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GEOLOGY AND PETROLEUM RESOURCES, PARADOX BASIN PROVINCE
By J.A. Peterson

INTRODUCTION

The Paradox basin province assessment area is located in southeastern and
south-central Utah and southwestern Colorado (figs. 1,2). The area
encompasses all or parts of several major Laramide structural provinces of the
central and western Colorado Plateau, including: 1) the Paradox basin proper,
except for the portions extending into northwestern Mexico and northeastern
Arizona; 2) the Uncompahgre and San Juan uplifts; 3) the San Rafael, Circle
Cliffs and Monument uplifts; 4) the Kaiparowits and Henry Mountains basins;
and 5) the Wasatch and Paunsaugunt Plateaus, which occupyzthe westernzmargins
of the province. The area covers approximately 35,000 mi® (90,000 km“).

HISTORY

The Four Corners area (Utah, Colorado, Arizona and New Mexico) of the
southvestern U.S. has undergone sporadic petroleum exploration activity since
the early 1900’s. The initial play was in the Paradox basin, where the first
0il (1908) was found at shallow depths in fractured clastic rocks at the
Mexican Hat oil field near the San Juan River on the Monument upwarp (fig. 4).
In the early 1900’s, gas was discovered in Cretaceous sandstone reservoirs in
the San Juan basin of northwestern New Mexico (Matheny, 1978). This discovery
later developed into the basinwide Blanco/Ignacio-Blanco and other gas fields
of the San Juan basin (fig. 1). Between 1920 and 1940, sporadic drilling
occurred in the adjoining Paradox basin, but except for minor oil and gas
production (1929) from Pennsylvanian reservoirs in northwestern New Mexico,
little success resulted. Interest in the potential of Pennsylvanian rocks was
stimulated by the 1945 discovery of large volumes of gas in carbonate
reservoirs of the Paradox Formation at Barker Creek dome in northwestern New
Mexico near the Colorado border. With subsequent oil and gas discoveries at
Boundary Butte in Utah (1948), the search for Pennsylvanian petroleum traps
took on broader proportions.

Most of the earlier discoveries had been based on exploration of surface
structures, but in the early 1950’s the search moved farther out into the
Paradox basin where more sophisticated geophysical work was required. Most of
this activity was on Navajo Indian tribal lands. Several major oil companies
initiated an extensive seismic program, which delineated several subsurface
structural closures in southeastern Utah. Two of the better structures, Bluff
and Desert Creek, were drilled by Shell 0il Co. in 1953 (fig. 5). Although
economic failures, both of these initial wells encountered encouraging oil
shows and porosity in carbonate rocks above the salt section in what later
came to be known as the Desert Creek and Ismay (Bluff) zones. A second well
was drilled downflank on each of these structures in 1954, The downflank
wells encountered improved reservoir rocks, resulting in a discovery at Desert
Creek, the first in the Aneth area, and a marginal discovery at Bluff. These
successes, although small, motivated a large sealed-bid sale of Navajo Indian
lands. Participating in the sale were several major companies, including
Shell, Texaco, Superior, Carter, Phillips, and others. The Texaco C-1 Navajo
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Aneth discovery was completed in carbonate reservoirs of the Pennsgylvanian
Hermosa Formation at 5828-5879 ft (1,780-1800 m) in February 1956, flowing
1,700 BOPD (barrels of oil per day). Three subsequent discoveries, .the Shell
No. 1 North Desert Creek (September 1956 - Ratherford Unit), Texaco No. 1
Navajo C (January, 1957 - McElmo Creek Unit), and Davis 0il No. 1 Navajo A
(February, 1957 - White Mesa Unit) all proved to be in the massive carbonate
buildup that makes up the greater Aneth field. The Davis discovery was
drilled on a farmout from Carter 0il Co., whose White Mesa No. 1 well in 1955
was on a structural closure just a short distance southeast of the edge of the
main Aneth buildup.

Early exploration drilling in the southern Paradox basin was based on
identification of seismic structures on mappable horizons near the top of the
Paradox Formation. Stratigraphic isolation of the Aneth mound complex and
other carbonate buildups was a major factor in the disappointing early
exploration efforts in the basin. Prior to the Aneth discovery, nine abandoned
exploratory wells, in addition to the discovery wells of four nearby
marginally-commercial fields, had been drilled on seismic highs (fig. 5). The
giant Aneth field was literally surrounded by these exploratory failures
before drilling of the discovery well. The discovery was located at a
relatively low structural position on the axis of the Bluff-Aneth subsurface
structural nose. It was drilled as a joint venture by two major companies in
order to evaluate expiring leases on Navajo Indian lands. The discovery was
made only after most of the more significant structural closures of the area
had been drilled with relatively minor success.

Petroleum exploration in the northern part of the Paradox basin dates
from 1891, when the first exploratory well in Utah was drilled near the town
of Green River (Hansen, 1956). Sporadic drilling continued for some time in
this area, and by the early 1960’s most of the significant structures had been
tested, resulting in discovery of several small oil and gas fields from
Cretaceous and Jurassic reservoirs a short distance north of the assessment
boundary. Interest in Pennsylvanian and Mississippian possibilities was
accompanied by drilling of salt structures west of Moab during the 1950’s.
0il and gas shows were encountered in several wells, but only one marginal
discovery was made at the Big Flat field. In 1959, the Pure 0il Co. discovery
of 0il in Mississippian carbonate reservoirs at the Lisbon field on the
southwest flank of the Lisbon salt anticline resulted in a major exploration
effort for pre-salt structural traps. Several small oil and gas accumulations
in Mississippian and Devonian reservoirs were found at this time.

Gas was discovered in 1951 in Upper Cretaceous sandstone reservoirs at
the Clear Creek field on the Wasatch Plateau (Walton, 1968). This discovery
wvas followed by the drilling of several structural closures in the area during
the 1950’s, most of which were non-productive or marginally commercial.

Exploration in the Kaiparowits basin area began in 1921 with drilling of
the Ohio Co. Circle Cliffs No. 1 Precambrian test of the Circle Cliffs
anticline on the eastern margin of the Kaiparowits basin. In 1948, oil
staining and non-commercial production of o0il from Mississippian carbonate
reservoirs were obtained in the Last Chance area about 50 mi. north of the
Circle Cliffs well. At about the same time, non-commercial 0il production was
obtained from Permian and Mississippian carbonate reservoirs at the John’s
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Valley and Upper Valley areas of the Kaiparowits basin, approximately 50 mi
west of Circle Cliffs (Campbell, 1969; Goolsby and others, 1988). During the
1960’s and 1970’'s, several deep tests were drilled in the Kaiparowits basin
without success.

STRUCTURE AND PALEOSTRUCTURE

Detailed reports on the structure of the Paradox basin and adjacent areas
are published by several authors, including Gregory (1951), Hunt and others
(1953), Kelley (1955), Shoemaker and others (1958), Jones (1959), Elston and
Shoemaker (1960), Fetzner (1960), Joesting and Case (1960), Szabo and Wengerd
(1975), Witkind (1975), Gorham (1975), Stone (1977), Suguira and Kitchco
(1981), White and Jacobson (1983), Frahme and Vaughan (1983), Chapin and
Cather (1983), Kluth (1986), and Stevenson and Baars (1986).

The Paradox basin province is within the central and western part of the
Colorado Plateau physiographic province. The Paradox basin proper, located in
the eastern part of the physiographic province, is bounded on the south by the
Four Corners platform and the Defiance uplift, on the west by the Monument and
San Rafael uplifts, on the north by the juncture of the north plunge of the
San Rafael uplift and the northwest extension of the Uncompahgre uplift, and
on the east by the Uncompahgre and San Luis uplifts (figs. 1, 6-10). All
these major features underwent stages of tectonic growth as early as
Pennsylvanian time, with probable minor earlier growth of some of the
features. Evidence of basement faulting as old as Cambrian or late
Precambrian has been documented (Baars and See, 1968).

The Pennsylvanian Paradox evaporite basin formed the northwestern part of
an elongate, rifted, northwest-trending structural-sedimentary trough, which
developed as part of the crustal disturbance that created the ancestral Rocky
Mountains. Rapid subsidence and restricted marine circulation between the
distal northwest part of the trough and the open marine accessway to the
southeast, resulted in deposition of thick evaporites in the Paradox basin
during Desmoinesian time (fig. 9). Complementary uplifts on the east side of
the basin (Uncompahgre and San Luis) (figs. 1, 9-11) rose rapidly at this time
and shed large volumes of clastic debris along their borders. The central,
deeper basin areas, however, were essentially starved of significant clastic
material during evaporite deposition.

Deformation of the Paradox basin area began in the Middle Pennsylvanian,
associated with the development of the ancestral Rocky Mountains.
Differential subsidence and probable rifting parallel to the rising
Uncompahgre uplift affected the basin interior and influenced the thickness
patterns of salt deposits in the central basin, as well as the thick arkosic
deposits on the east side derived from the rapidly rising highland. Salt
flowage, influenced by rejuvenation of pre-salt fault patterns, probably began
in middle to late Desmoinesian time and culminated during Early Permian time
(Cater, 1955; Cater and Elston, 1963; Elston and others, 1962) to form the
prominent northwest-trending salt anticlines and pillows characteristic of the
Paradox fold and fault belt (fig. 2).
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By early or middle Mesozoic time, subsidence of the Paradox basin and
accompanying rise of the Uncompahgre-San Luis highland diminished greatly when
the region became part of the Mesozoic Rocky Mountain shelf. Much of the
region became emergent and was relatively stable tectonically. During the
latest Cretaceous and early to middle Tertiary, folding and faulting occurred,
much of which tended to follow Paleozoic structural trends. Several igneous
stocks or laccolith intrusions were emplaced at this time (fig. 2).

Kelley (1955) described three main tectonic elements of the present basin
area (fig. 2): 1) the Paradox fold and fault belt, adjacent to the
northvest-trending Uncompahgre uplift, dominated by northwest-trending folds
and faults, many of which are associated with prominent piercement salt
anticlines in the northeastern part of the belt. The southwestern part of the
belt is more mildly deformed, but folds and faults generally maintain the
northyvesterly trend; some are associated with salt swells; 2) the Monument
uplift, a north-south elongated regional fold bounded on the east by the
steeply-dipping Comb Ridge monocline; and 3) the Blanding sub-basin, which
occupies the southern part of the Paradox basin east of the Monument upwarp.
Gentle folds within the Blanding sub-basin generally trend west to northwest.
Several broad, open folds occupy the southern boundary of the basin.

The Four Corners platform on the southeastern margin of the Paradox basin
is occupied by generally northeast~trending gentle folds and is bounded on the
southeast by the steeply-dipping early Tertiary Hogback monocline.

Kelley (1955) interpreted the Paradox basin as a strong
post-Mississippian sag, part of a broad belt of northwest-southeast tangential
compression related to formation of the ancestral Rockies.

Szabo and Wengerd (1975) explained the Paradox basin as the result of a
regional sag between the Zuni-Defiance uplift of New Mexico-Arizona and the
Front Range uplift of Colorado, caused by withdrawal and lateral transfer of
suberustal material in a broad area of eastern Utah and western Colorado.
Early in Pennsylvanian time, accelerated subsidence resulted in flexing and
faulting in the fold and fault belt and mid-basin arching along the
Uncompahgre uplift. These movements separated the initial broad basin into
tvo half-basins, the Paradox and Eagle. Continued subsidence, basin
expansion, rejuvenated flexing and faulting in a series of steps, along with
radial folding, lasted through middle Desmoinesian time, when emergence and
faulting of the Uncompahgre occurred. This activity shaped the final form of
the Paradox basin.

Gorham (1975) and Baars (1976) interpreted the Paradox as part of an
aulacogen system related to development of the ancestral Rockies. Later,
Stevenson and Baars (1986) interpreted the Paradox as a complex "pull-apart"
basin related to the intersection of conjugate lineaments of continental
dimensions. Extensional tectonics related to growth of the ancestral Rocky
Mountains in Pennsylvanian time caused rapid subsidence of the basin along
rejuvenated basement structures, some of which may be as old as Proterozoic.

Kluth (1986) presented a plate tectonic model to explain the development
of the ancestral Rocky Mountains and associated basins. The faults and
foreland block uplifts characteristic of the ancestral Rocky Mountains
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resulted from transcurrent faulting, with accompanying wrenching and
translation, along the North American craton margin during the collision of
North America with South America-Africa in Pennsylvanian time during assembly
of the supercontinent Pangea (fig. 12). The large fault-block mountains
formed when the southwestern peninsular projection of the craton
(Transcontinental arch and its extension) was pushed northward by the
collision. 1In Early Pennsylvanian time, the collision began in the Ouachita
Mountains region of southwestern Arkansas and Oklahoma and shifted westward
with time. By the Middle Pennsylvanian, continental foreland deformation
reached its greatest intensity resulting in growth of the ancestral Rocky
Mountains and associated strongly downwarped basins. Positioning of the block
uplifts and basins was probably governed in part by pre-existing zones of
crustal weakness along the continental margin of the time. Deformation of the
craton diminished during the Early Permian.

The Paradox is a hybrid basin, a type IIBa platform rift-sag followed by
a type IIa foredeep and foreland basin, according to the Klemme basin
classification (Klemme, 1980, personal communication, 1989; Halbouty and
others, 1970). The concept of the "pull-apart" basin was applied by Burchfiel
and Stewart (1966) to the Death Valley graben. Klemme (1980), however,
applied the term to large, linear basins (Klemme type V) occupying the
intermediate crustal zone between thick continental crust and thin oceanic
crust along the major oceanic boundaries of spreading plates (divergent
margins). The Klemme type II basin and Kluth’s model appear to correspond
well with the geology of the Paradox-Uncompahgre couple and its regional
relationships.

STRATIGRAPHY AND SEDIMENTATION

Detailed reports on the stratigraphy of the Paradox basin and adjacent
areas are published by several authors, including Wengerd and Strickland
(1954), Vengerd (1955, 1958, 1962), Wengerd and Matheny (1958), Vengerd and
Szabo (1968), Herman and Sharps (1956), Herman and Barkell (1957), Heylmun
(1958), Welsh (1958), Katich (1958), Peterson (1959, 1966a, 1966b), Peterson
and Ohlen (1963), Peterson and Hite (1969), Hite (1960, 1961, 1968, 1970),
Hite and Buckner (1981), Fetzner (1960), Ohlen and McIntyre (1965), Parker and
Roberts (1963), Lessentine (1965), Baars, (1966, 1975, 1976), Baars and See
(1968), Walton (1968), Molenaar (1975, 1981), Spoelhof (1976), Szabo and
Vengerd (1975), Craig and Shawe (1975), Craig (1981), Peterson and Ryder
(1975), 0’Sullivan and MacLachlan (1975), and Stevenson and Baars (1986).

Marine and continental sedimentary rocks of Cambrian through Tertiary age
are present in south-central and southeastern Utah and southwestern Colorado
(figs. 10, 14-23), although large parts of the stratigraphic section are
eroded in the main uplift areas. Thickness of Phanerozoic sedimentary cover
ranges from more than 15,000 ft (4,500 m) in the main basins to less than
5,000 ft (1,500 m) in uplift areas (fig. 12). Sedimentary rocks of
Proterozoic age are probably present in the southwestern part of the region
(Kaiparowits basin and adjacent area) as part of the northern extension of the
Chuar and Unkar Groups of the Grand Canyon region (figs. 12, 17, 18) (Reynolds
and others, 1988; Summons and others, 1988; Rauzi, 1990). The Paleozoic
section is primarily marine carbonate and clastic rocks in the lower part
grading to mixed marine and continental clastic rocks in the upper part.
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Symbols for stratigraphic units on figures 15-18 and 23

PC -~ Precambrian Tr - Triassic
Trm Moenkopi Formation

C - Cambrian Trmv - Virgin Limestone Member,
Moenkopi Fm.
0 - Ordovician Trms - Sinbad Member, Moenkopi Fm.
Trs - Shinarump Conglomerate Member,
S - Silurian Chinle Fm.
Tre - Chinle Formation
D -~ Devonian
Dv - Victoria Sandstone J - Jurassic
JTrge - Glen Canyon Group
M - Mississippian Jn - Navajo Sandstone
Mr - Redwall Limestone Jk - Kayenta Formation
M1 - Leadville Limestone Jw - Wingate Formation
Mf - Fitchville Formation Jea - Carmel Formation
Mg -~ Gardner Formation Je - Entrada Sandstone
Md - Deseret Formation Jeu - Curtis Formation
Mh - Humbug Formation Jsu - Summerville formation
Jm - Morrison formation
1P - Pennsylvanian Jwi -~ Windsor Formation
1Pc - Callville Formation
1Pm - Molas Formation K - Cretaceous
1Ph - Hermosa Formation Kem - Cedar Mountain Formation
1Phl - lower Hermosa Kd - Dakota Formation
1Phu - upper Hermosa Ktr - Tropic Shale
Kst - Straight Cliffs Formation
P - Permian Km - Mancos Shale
Pc -~ Coconino Sandstone Kwa - Wahweap Sandstone
Pq - Queantoweap Formation
Pt - Toroweap Formation T - Tertiary
Pka - Kaibab Limestone
Por - Organ Rock shale
Pecm - Cedar Mesa sandstone
Pec - Elephant Canyon Formation
Pwr -~ White Rim Sandstone
Pcu - Cutler Formation
Pg - Gerster Formation
Ph - Hermit Formation
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Figure 19.--Detailed stratigraphic cross-section of Lower Permian rocks partly
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Regional unconformities are present in several parts of the section,
particularly the Lower Cambrian, Upper Cambrian through Upper Devonian,
Mississippian and Lower Pennsylvanian, Upper Permian, and Jurassic. . Most of
the surface area in the region is characterized by exposures of Mesozoic
sandstones and shales. Precambrian rocks are exposed in the Uncompahgre
uplift and the San Juan Mountains on the east side of the Paradox basin.
Paleozoic rocks are exposed in the San Juan Mountains, the Monument, Circle
Cliffs, and San Rafael uplifts, and in salt anticlines of the central basin.

During most of Paleozoic time, the North American continent was located
in the tropical to subtropical latitude belt (figs. 9, 10), where optimal
conditions existed for marine carbonate deposition. The approximate position
of the Pennsylvanian equator was a short distance south of the Paradox basin,
approximately across present-day central New Mexico and Arizona. Prevailing
vind direction was approximately from a present-day north-northeast direction
(F. Peterson, 1988; Parrish and F. Peterson, 1988).

The pre-Pennsylvanian sedimentary pattern of most of the Rocky Mountain
region was that of relatively stable and widespread shelf deposition of
shallow-vater marine carbonate and clastic sediments. Sedimentary facies were
associated with regional transgressions of the early Paleozoic seas across the
broad Rocky Mountain shelf lying west of the Transcontinental arch, a feature
that extended from Minnesota southwest to central Colorado, northern New
Mexico and northern Arizona (fig. 3).

Cambrian rocks are more than 1,500 ft (450 m) thick in the western part
of the Paradox basin assessment area and thin uniformly eastward to less than
500 ft (150 m) in northeastern Arizona (figs. 24, 25). These rocks include a
time-transgressive basal sandstone or quartzite (Tapeats or Ignacio Sandstone)
(fig. 24), of Early Cambrian age to the west, becoming Late Cambrian near its
pinchout edge in southwestern Colorado and northwestern New Mexico. On the
west, the basal sandstone grades upward into marine green shale, siltstone,
and limestone, which is overlain by massive dolomite with minor shale beds.
Both the middle shale and upper carbonate are time-transgressive units that
thin eastward and in part grade into sandstone and siltstone beds of the
Ignacio Sandstone.

Ordovician, Silurian, and Lower and Middle Devonian rocks are absent
throughout the assessment region. Rocks of Late Devonian age rest
disconformably on Upper Cambrian sandstone or quartzite in the eastern part of
the area and on Upper Cambrian dolomite in the west (figs. 10, 16-23). Upper
Devonian rocks, consisting of marine glauconitic sandstone and sandy dolomite
in the lower part and marine dolomite or limestone in the upper part, are more
than 500 ft (150 m) thick in the central and northwestern part of the
assessment area and generally less than 300 ft (90 m) in the southeastern area
(fig. 26).

During Mississippian time, shallow water marine carbonate deposits
(Leadville or Redwall Limestone and equivalents) blanketed the entire Rocky
Mountain shelf. These rocks are 0 - 500 £t (0-150 m) thick in the Four
Corners area (fig. 27) and thicken to more than 1,000 £t (300 m) in the
Kaiparowits - Wasatch Plateau region. The Leadville is composed mainly of
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massive marine oolitic and crinoidal limestone and crystalline dolomite with
variable amounts of chert. 0il production is obtained from the Leadville at
the Lisbon oil field and at several smaller fields in the Paradox basin. The
Leadville also contains major resources of carbon dioxide at several
localities in the Four Corners area, particularly at McElmo dome in Colorado

(fig. 7).

Prolonged emergence of the Rocky Mountain shelf during Late Mississippian
and Early Pennsylvanian time resulted in regional development of a karst
topography with associated red regolith, weathered carbonate rubble, and
extensive solution features at the top of the Mississippian carbonate section
that extended from New Mexico and Arizona north into Canada (Peterson and
Smith, 1986).

Early in Pennsylvanian time, the broad emergent Rocky Mountain
continental shelf underwent the initial stages of tectonism that intensified
during Middle Pennsylvanian to Permian time with the rapid growth of the
ancestral Rocky Mountains. Active subsidence of the Paradox basin began in
the early Desmoinesian and continued at an accelerated pace until
approximately the Middle Permian.

Rocks of Pennsylvanian age are more than 5,000 ft (1,500 m) thick in the
Paradox basin and thin to 500 £t (150 m) or less on the Emery and Piute highs
in south-central Utah (fig. 9). Pennsylvanian deposition in the Paradox
evaporite basin was strongly cyclic and is represented by as much as 35-40
complete or partially complete cycles (fig. 14). Development of the cycles is
probably related to a combination of factors, including: 1) eustatic sea
level changes caused by cycles of Carboniferous glaciation in the southern
hemisphere, probably in combination with ocean basin events related to sea
floor spreading; 2) more localized changes in rate and type of clastic influx
and its relation to submarine topography and turbidity of waters; 3) climatic
effects, and 4) minor changes in rates of basin subsidence and tectonic
movements.

During the Pennsylvanian and Permian, peripheral uplifts furnished
clastic debris that was carried into the rapidly subsiding Paradox basin. The
major source of clastic material was the Uncompahgre-San Luis uplift, which
supplied more than 15,000 ft (4,600 m) of coarse arkosic clastic debris along
the northeast border of the basin. Minor sources of finer clastics were
present on the southwest and west (figs. 9, 10). Pennsylvanian-Permian
tectonism accompanied by cyclic eustatic sea-level changes and the relative
isolation of the Paradox basin from the main marine realm to the southeast and
vest resulted in complicated and diverse facies patterns within the basin.
During Desmoinesian time, three main intertonguing sedimentary facies were
deposited: 1) a coarse clastic facies, that becomes increasingly arkosic
beginning in middle Desmoinesian time and reaches a maximum thickness in a
narrov belt along the northeastern border of the basin adjacent to the
Uncompahgre-San Luis uplift; 2) an evaporite facies, mainly of early
Desmoinesian age, thickest near the basin axis, including halite and potash,
anhydrite, finely crystalline dolomite, and black organic-rich shale or shaly
dolomite; and 3) a shelf carbonate facies, along the southern and southwestern
shelf of the basin. The carbonate facies locally contains mound-like buildups
of biogenic carbonates. A narrow belt of mound-bearing sandy to silty
carbonate also is present between the clastic and evaporite facies along the
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western border of the San Luis uplift near the main marine accessway. The
evaporite-dominated facies of the inner basin changes relatively abruptly to
carbonate facies across the shelf area to the southwest and west, where the
Hermosa Group becomes predominantly cyclically deposited carbonate rocks with
minor fine-grained clastics. Time equivalents of the various facies can be
correlated from the inner basin to the shelf province on the basis of
basinwide black and gray shaly marker units (fig. 14), the most prominent of
which are organic-rich. The lower Hermosa (Pinkerton Trail Formation of
Wengerd, 1958) demonstrates the initial development of cyclic sedimentation
that resulted in repetitive deposition of clastic and carbonate units.
Vertically, the cyclic section below the salt shows a progressive increase in
carbonate content, but ultimately grades through dolomite and black shale into
the overlying Paradox evaporite facies in the basin interior. Cyclic
deposition is best demonstrated in the Paradox evaporite facies. Above the
Paradox, the cycles increase in carbonate content in the lower part of the
upper Hermosa (Honaker Trail Formation). The upper part of the Honaker Trail
is increasingly dominated by coarser clastics with minor limestone beds.
Permian rocks are dominantly clastic, including the major part of the arkosic
facies on the northeastern side of the basin, grading westward to finer
clastics with minor carbonate and anhydrite beds. Eolian sandstone and
overlying marine carbonate (Kaibab Limestone) make up a significant amount of
the Permian section along the western flank of the Paradox basin and westward
into the Kaiparowits basin and Wasatch Plateau areas (figs. 10, 17-19, 23).

Through most of the early and middle Mesozoic, the region became emergent
and was relatively stable. Triassic deposition was dominated by continental
redbeds (shale, siltstone and sandstone) on the east with intertonguing marine
deposits in the western area. The uppermost Triassic and Lower Jurassic are
characterized by massive eolian sandstones. Middle and Upper Jurassic
deposits are continental and marine sandstone, shale, and siltstone with minor
interbeds of limestone and gypsum or anhydrite, overlain by varicolored
continental alluvial and lacustrine shale, siltstone, and sandstone of Late
Jurassic and Early Cretaceous age. Continental deposition prevailed during
much of this time. During the Late Cretaceous, marine and intertonguing
continental clastics at or near the western margin of the Cretaceous seaway
were deposited across most of the region. Much of this section has been
removed by Cenozoic erosion, except for the Kaiparowits and Wasatch Plateau
areas (figs. 10, 17-23).

PETROLEUM GEOLOGY

As of 1988, the Paradox basin proper contained approximately 125 oil and
gas fields, mainly producing from Pennsylvanian carbonate reservoirs (fig. 4).
Fields range in size from a few thousand barrels to the giant Aneth field with
original reserves of approximately 400 MMBO (million barrels of oil), more
than two-thirds of the total original reserves of the Paradox basin (fig. 28).
The reasons for the location and giant size of the Aneth field are discussed
elsewhere (Peterson, 1989, 1990). Most of the reserves of the basin are in
Pennsylvanian carbonate reservoirs with a relatively small percent of the
total from carbonate reservoirs of Mississippian age. Some production also is
obtained from sandstone reservoirs of Permian age. Large volumes of mature,
organic-rich petroleum source rocks, cyclically interbedded with carbonate and
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evaporite beds, are present in much of the Pennsylvanian section in the
Paradox basin (figs. 14, 15, 29). Possible source rocks also are present in
the Upper Permian Kaibab and the Sinbad Member and equivalents of the Lower
Triassic Moenkopi Formation along the western flank of the Paradox basin and
the Kaiparowits basin (figs. 17, 18, 19). Cretaceous marine shales and coaly
beds are probable source rocks for gas in the VWasatch Plateau-Kaiparowits
basin region. Thermal gradients in the Paradox basin are approximately
2,2-3.3°C/100 m (1.2-2.0°F/100 ft) (Hite and others, 1984). Thick deposits of
gray to black organic-rich shale and siltstone are present in the Upper
Proterozoic Chuar Group in the Grand Canyon region of Arizona and probably are
present over a large part of south central Utah (figs. 13, 15, 16) (Summons
and others, 1988; Rauzi, 1990; Palacas and Reynolds, 1989).

Important deposits of tar are present in the Middle Permian White Rim
Sandstone and Lower Triassic Moenkopi Formation in the Tar Sand Triangle,
Circle Cliffs and San Rafael uplifts, Capitol Reef, and other areas on the
wvestern flank of the Paradox basin (figs. 4, 7, 18).

Production at Aneth is primarily from the Desert Creek zone, which
consists of the following sequence, from the base upward (figs. 30, 31, 33):

1. Black, laminated, organic-rich, dolomitic, silty shale or shaly
dolomite and siltstone (Chimney Rock shale), the basal unit of the cycle. The
Chimney Rock is underlain by a 10-15 ft (3-5 m) anhydrite bed, which lies
above approximately 150 ft (45 m) of halite.

2. Dark brown to gray finely-crystalline or chalky dolomite or
dolomitic, fossiliferous limestone.

3. Porous algal limestone or slightly dolomitic limestone, locally
pelletal.

4, Thin anhydrite bed, present only on the fringes of the mound buildup.

5. Foraminiferal pellet limestone.

6. Porous "leached oolite", slightly dolomitic, limestone, commonly
fossiliferous.

7. Thin anhydrite bed, present only on the fringes of the buildup. This
is the top of the cycle, overlain by black, organic-rich shale (Gothic shale)
similar to the basal unit of the Desert Creek cycle (Chimney Rock shale). The
Gothic is the basal unit of the overlying Ismay zone.

Porosity in the Desert Creek zone at the Aneth field is in two main
reservoir rock types, a calcareous phylloid (leaf-like) algal limestone in the
lover part, and a "leached oolite" limestone and dolomite interval in the
upper part (figs. 33-35). The algal reservoir is slightly over 100 ft (30 m)
thick in the central part of the mound, and the leached oolite averages
approximately 100 ft (30 m) in most of the mound complex, giving a maximum
mound thickness of somewhat over 200 ft (60 m). In plan view, the overall
porous mound buildup is somewhat horseshoe-shaped with the major breadth and
thickness in the greater Aneth field area, thinning to the northwest along two
relatively narrow and irregular arms (figs. 31, 32). The middle Desert Creek
anhydrite unit covers the thinner part of the mound belt to the northwest.
This anhydrite also c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>