Bibliography of selected references
on the geology of the
Livengood quadrangle, east-central Alaska

by
K.L. Wheeler¹ and F.R. Weber¹

Open-File Report 88-203

This report is preliminary and has not been reviewed for conformity with

¹ Fairbanks, Alaska

1988
Introduction

The Livengood 1:250,000 quadrangle, in east-central Alaska, encompasses approximately 12,052 km² in the western part of the Yukon-Tanana Upland. The quadrangle is bounded by 65° and 66° N. Lat., and 147° and 150° W. Long. Two mineral resource assessment programs were undertaken by the U.S. Geological Survey in the Livengood quadrangle in 1986-87 and a geological bibliography was compiled in connection with this work.

Ages of the rocks of the Livengood quadrangle range from Precambrian to Recent and include a great variety of lithologies. Precambrian (?) greenschist facies schists dominate the southeastern part of the quadrangle, but the metamorphic grade of rocks across the quadrangle generally decreases to the northwest. Ordovician mafic volcanic rocks, Silurian to Devonian limestone, and Paleozoic (?) quartzite form the White Mountains, a largely fault-bounded block in the central part of the quadrangle, north of the metamorphic rocks. A Mesozoic basin to the north and west of the White Mountains extends southwestward across the quadrangle and consists of conglomerate, sandstone, siltstone, and shale. North of this Mesozoic basin is a sequence of grit, slate, mafic-ultramafic rocks, and dolomite, of probable Cambrian to Precambrian age, and chert, conglomerate, shale, and limestone of Paleozoic age. Cretaceous to Tertiary granitic intrusions compose Elephant, Wolverine, Sawtooth, and Cache Mountains, as well as Tolovana Hot Springs Dome in the southern and central parts of the quadrangle. The northwestern third of the Livengood quadrangle is largely underlain by mafic volcanic and intrusive rock with related chert and clastic sedimentary rocks of Mississippian to Triassic age.
The rocks of the Livengood quadrangle regionally strike northeast, and are complexly folded and faulted largely because of repeated right-lateral strike-slip movement and compression in, and south of, the Tintina fault zone. The Victoria Creek fault, a strand of the Tintina fault system, appears to separate rocks of differing structural style and sedimentological characteristics. Folds are mostly overturned to the north. In the western part of the quadrangle a major structural feature is displayed in a Mesozoic sequence which is folded around a core of Paleozoic and Precambrian sedimentary and volcanic rocks (Chapman and others, 1971).

Several placer gold mining districts are wholly or partly within the Livengood quadrangle. The Rampart district is in the northwestern third of the quadrangle, the Hot Springs district is in the southwestern corner, the Tolovana district extends northeast-southwest through the central part, and the Fairbanks district is in the southeast corner (Ransome and Kerns, 1954).

In 1882, the Schieffelin brothers of Tombstone, Arizona fame discovered gold in the Rampart district. In 1898, five to six men from New England, informally known as the "Boston Boys", struck pay in the Hot Springs district, and in 1902, Felix Pedro found gold in the Fairbanks district. Jay Livengood and N.R. Hudson discovered placer gold on Livengood Creek in 1914. By 1918, the town of Livengood, in approximately the center of the quadrangle, supported a population of approximately 1,500 people. Mining activity decreased, and since 1922 the population has gradually declined to only a few permanent residents.

The U.S. Bureau of Land Management manages land usage in large sections of the quadrangle, including portions of the Yukon Flats National Wildlife Refuge and the White Mountains National Recreation Area.
Fairbanks North Star Borough government manages the borough lands in the southeastern part of the quadrangle (figure 1). Townships of native land selections are also present in the vicinity of the communities of Minto, Rampart, and Steven's Village.

The bibliography is divided into two parts. Part A contains geological references on the Livengood quadrangle. References in part B pertain to related stratigraphic correlations, structural styles, and paleontology in adjoining quadrangles and eastern Alaska. Part B also includes references to Canadian geology, with its similar stratigraphic units and mineral deposits, and to the Tintina fault system.

This geological bibliography represents a comprehensive, but not exhaustive literature survey. References include state and federal publications, articles and abstracts from scientific journals, and some unpublished theses and dissertations.

REFERENCES CITED

Figure 1.--Land use status in the Livengood area, showing outline of Livengood quadrangle.
PART A

BIBLIOGRAPHY OF THE LIVENGOOD QUADRANGLE

Albanese, M.D., Smith, T.E., Robinson, M.S., and Bundtzen, T.K., 1985, Livengood studies resumed: a summary of recent mineral-resource investigations by the Alaska Division of Geological and Geophysical

-----, 1916, The Alaskan mining industry in 1915, in Brooks, A.H., and

-----, 1925, Alaska's mineral resources and production, 1923, in Brooks, A.H., and others, Mineral resources of Alaska report on progress of

Burand, W.M., 1965, A geochemical investigation between Chatanika and
Circle Hot Springs, Alaska: Alaska Division of Mines and Minerals

-----, 1966, A geochemical investigation of stream sediments in the Elliott
Highway area, Alaska: Alaska Division of Mines and Minerals
Geochemical Report 11, 30 p.

-----, 1968, A geochemical investigations of selected areas in the Yukon-
Tanana region of Alaska, 1965 and 1966: Alaska Division of Mines and

Burton, P.J., 1981, Radioactive mineral occurrences, Mt. Prindle area,
Yukon-Tanana Uplands, Alaska: Fairbanks, Alaska, University of

Burton, P.J., 1984, Compilation of some mineral occurrences in the White
Mountains N.R.A., unpublished report: Alaska Division of Mining
Report, 15 p.

Byers, F.M., Jr., 1957, Tungsten deposits in the Fairbanks district,

Capps, S.R., 1924, Geology and mineral resources of the region traversed by

-----, 1933, Mineral investigations in the Alaska Railroad Belt, 1931:

-----, 1940, Geology of the Alaska Railroad region: U.S. Geological Survey

Chapman, R.M., Trexler, J.H., Jr., Churkin, Michael, Jr., and Weber, F.R., 1985, New concepts of the Mesozoic flysch belt in east-central Alaska,

Childers, J.M., Meckel, J.P., and Anderson, G.S., 1972, Floods of August

Eakins, G.R., 1974, Preliminary investigations, Livengood Mining District, Alaska: Alaska Division of Geological and Geophysical Surveys Open-

Ellsworth, C.E., 1912, Placer mining in the Fairbanks and Circle districts:

Erickson, B.M., Severson, R.C., and Crock, J.G., 1986, Analytical results

-----, 1968, Potential for lode deposits in the Livengood gold placer

Holmes, G.W., compiler, 1967, Location of pingolike mounds observed from
the ground, from aerial reconnaissance, and on aerial photographs in
(268), 13 p.

Hopkins, D.M., Karlstrom, T.N.V., and others, 1955, Permafrost and ground
113-146.

Hoskin, C.M., Guthrie, R.D., and Hoffman, B.L.P., 1970, Pleistocene,
Holocene and Recent bird gastroliths from Interior Alaska: Arctic, v.

Joesting, H.R., 1938-39, Tolovana Mining District: Alaska Territorial

-----, 1941, Hudson Cinnabar Prospect (Olive Creek): Alaska Territorial
Department of Mines Properties Examined PE-49-6.

-----, 1941, McCarthy mine (Fairbanks Creek): Alaska Territorial Department
of Mines Properties Examined PE-49-5.

-----, 1942, Strategic mineral occurrences in Interior Alaska: Alaska
Department of Mines Pamphlet 1, 46 p.

-----, 1943, Supplement to Pamphlet No. 1--Strategic mineral occurrences in

Jones, D.L, Berg, H.C., and Plafker, George, 1981, Tectonostratigraphic

Kitze, F.F., and Simoni, O.W., 1972, An earth fill dam on permafrost, Hess

-----, 1984, Statistical analysis of stream-sediment, pan concentrate and

Nowatt, T.C., 1974, Petrologic studies in the Fairbanks district: molybdenum mineralization at the Silver Fox mine: Alaska Division of

-----, 1973, Stanford raises $1 million for Alaska gold: Division of the Northern Miner Press Ltd., 7 LaBatt Avenue, Toronto, Canada M5A 3T2, February 14, 1980.

Reed, Irving, 1931, Hudson cinnabar prospect (Olive Creek): Alaska Territorial Department of Mines Properties Examined PE-49-1.

-----, 1938, American Eagle lode (Fairbanks Creek): Alaska Territorial Department of Mines Properties Examined PE-49-2.

-----, 1938, Hi Yu Mining Company (Fairbanks Creek): Alaska Territorial Department of Mines Properties Examined PE-49-4.

Robinson, M.S., 1981, Surface geology and ground magnetics of the Yellow Pup tungsten deposit, Gilmore Dome, Fairbanks Mining District: Alaska Division of Geological and Geophysical Surveys Open-File Report 137, 9

Rosenblum, Sam, and Mosier, E.L., 1983, Mineralogy and occurrence of
europium-rich dark monazite, Mineral-exploration research on Alaskan
panned concentrates resulting in recognition of a new guide to contact

Ross, R.J., Jr., 1961, Distribution of Ordovician graptolites in
eugeosynclinal facies in North America and its paleogeographic
implications: American Association of Petroleum Geologists Bulletin,
v. 45, no. 3, p. 330-341.

Saunders, R.H., 1953, Polaris lead-silver prospect (Bedrock Creek): Alaska
Territorial Department of Mines Properties Examined PE-49-11.

-----, 1954, Danielle Prospect (Ruth Creek): Alaska Territorial Department
of Mines Properties Examined PE-49-12.

-----, 1954, Griffin nickel prospect (Livengood): Alaska Territorial

-----, 1957, Sawtooth Mountain antimony prospect: Alaska Territorial
Department of Mines Properties Examined PE-49-14.

-----, 1958, Notes on mineral resources of the Livengood Creek, Hess Creek,
and tributaries: Alaska Territorial Department of Mines Miscellaneous

-----, 1960, Notes and maps of Fairbanks-Wolf Creek divide: Alaska

-----, 1960, Pete Smith prospect (Steamboat Creek): Alaska Territorial
Department of Mines Properties Examined PE-48-15.
-----, 1961, Sampling and geochemical prospecting at Steamboat Creek:
Alaska Territorial Department of Mines Properties Examined PE-49-16.

-----, 1961, P and P Mining Company (Dome Creek): Alaska Territorial
Department of Mines Properties Examined PE-49-16.

-----, 1963, Keystone mines exploration, in Alaska Division of Mines and

-----, 1967, Mineral occurrences in the Yukon-Tanana region, Alaska:
Alaska Division of Mines and Minerals Special Report 2, 60 p., 1 sh.,
scale 1:36,000.

Saunders, R.H., and Williams, J.A., 1952, Resistivity survey at Creighton
Mine (Pedro Dome): Alaska Territorial Department of Mines Properties
Examined PE-49-10.

stratigraphic units of North America--northern Alaska region
correlation chart: American Association of Petroleum Geologists,
Tulsa, Oklahoma.

Report 84-523, 106 p., 4 sh., scale 1:2,500,000

Skibitzke, H.E., 1977, Some aspects of remote sensing for consideration in
planning environmental monitoring of the Alyeska Pipeline, Alaska:

Sloan, C.E., Zenone, Chester, and Mayo L.R., 1975, Icings along the Trans-
Alaska Pipeline route: U.S. Geological Survey Open-File Report 75-87,
39 p.

-----, 1976, Icings along the Trans-Alaska Pipeline route: U.S. Geological

Smith, P.S., 1913, Lode mining near Fairbanks, in Brooks, A.H., The mining

-----, 1913, Lode mining near Fairbanks, in Prindle, L.M., A geologic
reconnaissance of the Fairbanks quadrangle, Alaska: U.S. Geological

-----, 1926, Mineral industry of Alaska in 1924, in Smith, P.S., and
others, Mineral resources of Alaska report on progress of

-----, 1929, Mineral industry of Alaska in 1926, in Smith, P.S., and
others, Mineral resources of Alaska report on progress of

-----, 1930, Mineral industry of Alaska in 1927, in Smith, P.S., and
others, Mineral resources of Alaska report on progress of

-----, 1930, Mineral industry of Alaska in 1928, in Smith, P.S., and

Stewart, B.D., 1921, Annual report of the Territorial Mine Inspector to the Governor of Alaska, 1920: Juneau, Alaska, 72 p.

-----, 1933, Mining investigations and mine inspection in Alaska, including assistance to prospectors, biennium ending March 31, 1933: Juneau, Alaska, 192 p.

Stewart, B.D., and Dyer, B.W., 1922, Annual report of the Territorial Mine
Inspector to the Governor of Alaska, 1921: Juneau, Alaska, 96 p.

Thomas, Bruce, 1948, Tolovana Hot Springs (Livengood): Alaska Territorial Department of Mines Properties Examined PE-49-8.

Thorne, R.L., Muir, N.M., Erickson, A.W., Thomas, B.I., Heide, H.E., and

-----, 1973, Aeromagnetic survey, Livengood A-4, A-5, A-6, B-4, B-5, C-4, C-5, C-6, D-4, D-5, D-6, and part of Fairbanks D-6 quadrangles,
(557-A), 13 sh., scale 1:63,360.

-----, 1974, Aeromagnetic map of eastern half of the Livengood quadrangle,
(593), 1 sh., scale 1:250,000.

Professional Paper 1000, 414 p.

Survey Professional Paper 482, 52 p., 6 pi.

Warfield, R.S., 1970, Testing for downward vein extensions of gold-silver
mineralization in the Wolf Creek-Fairbanks Creek divide area,
Fairbanks district, Alaska: U.S. Bureau of Mines Open-File Report 3-
70, 20 p.

Waring, G.A., 1917, Mineral springs of Alaska, with a chapter on the
chemical character of some surface waters of Alaska, by R.B. Dole and

Wasserburg, G.J., Eberlein, G.D., and Lanphere, M.A., 1962, Age of the
Birch Creek Schist and some batholithic intrusions in Alaska (abs.):
Geological Society of America, Annual Meeting, 1962, Program and

-----, 1924, Placer mining in Alaska in 1923, in Stewart, B.D., Annual
PART B
LIVENGOOD QUADRANGLE BIBLIOGRAPHY--RELATED SUBJECTS

Christie-Blick, Nicholas, Link, P.K., Miller, J.M.G., Young, G. M., and Crowell, J.C., 1980, Regional geologic events inferred from Upper Proterozoic rocks of the North American Cordillera (abs.), in Geological Society of America: Abstracts with Programs, v. 12, no. 7,

Clough, J.G., and Blodgett, R.B., 1984, Lower Devonian basin to shelf carbonates in outcrop from the western Ogilvie Mountains, Alaska and
Yukon Territory, in Carbonates in subsurface and outcrop, 1984

Delich, Michael, 1972, Petrology of some new ultramafic occurrences between Shakwak and Tintina Trenches, western Yukon, in University of British Columbia Geology Department Report 13, p. 39.

Dubois, G.D., Wilson, F.H., and Shew, Nora, 1986, Map and tables showing

Circular 998, p. 59-61.

Goodfellow, W.D., and Johansson, I.R., 1984, Ocean stagnation and ventilation defined by sigma^{34}S secular trends in pyrite and barite,
Selwyn Basin, Yukon: Geology, v. 12, no. 10, p. 583-586.

Harrison, J.E., 1972, Precambrian Belt Basin of northwestern United States:

Kline, J.T., 1985, Preliminary notes and observations on activities in the field during the period of June 23 to July 3: investigations of the occurrence of diamonds in placer gravels on Crooked Creek near Central, Alaska: Alaska Division of Geological and Geophysical Surveys Public Data File PDF 85-18, 6 p.

Laird, Jo, and Foster, H.L., 1984, Description and interpretation of a

Lenz, A.C., 1972, Ordovician to Devonian history of northern Yukon and

Metz, P.A., 1984, Statistical analysis of stream sediment samples from the
Circle Mining District, Alaska: University of Alaska-Fairbanks,
Mineral Industry Research Laboratory Open-File Report 84-9, 51 p., 12
maps, scale 1:40,000.

Miyaoka, R.T., and Dover, J.H., 1985, Preliminary study of shear sense in
mylonites, eastern Ray Mountains, Tanana quadrangle, in Bartsch-
Winkler, Susan, ed., The United States Geological Survey in Alaska--
29-32.

accretion and the origin of the two major metamorphic and plutonic
welts in the Canadian Cordillera: Geology, v. 10, no. 1, p. 70-75.

1982, an overview, in Yukon Exploration and Geology 1982: Division of
Indian Affairs and Northern Development, Whitehorse, Yukon, p. 4-17.

Morris, W.A., 1977, Paleolatitude of glaciogenic Upper Precambrian Rapitan
Group and the use of tillite as chronostratigraphic marker horizons:

Mortensen, J.K., 1983, Age and evolution of the Yukon-Tanana Terrane,
southeastern Yukon Territory: Ph.D. dissertation, University of
California, Santa Barbara, 92 p.

Mortensen, J.K., and Jilson, G.A., 1985, Evolution of the Yukon-Tanana
Terrane: Evidence from southeastern Yukon Territory: Geology, v. 13,
Nelson, G.L., 1972, A reconnaissance--the petrology and diagenesis of the
Step Conglomerate, east-central Alaska: unpublished M.S. thesis,
University of Alaska-Fairbanks, 53 p.

Circular 348, 21 p.

Formation--a Devonian turbidite in east-central Alaska (abs.):
Geological Society of America Abstracts with Programs, v. 6, no. 7, p.
1051.

Analytical results and sample locality map of stream-sediment and
heavy-mineral-concentrate samples from the Circle quadrangle, Alaska:
1:250,000.

Olade, M.A., and Goodfellow, W.D., 1978, Lithogeochemistry and
hydrogeochemistry of uranium and associated elements in the Tombstone
batholith, Yukon, Canada, in Proceedings of the 7th International

Payne, M.W., and Allison, C.W., 1978, Precambrian--Cambrian sedimentary

Stewart, J.H., 1972, Initial deposits in the Cordilleran geosyncline:
evidence of a Late Precambrian (<850 m.y.) continental separation: in

Templeman-Kluit, D.J., 1970, Stratigraphy and structure of the "Keno Hill
Quartzite" in Tombstone River-Upper Klondike River map-areas, Yukon

-----, 1972, Geology and origin of the Faro, Vangorda, and Swim concordant
zinc-lead deposits, central Yukon Territory: Geological Survey of
Canada Bulletin 208, 73 p.

-----, 1976, The Yukon crystalline terrane: enigma in the Canadian
1343-1357.

-----, 1977, Stratigraphic and structural relations between the Selwyn
Basin, Pelly-Cassiar Platform, and Yukon Crystalline Terrane in the
Pelly Mountains, Yukon, in Report of Activities, Part A: Geological

-----, 1979, Transported cataclasite, ophiolite and granodiorite in Yukon:
evidence of arc-continent collision: Geological Survey of Canada,
Paper 79-14, 27 p.

-----, 1983, Selwyn Basin: Its mineral deposits (abs.), in Alaska
Geological Society Symposium--New Developments in the Paleozoic
gology of Alaska and the Yukon: Anchorage, Alaska, 1983, Program and

-----, 1984, Counterparts of Alaska's Terranes in Yukon, in Geological

Tripp, R.B., Crim, W.D., Hoffman, J.D., O'Leary, R.M., and Risoli, D.A., 1986, Mineralogical and geochemical maps showing the distribution of selected minerals and elements found in the minus-80-mesh stream-sediment and related minus-30 mesh heavy-mineral-concentrate samples

Warner, J.D., and Dahlin, D.C., in press, Greisen and placer tin occurrences near Lime Peak (Rocky Mountain), east-central Alaska:

Survey Circular 998, p. 74-76.