UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, magnetic concentrate, and rock samples from in and adjacent to the Wah Wah Mountains Wilderness Study Area (UT-050-073/040-205), Beaver and Millard Counties, Utah

> By B. M. Adrian^{*}, J. D. Gaccetta^{*}, R. T. Hopkins^{*}, D. L. Fey^{*}, and K. A. Duttweiler^{*}

> > Open-File Report 88-535

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

^{*}U.S. Geological Survey, DFC, Box 25046, MS 973, Denver, CO 80225

CONTENTS

Studies Related to Wilderness	1
Introduction	1
Methods of Study	1
Sample Media	1
Sample Collection	3
Stream-sediment samples	3
Heavy-mineral-concentrate samples	3
Rock samples	3
Magnetic-concentrate samples	3
Sample Preparation	4
Sample Analysis	4
Spectrographic method	4
Chemical methods	4
Rock Analysis Storage System (RASS)	5
Description of Data Tables	5
References Cited	5

ILLUSTRATIONS

Figure 1.	Location	map of	the Wah	Wah	Mountains W	lilderness	Study Area	
UT-(050-073/04	Ю-205),	Beaver	and	Millard Cou	inties, Ut	ah	2

- Plate 1. Localities of stream-sediment, heavy-mineral-concentrate, magnetic-concentrate, and rock samples from the Wah Wah Mountains Wilderness Study Area, Beaver and Millard Counties, Utah.....in pocket
- Plate 2. Localities of rocks taken in the Wah Wah Summit area, in and adjacent to the Wah Wah Mountains Wilderness Study Area, Beaver and Millard Counties, Utah.....in pocket

TABLES

	Page
Table 1. Limits of determination for spectrographic analysis of rocks and stream sediments	7
Table 2. Chemical methods used	8
Table 3. Results of analyses of stream-sediment samples	9
Table 4. Results of analyses of heavy-mineral-concentrate samples	12
Table 5. Results of analyses of magnetic-concentrate samples	15
Table 6. Results of analyses of rock samples from the wilderness study area	21
Table 7. Results of analyses of rock samples from the Wah Wah Summit area	27
Table 8. Description of rock samples	33

Page

STUDIES RELATED TO WILDERNESS

Bureau of Land Management Wilderness Study Areas

The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and the U.S. Bureau of Mines to conduct mineral surveys on certain areas to determine their mineral values, if any. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results of a geochemical survey of the Wah Wah Mountains Wilderness Study Area (WSA) (UT-050-073/040-205), Beaver and Millard Counties, Utah.

INTRODUCTION

In May, 1986, we conducted a reconnaissance geochemical survey of the Wah Wah Mountains Study Area (UT-050-073/040-205), Beaver and Millard Counties, Utah.

The Wah Wah Mountains WSA is comprised of $36,382 \text{ acres} (56.6 \text{ mi}^2)$ (146.6 km²); the WSA straddles the county line between Millard and Beaver Counties with the greatest portion of the area located in the southwest corner of Millard County (fig. 1). Access on the north is provided by Garrison Black Rock Road. The west is accessible by a light duty road that bears north from State Highway 21 approximately 8.5 miles west of Wah Wah Summit. This road crosses the Pine Valley Hardpan and terminates to the north with the Garrison Black Rock Road. Several unimproved roads extend eastward toward the mountain range from the improved road. Access on the east is provided by a light duty road that bears north from State Highway 21 approximately 8 miles east of Wah Wah Summit. This road extends through the Wah Wah Valley and terminates at the north with the Garrison Black Rock Road. Several unimproved the Wah Wah Valley and terminates at the north with the Garrison Black Rock Road. Several with the Garrison Black Rock Road. Several with the Garrison Black Rock Road extends through the Wah Wah Valley and terminates at the north with the Garrison Black Rock Road. Several unimproved roads extend with the Garrison Black Rock Road. Several unimproved roads extend west from this light duty road toward the mountain range.

The Wah Wah Mountains are an eastward tilted fault block in the Basin and Range structural province. Exposed bedrock within the study area consists of gently-dipping Cambrian and Ordovician sedimentary rocks with exposures of Tertiary volcanic and intrusive rock. The western edge of the study area contains large areas of pediment and alluvial fan surfaces. Three intrusive stocks straddle the boundary at the southern end of the study area. The composition of these stocks range from dioritic to quartz dioritic with orthoclase and quartz increasing eastward. Marble and skarn rock are present in a metamorphic zone which surrounds these stocks (Erickson, 1966). The geology of the area is described by Erickson (1966), Hintze (1974a), Hintze (1974b), and Hintze and others (1984).

METHODS OF STUDY

Sample Media

Analyses of the stream-sediment samples represent the chemistry of the rock material eroded from the drainage basin upstream from each sample site. Such information is useful in identifying those basins which contain concentrations of elements that may be related to mineral deposits. Heavy-mineral-concentrate samples provide information about the chemistry of certain minerals in rock material eroded from the drainage basin upstream from each sample site. The selective concentration of minerals, many of which may be ore related, permits determination of some elements that are not easily

Figure 1. Location map of the Wah Wah Mountains Wilderness Study Area (UT-050-073/040-205), Beaver and Millard Counties, Utah.

detected in stream-sediment samples. Magnetic concentrate samples composed predominantly of magnetite have been used in similar terranes which have revealed base-metal mineralizations as well as trace-element associations (Lovering and Hedal, 1987; Overstreat and Day, 1985).

Analyses of unaltered or unmineralized rock samples provide background geochemical data for individual rock units. On the other hand, analyses of altered or mineralized rocks, where present, may provide useful geochemical information about the major- and trace-element assemblages associated with a mineralizing system.

Sample Collection

We collected samples at 80 sites (plate 1). We collected stream-sediment samples at 48 sites, heavy-mineral-concentrate samples at 49 sites, magnetic concentrates at 64 sites, and rock samples at 65 sites. An additional 93 rocks were collected at 77 sites from traverses in the Wah Wah Summit area across the three intrusive stocks (plate 2). Sampling density was about one sample per 1.4 mi² for stream-sediments and heavy-mineral concentrates.

Stream-sediment samples

The stream-sediment samples consisted of active alluvium collected primarily from first-order (unbranched) and second-order (below the junction of two first-order) streams as shown on USGS topographic maps (scale = 1:62,500). Each sample was composited from several localities within an area that may extend as much as 20 ft from the site plotted on the map.

Minus 80-mesh stream-sediment samples contain relatively fine material whereas plus 80-mesh, minus 30-mesh stream sediments contain coarse material. The minus 30-mesh sediments are useful in arid environments because they do not contain the very fine material deposited by wind, which may possibly contaminate the sample.

Heavy-mineral-concentrate samples

Heavy-mineral-concentrate samples were collected from the same active alluvium as the stream-sediment samples. Each bulk sample was screened with a 2.0-mm (10-mesh) screen to remove the coarse material. The less than 2.0-mm fraction was panned until most of the quartz, feldspar, organic material, and clay-sized material were removed.

Rock samples

Rock samples were collected from outcrops or exposures in the vicinity of the plotted site location. Samples were collected from unaltered or altered and/or mineralized rocks.

Magnetic-concentrate samples

Magnetic-concentrate samples were collected from soil and stream sediments. A hand magnet was passed through the soil or stream sediment until approximately 1 to 2 grams of magnetic material was collected.

Sample Preparation

The stream-sediment samples were air dried, then sieved using a stainless-steel 80-mesh (0.17-mm) screen. The minus 80-mesh fraction passing through the sieve was stored. The plus 80-mesh fraction was then sieved using a 30-mesh (.59-mm) screen. The minus 30-mesh fraction was saved for analysis.

After air drying, bromoform (specific gravity 2.8) was used to remove the remaining quartz and feldspar from the heavy-mineral-concentrate samples that had been panned in the field. The resultant heavy-mineral sample was separated into three fractions using a large electromagnet (in this case a modified Frantz Isodynamic Separator). The most magnetic material, primarily magnetite, was not analyzed. The second fraction, largely ferromagnesian silicates and iron oxides, was saved for archival storage. The third fraction (the least magnetic material which may include the nonmagnetic ore minerals, zircon, sphene, etc.) was split using a Jones splitter. One split was hand ground for spectrographic analysis; the other split was saved for mineralogical analysis. These magnetic separates are the same separates that would be produced by using a Frantz Isodynamic Separator set at a slope of 15° and a tilt of 10° with a current of 0.2 ampere to remove the magnetite and ilmenite, and a current of 0.6 ampere to split the remainder of the sample into paramagnetic and nonmagnetic fractions.

Rock samples were crushed and then pulverized to minus 0.15 mm with ceramic plates. Magnetic-concentrate samples were hand ground.

Sample Analysis

Spectrographic method

The stream-sediment, heavy-mineral-concentrate, magnetic-concentrate and rock samples were analyzed for 31 elements using a semiquantitative, directcurrent arc emission spectrographic method (Grimes and Marranzino, 1968). The elements analyzed and their lower limits of determination are listed in table 1. Spectrographic results were obtained by visual comparison of spectra derived from the sample against spectra obtained from standards made from pure oxides and carbonates. Standard concentrations are geometrically spaced over any given order of magnitude of concentration as follows: 100, 50, 20, 10, and so forth. Samples whose concentrations are estimated to fall between those values are assigned values of 70, 30, 15, and so forth. The precision of the analytical method is approximately plus or minus one reporting interval at the 83 percent confidence level and plus or minus two reporting intervals at the 96 percent confidence level (Motooka and Grimes, 1976). Values determined for the major elements (iron, magnesium, calcium, and titanium) are given in weight percent; all others are given in parts per million (micrograms/gram). Analytical data for samples from the Wah Wah Mountains WSA are listed in tables 3-7.

Chemical methods

Stream-sediment samples from this study area were analyzed by a spectrophotometric method (c - colorimetry) for tungsten (W). Rocks and stream-sediment samples were also analyzed by an inductively coupled plasmaatomic emission spectroscopy (ICP) method. Elements determined by this method were arsenic (As), antimony (Sb), zinc (Zn), bismuth (Bi), and cadmium (Cd). Rocks were also analyzed for gold (Au) by atomic absorption methods (aa). See table 2 for a more detailed summary of these other chemical methods used. Analytical results for stream-sediment, heavy-mineral-concentrate, magnetic-conentrate, and rock samples are listed in tables 3, 4, 5, 6, and 7, respectively. Descriptions of rock samples are given in table 8.

ROCK ANALYSIS STORAGE SYSTEM

Upon completion of all analytical work, the analytical results were entered into a computer-based file called Rock Analysis Storage System (RASS). This data base contains both descriptive geological information and analytical data. Any or all of this information may be retrieved and converted to a binary form (STATPAC) for computerized statistical analysis or publication (VanTrump and Miesch, 1977).

DESCRIPTION OF DATA TABLES

Tables 3-7 list the results of analyses for the samples of stream sediment, heavy-mineral concentrate, magnetic concentrate and rock, respectively. For the five tables, the data are arranged so that column 1 contains the USGS-assigned sample numbers. These numbers correspond to the numbers shown on the site location maps (plate 1). Columns in which the element headings show the letter "s" below the element symbol are emission spectrographic analyses; "icp" indicates inductively coupled plasma-atomic emission spectroscopic analyses; "aa" indicates atomic absorption analyses; and "c" indicates colorimetric analyses. A letter "N" in the tables indicates that a given element was looked for but not detected at the lower limit of determination shown for that element in table 1. If an element was observed but was below the lowest reporting value, a "less than" symbol (<) was entered in the tables in front of the lower limit of determination. If an element was observed but was above the highest reporting value, a "greater than" symbol (>) was entered in the tables in front of the upper limit of determination. Because of the formatting used in the computer program that produced tables 3-6, some of the elements listed in these tables (Fe, Mg, Ca, Ti, Ag, and Be) carry one or more nonsignificant digits to the right of the significant digits. The analysts did not determine these elements to the accuracy suggested by the extra zeros.

REFERENCES CITED

- Crock, J. G., Briggs, P. H., Jackson, L. L., and Lichte, F. E., 1987, Analytical methods for the analysis of stream sediments and rocks from wilderness study areas: U.S. Geological Survey Open-File Report 87-84, 35 p.
- Erickson, M. P., 1966, Igneous complex at Wah Wah Pass, Beaver County, Utah: Utah Geological and Mineralogical Survey Special Studies, 17, 14 p.
- Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p.
- Hintze, L. G., 1974a, Preliminary geologic map of the Crystal Peak Quadrangle, Millard County Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-635, 2 sheets.

Hintze, L. F., 1974b, Prelimary geologic map of the Wah Wah Summit Quadrangle, Millard and Beaver Counties, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-637, 2 sheets.

Hintze, L. F., Lemmon, D. M., and Morris, H. T., 1984, Geologic map of the Frisco Peak Quadrangle, Millard and Beaver Counties, Utah: U.S. Geological Survey Miscellaneous Field Studies Map I-1573.

Lovering, T.G., and Hedal, J.A., 1987, Concentrates from stream seadiments in southwestern New Mexico--a potential tool for reconnaissance geochemical exploration in arid lands: U.S. Geological Survey Bulletin 1566, p. 33.

Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analyses: U.S. Geological Survey Circular 738, 25 p.

Overstreet, W.C., and Day, G.W., 1985, Review of the use of magnetic concentrates in geochemical exploration: U.S. Geological Survey Technical Record USGS-TR-05-4, p. 38.

VanTrump, George, Jr., and Miesch, A. T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and statistical reduction of geochemical data: Computers and Geosciences. v. 3. p. 475-488.

geochemical data: Computers and Geosciences, v. 3, p. 475-488. Wilson, S. A., Kane, J. S., Crock, J. G., and Hatfield, D. B., 1987, Chemical methods of separation for optical emission, atomic absorption spectrometry, and colorimetry: U.S. Geological Survey Bulletin 1770D, p. D1-D11.

TABLE 1.--Limits of determination for the spectrographic analysis of rocks and stream sediments, based on a 10-mg sample

11

[The spectrographic limits of determination for heavy-mineral-concentrate and magnetic-concentrate samples are based on a 5-mg sample, and are therefore two reporting intervals higher than the limits given for rocks and stream sediments]

Elements	Lower determination limit	Upper determination limit
	Percent	
Iron (Fe)	0.05	20
Magnesium (Mg)	.02	10
Calcium (Ca)	.05	20
Titanium (Ti)	.002	1
	Parts per million	
Manganese (Mn)	10	5,000
Silver (Ag)	0.5	5,000
Arsenic (As)	200	10.000
Gold (Au)	10	500
Boron (B)	10	2,000
Barium (Ba)	20	5,000
Beryllium (Be)	1	1,000
Bismuth (Bi)	10	1,000
C a dmium (Cd)	20	500
Cobalt (Co)	5	2,000
Chromium (Cr)	10	5,000
Copper (Cu)	5	20,000
Lanthanum (La)	20	1,000
Molybdenum (Mo)	5	2,000
Niobium (Nb)	20	2,000
Nickel (Ni)	5	5,000
Lead (Pb)	10	20,000
Antimony (Sb)	100	10,000
Scandium (SC)	5	100
lin (Sn)	10	1,000
Strontium (Sr)	10	5,000
vanadium (v)	10	10,000
Tungsten (W)	3U 10	2 000 10,000
$\frac{1}{2} \frac{1}{2} \frac{1}$	200	
L_{111} (L_{11}) Tinconjum (T_{m})	10	
Thorium (Th)	100	2,000
	100	2,000

TABLE 2.--Chemical methods used

i

[ICP =	inductively	coupled	plasma	spectroscopy;	AA =	atomic	absorption;
			C =	<pre>= colorimetry]</pre>			

Element determined	Method	Determination limit (micrograms/ gram or ppm)	Reference				
Arsenic (As)	ICP	5 ^a	Crock and others, 1987.				
Antimony (Sb)	ICP	2 ^a					
Zinc (Zn)	ICP	2 ^a					
Bismuth (Bi)	ICP	2 ^a					
Gold (Au)	AA	0.1b	Crock and others, 1987.				
Tungsten (W)	C	0.1c	Wilson and others, 1987.				

^aBased on a 0.15-gm sample.

^bBased on a 10-gm sample.

^CBased on a 500-mg sample.

 TABLE 3. RESULTS OF ANALYSES OF STREAM-SEDIMENT SAMPLES

 [N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.]

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppa s	Ag-ppm s	As-pp a s	Au-pp e s	B-ppm s	Ba-pp m s	Be-ppm s
CTW001S CTW002S CTW003S CTW004S CTW004S CTW005S CTW005S CTW005S CTW007S CTW009S CTW009S CTW0010S	38 31 55 38 34 30 38 34 53 38 34 52 38 35 52 38 35 52 38 33 5 38 34 50 38 34 50 38 36 30 38 37 42 38 37 48 38 38 41	113 32 32 113 30 38 113 30 50 113 29 48 113 29 50 113 29 50 113 29 52 113 29 52 113 31 0 113 31 40	1.5 7 1.5 2 .7 1.5 1.5 1.7 1	3 1.5 2 3 2 3 2 1.5 1.5 5	>20 >20 >20 7 20 15 20 20 20 20	.07 .07 .1 .05 .07 .05 .07 .07 .07	300 300 500 200 150 300 150 300	N N N N N N N N N N N N N N N N N N N		NNNNNNN	15 15 30 10 20 N 30 10 20	70 70 150 200 100 70 150 70 100	<1 <1 <1 <1 <1 <1 <1 <1 1 1
CTWW011S CTWW012S CTWW013S CTWW014S CTWW015S CTWW015S CTWW017S J6WW001S J6WW002S J6WW003S	38 37 24 38 37 18 38 37 58 38 37 58 38 37 58 38 41 5 38 42 32 38 42 32 38 35 50 38 35 25 38 35 5	113 33 30 113 33 40 113 33 40 113 34 25 113 34 29 113 34 40 113 34 15 113 30 30 113 27 4B 113 30 55	.37 .77 1.55 1.55 1.5	3 1 1 .3 .7 2	20 20 15 20 20 20 20 20 20	.05 .07 .05 .1 .05 .07 .07 .15 .1	200 200 200 150 200 300 500 300 700	NNNNNN		* * * * * * * * *	<10 15 <10 <10 10 10 15 30 15	30 70 150 300 300 300 300 300	$\begin{array}{c} \langle 1 \\ 1 \\$
J6WW0045 J6WW0055 J6WW0045 J6WW0075 J6WW0075 J6WW0105 J6WW0105 J6WW0125 J6WW0125 J6WW0135 J6WW0145	38 35 40 38 36 8 38 35 25 38 37 58 38 38 30 38 38 29 38 37 45 38 39 32 38 41 20 38 42 39	113 30 3 113 30 42 113 28 20 113 28 20 113 31 10 113 33 40 113 33 47 113 33 50 113 34 30 113 34 47	10 1.5 3 .7 .5 1.5 1.7 .7	1 5 1.5 7 7 .7 3 .7 1 .5	3 15 10 20 15 20 15 20 15 20	.7 .07 .05 .05 .05 .07 .07 .07	700 300 200 200 300 300 300 200 200	N N N N N N N N N N N N	N N N N N N N N N N N N N		15 15 15 (10 20 15 15 10	700 300 700 50 50 150 150 300 150	<1 (1 1 (1 (1 (1 (1 (1 1))))))))))))))))
KDWW001S KDWW002S KDWW003S KDWW004S KDWW004S KDWW005S KDWW005S KDWW007S KDWW007S TDWW001S TDWW002S	38 33 30 38 34 15 38 40 42 38 35 40 38 36 30 38 42 35 38 42 35 38 44 50 38 46 2 38 31 55 38 34 15	113 34 35 113 33 30 113 37 30 113 27 48 113 27 48 113 37 8 113 36 40 113 39 52 113 34 2 113 33 30	.7 1.5 2 .3 1.5 1.5 1	3 3 7 1.5 1 .3 .7 5 3	>20 >20 3 >20 10 7 20 >20 >20 >20	.07 .07 .2 .05 .07 .1 .1 .07 .07	200 200 500 150 150 150 200 200 300	N N N N N N N N N N N N N			10 20 20 N 10 15 30 10 20	70 150 700 1,000 50 300 500 150 50 100	N (1 1.5 1.5 N 1 (1 (1 (1 (1
TDWW003S TDWW004S TDWW005S TDWW006S TDWW008S TDWW008S TDWW009S TDWW010S	38 37 52 38 40 2 38 42 3 38 44 50 38 44 50 38 44 50 38 44 50 38 44 50 38 44 50 38 46 47 38 46 47 38 46 15	113 35 22 113 36 22 113 37 20 113 37 20 113 37 20 113 36 50 113 35 8 113 34 28	.7 1.5 1.5 .7 2	3 1.5 .3 .5 .5 .5	>20 20 5 7 3 3 10 5	.07 .07 .1 .2 .07 .07 .1 .1	150 150 200 150 150 300 200		N N N N N N N N	N N N N N N	10 15 20 20 30 20	100 100 300 300 500 300 300	<1 <1 1.5 1.5 <1 1

TABLE 3. RESULTS OF ANALYSES OF STREAM-SEDIMENT SAMPLES--Continued

Sample	Bi-ppm s	Cd-ppm s	Co-pp m 5	Cr-pp n . s	Cu-pp s s	La-pp m s	Mo-ppm s	Nb-pp s s	Ni-ppm s	Pb-pps s	Sb-ppm s	Sc-ppm s	Sn~ppm s	Sr-ppa s
CTMW001S CTW002S CTW003S CTW004S CTW005S CTW006S CTW006S CTW007S CTW009S CTW009S CTW009S CTW0010S		N N N N N N N N N N N N	N 5 5 7 N M N N N N N N N	50 30 50 10 20 15 30	577055757	20 20 20 20 20 20 20 20 20 20 20 20 20	N N N N N N N N N	X N N N N N N N N N N	7 10 10 5 5 5 5 5 5	15 15 30 20 10 20 15 30	NNNNNNN	<5 N 5 5 5 N 5 N 5 N 5 N 5 N 5 5 N 5 N 5		300 300 300 300 300 300 300 300 300 300
CTW011S CTW012S CTW013S CTW014S CTW014S CTW014S CTW016S CTW017S J6W001S J6W001S J6W002S J6W003S	NNNNNN	N N N N N N N N N N N	N N N 7 <5 20	10 15 20 15 10 15 30 30 20	(5) (5) (5) (5) (5) (5) 7) 7) 7) 7)	20 20 20 20 20 20 20 20 20 20 20 20	N N N N N N N N N	N N N N N N N N N N N	<5 <5 <5 N <5 7 7 10	15 20 20 15 20 20 20 20 30 30	N N N N N N N N N	N N N N X < < 5 5 5 5 5 5 5 5 5 5 5 5 5		200 300 300 300 300 300 300 500 300
J GWW004S J GWW005S J GWW006S J GWW007S J GWW007S J GWW010S J GWW011S J GWW012S J GWW012S J GWW014S		N N N N N N N N N	15 57 N N S N N N	50 30 10 10 (10 20 20 20 20	7775557 5 77	20 <20 50 <20 20 20 20 20 <20 <20 <20 <	N N N N N N N N N	H N N N N N N N N N N	15 70 <55 7 5 <5 <5	30 20 30 10 20 15 30 20 30 30	N N N N N N N N N	555NN \$ \$ 55 N		500 300 500 150 300 200 300 300 300
KDWW001S KDWW002S KDWW003S KDWW004S KDWW004S KDWW004S KDW000S KDW007S KDW000S TDW001S TDWW002S		N N N N N N N N	N N 77 77 55 5 N N	10 15 30 20 20 15 30 20 20	5 7 7 7 5 5 7 5 5 5	20 <20 30 <20 20 20 <20 <20 <20 <20 <20	N N N N N N N N N N	N N N N N N N N N N N	<5 <5 7 10 <5 <5 <5 <5	15 15 20 30 410 20 20 10 15		N N \$5 \$5 \$5 \$5 \$5 \$5		300 300 300 300 300 300 300 300 300 300
TDWW003S TDWW004S TDWW005S TDWW006S TDWW007S TDWW007S TDWW008S TDWW009S TDWW010S		N N N N N N N N	N N 5 7 N N N 5	20 15 10 30 10 15 20 20	5 5 7 7 5 7 7 5 7 7	<pre><20 20 20 20 20 20 <20 <20 <20 20 20 20 20 20 20 20 20 20 20 20 20 2</pre>	N N N N N N	N N N N N N N N	<5 <5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 20 20 30 30 20	N N N N N N N N	N N {5 {5 {5 {5 {5 {5 {5 {5}}}	N N N N N N N N N	300 300 300 300 200 300 300 300

TABLE 3. RESULTS OF ANALYSES OF STREAM-SEDIMENT SAMPLES--Continued

Sample	V-pp m 5	₩-pp n s	Y-pp n 5	Zn-pp# s	Zr-ppm s	Th-pp a 5	As-pp m icp	Bi-ppm icp	Cd-ppm icp	Sb-ppm icp	Zn-ppm icp	H-ppn
CTWW001S CTWW002S CTWW003S CTWW004S CTWW005S CTWW005S CTWW007S CTWW007S CTWW009S CTWW010S	20 10 20 70 10 20 (10 15 20		<10 <10 10 15 10 <10 15 10 5 10	N N N N N N N N N	30 20 30 20 20 20 20 30 50	N N N N N N N N N N N	N N N N N N N N N	N N N N N N N N N N N N N N	.5 .5 1.5 .4 .7 .5 .5	7575953579	14 17 19 41 10 9 12 29 18 15	N N N N N N N N N N N N
CTWW0115 CTWW0125 CTWW0135 CTWW0145 CTWW0155 CTWW0165 CTWW0175 J6WW0015 J6WW0025 J6WW0035	10 15 10 10 15 70 30 30 30		<10 10 15 15 10 15 15 15	N N N N N N N N N	10 20 20 30 30 20 150 50	N N N N N N N N N N	N N N N N N N 67 N	N 2 N N N N N N	.34 .46 .34 .75 .6	B7333NN265	16 15 16 15 10 20 33 24 27 13	N N N N 1.2 N
J6W0045 J6W0055 J6W0065 J6W0075 J6W0075 J6W0075 J6W00105 J6W0115 J6W0125 J6W0135 J6W0145	300 30 15 15 15 20 15 20		20 10 15 15 15 15 15 15	200 N N N N N N N	200 30 20 20 30 50 30 30 20		N N N N N N N N N N N N N N N N N N N		1.4 .5 .8 .4 .4 .5 .5	N 9 4 12 N 8 N N N	98 18 29 7 12 26 22 22 22 22	1.7 N N N N N N N N
KDWW001S KDWW002S KDWW003S KDWW004S KDWW004S KDWW004S KDWW004S KDWW007S KDWW008S TDWW001S TDWW002S	15 30 50 15 20 30 15 15		10 15 15 10 15 (10 (10 (10	N N N N N N N N N N N	30 50 200 30 30 70 20 30		N 5 N N N N N N N		.4	7 5 N 3 2 N 9 5	13 11 19 17 16 16 16 16 21 3 11	N N N N N N N N N N N N
TDWW003S TDWW004S TDWW005S TDWW006S TDWW007S TDWW008S TDWW009S TDWW010S	15 15 30 70 30 15 70 70	N N N N N	<10 10 15 <10 <10 15 10	N N N N N N N	20 20 30 100 70 30 150 150	N N N N	N N N N N	N N N N N	.4 .3 .3 .3 .2 .4	7 4 N N N N	9 8 15 18 18 15 25 22	

• · • • • •

 TABLE 4. RESULTS OF ANALYSES OF HEAVY-MINERAL-CONCENTRATE SAMPLES

 [N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.]

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-pp m s	Ag-ppm s	As-pp∎ s	Au-ppm s
CTWN001C CTW0002C CTW003C CTW004C CTW005C CTW005C CTW007C CTW007C CTW008C CTW009C CTW0010C	38 31 55 38 34 30 38 34 53 38 35 52 38 36 2 38 34 53 38 35 52 38 33 5 38 34 30 38 34 30 38 37 42 38 37 48 38 38 38 41	113 32 32 113 30 38 113 30 50 113 29 48 113 29 50 113 30 42 113 58 15 113 29 52 113 31 0 113 31 40	1.355.575.5352	10 10 10 10 10 7 7 10	20 20 10 15 15 15 15 20	.15 .15 .2 .1 .1 .1 .2 .1 .1 .5	300 70 100 150 100 150 100 100 100 70	N N N N N N N N N	N N N N N N N N N N N	
CTW011C CTW012C CTW013C CTW013C CTW014C CTW015C CTW016C CTW017C JGW001C JGW002C JGW003C	38 37 24 38 37 18 38 39 8 38 39 58 38 39 58 38 41 5 38 42 32 38 43 50 38 35 25 38 35 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7 .3 .3 1 .5 1 1 1	10 10 7 5 7 1.5 1 2 10 10	20 20 15 10 10 10 10 10 20	1 .05 .15 1.5 1.5 1.5 2 1.5 2 1.5	200 100 300 100 200 150 100 500 300 150	N N N N N N N N N N N N	N N N N N N N N N N	
J6WW004C J6WW005C J6WW006C J6WW007C J6WW007C J6WW007C J6WW007C J6WW010C J6WW011C J6WW012C J6WW013C	38 35 40 38 36 8 38 35 25 38 37 58 38 37 58 38 34 57 38 38 20 38 38 29 38 37 45 38 37 32 38 37 32 38 37 32 38 37 32 38 37 32 38 41 20	113 30 3 113 30 42 113 28 30 113 28 20 113 31 10 113 31 10 113 33 40 113 33 47 113 33 50 113 34 30	.55 .3 2.7 .5 1.5 .5	5 10 7 3 15 15 5 7 2 10	10 15 15 20 20 5 7 7 10	.1 1.2 1.2 1.5 2 1.5 1.5	150 200 200 200 150 200 500 300 300	N N N N N N N N N N N N	N N N N N N N N N N	N N N N N N N N N N N N N
J6WW014C KDWW001C KDWW002C KDWW003C KDWW004C KDWW004C KDWW004C KDWW004C KDWW007C KDWW008C TDWW001C	38 42 39 38 33 30 38 34 15 38 40 42 38 35 40 38 35 40 38 35 40 38 35 40 38 36 30 38 44 50 38 44 50 38 46 2 38 31 55	113 34 47 113 34 35 113 33 30 113 37 30 113 28 0 113 27 48 113 37 8 113 37 8 113 36 40 113 39 52 113 34 2	.55535775552	1.5 10 5 25 7 2 1.5 7	10 15 20 10 10 10 10 10 10	1.5 .7 .05 .2 2 1 1	300 150 150 200 200 300 200 300 100	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N	
TDWN002C TDWN003C TDWN004C TDWN005C TDWN006C TDWN007C TDWN008C TDWN009C TDWN009C	38 34 15 38 37 52 38 40 2 38 42 3 38 44 50 38 44 50 38 47 10 38 46 47 38 46 47 38 46 45	113 33 30 113 35 22 113 36 22 113 37 20 113 37 20 113 37 20 113 35 23 113 36 50 113 35 8 113 34 28		10 7 7 2 2 5 1.5 1	10 15 10 7 5 10 10 15	.5 1 2 1 .5 2 5	100 100 150 300 150 1,000 200 500	N N N N N N N	N N N N N N N N N N	N N N N N N N N N N

TABLE 4. RESULTS OF ANALYSES OF HEAVY-MINERAL-CONCENTRATE SAMPLES--Continued

Sample	B-pp n 5	Ba-pp a s	Be-ppa s	Bi-ppm 5	Cd-ppm s	Co-ppa s	Cr-pp a 5	Cu-ppm s	La-ppm 5	Mo-ppa 5	Nb-ppm s
CTWW001C CTWW002C CTWW003C CTWW004C CTWW005C CTWW005C CTWW007C CTWW008C CTWW009C CTWW0010C	30 30 20 30 30 30 30 30 30 30 30	2,000 500 150 200 300 150 200 (50	N 2 N N 2 N N 2 N 2 2	N N N N N N N N N		N (10 N N N N N N	< 20 N N N N N N N N	<10 N N N N N N N N N	<50 N <50 <50 <50 <50 <50 <50 <50 <50	N N N N N N N N N N	
CTWN011C CTWN012C CTWN013C CTWN014C CTWN015C CTWN015C CTWN016C CTWN017C J6WN001C J6WN002C J6WN003C	30 30 30 30 50 50 50 50	150 N 200 300 300 1,500 5,000 2,000 2,000	<2 N N <2 3 3 <2 <2 <2	N N N N N N N N N N N N		N (10 N N 10 (10 N N	<20 N N N N N X 20 N	N N N N N N 30	200 N 300 50 150 150 200 150 150 450	N N N N N N N N N N N N	50 N 50 N 50 S0 N 50 N
J6WN004C J6WN005C J6WN006C J6WN007C J6WN009C J6WN009C J6WN010C J6WN011C J6WN012C J6WN012C	30 20 30 70 30 30 50 50 30	7,000 1,500 5,000 150 150 N 500 200 500 200	N2 N2 NN3332	N N N N N N N N N	N N N N N N N N N N N N	N N 10 N N <10 N N	N 30 N 20 N N (20 N N	N N N N N N N N N N	N 100 300 450 450 450 200 150 100		N N (50 (50 N 50 N N N
JGWN014C KDWW001C KDWW002C KDWW003C KDWW004C KDWW004C KDWW004C KDWW004C KDWW007C KDWW008C TDWW001C	50 30 30 30 50 30 30 30	500 300 150 300 >10,000 700 200 500 1,000 1,500	3 N 2 2 3 N 5 2 2	NHHHNNN	NNNNN	<10 N N (10 N (10 N (10 N	N N N N N N N N N N N N	N N N N N N N N N N	200 N N 200 150 200 100 150 N	N N N N N N N N N N	< 50 N N N 50 N N N N
TDWW002C TDWW003C TDWW004C TDWW005C TDWW005C TDWW005C TDWW007C TDWW008C TDWW007C TDWW010C	30 30 30 50 30 50 30 30	1,000 1,500 300 500 500 3,000 1,000 2,000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N N N N N N N N N N N	N N N N N N N N N N	N N (10 N N N N N	N N N N N N N	N <10 <10 N N N N N	N 150 150 100 300 100 200 100 500	N N N N N N N N	N N 50 N (50 100

TABLE 4. RESULTS OF ANALYSES OF HEAVY-MINERAL-CONCENTRATE SAMPLES--Continued

Sample	Ni-pp n s	Pb-ppm s	Sb-ppm s	Sc-ppm s	Sn-ppm s	Sr-ppm s	V-ppm s	¥−pp s s	Y-pp s s	Zn-ppm s	Zr-ppm s	Th-ppm 5
CTWN001C CTWN002C CTWN003C CTWN004C CTWN005C CTWN005C CTWN007C CTWN008C CTWN008C CTWN007C CTWN0010C	10 15 10 10 10 10 10 10	100 N <20 70 N N N N N	N 500 3,000 N N N N N N N N	N N N 20 N N N		300 200 200 200 200 200 300 200 200 200	70 50 50 50 50 50 50 50 20	N N 100 N N N	50 70 150 70 70 300 70 100	N N N N N N N N N N N	>2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000	N N N N N N
CTWN011C CTWN012C CTWN013C CTWN014C CTWN014C CTWN015C CTWN015C CTWN017C J6WN001C J6WN002C J6WN003C	10 (10 10 10 10 (10 (10 10 10 10 10	30 N 20 20 20 N N 20 N N N N	N N N N N 3,000	<10 N (10 N (10 30 (10 50 (10 (10)	20 N <20 N N N N N N	200 200 300 500 200 500 500 200 200	70 20 70 20 70 50 70 70 30		300 20 200 150 200 300 300 700 200	N N N N N N N N N N N N N	>2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000	
J6WN004C J6WN005C J6WN006C J6WN007C J6WN007C J6WN009C J6WN010C J6WN010C J6WN012C J6WN012C J6WN013C	<10 10 15 (10 (10 (10 15 10 10 (10)	N N 300 N 50 N N N N	N N N N N N N N N	N 30 N 30 (10 N 30 30 20 20	N N 20 N N (20 N N	1,000 {200 700 300 {200 200 200 500 200	20 50 20 50 50 50 50 50	N N N N N N N N	50 200 500 200 300 300 300 300	N N N N N N N N N N N N N N	>2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000	N N N N X 200 N N N
JGWN014C KDWW001C KDWW002C KDWW003C KDWW004C KDWW005C KDWW005C KDWW005C KDWW005C KDWW007C KDWW001C	10 <10 <10 <10 <10 <10 <10 10 10 10 10 10	50 N <20 N N N N N	N N N N N N N N N N N	30 <10 N N 50 <10 20 <10 30	N N N N N 70	500 200 500 1,000 300 500 500 <200	70 30 20 20 70 70 30 30 30	N N N N N N N	500 100 200 150 70 500 300 300 200 300		>2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000	
TDWW002C TDWW003C TDWW004C TDWW005C TDWW006C TDWW006C TDWW008C TDWW008C TDWW009C TDWW010C	10 10 10 10 10 10 10 10 10 10	N N N N <20 N	N N N N N N N N	30 30 20 <10 20 20 <10 <10 <10 <10	N N 20 N N N <20	200 200 300 500 700 500 700 700	20 50 30 70 20 30 70		300 300 200 150 500 200 500 100 500		>2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000 >2,000	

 TABLE 5. RESULTS OF ANALYSES OF MAGNETIC-CONCENTRATE SAMPLES

 [N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.]

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct. s	Ti-pct.	Mn-pp a s	Ag-pp m s	As-pp a s	Au-pp a s
CTNS001M CTMS002M CTMS003M CTMS003M CTMS005M CTMS006M CTMS006M CTMS007M CTW001M CTW002M CTW003M	38 30 52 38 30 57 38 31 3 38 31 12 38 31 12 38 31 24 38 31 24 38 31 24 38 31 24 38 31 24 38 31 29 38 31 40 38 32 30 38 34 30	113 34 8 113 33 58 113 33 50 113 33 31 113 33 20 113 33 5 113 32 20 113 32 32 113 31 4 113 30 38	50 50 50 30 30 50 15 20 30	1.5 2 2 2 2 3 2 1.5	1.5 1.5 2 3 2 7 7 1.5 5	2 2 1.5 2 2 1.5 1.5 1.5 1.5	5,000 5,000 3,000 3,000 3,000 2,000 1,000 2,000 2,000 2,000	N N N N N N N N N N N N		N N N N N N N N N N N
CTWN004M CTWN005M CTWN006M CTWN008M CTWN008M CTWN009M CTWN010M CTWN011M CTWN012M CTWN013M	38 34 38 38 35 52 38 36 8 39 35 25 38 35 40 38 35 40 38 35 50 38 37 58 38 37 58 38 37 42 38 38 41 38 38 28	113 29 42 113 29 48 113 30 42 113 28 30 113 28 0 113 28 20 113 28 20 113 29 52 113 31 40 113 33 40	50 30 20 70 70 50 50 30 50	2 1.5 1.5 1.5 1.5 1.5 2 2 .5	3 2 3 1 2 5 3 2 3 1	2 1.5 1.5 1.5 2 2 2 2 .7 2	3,000 3,000 3,000 5,000 5,000 5,000 2,000 2,000 3,000	NNNNN	NNNNNNNN	
CTW0014M CTW0015M CTW0016M CTW0016M CTW0018M CTW0019M J6W5002M J6W5002M J6W0001M J6W0002M	38 37 24 38 37 18 38 42 32 38 39 8 38 39 58 38 39 58 38 31 5 38 31 2 38 31 50 38 34 38	113 33 30 113 33 40 113 34 40 113 34 40 113 34 25 113 34 25 113 34 29 113 35 10 113 35 12 113 32 0 113 32 42	50 30 50 30 50 50 50 30 50	1.5 2 1.7 .3 1 2 2 2 2 .7	3 2 5 .7 3 1.5 1.5 1.5	2 2 2 1.5 2 2 2 2 2 2 2 1.5 2	3,000 3,000 2,000 3,000 3,000 3,000 3,000 3,000 3,000 5,000	N N N N N N 1.5 N	****	N N N N N N N N N N
JEWN003M JEWN004M JEWN005M JEWN005M JEWN006M JEWN008M JEWN009M JEWN010M JEWN011M JEWN012M	38 35 5 38 35 40 38 36 2 38 37 57 38 37 57 38 37 57 38 38 30 38 38 30 38 37 45 38 42 39 38 43 50 38 41 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 >50 50 50 50 50 50 50 50	2 1 1.5 .7 1.5 .5 .2 1	5.5 2 1 1 2 .3 2	2 2 2 2 2 2 2 1.5 1.5	5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	N N N N N N N N N	NNNNNNN	N N N N N N N N N N
JSHN013H KDHW001M KDHW002M KDHW003M KDHW004H KDHW004M KDHW005M KDHW007M KDHW008M KDHW009M	38 39 32 38 33 30 38 34 35 38 34 35 38 33 5 38 36 30 38 34 55 38 36 30 38 36 30 38 44 50 38 46 2 38 48 10	113 33 50 113 34 35 113 33 30 113 36 22 113 30 42 113 28 15 113 37 8 113 36 40 113 39 52 113 36 50	50 50 50 50 50 50 50 50 50 50	.7 1.5 2 .3 .2 .2 .2	2 1 1.5 .2 .2 .5 .1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3,000 3,000 3,000 2,000 2,000 2,000 2,000 2,000 2,000 7,000	N N N N N N N N N N N N		
TDWS001M TDWS002M TDWS003M TDWW001M TDWW002M TDWW003M TDWW003M	38 30 34 38 30 52 38 30 58 38 31 52 38 31 55 38 34 15 38 34 35	113 35 19 113 35 36 113 30 8 113 34 32 113 34 2 113 33 30 113 35 38	50 >50 50 50 30 50 50	.7 1 2 1 2 2 .3	1.5 2 .5 .3 3 1	2 1.5 2 1.5 1.5 2	2,000 3,000 2,000 3,000 3,000 3,000 3,000	N N N N N N	N N N N N	N N N N N N N

· 15

.

٠

Sample	B-ppa 5	Ba-ppm 5	Be-ppm 5	Bi-ppm 5	Cd-ppm 5	Co-ppm 5	Cr-pp a s	Cu-ppa 5	La-pp∎ ₅	ĭo−pp∎ s	Nb-ppm s
CTNS001M CTNS002M CTNS003M CTNS004M CTNS005M CTNS005M CTNS007M CTW001M CTW002M CTW003M	<pre><20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	500 200 1,500 1,500 1,500 1,500 1,500 1,500 2,000 2,000	N N <2 N 2 N 2 N 2 N N 2 N N			70 100 50 70 70 70 50 30 30 50	1,000 1,000 200 200 300 200 100 150 300	30 30 10 15 50 50 (10 20	<50 <50 100 100 100 100 <50 100 <50	N N N N N N N N N	<50 <50 <50 <50 <50 ×50 N ×50 N
CTWW004M CTWW005M CTWW006M CTWW007M CTWW008M CTWW009M CTWW010M CTWW010M CTWW012M CTWW013M	20 20 20 20 20 20 20 20 20 20	500 500 1,500 2,000 700 300 500 500 200	N N N N N 2 5 N N 2 2 2 2			100 50 30 30 70 100 100 70 100	700 150 200 200 500 500 500 300 500	30 10 15 10 50 20 20 30 20	100 <50 100 150 100 <100 <50 <50 <50 <50		N N 50 50 50 50
CTWN014M CTWN015M CTWN016M CTWN017M CTWN018M CTWW018M JGWS001M JGWS001M JGWS001M JGWN001M	20 20 30 20 20 50 <20 70 30	300 500 500 300 500 500 500 1,500	2 <2 N 2 N 2 N 2 N 2 N	N N N N N N N N N N N		100 100 70 70 70 70 70 20 100	300 500 300 300 300 300 300 700 200 300	50 30 20 15 15 15 10 30 15	<pre><50 <50 <50 <50 <50 <50 <50 100 100 100 N</pre>	15 N 15 10 N N N	N (50 (50 N N N N (50
J6WW003M J6WW004M J6WW005M J6WW006M J6WW006M J6WW008M J6WW008M J6WW010M J6WW011M J6WW012M	20 20 30 20 20 20 20 20 20 30	1,500 200 300 300 200 200 150 300 500	<2			70 150 100 70 100 70 70 100 70	200 300 500 500 500 500 500 300 300 300	20 <10 30 70 20 20 20 10 15 15	<50 (50 100 100 100 (50 (50 100 100	N N 15 N N N N	N N (50 N (50 (50 N N (50
J6WW013M KDWW002M KDWW002M KDWW003M KDWW003M KDWW005M KDWW005M KDWW007M KDWW008M KDWW009M	30 30 30 30 30 30 30 30 30 30	200 300 200 200 200 200 300 300 100	NNNNNNN			100 200 150 100 150 70 100 150 150 20	300 700 300 500 300 500 500 500 700 150	15 20 15 15 15 15 15 (10	<50 N N N N N N 1,000	N N N N N N N N N N N	(50 (50 N N N N N 70
TDWS001M TDWS002M TDWS003M TDWW001M TDWW002M TDWW003M TDWW004M	<pre>{20 {20 {20 30 30 30 30 30 30 30</pre>	500 200 1,000 200 2,000 2,000 100	N N N N N N N		NNNN	150 150 20 150 70 100 70	500 500 150 700 150 200 500	30 20 15 15 15 15	<50 <50 100 200 N 100 N	N N (10 N N N	N (50 N 50 N N

Sample	Ni-pp m s	₽b-p p# 5	Sb-ppe s	Sc-ppm 5	Sn-ppe s	Sr-pp# s	V-p p≞ s	¥−ppa s	Y-pp e s	Zn-ppe s	Zr-pp a s	Th-pp e s
CTHS001H CTHS002M CTHS003M CTHS004H CTHS005M CTHS005M CTHS007M CTW001H CTW002M CTW003M	100 200 70 70 100 70 70 20 50	<pre></pre>		30 30 50 50 410 N N	N N N N X 20 N N	200 200 300 500 500 500 200 300 200	2,000 3,000 2,000 2,000 2,000 1,000 1,000 2,000		20 20 50 50 50 30 20 20 20	500 500 500 500 500 500 500 500 500 500	150 200 200 200 200 500 100 500 150	
CTW004H CTW005M CTW006M CTW006M CTW007M CTW008M CTW009M CTW010M CTW011M CTW012M CTW013M	100 30 20 30 100 100 100 100	20 20 70 20 50 100 50 200 100 30		50 20 {10 {10 {10 {10 N 50 {10 N 20		300 300 500 500 200 <200 200 <200 <200	2,000 1,500 1,000 3,000 3,000 2,000 1,000 2,000	N N N N N N	50 20 30 50 50 30 20 <20 20	<500 500 N 500 N 700 700 500 700	200 150 500 1,000 200 200 70 150	
CTWW014M CTWW015M CTWW016M CTWW017M CTWW017M CTWW017M JGWS001M JGWS001M JGWS001M JGWW002M	150 100 100 100 70 100 50 200 70 70	70 100 50 100 20 50 <20 <20 200 30		N 20 {10 {10 N 50 50 {10 20		N 200 200 200 200 200 300 200 300 200	2,000 1,500 2,000 1,500 2,000 2,000 2,000 3,000 7,000 2,000	N N N N N	20 30 30 30 30 50 50 70 50	500 500 500 500 500 500 500 500 500 500	150 150 200 150 150 300 100 2,000 700	
J6WW003M J6WW004M J6WW005M J6WW006M J6WW007M J6WW007M J6WW009M J6WW010M J6WW011M J6WW012M	70 70 100 100 100 100 70 70 50	200 N 50 100 50 30 50 30 50 50		<10 20 20 <10 20 20 <10 20 <10 20 <10		300 N {200 {200 N N N {200 200	1,000 3,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 1,500	N N N N N N	50 50 20 20 20 20 20 30 30	500 N 700 500 500 500 500 N 500 500	500 2,000 200 200 200 200 200 200 300 150	
J6WW013M KDWW002M KDWW002M KDWW003M KDWW003M KDWW005M KDWW005M KDWW005M KDWW007M KDWW008M KDWW009M	70 200 70 150 70 100 100 100 20	50 50 70 50 30 20 <20 N		<10 30 20 50 <10 20 20 <10 70	N N N N N N 20	200 N (200 N (200 N (200 N N	2,000 2,000 1,500 2,000 2,000 1,500 3,000 3,000 3,000 3,000	N N N N N N N	20 20 20 30 <20 <20 <20 <20 <20 500	500 <500 <500 <500 <500 500 <500 <500 <	150 300 200 200 700 150 200 200 2,000	N N N N N X 200
TDNS001M TDNS002M TDNS003M TDNN001M TDNN002M TDNN003M TDNN003M	150 150 150 150 70 70 100	100 20 <20 <20 30 100 70	N N N N	<10 <10 30 30 20 20 20	NNNN	200 200 500 N 500 N	2,000 2,000 2,000 1,000 1,500 2,000	N N N N	20 20 50 20 30 30 20	1,000 500 (500 (500 (500 (500 700	200 200 300 300 500 300 150	N N N N N

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct. s	Ti-pct.	Mn-ppm s	Ag-ppa s	As-ppa s	Au-ppm s
TDWW005M TDWW006M TDWW007M TDWW008M TDWW009M TDWW010M	38 37 52 38 40 42 38 42 5 38 44 50 38 47 10 38 46 47 38 46 47	113 35 22 113 37 30 113 37 20 113 37 20 113 37 20 113 33 23 113 35 8	50 50 50 50 50 50	.532.22	1 .5 .7 .5 .3	2 1.5 1.5 1.5 2	3,000 3,000 3,000 5,000 5,000	N N N N	N N N N	N N N N

Sample	B-ppm	Ba-ppm	Be-ppm	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm
	5	5	5	5	5	5	5	5	5	5	S
TDWW005M	30	200	N	N	N	150	700	15	N	N	<50
TDWW006M	30	500	Ň	Ň	Ň	100	300	15	<50	Ň	Ň
TDWW007M	30	700	N	N	N	70	300	10	100	N	<50
TDWW00BM	30	300	N	N	N	100	500	15	(50	N	N
TDWW009M	30	300	N	N	N	50	500	15	150	Ň	N
TDWW010M	30	150	N	N	N	70	300	10	500	N	50
TDWW011M	30	200	N	N	N	100	300	15	100	Ň	N

.

Sample	Ni-ppm s	Pb-ppa s	Sb−ppm s	Sc-ppa s	Sn-ppa s	Sr-ppm s	V-ppm s	₩-ppm s	Y-pp n 5	Zn-ppm s	Z r-ppa s	Th-ppm s
TDWW005M	150	30	N	30	N	N	3.000	N	<20	700	100	N
TDWW006M	70	20	Ň	(10	Ň	(200	2.000	Ň	30	<500	200	Ň
TDWW007M	50	30	Ň	(10	Ň	200	1.500	Ň	30	<500	500	Ň
TDWW008M	70	20	Ň	20	Ň	(200	3.000	Ň	20	700	300	Ň
TDWW009M	50	20	Ň	<10	Ň	(200	2.000	Ň	50	500	200	Ň
TDWW010M	50	<20	Ň	50	N	Ň	2,000	N	150	700	1.000	N
TDWW011M	70	70	Ň	30	N	<200	2,000	Ň	30	500	100	N

TABLE 6. RESULTS OF ANALYSES OF ROCK SAMPLES FROM THE WILDERNESS STUDY AREA [N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown; s, emission spectrographic analyses; aa, atomic absorption; icp, inductively coupled plasmal

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm s	Ag-ppm s	As-pp n s	Au-p pm s	B-ppm 5	Ba-ppm s
CTW001R CTW002R CTW003R CTW004R CTW005R CTW005R CTW007R CTW007R CTW007R CTW0010R	38 31 40 38 31 50 38 32 45 38 32 45 38 33 10 38 34 30 38 34 53 38 34 53 38 34 53 38 35 52	113 32 32 113 32 0 113 31 10 113 31 15 113 30 30 113 30 30 113 30 30 113 30 38 113 30 50 113 30 50 113 29 48	1.15 53 2.2 2.5 (.05 .1	2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.3 .3	>20 >20 5 3 >20 1 >20 >20 >20 >20 >20 >20 >20	.1 .05 .7 .03 .015 .07 .003 .03 .015	700 100 700 500 70 5,000 200 30 300 150	N N N N N N N N N N N N	N N N N N N N N N N N N	N N N N N N N N N N N	N N 10 N 15 10 N N	20 N 700 1,000 N 200 50 N N N
CTWW011R CTWW012R CTWW013R CTWW014R CTWW015R CTWW015R CTWW017R CTWW019R CTWW019R CTWW020R	38 36 8 38 38 0 38 38 0 38 35 47 38 35 47 38 35 47 38 35 47 38 35 47 38 36 30 38 35 47 38 36 30 38 36 30 38 36 31 38 38 38 38 38 38	113 28 30 113 35 22 113 35 32 113 35 32 113 25 32 113 28 22 113 28 22 113 28 22 113 36 30 113 37 58 113 38 41	.3 .2 1.5 1 3 3 .2 .1 (.05	1 5 .7 .1 .7 1.5 7	3 >20 >20 1 1.5 1.5 >20 >20 >20 15	.3 .05 .01 .015 .3 .03 .03 .002	700 50 70 1,500 700 500 500 50 30 10	N N N N N N N N N N N N	N N N N N N N N N N	N N N N N N N N N	10 N 20 30 30 30 N N (10	700 70 20 70 700 1,000 20 20 N
CTWW021R CTWW022R CTWW023R CTWW023R CTWW025R JGWW001R JGWW001R JGWW003R JGWW004R JGWW005R	38 38 28 38 37 24 38 37 32 38 41 20 38 42 32 38 31 50 38 32 42 38 32 42 38 32 42 38 34 38 38 34 38	113 38 28 113 37 24 113 39 32 113 34 30 113 34 40 113 32 0 113 31 10 113 31 10 113 29 42 113 29 42	<.05 .15 .3 .07 <.05 .1 5 .7 .7 .15	7 .3 7 .7 10 .3 2 2	15 20 7 10 15 20 .7 20 7	N .02 .015 .003 N .01 .007 .03 .07 .003	30 150 100 200 ≥5,000 700 150 150	N N N N N N N N N N N	N N N N N N N N N N	N N N N N N N N N N	N <10 20 N <10 10 20 N 10	N {20 {20 N \$20 5,000 5,000 300 {20 {20
JGWW006R JGWW007R JGWW008R JGWW009R JGWW010R JGWW011R JGWW012R JGWW013R JGWW014R JGWW015R	38 34 38 39 35 5 39 35 40 38 37 57 38 37 48 39 37 48 39 37 45 39 37 45 39 37 58 38 39 58 38 39 58 38 39 58	113 29 42 113 30 55 113 30 3 113 30 10 113 31 0 113 31 10 113 33 47 113 33 50 113 34 25 113 34 29	2 07 3 1 .07 N .1 .2 .05 (.05	.07 .3 .7 .7 .7 .7 .2 .2 .07 7	.7 20 1.5 20 2 10 3 10 7 10	.015 .02 .3 .07 .002 .002 .005 .02 .002 .002	200 15 300 2,000 70 30 100 150 30 30	N N N N N N N N N N N	N N N N N N N N N	NNNNNN	70 {10 20 N 10 N 20 20 20 N	200 N 1,000 3,000 (20 N (20 N N N
JGWW016R JGWW017R JGWW018R KDWW001R KDWW002R KDWW003R KDWW004R KDWW005R KDWW006R KDWW007R	39 42 39 38 43 50 38 31 22 38 31 38 39 31 38 39 30 58 39 30 58 38 30 58 38 30 58 38 30 58 38 31 43	113 34 47 113 34 15 113 34 29 113 31 9 113 32 38 113 32 38 113 35 20 113 35 20 113 35 20 113 35 20 113 35 10	.3 .2 1 N 1.5 1.5 1.5 .15	.3 .07 .07 .7 10 2 2 .3	20 15 10 20 3 2 3 10 20	.002 .015 .002 .01 .005 .005 .03 .7 .15 .015	700 150 50 5,000 20 500 100 500 150 700	N N N N N N N N N N N	KNNNNNN	NNNNN	10 20 30 15 50 <10 10 N	N (20 500 N 70 700 200 N
KDWWOOSR KDWWOOSR KDWWOIOR KDWWOIIR KDWWOI2R KDWWOI3R KDWWOI3R KDWWOI5R KDWWOI6R KDWWOI7R	38 31 43 38 31 52 38 31 30 38 34 35 39 34 35 38 34 35 38 34 35 38 34 35 38 34 35 38 34 35 38 34 35 38 34 35 38 38 0 38 38 5 39 40 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 3 1 3 .15 .3 7 1 .3	2 07 .7 .07 .3 1.5 .7 2	.7 .1 >20 3 15 >20 20 >20 >20 >20 >20 >20 >20 >20	.1 .002 .003 .5 .03 .02 .07 .1 .07 .015	150 200 150 500 300 70 150 150 150 100	N N N N N N N N N N N N N	NNNNNN	N N N N N N N N N	20 15 N 10 20 N 15 10 <10 N	500 N 1,000 30 N 20 <20 30 N

Sample	Be-ppa s	Bi-ppa s	Cd-ppm s	Co-pps s	Cr-ppm s	Cu-ppa s	La-pp a s	Mo-ppa s	Nb-pp a s	Ni-ppm s	Pb-ppm s	Sb-ppa s	Sc-pp s
CTWN001R CTWN002R CTWN003R CTWN004R CTWN005R CTWN005R CTWN007R CTWN008R CTWN009R CTWN009R CTWN010R	N N (1 (1 (1 (1 (1 N N N N	N N N N N N N N N N N	N N N N N N N N N N	N 50 30 N N N N	15 N 700 50 N (10 (10 (10 N N N	< 5 N 30 20 N 7 < 5 N N N	<20 N 20 30 N N N N X 20	N N N N N N N N N N N		<5 N 150 30 N 10 N N N N	15 N 30 N <10 N N N	N N N N N N N N N N N N N	<pre></pre>
CTWN011R CTWN012R CTWN013R CTWN014R CTWN015R CTWN016R CTWN017R CTWN018R CTWN019R CTWN020R	1.5 N {1 {1 2 2 N N N	N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	15 N N N 7 7 N N N	<10 N 10 50 30 15 30 N <10 N	7 {5 30 15 10 N {5 N	20 <20 N N 20 20 N N N	N N N N N N N N N		5 N 20 7 (5 20 N N N	50 N N 50 30 N N	N N N N N N N N N N N	10 N N 57 N N N
CTWN021R CTWN022R CTWN023R CTWN024R CTWN025R JGWN001R JGWN002R JGWN003R JGWN004R JGWN005R	N N 1 N 10 1 N N			N N N 10 N N N	N <10 <10 <10 <10 <10 <10 <10 <10	N N 5 N N 5 N N 5 N 5 N 5 5	N N (20 N N N N (20			N	N <10 <10 10 <10 10 10 10 <10	NNNNNNNN	NNNNNNN
JGWN006R JGWN007R JGWN008R JGWN009R JGWN010R JGWN011R JGWN012R JGWN012R JGWN013R JGWN014R JGWN015R	<pre> <1 N 1 N N N N N </pre>	N N N N N N N N N N	N N N N N N N N N N N	N 7 5 N N N N N N	<10 N 15 10 N <10 <10 <10 N <10	(5 N 7 5 N N (5 5 N N (5 5 N N	N 20 {20 N N N N X 20		N N N N N N N N N N	(5 N 7 N 5 N 5 S 5 S N (5 5 S N	N 30 20 N N N N	N N N N N N N N N N N N	N N 5 N N N N N N N N N
JGWN016R JGWN017R JGWN018R KDWN0018 KDWN002R KDWN003R KDWN004R KDWN005R KDWN006R KDWN007R	N N 1.5 N (1 <1	N N N N N N N N N N N	N N N N N N N N N N N	N N N N X 5 5 7 N	N 15 30 15 15 30 50 10	(5) (5 7 N 5 N (5 5 N	N (20 N (20 N N 20 (20 N	N N N S N N N N N N		<55 <55 55 70 15 8 8	N (10 N N (10 15 20 10 N	N N N N N N N N N N	N N N N N S 3 5 N
KDWN008R KDWN009R KDWN010R KDWN011R KDWN012R KDWN013R KDWN014R KDWN015R KDWN016R KDWN016R	<1 15 <1 <1 <1 N N N N N	***	N N N N N N N N N N N	N 5 N 15 N N N N 5 N	<pre><10 10 N 20 15 <10 <10 <10 <10 <10 <10 <10<</pre>	5 (5 1 (5 1 (5 5 5 5 8 5 5 8	N N 20 N N <20 N N N N	N 30 N N N N N	N N N N N N N N N N	N 30 55 7 5 N 5 N 5 N	15 N 30 {10 N (10 15 N N	N N N N N N N N N N N N	5 N N 7 N N N 5 N N
					• 	2	2						

Sample	Sn-ppm s	Sr-ppm s	V-ppm s	H-ppm 5	Y-ppm 5	Zn-ppm s	Zr-ppm s	Th-ppm s	Au-pp a aa	As-pp m icp	Bi-ppm icp	Cd−ppm icp	Sb-ppnt icp	Zn-ppa icp
CTWW001R CTWW002R CTWW003R CTWW005R CTWW005R CTWW005R CTWW007R CTWW008R CTWW008R CTWW010R	N N N N N N N N N N	1,500 300 700 500 N 700 300 300 500	15 10 150 (10 100 (10 (10 (10) (10)		<10 30 30 N 10 N 10 N N	N N N N N N N N N N N N N	20 20 150 150 55 (10 30 N 15 N	NNNNNN	N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N	.3 .4 .2 .2 .3 .2 .1 .2 .1	4 1 1 1 2 1 1 4 1 1	11 48 18 5 4 N 4 10
CTWW011R CTWW012R CTWW013R CTWW014R CTWW015R CTWW015R CTWW015R CTWW017R CTWW019R CTWW019R CTWW020R		700 300 200 N 700 700 300 300 N	100 10 15 10 70 70 10 <10 <10	HNNNHHNNN	20 <10 N N 15 20 N N	NNNNNNN	100 15 <10 30 N 100 15 10 N <10	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N	N N N N N N N N N N	N N 2 N N N N N N N N	.3N1.1N3N1NN	N 8 N N N N N 5 2 2	35 21 4 N 41 11 N N
CTWW021R CTWW022R CTWW023R CTWW024R CTWW025R JGWW025R JGWW001R JGWW002R JGWW003R JGWW004R JGWW005R	N N N N N N N N N N	N 200 100 N 300 N 200 N 300 N	<10 <10 <10 <10 <10 300 30 15 <10		N N N N 10 N N	N N N 200 N N N	150 200 N N 10 20 30 N	N N N N N N N N N N	N N N N N N N N N N	N N N N N N N 6675 N	NNNNNN	N 1 N N N N N 5 N 3 N	16 N 16 N 13 3 N 7 5	N N N 350 6 N N
J6WW006R J6WW007R J6WW008R J6WW009R J6WW010R J6WW010R J6WW011R J6WW012R J6WW013R J6WW013R	N N N N N N N N N N N N	N 300 700 700 N N N N N	15 10 50 (10 (10 (10 (10 (10 (10)		N 15 20 N N N N	NNNNNNN	<10 N 200 150 N N 15 <10 N	N N N N N N N N N N N N	NNNNNN	6 N N N N N N N N N N N N		N 122NN N N N N	N N 2 4 1 6 N 1 6	N 32 9 N N N N
JGWW016R JGWW017R JGWW018R KDWW001R KDWW002R KDWW003R KDWW003R KDWW005R KDWW005R KDWW007R	N N N N N N N N N N	200 300 N 200 N 700 500 100	<10 <10 <10 <10 70 70 300 70 300 30		N N N 20 10 20	NNNNNNN	N 10 10 N N 70 50 <10	N N N N N N N N N N	N N N N N N N N N N N	N N 10 34 40 N 25	NNNNNNN	N .2 N N N 3 .1 .7 4 .2	N N N 3 6 3 3 6 3	N 6 N 37 9 7 50 7 47
KDWW00BR KDWW009R KDWW010R KDWW011R KDWW012R KDWW013R KDWW013R KDWW015R KDWW016R KDWW017R	N N N N N N N N N N N	N 500 700 100 300 100 500 300 300	150 50 15 100 (10 (10 15 10 (10		15 50 20 N 10 10 10 N	N 200 N N N N N N N N	30 N 150 <10 N 30 30 30 N	N N N N N N N N N N N N N	N N N N N N N N N N N N	29 32 N N 13 N 15 N	N N N N N N N N N N N	2.6 .8 .4 .2 .2 .3 .4 .2	N N N N N N N N N N N N N N N N N N N	26 630 27 30 6 3 N 5 N

23

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppa s	Ag-pp a s	As-pp a s	Au-p pa s	B-ppm s	Ba-ppm s
KDWW018R KDWW019R KDWW020R KDWW021R KDWW021R KDWW022R KDWW022R KDWW024R KDWW025R KDWW026R KDWW027R	38 40 2 38 40 2 38 32 40 38 32 40 38 32 40 38 32 40 38 42 35 38 42 35 38 46 35 38 46 28 38 46 28 38 46 28 38 46 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 N 2 .07 .07 .3 .15 .15 .3 .1	2 5 .15 .3 .5 .5 .5 1 3 .5	20 10 20 20 20 20 20 20 20 10 20	.1 .015 .015 .015 .05 .015 .03 .02 .02	700 30 >5,000 300 150 200 100 150 150	NNNNNN	N N N N N N N N N N N	N N N N N N N N N N N N	20 N 10 N 10 N 10 30 N	70 N 1,000 N (20 N (20 N (20 N
KDWW028R KDWW029R KDWW030R KDWW031R TDW001R TDW001R TDW002R TDW003R TDW004R TDW005R TDW006R	38 48 10 38 48 10 38 47 42 38 47 50 38 31 43 38 31 43 38 31 43 38 31 42 38 34 15 38 34 15 38 34 15 38 34 15 38 37 52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5 .05 .7 15 1.5 1.5 15 .7 .15	.7 .05 1 .5 .07 .15 .2 .7	>20 2 1 .3 .5 2 20 1.5 10	.03 .003 .05 .07 .03 .02 .02 .02 .02 .02	150 10 300 700 1,500 150 200 150	N N N N N N N N N N	N N N N N N N N N N N	N N N N N N N N N	10 <10 30 <10 70 50 30 <10 10 10	<pre> <20</pre>
TDWW007R TDWW008R TDWW009R TDWW010R TDWW011R TDWW012R TDWW013R TDWW014R	38 40 42 3 38 44 50 38 44 50 38 44 50 38 46 32 38 46 32 38 46 47 38 46 47 38 46 15	113 37 30 113 37 20 113 37 20 113 37 20 113 37 20 113 37 20 113 37 20 113 37 8 113 35 8 113 35 8 113 34 28	.7 1.5 .2 (.05 .5 .07 .3	.7 .1 .3 .02 .7 <.02 .5	>20 7 20 >20 20 .5 20 .3 >20	.015 .015 .015 .02 .005 .015 .01 .015	1,000 70 70 15 200 100 100	N N N N N		N N N N N	N 15 N 10 10 N 10 N	N N N N N N N

.

Sample	Be-pp a s	Bi-pp a s	Cd-pp a s	Co-ppa s	Cr-pp a s	Cu-ppa s	La-pp a s	Mo-pp a s	Nb-pp a s	Ni-pp n s	Pb-pp a s	Sb-ppa s	Sc-ppm s
KDWW019R KDWW020R KDWW020R KDWW021R KDWW021R KDWW023R KDWW023R KDWW024R KDWW025R KDWW026R KDWW027R	N N N N (1 N N N N	N N N N N N N N N N	N N N N N N N N N N	<pre><5 N 10 N</pre>	20 <10 20 <10 <10 15 10 N N N	7 N 10 N 5 N 5 N	<20 N N <20 <20 <20 N <20 N	N N S N N N N N N N	N N N N N N N N N	5 N 15 N N N N N N	20 N (10 N 15 (10 (10 (10 N		
KDWH028R KDWW029R KDWW030R KDWW031R TDWW031R TDWW001R TDWW002R TDWW003R TDWW004R TDWW005R TDWW006R	N 2 3 20 2 1.5 ≪1 ≪1 N	N N N N N N N N N N N N	NNNNNN	N N N	<10 N N <10 <10 <10 N 15 N	(5 N 5 7 5 5 5 5 5 5 5 5 5	<20 N <20 <20 N N N <20 N N N	NWNNNNN	N N N N N N N N N	N 55 55 70 55 55 55	<10 N 30 30 (10 N (10 N N N N	NYNN	N N N N N N N N
TDWW007R TDWW008R TDWW009R TDWW010R TDWW011R TDWW012R TDWW013R TDWW014R	N {1 N N N N N N	N N N N	N N N N N	N N N N N	N <10 <10 <10 N <10 N	<5 <5 N <5 N <5 N <5 N <5 N	N N N N X 20	N N S N N N N N	N N N N N N N	55 55 55 55 55 55 55 55 55 55 55 55 55	20 N N N N N	N N N N N	

Sample	Sn-pp a s	Sr-ppa s	V-pp a 5	¥-pp a 5	Yppma ₅	In-ppm s	Zr-ppa s	Th-ppa s	Au-ppm aa	As-pp∎ icp	Bi-pp m icp	Cd-ppm icp	Sb-pp n icp	In-ppm icp
KDWW019R KDWW019R KDWW020R KDWW021R KDWW022R KDWW023R KDWW024R KDWW025R KDWW026R KDWW027R		300 N 200 300 300 500 300 N 300	15 100 <100 <100 <100 <100 100 <100		15 N N N N N N N	NNNNNNNN	100 N N 50 20 <10 30 150 <10	NNNNNN	N N N N N N N N N N N	N 9 N N N N 13	NHNNNN	.5 N 3 N 1 1 1 N 2 N	5 16 N N 2 N 3 10 2	7 6 N 9 4 N 8
KDWW02BR KDWW029R KDWW030R KDWW031R TDWW001R TDWW002R TDWW002R TDWW004R TDWW005R TDWW006R		300 N 200 200 (100 N 200 N 100	15 <10 10 <10 100 70 70 15 10 <10		N 20 10 200 N N N N	N N 3,000 N 700 N N N	50 70 30 15 10 (10 (10 (10) (10)	N N N N N N N N N N N	N N N N N N N N N N N	N N N 47 16 57 6 N N		.2 N N 1.6 1.3 .2 N	2 N 3 N N N N N	N 16 23 2,000 29 510 8 15 2
TDWW007R TDWW008R TDWW09R TDWW010R TDWW011R TDWW012R TDWW013R TDWW014R	N N N N N N N	300 100 300 300 N 300 N 300	10 15 (10 (10 10 (10 (10 (10	NNNNN	<10 N N N N N		<10 <10 <10 30 <10 30 10			25 10 20 N N N	N N N N N N N N	.3 .1 .8 .1 N .3 .1	5 N N N N N	14 6 10 6 N 12 N 7

26

 TABLE 7. RESULTS OF ANALYSES OF ROCK SAMPLES FROM THE WAH WAH SUMMIT AREA

 [N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown; s, emission spectrographic analyses; icp, inductively coupled plasma; aa, atomic absorption]

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As~ppm ₅	Au-ppm	B-ppm	Ba-pp m
+ 1 CTES001R 2 CTES002R 3 CTES003R 4 CTES004R 5 CTES005R 6 CTES007R 7 CTES007R 8 CTES008R 9 CTES009R 10 KDES001R	38 31 4 38 31 4 38 31 4 38 31 4 38 31 4 38 30 53 38 30 53 38 30 52 38 30 50 38 30 50 38 30 50 38 30 50 38 30 50	113 30 55 113 30 55 113 30 55 113 30 55 113 30 55 113 31 8 113 31 8 113 30 55 113 30 55 113 30 50 113 31 10	3 5 .2 .07 2 .05 2 .15 3	.7 3.1 7 5.7 3 7 1.5	1.5 3 1.5 10 20 7 1.5 15 15 2	.3 .7 .005 <.002 <.002 <.002 .3 .3 .002 .3	1,000 1,500 >5,000 700 >5,000 1,000 2,000 1,000 5,00	J NNNNNNNNNN	S N 200 N N N N N N N	- NNNNNNNN	10 10 10 N N (10 15 10 10 N	700 700 70 N N 500 150 <20 700
11 KDES002R 12 KDES003R 13 KDES004R 14 KDES005R 15 KDES006R 15 KDES007R 17 KDES008R 18 KDES009R 19 KDES010R 20 KDES011R	38 30 35 38 30 40 38 30 35 38 30 20 38 30 20 38 30 55 38 30 47 38 30 44 38 30 44 38 30 42	113 31 22 113 31 30 113 31 43 113 31 21 113 32 8 113 32 18 113 32 18 113 32 18 113 32 18 113 32 3 113 32 3	3 2 2 2 2 2 2 2 3 .1 2	1 .7 .1 3.7 5 1.5 7.7	1.5 2 1.3 20 1.5 20 20 1.5	.3 .3 .3 .3 .3 .3 .3 .15 .5 .07 .3	200 500 200 200 200 1,000 300 300 500	N N N N N N N N N N N	N N N N N N N N N N N	N N N N N N N N N N N	15 N 10 15 300 10 N N 20 <10	700 700 700 70 700 500 500 N 700
21 KDES012R 22 KDES013R 23 KDES014R 24 KDES015R 25 KDES016R 26 KDES017R 27 KDES018R 28 KDES019R 29 JGES021R 30 JGES022R	38 30 40 38 30 40 38 31 20 38 31 33 38 31 35 38 31 35 38 31 35 38 31 35 38 31 35 38 31 35 38 31 35 38 30 50 38 30 50 38 30 50	113 32 0 113 31 55 113 30 20 113 30 11 113 30 10 113 30 10 113 30 10 113 30 18 113 31 38 113 31 42	3 2 20 20 2.2 2.3 3.5	1 .7 .07 .1 .2 .15 .1 2 10	1.5 20 .3 .15 20 1.5 .5 3 15	.3 .02 .03 .03 .007 .05 .015 .7 .07	300 200 50 2,000 300 300 >5,000 700 150	N N N N N N N N N N N N N N N	N N N N N N N N N N N N	N N N N N N N N N N	20 10 15 N 20 15 10 30	700 1,000 <20 700 30 5,000 100 700 N
31 JGES023R 32 JGES024R 33 JGES025R 34 TDES001R 35 TDES002R 36 TDES003R 37 TDES004R 38 TDES005R 39 CTMS001R 40 CTMS002R	38 31 0 38 31 35 38 31 32 38 31 0 38 31 0 38 31 0 38 31 0 38 31 0 38 31 0 38 31 0 38 30 58 38 30 58 38 30 59 38 30 50	113 32 29 113 30 45 113 31 38 113 32 25 113 32 25 113 32 25 113 32 25 113 32 22 113 32 22 113 32 22 113 34 10 113 33 57	.05 1.5 .7 1.5 .07 .15 3 .7 .7	7 1.5 1.5 1.5 1.5 .7 2 .2	20 20 20 20 20 20 20 20 20 20 3 5 3	.007 N .07 .02 .02 .03 .002 .7 .3 .3	150 >5,000 3,000 1,000 200 300 2,000 200 300 300	N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N	N N N N N N N N	N 10 N N N 10 30 50	N 2,000 150 {20 N N {20 500 700 200
41 CTM5003R 42 CTM5004R 43 CTM5005R 44 CTM5006R 45 CTM5007R	38 30 52 38 30 55 38 30 54 38 31 0 38 31 0	113 34 0 113 33 42 113 33 45 113 33 45 113 33 45 113 33 40	3 .2 .7 2 <.05	2 1.5 1.5 5	2 >20 1 20 20	.5 .07 .2 .003	700 100 100 300 30	N N N N	N N N	N N N	15 N 10 N 15	1,000 {20 700 20 N

* numbers preceeding field sample number correspond to samples on plate 2

Sample	Be-pp s 5	Bi-ppa s	Cd-ppm s	Co-ppm s	Cr-ppm s	Cu-pp s s	La-pp a s	Mo-pp a s	Nb-pp n s	Ni-pp s s	Pb-pp s	Sb-pp n s	Sc-ppm s
1 CTES001R 2 CTES002R 3 CTES003R 4 CTES004R 5 CTES005R 6 CTES005R 7 CTES007R 8 CTES008R 9 CTES009R 10 KDES001R	1 <1 ×1 ×1 ×1 ×1 ×1		NNNNNN	10 50 N N N 10 15	20 500 <10 30 15 <10 N 50	7 30 5 N \$5 10 \$5 30	30 20 N 20 20 20 20 20 20 20	N 50 N N N N		15 100 7 N N 5 <5 30	30 30 15 N 10 30 20 <10 20	NNNNNNNN	7 15 N N S 7 N 10
11 KDES002R 12 KDES003R 13 KDES004R 14 KDES005R 15 KDES006R 16 KDES007R 17 KDES008R 18 KDES007R 19 KDES010R 20 KDES011R	<1 1.5 1.5 N <1 <1 <1 <1 <1 N 1.5		NNNNN	15 10 N 10 10 15 N 7	50 20 10 20 70 50 70 10	30 10 7 30 20 20 30 N 10	20 20 20 20 20 20 20 20 20 20 20 20 20		NNNNNNN	15 5 20 15 30 8 5	30 30 N 20 30 30 20 <10 30	NNNNNNN	10 7 7 8 5 10 8 7
21 KDES012R 22 KDES013R 23 KDES014R 24 KDES015R 25 KDES016R 26 KDES017R 27 KDES018R 28 KDES019R 29 JGES021R	1 N (1 10 N 1 (1 N	<pre></pre>	N N N N N N N N N N	10 5 N 7 30 N 50 N 30	15 (10 20 15 N 10 (10 150	7 15 N (5 15 N 20 (5 20	20 20 <20 N N 20 N 30	N N N N 15 N 10 N N		7 5 15 70 10 7 50	30 50 N (10 10 N 30 30		7 7 N 5 N N 15
30 JGES022R 31 JGES023R 32 JGES024R 33 JGES025R 34 TDES001R 35 TDES002R 36 TDES003R 37 TDES004R 38 TDES005R 39 CTMS001R	N N N (1 N (1 (1 1.5		NNNNNNN	N 5 10 50 50 7	50 10 155 <10 N (10 100 <10	<pre></pre>	N 30 <20 <20 N 30 30	N N N N N N N N	NNNNNN		<10 N 20 10 <10 20 30	KNKKKK	<5 N N N N 20 <5
40 CTMS002R 41 CTMS003R 42 CTMS004R 43 CTMS005R 44 CTMS006R 45 CTMS007R	2 <1 N 2 <1 N	NNN	N N N N	N 30 N 15 N	N 150 N <10 50 N	<5 30 <5 <5 <5 N	30 30 20 70 <20	N N N N	N N N N	<5 50 × 5 7 N	50 30 {10 30 20 {10	N N N N N	5 20 N <5 15 N

Sample	Sn-pp n s	Sr-ppm s	V-pp e s	W-ppa s	Y-ppa s	In-ppa s	Zr-ppm s	Th-pp n s	Au-ppo aa	As-ppm icp	Bi-ppm icp	Cd-ppa icp	Sb-ppm icp	Zn-ppm icp
1 CTES001R 2 CTES002R 3 CTES003R 4 CTES004R 5 CTES005R 6 CTES005R 6 CTES007R 8 CTES008R 9 CTES009R 10 KDES001R		500 500 N 300 300 100 150 500	70 150 (10 (10 30 70 100 20 100		20 20 N N 15 15		100 150 N N 150 50 N 150	N N N N N N N N N N N N N N	N N N N N N N N N N N N	N 260 N 45 N 7 N	NNNNNNN	N 3 7 1 1 7 N 2 N N	N N 17 8 16 N 4 16 N	79 40 N 35 48 15 45
11 KDES002R 12 KDES003R 13 KDES004R 14 KDES005R 15 KDES006R 16 KDES007R 17 KDES008R 18 KDES009R 19 KDES010R		500 500 500 N 500 500 <100	100 70 100 15 70 70 70 100 15		20 20 15 15 15 15 15 15	N N N N N N N N N N	150 150 10 150 150 150 150 150 20	N N N N N N	N N N N N N N	6 N N 27 N N N	3 N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N 14	27 45 29 3 42 50 56 56 N
20 KDES011R 21 KDES012R 22 KDES013R 23 KDES014R 24 KDES015R 25 KDES016R 26 KDES017R 27 KDES018R 28 KDES019R 29 JGES021R		500 500 300 N 200 N 200 N 700	100 100 100 200 (10 150 15 100		15 15 20 N (10 15 N 20 N 20	N N (200 N N N N N	100 150 150 20 20 N 30 10 150	N N N N N N N N N N N	N N N N N N N N N N N	N N 11 75 N 19 N N	N N 6 N N N N N N N N	.2 N N N 2 N 2 3 N 2 2 3 N 2	***	76 67 44 18 9 110 N 20 13 47
30 JGES022R 31 JGES023R 32 JGES024R 33 JGES025R 34 TDES001R 35 TDES002R 36 TDES003R 37 TDES004R 38 TDES005R 39 CTMS001R		N 2,000 200 150 200 300 200 500 500	20 {10 150 15 10 {10 30 150 30 30		N N {10 {10 N 20 20 N	N N N (200 N N	30 N 20 N 10 50 <10 150	N N N N N N N N N N N	N N N N N N N N N N N N	28 N 91 N 15 N 57 N 57	N N N N N N N N N N N N N N N N N N N	.1 N .2 .6 N 1.9 .1	16 17 6 5 4 3 N N	5 N 20 3 110 2 7 340 45 29
40 CTN5002R 41 CTN5003R 42 CTN5004R 43 CTN5005R 44 CTN5006R 45 CTN5007R	N N N N N N	500 700 300 500 300 N	70 150 30 50 70 <10	N N N N N N	<10 20 N 15 20 N	N N N N N N	100 150 10 70 150 N	N N N N	N N N N	N N N 26 N	N N N 2 N	. 1 . 4 . 1 N . 1 N	N 2 N 11	4 59 3 13 19 N

.

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm s	Ag-pp m s	As-ppm s	Au-ppm s	B-ppm s	Ba-ppm s
46 CTMS008R 47 CTMS009R 48 CTMS010R 49 CTMS011R 50 CTMS012R 51 CTMS012R 52 CTMS013R 52 CTMS014R 53 CTMS015R 54 CTMS016R 55 CTMS017R	38 31 0 38 31 0 39 31 3 38 31 3 38 31 5 38 31 20 38 31 24 38 31 24 38 31 22 38 31 22 38 31 22 38 31 22 38 31 22	113 33 38 113 33 38 113 33 38 113 33 38 113 33 27 113 33 27 113 33 20 113 33 10 113 33 7 113 33 7	1.5 1.5 2 3 .7 2 .7 1.5 3	2.7 10 1. 1. 05 $\frac{1}{3}$ 2	20 1.5 20 7 1.5 1.5 1.5 20 20 3	.15 .15 .2 .3 .2 .2 .2 .2 .2	200 200 300 500 150 300 150 150 500	N N N N N N N N N N N			50 30 20 15 15 10 50 10	70 500 1,500 100 500 N N 700
56 CTMS018R 57 CTMS019R 58 TDMS001R 59 J6WS001R 50 J6WS002R 61 J6WS002R 62 J6WS004R 63 J6WS005R 64 J6WS006R 65 J6WS007R	38 31 24 38 31 24 38 31 0 38 30 40 38 30 40 38 30 40 38 30 50 38 30 50 38 31 0 38 31 3 38 31 3 38 31 3 38 31 3	113 33 7 113 32 58 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 21 113 35 21 113 35 21 113 35 5	.05 2 3 1 3 3 2 1.5	5 1.5 .7 1.5 1.5 1.5 1.5 1.5 1.5	15 20 15 2 1 2 2 3 2 20	.003 .05 .1 .5 .5 .5 .5 .5 .5 .5 .5	70 300 300 500 300 700 700 500 500 150	N N N N N N N N N	N N N N N N N N N N N	N N N N N N N N N N	N 70 15 (10 10 10 10 15 30	N 150 1,000 700 1,000 700 500 150
66 JGWS008R 67 JGWS009R 68 JGWS010R 69 JGWS011R 70 JGWS012R 71 JGWS013R 72 JGWS014R 73 JGWS015R 74 JGWS016R 75 JGWS017R	38 31 11 38 31 25 38 31 25 38 31 25 38 31 15 38 31 15 38 31 20 38 31 20 38 31 15 38 31 20 38 31 15 38 31 35 38 31 35 38 31 35 38 31 35	113 35 1 113 34 50 113 34 50 113 34 50 113 34 50 113 34 50 113 35 10 113 35 22 113 35 20 113 35 22 113 35 22 113 35 20 113 35 22 113 35 35 113 35 35	2.05 3 2 3 2 4.05 3 .7 20	7 1.5 5.5 1.5 1.7 .7 5.3	20 >20 3 20 20 20 20 215 1	.1 .01 .5 .2 .003 .5 .1 .02	300 15 500 300 500 500 10 500 100 150	N N N N N N N N N N N	N N N N N N N N N N N	N N N N N N N N N N	N 10 15 15 20 15 20	N 1,000 30 1,000 150 N 700 20 <20
76 JGWS01BR 77 JGWS019R 78 JGWS020R 79 TDWS001R 80 TDWS002R 81 TDWS003R 82 TDWS003R 83 TDWS004R 83 TDWS005R 84 TDWS006R 85 TDWS007R	38 31 32 38 31 20 38 31 11 38 30 30 38 30 38 38 30 52 38 30 50 38 30 51 38 30 51 38 30 48 38 30 48 38 30 40	113 34 58 113 34 35 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 10 113 35 20	1.5 2 1.5 <.05 N 2 <.05 .5 N N	.5 .7 .5 .15 .7 7 10 .7	>20 1.5 20 15 1.5 15 15 20 20	.03 .2 .15 .002 N .2 .003 .03 .002 <.002	200 200 300 10 N 500 10 70 <10	N N N N N N N N N N N N		N N N N N N N N N N	N 20 20 N 10 10 20 N N	N 700 500 N 1,000 N N N N
86 TDWS009R 87 TDWS009R 88 TDWS010R 89 TDWS011R 90 TDWS012R 91 TDWS013R 92 TDWS014R 93 TDWS015R	38 30 50 38 30 51 38 31 0 38 31 10 38 31 10 38 31 9 38 30 51 38 30 57	113 35 31 113 35 30 113 35 15 113 35 9 113 35 20 113 35 31 113 34 B 113 34 0	N 3 4.05 .07 5 1 3	.5 7 1.5 2 1 1.5 .7 1	20 20 20 20 20 20 20 3.5	<.002 .005 .5 .01 .015 .5 .3 .3	10 50 500 70 700 100 300	N N N N N	N N N N N N N	N N N N N	N 10 N 10 30 20	N 700 N 700 500 700

Sample	Be-ppa s	Bi-ppm s	Cd-ppa s	Co-ppm s	Cr-ppm s	Cu-p pm s	La-pp m 5	Mo-ppm 5	Nb-pps s	Ni-pp m 5	Pb-ppm s	Sb-ppm 5	Sc-ppm s
46 CTMS008R 47 CTMS009R 48 CTMS010R 49 CTMS011R 50 CTMS012R 51 CTMS013R 52 CTMS013R 53 CTMS014R 53 CTMS015R 54 CTMS016R 55 CTMS017R	<1 2 (1 1.5 (1 1.5 (1 1.5 (1) N	N N N N N N N N N N N	N N N N N N N N N N	5 7 10 10 N 10 N 10 20	20 20 30 20 20 50 50 30 100	<5 20 30 15 20 5 5 5	20 20 20 20 20 N 30 20 20 30	N N N N N N N N N N N N N		<5 10 15 7 5 20 5 20 5 20	<pre><10 30 <10 20 30 <10 30 <10 30 <10 <10 <10 30 <10 30</pre>	N N N N N N N N N N N N N	7 5 7 10 5 7 20 15
56 CTMS018R 57 CTMS019R 58 TDMS001R 59 JGWS001R 59 JGWS002R 61 JGWS002R 61 JGWS003R 62 JGWS004R 63 JGWS005R 64 JGWS006R 65 JGWS007R	N {1 {1 {1 {1 {1 {1} {1} {1} {1} {1}	N N N N N N N N	N N N N N N N N N N	N 7 5 20 20 20 10 5	10 <10 <15 <10 30 30 30 50	<5 (5 15 (5 20 7 15 (5	20 N 20 20 30 30 20 20 20 20 20	N N N N N N N N N N		N	<10 N 70 30 30 20 30 30 30 30 10		10 7 15 15 15 15 10 5
66 JGWS008R 67 JGWS009R 68 JGWS010R 69 JGWS011R 70 JGWS012R 71 JGWS013R 72 JGWS014R 73 JGWS015R 74 JGWS016R 75 JGWS017R	<1 N <1 <1 <1 N N <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	N N N N N N N N N N N	N N N N N N N N N N N	7 N 15 10 20 10 N 10 N 5	20 15 30 50 50 10 20 15	N 10 15 7 5 N 7	<pre><20 N 20 20 20 30 N 30 <20 N </pre>			7 N 7 10 15 5 N 5 5 15	<10 N 30 N 30 10 <10 30 <10 15	N N N N N N N N N N N N	5 N 15 N 15 10 N 10 S N
76 JGWS018R 77 JGWS019R 78 JGWS020R 79 TDWS001R 80 TDWS002R 81 TDWS003R 82 TDWS004R 83 TDWS005R 84 TDWS006R 85 TDWS007R	1 1.5 N N 1.5 N N 7 N	N N N N N N N N N N N N N	N N N N N N N N N N	10 N 7 N 7 N N N	10 10 <10 <10 <10 10 15 10 N	755NN (5NN (5NN)	20 20 20 N 20 N 20 N N 20 N X			15 { 5	50 20 30 N N 30 (10 (10 N N	N N N N N N N N N N N N	N5 57757777
86 TDWS008R 87 TDWS009R 88 TDWS010R 89 TDWS011R 90 TDWS012R 91 TDWS013R 92 TDWS013R 93 TDWS015R	N N N N 1.5 3	KKKKKK	N N N N N N N N	N 15 N 15 N 10	N 10 30 10 <10 30 10 50	N {5 {5 {5 {5 {5 {5 {5 {5 {20}}}}	N {20 30 {20 {20 30 20 30 30	N N N N N N N N	N N N N N N	N 10 N 10 <5 70	N 30 N 20 30 30	N N N N N N N N N	N 15 N 20 5 7

Sample	Sn-ppa s	Sr-ppa s	V-ppm s	¥-ppa s	Y-ppn s	Zn-ppm s	2r-pp n s	Th-pp n s	Au-ppm aa	As-pp m icp	Bi-ppm icp	Cd-ppm icp	Sb-p pn ic p	Zn-ppm icp
46 CTMS008R 47 CTMS009R 48 CTMS010R 49 CTMS011R 50 CTMS012R 51 CTMS013R 52 CTMS013R 53 CTMS015R 54 CTMS016R 55 CTMS017R	N N N N N N N	300 300 <100 500 500 N 300 300 300 700	30 50 {10 100 10 70 {10 30 150		15 15 15 15 15 15 15 10 15 20		50 150 50 150 200 150 200 100 100	NNNNNN	N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N		.5 .4 1.25 .56 .7 .4 .6	3 N B N N N 65 N	3 62 18 22 68 12 52 14 55 38
54 CTMS01BR 57 CTMS019R 58 TDMS001R 59 JGWS001R 60 JGWS002R 61 JGWS003R 62 JGWS004R 63 JGWS005R 64 JGWS006R 65 JGWS007R	N N N N N N N N N	N 300 200 500 300 500 700 700 200	<10 10 150 150 150 150 150 100 <10		N 15 20 15 20 20 20 15 (10	N N N N N N N N N N N N N	N 30 150 70 150 150 150 30	N N N N N N N N N N	NNNNNN	N 11 22 N N N N N	N N 6 N N N N N N N N	.1 .23.6 .7 .55 .4	16 4 N N N N N 3	N 3 54 37 23 36 29 29 43 33
66 JGWS008R 67 JGWS009R 68 JGWS010R 69 JGWS011R 70 JGWS012R 71 JGWS013R 72 JGWS013R 73 JGWS015R 74 JGWS016R 75 JGWS017R		N 300 1,000 300 700 150 300 700 300 N	<10 <10 150 150 100 <100 100 15 20		10 15 10 15 15 15 15	N N N N N N N 200	150 N 150 150 70 N 150 150 N	N H N N N N N N N N N	N N N N N N N N N N N N N	N N N N N N 160	N N N N N N N N N N N	1.2 .8 .6 .6 .2 .1 .6 N 5.9	10 3 N 5 N 4 N N	24 15 22 18 49 24 N 47 N 420
76 JGWS01BR 77 JGWS019R 78 JGWS020R 79 TDWS001R 80 TDWS002R 81 TDWS003R 82 TDWS004R 83 TDWS004R 83 TDWS005R 84 TDWS006R 85 TDWS007R		N 300 500 200 500 500 N 150 N 200	70 70 50 <10 <10 <10 <10 <10 <10 <10	N N N N N N	15 20 15 N 20 N N N	****	20 100 50 N 150 N 15 N	N N N N N N N N N N N	N N N N N N N N N N N N N	160 N N N N 8 8 N	N N N N N N N N N N N		35 N N N 15 14 N	97 47 22 4 21 N N 210 3
86 TDWS008R 87 TDWS009R 89 TDWS010R 89 TDWS011R 90 TDWS012R 91 TDWS013R 92 TDWS013R 93 TDWS015R		150 200 500 300 300 500 200 300	<10 <10 150 10 <10 150 70 70 70	N N N N N	N 20 N 20 15 15	N N N N X X X X X X X X X X X X X X X X	N 150 N 150 100 150	N N N N N N N	N N N N N	N N N N N N N N N	N N N N	.1 .6 .1 .2 .3	2 13 N 5 2 N N N	4 N 2 37 13 130

TABLE 8.--Description of rock samples

Wilderness study area samples (refer to table 6 for data)

CTWW001R - Limestone, dark grey, cut by hairline quartz veins 002R - Limestone, dark grey with limonite staining cut by veinlets of calcite 003R - Rhyolite breccia, reddish, porphyritic clasts of plagioclase and hornblende 004R - Rhyolite breccia, light-gray porphyritic clasts of plagioclase and hornblende 005R - Limestone, dark gray cut by veinlets of calcite 006R - Chert, orange, black, and grey, slightly altered 007R - Limestone, light to dark grey, fine grained 008R - Limestone, dark grey, fine grained with veinlets of calcite 009R - Marble, white to light grey banded 010R - Limestone, dark grey banded with black chert OllR - Ash flow tuff, light grey, fine grained with some large clasts 012R - Limestone, light grey, brittle and stratified 013R - Limestone, dark grey, fine grained 014R - Siliceous material; clean white aphanitic 015R - Jasper, brown to black with white chalcedony bound in an opaque dirty-white silicious matrix 016R - Rhyolite, light grey to white, and fine grained 017R - Rhyolite, dark grey to black, phenocrysts of plagioclase and hornblende with thin bands of pink glass 018R - Limestone, dark grey, fine grained 019R - Limestone, light grey, fine grained, brittle with a fine grained reddish alteration 020R - Limestone, light grey with phenocrysts of calcite 021R - Limestone, dark grey with veinlets and pockets of calcite 022R - Limestone, light grey with limonite and calcite coating and vein of black chert 023R - Limestone, dark grey, fine grained with large veins of black chert 024R - Limestone, light grey, fine grained with veinlets of calcite 025R - Limestone, dark grey with veinlets of calcite and chert JGWW001R - Jasperoid, black with limonite stain 002R - Jasperoid, dark black to brown 003R - Jasperoid, amber to reddish brown 004R - Limestone, iron stained 005R - Limestone, grey with veining 006R - Jasperoid, yellow brown 007R - Limestone, dark with caliche coating and limonite stain 008R - Dacite, reddish brown flow banding and fine grained 009R - Limestone, grey with calcite veining 010R - Chert grab sample 011R - Limestone, medium grey 012R - Jasperoid, black with chert 014R - Chert, light and dark bands 015R - Limestone, dark grey with bands of calcite 016R - Siliceous vein, white 017R - Limestone, grey white with minor chert 018R - Limestone, medium grey with black bands of silicious material

KDWWO01R -	Brecciated limestone limonitic alteration with veins of quartz and calcite
002R -	Limestone, black and brecciated with veins of quartz and calcite
003R -	Limonite and highly silicified
004R -	Clay, green to yellow
005R -	Diorite, with biotite, hornblende and plagioclase the major
	minerals
006R -	Diorite, argillically altered to pinkish and white
007R -	Limestone with pinkish crystals and calcite veining
008R -	Flow breccia with limonite replacement
009R -	Limestone, argillitically altered and brecciated; some manganese
0100	staining Limesters bussels found in float
0108 -	Andersite with phoneonycete of heyphlende plagicalese and histite
0120	Andesite with phenocrysts of normbiende playlocidse and blottle
0120	Limestone structined with some minor timonite alteration
013R -	Limestone unaltered with ninkish calcite
0148 -	Limestone, unartially preciated with red vellow and orange clavs
016R -	limestone brecciated with an oxidized zoning
017R -	limestone, ninkish with limonitic alteration and calcite veining
018R -	limestone with a limonite coating
019R -	Limesone with pink calcite and possibly barite veining
020R -	Limestone, brecciated and silicified
021R -	Oxidized minerals
022R -	Limestone
023R -	Limestone
024R -	Limestone
025R -	Limestone
026R -	Limestone which weathers to an orangish color
027R -	Limestone with limonitic alteration and calcite vining
028R -	Limestone, pale red to orange staining and fossiliferous
U29R -	Quartzite, white
U3UK -	ASN TIOW LUTT
031K -	well as pumice fragments, limestone and quartzite
TOWWOOLR -	Alteration material within a vein
002R -	Jasperoid, vellow brown to dark brown and highly altered
003R -	Chips of reddish orange, soft alteration material
004R -	limestone highly altered with limonite staining and calcite on
	surface
005R -	Limestone, highly silicified with a carmel color
006R -	Limestone, silicified with quartz veining
007R -	Limestone, some alteration
008R -	Limestone with red and black quartz veining
009R -	Limestone with pink and white quartz veining
010R -	Limestone with quartz veining
011R -	Quartzite, white on fresh surfaces
012R -	Limestone, tossiliterous with iron staining and slightly altered
UI 3K -	marbie with orange iron staining along fractures
U14K -	L IMES LONE

Wah Wah Summit samples (refer to table 7 for data)

1. 2. 3. 4. 5. 6.	CTESO01R 002R 003R 004R 005R 006R		Diorite, dark grey with phenocrysts of plagioclase and biotite Diorite, dark grey to black, finely crystalline Limestone, black with jasper and hematite/limonite alteration Limestone, light grey Marble, white, medium grained Marble, highly stained by hematite/limonite
7. 8. 9.	CTESO07R 008R 009R	-	Diorite, highly altered and stained Skarn, whitish green, highly fractured Marble, white with thin seams of grey
10.	KDESO01R	-	Diorite, unaltered, equigranular with phenocrysts of hornlende, biotite, and plugioclase
11. 12.	002R 003R	-	Diorite, porphyritic with a limonite coating Diorite, greenish with phenocrysts of biotite, hornblende and plagioclase
13.	004R	-	Diorite, white or fresh surface with phenocrysts of sanidine quartz and minor biotite
14.	005R	-	Limestone, highly silicified
15.	006R	-	Skarn, white to green and highly altered; diopside is present
16.	007R	-	Diorite in contact with skarn highly altered to yellow brown
17.	008R	-	Skarn, green to white with dropside present
18.	009R	_	Diorite, dark grey, altered with abundant biotite
19	0108	_	limestone, nartially marblized
20	0118	_	Breccia with limonite stain
20.	0110	_	Diorita numbe to grave braccistad
21.	012R	-	Diorite, purple to grey, brecchaled
22.	013R	-	Limesters, neutially two seisted and tighly altered
23.	014R	-	Limestone, partially precclated and highly altered
24.	015R	-	Limestone, silicified with vugs of oxidized pyrite
25.	016R	-	Limestone with limonitic alteration
26.	017R	-	Limestone with abundant cacite and barite veining
27.	018R	-	Limestone with manganese coating
28.	019R	-	Limestone, highly silicified
29.	JGES021R	-	Diorite, dark green, fine grained with phenocrysts of plagioclose and hornblende
30.	022R	-	Skarn with grossularite crystals and diorite
31.	023R	_	Skarn, medium grev surrounded by a highly baked limestone
32.	024R	_	Jasperoid, black to tan and brown
33	025R	_	Jasperoid, vellow in between small bands of limestone
55.	OZOK		Suspervid, gerrow in between smarr bands of thirdstone
34.	TDE SOO1R	-	Limestone with calcite and quartz veining with minor brecciation
35.	002R	-	limestone
36.	003R	_	Marble, greenish
37	004R	_	Marble, veining with a high degree of iron staining
38	0058	-	Diorite, phenocrysts of hornblende augite and plagioclase
50.	0001		biorites, phenoel juis of normalinates, angite and plagioerase

39.	CTMS001R	-	Rhyolite ash flow tuff with phenocryst of quartz and biotite
40.	002R	-	Rhyolite ash flow tuff, highly altered with mafic phenocrysts
41.	003R	_	Diorite, gray black and finely crystalline with phenocrysts of
			quartz plagioclase and augite
42	004R	_	Marble, dark gray and course grained
43	0058	_	Rhyolite ash flow tuff nhonocrysts of quartz nlagioclase
чJ•	0051	-	biotite and augite
44	0060		In alarm zeros altered innerse week with phonographic of augita
44.	UUOK	-	In skarn zone; allered lyneous rock with phenocrysis of augite
45			and containing secondary calcite
45.	00/R	-	Marble, white, fine grained with grey banding
46.	008R	-	Skarn, green to black to dirty white and fine grained
47.	009R	-	Diorite, with phenocrysts of quartz, plagioclase, biotite and
			augite
48.	010R	-	Skarn, dark greenish and finely crystalline
49.	011R	-	Diorite, grey to black and finely crystalline; phenocrysts of
			quartz plagioclase and biotite, slight alteration of biotite
			and also with grossularite
50.	012R	_[Diorite, dark grey fine grained ground mass with phenocrysts of
	OILK	•	nvroxen biotite and augite
51	0130	_	Grab sample of quartz float
52	0140		Diarite intrusive highly altered
52.	0146	-	Skapp brownich groop and fine grained
55.	0158	-	Skarn, prownish black and fine grained
54.	ULOR	-	Skarn, greenish black and fine grained
55.	01/R	-	Diorite, greenish black with fine-grained crystals in quartz
			and plagioclase matrix
56.	018R	-	Marble, white to faintly blue and medium grained
57	019R	_	Marble blue green and fine grained
5/.	0101		harbie, blue green and the gramed
57.			
58.	TDMS001R	-	Skarn containing diorite and grossularite crystals
58.	TDMS001R	-	Skarn containing diorite and grossularite crystals
58. 59.	TDMSOO1R JGWSOO1R	-	Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration
58. 59. 60.	TDMS001R JGWS001R 002R	-	Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample
58. 59. 60. 61.	TDMS001R JGWS001R 002R 003R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite
58. 59. 60. 61. 62.	TDMSOO1R JGWSOO1R 002R 003R 004R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered
58. 59. 60. 61. 62. 63.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration
58. 59. 60. 61. 62. 63. 64.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green
58. 59. 60. 61. 62. 63. 64. 65.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite
58. 59. 60. 61. 62. 63. 64. 65. 66.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green
58. 59. 60. 61. 62. 63. 64. 65. 66. 67.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70	TDMS001R JGWS001R 002R 003R 004R 005R 005R 006R 007R 008R 009R 010R 011R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R 012R 013P		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R 012R 013R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R 012R 012R 013R 014R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 009R 010R 010R 011R 012R 012R 013R 014R 015R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 007R 008R 010R 010R 011R 012R 012R 013R 014R 015R 016R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74.	TDMS001R JGWS001R 002R 003R 004R 005R 006R 007R 008R 007R 008R 010R 010R 011R 012R 012R 013R 014R 015R 016R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 007R 008R 010R 011R 012R 012R 013R 014R 015R 016R 017R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, fine grained, slight alteration Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts Skarn, dark black with iron and manganese staining and
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R 012R 012R 013R 014R 015R 016R 017R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts Skarn, dark black with iron and manganese staining and possibly marcasite
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 007R 008R 009R 010R 011R 012R 012R 013R 014R 015R 016R 017R 018R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts Skarn, dark black with iron and manganese staining and possibly marcasite Jasperoid, brown to tan
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R 012R 012R 013R 012R 013R 014R 015R 016R 017R 018R 019R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts Skarn, dark black with iron and manganese staining and possibly marcasite Jasperoid, brown to tan Rhyolite, light grey to white, and fine grained
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 007R 008R 009R 010R 011R 012R 012R 013R 012R 013R 014R 015R 016R 017R 018R 019R 020R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts Skarn, dark black with iron and manganese staining and possibly marcasite Jasperoid, brown to tan Rhyolite, light grey to white, and fine grained Diorite, dark green, fine grained with phenocrysts of
57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.	TDMSOO1R JGWSOO1R 002R 003R 004R 005R 006R 007R 008R 009R 010R 011R 012R 012R 013R 014R 012R 013R 014R 015R 016R 017R 018R 019R 020R		Skarn containing diorite and grossularite crystals Diorite, greenish white, slight alteration Diorite grab sample Diorite, dark green, fine-grained plagioclase and biotite Diorite, dark green, stained, and altered Diorite, dark green, fine grained, slight alteration Diorite, dark green Skarn, mildly altered, green, contains grossularite Skarn with some marble, dark green to medium green Marble, pale milky white and very coarse Skarn, contains marble grossularite and intrusive diorite Marble, light grey to white with grossularite within the matrix Diorite Skarn, zoned with diorite and marble, dirty dark grey Limestone, dark grey, slightly baked Diorite, medium green, fine grained, and slightly altered Skarn, dark to light green, dropside and grossularite phenocrysts Skarn, dark black with iron and manganese staining and possibly marcasite Jasperoid, brown to tan Rhyolite, light grey to white, and fine grained Diorite, dark green, fine grained with phenocrysts of plagioclase and hornblende

79.	TDWSOO1R -	Limestone, altered with calcite and chloritic veining along fractures
80.	002R -	Limestone, slightly altered with some iron staining
81.	003R -	Diorite, coarse grained
82.	004R -	Limestone
83.	005R -	Limestone, altered
84.	006R -	Skarn and marble
85.	007R –	Limestone, medium grained with calcite veining
86.	008R -	Limestone, iron stained with abundant calcite veinlets
87.	009R -	Marble, light grey and very fine grained with a slight iron staining
88.	010R -	Diorite, unaltered
89.	011R -	Diorite, phenocrysts of biotite, augite with the plagioclase altering to clays
90.	012R -	Limestone, coarse grained and slight alteration
91.	013R -	Limestone, very fine grained with calcite veining and iron staining
92.	014R -	Rhyolite tuff, highly altered; phenocrysts of quartz and sanadine
93.	015R -	Diorite alteration of the hornblende and augite