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GEOLOGY AND PETROLEUM RESOURCES, PARADOX BASIN PROVINCE
By J.A. Peterson

INTRODUCTION

The Paradox basin province assessment area is located in southeastern and
south-central Utah and southwestern Colorado (figs. 1,2). The area
encompasses all or parts of several major Laramide structural provinces of the
central and western Colorado Plateau, including: 1) the Paradox basin proper,
except for the portions extending into northwestern Mexico and northeastern
Arizona; 2) the Uncompahgre and San Juan uplifts; 3) the San Rafael, Circle
Cliffs and Monument uplifts; 4) the Kaiparowits and Henry Mountains basins;
and 5) the Wasatch and Paunsaugunt Plateaus, which occupyzthe westernzmargins
of the province. The area covers approximately 35,000 mi® (90,000 km“).

HISTORY

The Four Corners area (Utah, Colorado, Arizona and New Mexico) of the
southvestern U.S. has undergone sporadic petroleum exploration activity since
the early 1900’s. The initial play was in the Paradox basin, where the first
0il (1908) was found at shallow depths in fractured clastic rocks at the
Mexican Hat oil field near the San Juan River on the Monument upwarp (fig. 4).
In the early 1900’s, gas was discovered in Cretaceous sandstone reservoirs in
the San Juan basin of northwestern New Mexico (Matheny, 1978). This discovery
later developed into the basinwide Blanco/Ignacio-Blanco and other gas fields
of the San Juan basin (fig. 1). Between 1920 and 1940, sporadic drilling
occurred in the adjoining Paradox basin, but except for minor oil and gas
production (1929) from Pennsylvanian reservoirs in northwestern New Mexico,
little success resulted. Interest in the potential of Pennsylvanian rocks was
stimulated by the 1945 discovery of large volumes of gas in carbonate
reservoirs of the Paradox Formation at Barker Creek dome in northwestern New
Mexico near the Colorado border. With subsequent oil and gas discoveries at
Boundary Butte in Utah (1948), the search for Pennsylvanian petroleum traps
took on broader proportions.

Most of the earlier discoveries had been based on exploration of surface
structures, but in the early 1950’s the search moved farther out into the
Paradox basin where more sophisticated geophysical work was required. Most of
this activity was on Navajo Indian tribal lands. Several major oil companies
initiated an extensive seismic program, which delineated several subsurface
structural closures in southeastern Utah. Two of the better structures, Bluff
and Desert Creek, were drilled by Shell 0il Co. in 1953 (fig. 5). Although
economic failures, both of these initial wells encountered encouraging oil
shows and porosity in carbonate rocks above the salt section in what later
came to be known as the Desert Creek and Ismay (Bluff) zones. A second well
was drilled downflank on each of these structures in 1954, The downflank
wells encountered improved reservoir rocks, resulting in a discovery at Desert
Creek, the first in the Aneth area, and a marginal discovery at Bluff. These
successes, although small, motivated a large sealed-bid sale of Navajo Indian
lands. Participating in the sale were several major companies, including
Shell, Texaco, Superior, Carter, Phillips, and others. The Texaco C-1 Navajo
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Aneth discovery was completed in carbonate reservoirs of the Pennsgylvanian
Hermosa Formation at 5828-5879 ft (1,780-1800 m) in February 1956, flowing
1,700 BOPD (barrels of oil per day). Three subsequent discoveries, .the Shell
No. 1 North Desert Creek (September 1956 - Ratherford Unit), Texaco No. 1
Navajo C (January, 1957 - McElmo Creek Unit), and Davis 0il No. 1 Navajo A
(February, 1957 - White Mesa Unit) all proved to be in the massive carbonate
buildup that makes up the greater Aneth field. The Davis discovery was
drilled on a farmout from Carter 0il Co., whose White Mesa No. 1 well in 1955
was on a structural closure just a short distance southeast of the edge of the
main Aneth buildup.

Early exploration drilling in the southern Paradox basin was based on
identification of seismic structures on mappable horizons near the top of the
Paradox Formation. Stratigraphic isolation of the Aneth mound complex and
other carbonate buildups was a major factor in the disappointing early
exploration efforts in the basin. Prior to the Aneth discovery, nine abandoned
exploratory wells, in addition to the discovery wells of four nearby
marginally-commercial fields, had been drilled on seismic highs (fig. 5). The
giant Aneth field was literally surrounded by these exploratory failures
before drilling of the discovery well. The discovery was located at a
relatively low structural position on the axis of the Bluff-Aneth subsurface
structural nose. It was drilled as a joint venture by two major companies in
order to evaluate expiring leases on Navajo Indian lands. The discovery was
made only after most of the more significant structural closures of the area
had been drilled with relatively minor success.

Petroleum exploration in the northern part of the Paradox basin dates
from 1891, when the first exploratory well in Utah was drilled near the town
of Green River (Hansen, 1956). Sporadic drilling continued for some time in
this area, and by the early 1960’s most of the significant structures had been
tested, resulting in discovery of several small oil and gas fields from
Cretaceous and Jurassic reservoirs a short distance north of the assessment
boundary. Interest in Pennsylvanian and Mississippian possibilities was
accompanied by drilling of salt structures west of Moab during the 1950’s.
0il and gas shows were encountered in several wells, but only one marginal
discovery was made at the Big Flat field. In 1959, the Pure 0il Co. discovery
of 0il in Mississippian carbonate reservoirs at the Lisbon field on the
southwest flank of the Lisbon salt anticline resulted in a major exploration
effort for pre-salt structural traps. Several small oil and gas accumulations
in Mississippian and Devonian reservoirs were found at this time.

Gas was discovered in 1951 in Upper Cretaceous sandstone reservoirs at
the Clear Creek field on the Wasatch Plateau (Walton, 1968). This discovery
wvas followed by the drilling of several structural closures in the area during
the 1950’s, most of which were non-productive or marginally commercial.

Exploration in the Kaiparowits basin area began in 1921 with drilling of
the Ohio Co. Circle Cliffs No. 1 Precambrian test of the Circle Cliffs
anticline on the eastern margin of the Kaiparowits basin. In 1948, oil
staining and non-commercial production of o0il from Mississippian carbonate
reservoirs were obtained in the Last Chance area about 50 mi. north of the
Circle Cliffs well. At about the same time, non-commercial 0il production was
obtained from Permian and Mississippian carbonate reservoirs at the John’s
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Valley and Upper Valley areas of the Kaiparowits basin, approximately 50 mi
west of Circle Cliffs (Campbell, 1969; Goolsby and others, 1988). During the
1960’s and 1970’'s, several deep tests were drilled in the Kaiparowits basin
without success.

STRUCTURE AND PALEOSTRUCTURE

Detailed reports on the structure of the Paradox basin and adjacent areas
are published by several authors, including Gregory (1951), Hunt and others
(1953), Kelley (1955), Shoemaker and others (1958), Jones (1959), Elston and
Shoemaker (1960), Fetzner (1960), Joesting and Case (1960), Szabo and Wengerd
(1975), Witkind (1975), Gorham (1975), Stone (1977), Suguira and Kitchco
(1981), White and Jacobson (1983), Frahme and Vaughan (1983), Chapin and
Cather (1983), Kluth (1986), and Stevenson and Baars (1986).

The Paradox basin province is within the central and western part of the
Colorado Plateau physiographic province. The Paradox basin proper, located in
the eastern part of the physiographic province, is bounded on the south by the
Four Corners platform and the Defiance uplift, on the west by the Monument and
San Rafael uplifts, on the north by the juncture of the north plunge of the
San Rafael uplift and the northwest extension of the Uncompahgre uplift, and
on the east by the Uncompahgre and San Luis uplifts (figs. 1, 6-10). All
these major features underwent stages of tectonic growth as early as
Pennsylvanian time, with probable minor earlier growth of some of the
features. Evidence of basement faulting as old as Cambrian or late
Precambrian has been documented (Baars and See, 1968).

The Pennsylvanian Paradox evaporite basin formed the northwestern part of
an elongate, rifted, northwest-trending structural-sedimentary trough, which
developed as part of the crustal disturbance that created the ancestral Rocky
Mountains. Rapid subsidence and restricted marine circulation between the
distal northwest part of the trough and the open marine accessway to the
southeast, resulted in deposition of thick evaporites in the Paradox basin
during Desmoinesian time (fig. 9). Complementary uplifts on the east side of
the basin (Uncompahgre and San Luis) (figs. 1, 9-11) rose rapidly at this time
and shed large volumes of clastic debris along their borders. The central,
deeper basin areas, however, were essentially starved of significant clastic
material during evaporite deposition.

Deformation of the Paradox basin area began in the Middle Pennsylvanian,
associated with the development of the ancestral Rocky Mountains.
Differential subsidence and probable rifting parallel to the rising
Uncompahgre uplift affected the basin interior and influenced the thickness
patterns of salt deposits in the central basin, as well as the thick arkosic
deposits on the east side derived from the rapidly rising highland. Salt
flowage, influenced by rejuvenation of pre-salt fault patterns, probably began
in middle to late Desmoinesian time and culminated during Early Permian time
(Cater, 1955; Cater and Elston, 1963; Elston and others, 1962) to form the
prominent northwest-trending salt anticlines and pillows characteristic of the
Paradox fold and fault belt (fig. 2).
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By early or middle Mesozoic time, subsidence of the Paradox basin and
accompanying rise of the Uncompahgre-San Luis highland diminished greatly when
the region became part of the Mesozoic Rocky Mountain shelf. Much of the
region became emergent and was relatively stable tectonically. During the
latest Cretaceous and early to middle Tertiary, folding and faulting occurred,
much of which tended to follow Paleozoic structural trends. Several igneous
stocks or laccolith intrusions were emplaced at this time (fig. 2).

Kelley (1955) described three main tectonic elements of the present basin
area (fig. 2): 1) the Paradox fold and fault belt, adjacent to the
northvest-trending Uncompahgre uplift, dominated by northwest-trending folds
and faults, many of which are associated with prominent piercement salt
anticlines in the northeastern part of the belt. The southwestern part of the
belt is more mildly deformed, but folds and faults generally maintain the
northyvesterly trend; some are associated with salt swells; 2) the Monument
uplift, a north-south elongated regional fold bounded on the east by the
steeply-dipping Comb Ridge monocline; and 3) the Blanding sub-basin, which
occupies the southern part of the Paradox basin east of the Monument upwarp.
Gentle folds within the Blanding sub-basin generally trend west to northwest.
Several broad, open folds occupy the southern boundary of the basin.

The Four Corners platform on the southeastern margin of the Paradox basin
is occupied by generally northeast~trending gentle folds and is bounded on the
southeast by the steeply-dipping early Tertiary Hogback monocline.

Kelley (1955) interpreted the Paradox basin as a strong
post-Mississippian sag, part of a broad belt of northwest-southeast tangential
compression related to formation of the ancestral Rockies.

Szabo and Wengerd (1975) explained the Paradox basin as the result of a
regional sag between the Zuni-Defiance uplift of New Mexico-Arizona and the
Front Range uplift of Colorado, caused by withdrawal and lateral transfer of
suberustal material in a broad area of eastern Utah and western Colorado.
Early in Pennsylvanian time, accelerated subsidence resulted in flexing and
faulting in the fold and fault belt and mid-basin arching along the
Uncompahgre uplift. These movements separated the initial broad basin into
tvo half-basins, the Paradox and Eagle. Continued subsidence, basin
expansion, rejuvenated flexing and faulting in a series of steps, along with
radial folding, lasted through middle Desmoinesian time, when emergence and
faulting of the Uncompahgre occurred. This activity shaped the final form of
the Paradox basin.

Gorham (1975) and Baars (1976) interpreted the Paradox as part of an
aulacogen system related to development of the ancestral Rockies. Later,
Stevenson and Baars (1986) interpreted the Paradox as a complex "pull-apart"
basin related to the intersection of conjugate lineaments of continental
dimensions. Extensional tectonics related to growth of the ancestral Rocky
Mountains in Pennsylvanian time caused rapid subsidence of the basin along
rejuvenated basement structures, some of which may be as old as Proterozoic.

Kluth (1986) presented a plate tectonic model to explain the development
of the ancestral Rocky Mountains and associated basins. The faults and
foreland block uplifts characteristic of the ancestral Rocky Mountains
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resulted from transcurrent faulting, with accompanying wrenching and
translation, along the North American craton margin during the collision of
North America with South America-Africa in Pennsylvanian time during assembly
of the supercontinent Pangea (fig. 12). The large fault-block mountains
formed when the southwestern peninsular projection of the craton
(Transcontinental arch and its extension) was pushed northward by the
collision. 1In Early Pennsylvanian time, the collision began in the Ouachita
Mountains region of southwestern Arkansas and Oklahoma and shifted westward
with time. By the Middle Pennsylvanian, continental foreland deformation
reached its greatest intensity resulting in growth of the ancestral Rocky
Mountains and associated strongly downwarped basins. Positioning of the block
uplifts and basins was probably governed in part by pre-existing zones of
crustal weakness along the continental margin of the time. Deformation of the
craton diminished during the Early Permian.

The Paradox is a hybrid basin, a type IIBa platform rift-sag followed by
a type IIa foredeep and foreland basin, according to the Klemme basin
classification (Klemme, 1980, personal communication, 1989; Halbouty and
others, 1970). The concept of the "pull-apart" basin was applied by Burchfiel
and Stewart (1966) to the Death Valley graben. Klemme (1980), however,
applied the term to large, linear basins (Klemme type V) occupying the
intermediate crustal zone between thick continental crust and thin oceanic
crust along the major oceanic boundaries of spreading plates (divergent
margins). The Klemme type II basin and Kluth’s model appear to correspond
well with the geology of the Paradox-Uncompahgre couple and its regional
relationships.

STRATIGRAPHY AND SEDIMENTATION

Detailed reports on the stratigraphy of the Paradox basin and adjacent
areas are published by several authors, including Wengerd and Strickland
(1954), Vengerd (1955, 1958, 1962), Wengerd and Matheny (1958), Vengerd and
Szabo (1968), Herman and Sharps (1956), Herman and Barkell (1957), Heylmun
(1958), Welsh (1958), Katich (1958), Peterson (1959, 1966a, 1966b), Peterson
and Ohlen (1963), Peterson and Hite (1969), Hite (1960, 1961, 1968, 1970),
Hite and Buckner (1981), Fetzner (1960), Ohlen and McIntyre (1965), Parker and
Roberts (1963), Lessentine (1965), Baars, (1966, 1975, 1976), Baars and See
(1968), Walton (1968), Molenaar (1975, 1981), Spoelhof (1976), Szabo and
Vengerd (1975), Craig and Shawe (1975), Craig (1981), Peterson and Ryder
(1975), 0’Sullivan and MacLachlan (1975), and Stevenson and Baars (1986).

Marine and continental sedimentary rocks of Cambrian through Tertiary age
are present in south-central and southeastern Utah and southwestern Colorado
(figs. 10, 14-23), although large parts of the stratigraphic section are
eroded in the main uplift areas. Thickness of Phanerozoic sedimentary cover
ranges from more than 15,000 ft (4,500 m) in the main basins to less than
5,000 ft (1,500 m) in uplift areas (fig. 12). Sedimentary rocks of
Proterozoic age are probably present in the southwestern part of the region
(Kaiparowits basin and adjacent area) as part of the northern extension of the
Chuar and Unkar Groups of the Grand Canyon region (figs. 12, 17, 18) (Reynolds
and others, 1988; Summons and others, 1988; Rauzi, 1990). The Paleozoic
section is primarily marine carbonate and clastic rocks in the lower part
grading to mixed marine and continental clastic rocks in the upper part.
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Symbols for stratigraphic units on figures 15-18 and 23

PC -~ Precambrian Tr - Triassic
Trm Moenkopi Formation

C - Cambrian Trmv - Virgin Limestone Member,
Moenkopi Fm.
0 - Ordovician Trms - Sinbad Member, Moenkopi Fm.
Trs - Shinarump Conglomerate Member,
S - Silurian Chinle Fm.
Tre - Chinle Formation
D -~ Devonian
Dv - Victoria Sandstone J - Jurassic
JTrge - Glen Canyon Group
M - Mississippian Jn - Navajo Sandstone
Mr - Redwall Limestone Jk - Kayenta Formation
M1 - Leadville Limestone Jw - Wingate Formation
Mf - Fitchville Formation Jea - Carmel Formation
Mg -~ Gardner Formation Je - Entrada Sandstone
Md - Deseret Formation Jeu - Curtis Formation
Mh - Humbug Formation Jsu - Summerville formation
Jm - Morrison formation
1P - Pennsylvanian Jwi -~ Windsor Formation
1Pc - Callville Formation
1Pm - Molas Formation K - Cretaceous
1Ph - Hermosa Formation Kem - Cedar Mountain Formation
1Phl - lower Hermosa Kd - Dakota Formation
1Phu - upper Hermosa Ktr - Tropic Shale
Kst - Straight Cliffs Formation
P - Permian Km - Mancos Shale
Pc -~ Coconino Sandstone Kwa - Wahweap Sandstone
Pq - Queantoweap Formation
Pt - Toroweap Formation T - Tertiary
Pka - Kaibab Limestone
Por - Organ Rock shale
Pecm - Cedar Mesa sandstone
Pec - Elephant Canyon Formation
Pwr -~ White Rim Sandstone
Pcu - Cutler Formation
Pg - Gerster Formation
Ph - Hermit Formation
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Figure 19.--Detailed stratigraphic cross-section of Lower Permian rocks partly
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Regional unconformities are present in several parts of the section,
particularly the Lower Cambrian, Upper Cambrian through Upper Devonian,
Mississippian and Lower Pennsylvanian, Upper Permian, and Jurassic. . Most of
the surface area in the region is characterized by exposures of Mesozoic
sandstones and shales. Precambrian rocks are exposed in the Uncompahgre
uplift and the San Juan Mountains on the east side of the Paradox basin.
Paleozoic rocks are exposed in the San Juan Mountains, the Monument, Circle
Cliffs, and San Rafael uplifts, and in salt anticlines of the central basin.

During most of Paleozoic time, the North American continent was located
in the tropical to subtropical latitude belt (figs. 9, 10), where optimal
conditions existed for marine carbonate deposition. The approximate position
of the Pennsylvanian equator was a short distance south of the Paradox basin,
approximately across present-day central New Mexico and Arizona. Prevailing
vind direction was approximately from a present-day north-northeast direction
(F. Peterson, 1988; Parrish and F. Peterson, 1988).

The pre-Pennsylvanian sedimentary pattern of most of the Rocky Mountain
region was that of relatively stable and widespread shelf deposition of
shallow-vater marine carbonate and clastic sediments. Sedimentary facies were
associated with regional transgressions of the early Paleozoic seas across the
broad Rocky Mountain shelf lying west of the Transcontinental arch, a feature
that extended from Minnesota southwest to central Colorado, northern New
Mexico and northern Arizona (fig. 3).

Cambrian rocks are more than 1,500 ft (450 m) thick in the western part
of the Paradox basin assessment area and thin uniformly eastward to less than
500 ft (150 m) in northeastern Arizona (figs. 24, 25). These rocks include a
time-transgressive basal sandstone or quartzite (Tapeats or Ignacio Sandstone)
(fig. 24), of Early Cambrian age to the west, becoming Late Cambrian near its
pinchout edge in southwestern Colorado and northwestern New Mexico. On the
west, the basal sandstone grades upward into marine green shale, siltstone,
and limestone, which is overlain by massive dolomite with minor shale beds.
Both the middle shale and upper carbonate are time-transgressive units that
thin eastward and in part grade into sandstone and siltstone beds of the
Ignacio Sandstone.

Ordovician, Silurian, and Lower and Middle Devonian rocks are absent
throughout the assessment region. Rocks of Late Devonian age rest
disconformably on Upper Cambrian sandstone or quartzite in the eastern part of
the area and on Upper Cambrian dolomite in the west (figs. 10, 16-23). Upper
Devonian rocks, consisting of marine glauconitic sandstone and sandy dolomite
in the lower part and marine dolomite or limestone in the upper part, are more
than 500 ft (150 m) thick in the central and northwestern part of the
assessment area and generally less than 300 ft (90 m) in the southeastern area
(fig. 26).

During Mississippian time, shallow water marine carbonate deposits
(Leadville or Redwall Limestone and equivalents) blanketed the entire Rocky
Mountain shelf. These rocks are 0 - 500 £t (0-150 m) thick in the Four
Corners area (fig. 27) and thicken to more than 1,000 £t (300 m) in the
Kaiparowits - Wasatch Plateau region. The Leadville is composed mainly of
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massive marine oolitic and crinoidal limestone and crystalline dolomite with
variable amounts of chert. 0il production is obtained from the Leadville at
the Lisbon oil field and at several smaller fields in the Paradox basin. The
Leadville also contains major resources of carbon dioxide at several
localities in the Four Corners area, particularly at McElmo dome in Colorado

(fig. 7).

Prolonged emergence of the Rocky Mountain shelf during Late Mississippian
and Early Pennsylvanian time resulted in regional development of a karst
topography with associated red regolith, weathered carbonate rubble, and
extensive solution features at the top of the Mississippian carbonate section
that extended from New Mexico and Arizona north into Canada (Peterson and
Smith, 1986).

Early in Pennsylvanian time, the broad emergent Rocky Mountain
continental shelf underwent the initial stages of tectonism that intensified
during Middle Pennsylvanian to Permian time with the rapid growth of the
ancestral Rocky Mountains. Active subsidence of the Paradox basin began in
the early Desmoinesian and continued at an accelerated pace until
approximately the Middle Permian.

Rocks of Pennsylvanian age are more than 5,000 ft (1,500 m) thick in the
Paradox basin and thin to 500 £t (150 m) or less on the Emery and Piute highs
in south-central Utah (fig. 9). Pennsylvanian deposition in the Paradox
evaporite basin was strongly cyclic and is represented by as much as 35-40
complete or partially complete cycles (fig. 14). Development of the cycles is
probably related to a combination of factors, including: 1) eustatic sea
level changes caused by cycles of Carboniferous glaciation in the southern
hemisphere, probably in combination with ocean basin events related to sea
floor spreading; 2) more localized changes in rate and type of clastic influx
and its relation to submarine topography and turbidity of waters; 3) climatic
effects, and 4) minor changes in rates of basin subsidence and tectonic
movements.

During the Pennsylvanian and Permian, peripheral uplifts furnished
clastic debris that was carried into the rapidly subsiding Paradox basin. The
major source of clastic material was the Uncompahgre-San Luis uplift, which
supplied more than 15,000 ft (4,600 m) of coarse arkosic clastic debris along
the northeast border of the basin. Minor sources of finer clastics were
present on the southwest and west (figs. 9, 10). Pennsylvanian-Permian
tectonism accompanied by cyclic eustatic sea-level changes and the relative
isolation of the Paradox basin from the main marine realm to the southeast and
vest resulted in complicated and diverse facies patterns within the basin.
During Desmoinesian time, three main intertonguing sedimentary facies were
deposited: 1) a coarse clastic facies, that becomes increasingly arkosic
beginning in middle Desmoinesian time and reaches a maximum thickness in a
narrov belt along the northeastern border of the basin adjacent to the
Uncompahgre-San Luis uplift; 2) an evaporite facies, mainly of early
Desmoinesian age, thickest near the basin axis, including halite and potash,
anhydrite, finely crystalline dolomite, and black organic-rich shale or shaly
dolomite; and 3) a shelf carbonate facies, along the southern and southwestern
shelf of the basin. The carbonate facies locally contains mound-like buildups
of biogenic carbonates. A narrow belt of mound-bearing sandy to silty
carbonate also is present between the clastic and evaporite facies along the
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western border of the San Luis uplift near the main marine accessway. The
evaporite-dominated facies of the inner basin changes relatively abruptly to
carbonate facies across the shelf area to the southwest and west, where the
Hermosa Group becomes predominantly cyclically deposited carbonate rocks with
minor fine-grained clastics. Time equivalents of the various facies can be
correlated from the inner basin to the shelf province on the basis of
basinwide black and gray shaly marker units (fig. 14), the most prominent of
which are organic-rich. The lower Hermosa (Pinkerton Trail Formation of
Wengerd, 1958) demonstrates the initial development of cyclic sedimentation
that resulted in repetitive deposition of clastic and carbonate units.
Vertically, the cyclic section below the salt shows a progressive increase in
carbonate content, but ultimately grades through dolomite and black shale into
the overlying Paradox evaporite facies in the basin interior. Cyclic
deposition is best demonstrated in the Paradox evaporite facies. Above the
Paradox, the cycles increase in carbonate content in the lower part of the
upper Hermosa (Honaker Trail Formation). The upper part of the Honaker Trail
is increasingly dominated by coarser clastics with minor limestone beds.
Permian rocks are dominantly clastic, including the major part of the arkosic
facies on the northeastern side of the basin, grading westward to finer
clastics with minor carbonate and anhydrite beds. Eolian sandstone and
overlying marine carbonate (Kaibab Limestone) make up a significant amount of
the Permian section along the western flank of the Paradox basin and westward
into the Kaiparowits basin and Wasatch Plateau areas (figs. 10, 17-19, 23).

Through most of the early and middle Mesozoic, the region became emergent
and was relatively stable. Triassic deposition was dominated by continental
redbeds (shale, siltstone and sandstone) on the east with intertonguing marine
deposits in the western area. The uppermost Triassic and Lower Jurassic are
characterized by massive eolian sandstones. Middle and Upper Jurassic
deposits are continental and marine sandstone, shale, and siltstone with minor
interbeds of limestone and gypsum or anhydrite, overlain by varicolored
continental alluvial and lacustrine shale, siltstone, and sandstone of Late
Jurassic and Early Cretaceous age. Continental deposition prevailed during
much of this time. During the Late Cretaceous, marine and intertonguing
continental clastics at or near the western margin of the Cretaceous seaway
were deposited across most of the region. Much of this section has been
removed by Cenozoic erosion, except for the Kaiparowits and Wasatch Plateau
areas (figs. 10, 17-23).

PETROLEUM GEOLOGY

As of 1988, the Paradox basin proper contained approximately 125 oil and
gas fields, mainly producing from Pennsylvanian carbonate reservoirs (fig. 4).
Fields range in size from a few thousand barrels to the giant Aneth field with
original reserves of approximately 400 MMBO (million barrels of oil), more
than two-thirds of the total original reserves of the Paradox basin (fig. 28).
The reasons for the location and giant size of the Aneth field are discussed
elsewhere (Peterson, 1989, 1990). Most of the reserves of the basin are in
Pennsylvanian carbonate reservoirs with a relatively small percent of the
total from carbonate reservoirs of Mississippian age. Some production also is
obtained from sandstone reservoirs of Permian age. Large volumes of mature,
organic-rich petroleum source rocks, cyclically interbedded with carbonate and
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evaporite beds, are present in much of the Pennsylvanian section in the
Paradox basin (figs. 14, 15, 29). Possible source rocks also are present in
the Upper Permian Kaibab and the Sinbad Member and equivalents of the Lower
Triassic Moenkopi Formation along the western flank of the Paradox basin and
the Kaiparowits basin (figs. 17, 18, 19). Cretaceous marine shales and coaly
beds are probable source rocks for gas in the VWasatch Plateau-Kaiparowits
basin region. Thermal gradients in the Paradox basin are approximately
2,2-3.3°C/100 m (1.2-2.0°F/100 ft) (Hite and others, 1984). Thick deposits of
gray to black organic-rich shale and siltstone are present in the Upper
Proterozoic Chuar Group in the Grand Canyon region of Arizona and probably are
present over a large part of south central Utah (figs. 13, 15, 16) (Summons
and others, 1988; Rauzi, 1990; Palacas and Reynolds, 1989).

Important deposits of tar are present in the Middle Permian White Rim
Sandstone and Lower Triassic Moenkopi Formation in the Tar Sand Triangle,
Circle Cliffs and San Rafael uplifts, Capitol Reef, and other areas on the
wvestern flank of the Paradox basin (figs. 4, 7, 18).

Production at Aneth is primarily from the Desert Creek zone, which
consists of the following sequence, from the base upward (figs. 30, 31, 33):

1. Black, laminated, organic-rich, dolomitic, silty shale or shaly
dolomite and siltstone (Chimney Rock shale), the basal unit of the cycle. The
Chimney Rock is underlain by a 10-15 ft (3-5 m) anhydrite bed, which lies
above approximately 150 ft (45 m) of halite.

2. Dark brown to gray finely-crystalline or chalky dolomite or
dolomitic, fossiliferous limestone.

3. Porous algal limestone or slightly dolomitic limestone, locally
pelletal.

4, Thin anhydrite bed, present only on the fringes of the mound buildup.

5. Foraminiferal pellet limestone.

6. Porous "leached oolite", slightly dolomitic, limestone, commonly
fossiliferous.

7. Thin anhydrite bed, present only on the fringes of the buildup. This
is the top of the cycle, overlain by black, organic-rich shale (Gothic shale)
similar to the basal unit of the Desert Creek cycle (Chimney Rock shale). The
Gothic is the basal unit of the overlying Ismay zone.

Porosity in the Desert Creek zone at the Aneth field is in two main
reservoir rock types, a calcareous phylloid (leaf-like) algal limestone in the
lover part, and a "leached oolite" limestone and dolomite interval in the
upper part (figs. 33-35). The algal reservoir is slightly over 100 ft (30 m)
thick in the central part of the mound, and the leached oolite averages
approximately 100 ft (30 m) in most of the mound complex, giving a maximum
mound thickness of somewhat over 200 ft (60 m). In plan view, the overall
porous mound buildup is somewhat horseshoe-shaped with the major breadth and
thickness in the greater Aneth field area, thinning to the northwest along two
relatively narrow and irregular arms (figs. 31, 32). The middle Desert Creek
anhydrite unit covers the thinner part of the mound belt to the northwest.
This anhydrite also covers other small individual Desert Creek mound buildups
awvay from the Aneth field, but does not cover the mound rocks in the field
proper. The main porous rock in the lower Desert Creek mounds is composed
largely of calcified remains of the green alga Ivanovia (Khvorova, 1946;
Parks, 1958; Wray and Konishi, 1960), intermixed with pelleted mud lenses,
wvhich probably represent pockets of fine lime mud trapped during mound growth.
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Figure 30.--Stratigraphic column and average depths in feet and meters, Aneth area.
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Fusulinids, other small foraminifers, some brachiopods, mollusks, and
Chaetetes corals are present but not abundant in the algal rock unit. The
better porosity is associated with pockets of maximum accumulation of
leaf-like Ivanovia algal skeletal material, although the fine details of algal
structure commonly are obscured by recrystallization, leaching, and
cementation. Salinity, submarine topography, and basinal position in a
non-turbid, well-circulated marine environment were important factors in
positioning of the algal buildups.

The upper Desert Creek "leached oolite" facies consists largely of
oolites, pellets, and coated fossil fragments that have been irregularly
leached, recrystallized, and partly dolomitized (fig. 30). Oolitic and
pelletal rocks generally are thicker on the borders of the main mound buildup.
The inner part of the upper Desert Creek contains beds of bioclastic and
recrystallized limestone mud, along with porous oolite-pelletal beds that are
discontinuous in a channel-like pattern. Porosity is generally associated
with leaching and partial dolomitization of the "oolite" and pellet-rock
facies and is, on the average, higher than in the underlying algal facies.
However, permeability of the "leached oolite" reservoir rock averages
considerably lower than that of the algal reservoir (table 1). The upper
oolite unit attains maximum thickness in the main mound area of the Aneth
field, where it represents more than half of the porous section. Laterally,
awvay from the Aneth mound complex, the oolite interval changes rapidly to
chalky dolomite and anhydrite facies and is absent in the smaller Desert Creek
mound buildups of the Blanding sub-basin (figs. 34, 35). The "leached oolite"
facies also is present in the upper Desert Creek in a broad belt along the
southwest basin shelf (fig. 31), where it commonly contains as much as 50 ft
(15 m) or more of porous oil-stained limestone. However, along this extensive
belt the Desert Creek has not been found with sufficient permeability for
economic petroleum production.

Limestone mound porosity in the Ismay zone in the Aneth area is present
largely in the lower Ismay, with more localized buildups in the middle and
upper Ismay. Porous bodies are generally elongated northwesterly and are
formed of somewhat discontinuous, irregular-shaped, narrow belts of algal
limestone. This reservoir rock is similar to that of the algal and
pelleted-mud reservoir rock of the lower Desert Creek zone. The lower Ismay
mound reservoir is exposed in the San Juan River canyon east of Mexican Hat,
Utah. The outcropping beds illustrate the discontinuous nature of individual
algal buildups within the southwestern-most belt of Ismay mounds. A well
drilled in the mound belt may penetrate a thickened mound of reservoir rock,
whereas one drilled a short distance awvay may enounter a thin mound section
with small recovery of hydrocarbons.

In the Ismay field area east of Aneth, the lower Ismay mound buildup is
at maximum thickness along the eastern margins of the Ismay zone buildup trend
passing through the Aneth area (fig. 35). Reservoir rock facies here is
dominated by recrystallized algal and pelleted mud rocks similar to that of
the lower Desert Creek mounds.

The sequence of depositional processes and related facies relationships
of the Desert Creek cycle are visualized as follows (modified after Peterson,
1966a, Peterson and Hite, 1969):
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Pre-Desert Creek evaporite phase.--Stratigraphically beneath the Aneth
complex, pre-Desert Creek salt beds 100-150 ft (30-45 m) thick are overlain by
a regional bed of anhydrite (figs. 34, 35). During deposition of the main
pre-Desert Creek (Akah) salt facies, most of the basin area was semi-starved
of clastic material, and salt deposition reached its maximum areal extent in
the Paradox basin during this time.

Phase I, Chimney Rock shale.--Beginning with the Desert Creek cycle,
clastic influx to the basin increased, mainly because of two factors: 1)
progressive transgression of the marine shoreline toward the basin borders and
consequent reworking and redeposition of clastic material accumulated on the
previously exposed basin shelf, and 2) probable increase in uplift of the main
clastic source areas, the Piute-Emery lowland to the west, Zuni-Defiance
lowland to the south, and the Uncompahgre-San Luis highland to the northeast,
on the west of which the Silverton delta began to form at this time. During
rising sea-level phases of the post-salt cycles, tongues of clastic sediment
extended into the basin, partly built by longshore drift related to wind and
wvave action and partly by extension of alluvial-deltaic distributary patterns.
These clastic tongues caused variations in sea bottom topography prior to
deposition of the overlying marine carbonate phase of each cycle or subcycle.

The Chimney Rock shale, comprised of silt, sand and clay to the northwest
and of mixed silt, clay, and organic-rich carbonate mud to the southeast,
built southeastward as an offshore bank during the early rising sea level
phase of the Desert Creek cycle (fig. 36).

Phase II. Lower Desert Creek algal mound buildup.--Deposition of the
longshore Chimney Rock mudbank left a broad, flat subsea platform on which
initial growth of the northwest trending lower Desert Creek algal bank
occurred during the continuation of the rising sea level stage of the cycle.
Maximum buildup of algal material occurred at the southeastern extremity of
the Chimney Rock mudbank where the Aneth field is located. At this position,
optimum conditions for algal growth occurred related to moderately
shallow-vater depth and incoming circulation of non-turbid relatively normal
marine waters. Belts of smaller mounds with northwest orientation also
developed northeast of the Aneth belt where high salinity may have inhibited
maximum algal growth.

Phase III. Middle Desert Creek anhydrite.--Falling sea level occurred
after the lower Desert Creek algal mound buildup and resulted in exposure of
the mound and widespread deposition of the middle Desert Creek anhydrite in
low-lying areas of the southern basin. The middle Desert Creek anhydrite
changes to halite in the basin center to the northeast (fig. 34). Early
diagenesis, including leaching, partial dolomitization, and recrystallization
of the algal framework probably occurred at this time. Smaller algal mounds
in the Blanding sub-basin were not exposed at this time, resulting in
deposition of the anhydrite unit over these mounds.

Phase IV. Upper Desert Creek "leached oolite" facies.--This unit was
deposited during the second high sea-level stage of the Desert Creek cycle.
These beds were deposited in shallow, non-turbid marine waters on the subsea
topographic feature resulting from buildup of the underlying algal mound.
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Phase V. Upper Desert Creek anhydrite.--The second low sea-level stage of
the Desert Creek cycle resulted in a second exposure of the Aneth mound and
widespread deposition of the anhydrite at the top of the Desert Creek zone.
Anhydrite deposition completely surrounded the carbonate buildup and extended
across the southern Paradox basin, changing to halite in the basin interior
(fig. 34). Exposure of the Aneth mound at this time resulted in further
leaching, partial dolomitization and recrystallization of the entire mound
complex.

Ismay cycle.--Following deposition of the upper Desert Creek anhydrite,
rising sea level resulted in deposition of the Gothic longshore mudbank at
approximately the same position as that of the Chimney Rock (fig. 37). The
Gothic mudbank covered the Aneth mound and extended to the southeast for
approximately 15 miles (25 km) where the lower Ismay algal buildup occurred on
the mudbank edge in the vicinity of the Ismay oil field (figs. 4, 35, 37).

The Ismay cycle comprises three algal mound-bearing subcycles (lower, middle,
and upper) which were deposited under conditions similar to that of the Desert
Creek cycle.

Aneth Field.--The Aneth field is primarily a stratigraphic trap. The
reservoir complex is an isolated carbonate mound buildup in which the o0il
accumulation has undergone only minor redistribution because of minor
post-mound structural growth. O0il accumulation is controlled primarily by
distribution patterns of individual carbonate reservoir mound buildup trends,
together with porosity-permeability discontinuities within the buildup belt.
Structural influence is limited to local redistribution of earlier oil
accumulation within the isolated reservoir geometry during subsequent
development of the structural framework of the area (Laramide). Minor local
redistribution of the earlier accumulation may have occurred during Laramide
and later structural growth. Judging from restored-thickness studies of the
post-Ismay stratigraphic section, 0il generation probably began by Early to
Middle Cretaceous time. Maximum depth of burial of the Desert Creek and Ismay
reservoir beds in the Blanding sub-basin area is estimated to have been
approximately 10-12,000 ft (3,000-3,500 m) and probably occurred during early
Tertiary time.

Production from the greater Aneth field is almost entirely from the
Desert Creek zone with minor production from the lower Ismay. The Desert
Creek zone is underlain by the Chimney Rock shale and overlain by the Gothic
shale, (figs. 30, 33-35, 36, 37) both of which are organic-rich black
sapropelic calcareous or dolomitic shale or shaly carbonate units. Both of
these units, along with similar beds intertonguing with the reservoir rock,
are the identified source rocks for the Desert Creek and Ismay oils.

The Aneth field includes two productive zones, Zone II, the lower Desert
Creek algal reservoir, and Zone I, the upper Desert Creek "leached oolite"
reservoir. Porous intervals in both zones tend to be lensing in nature with
rapid lateral and vertical changes (fig. 33), although most are interconnected
to varying degrees. Porosity in both zones has been enhanced by dissolution,
recrystallization, and secondary dolomitization. On the flanks of the Aneth
mound buildup, an 8-10 ft (2.5-3m) bed of anhydrite occurs at the top of each
zone, but in each case the anhydrite pinches out around the edges of the mound
(figs. 34, 35).
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Thickness of the Desert Creek zone in the greater Aneth area is as much
as 200 ft (60 m) but decreases rapidly to 100 ft (30 m) or less away from the
mound in the surrounding evaporitic facies (figs. 31, 34, 35). The eastern
flank of the mound complex is steepest with relief of more than 100 ft (30 m)
in less than one mile in places. The combined pay thickness of both zones
averages about 50 £t (15 m) but reaches 100 ft (30 m) or more in some parts of
the field. Productive limits of the field are generally determined by porosity
and permeability changes related to carbonate facies changes, mound pinchouts,
and anhydrite sealing near the periphery of the mound buildup. An unusual
aspect of the Aneth mound reservoir complex is that it is almost completely
filled with oil. A relatively small volume of porous, water-wet reservoir is
present around the periphery of the mound (figs. 32, 33).

Many of the smaller mounds in the Blanding sub-basin area tend to show
porosity filling by anhydrite and may have reasonably good porosity but low
permeability.

PRINCIPAL PLAYS

Seven main plays are defined in the Paradox basin assessment province
(fig. 1):

I. Porous carbonate buildups, Hermosa Group.
II. Buried fault blocks, Older Paleozoic.
ITI. Salt anticline flanks.
IV. Fractured interbeds, Paradox Formation.
V. Silverton delta.
VI. VWasatch Plateau.
VII. Kaiparowits basin anticlines.

Play I: Porous carbonate buildups, Hermosa Group.

Reservoirs.--The most important petroleum production in the Paradox basin
province is from stratigraphically controlled carbonate reservoirs in the
southern part of the Paradox salt basin. This play is predominantly
oil-bearing with only moderate amounts of associated gas. Reservoirs occur in
a series of depositional cycles in the carbonate facies of the Hermosa

Group of Middle Pennsylvanian age. The cycles of the carbonate facies pass
laterally into evaporite cycles of the Paradox Formation deeper in the basin.

Source Rocks.--Organic-rich black shales or shaly carbonates of the Chimney
Rock and Gothic shales are the main source rocks in this play, along with
intertonguing organic-rich and shaly carbonates adjacent to the mound
buildups. In the Blanding sub-basin area, total organic carbon (TOC) values
for the Chimney Rock shale range from approximately 1.0 to more than 3.0
percent, and values for the Gothic shale range from approximately 1.5 to near
4,0 percent (Hite and others, 1984; Shell 0il Co., personal communication,
1988). Organic-rich shales in the Paradox evaporite cycles below the Desert
Creek may show as high as 13.0 percent TOC values (Hite and others, 1984).
Data from core samples of the Gothic shale show that through a thickness of
about 30 ft (9 m) this shale averages 2.5 percent TOC (Hite and others, 1984).
Extractable organic matter (EOM) from this shale gave a calculated genetic
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potential of nearly 5,000 barrels of oil per acre-ft. Vitrinite reflectance
(R ) values in limited available core samples near the Aneth field are
approximately 1.5; mean vitrinite reflectance (R mean) values may range
between 1.3 and 2.0 for the Chimney Rock shale afd 0.8 and 1.2 for the Gothic
shale (Shell 0il Co., personal communication, 1988).

Crude o0il from the Hermosa play is low sulfur and 40° to 43° API gravity.
The associated gas has Btu values of over 1,000. Depths to production average
about 5,500-6,000 £t (1,700-2,000 m). The Aneth field, by far the largest in
this play, has produced approximately 400 MMBO and 350 BCF of gas.

Traps and Seals.--Accumulations occur primarily in isolated carbonate buildup
belts that may or may not be associated with mapped structures. Structural
closure is commonly influenced to varying degrees by draping over mound
buildups. Lateral facies changes from porous biogenic reservoir rock to
non-porous argillaceous or anhydritic carbonate and shale aid in trapping.
Seals are commonly black, organic-rich high-carbonate shales or shaly
carbonates and anhydrites. Basinal mound buildups, much smaller than those in
the Aneth area, are usually sealed by overlying anhydrite beds.

Generation, Timing, and Migration.--0il generation probably began in Late
Cretaceous time and probably has continued to the present. In most cases,
migration was probably coincident with generation with some adjustment related
to late structural growth. Present-day thermal gradients in the basin are
near normal, approximately 2.2 - 3.3°/100m (1.2 - 2.0°F/100 ft).

Exploration Status.--This play is moderately to well explored, but use of high
resolution seismic techniques and detailed stratigraphic studies probably will
result in discovery of small- to medium-sized new field or new pool
accumulations, primarily in stratigraphic traps.

Estimated Ultimate Recovery from Existing Fields.--Approximately 3500 MMBO.

U.S.G.S. Mean Estimate of Undiscovered Petroleum Resources.--14.0 MMBO in
fields greater than 1 MMB, 13.3 BCF gas and 1.1 MMB NGL in fields greater than
6 BCF.

Total Area of Play.--Approximately 2,800 miZ (7,800 km?).

Play II: Buried Fault Blocks, older Paleozoic, Leadville Limestone
(Mississippian) and McCracken Sandstone (Devonian)

The 1960 discovery of the Lisbon 0il Field, largest in the play,
stimulated intensive seismic exploration throughout the salt anticline region.
This seismic work outlined most of the larger fault blocks and most of these
were subsequently drilled. However, because some of the fault systems are
complex and the seismic coverage is widely spaced, there are many small scale
structures yet to be identified. The Lisbon field is the largest in the play
with estimated ultimate recoverable reserves of approximately 43 MMBO and 250
BCF gas. In addition to Lisbon, there are five other small fields in this
play, of which only the Salt Wash field has had significant production,
approximately 1.3 MMBO and 12 BCF gas.
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Reservoirs.--The principal productive formations in this play are the
Leadville Limestone of Mississippian age and the McCracken Sandstone of Late
Devonian age. The Leadville is the most important reservoir because of
widespread porosity and permeability in dolomitized beds interbedded with
limestones. In general, the Leadville comprises an upper limestone facies,
commonly oolitic or ecrinoidal, and a lower dolomite facies with minor
evaporites. The most favorable reservoir development is in the dolomite
facies where good porosity and permeability result from dolomitization,
selective leaching of crinoidal debris, and vertical fracturing.

Source Rocks.--Probable source rocks for this play are the organic-rich black
shales of the Paradox Formation. Migration into Leadville or McCracken
reservoirs has occurred where the fault blocks are in structural and/or
depositional contact with the black shales, which are commonly highly
fractured.

Traps and Seals.--Known accumulations are on uplifted fault blocks adjacent to
salt anticlines or swells. Seals are Paradox Formation evaporite beds, which
overlie and are in fault contact with the Mississippian or Devonian
reservoirs.

Generation, Timing, and Migration.--Hydrocarbon generation probably began as
early as Permian time and has continued to the present in some areas.
Migration into pre-salt reservoirs was probably contemporaneous with
Pennsylvanian and later growth of salt structures and was enhanced by severe
fracturing of interbedded organic-rich shales during salt movement.

Depth Range.--6,000 to 15,000 ft (1,900 to 4,500 m).

Exploration Status.--This play is only moderately explored, with respect to
small fields, although it is unlikely that additional fields similar in size
to Lisbon will be discovered. Previous production history indicates that many
accumulations will probably have thin o0il columns and the associated gas will
have relatively low Btu values. Future exploration will be constrained by
drilling costs, the necessity for high resolution and closely spaced seismic
data, and the problems of connecting small fields with existing pipelines.

Estimated Ultimate Recovery from Existing Fields.--Approximately 50 MMBO and
300 BCF gas.

U.S.G.S. Mean Estimate of Undiscovered Petroleum Resources.--9.4 MMBO in
fields greater than 1 MMB and 27.9 BCF gas and 1.5 MMB NGL in fields greater
than 6 BCF.

Total Area of Play.--Approximately 7,500 miZ (20,000 kn?).

Play III: Salt Anticline Flanks - Cutler Formation (Permian) and
Honaker Trail (upper Hermosa) Formation (Pennsylvanian)

This play is associated with the northwest-trending salt anticlines in
the Paradox fold and fault belt. Each anticline consists of a long undulating
velt or pillow of Paradox Formation salt over which younger rocks are arched
in anticlinal form. The central or salt-bearing cores of the anticlines range
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in thickness from 2,500 to more than 14,000 £t (770 to more than 4,300 m).

The anticlines are flanked by deep synclines, which are mainly filled with
10,000 £t (3,000 m) or more of Permian Cutler Formation arkosic clastics and a
mixed sequence of upper Hermosa (Honaker Trail) Formation clastics and
carbonates.

Reservoirs.--The main reservoirs in this play are pelletal and oolitic
limestones and occasional sandstones in the Honaker Trail Formation and
arkosic sandstones in the Cutler Formation. Vertical communication between
these reservoirs is probably common because of strongly developed fracture
systems resulting from strong subsidence in the synclines and related salt
movement and flowage into the adjacent salt anticlines.

Source Rocks.--Several potential sources for hydrocarbons are involved with
this play. The organic-rich Paradox black shales are commonly in contact with
the reservoir rocks along margins of the salt structures and may also be
sufficiently connected by fracture or fault systems to allow vertical
migration under the synclines. Honaker Trail shales with TOC values as high
as 2.5 percent also are potential source rocks. Some coaly carbonaceous
shales are locally present at the Cutler-Honaker Trail contact and may be the
source for some gas accumulations. No data are available on maturity of these
source rocks; however, vitrinite reflectance values from outcrops of the Lower
Cretaceous Dakota Sandstone in the play area range from 0.60 to 1.20. These
values suggest that the source rocks, which are presently buried to depths of
4,000 to more than 10,000 ft (1,200 to more than 3,000 m) in the synclines,
are mature to post-mature.

Traps and Seals.--Stratigraphic and stratigraphic-structural traps occur in
these rocks as the result of thinning and permeability pinchouts along the
steeply-dipping flanks of salt anticlines. Some traps may also be the result
of updip termination against the salt diapirs.

Generation, Timing, and Migration.--Hydrocarbon generation in the deeper parts
of the basin probably began by Late Pennsylvanian or Permian time. Migration
was coincident with salt movement and anticlinal growth and probably continues
today.

Depth Range.--Approximately 5,000 to more than 15,000 £t (1,500 to more than
4,500 m).

Exploration Status.--A large amount of acreage is involved in this play and it
has only been lightly explored. Four gas fields are present, only one of
wvhich has had significant production (Andy’s Mesa field - 6 producing wells)
with cumulative production of 16 MCF gas and 11,000 barrels condensate. The
other three fields are small one-well fields.

U.S.G.S. Mean Estimate of Undiscovered Petroleum Resources.--9.7 MMBO in
fields greater than 1 MMB and 104.2 BCF gas in fields greater than 6 BCF.

Total Area of Play.--Approximately 7,500 mi2 (20,000 kmz).
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Play IV: Fractured Interbeds, Paradox Formation (Pennsylvanian)

This play covers the deep structural trough of the Paradox basin and
includes the Paradox fold and fault belt. The central basin trough contains a
thick fill of Middle Pennsylvanian evaporites, the Paradox Formation of the
Hermosa Group. The structural trough is characterized by long belts of salt
anticlines and faulting which for the most part are associated with salt
dissolution or flowage.

The Paradox evaporite facies consists of evaporite cycles, which include
thick units of halite and thinner interbeds of black organic-rich shale,
dolomite, and anhydrite.

Reservoirs, Source Rocks, Traps, and Seals.--The reservoirs in this play are
also the source rocks. These rocks consist of fine-grained very silty
dolomite and dolomitic or calcareous black shale. They are characterized by
very low matrix permeability and are sealed above and below by thick beds of
halite. Generated hydrocarbons have tended to remain in place with minimal
lateral migration. Analyses of some of the richer beds indicate that as much
as approximately 5,000 barrels per acre-ft of in-place unmigrated oil is
present. As a rule, oil and gas shows are almost always encountered in the
interbeds, but economic accumulations depend heavily on the intensity of
fracturing. Because of impermeable thick salt seals, overpressuring is
common, and many spectacular "blowouts" have been encountered during drilling.

Exploration Status.--Exploration for these fractured reservoirs is difficult
because the fracturing mechanism and the patterns of fracturing are not well
understood. There seems to be a general correlation between
northeast-trending structural lineaments and production (Hite, personal
communication, 1989). Some of the lineaments are thought to represent
basement shear zones that in some way have propagated stress through the thick
evaporite sequence. Because the interbeds have different rheological
characteristics (brittle failure) than do the halite layers (plastic failure),
it is possible that the thickest interbeds are most likely to develop the most
intense fracture patterns. This belief is supported by the fact that most
production from these beds has been from the thickest interbed, the "Cane
Creek" marker bed, locally more than 150 ft (45 m) thick.

This is a demonstrated play, although almost all petroleum discoveries
were accidental and made while drilling for deeper objectives. All existing
fields are single well fields with one well having produced about 1.2 MMBO.
This play may rightfully be considered as unconventional because its success
may be dependent on improved drilling, completion, and stimulation technology.
Horizontal drilling techniques may be a significant factor in future
exploration programs. However, considering the large volume of hydrocarbons
that may be trapped in the fractured interbeds and the fact that direct
exploration for this type of accumulation has not been attempted, the
potential for significant resources may be great, although difficult to
realize.

U.5.G.S. Mean Estimate of Undiscovered Petroleum Resources.--124.8 MMBO in
fields greater than 1 MMB, 124.8 BCF gas in fields greater than 6 BCF.

Total Area of Play.--Approximately 7,500 mi2 (20,000 kmz).
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Play V: Silverton Delta, Northeast Paradox Basin -
Honaker Trail Formation (Pennsylvanian)

Along the east flank of the Paradox Salt basin, the Honaker Trail
Formation of Pennsylvanian age contains an easterly-derived clastic facies
known as the Silverton fan delta (Spoelhoef, 1976). The delta is made up of
numerous depositional cycles, each of which includes a prodelta facies of dark
marine shale. The prodelta units are believed to be correlative with the
black organic-rich shales of the carbonate-evaporite cycles farther out in the
basin. Isopach maps of individual black shale units indicate that many of
them thicken significantly in the vicinity of the delta complex.

Reservoirs.--Limited subsurface data are available on the potential sandstone
reservoirs of this play. However, some of these rocks crop out east of the
San Miguel Mountains where the delta-front sandstones have been described as
well-sorted, fine- to medium-grained, and arkosic (Spoelhoef, 1976). The
arkosic and calcareous nature of much of the clastic section may be
detrimental to consistently good porosity and permeability, but the variable
energy regime of the deltaic depositional environment should enhance reservoir
characteristics in many sandstone units.

Source Rocks.--Dark gray or black marine shales of potential source rock
quality intertongue with the marine and delta front sandstone facies along the
western margin of the Uncompahgre-San Luis highland. These rocks are organic-
rich in the central basin region and probably become more humic in character
in the deltaic complex where land-derived organic matter is more prevalent.
The presence of large igneous intrusions (San Miguel and La Plata Mountains)
suggests that greater maturation levels may be expected in parts of the area.
The probability of type III kerogen plus higher heat flow indicate that the
Silverton delta area will be gas prone.

Exploration Status.--This play is speculative and drilling density in the area
is very low. At least one well located on the northwest margin of the play
had significant gas shows in sandstones of the Honaker Trail which are
probably part of the Silverton fan delta complex. Negative aspects of this
play include the fact that many of the potential reservoir rocks crop out
updip from the play area, increasing the probability of trap leakage and
flushing of reservoirs by ground water recharge.

Traps and Seals.--Traps should be combination structural-stratigraphic on
folded and faulted structures of variable size. The presence of distributary,
delta fringe, and longshore sand bodies within the deltaic complex offer
potential stratigraphic trap possibilities.

Depth Range.--3,000 - 20,000 ft (900 - 6,000 m).

U.5.G.S. Mean Estimate of Undiscovered Petroleum
Resources.--Accumulations in this play are expected to be less than 1 MMBO or
6 BCF gas in size.

Total Area of Play.--Approximately 1,500 miZ (4,000 km?).
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Play VI: Wasatch Plateau - Ferron Sandstone Member (Cretaceous).

The Wasatch Plateau is a 75-mile (120 km) long and a 25-mile (40 km)-wide
structural terrace, which is bounded on the east by the San Rafael uplift, on
the west by the Sanpete-Sevier Valley, and on the north by the Uinta Basin.
The area is characterized by a series of long continuous anticlines or faulted
structures which parallel the trend of the San Rafael uplift. The anticlines
are broken in the western half of the area by a complex series of north-south
trending grabens, which may be the result of flowage or dissolution of salt in
the underlying Jurassic evaporites. The play is confined to that part of the
Plateau underlain by the Cretaceous Ferron Sandstone Member of the Mancos
Shale.

Reservoirs.--The Ferron Sandstone appears to be part of two coalescing
westerly-derived delta complexes. Permeable zones are present in both the
delta front and in distributary sand bodies. Locally, as many as seven
separate sands are present in the Member.

Source Rocks.--The Mancos Shale beds, which enclose the Ferron Sandstone
facies are potential source rocks for this play. However, because only gas
has been produced from the Ferron, it seems likely that the coals and
carbonaceous shales which intertongue with the sandstone bodies are the source
of the gas. Data are not available on maturation of these rocks, but because
the Ferron is overlain by coal-bearing units of the Mesaverde Group which are
ranked as sub-bituminous, the Ferron beds should be mature or overmature.

Traps and Seals.--The entrapment of gas in this play is related to structural
closure on simple anticlinal folds and complexly faulted anticlines. Up-dip
pre-faulting migration toward the depositional edge of the Ferron may also
have influenced accumulation. Discontinuous sandstone bodies in the deltaic
complex also offer the possibility of stratigraphic trap accumulations.

Depth Range.--Less than 1,000 ft (350 m) along the edge of the San Rafael
Swell to more than 7,000 ft (2,100 m) in the western part of the play.

Exploration Status.--This play can probably be considered as moderately
explored. Most of the larger traps have been drilled, but many small
structures are untested. To date, six fields have been discovered, although
several of these have been abandoned.

Cumulative Produgtion.--Approximately 200 BCF of dry gas which averages about
1,000 Btu per ft~.

U.S.G.S. Mean Estimate of Undiscovered Petroleum Resources.--Accumulations in
this play are expected to be less than 1 MMBO or 6 BCF gas in size.

Total Area of Play.--Approximately 3,200 mi% (8,300 km?).

Play VII: Kaiparowits Basin Anticlines

The Kaiparowits basin, which forms the limits of this play, is a
structural basin whose boundaries are loosely defined by the Circle Cliff’s
uplift on the east and the Paunsaugunt fault system on the west (fig. 2). The
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area is characterized by a series of gentle but continuous folds whose axial
trend is more or less northwest-southeast. At the surface, some of the fold
axes have been mapped for more than 30 miles (78 km). The limited amount of
subsurface data in the region suggests that the axial planes of many folds are
tilted so that surface closure may not correspond to closure at depth. In
general, the age of the folding is considered to be Laramide.

Reservoirs.--The only commercial production from this play is from the Kaibab
Limestone of Permian age and the Timpoweap Member of the Triassic Moenkopi
Formation. Reservoir rock in the Kaibab consists of dolomitized skeletal
limestone. Supratidal dolomites are the reservoirs in the Timpoweap. The
Redwall Limestone of Mississippian age is a potential reservoir in this region
but these beds have been water-wet where drilled.

Source Rocks.--Data on potential source rocks are sparse. However, oil and
gas shows are common. Potential source rocks are present, the supratidal
argillaceous limestone beds of the Kaibab Limestone, the silty and
argillaceous dolomites or siltstones of the lower Moenkopi (Sinbad or
Timpoweap members), and the organic-rich shales of the Proterozoic Chuar
Group.

Exploration Status.--Drilling density is very low in this region. Several of
the larger anticlines have been drilled on the highest point of surface
closure, although surface structure in this region does not necessarily
coincide with structure at depth. Furthermore, a strong hydrodynamic drive is
identified at the Upper Valley field, resulting in a tilted oil-water contact.
Similar hydrodynamic conditions may exist on other anticlines in the area.
Thus, some of the drilled anticlines may not have been adequately tested.
Considering the number and size of the anticlines involved in this play and
the apparent inadequate testing of hydrodynamic aspects of the region, this
play may be considered as lightly explored.

Traps and Seals.--Potential traps are elongate anticlines and faulted
anticlines, several of which have been drilled. Seals are red and gray shales
of the Moenkopi Formation (Triassic).

Cumulative Production.-~-The only commercial field in this play is the Upper
Valley o0il field with cumulative production of about 20 MMBO. The o0il is low
gravity (19.3° to 26.0° API) and contains only a small amount of gas which is
primarily C02.

U.S5.G.S. Mean Estimate of Undiscovered Petroleum Resources.--
Accumulations in this play are expected to be less than 6 BCF gas in size.

Total Area of Play.--Approximately 3,000 mi2 (7,800 kmz).
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