parameter estimation error, which is a function of sample size. Because the estimation sample size is smaller in the splitsample procedure, the parameter estimation error, and hence the prediction error, would generally be larger than it would be by using the entire data set. A split-sample analysis for each of the 34 regression models listed in table 1 was made to estimate the magnitude of the average prediction error and to determine whether the same explanatory variables were significant. The stations were divided into two groups of about equal size following a systematic procedure to avoid bias. The stations were listed numerically by station number and were assigned alternately to the first or the second group. Multiple regression analysis done separately for each group yielded new regression (calibration) models very similar to the original models. Although in several of the calibration models some of the the explanatory variables were not significant at the 5-percent level, the same explanatory variables used in the original models in table 1 are used in the calibration models. By using the calibration models from the first group to estimate storm-runoff loads or volumes in the second group, and vice versa, the average prediction error for storm-runoff loads ranged from 56 to 334 percent (table 2). Average prediction errors for storm-runoff volumes ranged from 69 to 119 percent.

Standardized Beta Coefficients

The explanatory variables for physical, land-use, and climatic characteristics in the regression models must be computed or estimated from maps, observations, and other data, which are subject to errors in measurement and judgment. Sensitivity tests indicate the effects of measurement and judgment errors on estimation of the response variables in regression models.

Standardized beta coefficients for all regression models of storm-runoff loads and volumes are listed in table 4 to facilitate comparisons between regression coefficients. The standardized beta coefficient is the standard deviation of the explanatory variable divided by the standard deviation of

the response variable. This coefficient reflects the change in the mean response (in units of standard deviations of the log of the response variable) per unit change in the explanatory variable (in units of standard deviations of the log of the explanatory variable) when all other explanatory variables are held constant. The coefficient can be utilized for sensitivity testing.

The sensitivity of the response variables to errors in the explanatory variables is determined using the standardized beta coefficient (table 4), which is based on the standard deviation of the log of the response variable (table 2) and the standard deviation of the log of the explanatory variable (table 4), and assuming that all other explanatory variables in the regression model are constant. Certain explanatory variables have more natural variance than other explanatory variables. For instance, DA can change considerably in a metropolitan area, whereas MAR changes minimally. All these factors need to be considered in sensitivity testing.

The importance of the explanatory variable based on the standardized beta coefficient needs to be interpreted cautiously because correlations between the explanatory variables affect the magnitude of the standardized beta coefficient. Spacing of the observations on the explanatory variables also affects the standardized beta coefficients (Neter and others, 1985). Sometimes the spacings of the observations on the explanatory variables may be rather arbitrary.

Application of Regression Models

Two examples of how to apply the regression models are described in this report. One example is for region I and the other is for region II. A city planner from Reno, Nev., is trying to estimate a storm-runoff load for TN for storms (TRN) that averaged 0.5 inch in a particular drainage area (DA) of 0.1 square mile, which has 5 percent industrial land use (LUI), 10 percent commercial land use (LUC), and 15 percent nonurban land use (LUN). The city planner would use the TN I model listed in table 1. Using equation 3, adding the appropriate constants to the land-use variables, and using a value of mean annual rainfall (MAR) of 7.20 inches for Reno (National Oceanic and Atmospheric Administration, 1980), the storm-runoff load is calculated as follows:

TN I =
$$1132 \times (0.5)^{(0.798)} \times (0.1)^{(0.960)} \times (6)^{(0.462)} \times$$

$$(11)^{(0.260)} \times (17)^{(-0.194)} \times (7.20)^{(-0.951)} \times 1.139;$$

TN I = 31 pounds.

If the median response of the response variable instead of the mean response is desired, the BCF of 1.139 would not be applied to the model.

A city engineer from Cleveland, Ohio, needs an estimate of storm-runoff load for DP for storms that averaged 1.2 inches in an urban watershed of 0.5 square mile, which has about 40 percent impervious area and a 2-year, 24-hour

rainfall intensity of 2.5 inches. The city engineer would use the DP II model listed in table 1 because the mean annual rainfall in Cleveland is 34.99 inches. The calculations are as follows:

DP II =
$$0.025 \times (1.2)^{(0.914)} \times (0.5)^{(0.699)} \times (41)^{(0.649)} \times (2.5)^{(1.024)} \times 1.591;$$

DP II = 0.82 pound.

If the median response of the response variable rather than the mean response is desired, the BCF of 1.591 would not be applied to the model.

If the mean annual rainfall for a particular metropolitan area is almost equal to the quantity used to divide the Nation into regions (that is about 20 inches or 40 inches), an averaging technique needs to be used. Calculate the storm-runoff load for each of the two appropriate regional models and then average the two storm-runoff loads.

ESTIMATING PROCEDURES FOR STORM-RUNOFF MEAN CONCENTRATIONS

Models of storm-runoff mean concentration were developed for additional estimations by city planners and engineers involved in determining urban water quality. Storm-runoff mean concentrations have been determined to be essentially uncorrelated with storm-runoff volume, and station comparisons can be made with high confidence levels using concentration data (U.S. Environmental Protection Agency, 1983). For each region, a regression model was developed that relates 11 storm-runoff mean concentrations to physical, land-use, and climatic characteristics. Methods for developing the regression models and corresponding statistics are described in the following sections.

Methods

Storm-runoff mean concentrations, expressed in either milligrams per liter or micrograms per liter, were calculated for Survey data by dividing total storm-runoff load, in pounds, by average storm-runoff depth over the basin, in inches, and by total contributing drainage area, in square miles, multiplied by a conversion factor. U.S. Environmental Protection Agency data for storm-runoff mean concentration were cited directly from the results of the NURP (U.S. Environmental Protection Agency, 1983). The values of storm-runoff mean concentration from the U.S. Environmental Protection Agency were calculated by dividing storm-runoff load, in pounds per acre, by average storm-runoff depth over the basin, in inches, multiplied by a conversion factor.

After development of the storm-runoff-load models, development of storm-runoff mean concentration models was needed. Because development of storm-runoff mean concentration models was a secondary objective, the storm-runoff-load models were used as the basic structure from which to develop the storm-runoff mean concentration models. The explanatory variables selected

for each storm-runoff-load model were used for corresponding storm-runoff mean concentration models. Explanatory variables that were not significant at the 5-percent or better level in a model have an asterisk beside the coefficient in table 5. Most of the explanatory variables were significant according to an F-test.

After applying the same transformations from the storm-runoff-load models to the response and explanatory variables of the storm-runoff mean concentration models, residual patterns were studied to verify if regression assumptions were met. Examination of the residuals indicated that the residuals were normalized, that the random errors had constant variance throughout the range of the response variables, and that the errors were uncorrelated. Therefore, all regression models for storm-runoff mean concentrations were based on logarithmic transformations of the response and explanatory variables. Regression models listed in table 5 have the same form as equation 3.

Models

Thirty-one models of storm-runoff mean concentrations were developed for metropolitan areas throughout the United States. There was one regression model for each of the storm-runoff mean concentrations in each of the three mean annual rainfall regions, except for dissolved solids and cadmium. These exceptions are explained in the "Models" for storm-runoff loads and volumes section.

These models and their BCF's are listed in table 5. The corresponding R^2 , standard errors of estimate (expressed in percent and in logs), number of storms and stations, and mean of log of response variable are listed in table 6. The values of R^2 range from 0.10 to 0.68, and standard errors of estimate range from 45 to 179 percent. Although the explained variability as measured by R^2 is small, the standard errors of estimate are smaller in the models for storm-runoff mean concentrations than in the models for storm-runoff loads, because storm-runoff mean concentrations have reduced variability.

Signs of the coefficients for each of the models generally were logical. Correlations between explanatory variables in these models were small. The explanatory variables expected to indicate an increase in storm-runoff mean concentrations resulting from an increase in the variable were IA, LUI, LUC, LUR, PD, INT, and MNL. The explanatory variables TRN, DA, LUN, DRN, MAR, and MJT were expected to indicate a decrease in storm-runoff mean concentrations resulting from an increase in the variable. Storm-runoff mean concentrations generally had an inverse relation to rainfall and drainage area. The smaller the storm, the greater the storm-runoff mean concentrations, because the dilution effect was not as great during smaller storms. However, some concentrations such as suspended solids had a positive relation to rainfall, possibly because larger amounts of rainfall may indicate greater rainfall intensity, which would produce larger concentrations of suspended solids. Also, some concentrations had a positive relation to drainage area. A possible explanation for this phenomenon is that the larger the drainage area,

Table 5.--Summary of regression models for storm-runoff mean concentrations

Ibo is the regression coefficient that is the intercept in the regression model; TRN is total storm rainfall; DA is total contributing drainage area; IA is impervious area; LUI is industrial land use; LUC is commercial land use; LUR is residential land use; LUN is nonurban land use; PD is population density; DRN is duration of each storm; INT is maximum 24-hour precipitation intensity that has a 2-year recurrence interval; MAR is mean annual rainfall; MNL is mean annual nitrogen load in precipitation; MJT is mean minimum January temperature; BCF is bias correction factor; COD is chemical oxygen demand in storm-runoff mean concentration, in milligrams per liter; I is region I representing areas that have mean annual rainfall less than 20 inches; II is region II representing areas that have mean annual rainfall equal to or greater than 40 inches; SS is suspended solids in storm-runoff mean concentration, in milligrams per liter; DS is dissolved solids in storm-runoff mean concentration, in milligrams per liter; TN is total nitrogen in storm-runoff mean concentration, in milligrams per liter; TN is total ammonia plus organic nitrogen as nitrogen in storm-runoff mean concentration, in milligrams per liter; DP is dissolved phosphorus in storm-runoff mean concentration, in milligrams per liter; CD is total recoverable cadmium in storm-runoff mean concentration, in micrograms per liter; CU is total recoverable copper in storm-runoff mean concentration, in micrograms per liter; PB is total recoverable lead in storm-runoff mean concentration, in micrograms per liter; RUN is storm-runoff mean concentration form is:

						Regr	ession coe	fficients							
Response variable and region		TRN (inches)	DA (square miles)	IA +1 (percent)	LUI +1 (percent)	LUC +1 (percent)	LUR +1 (percent)	LUN +2 (percent)	PD (people per squar mile)	e DRN (minutes)	INT (inches)	MAR	MNL pounds of nitrogen per acre)	MJT (degrees Fahren- heit)	BCF
COD I	5.035	-0.473	-0.087		0.388	0.012*		0.048*				0.855			1.163
COD II	. 254	259	054		.0003*	.025*		033*				1.556			1.299
COD III	46.9	179	047		.320	.031		169							1.27
SS I	2,041	.143*	. 108							-0.370					1.54
SS II	734	. 132	342	-0.329	00				0.041					-0.519	1.65
S III	176	.054*	. 286		.168	.072		295							1.92
S I	.333	402	.469	.445								1.497			1.35
OS II	2,398	112	.519	.468										-1.373	1.17
rn I	3.52	285	.033*		.512	.017*		.012*				129			1.09
N II	1.65	285	.065	.176	.512	.01/~		.012~				129	-0.296		1.25
	26,915	253	169	.057*	1122							-2.737		44	1.30
					101	0164		0104					.347		1.16
KN I	1.282	449 224	.022*	.039*	.426	016*		012*					.106		1.32
KN III	9,549	157	159	.039*		220		086				-2.447			1.32
PI	.085	232	012*		.552	080		.038*				.530			1.26
PII	.085	232	012	.006	.552	080		.036^			2.019	.550			1.52
PIII	2.630	016	107	.000		.053	0.184	168						710	1.36
		294	013*		600	136		046*				297*			1.26
P I P II	.352	294	174	.245	.629	136		040^			1.514				1.56
P III	.060	. 189	076	.243		22		.358							1.34
			.025*		.090*	.033*		-,110				.481*		54	1.16
D I	.338	256 .223*	.189*		.090^	.033*		110				.401		.394*	1.28
											.406*				1.29
CUI	11.3	327	.066*	1574	. 237	.048*		. 155			.406^				1.47
CU III	9.683 1,774	298 104	151 077	. 157*	. 446	.078		204			-3.247			110	1.34
											4.500	0161			
PB I	141	347	. 145	155	109	.034*		086				.046*	==		1.43
PB II	. 487	268	359			.099	. 152	008*				1.088			1.51
B III	39.8	196	.123	.404											
ZN I	199	338	.070*			029	.114*	.068*				004*		1.0(1	1.24
ZN II	. 149	238	201	.278										1.961	1.65
III N	1,879	149	061*		. 285	. 146	078				77			916	1.3

Table 6.--Summary of statistics for regression models of storm-runoff mean concentrations

[This table corresponds to models in table 5; COD is chemical oxygen demand in storm-runoff mean concentration, in milligrams per liter; I is region I representing areas that have mean annual rainfall less than 20 inches; II is region II representing areas that have mean annual rainfall of 20 to less than 40 inches; III is region III representing areas that have mean annual rainfall equal to or greater than 40 inches; SS is suspended solids in storm-runoff mean concentration, in milligrams per liter; DS is dissolved solids in storm-runoff mean concentration, in milligrams per liter; TN is total nitrogen in stormrunoff mean concentration, in milligrams per liter; TKN is total ammonia plus organic nitrogen as nitrogen in storm-runoff mean concentration, in milligrams per liter; TP is total phosphorus in storm-runoff mean concentration, in milligrams per liter; DP is dissolved phosphorus in storm-runoff mean concentration, in milligrams per liter; CD is total recoverable cadmium in storm-runoff mean concentration, in micrograms per liter; CU is total recoverable copper in storm-runoff mean concentration, in micrograms per liter; PB is total recoverable lead in storm-runoff mean concentration, in micrograms per liter; ZN is total recoverable zinc in storm-runoff mean concentration; in micrograms per liter]

Response variable and		Standard of esti		Number of	Number of	Mean of log of response variable
region	R ²	(percent)	(log)	storms	stations	(pounds)
COD I	0.52	61	0.245	216	21	2.141
COD II	.20	79	.303	792	57	1.859
COD III	.18	78	.300	563	33	1.744
SS I	.13	131	.434	176	19	2.321
SS II	.19	128	.427	963	44	2.142
SS III	.14	178	.519	528	29	1.724
DS I	.68	86	.322	175	17	1.913
DS II	.66	63	.253	281	21	1.998
TN I	.54	45	.189	121	16	.584
TN II	.10	75	.291	573	45	.302
TN III	.37	78	.300	613	37	.279
TKN I	.59	60	.242	188	23	.503
TKN II	.12	85	.321	857	62	.177
TKN III	.31	85	.321	609	35	.106
TP I	0.51	78	0.303	186	19	-0.237
TP II	. 15	122	. 415	1,090	60	615
TP III	.29	94	.345	635	35	608
DP I	.56	78	.300	248	23	688
DP II	.31	114	.396	467	31	-1.370
DP III	.24	90	.334	247	16	914
CD I	.20	61	. 247	65	15	.196
CD II	.10	89	.333	47	5	.312
CU I	.34	83	.316	212	22	1.533
CU II	.14	109	.386	298	17	1.491
CU III	.67	81	.308	464	30	1.418
PB I	.19	88	.331	239	23	2.215
PB II	.41	103	.371	942	54	2.085
PB III	.37	179	.414	384	31	2.139
ZN I	.22	80	.308	224	21	2.319
ZN II	. 15	138	.450	357	31	2.169
ZN III	.37	79	.345	591	30	2.084

the larger the percent of pervious area. Large concentrations of suspended solids and associated constituents generally are associated with pervious areas. Therefore, the drainage area may be a surrogate for pervious area in some models.

Although DA was significant in all of the models for storm-runoff loads, DA was not significant in many of the models for storm-runoff mean concentrations. TRN generally was significant, and IA, land-use, and mean annual climatic characteristics occasionally were significant in the models for storm-runoff mean concentrations.

ESTIMATING PROCEDURES FOR MEAN SEASONAL OR MEAN ANNUAL LOADS

Reconnaissance studies of urban storm-runoff loads often require preliminary estimates of mean seasonal or mean annual loads from stations that have minimal or no storm-runoff or concentration data. These preliminary estimates can be made by relating observed mean seasonal or mean annual loads from stations that have data to physical, land-use, or climatic characteristics using a regional-regression analysis. The purpose of this part of the study is to decrease the large data base of urban-runoff water-quality data, discussed in the "Data Base" section, to a set of regression models that may be used to estimate mean loads for 10 chemical constituents--chemical oxygen demand (COD), suspended solids (SS), dissolved solids (DS), total nitrogen (TN), total ammonia plus organic nitrogen as nitrogen (TKN), total phosphorus (TP), dissolved phosphorus (DP), total copper (CU), total lead (PB), and total zinc (ZN).

The available data do not lend themselves to a direct application of ordinary least-squares regression analysis. First, the observed load data were collected over a relatively short period of time, and during the period of collection not all storm-runoff events were sampled. In addition, in some areas storm-runoff load data were not collected during winter months or during periods when the ground was covered with snow. To overcome the problem of short records, at-site regression models were developed based on observed records for each of the 10 constituents. These models were developed for each station by relating observed storm-runoff loads to observed total storm rainfall and sometimes to duration of storm rainfall for a number of individual storms. The reliability of each of these at-site regression models also varied greatly from station to station because of the number of storms used to estimate the parameters of the at-site regression models and the fit of the observed storms varied greatly. Twenty-four of the 30 metropolitan areas met the selection criteria of having constituent and rainfall data for a minimum of 6 storms. In some metropolitan areas, much of the wintertime precipitation is snow rather than rain, which results in minimal direct runoff. At stations in these metropolitan areas (indicated by asterisks in table 12A through 12J in the "Supplemental Information" section at the end of this report) the storm-runoff loads were calculated only for storms that occurred during April through September. At the remaining stations, the storm-runoff loads were calculated for storms that occurred throughout the year. The at-site load-rainfall models along with a nearby long-term rainfall record allow the load data to be extended, and a more reliable estimation of mean load then can be obtained.

Response Variable -- Mean Load for a Storm

To overcome the problem of attempting a nationwide regression of mean loads when loads at some stations were based on seasonal calculations and loads at other stations were based on annual calculations, a new variable called mean load for a storm is defined. Before defining the mean load for a storm, a precise definition of a storm is given. For this report, a storm is a rainfall event in which the total rainfall is at least 0.05 inch. Storms are separated by at least 6 consecutive hours of zero rainfall. Rainfall records (Warren, 1983) from long-term rainfall-record stations near the storm-runoff load stations were examined; the number of storms were counted, and the total storm rainfall (TRN), in inches, and duration of storms (DRN), in hours, were averaged (table 7). The mean load for a storm, W, can be estimated in a two-step process. First, the coefficients for the following equation were derived using short-term storm data at each site:

$$\hat{W}_i = a_i + b_{1i} \overline{R}_i + b_{2i} \overline{D}_i , \qquad (5)$$

where

 \hat{W}_{i} = estimated mean load for a storm (last column of table 12A through 12J),

a; = intercept,

 \mathbf{b}_{1i} = coefficient for total storm rainfall,

 \overline{R}_{i} = mean rainfall for storms at station i,

 b_{2i} = coefficient for duration of rainfall, and

 $\overline{\mathbf{D}}_{\mathbf{i}}$ = mean duration of rainfall for storms at station i.

Then these coefficients were used to estimate the mean load for a storm by substituting the long-term mean rainfall and duration in equation 5. Values for each $\hat{\mathbb{W}}$ for each station and each constituent are listed in tables 12A through 12J in the "Supplemental Information" section at the end of this report; \mathbf{a}_i , \mathbf{b}_{1i} , and \mathbf{b}_{2i} are estimated from a linear regression model of observed storm-runoff loads from observed storms. Table 7 shows the mean number of storms per season or year, M. Mean seasonal load or mean annual load for each constituent may be calculated as $\hat{\mathbb{W}} \times \mathbb{M}$. The models in tables 12A through 12J should not be used to determine loads for a single storm. They are used only to estimate the mean load for a storm, $\hat{\mathbb{W}}_i$, by substituting $\overline{\mathbb{R}}_i$ and $\overline{\mathbb{D}}_i$ into equation 5. The variance of $\hat{\mathbb{W}}$ can be approximated by

$$Var(\hat{W}_{i}) \cong \frac{S_{ei}^{2}}{L_{i}} + b_{1i}^{2} \frac{S_{Rj}^{2}}{n_{i}} + b_{2i}^{2} \frac{S_{Dj}^{2}}{n_{i}} , \qquad (6)$$

Table 7.--Location and long-term rainfall-record data for stations used in a nationwide study of urban mean seasonal and mean annual loads

[Rainfall record consists of alphabetical and numerical State code and rainfall-record identification according to the National Oceanic and Atmospheric Administration; mean number of storms marked with an asterisk (*) are seasonal (April-September) number of storms rather than annual number of storms; dashes (--) indicate that the variable is not included in the calculation]

			Statistic	s for lon	g-term rec	ord	
			Mean of duration		variance or	Number	Mean number of
Metropolitan area	Rainfall record	Mean of rainfall per storm (inch)	of rainfall per storm (hours)	Storm rain- fall (inch)	Duration of rainfall (hours)	of storms in record	storms per season or year
Ann Arbor, Mich. Austin, Tex. Baltimore, Md. Bellevue, Wash. Boston, Mass.	MI 20 0230 TX 41 0428 MD 18 0470 WA 45 7473 MA 19 0770	0.3647 .5846 .5627 .3740 .3969	 12.3805	0.1456 .6209 .5672 .2056 .3831	 124.7356	691 2,194 1,374 1,866 1,852	38* 54 39* 98 52*
Champaign-Urbana, Ill. Columbus, Ohio Durham, N.H. Fresno, Calif. Glen Ellyn, Ill.	IL 11 8740 OH 33 1786 NH 29 2174 CA 04 3257 IL 11 1549	.5487 .4459 .4356 .2587 .4887	 7.6070	.4179 .2267 .2661 .1262 .3776	 61.1374	1,044 1,690 1,214 1,481 1,534	42* 48* 38* 41 43*
Kansas City, Mo. Knoxville, Tenn. Lake George, N.Y. Lakewood, Colo. Lansing, Mich.	MO 23 4359 TN 40 4950 NY 30 9389 CO 05 2220 MI 20 4641	.5748 .5078 .3815 .3542 .4063	 7.3483	.4578 .3328 .1830 .2335 .2730	 72.2492 	1,033 3,260 1,649 1,002 1,276	41* 92 46* 28* 41*
Miami, Fla. Milwaukee, Wis. Portland, Oreg. Rochester, N.Y. Saint Paul, Minn.	FL 08 5663 WI 47 5479 OR 35 6751 NY 30 7167 MN 21 5435	.5547 .4396 .3785 .3605 .4218	6.7932 	.7633 .2577 .2113 .1560 .2467	36.3012 	3,418 1,504 3,434 1,582 1,539	100 42* 96 45* 43*
Salt Lake City, Utah Tampa, Fla. Washington D.C. Winston-Salem, N.C.	UT 42 7598 FL 08 8788 MD 18 9290 NC 31 7069	.2961 .6438 .5396 .5375	7.8489 	.1086 .7296 .4209 .3935	50.5012	834 325 710 2,766	23* 79 42* 77

where

 S_{ei}^2 = mean square residual for the regression at station i,

L = number of storms used to estimate coefficients for the at-site regression model,

 S_{Rj}^2 = sample variance of total rainfall record for the jth rainfall record associated with the ith station,

 $\rm S_{Dj}^2$ = sample variance of duration of rainfall for the jth rainfall record associated with the ith station, and

 n_{i} = number of storms in the record.

Note that equation 6 underestimates $Var(\hat{W}_i)$ because it does not include the additional variance in \hat{W}_i due to uncertainty in the estimates of b_{1i} and b_{2i} . This additional variance is assumed to be negligible. Assuming rainfall quantities and duration are uncorrelated, the sample covariance between \hat{W}_i at station i and \hat{W}_k at station k, which was computed from a common long-term rainfall record, can be approximated by

$$Cov(\hat{w}_{i}, \hat{w}_{k}) \cong b_{1i}b_{1k} \frac{S_{Rj}^{2}}{n_{j}} + b_{2i} b_{2k} \frac{S_{Dj}^{2}}{n_{j}}.$$
 (7)

At the stations for which $\hat{\mathbb{W}}$, and $\hat{\mathbb{W}}_k$ were computed using different long-term rainfall records, the $\text{Cov}(\hat{\mathbb{W}}_1^i, \hat{\mathbb{W}}_k)$ are assumed to be zero. Therefore, $\hat{\mathbb{W}}$'s for stations located near different metropolitan areas are assumed to be uncorrelated and $\hat{\mathbb{W}}$'s for stations within or near a common long-term rainfall record have some degree of correlation.

Explanatory Variables

A number of physical, land-use, and climatic characteristics were screened for possible use in explaining variations from station to station in the mean seasonal or mean annual loads. Based on physical reasoning, preliminary regression runs, and plots, the following characteristics were chosen for further analysis:

Physical and land-use characteristics:

- 1. Total contributing drainage area (DA), in square miles;
- Impervious area (IA), as a percent of total contributing drainage area;
- An indicator variable (X1), that is 1 if residential land use (LUR)
 plus nonurban land use (LUN) exceeds 75 percent of the total
 contributing drainage area and that is zero otherwise;

4. An indicator variable (X2), that is 1 if industrial land use (LUI) plus commercial land use (LUC) exceeds 75 percent of the total contributing drainage area and that is zero otherwise.

Climatic characteristics:

- 1. Mean annual rainfall (MAR), in inches;
- 2. Mean minimum January temperature (MJT), in degrees Fahrenheit.

Values for the explanatory variables used in the regression analysis and the stations used for each regression are listed in table 8. Not all stations were used in the regression analysis because an estimate of the long-term mean seasonal or mean annual loads for each station was not always available. The regression analysis was limited to stations that had drainage areas that ranged from 0.01 to 0.85 square mile, although some data outside this range were available. Limiting the analysis was done so that the analysis would not be greatly affected by a few points that plotted away from the bulk of the data. Therefore, the analysis was limited to stations that had drainage areas in the ranges listed in table 9. To extend the analysis outside these ranges requires additional data. In general, the models should not be used to estimate mean storm loads at stations whose characteristics are much beyond the range of values listed in table 9.

Methods

As indicated in equation 6, the variance of \hat{W}_i is a function of a fit of the at-site storm-runoff-load and rainfall model, the value of S^2 , and the number of storms used to estimate its coefficient, L.. Because S^{2ei}_i and L. (table 12A through 12J in the "Supplemental Information" section at the end of this report) vary greatly from station to station, the variance of \hat{W}_i also will vary from station to station.

A straightforward application of the ordinary least-squares method can be used to estimate the parameters of a nationwide regression model of load for a mean storm against basin characteristics, and the ordinary least-squares results are included for comparison. However, use of the ordinary least-squares method is not suggested because the available data do not meet the requisite assumptions for the ordinary least-squares method to be the best method to use, for two important reasons. First, the variance of the estimates of the load for a mean storm from station to station is large, as indicated in tables 12A through 12J. This violates the assumption of equal variances for the response variable that is necessary for ordinary least squares to be appropriate. Second, long-term mean seasonal or mean annual loads at many stations were calculated from common long-term rainfall records (eq. 7). This calculation does not fulfill the assumption that the observed mean seasonal or mean annual loads are independent from station to station, which also is necessary for ordinary least squares to be appropriate.

Table 8.--Explanatory variables used in regression models for mean seasonal or mean annual loads

[COD is chemical oxygen demand in mean seasonal or mean annual load, in pounds; SS is suspended solids in mean seasonal or mean annual load, in pounds; DS is dissolved solids in mean seasonal or mean annual load, in pounds; TN is total nitrogen in mean seasonal or mean annual load, in pounds; TP is total phosporus in mean seasonal or mean annual load, in pounds; DP is dissolved phosphorus in mean seasonal or mean annual load, in pounds; CU is total recoverable copper in mean seasonal or mean annual load, in pounds; PB is total recoverable lead in mean seasonal or mean annual load, in pounds; DA is total contributing drainage area, in square miles; IA is impervious area, in percent; LUI is industrial land use, in percent; LUC is commercial land use, in percent; LUR is residential land use, in percent; LUN is nonurban land use, in percent; indicator variable X1 is 1 if residential land use and nonurban land use exceed 75 percent of drainage area; indicator variable X2 is 1 if commercial land use and industrial land use exceed 75 percent drainage area; MAR is mean annual rainfall, in inches; MJT is mean minimum January temperature, in degrees Fahrenheit]

Metropolitan	Station	in	dic	ate	d w		use	d i	n r	egr	te es- low				Explan	atory	vari	abl	es		
area	number	COD										DA	IA	LUI	LUC	LUR			X2	MAR	MJT
Austin, Tex. Austin, Tex.	HART LANE ROLLING WOOD	1	1 -	-	-	-	<u>-</u>	-	-	-	-	0.590	40 21	0	1	99 100	0	1	0	32.49 32.49	39.3 39.3
Baltimore, Md. Baltimore, Md. Baltimore, Md.	01589455 01589460 01589462	1 - 1	1 -	1	1	1 1 -	1 -	-	1 -	1 1	1	.026 .030 .036	29 72 29	0 0 0	0 16 0	100 84 100	0 0 0	1 1 1	0 0 0	40.46 40.46 40.46	24.9 24.9 24.9
Bellevue, Wash.	12119725	1	1	1	-	1	1	1	-	1	-	.150	36	0	7	90	3	1	0	37.21	33.9
Boston, Mass. Boston, Mass. Boston, Mass. Boston, Mass.	P1 P2 P3 P5	1 1 1 1	1 1 1		1 - - 1	1 1 1	1 1	1 - 1 1	1 1 1 1	1	1 1 1	.172 .528 .241 .156	21 23 16 33	4 11 8 0	16 24 3 63	79 47 85 8	2 18 5 29	1 0 1 0	0 0 0	42.52 42.52 42.52 42.52	22.5 22.5 22.5 22.5
Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill.	BASIN 1 BASIN 2 BASIN 4 BASIN 5	1 1 1 1	1 1 1 1			1 1 1 1	1 1 1		1 1 1	1		.026 .043 .061 .085	58 37 18 19	0 0 0 0	57 10 0 0	43 90 91 100	0 0 9 0	0 1 1 1	0 0 0	36.54 36.54 36.54 36.54	18.0 18.0 18.0
Columbus, Ohio Columbus, Ohio	03226900 03227050	1	1	1	1	1	1	-	1	1	1	.450 .600	60 85	0	13 23	81 74	6	1	0	37.01 37.01	20.4
Fresno, Calif. Fresno, Calif. Fresno, Calif. Fresno, Calif.	364155119445000 364746119445400 364818119443800 364818119464700	1		1 1 1				1 1 -	1 1 1	1 - 1 1	1 1 1	.430 .150 .070 .090	53 43 57 99	66 0 0	0 0 0 100	0 96 87 0	34 4 13 0	0 1 1 0	0 0 0	10.24 10.24 10.24 10.24	35.8 35.8 35.8
Glen Ellyn, Ill.	415302088033804	-	-	-	1	-	1	-	1	1	1	.830	34	0	10	83	7	1	0	34.44	17.0
Kansas City, Mo. Kansas City, Mo. Kansas City, Mo. Kansas City, Mo. Kansas City, Mo.	IC II IR RC RR	1 1 1 1	1 1 1			1 1 1 -	1 - 1	1 - 1 -	1	1 - 1		.091 .112 .098 .056	97 44 37 68 38	0 56 0 0	96 0 0 50	0 0 92 50 100	4 44 8 0	0 0 1 0	1 0 0 0	37.00 37.00 37.00 37.00 37.00	19.3 19.3 19.3 19.3

				inc																	
Metropolitan	Station									-	low				Explan	atorv	vari	abl	es		
area	number	COD	SS	DS	TN	TKN	TP	DP	CU	PB	ZN	DA	IA	LUI		LUR			X2	MAR	MJT
Knoxville, Tenn.	N47001	1	_	_	1	1	1	1	1	1	1	0.040	99	0	100	0	0	0	1	46.18	32.2
Knoxville, Tenn.	N47004	=	-	-	-	-	-	1	-	-	-	.108	33	0	2	91	7	1	0	46.18	32.2
Knoxville, Tenn.	N47007	1	-	-	1	1	-	-	-	-	-	.140	13	0	4	96	0	1	0	46.18	32.2
Knoxville, Tenn.	N47010	1	1	-	1	-	-	-	1	1	1	.292	43	0	35	65	1	0	0	46.18	32.2
Lake George, N.Y.	3702	-	1	-	1	1	1	1	-	1	-	.119	5	0	36	6	58	0	0	33.62	10.8
Lakewood, Colo.	06711635	1	1	-	1	1	1	1	1	1	1	.110	59	0	30	33	37	0	0	15.51	16.2
Lansing, Mich.	001	1	1	-	1	1	1	1	1	1	1	0.707	38	19	5	48	28	1	0	30.39	15.3
Lansing, Mich.	002	1	1	-	1	1	1	1	-	1.	-	.098	64	100	0	0	0	0	1	30.39	15.3
Lansing, Mich.	006	1	-	-	1	1	1	1	-	1	1	.047	68	0	33	67	0	0	0	30.39	15.3
Lansing, Mich.	008	1	1	-	1	1	1	1	-	-	1	.256	28	10	0	55	34	1	0	30.39	15.3
Lansing, Mich.	010	1	1	-	1	1	1	1	1	1	1	.117	39	52	0	48	0	0	0	30.39	15.3
Miami, Fla.	261002080070100	1	_	_	1	1	1	-	1	1	1	.030	98	0	98	0	2	0	1	59.05	58.7
Miami, Fla.	261615080055900		-	-	1	1	1	-	-	-	_	.060	44	0	0	100	0	1	0	62.00	58.7
Miami, Fla.	261629080072400		-	-	1	1	1	-	1	1	1	.090	36	0	40	0	60	0	0	62.00	58.7
Milwaukee, Wis.	04086941	-	-	1	-	-	-	-	-	-	-	.060	44	0	0	100	0	1	0	29.07	11.4
Milwaukee, Wis.	04086943	-	-	1	1	-	-	1	-		1	.020	99	0	100	0	0	0	1	29.07	11.4
Milwaukee, Wis.	04086945	1	1	1	-	-	1	1	-	1	-	.020	98	0	100	0	0	0	1	29.07	11.4
Milwaukee, Wis.	04087056	-	-	-	-	-	-	1	-	-	-	.100	30	0	0	100	0	1	0	29.07	11.4
Milwaukee, Wis.	04087057	1	1	1	-	-	1	1	-	1	-	.050	30	0	0	100	0	1	0	29.07	11.4
Milwaukee, Wis.	04087115	-	1	1	-	-	-	-	-	1	-	.040	77	0	80	20	0	0	1	29.07	11.4
Milwaukee, Wis.	04087133	1	1	-	1	1	1	1	-	1	1	.070	81	0	70	30	0	0	0	29.07	11.4
Milwaukee, Wis	413630	1	1	-	1	-	-	-	-	1	-	.045	77	0	74	26	0	0	0	29.07	11.4
Milwaukee, Wis.	413631	1	1	-	1	1	1	-	-	1		.070	81	13	56	31	0	0	0	29.07	11.4
Milwaukee, Wis.	413632	1	1	-	1	1	1	-	-	1	1	.051	51	0	0	100	0	1	0	29.07	11.4
Milwaukee, Wis.	413633	1	1	-	1	1	1	-	-	_	1	.098	50	0	0	100	0	1	0	29.07	11.4
Milwaukee, Wis.	413634	1	1	-	1	1	1	-	-	1	1	.019	100	0	100	0	0	0	1	29.07	11.4
Milwaukee, Wis.	413635	1	1	-	1	1	1	-	-	1	1	.019	100	0	100	0	0	0	1	29.07	11.4
Milwaukee, Wis.	413636	1	1	-	-	-	1	-	-	1	-	.056	57	0	3	97	0	1	0	29.07	11.4
Portland, Oreg.	14206330	1	-	1	-	1	1	-	-	-	-	.210	19	0	0	58	43	1	0	37.61	32.5
Rochester, N.Y.	430403077311500	-	-	-	-	1	-	-	-	-	-	.260	22	0	0	100	0	1		31.33	16.7
Rochester, N.Y.	430428077261100	-	1	-	-	1	1	-	-	1	-	.360	16	0	37	28	35	0	0	31.33	16.7
Rochester, N.Y.	430649077285500	-	1	-	-	-	1	-	-	-	-	.570	38	0	12	88	0	1	0	31.33	16.7
Salt Lake City, Utah Salt Lake City, Utah	10167220 404653111545801	1 -	1	-	-	1	1	1	1	•	1	.100	52 64	0	8 35	83 56	9	1	0	17.00 17.00	18.5 18.5
St. Paul, Minn.	445032092552801	1	1	-	1	1	1	-	_	1	-	.150	4	0	0	33	67	1	0	29.00	3.2
St. Paul, Minn.	445210093271701	-	1	-	1	1	1	-	-	1	-	.130	11	0	1	87	12	1	0	29.00	3.2
St. Paul, Minn.	445937093230701		1	-	1	1	1	-	-	1	-	.330	22	0	0	83	17	1	0	29.00	3.2
St. Paul, Minn.	450011093221901		1	-	1	1	1	-	-	1	-	.120	70	0	85	10	6	0	1	29.00	3.2
St. Paul, Minn.	450100093205501		1	4	1	1	1	-	-	1	_	.470	35	0	20	80	1	1	0	29.00	3.2
St. Paul, Minn.	450541093201201		1	-	1	1	1	-	-	1	-	.220	29	0	4	97	0	1	0	29.00	3.2

Table 8.--Explanatory variables used in regression models for mean seasonal or mean annual loads--Continued

Metropolitan	Station	ir	ndi	cate	ed v		use	d i	n r	egr	te es-				Explan	atory	vari	ab1	.es		
area	number	COD	SS	DS	TN	TKN	TP	DP	CU	PB	ZN	DA	IA	LUI	LUC	LUR	LUN	X1	X2	MAR	MJT
Tampa, Fla.	TNURPS013	_	_	_	_	_	_	_	1	_	_	0.014	6	0	0	100	0	1	0	49.38	50.1
Tampa, Fla.	TNURPS023	1	-	-	1	1	1	-	1	1	1	.303	97	0	25	55	21	1	0	49.38	50.1
Tampa, Fla.	TNURPS033	1	-	-	1	1	1	-	1	1	1	.046	13	0	0	48	52	1	0	49.38	50.1
Tampa, Fla.	TNURPS173	1	1	-	1	1	-	-	1	1	1	.066	16	0	0	89	11	1	0	49.38	50.1
Tampa, Fla.	TNURPS183	-	1	-	-	-	-	-	-	-	-	.073	45	0	91	9	0	0	1	49.38	50.1
Washington, D.C.	DC151UR07	1	1	_	1	1	1	1	1	1	1	.107	27	0	0	100	0	1	0	40.00	25.0
Washington, D.C.	DC151UR09	1	-	-	1	1	1	1	_	-	1	.029	34	0	0	88	12	1	0	40.00	25.0
Washington, D.C.	DC151UR10	1	1	-	1	1	1	1	-	1	1	.043	34	0	0	78	23	1	0	40.00	25.0
Washington, D.C.	DC151UR15	1	-	-	1	1	1	1	-	-	-	.064	21	0	0	93	7	1	0	40.00	25.0
Winston-Salem, N.C.	Q2485000	1	1	-	1	1	1	-	1	1	1	.506	27	2	2	84	12	1	0	41.36	28.5

A method for estimating the parameters of regression model when the variances of the response variables are not equal and when the response variables are not independent is generalized least squares. Let $y = \log(W)$ denote a vector of log (base 10) transformed mean loads for a storm and W denote a vector of mean loads, \hat{W} , for a storm for the stations under consideration. Then the generalized least-squares model may be written

$$y = x\beta + e, \qquad (8)$$

where

 $X = (n \times p)$ matrix of the physical, land-use, or climatic characteristics at the stations augmented by a column of 1's,

 β = (p x 1) vector of regression coefficients to be estimated, and

 $ealge = (n \times 1)$ vector of error terms with E(ealge) = 0 and E(ealge = 0), where ealge = 1 = transpose.

Table 9.--Range of explanatory variables used in regression models of mean seasonal or mean annual loads for indicated response variables

[DA is total contributing drainage area; IA is impervious area; MAR is mean annual rainfall; MJT is mean minimum January temperature; COD is chemical oxygen demand; SS is suspended solids in mean seasonal or mean annual load, in pounds; DS is dissolved solids in mean seasonal or mean annual load, in pounds; TN is total nitrogen in mean seasonal or mean annual load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in mean seasonal or mean annual load, in pounds; TP is total phosphorus is seasonal or mean annual load, in pounds; CU is total recoverable copper in mean seasonal or mean annual load, in pounds; PB is total recoverable lead in mean seasonal or mean annual load, in pounds; ZN is total recoverable zinc in mean seasonal or mean annual load, in pounds; In pounds in pounds]

				Exp	Lanator	y varia	bles		
	Number		DA e miles)	I. (per	A cent)	1.2	AR hes)	(de	JT grees enheit)
Response variable	of stations	Min- imum	Max- imum	Min- imum	Max- imum	Min- imum	Max- imum	Min- imum	Max- imum
COD	60	0.019	0.707	4	100	8.38	62.00	3.2	58.7
SS	48	.019	.707	4	100	8.38	49.38	3.2	50.1
DS	14	.020	.450	19	99	10.24	37.61	11.4	35.8
TN	41	.019	.830	4	100	11.83	62.00	3.2	58.7
TKN	52	.019	.707	4	100	8.38	62.00	3.2	58.7
TP	52	.019	.830	4	100	8.38	62.00	3.2	58.7
DP	28	.020	.707	5	99	8.38	46.18	10.8	35.8
CU	30	.014	.830	6	99	8.38	62.00	15.3	58.7
PB	57	.019	.830	4	100	8.38	62.00	3.2	58.7
ZN	34	.019	.830	13	100	8.38	62.00	11.4	58.7

The generalized least-squares parameter estimates (Stedinger and Tasker, 1985) are

$$\hat{\beta}_{GLS} = (\underline{X}' \underline{\wedge}^{-1} \underline{X})^{-1} \underline{X}' \underline{\wedge}^{-1} \underline{y} . \tag{9}$$

The difficulty in using the generalized least-squares estimator of β is that \bigwedge needs to be known. However, \bigwedge is unknown and needs to be estimated from the data.

One approach is to assume that Λ is diagonal and has equal diagonal elements, $\Lambda=\sigma^2$ I, where I is an n-dimensional identity matrix. In this technique, the estimator is the same as the ordinary least-squares estimator, and the coefficients are estimated easily using standard statistical-computing packages. However, as indicated previously in this section, the ordinary least-squares estimator is not appropriate for this particular analysis. The ordinary least-square results are included in table 10 for purposes of comparison.

Stedinger and Tasker (1985) reported on an operational generalized least-squares estimator that accounts for unequal variances in the response variables and for nonzero covariances between the variables at different sites. Although this generalized least-squares estimator was developed for streamflow, it can be adapted for use with the mean load for a storm. A brief description of this operational estimator for generalized least-squares regression coefficients is now given.

Following the approach of Stedinger and Tasker (1985), the error term, e, is partitioned into an error inherent in the model and a parameter estimation error due to sampling. The estimator, $\hat{\Lambda}$, of the covariance matrix is

$$\hat{\lambda} = \hat{\gamma}^2 \times + \hat{\Sigma} , \qquad (10)$$

where

 $\hat{\gamma}^2$ = an estimate of the variance of the error inherent in the model, and

 $\stackrel{\Sigma}{\sim}$ = an estimate of the sampling-error covariance matrix.

Assuming $y = \log(\hat{y})$ is normally distributed, the diagonal elements of the sampling covariance matrix can be approximated by

$$(\hat{\Sigma})_{ii} = 0.1886 \ln \left[1 + \frac{\text{Var}(\hat{W}_i)}{\hat{W}_i^2}\right],$$
 (10a)

where the $Var(\hat{W}_i)$ is given by equation 6 (Aitchison and Brown, 1957). The off-diagonal elements are given by

$$\hat{(\Sigma)}_{ij} = 0.1886 \ln \left[1 + \frac{\text{Var}(\hat{\mathbb{W}}_{i})^{1/2} \text{Var}(\hat{\mathbb{W}}_{j})^{1/2}}{\hat{\mathbb{W}}_{i}\hat{\mathbb{W}}_{j}} \frac{\text{Cov}(\hat{\mathbb{W}}_{i}, \hat{\mathbb{W}}_{j})}{\text{Var}(\hat{\mathbb{W}}_{i})^{1/2} \text{Var}(\hat{\mathbb{W}}_{j})^{1/2}}\right], (10b)$$

where $\mathrm{Cov}(\hat{\mathbf{W}}_{\underline{i}},\hat{\mathbf{W}}_{\underline{i}})$ is given by equation 7 (Mejia and others, 1974).

The model error variance, γ^2 , is estimated by solving

$$(\chi - \chi \hat{\beta}_{GLS})' \hat{\Lambda}^{-1} (\chi - \chi \hat{\beta}_{GLS}) = n-p , \qquad (11)$$

where $\hat{\beta}_{GLS}$ is estimated by equation 9 with $\hat{\Lambda}$ substituted for $\Lambda,$ and the variance-covariance matrix, u, for $\hat{\beta}_{GLS}$ is estimated by

$$U = Var(\hat{\beta}_{GLS}) = (X'\hat{\Lambda}^{-1}X)^{-1} .$$
 (12)

An iterative search procedure is necessary to solve equation 11 because γ^2 is related to $\hat{\lambda}$ using equation 10 and $\hat{\beta}_{GLS}$ is related to $\hat{\lambda}$ using equation 9.

Models

Models to estimate mean seasonal or mean annual loads as functions of physical, land-use, and climatic characteristics were developed for 10 chemical constituents: COD, SS, DS, TN, TKN, TP, DP, CU, PB, and ZN. Separate models were developed for each constituent using ordinary least squares and generalized least squares (table 10). A bias correction factor (BCF) was calculated for each model using a smearing estimate, which is a nonparametric method applying average retransformed residuals according to suggestions in Duan (1983). The bias correction factor can be applied to each model to make the prediction models approximately unbiased because the linear regression model was fitted to the logarithms of the mean seasonal or mean annual loads (Ferguson, 1986).

The explanatory variables for each regression model were selected based on their contribution to explaining the variance in the log of the mean loads for a storm. All the variables listed in table 10 were significant at the 5-percent level. The square root of DA was a significant explanatory variable in every model. The transformation of DA to $\mathrm{DA}^{1/2}$ was determined to be the best according to the maximum likelihood method (Draper and Smith, 1981) after looking at results from other candidate transformations, specifically DA, DA^2 , $\mathrm{DA}^{3/4}$, $\mathrm{DA}^{1/4}$, $\mathrm{log}(\mathrm{DA})$, $\mathrm{DA}^{-1/4}$, $\mathrm{DA}^{-3/4}$, DA^{-1} , and DA^{-2} . The coefficient for IA was positive and statistically significant at the 5-percent level in the regression models for COD, TN, TKN, PB, and ZN mean loads for a storm. The coefficient for X2, a land-use indicator variable, was significantly negative for TN and TKN. This indicates that there are two relations for TN and TKN, one that applies when LUI + LUC is greater than 75 percent and one that applies when LUI + LUC is less than 75 percent. One or both of the climatic variables MAR and MJT were significant at the 5-percent level in the models for SS, DS, TKN, TP, and CU mean loads for a storm.

Table 10.--Results of regression models of mean loads of a storm for indicated constituents on physical, land-use, or climatic characteristics of the watershed

[The response variable, Y, is the runoff load associated with the long-term mean runoff event; regression coefficients are significant at the 0.05 level.

Model is : $\hat{W} = 10^{[\beta_0 + \beta_1 SQRT(DA) + \beta_2 IA + \beta_3 MAR + \beta_4 MJT + \beta_5 X2]}$ BCF.

DA is total contributing drainage area, in square miles; IA is impervious area, in percent; MAR is mean annual rainfall, in inches; MJT is mean minimum January temperature, in degrees Fahrenheit; X2 is an indicator variable of commercial and industrial land uses exceeding or not exceeding 75 percent of drainage area; COD is chemical oxygen demand in mean seasonal or mean annual load, in pounds; SS is suspended solids in mean seasonal or mean annual load, in pounds; DS is dissolved solids in mean seasonal or mean annual load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in mean seasonal or mean annual load, in pounds; TF is total phosphorus in mean seasonal or mean annual load, in pounds; DP is dissolved phosphorus in mean seasonal or mean annual load, in pounds; DP is dissolved phosphorus in mean seasonal or mean annual load, in pounds; DI is total recoverable lead in mean seasonal or mean annual load, in pounds; DS is ordinary least squares; GLS is generalized least squares; dashes (--) indicate that the variable is not included in the calculation]

Response		Regres- sion con-		Regress indicated		icients fo		Bias cor- rection	Num- ber of		2	SE			ge pre	diction SEP)
variable Ŵ	Method	β_0	\sqrt{DA} β_1	IA β ₂	$^{MAR}_{\beta_3}$	MJT β ₄	X2 β ₅	factor (BCF)	sta- tions	1 _R 2	(logs)	(per- cent)	(logs)	(per	cent)	Average percent
COD	OLS GLS	1.1262 1.1174	2.0004 2.0069	0.0049 .0051		==	==	1.301 1.298	59	0.53	0.333	89 79	0.342	-55 -51	120 105	93 82
SS	OLS GLS	1.4627 1.5430	1.6021 1.5906		0.0299 .0264	-0.0342 0297		1.670 1.521	47	.43	.462 .412	145 121	.482	-67 -63	203 171	156 130
DS	OLS GLS	1.8656 1.8449	2.5501 2.5468			0244 0232	==	1.278 1.251	13	.61	.341	92 81	.378	-58 -55	139 123	106 95
TN		2398 2433	1.6039 1.6383	.0065			-0.4832 4442	1.332 1.345	41	. 49	.367 .345	102 94	.385	-59 -57	143 131	109 100
TKN		7326 7282	1.5991 1.6123	.0067	.0219	0199 0210	4553 4345	1.264 1.277	51	.49	.339	92 83	.359	-56 -54	129 119	99 91
TP		-1.4443 -1.3884	2.0918 2.0825	==	.0246	0211 0213	==	1.330 1.314	51	.65	.328	88 79	.341	-54 -52	119 107	92 83
DP		-1.3898 -1.3661	1.4316 1.3955	Ξ			==	1.508 1.469	28	.20	.412	121 104	.427	-63 -59	167 144	128 110
cu		-1.4861 -1.4824	1.7646 1.8281	==		0136 0141	==	1.457 1.403	30	.41	.391 .361	112 100	.410	-61 -58	157 140	120 108
РВ		-2.0676 -1.9679	1.9880 1.9037	.0081	.0121			1.477	56	.46	.403	117 97	.417	-62 -57	161 133	123 102
ZN		-1.6504 -1.6302	2.0267 2.0392	.0073				1.356 1.322	34	.59	.343 .310	93 81	.358	-56 -53	128 128	99 87

¹R² is the proportion of variance in Y explained by the sample regression model.

3ASEP is the square root of the average variance of prediction. It is computed from equation 15 for OLS and equation 16 for GLS. ASEP is given in log units and percent. The conversion from logs to percent is

ASEP (+percent) =
$$100[10^{\text{ASEP}(\log s)} - 1]$$

ASEP (-percent) = $100[10^{\text{-ASEP}(\log s)} - 1]$
ASEP (average percent) = $100[e^{\text{SE}^2 \times 5.302} -1]^{1/2}$

²SE in logs for OLS regression is the standard error of estimate (square root of first term on right side of equation 15). SE in logs for GLS regression is the standard error of the model (square root of first term on right side of equation 16).

The fit of the regression models may be measured by the R^2 value (table 10), which is the fraction of variance in Y explained by the model. These values ranged from 0.20 for the model of DP to 0.65 for the model of TP. A measure of how accurate the models are for prediction at unmonitored stations is the average variance of prediction. This statistic is computed by averaging the estimated variance of prediction at a station over the stations used in the regression. In ordinary least squares, the variance of prediction at a station i, $V_{\rm pi}$, is estimated by

$$\hat{\mathbf{v}}_{\mathbf{p}i} = \hat{\sigma}_{\mathbf{e}}^{2} \left(1 + \mathbf{x}_{i} (\mathbf{x}'\mathbf{x})^{-1} \mathbf{x}_{i}'\right) , \qquad (13)$$

where

 $\hat{\sigma}_{_{\!\boldsymbol{\rho}}}$ = standard error of estimate for the regression, and

 x_i = a row vector of explanatory variables augmented by a 1 as the first element for station i (Draper and Smith, 1981).

The equivalent statistic for the generalized least squares is

$$\hat{V}_{pi} = \hat{\gamma}^2 + \underline{x}_i U \underline{x}_i'$$
 (14)

(Stedinger and Tasker, 1985). The average prediction error at unmonitored stations can be appraised by assuming that the values of the explanatory variables at the monitored stations used in the regional regressions are a representative sample of stations. The variance of prediction is computed at each of these stations using either equation 13 or 14 and an average over all stations determined. The square root of this average, denoted ASEP, is shown in table 10.

A $100(1-\alpha)$ confidence interval for the true mean load for a storm, W , at a particular unmonitored station i can be computed by

$$\frac{1}{T} - \frac{\hat{W}_{i}}{RCF} < W_{i} < \frac{\hat{W}_{i}}{RCF} T, \tag{15}$$

where \hat{W}_{i} is the regression estimate for one of the models in table 10 and

$$T = 10^{-[t(\alpha/2, n-p)^{(\hat{V}_{pi})^{1/2}]},$$
 (16)

where $t_{(\alpha/2,\ n-p)}$ is the critical value of the t-distribution for n-p degrees of freedom and is tabulated in many statistical texts. The variance-covariance matrices, U, needed to calculate \hat{V}_{pi} in T for each of the 10 regression models are listed in table 11.

Table 11.--Variance-covariance matrix for regression parameter estimates for each of the 10 regression models

[This table corresponds to models in table 10; DA is total contributing drainage area, in square miles; IA is impervious area, in percent; MAR is mean annual rainfall, in inches; MJT is mean minimum January temperature, in degrees Fahrenheit; X2 is an indicator variable of commercial and industrial land uses exceeding or not exceeding 75 percent of drainage area; COD is chemical oxygen demand in mean seasonal or mean annual load, in pounds; SS is suspended solids in mean seasonal or mean annual load, in pounds; DS is dissolved solids in mean seasonal or mean annual load, in pounds; TKN is total ammonia plus organic nitrogen as nitrogen in mean seasonal or mean annual load, in pounds; TP is total phosphorus in mean seasonal or mean annual load, in pounds; DP is dissolved phosphorus in mean seasonal or mean annual load, in pounds; PB is total recoverable copper in mean seasonal or mean annual load, in pounds; PB is total recoverable lead in mean seasonal or mean annual load, in pounds; ZN is total recoverable zinc in mean seasonal or mean annual load, in pounds; values are in scientific notation (example-- 1.9363E-02 is 0.019363)]

COD	Constant	√DA	IA				
Constant	1.9363E-02	-2.716E-02	-1.682E-04				
$\sqrt{\overline{DA}}$	-2.716E-02	6.4332E-02	9.8363E-05				
IA	-1.682E-04	9.8363E-05	2.7996E-06				
SS	Constant	$\sqrt{\mathrm{DA}}$	MAR	MJT			
Constant	1.2799E-01	-4.440E-02	-3.779E-03	1.0304E-03			
√DA	-4.440E-02	1.2989E-01	2.8962E-05	-2.991E-04			
MAR	-3.779E-03	2.8962E-05	1.4849E-04	-6.608E-05			
MJT	1.0304E-03	-2.991E-04	-6.608E-05	7.3585E-05			
DS	Constant	$\sqrt{\overline{DA}}$	MJT				
Constant	5.6262E-02	-5.360E-02	-1.248E-03				
√DA	-5.360E-02	3.9703E-01	-3.337E-03				
MJT	-1.248E-03	-3.337E-03	9.9534E-05				
TN	Constant	$\sqrt{\overline{\mathrm{DA}}}$	IA	X2			
Constant	3.4590E-02	-4.493E-02	-3.324E-04	4.7196E-03			
√DA	-4.493E-02	1.0309E-01	1.1757E-04	1.3013E-02			
IA	-3.324E-04	1.1757E-04	7.2720E-06	-3.484E-04			
X2	4.7196E-03	1.3013E-02	-3.484E-04	4.2067E-02			
TKN	Constant	√DA	IA	X2	MAR	MJT	
Constant	1.0696E-01	-5.283E-02	-4.887E-04	1.8916E-02	-2.605E-03	1.2411E-03	
\sqrt{DA}	-5.283E-02	1.0073E-01	1.2527E-04	7.7172E-03	2.7698E-04	3.6202E-05	
X2	1.8916E-02	7.7172E-03	-3.384E-04	3.8246E-02	-5.631E-04	3.8766E-04	
IA	-4.887E-04	1.2527E-04	6.5176E-06	-3.384E-04	9.2175E-06	-6.013E-06	
MAR	-2.605E-03	2.7698E-04	9.2175E-06	-5.631E-04	9.3696E-05	-5.564E-05	
MJT	1.2411E-03	3.6202E-05	-6.013E-06	3.8766E-04	-5.564E-05	4.4696E-05	
TP	Constant	$\sqrt{\overline{DA}}$	MAR	MJT			
Constant	5.5400E-02	-2.589E-02	-1.660E-03	6.7787E-04			
\sqrt{DA}	-2.589E-02	6.1221E-02	5.5267E-05	8.9042E-05			
MAR	-1.660E-03	5.5267E-05	7.0813E-05	-4.022E-05			
MJT	6.7787E-04	8.9042E-05	-4.022E-05	3.3482E-05			

Table 11.--Variance-covariance matrix for regression parameter estimates for each of the 10 regression models--Continued

DP	Constant	$\sqrt{\overline{ m DA}}$			
Constant	3.7200E-02	-9.503E-02			
$\sqrt{\overline{\mathrm{DA}}}$	-9.503E-02	2.8924E-01			
CU	Constant	$\sqrt{\overline{\mathrm{DA}}}$	MJT		
Constant	6.5351E-02	-6.876E-02	-1.122E-03		
$\sqrt{\mathrm{DA}}$	-6.876E-02	1.3005E-01	5.8628E-04		
MJT	-1.122E-03	5.8628E-04	3.0108E-05		
РВ	Constant	$\sqrt{\overline{\mathrm{DA}}}$	IA	MAR	
Constant	7.1623E-02	-4.938E-02	-3.567E-04	-9.865E-04	
$\sqrt{\mathrm{DA}}$	-4.938E-02	9.1551E-02	2.3984E-04	1.3275E-04	
IA	-3.567E-04	2.3984E-04	4.2164E-06	1.7693E-06	
MAR	-9.865E-04	1.3275E-04	1.7693E-06	2.5135E-05	
ZN	Constant	$\sqrt{\overline{\mathrm{DA}}}$	IA		
Constant	0.4020E-01	-0.4700E-01	-0.3564E-03		
$\sqrt{\overline{\mathrm{DA}}}$	-0.4700E-01	0.9232E-01	0.2412E-03		
IA	-0.3564E-03	0.2412E-03	0.4873E-05		

The computed values of the regression coefficients for the ordinary least-squares and the generalized least-squares models are similar. However, because the generalized least-squares models allow for heterogeneous errors and account for cross correlations between stations, they are more accurate predictors of mean seasonal or mean annual loads at unmonitored stations than are the ordinary least-squares models.

Example

To compute the mean annual load of total nitrogen, in pounds, at a 0.5 square mile basin which is 90 percent residential (the sum of industrial and commercial land use is therefore less than 75 percent) with impervious area of 30 percent and in a region where the mean number of storms per year is 79, first compute the mean load for a storm, \hat{W} , using the appropriate equation from table 10:

$$\hat{W} = 10^{[-0.2433 + 1.6383 (0.5)^{1/2} + 0.0061 (30) - 0.4442(0)]}$$
× 1.345 = 16.9 pounds.

The mean annual load can be calculated by multiplying \hat{W} by 79, the average number of storms per year, to yield a mean annual load of TN = 79 (16.9) = 1,335 pounds. The calculation to obtain the 90-percent confidence interval for this example follows.

Given:

$$n-p = 41-4 = 37 \qquad \text{degrees of freedom}$$

$$\alpha = 0.1 \qquad 90\text{-percent confidence}$$

$$t_{\alpha/2, n-p} = 1.69 \qquad \text{from statistical tables}$$

$$x_i = \begin{bmatrix} 1 \ 0.707 \ 30 \ 0 \end{bmatrix} \qquad \text{vector of basin characteristics}$$

$$U = \begin{bmatrix} 0.0346 & -0.0449 & -0.00033 & 0.00472 \\ -.0449 & .1031 & .00012 & .0130 \\ -.00033 & .00012 & .0000073 & -.000348 \\ .00472 & .0130 & -.000348 & .0421 \end{bmatrix} \qquad \text{(from table 11)}$$

$$\hat{\gamma} = (0.345)^2 = 0.119 \qquad \text{(from table 10)}$$

$$BCF = 1.345 \qquad \text{(from table 10)}.$$

Calculate:

$$\hat{V}_{pi} = 0.119 + x_i Ux_i' = 0.119 + 0.014 = 0.133$$

$$T = 10^{\left[1.69 (0.133)^{1/2}\right]} = 4.13$$

$$\frac{1}{4.13} \quad \frac{16.9}{1.345} < \hat{w} < \frac{16.9}{1.345} \quad 4.13$$
$$3.0 < \hat{w} < 51.9 ;$$

therefore, a 90-percent confidence interval for $\hat{W} = 16.9$ is (3.0, 51.9).

SUMMARY

Two sets of regression models for estimating storm-runoff loads and volumes were developed and included 34 models of the most accurate set of explanatory variables and 34 models of the simplified three-variable models. The three-variable models are based on explanatory variables of total storm rainfall, total contributing drainage area, and impervious area. Thirty-one models for estimating storm-runoff mean concentrations were developed for urban areas throughout the United States. Ten models for estimating mean seasonal or mean annual loads were developed from long-term mean seasonal and mean annual loads, which were computed by analyzing long-term storm rainfall records using at-site regression models. These models are useful for water-quality management and planning and design of pollution-control facilities.

Where sufficient data were available, the United States was divided into three regions on the basis of mean annual rainfall to decrease the variability in storm-runoff loads and volumes and storm-runoff mean concentrations caused by differences in physical, land-use, and climatic characteristics. Data compiled by the U.S. Geological Survey and the U.S. Environmental Protection Agency were used to develop the regression models.

Total storm rainfall and total contributing drainage area were the most significant explanatory variables in all the regression models. Other significant variables in the models included impervious area, land-use, and mean annual climatic characteristics. Models for estimating storm-runoff loads of dissolved solids, total nitrogen, and total ammonia plus organic nitrogen as nitrogen provided the most accurate estimates, whereas models for storm-runoff loads of suspended solids provided the least accurate estimates. The most accurate models were those for the more arid Western United States, and the least accurate models were those for the east coast and Southern United States that had large quantities of mean annual rainfall. If additional national data become available, explanatory variables that presently are not available need to be considered to improve the accuracy of the models, especially in region III.

Models for estimating storm-runoff loads, as compared with the three-variable models and with the models for estimating storm-runoff mean concentrations, were the most accurate models that were developed by using ordinary least squares. Generally the storm-runoff-volume models were more accurate than the storm-runoff-load models. Models for estimating storm-runoff loads have R^2 values that range from 0.35 to 0.95, standard errors of estimate that range from 57 to 265 percent, and average prediction errors that range from 56 to 334 percent. Models for estimating storm-runoff volumes have R^2 values that range from 0.70 to 0.88, standard errors of estimate that range from 69 to 118 percent, and average prediction errors that range from 69

to 119 percent. Generally, the three-variable models and models for estimating storm-runoff mean concentrations had smaller values of \mathbb{R}^2 and were less accurate than the models for estimating storm-runoff loads.

Urban water-quality storm data were summarized in 10 regression models that can be used to predict mean loads at unmonitored stations that have drainage areas in the range of 0.015 to 0.85 square mile. Statistically significant ($\alpha = 0.05$) explanatory variables include drainage area in all 10 models; impervious area, an indicator variable for urban land use, mean annual rainfall, and mean minimum January temperature were statistically significant in some models. An operational generalized least-squares estimator of regression coefficients was introduced and compared with the ordinary leastsquares estimator usually used for such models. The computed values of the regression coefficients for the ordinary least-squares models and the generalized least-squares models are similar. However, because the generalized least-squares models allow for heterogeneous errors and account for cross correlations between stations, prediction errors of loads at unmonitored stations are smaller than those produced by ordinary least-squares models. Models for estimating mean seasonal or mean annual loads have R² values that range from 0.20 to 0.65; the average variance of prediction for the generalized least-squares models ranged from -63 to +171 percent.

Ideally, storm-runoff loads, volumes, and mean concentrations, and mean annual or mean seasonal loads need to be determined by direct measurements. Because weather and monetary constraints commonly make direct measurements impossible, models in this report may be used for planning and making preliminary estimates. Critical issues and design analysis probably would involve direct measurement of constituents. The regression models could be useful in identifying data-collection needs. However, all the limitations of the models need to be considered when applying them to estimate loads or concentrations at a watershed.

REFERENCES CITED

- Alley, W.M., and Veenhuis, J.E., 1979, Determination of basin characteristics for an urban distributed routing rainfall-runoff model, in Huber, W.C., ed., Stormwater Management Model (SWMM) Users Group Meeting, Montreal, Canada, 1979, Proceedings: Washington, D.C., U.S. Environmental Protection Agency Miscellaneous Reports Series EPA 600/79-026, 27 p.
- Aitchison, J., and Brown, J.A.C., 1957, The lognormal distribution: London, Cambridge University Press, 176 p.
- Athayde, D.N., Healy, R.P., and Field, Richard, 1982, Preliminary results of nationwide urban runoff program: Washington, D.C., U.S. Environmental Protection Agency, Water Planning Division, 2 v.
- Bissonnette, Pam, 1986, Nonpoint pollution--It's urban, too: EPA Journal, v. 12, no. 4, p. 6-7.
- Blevins, D.W., 1984, Quality of stormwater of the Blue River basin in Kansas City, Missouri: U.S. Geological Survey Water-Resources Investigations Report 84-4226, 140 p.
- Colyer, P.J., and Yen, B.C., 1983, Current issues and future needs in urban storm drainage: Water Resources, v. 17, no. 9, p. 1067-1071.

- Davies, P.H., 1986, Toxicology and chemistry of metals in urban runoff, in Urbanas, Ben, and Roesner, L.A., eds., Urban runoff quality--Impact and quality enhancement technology, Henniker, N.H., 1986, Proceedings: New York, American Society of Civil Engineers, p. 60-78.
- Draper, N.R., and Smith, Harry, 1981, Applied regression analysis, 2d ed.: New York, John Wiley, 709 p.
- Driver, N.E., and Lystrom, D.J., 1986, Estimation of urban storm-runoff loads, in Urbonas, Ben, and Roesner, L.A., eds., Urban runoff quality--Impact and quality enhancement technology, Henniker, N.H., 1986, Proceedings: New York, American Society of Civil Engineers, p. 122-132.
- _____1987, Estimation of urban storm-runoff loads and volumes in the United States, in Gujer, W., and Krejci, V., eds., Topics in urban storm water quality, planning and management, Lausanne, Switzerland, 1987, Proceedings: International Association for Hydraulic Research, p. 214-219.
- Driver, N.E., Mustard, M.H., Rhinesmith, R.B., and Middelburg, R.F., 1985, U.S. Geological Survey urban-stormwater data base for 22 metropolitan areas throughout the United States: U.S. Geological Survey Open-File Report 85-337, 219 p.
- Duan, Naihua, 1983, Smearing estimate: A nonparametric retransformation method: Journal of the American Statistical Association, v. 78, no. 383, p. 605-610.
- Ellis, J.B., Harrop, P.O., and Revitt, D.M., 1986, Hydrological controls of pollutant removal from highway surfaces: Water Research, v. 20, no. 5, p. 589-595.
- Ellis, S.R., Doerfer, J.T., Mustard, M.H., Blakely, S.R., and Gibbs, J.W., 1984, Analysis of urban storm-runoff data and the effects on the South Platte River, Denver metropolitan area, Colorado: U.S. Geological Survey Water-Resources Investigations Report 84-4159, 66 p.
- Ferguson, R.I., 1986, River loads underestimated by rating curves: Water Resources Research, v. 22, no. 1, p. 74-76.
- Halverson, H.G., DeWalle, D.R., and Sharpe, W.E., 1984, Contribution of precipitation to quality of urban storm runoff: Water Resources Bulletin, v. 20, no. 6, p. 859-864.
- Huber, W.C., 1986, Deterministic modeling of urban runoff quality, in Torno, H.C., Marsalek, Jiri, and Desbordes, Michael, eds., Urban runoff pollution, a NATO advanced workshop, Montpellier, France, 1985, Proceedings: Berlin, Springer-Verlag, NATO ASI Series G, Ecological Sciences, v. 10, p. 167-242.
- Huber, W.C., and Heaney, J.P., 1982, Analyzing residuals discharge and generation from urban and non-urban land surfaces, in Basta, D.J., and Bower, B.T., eds., Analyzing natural systems, analysis for region residuals--Environmental Quality Management: Washington, D.C., U.S. Environmental Protection Agency, EPA-600/3-83-046 [Available from National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 as PB83-223321], chap. 3, p. 121-243.
- Kibler, D.F., ed., 1982, Urban stormwater hydrology: Washington, D.C., Water Resources Monograph 7, 271 p.
- Kircher, J.E., Choquette, A.F., and Richter, B.D., 1985, Estimation of natural streamflow characteristics in western Colorado: U.S. Geological Survey Water-Resources Investigations Report 85-4086, 28 p.

- Koch, R.W., and Smillie, G.M., 1986, Bias in hydrologic prediction using log-transformed regression models: Water Resources Bulletin, v. 22, no. 5, p. 717-723.
- Lichty, R.W., and Liscum, F., 1978, A rainfall-runoff modeling procedure for improving estimates of T-year (annual) floods for small drainage basins: U.S. Geological Survey Water-Resources Investigations 78-7, 44 p.
- Lindner-Lunsford, J.B., and Ellis, S.R., 1987, Comparison of conceptually based and regression rainfall-runoff models, Denver metropolitan area, Colorado, and potential application in urban areas: U.S. Geological Survey Water-Resources Investigation Report 87-4104, 39 p.
- Loganathan, G.V., and Delleur, J.W., 1984, Effects of urbanization on frequencies of overflows and pollutant loadings from storm sewer overflows--A derived distribution approach: Water Resources Research, v. 20, no. 7, p. 857-865.
- Lystrom, D.J., Rinella, F.A., Rickert, D.A., and Zimmermann, Lisa, 1978, Regional analysis of the effects of land use on stream-water quality--Methodology and application in the Susquehanna River basin, Pennsylvania and New York: U.S. Geological Survey Water-Resources Investigation 78-12 [Available from National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 as PB-284185], 60 p.
- Mejia, J.M., Rodriguez-Iturbe, I., and Cordova, J.R., 1974, Multivariate generation of mixtures of normal and lognormal variables: Water Resources Research, v. 21, no. 9, p. 1421-1432.
- Miller, D.M., 1984, Reducing transformation bias in curve fitting: The American Statistician, v. 38, no. 2, p. 124-126.
- Miller, R.A., and Mattraw, H.C., 1982, Storm water runoff quality from three land-use areas in South Florida: Water Resources Bulletin, v. 18, no. 3, p. 513-519.
- Miller, T.L., and McKenzie, S.W., 1978, Analysis of urban storm-water quality from seven basins near Portland, Oregon: U.S. Geological Survey Open-File Report 78-662 [Available from U.S. Geological Survey, Water Resources Division, 830 N.E. Holladay St., Portland, OR 97232], 47 p.
- Mustard, M.H., Driver, N.E., Chyr, John, and Hansen, B.G., 1987, U.S. Geological Survey urban-stormwater data base of constituent storm loads; characteristics of rainfall, runoff, and antecedent conditions; and basin characteristics: U.S. Geological Survey Water-Resources Investigations Report 87-4036, 328 p.
- National Oceanic and Atmospheric Administration, 1980, Climates of the States, 2d ed.: Detroit, Gale Research Company, 2 v.
- Neter, John, Wasserman, William, and Kutner, M.H., 1985, Applied linear statistical models, 2nd ed.: Homewood, Ill., Irwin, 1127 p.
- Newton, D.W., and Herrin, J.C., 1982, Assessment of commonly used flood frequency methods: Transportation Research Record 896, 64 p.
- Novotny, Vladmir, Sung, Hung-Ming, Bannerman, Roger, and Baum, Ken, 1985, Estimating nonpoint pollution from small urban watersheds: Journal of Water Pollution Control Federation, v. 57, no. 4, p. 339-348.
- Randall, C.W., 1982, Stormwater detention ponds for water quality control, in DeGrout, William, ed., Stormwater detention facilities--Planning, design, operation, and maintenance, Henniker, N.H., 1982, Proceedings: New York, American Society of Civil Engineers, p. 200-204.
- SAS Institute, Inc., 1985, SAS user's guide--Statistics: Raleigh, N.C., 956 p.

- Sauer, V.B., Thomas, W.O., Jr., Stricker, V.A., and Wilson, K.V., 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63-p.
- Schuster, E., and Yakowitz, S.J., 1985, Parametric/nonparametric mixture density estimation with application to flood-frequency analysis: Water Resources Bulletin, v. 21, no. 5, p. 797-804.
- Stedinger, J.R., and Tasker, G.D., 1985, Regional hydrologic analysis. 1. Ordinary, weighted, and generalized least squares compared: Water Resources Research, v. 21, no. 9, p. 1421-1432.
- Troutman, B.M., 1985, Errors and parameter estimation in precipitation-runoff modeling--1. Theory: Water Resources Research, v. 21, no. 8, p. 1195-1213.
- U.S. Environmental Protection Agency, 1983, Results of the nationwide urban runoff program: U.S. Environmental Protection Agency Final Report, 4 v.
- Warren, L.H., 1983, Selective guide to climatic data sources--Key to meteorological record documentation no. 4.11: Ashville, N.C., National Climatic Data Center, 338 p.
- Waylen, P.R., and Woo, Ming-Ko, 1984, Regionalization and prediction of floods in the Fraser River catchment, B.C.: Water Resources Bulletin, v. 20, no. 6, p. 941-949.
- Whipple, William, Grigg, N.S., Grizzard, T.J., Randall, C.W., Shubinski, R.P., and Tucker, L.S., 1984, Stormwater management in urbanizing areas: Englewood Cliffs, N.J., Prentice-Hall, Inc., 234 p.
- Young, G.K., Bondelid, T.R., and Athayde, D.N., 1979, Urban runoff pollution method: Journal of the Water Resources Planning and Management Division, v. 105, no. WR2, Paper 14854, p. 353-369.

SUPPLEMENTAL INFORMATION

		Reg	ression coeff	ficients		Standard		Mean seasonal
			Coefficients for		Number of		Mean	or mean
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Austin, Tex.	ROLLING WOOD	6.95	16.62		8	15.94	16.7	902
Baltimore, Md. Baltimore, Md.	01589455 01589462	-3.48 39.94	100.28 323.63	==	13 7	18.04 199.51	52.9 222.0	2,060* 8,660*
Bellevue, Wash.	12119725	22.84	301.09	-5.41	31	34.37	68.5	6,710
Boston, Mass. Boston, Mass. Boston, Mass. Boston, Mass.	P1 P2 P3 P5	20.93 -387.14 -399.08 -55.61	324.95 3,164.45 3,077.79 832.42	=======================================	8 6 6 8	83.09 461.71 212.30 223.63	150.0 869.0 823.0 275.0	7,800* 45,200* 42,800* 14,300*
Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill.	BASIN 1 BASIN 2 BASIN 4 BASIN 5	65.99 38.67 23.46 14.10	97.05 163.72 81.02 171.06	 	28 25 22 26	50.25 39.84 25.26 49.80	119.0 128.0 67.9 108.0	5,000* 5,380* 2,850* 4,540*
Columbus, Ohio Columbus, Ohio	03226900 03227050	240.21 -1,327.16	1,764.04 5,796.11	==	19 10	530.95 606.68	1,030.0 1,260.0	49,400* 60,500*
Fresno, Calif. Fresno, Calif. Fresno, Calif.	364155119445000 364746119445400 364818119443800	-501.16 48.80 23	6,693.56 199.74 328.27		11 9 16	1,037.63 82.96 63.96	1,230.0 100.0 84.7	50,400 4,100 3,470
Kansas City, Mo. Kansas City, Mo. Kansas City, Mo. Kansas City, Mo. Kansas City, Mo.	IC II IR RC RR	-127.64 152.36 55.70 25.50 80.01	577.65 170.30 23.99 119.31	 	17 14 9 12	184.68 127.08 42.53 26.86 145.36	204.0 250.0 55.7 39.3 149.0	8,360* 10,300* 2,280* 1,610* 6,110*
Knoxville, Tenn. Knoxville, Tenn. Knoxville, Tenn.	N47001 N47007 N47010	13.39 3.50 -76.69	61.99 35.51 519.75		14 11 11	27.13 20.44 78.25	44.9 21.5 187.0	4,130 1,980 17,200
Lakewood, Colo.	06711635	64.45	509.91	C	26	57.74	245.0	6,860*

Table 12A.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for chemical oxygen demand for the stations used in a nationwide study of urban mean seasonal and mean annual loads--Continued

		_						Mean
		Reg	ression coeff	icients	Number of	Standard error of	Mean	seasonal or mean
			Total	Rainfall	storms in	at-site	load for	annual
Metropolitan	Station		rainfall	duration	at-site	regression	a storm	load
area	number	Intercept	(TRN)	(DRN)	regression	(pounds)	(pounds)	(pounds)
Lansing, Mich.	001	-154.12	1,095.78		16	256.46	291.0	11,900*
Lansing, Mich.	002	1.69	109.77		11	55.77	46.3	1,900*
Lansing, Mich.	006	38.68	52.97		25	35.53	60.2	2,470*
Lansing, Mich.	008	20.52	254.18		16	84.66	124.0	5,080*
Lansing, Mich.	010	12.72	73.46		9	24.90	42.6	1,750*
Miami, Fla.	261002080070100	125.12	126.06		30	143.96	195.0	19,500
Miami, Fla.	261615080055900	2.74	11.24		31	6.76	9.0	900
1iami, Fla.	261629080072400	21.10	44.93		40	26.75	46.0	4,600
Milwaukee, Wis.	04086945	13.50	141.93		10	40.97	75.9	3,190*
Milwaukee, Wis.	04087057	-1.68	63.50		8	23.14	26.2	1,100*
Milwaukee, Wis.	04087133	67.14	322.98		10	78.80	209.0	8,780*
Milwaukee, Wis.	413630	47.19	202.36		16	81.13	136.0	5,710*
Milwaukee, Wis.	413631	-14.43	733.92		35	179.34	308.0	12,900*
Milwaukee, Wis.	413632	6.40	61.86		17	17.83	33.6	1,410*
Milwaukee, Wis.	413633	09	186.57		21	61.27	81.9	3,440*
Milwaukee, Wis.	413634	13.56	92.90		20	40.36	54.4	2,290*
Milwaukee, Wis.	413635	7.21	102.52		32	42.29	52.3	2,200*
Milwaukee, Wis.	413636	-81.17	358.72		13	83.16	76.5	3,210*
Portland, Oreg.	14206330	-32.32	301.08		6	10.39	81.6	7,830
Salt Lake City, Utah	10167220	31.76	148.10	-5.65	20	23.77	31.2	718*
St. Paul, Minn.	445032092552801	-220.49	836.54		13	259.45	132.0	5,680%
St. Paul, Minn.	445937093230701	153.46	288.65		7	125.42	275.0	11,800*
St. Paul, Minn.	450011093221901	14.73	611.56		15	192.89	273.0	11,700%
St. Paul, Minn.	450100093205501	-71.18	1,537.18		12	318.83	577.0	24,800*
St. Paul, Minn.	450541093201201	80.29	168.09		15	112.23	151.0	6,490*
Campa, Fla.	TNURPS023	34.15	1,018.22		13	715.42	690.0	54,500
Campa, Fla.	TNURPS033	-46.21	236.86		14	114.16	106.0	8,370
Campa, Fla.	TNURPS173	25.82	95.78		11	88.92	87.5	6,910
ashington, D.C.	DC151UR07	1.09	189.18		36	41.49	103.0	4,330%
Washington, D.C.	DC151UR09	37.57	20.49		29	50.76	48.6	2,040*
Washington, D.C.	DC151UR10	13.18	33.06		29	27.55	31.0	1,300%
Washington, D.C.	DC151UR15	11.58	33.84		27	22.73	29.8	1,250*
Vinston-Salem, N.C.	Q2485000	137.39	318.75		32	336.65	309.0	23,800

Table 12B.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for suspended solids for the stations used in a nationwide study of urban mean seasonal and mean annual loads

		Reg	ression coeff	icients		Standard		Mean seasonal
		-		ients for	Number of	error of	Mean	or mean
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Austin, Tex.	HART LANE	-28.11	947.60		9	316.12	526.0	28,400
Baltimore, Md.	01589455	-13.78	100.59	1-2	13	21.77	42.8	1,670*
Bellevue, Wash.	12119725	-2.64	486.57	-6.40	31	39.38	100.0	9,800
Boston, Mass. Boston, Mass. Boston, Mass.	P2 P3 P5	-2,417.03 -673.82 103.92	16,618.59 7,699.95 188.88	 	7 6 8	1,985.38 1,525.44 183.41	4,180.0 2,380.0 179.0	217,000* 124,000* 9,310*
Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill.	BASIN 1 BASIN 2 BASIN 4 BASIN 5	112.01 47.43 -117.42 4.41	211.00 389.15 816.76 383.62	==	45 51 35 40	246.19 210.04 172.42 120.85	228.0 261.0 331.0 215.0	9,580* 11,000* 13,900* 9,030*
Columbus, Ohio	03226900	-303.47	5,979.47		20	1,756.68	2,360.0	113,000*
Kansas City, Mo. Kansas City, Mo. Kansas City, Mo.	IC II RR	110.08 -865.38 1,628.79	293.17 2,474.63 1,036.18		19 16 10	455.23 378.54 2,229.47	279.0 557.0 2,220.0	11,400* 22,800* 91,000*
Knoxville, Tenn.	N47010	-28.12	457.10		12	276.12	204.0	18,800
Lake George, N.Y.	3702	133.51	83.80		22	245.50	165.0	7,590*
Lakewood, Colo.	06711635	155.34	2,550.76	-48.49	26	321.56	703.0	19,700*
Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich.	001 002 008 010	-161.85 63 2.41 -26.61	1,833.45 121.68 768.92 439.89	=======================================	21 16 22 18	763.55 50.05 359.96 202.14	583.0 48.8 315.0 152.0	23,900* 2,000* 12,900* 6,230*

Table 12B.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for suspended solids for the stations used in a nationwide study of urban mean seasonal and mean annual loads--Continued

		Reg	ression coeff	icients cients for	Number of	Standard error of	Mean	Mean seasonal or mean
			Total	Rainfall	storms in	at-site	load for	annual
Metropolitan area	Station number	Intercept	rainfall (TRN)	duration (DRN)	at-site regression	regression (pounds)	a storm (pounds)	load (pounds)
Milwaukee, Wis.	04086945	-7.05	988.55	-59.37	13	38.64	24.2	1,020*
Milwaukee, Wis.	04087057	-14.29	175.49		12	97.98	62.9	2,640*
Milwaukee, Wis.	04087115	-5.49	471.52		12	100.07	202.0	8,480*
Milwaukee, Wis.	04087133	250.58	656.07		12	312.22	539.0	22,600*
Milwaukee, Wis.	413630	69.36	833.90		24	275.45	436.0	18,300*
Milwaukee, Wis.	413631	-190.74	3,379.66		43	1,301.18	1,300.0	54,600*
Milwaukee, Wis.	413632	-74.02	461.59		27	105.90	129.0	5,420*
Milwaukee, Wis.	413633	-57.39	1,235.02		38	339.13	485.0	20,400*
Milwaukee, Wis.	413634	-50.95	468.41		36	121.17	155.0	6,510*
Milwaukee, Wis.	413635	30.02	362.39		46	210.37	189.0	7,940*
Milwaukee, Wis.	413636	-248.04	1,225.68		18	514.87	291.0	12,200*
Rochester, N.Y.	430428077261100	-61.79	929.63		11	372.10	273.0	12,300*
Rochester, N.Y.	430649077285500	-1,799.51	5,824.62		6	1,895.37	300.0	13,500*
Salt Lake City, Utah	10167220	58.92	93.09	-8.32	16	31.08	21.2	488*
Salt Lake City, Utah	404653111545801	48.79	142.34		9	76.37	90.9	2,090*
St. Paul, Minn.	445032092552801	-4,732.47	17,555.51		20	3,853.03	2,670.0	115,000*
St. Paul, Minn.	445210093271701	-1,336.69	6,820.10		17	1,054.54	1,540.0	66,200*
St. Paul, Minn.	445937093230701	192.53	1,751.04		13	499.55	931.0	40,000*
St. Paul, Minn.	450011093221901	-452.38	2,793.35		22	540.77	726.0	31,200*
St. Paul, Minn.	450100093205501	-500.48	3,375.85		21	653.33	924.0	39,700*
St. Paul, Minn.	450541093201201	48.10	199.65		24	98.56	132.0	5,680*
Campa, Fla.	TNURPS173	-39.79	78.70		11	94.41	10.9	861
Гатра, Fla.	TNURPS183	30.37	36.17		12	38.78	53.7	4,240
Washington, D.C.	DC151UR07	-259.25	1,529.88		40	429.28	566.0	23,800*
Washington, D.C.	DC151UR10	23.51	23.76		30	44.13	36.3	1,530*
Winston-Salem, N.C.	Q2485000	61	3,197.41		63	4,031.43	1,720.0	132,000

Table 12C.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for dissolved solids for the stations used in a nationwide study of urban mean seasonal and mean annual loads

[Mean loads marked with an asterisk (*) are seasonal (April-September) loads rather than annual loads; dashes (--) indicate that variable is not included in the model]

		Reg	ression coeff	icients		Standard	Mann	Mean seasona
			Coeffici Total		Number of storms in	error of at-site	Mean load for	or mean annual
- THE SECTION OF THE	Station number	Intercept	rainfall (TRN)	Rainfall duration (DRN)	at-site regression	regression (pounds)	a storm (pounds)	load (pounds)
Baltimore, Md.	01589460	-21.24	204.60		7	116.55	93.90	3,660*
Bellevue, Wash.	12119725	-8.41	184.29		35	14.19	54.30	5,320
Columbus, Ohio	03226900	1,094.72	1,463.88		19	806.86	1,750.00	84,000%
Fresno, Calif.	364155119445000	-281.60	2,060.07	24.87	16	216.50	441.00	18,100
Fresno, Calif.	364746119445400	-192.24	2,339.64		16	226.68	413.00	16,900
Fresno, Calif.	364818119443800	5.68	208.23	-5.92	32	24.84	14.60	599
Fresno, Calif.	364818119464700	41.93	235.55		28	49.26	103.00	4,220
Milwaukee, Wis.	04086941	-7.69	380.45	-10.96	12	28.76	85.10	3,570*
Milwaukee, Wis.	04086943	10.03	211.91		13	61.59	103.00	4,330*
Milwaukee, Wis.	04086945	23.32	200.38		11	43.25	111.00	4,660*
Milwaukee, Wis.	04087057	-66.47	401.77		11	81.37	110.00	4,620*
Milwaukee, Wis.	04087115	45.21	237.36		12	57.46	149.00	6,260*
Portland, Oreg.	14206330	-44.52	314.53		6	34.60	74.50	7,150

Table 12D.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total nitrogen for the stations used in a nationwide study of urban mean seasonal and mean annual loads

		Regr	ession coeff	icients		Standard		Mean seasonal
Metropolitan area	Station number	Intercept		Rainfall duration (DRN)	Number of storms in at-site regression	error of at-site regression (pounds)	Mean load for a storm (pounds)	or mean annual load (pounds)
Baltimore, Md. Baltimore, Md.	01589455 01589460	0.51 1.18	6.29 26.22		14 7	1.47 14.58	4.04 15.90	158* 620*
Boston, Mass. Boston, Mass.	P1 P5	.69 4.10	11.59 13.07	==	9 6	6.77 3.63	5.29 9.29	275* 483*
Columbus, Ohio	03226900	12.77	75.24		19	22.10	46.30	2,220*
Glen Ellyn, Ill.	415302088033804	16.37	46.56		15	33.29	39.10	1,680*
Knoxville, Tenn. Knoxville, Tenn. Knoxville, Tenn.	N47001 N47007 N47010	.16 00 .96	1.16 .65 3.47		14 11 11	. 28 . 25 . 96	.75 .33 2.72	69 30 250
Lake George, N.Y.	3702	.27	1.02		16	.86	.66	30*
Lakewood, Colo.	06711635	.84	13.43		23	1.50	5.60	157*
Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich.	001 002 006 008 010	2.02 24 .91 .76 .96	24.82 3.49 3.34 10.00 3.20	=======================================	21 17 33 21 16	10.00 1.15 1.14 3.35 1.26	12.10 1.18 2.27 4.82 2.26	496* 48* 93* 198* 93*
Miami, Fla. Miami, Fla. Miami, Fla.	261002080070100 261615080055900 261629080072400	1.86 .08 .26	1.66 .79 .98		31 31 41	1.59 .37 .43	2.78 .52 .81	278 52 81

Table 12D.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total nitrogen for the stations used in a nationwide study of urban mean seasonal and mean annual loads--Continued

		Regr	ession coeff	icients		Standard		Mean seasonal
				cients for	Number of	error of	Mean	or mean
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Milwaukee, Wis.	04086943	0.02	1.15		6	0.15	0.52	22*
Milwaukee, Wis.	04087133	1.62	3.86		7	2.00	3.31	139*
Milwaukee, Wis.	413630	1.66	4.05		6	1.55	3.45	145*
Milwaukee, Wis.	413631	.81	17.03		14	3.52	8.30	349*
Milwaukee, Wis.	413632	37	4.52		15	.72	1.62	68*
Milwaukee, Wis.	413633	-1.18	13.50		10	2.54	4.75	199*
Milwaukee, Wis.	413634	.08	3.53		19	.79	1.63	68*
Milwaukee, Wis.	413635	55	4.89		18	.87	1.60	67*
St. Paul, Minn.	445032092552801	-6.37	27.75	,,	21	5.95	5.33	229*
St. Paul, Minn.	445210093271701	-6.77	39.45		17	4.97	9.87	424*
St. Paul, Minn.	445937093230701	6.51	8.60		11	3.98	10.10	434*
St. Paul, Minn.	450011093221901	43	18.18		21	2.27	7.24	311*
St. Paul, Minn.	450100093205501	-6.52	50.79		19	4.39	14.90	641*
St. Paul, Minn.	450541093201201	15	9.76		24	2.19	3.97	171*
Tampa, Fla.	TNURPS023	3.36	27.85		13	18.38	21.30	1,680
Tampa, Fla.	TNURPS033	37	4.81		13	2.05	2.73	216
Tampa, Fla.	TNURPS173	.90	3.90		11	4.22	3.41	269
Washington, D.C.	DC151UR07	55	9.22		39	1.53	4.42	186*
Washington, D.C.	DC151UR09	1.23	2.58	101	28	2.38	2.62	110*
Washington, D.C.	DC151UR10	2.01	1.46	44	31	2.97	2.80	118*
Washington, D.C.	DC151UR15	03	3.15		27	1.01	1.67	70*
Winston-Salem, N.C.	Q2485000	1.89	15.19		64	13.47	10.10	778

Table 12E.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total ammonia plus organic nitrogen as nitrogen for the stations used in a nationwide study of urban mean seasonal and mean annual loads

		Regr	Regression coefficients			Standard		Mean seasonal
			Coeffic	ients for	Number of	error of	Mean	or mean
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Baltimore, Md. Baltimore, Md.	01589455 01589460	-0.25 2.32	5.98 7.91		14 7	1.19	3.12 6.77	122* 264*
Bellevue, Wash.	12119725	.04	9.20	15	30	.44	1.58	155
Boston, Mass. Boston, Mass. Boston, Mass.	P1 P3 P5	.54 -5.88 .11	6.38 57.49 9.41	=======================================	9 6 8	4.50 2.26 1.64	3.07 16.90 3.85	160* 879* 200*
Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill.	BASIN 1 BASIN 2 BASIN 4 BASIN 5	.86 .65 .53	2.18 3.53 2.75 5.76	 	28 27 24 28	.99 .87 .99 1.84	2.06 2.59 2.05 3.50	87* 109* 86* 147*
Columbus, Ohio	03226900	5.28	52.90		19	17.63	28.90	1,390*
Kansas City, Mo. Kansas City, Mo. Kansas City, Mo.	IC II IR	-4.38 -2.21 2.62	16.04 12.62	= =	15 10 7	5.65 4.51 .66	4.84 5.04 2.62	198* 207* 107*
Knoxville, Tenn. Knoxville, Tenn.	N47001 N47007	.08	.60 .36	= =	14 11	.17	.38	35 19
Lake George, N.Y.	3702	.21	.81	(1)	16	.59	.52	24*
Lakewood, Colo.	06711635	.78	1.78		27	1.00	1.41	40*
Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich.	001 002 006 008	.95 13 .62 .07	16.85 2.23 2.17 7.83	Ξ	21 17 33 21	5.98 .84 .91 2.50	7.80 .77 1.50 3.25	320* 32* 61* 133* 63*
Lansing, Mich. Lansing, Mich.	010	.55	2.40		16	1.04	1.53	

		n				C+ - 1 1		Mean
		Kegr	ession coeffic	ients for	Number of	Standard error of	Mean	seasonal or mean
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Miami, Fla.	261002080070100	1.73	1.02		31	1.40	2.30	230
liami, Fla. liami, Fla.	261615080055900 261629080072400	.08	.53 .55		31 41	.30	.38	38 51
Milwaukee, Wis.	04087133	2.08	5.20		7	2.52	4.37	183*
ilwaukee, Wis.	413631	.60	11.46		14	2.40	5.63	236*
ilwaukee, Wis.	413632	24	2.79		15	. 42	.99	42
lilwaukee, Wis.	413633	-1.05	9.19		10	1.58	2.99	126
ilwaukee, Wis.	413634	13	2.37		19	. 42	.91	38%
Iilwaukee, Wis.	413635	.18	1.54		19	.37	.85	36%
ortland, Oreg.	14206330	-1.67	9.82		6	.52	2.05	197
dochester, N.Y.	430403077311500	3.47	5.42		13	4.56	5.43	244*
ochester, N.Y.	430428077261100	7.50	3.62		13	5.82	8.81	396*
Salt Lake City, Utah	10167220	.37	2.77		16	.40	1.19	27%
alt Lake City, Utah	404653111545801	1.21	4.49		8	.99	2.55	59*
t. Paul, Minn.	445032092552801	-6.00	26.18		21	5.68	5.04	217
t. Paul, Minn.	445210093271701	-6.49	36.32		18	5.03	8.83	380%
t. Paul, Minn.	445937093230701	6.09	7.61		13	4.44	9.30	400%
t. Paul, Minn.	450011093221901	43	14.74		23	2.82	5.79	249
t. Paul, Minn.	450100093205501	-5.22	44.47		22	4.97	13.50	580%
t. Paul, Minn.	450541093201201	.90	5.84		24	1.82	3.36	144
ampa, Fla.	TNURPS023	2.49	20.29		13	14.11	15.60	1,230
ampa, Fla.	TNURPS033	17	3.64		14	1.60	2.17	171
ampa, Fla.	TNURPS173	70	3.35		11	3.22	1.46	115
ashington, D.C.	DC151UR07	27	6.36		39	1.34	3.16	1337
Mashington, D.C.	DC151UR09	1.39	.54		28	1.75	1.68	715
ashington, D.C.	DC151UR10	1.43	.83		30	1.93	1.88	79%
ashington, D.C.	DC151UR15	04	2.27		27	.73	1.19	507
Vinston-Salem, N.C.	Q2485000	1.47	10.41		64	10.62	7.07	544

Table 12F.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total phosphorus for the stations used in a nationwide study of urban mean seasonal and mean annual loads
[Mean loads marked with an asterisk (*) are seasonal (April-September) loads rather than annual loads; dashes (--) indicate that the variable is not included in the model]

		Regr	ession coeff	icients		Standard		Mean seasonal
				cients for	Number of	error of	Mean	or mean
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Austin, Tex.	ROLLING WOOD	0.03	0.05		8	0.04	0.06	3.2
Baltimore, Md.	01589455	.09	. 15		6	.17	.17	6.6*
Bellevue, Wash.	12119725	01	1.66	03	30	.11	.29	28.4
Boston, Mass. Boston, Mass.	P3 P5	-4.32 12	36.14 4.63	==	6 8	1.97 5.19	10.00 1.72	520.0* 89.4*
Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill.	BASIN 1 BASIN 2 BASIN 4 BASIN 5	.16 .07 .06 .11	.31 .75 .79	 	28 26 24 28	.13 .14 .18 .25	.33 .48 .49 .64	13.9* 20.2* 20.6* 26.9*
Columbus, Ohio	03226900	1.02	6.93		19	2.16	4.11	197.0*
Glen Ellyn, Ill.	415302088033804	1.60	6.76		15	3.47	4.91	211.0*
Kansas City, Mo. Kansas City, Mo.	IC IR	.15 .50	.98		17 9	.79 .37	.71 .50	29.1* 20.5*
Knoxville, Tenn.	N47001	.05	.15		14	.05	.12	11.0
Lake George, N.Y.	3702	.02	.61		26	1.05	. 25	11.5*
Lakewood, Colo.	06711635	.16	2.52	03	27	.27	.85	23.8*
Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich.	001 002 006 008 010	.05 09 .11 .11	4.82 .95 .21 1.33 .50		20 16 33 21 15	1.90 .31 .14 .44 .36	2.01 .30 .19 .64	82.4* 12.3* 7.8* 26.2* 15.2*
Miami, Fla. Miami, Fla. Miami, Fla.	261002080070100 261615080055900 261629080072400	.18 .01 .01	.15 .16 .12		30 31 40	.18 .07 .03	.26 .10 .07	26.0 10.0 7.0

Table 12F.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total phosphorus for the stations used in a nationwide study of urban mean seasonal and mean annual loads--Continued

		Pear	ession coeff	icients		Standard		Mean seasonal or mean annual load (pounds) 3.8* 8.4* 28.1* 44.5* 9.7* 20.2* 3.4* 4.2* 21.4* 79.7 28.3* 220.0* 3.2* 8.0* 111.0* 98.5* 147.0* 54.2* 123.0* 24.5* 263.0 26.1 40.3*
				ients for	Number of	error of	Mean	
Metropolitan area	Station number	Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load
Milwaukee, Wis.	04086945	0.05	0.76	-0.04	13	0.06	0.09	3.8*
Milwaukee, Wis.	04087057	16	.82		13	.17	.20	8.4*
Milwaukee, Wis.	04087133	.29	.87		12	. 34	.67	28.1*
Milwaukee, Wis.	413631	19	2.84		42	.72	1.06	44.5*
Milwaukee, Wis.	413632	12	.80		28	. 14	.23	9.7*
Milwaukee, Wis.	413633	07	1.24		37	.27	.48	20.2*
Milwaukee, Wis.	413634	01	.21		36	.05	.08	3.4*
Milwaukee, Wis.	413635	.01	.23		47	.06	.10	4.2*
Milwaukee, Wis.	413636	36	1.97		18	.48	.51	21.4*
Portland, Oreg.	14206330	73	4.12		6	.18	.83	79.7
Rochester, N.Y.	430428077261100	.01	1.72		11	.72	.63	28.3*
Rochester, N.Y.	430649077285500	3.98	2.53		7	2.20	4.89	220.0*
alt Lake City, Utah	10167220	.07	.22	24	14	.05	14	
alt Lake City, Utah	404653111545801	.03	1.08		8	. 15	.35	8.0*
t. Paul, Minn.	445032092552801	-2.72	12.57		21	3.04	2.59	
t. Paul, Minn.	445210093271701	-1.94	10.03		18	1.41	2.29	
t. Paul, Minn.	445937093230701	2.06	3.23		13	1.67	3.43	
t. Paul, Minn.	450011093221901	09	3.20		22	.73	1.26	
St. Paul, Minn.	450100093205501	-1.34	9.96		22	1.18	2.86	
St. Paul, Minn.	450541093201201	17	1.75		24	.41	.57	24.5*
Campa, Fla.	TNURPS023	1.40	3.00	4-	13	3.27	3.33	
Campa, Fla.	TNURPS033	13	.72		14	.26	.33	26.1
ashington, D.C.	DC151UR07	34	2.42		39	.47	.96	
Washington, D.C.	DC151UR09	.22	.10	101	28	. 29	.27	11.3*
Vashington, D.C.	DC151UR10	.06	. 48		31	. 35	. 32	13.4*
Vashington, D.C.	DC151UR15	.07	.28		27	.19	.22	9.2*
Vinston-Salem, N.C.	Q2485000	.38	4.32	1:	64	4.63	2.70	208.0

Table 12G.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for dissolved phosphorus for the stations used in a nationwide study of urban mean seasonal and mean annual loads
[Mean loads marked with an asterisk (*) are seasonal (April-September) loads rather than annual loads; dashes (--) indicate that the variable is not included in the model]

								Mean
		Regr	ession coeff	icients cients for	Number of	Standard error of	Mean	seasonal or mean
			Total	Rainfall	storms in	at-site	load for	annual
Metropolitan area	Station number	Intercept	rainfall (TRN)	duration (DRN)	at-site regression	regression (pounds)	a storm (pounds)	load (pounds)
Bellevue, Wash.	12119725	0.040	0.827	-0.023	29	0.122	0.066	6.47
Boston, Mass.	P1	392	2.337		7	.680	.536	27.90%
Boston, Mass.	P3	290	3.418		6	.042	1.070	55.60%
Boston, Mass.	P5	-1.345	5.397		6	.898	.798	41.50%
Fresno, Calif.	364746119445400	.218	.449		19	.157	.335	13.70
Fresno, Calif.	364818119443800	.048	.696		31	. 152	.228	9.35
Cansas City, Mo.	IC	.015	.473		18	.249	.287	11.80%
Kansas City, Mo.	IR	.146			9	. 135	. 146	5.99
Knoxville, Tenn.	N47001	.009	.032		14	.014	.025	2.30
Knoxville, Tenn.	N47004	.008	.068		9	.032	.042	3.86
Lake George, N.Y.	3702	.015	.087		20	.181	.048	2.21
Lakewood, Colo.	06711635	.007	.578		26	.073	.211	5.91%
Lansing, Mich.	001	154	1.018		19	.179	.259	10.60%
Lansing, Mich.	002	074	.303		13	.084	.049	2.01
Lansing, Mich.	006	.001	.091		30	.034	.038	1.56
Lansing, Mich.	008	008	.199		20	.057	.073	2.99
Lansing, Mich.	010	014	.113		15	.030	.031	1.27
Milwaukee, Wis.	04086943	.010	.047		12	.029	.031	1.30%
Milwaukee, Wis.	04086945	.004	.052		11	.015	.027	1.13
Milwaukee, Wis.	04087056	354	.995		6	.246	.083	3.49
Milwaukee, Wis.	04087057	042	. 282		13	.047	.082	3.44
Milwaukee, Wis.	04087133	.021	. 174		11	.041	.097	4.07
Salt Lake City, Utah	10167220	.013	.239		16	.039	.084	1.93
Salt Lake City, Utah	404653111545801	.023	.726		8	.067	.238	5.47
Washington, D.C.	DC151UR07	146	.866		38	.128	.322	13.50
Washington, D.C.	DC151UR09	.174	.096		28	. 245	.226	9.49
Washington, D.C.	DC151UR10	021	.334		29	. 145	. 159	6.68
Washington, D.C.	DC151UR15	001	.252		27	.144	. 135	5.67

Table 12H.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total recoverable copper for the stations used in a nationwide study of urban mean seasonal and mean annual loads

[Mean loads marked with an asterisk (*) are seasonal (April-September) loads rather than annual loads; dashes (--) indicate that the variable is not included in the model]

Metropolitan area	Station number	Regression coefficients			Number of	Standard error of	Mean	Mean seasonal or mean
		Coefficients for						
		Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Baltimore, Md.	01589455	0.017	0.003		6	0.034	0.019	0.74*
Boston, Mass. Boston, Mass.	P1 P2	.050 263	.302 3.894		8 7	.096 .830	.170 1.280	8.84* 66.60*
Boston, Mass. Boston, Mass.	P3 P5	282 .032	2.502 1.000		6 7	.137 .216	.711 .429	37.00* 22.30*
Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill. Champaign-Urbana, Ill.	BASIN 1 BASIN 2 BASIN 4 BASIN 5	.008 .016 .003 .014	.053 .036 .058 .109	==	31 29 28 32	.019 .021 .019 .047	.037 .036 .035 .074	1.55* 1.51* 1.47* 3.11*
Columbus, Ohio	03226900	232	2.139		19	.325	.722	34.70*
Fresno, Calif. Fresno, Calif. Fresno, Calif. Fresno, Calif.	364155119445000 364746119445400 364818119443800 364818119464700	078 .006 001 .042	1.007 .050 .086 .104		16 8 15 14	.176 .014 .016 .052	.182 .019 .021 .069	7.46 .78 .86 2.83
Glen Ellyn, Ill.	415302088033804	152	1.040		15	.269	.356	15.30
Kansas City, Mo.	RR	.054	.091		8	.053	.107	4.39
Knoxville, Tenn. Knoxville, Tenn.	N47001 N47010	.007 103	.024		13 11	.010 .059	.020 .097	1.84 8.92
Lakewood, Colo.	06711635	.018	.335	007	27	.031	.083	2.32*
Lansing, Mich. Lansing, Mich.	001 010	151 .013	.664 .012		13 6	.236 .007	.118	4.84* .70*
Miami, Fla. Miami, Fla.	261002080070100 261629080072400	.012	.038		28 39	.020	.033	3.30
Salt Lake City, Utah	404653111545801	.004	.132		9	.027	.043	.99
Tampa, Fla. Tampa, Fla. Tampa, Fla. Tampa, Fla.	TNURPS013 TNURPS023 TNURPS033 TNURPS173	.005 .034 006 .010	.003 .082 .025 .013	 	11 13 14 11	.004 .080 .008 .023	.007 .086 .010 .018	.55 6.79 .79 1.42
Washington, D.C.	DC151UR07	014	.163		11	.044	.074	3.11
Winston-Salem, N.C.	Q2485000	.043	.289		63	.231	.199	15.30

Table 12I.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total recoverable lead for the stations used in a nationwide study of urban mean seasonal and mean annual loads
[Mean loads marked with an asterisk (*) are seasonal (April-September) loads rather than annual loads; dashes (--) indicate that the variable is not included in the model]

		Pageograph coefficients				Standard		Mean seasonal
Metropolitan area		Regression coefficients Coefficients for			Number of	error of	Mean	or mean
			Total	Rainfall	storms in	at-site	load for	annual load (pounds)
	Station number	Intercept	rainfall (TRN)	duration (DRN)	at-site regression	regression (pounds)	a storm (pounds)	
Baltimore, Md.	01589455	0.01	0.03		6	0.02	0.03	1.2*
Baltimore, Md.	01589460	03	.50		7	.30	. 25	9.8*
Bellevue, Wash.	12119725	.03	1.11	-0.0003	30	.07	. 44	43.1
Boston, Mass.	P1	.24	.52		9	.35	. 45	23.4*
oston, Mass.	P2	-1.85	17.21		7	2.86	4.98	259.0*
oston, Mass.	P3	-1.32	9.83		6	.74	2.58	134.0*
oston, Mass.	P5	03	1.73		7	.30	.66	34.3*
hampaign-Urbana, Ill.	BASIN 1	.11	.37		31	.13	.31	13.0*
hampaign-Urbana, Ill.	BASIN 2	.05	.46		28	.11	.30	12.6*
hampaign-Urbana, Ill.	BASIN 4	.01	.29		25	.07	.17	7.1*
hampaign-Urbana, Ill.	BASIN 5	.01	.39		28	.11	.23	9.7*
Columbus, Ohio	03226900	1.16	3.30		19	1.72	2.63	126.0*
resno, Calif.	364155119445000	20	1.49		17	.22	.18	7.4
resno, Calif.	364818119443800	04	.89		17	.14	.19	7.8
resno, Calif.	364818119464700	.35	.83		18	.48	.57	23.4
Glen Ellyn, Ill.	415302088033804	.37	6.61		10	3.18	3.60	155.0*
Cansas City, Mo.	IC	08	1.08		7	.51	.54	22.1*
ansas City, Mo.	II	18	1.26		6	.13	.54	22.1*
ansas City, Mo.	RC	.06	.08		8	.13	.11	4.5*
ansas City, Mo.	RR	.03	.16		9	.11	.12	4.9*
noxville, Tenn.	N47001	.04	.11		14	.06	.10	9.2
noxville, Tenn.	N47010	29	1.99		11	. 34	.72	66.2
ake George, N.Y.	3702	05	.18		22	.12	.02	.9*
akewood, Colo.	06711635	.06	.73		27	.13	.32	9.0*
ansing, Mich.	001	.10	1.04		16	. 44	.52	21.3*
ansing, Mich.	002	01	.18		12	.07	.07	2.9*
ansing, Mich.	006	.07	.12		23	.12	.12	4.9*
Lansing, Mich.	010	.02	.16		11	.06	.09	3.7*

Table 121.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total recoverable lead for the stations used in a nationwide study of urban mean seasonal and mean annual loads--Continued

								Mean
Metropolitan area	Station number	Regression coefficients Coefficients for			Number of	Standard error of	Moon	seasona]
		Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	Mean load for a storm (pounds)	or mean annual load (pounds)
Miami, Fla.	261002080070100	0.74	0.83		29	0.71	1.20	120.0
Miami, Fla.	261629080072400	.02	.55	55	40	.23	.32	32.0
Milwaukee, Wis.	04086945	.01	1.92	-0.11	13	.09	.11	4.6*
Milwaukee, Wis.	04087057	05	.28		13	.05	.07	2.9*
Milwaukee, Wis.	04087115	.09	.88		12	.29	. 48	20.2*
Milwaukee, Wis.	04087133	.74	1.26	:	12	.84	1.29	54.2*
Milwaukee, Wis.	413630	.20	.81		22	.37	.56	23.5*
Milwaukee, Wis.	413631	62	6.73		40	2.85	2.34	98.3*
Milwaukee, Wis.	413632	05	.31		30	.06	.09	3.8*
Milwaukee, Wis.	413633	.06	.31		37	.21	.20	8.4*
Milwaukee, Wis.	413634	00	.24	V 🚣 🕳	37	.07	.11	4.6*
Milwaukee, Wis.	413635	.05	.28		46	.16	.17	7.1*
Milwaukee, Wis.	413636	36	1.78		19	.84	. 42	17.6%
Rochester, N.Y.	430428077261100	02	.35		12	.13	.11	4.9*
Salt Lake City, Utah	10167220	.04	.02		18	.03	. 05	1.2*
Salt Lake City, Utah	404653111545801	.11	.32		8	. 46	.20	4.6*
St. Paul, Minn.	445032092552801	15	.71		11	.13	. 15	6.5*
St. Paul, Minn.	445210093271701	08	.79		15	.13	. 25	10.8*
St. Paul, Minn.	445937093230701	.29	.25		12	.20	. 39	16.8*
St. Paul, Minn.	450011093221901	05	1.10		22	.27	.42	18.1*
St. Paul, Minn.	450100093205501	84	5.88		22	.65	1.64	70.5*
St. Paul, Minn.	450541093201201	.09	.46		22	. 17	.29	12.5*
Tampa, Fla.	TNURPS023	.87	.32		12	1.10	1.07	84.5
Tampa, Fla.	TNURPS033	06	.24		14	.08	.10	7.9
Tampa, Fla.	TNURPS173	03	.09		11	.12	.02	1.6
Washington, D.C.	DC151UR07	.06	.22		16	.11	.18	7.6*
Washington, D.C.	DC151UR10	.04	. 14		8	.08	. 12	5.0*
Winston-Salem, N.C.	Q2485000	.26	1.81		63	2.17	1.24	95.5

Table 12J.--Mean seasonal or mean annual loads, mean load for a storm, and at-site regression results for total recoverable zinc for the stations used in a nationwide study of urban mean seasonal and mean annual loads [Mean loads marked with an asterisk (*) are seasonal (April-September) loads rather than annual loads; dashes (--) indicate that the variable is not included in the model]

Metropolitan area	Station number	Regression coefficients			Number of	Standard		Mean seasonal
		Coefficients for		error of		Mean	or mean	
		Intercept	Total rainfall (TRN)	Rainfall duration (DRN)	storms in at-site regression	at-site regression (pounds)	load for a storm (pounds)	annual load (pounds)
Baltimore, Md. Baltimore, Md.	01589455 01589460	0.00	0.05		13 7	0.01	0.03	1.2* 13.7*
Boston, Mass. Boston, Mass. Boston, Mass.	P1 P3 P5	.17 35 04	.78 4.10 2.23		9 6 7	.31 .23 .52	.48 1.28 .84	25.0* 66.6* 43.7*
Columbus, Ohio	03226900	.88	6.36		19	1.63	3.72	179.0%
Fresno, Calif. Fresno, Calif. Fresno, Calif.	364155119445000 364818119443800 364818119464700	25 03 .47	6.09 .76 .84		15 15 15	.85 .13 .24	1.32 .17 .69	54.1 7.0 28.3
Glen Ellyn, Ill.	415302088033804	.23	3.89		15	1.65	2.13	91.6*
Knoxville, Tenn. Knoxville, Tenn.	N47001 N47010	.07	.22		14 12	.09	.18	16.6 44.2
Lakewood, Colo.	06711635	.11	1.52	-0.02	27	.16	.50	14.0*
Lansing, Mich. Lansing, Mich. Lansing, Mich. Lansing, Mich.	001 006 008 010	03 .09 .06 .09	2.59 .14 .54 .18	 	13 16 9 6	.78 .07 .15 .10	1.02 .15 .28 .17	41.8* 6.1* 11.5* 7.0*
Miami, Fla. Miami, Fla.	261002080070100 261629080072400	.19	.32 .12	==	29 41	.19 .07	.36	36.0 9.0
Milwaukee, Wis.	04086943 04087133 413631 413632 413633 413634 413635	22 .44 58 10 .24 04	1.38 1.64 4.78 .32 .42 .31		8 10 24 15 14 16 26	.18 .72 1.72 .08 .22 .13	.39 1.16 1.53 .04 .24 .14	16.4* 48.7* 64.3* 1.7* 10.1* 5.9* 4.2*
Salt Lake City, Utah	404653111545801	.07	.41		9	.12	.19	4.4*
Tampa, Fla. Tampa, Fla. Tampa, Fla.	TNURPS023 TNURPS033 TNURPS173	05 06 03	1.14 .32 .13		13 14 11	.83 .12 .15	.69 .15 .05	54.5 11.8 3.9
Washington, D.C. Washington, D.C. Washington, D.C.	DC151UR07 DC151UR09 DC151UR10	.02 .05 .03	.25 .04 .07		39 26 30	.08 .07 .07	.16 .07 .06	6.7* 2.9* 2.5*
Winston-Salem, N.C.	Q2485000	.07	1.41		64	1.34	.83	63.9