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ABSTRACT

A 22-year record of seismic tremor obtained by the Hawaiian Volcano Observatory 

for regions below Kilauea, Mauna Loa, and Loihi volcanoes is analyzed as a system of 

coupled nonlinear oscillators that has a range of natural and forcing frequencies. Time 

series are displayed for episode durations, onset intervals, and rates of deep (30-60 km) 

and intermediate-depth (5-15 km) tremor; locations are determined from correlations with 

long-period earthquakes. The interval 15-30 km is called the 'quiet zone' because relatively 

few seismic events of M > 1 have been located there during this history. Individual tremor 

episodes range from about 1 to 100 minutes, with few exceptions. Tremor rates (durations 

divided by onset intervals) demonstrate intermittency, with transient bursts lasting the 

order of a day to quiescent intermissions lasting months. Cumulative durations over 22 

years are 1.60 x 104 min for deep tremor and 0.94 x 104 min for intermediate-depth tremor; 

the respective yearly averages are 727 and 427 min yr" 1 . The mean gradient of the yearly 

average between 5 and 60 km depth is 21.0 min yr" 1 km" 1 . The gradient between 30 

and 60 km is 24.2 min yr" 1 km" 1 and that between 5 and 15 km depth is 42.7 min yr" 1 

km" 1 . When 2/3 of the quiet zone is included with the intermediate zone and 1/3 with 

the deep zone, the depth intervals 5 to 25 and 25 to 60 km have gradients equal to the 

mean. Regimes of nonlinear oscillation are different in the upper and lower regions at 

constant average moment rates. The upper region is more intermittent; the average onset 

interval is 19 days and the maximum intermission is 412 days, compared to 14 and 118 

days, respectively, for the lower region. Tremor bursts are intensified and quiescence 

is prolonged in the upper region, suggesting more discrete nonlinear resonances. Fourier 

analyses of time series and event sequences have a wide range of frequencies in both regions. 

Counts of episode durations and onset intervals indicate that the geometry of the time 

data is multifractal (slopes in log-log plots of counts vs. length are variable). Return times 

(iterations between like event parameters) in phase portraits define partitioning of event 

probabilities. Clustering of event probabilities is described by a function f(a), where a is 

a measure of the density of the clustering from the most diffuse to the most concentrated 

region of the phase portrait. The function f(a) defines a locus in a vs. /(a) space called a
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singularity spectrum. Values of a for tremor portraits range from about 0.3 to 1.9; these are 

the limiting singularity strengths at /(a) = 0. The value /(a) max = 1 corresponds to the 

Hausdorff dimension, Z?0 , of the attractor as a whole. Singularity spectra for the 22-year 

record of tremor appear to be continuous and resemble theoretical spectra for transitions 

from mode-locked to chaotic attractors. Results suggest a dynamic model of multiple 

nonlinear oscillators where tuning analogous to that of the sine circle map is itself tuned 

by the output of functions related to magma generation and transport and to Cantor-like 

distributions of crack sets that vary with depth. Equations for fracture-limited transport 

identify alternative scenarios where: (a) magma supply is entirely measured by the record 

of tremor durations, and (b) aseismic magma transport is required to satisfy transport 

parameters. A mean-field analysis describes the properties of forcing functions expressed 

in terms of relaxation times for magma mobility, domain mass, and trigger force for tremor- 

related fracture. A forcing frequency of 1 sec" 1 correlates with the relaxation time for a 

hypocentral domain of 1-km radius and trigger force of 10 14 dynes. Extrapolations to the 

lengths and onset times of tremor episodes imply hierarchies of increasing domain sizes 

and fractal distributions of magma concentrations from the scale of a hypocenter to that 

of the lithospheric plate. The energy source of the mean-field transport correlates with 

the net force of magma rise and compensating subsidence. A parallel is drawn between 

the complexity of fracture processes and the complexity of fluid trajectories near the onset 

of turbulence. We call this class of phenomena the Critical Golden Mean Nonlinearity 

(CGMN) because it describes coupled oscillators tuned to a ratio of forcing and natural 

frequencies equal to the inverse of the Golden Mean, (5 1 / 2   l)/2 (a universal route to 

turbulence via quasiperiodicity).



INTRODUCTION

The regimes of magma transport responsible for volcanism in Hawaii are characterized 

by vastly different time scales. In the long term, we have fair knowledge of rate regimes 

in the Hawaiian Archipelago (Jackson et a/., 1972; Shaw, 1973; Moore, 1987; Moore and 

Campbell, 1987), the Hawaiian Ridge (Jackson et a/., 1975), and the Hawaiian-Emperor 

chain (Shaw et a/., 1980; Clague and Dalrymple, 1987), for which the relevant time scales 

are of the orders of 10 13 to 10 15 sec (roughly 1 to 73 m.y.). Also, Kilauea's magma supply 

budget is documented for time scales of the orders of 106 to 109 sec (roughly 2 weeks to 100 

years; see Klein, 1982; Dzurisin et a/., 1984; Holcomb, 1987; Shaw, 1987a). In the short 

term there is extensive documentation of long-period earthquakes and tremor associated 

with individual pulses of magma injection (Koyanagi et a/., 1987; Chouet et a/., 1987). The 

characteristic periods are of the orders of 10" 1 to 10 sec (0.1 to 10 Hz); tremor episodes 

have durations of the order of 102 to 104 sec (about 1 to 100 minutes), excluding periods 

of continuous tremor shallower than 5 km that correlate with rift intrusions and surface 

eruptions (Koyanagi et at., 1987).

Our knowledge of other temporal regimes of magma transport and details of their 

geometric expression is poor. A qualitative fracture model was outlined by Shaw (1980), 

and three-dimensional constraints on injection domains are given by Klein et a/. (1987), 

Koyanagi et a/. (1987), and Ryaii (1987), but we have no comprehensive description of 

intermittent transport from the source of mantle melting to the surface for time scales 

between those of deep tremor episodes and those of magma supply rates determined from 

inflation-deflation cycles (Dzurisin et a/., 1984).

The above frequency range spans about 16 orders of magnitude, but with huge gaps, 

and we are largely ignorant of the forcing functions that modulate magmatic regimes 

(time-dependence of the magmatic source, states of magma pressures and stresses in the 

asthenosphere, lithosphere, and volcanic edifices, etc.; see review by Decker, 1987). We 

are not able to map magma concentrations within the volcanic edifice and subvolcanic 

lithosphere at the present time, or over any window in time, except in terms of stylized 

models such as those of Eaton and Murata (1960), Shaw (1980), and Ryan (1987). There



is little information on spatial densities of transport trajectories or on the magma flux 

across an arbitrary section of the transport path. For this information we largely relay 

on tremor and other transport-related seismic phenomena. In addition to the time scales 

mentioned, tremor durations and intermittencies relate to oscillatory magma transport 

and earthquake recurrences (Koyanagi et a/., 1987; Shaw and Chouet, 1987; Karpin and 

Thurber, 1987). Thus, given a complete description of tremor we hope to identify universal 

processes that characterize the dynamic states of a volcano.

Despite the difficulty in achieving this goal, we are encouraged by some remarkable 

facts about Hawaiian volcanism: foremost is the fact that the process is intermittent at all 

scales of time and is characterized by similar ranges of magma volume rates at different 

scales of time and space (Shaw, 1973; Shaw et a/., 1980; Dzurisin et a/., 1984; Clague 

and Dalrymple, 1987; Shaw, 1987a). Self-similarity relates to the fact that spatiotemporal 

regimes are expressions of rate-limiting fracture mechanisms. Magma transport resembles a 

percolation process in which domains of fluid-filled fractures migrate as they are transiently 

created and destroyed according to balances of fluid pressures and local states of stress 

(Pollard, 1976; Hill, 1977; Shaw, 1980; Chouet, 1981).

Within the ranges of temporal and spatial states outlined, intermittent extensional 

fracture has sustained magma percolation within a selective bandwidth of rates, creating 

a swath measuring 6,000 km in length by 300 km in width spanning 73 m.y. in time 

(Jackson et a/., 1972; Jackson and Shaw, 1975; Shaw et a/., 1980). This process has 

generated one of Earth's most conspicuous mountain ranges, comparable in volume to 

Olympus Mons on Mars. If a special balance between magma supply and stress states 

had not existed, there might have been either the absence of volcanic expression or basalt 

floods extending over nebulous areas of the ocean floor (< /., Shaw and Swanson, 1970). 

The fact that magmatic fracture has been sustained within a bandwidth of frequencies 

that is spatially focused makes this form of volcanism one of Earth's precisely tuned 

physical mechanisms, rivaling the precision of sea-floor spreading. These observations 

are not contingent on special models of Plate Tectonics, however; in fact, at present none 

of these models explain oscillatory and spatially ordered fracture mechanisms that regulate 

magma transport. We do not address questions of ultimate cause here, but in our analysis



the source mechanism must be consistent with dynamical processes that give rise to the 

observed fabric of intermittencies.

Support for the above statements is diverse. Models based on continuous conduits 

are excluded on grounds of mechanical instability, except under transient or near-surface 

conditions (see Pollard, 1976). Hypocenters of long-period events and tremor, phenomena 

characteristic of fluid-filled fractures (Chouet, 1988), are distributed discontinuously over 

immense volumes of the volcanic edifice and subvolcanic lithosphere (Koyanagi et a/., 

1987). The net transport of magma to high levels, where magma chambers and conduit 

flow can modulate patterns of eruptive behavior, is dynamically tuned by the aggregate 

behavior of fluid-filled fractures. Local rates of magma transport at depth correlate with 

size distributions and longevities of fractures required to compensate the total magma 

supply to sites of volcanic accretion.

This paper explores the concept that the history of tremor events below about 5 km 

provides a basis for linking the time scales of seismic responses of the transport path to 

time scales of magma supply. Toward this end we focus on techniques that may elucidate 

relationships between the geometric and dynamic complexities of tremor. We make use 

of developments in fractal geometry and attractor dynamics as the basis for exploring the 

properties of time-series data and concepts of clustering by which the tremor process and 

concomitant mass transport can be expressed. At this stage of our study, spatial detail 

is implicit in that fractures cannot be mapped one-to-one with chronologies of tremor 

episodes (specific locations of tremor are not resolved). The spatial structure correlates 

broadly with long-period events mapped by Koyanagi et al. (1987). Mean-field calculations 

discussed in a concluding section provide constraints on fracture distributions and forcing 

frequencies that may explain the trigger mechanism as well as the time scales of tremor 

durations.

The plan of the paper is to first describe a 22-year record of tremor episodes in the 

form of time series and their general properties. These data are used to construct phase 

portraits, fractal plots of time scales, and Fourier spectra. The structures of attractor 

basins in the phase portraits are explored by deriving partition functions for recurrence 

frequencies of the tremor time scales (and implicitly of magma transport pulses). These
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partition functions are then expressed in the form of multifractal singularity spectra 

(Halsey tt a/., 1986). We conclude the paper by discussing the singularity concept in 

relation to spatiotemporal scales of magma transport and their time-dependent boundary 

conditions.

TIME SERIES DATA AND GEOMETRY OF ATTRACTORS

In this section we present data that characterize the history of tremor episodes from 

1 January 1962 through 31 December 1983. We include the following information: (a) fence 

diagrams of tremor episode durations and onset intervals vs. time and event number, 

(b) maps and sections of earthquake distributions, including long-period events and depths 

of tremor episodes, (c) rate diagrams of episode durations divided by onset intervals, 

(d) phase portraits (return maps) of durations and onset times, (e) logarithmic frequencies 

of time data (ranges of fractal dimensions), (f) recurrence diagrams of durations and onset 

intervals of deep tremor compared with periodic and chaotic attractors, (g) histogram 

of spacings in return maps and period-doubling, (h) Fourier spectra of rates and event 

sequences.

This survey of the data leads to concepts of singularity analysis, because the measures 

are nonunique and multidimensional. Universal singularity spectra described in the 

literature are characteristic of specific regimes of nonlinear dynamic behaviors. A goal of 

the paper is to compare dimensional states illustrated in the present section with singularity 

spectra derived in subsequent sections as a basis for describing complex dynamical states. 

We feel this is important to the elucidation of chaotic attractors in nature. However, as is 

shown by controversies in the literature concerning the existence of climate attractors and 

attractors representing brain wave activity, results based on nonlinear dynamics are not 

unequivocal (e.g., Nicolis and Nicolis, 1984; Grassberger, 1986; Vallis, 1986; Essex et a/., 

1987; Mayer-Kress and Layne, 1987).

Despite controversies concerning natural attractors, we believe that the difficulties 

of deducing a proper embedding dimension in phase space diverts attention from more 

robust implications of attractor dynamics applied to natural processes. In a broad sense, 

without regard to the exact degrees of freedom, natural attractors are self-evident. The



evolution of a volcano represents a locus of magmatic trajectories. In that sense it is an 

attractor even though it may not have a unique set of dynamical parameters. An attractor 

in the restricted sense refers to the trajectories of motion produced by a specific set of 

TV-dimensional parameters of state (Lichtenberg and Lieberman, 1983, Ch. 1, p. 384). A 

broader context, discussed in Shaw (1987b), refers to systems of attractors and uses the 

term attractor generically.

Shaw (1987a) argued that Kilauea operates much like a computer as it iterates a 

natural algorithm representing the logistics of magma supply (Dzurisin et a/., 1984). The 

corresponding attractor structures are defined by the history of states. There are parallels 

between that viewpoint, a viewpoint expressed by Robert Shaw in an experimental study 

of the dripping faucet as a model chaotic system (Shaw, 1984), and the viewpoint of this 

paper.

The catalog of tremor episodes used in our study was provided by R. Koyanagi of 

the Hawaii Volcano Observatory. The data are shown in Figure 1 for 578 events of deep 

tremor and 347 events of intermediate-depth tremor; we exclude shallow tremor (events at 

depths less than 5 km) because we wish to exclude near-surface noise not directly related 

to fracture mechanisms of magma transport.

Event durations in Figure 1 are plotted against calendar days from 0.00 H, 1 January 

1962. Figure 2 shows normalized event durations and onset time intervals for deep and 

intermediate-depth tremor plotted in numerical sequence. In these plots, durations were 

truncated at a maximum of 99 minutes. There are three events of much longer duration 

in the data for intermediate-depth tremor; they are expressed as consecutive events of 99 

minutes duration each, plus a remainder. This truncation was done so that the data sets 

would have about the same normalized scale. Durations up to 99 minutes per episode 

are expressed as fractions between 0 and 1; onset times are normalized to the largest 

intervals (117.92 days for deep tremor, and 412.00 days for intermediate-depth tremor). 

Peak heights of the onset intervals in Figure 2 give a concise picture of the intermittent 

character of the records shown in Figure 1; the distributions of peaks gives the patterns of 

longest durations and intermissions.



Depth zones of the tremor data are shown in Figure 3. These regions were used in the 

tabulation of data because tremor intermittencies differ; the source depths are separated 

by a 'quiet zone' that is relatively free of long-period events and detectable tremor episodes. 

The long-period events in Figure 3 demark hypocentral locations of tremor activity between 

1972 and 1984 (Koyanagi et a/., 1987, Figure 45.27). Exact locations for all events of 

Figure 1, however, are not known.

Continuous and Discontinuous Time Series

Figures 1 and 2 show that the time series are both intermittent and discontinuous, 

relative to the seismic detection threshold for tremor (Koyanagi et al. , 1987, give 

thresholds, respectively, of M = 1 and M   1.5 for intermediate-depth and deep long- 

period events). The term intermittency usually refers to continuous time series data 

in which there are long intervals of small fluctuations (laminar intermissions) separating 

bursts of high amplitude irregular fluctuations (Mandelbrot, 1974; Manneville and Pomeau, 

1979; Manneville, 1980; Pomeau and Manneville, 1980; Hirsch et a/., 1982; Procaccia and 

Schuster, 1983; Berge et a/., 1984, p. 223 ff.; Thompson and Stewart, 1986, p. 340 ff.). If 

our data extended to arbitrarily low magnitudes, we could describe tremor intermittency 

in these terms, but onset intervals are so long compared to episode durations that the 

time data are point events analogous to the intervals between drops in the dripping faucet 

experiments by Shaw (1984). It is difficult to use standard constructions of phase portraits 

and Poincare sections for such data. We therefore construct phase portraits in the form of 

maps in which each value of the variable is plotted versus its subsequent value; these are 

called return maps, expressed by the relation zn +i = f(xn ) (see Shaw, 1984, p. 5; Berge 

et a/., 1984, p. 70). The return maps for tremor describe the extremal variations of states 

represented by the sets of durations and onset intervals.

Geometric analysis of attractors generated from time series has become a standard 

method in nonlinear dynamics (Packard et a/., 1980; Fraser and Swinney, 1986; Mayer- 

Kress and Layne, 1987). A novel aspect of our approach is that time represents the 

amplitude parameter as well as the chronological sequence. In this respect our data 

resemble those of Shaw (1984) for the dripping faucet; he discusses return maps and



dimensions (his Appendix 1 considers continuous time). We take the durations and onset 

phases of the tremor record as the 'amplitudes' of time series given by the numerical 

sequences in Figure 2. This is justified in the sense that the state of a system can be 

characterized by any 'observable' (the parameter of state); an example is the use of isotope 

ratios in the study of climate attractors (see Grassberger, 1986). Time in the present 

context is a measure of physical states that characterize the trigger mechanism for the 

onset of tremor and the states of pressure and stress that sustain magma flow over the 

timespan of a tremor episode.

In the restricted sense, a phase portrait is a plot of a variable against its time derivative 

(the classic example being position vs. velocity), and an attractor is a characteristic orbit 

or set of orbits in the phase plot (e.g., Lichtenberg and Lieberman, 1983; Thompson and 

Stewart, 1986; Moon, 1987). More generally, phase portraits represent values of a variable 

measured at different times (Poincare maps are plots of the variable made at constant 

time intervals and return maps are plots of the sequence of xn where the time intervals 

are characteristic of the process). Continuous time series usually involve smoothing. The 

present data can be made continuous, but not differentiable, by expressing them as rate 

episodes. Rate curves generated from Figure 1 are shown in Figure 4.

For smoothed data, Poincare maps of arbitrary dimensionality can be built up from 

readings at integer multiples of a constant delay time (each axis of the phase space 

represents one of the integer multiples of the sampling delay time). A Poincare section 

is any plane through the phase space on which the piercing points of the parameter 

trajectories are plotted. Although such plots represent readings at constant time intervals, 

the time between points in Poincare sections typically are not constant (Berge et a/., 1984, 

p. 65 ff.). Examples of Poincare portraits and Poincare sections of a convection experiment 

are shown in Figure 5 reproduced from Brandstatter et al. (1983). The trajectories at the 

left define a low-dimensional attractor just prior to breakdown of an interwoven toroidal 

pattern. In this case, ordered clustering is progressively destroyed by mixing, but the 

extent to which the pattern is disordered depends on the analysis of the densities of points 

in phase space (the partition function rather than the macroscopic form is the measure of 

order).



Questions concerning alternative types of phase portrait for tremor are clarified by 

the data in Figure 4 (episode rate is analogous to velocity in a standard portrait, and 

time is analogous to position). Figure 4 defines the average incidence of tremor (minutes 

per day) as if it were continuous between onset times. Each value is an episode duration 

divided by the onset interval between that event and the next one; the first onset time is 

measured from the beginning of the first episode (values would be changed if we divided 

by the preceding interval, but the ranges would be the same). We could sample Figure 4 

conventionally at equal intervals of time, but that would give a distorted picture because 

the long intervals dominate the readings. Return maps record all of the peaks in Figures 1 

and 2.

If we interpret Figure 4 according to the relationship between the tremor mechanism 

and magma transport envisioned in studies by Chouet (1981) and Aki and Koyanagi (1981), 

then the amplitude is analogous to transport rate. Comparing the curves for deep and 

intermediate-depth rates, it is seen that there are differences in the timing of transport 

in the two depth zones. There are either zones of seismically undetected magma storage 

in these regions, or there are components of transport not documented by the tremor 

mechanism. Figure 4 underscores our need for a better understanding of the temporal 

scaling of the tremor process. We return to these problems in the concluding discussion.

The rate steps in Figure 4 could be smoothed by assuming that they follow the trend 

of some function of magma flow rate. This seems inadvisable at this stage of analysis, and 

we adhere to direct representation rather than attempt to construct Poincare plots even 

though it is possible to do so. An algorithm by Fraser and Swinney (1986), used in other 

studies to guide choices of delay time, illustrates the sampling problem. They found that 

the best time delay is one that minimizes the so-called "mutual information content" of the 

time series. For time delays short enough to represent most of the variation in Figure 4, 

there is so much redundancy (long intervals of constant probability) that a minimum is not 

well defined (cf., Mayer-Kress and Layne, 1987). More importantly, essential information 

related to short time intervals is lost.

Use of event sequences in Figure 2 avoids loss of information. This assumes that 

there is no noise in the data of the type Fraser and Swinney (1986) attempt to minimize
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(short-term fluctuations in continuous time data often represent extraneous noise). Each 

event is assumed to be real and to represent the changes we wish to interpret. The use of 

event sequences effectively compresses the longest time intervals of Figure 4 and expands 

the shortest time intervals. The spacing between points in the data sequence thus is not 

constant in time.

Phase Portraits and Fractal Properties of Attractors

Return maps constructed from the event sequences displayed in Figure 2 are shown 

in Figure 6. They illustrate densities with which similar states are repeated over the 

sampling history. This information, and the number of steps required to return to the 

same vicinity (the recurrence time in phase space), are the structures we study in later 

sections. Figure 6 represents the composite of all attractor structures that describe the 

tremor process, relative to the detection threshold and total length of record. Within these 

attractor basins there is a great deal of structural detail represented by the densities of 

recurrences of like states. The notion of attractor basins is analogous to drainage basins 

in hydrology, where the fine structure represents stream networks and time dependences 

of flow rates. We note again that our usage is generic compared to formal definitions of 

attractors and attractor basins (Lichtenberg and Lieberman, 1983).

The fractal character of phase portraits can be explored in many ways. A typical 

approach for Poincare plots is illustrated by studies of climate attractors (Nicolis and 

Nicolis, 1984; Grassberger, 1986; Esses et a/., 1987) and brain wave attractors (Mayer- 

Kress and Layne, 1987). The object is to show the relationship between a correlation 

dimension (Grassberger and Procaccia, 1983) and an embedding dimension (Nicolis and 

Nicolis, 1984) of the attractor. If the correlation dimension becomes independent of the 

order of the time delay used in the construction, then it is assumed to characterize the 

degrees of freedom needed to define the attractor.

This method is not readily applicable to our return maps, for reasons given above. 

Also, the degrees of freedom required to calculate the form of a particular attractor is 

not definitive for systems of attractors. Simple systems can be associated with multi­ 

dimensional attractors, while complex systems can be characterized by low-dimensional



attractors. Lorenz (1962, 1%4, 1979) demonstrated that one-parameter systems can 

generate attractors of unlimited complexity, and it was shown by Shaw (1981) that a 

quadratic equation can produce information at the same rate as a random number string 

(e.g., as the pseudorandom reference state of Nicolis and Nicolis, 1984, Figure 5). We defer 

the issue of proper dimensions to our discussion of singularity spectra.

The average fractal properties of the data can be illustrated by plotting the frequencies 

of observations, as in the detennination of the fractal dimension of a set of statistically self- 

similar length scales. The fractal dimension D (typically non-integer) is expressed by the 

relation N ~ l~ D , where / is a measure of size (yardstick), and N is the number of objects 

of size equal to or greater than / (see Mandelbrot, 1982). This general definition of fractal 

dimension is often called the Hausdorff dimension. We test this relationship by plotting 

the data of Figures 1 and 2 logarithmically in Figure 7. These plots indicate that there 

is no unique fractal dimension, with the possible exception of Figure 7c (intermediate- 

depth durations). Clustering of dimensions is suggested by short intervals of constant 

slope; the solid lines are based on incremental data, reflecting the variability of slopes 

of the cumulative curves (open circles). Figure 7 shows that the four sets of data have 

similar statistical properties. That is, the relatively long time scales of onset intervals 

(typically days to months) resemble the relatively short time scales of tremor episodes 

(typically minutes to an hour); the ratios of time are roughly similar (min : day and 

hour : month « 103 ). This hints that the onset intervals and episode durations may be 

multifractally self-similar and dynamically correlated (c/., Mandelbrot, 1974).

Tests of Periodicity

Some tests of self-similarity and periodicity in the time series data are shown in 

Figures 8 through 10. Figures 8 and 9 examine particular suites of periodic states, and 

Figure 10 gives results of Fourier analyses.

Patterns of divergences and (or) convergences in the return maps of Figure 6 are shown
N N

in Figure 8. Figure 8a and 86 show plots of the expression £] &x   £(xn+i   £n)
0 0

calculated from the deep tremor data of Figure 6. Figures 8c   / show similar summations 

performed on the logistic equation £n+i = 4Axn (l   xn ) (e.g., May, 1976; Feigenbaum,
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1978, 1979, 1980) for four values of A between 0.880 and 0.999. For continuous data, slopes 

of trajectories in phase space would be determined and the logarithms of their absolute 

values summed. This provides a Liapunov exponent which measures the rate of divergence 

from periodic orbits (Shaw, 1981, pp. 88 and 91; Moon, 1987, p. 193). Here we can only 

test divergences of the discrete states represented by the above summations. Thus, if 

the phase states progressively shift to larger and larger values, the sum is positive and 

increasing; if these states shift to smaller values, the sum decreases. The deep tremor data 

show neither trend, even though they oscillate irregularly. The synthetics of Figure Sc show 

that when return orbits are periodic the sums and ranges repeat at identical positions in the 

cycle. In the chaotic regime several patterns are possible: (1) nonperiodic cycles (Fig. 8/), 

(2) periodic bands (Figs. Sd, e), and (3) intermittency (Figs. 8rf, e,/). In comparison to 

these synthetic data, the tremor data have many scales of intermittency.

Even though the tremor data appear to be nonperiodic (Figs. 8a, 6) we cannot tell by 

inspection whether or not there are components analogous to the periodic bands displayed 

in Figure Sd. As one test of the possibility that there are hidden periodic components of 

this type in our data we performed a statistical analysis for period-doubling in Figure 9. 

Period-doubling intervals occur in the experimental data of many nonlinear systems (e.g.. 

Gollub and Benson, 1980; Guevara et a/., 1981; Testa et a/., 1982; Jeffries, 1985) and are 

ubiquitous in the chaotic regimes of computer studies (e.g., Shaw, 19876).

Period-doubling in phase portraits shows up as sets of trajectories that repeat 

themselves every 2 n cycles (where n is an integer) as a tuning parameter is varied (e.g., A of 

the logistic equation in Fig. 8). With each generation, as n increases, the trajectories of x 

in the phase portrait are packed in more densely than in the old generation, and this occurs 

over narrower and narrower ranges of the tuning parameter (May, 1976; Feigenbaum, 1978, 

1980). In other words, the distance between trajectories of a given set is v times smaller 

than the distance between the parent trajectories (see bifurcation tree in Fig. 9C).

We call v the packing ratio denned by v = dn /dn+i, where dn is the average spacing 

between trajectories of the parent set and <?n+i is the average spacing between trajectories 

of the period-doubled set (Fig. 9C). Feigenbaum (1978) demonstrated that i/ = 2.5029... 

is a universal constant for quadratic functions. Because we cannot identify specific pairs of

11



trajectories in our return maps of deep tremor durations (Fig. 6>l), we can only measure 

average distances between selected subsets of trajectories. But, if we assume that the return 

maps are analogous to maps obtained by variable tuning of A in the logistic equation, then 

a histogram of counts of d will be dominated by bifurcations of low degree (see variation 

of d vs. A in Fig. 9C).

In Figure 9A we count the numbers of trajectories within a given increment of duration 

x in the return map and assume that the peaks of the histogram represent a hierarchy of 

period 2n with n increasing as the number of counts decreases. Thus, at a given count 

level (e.g., at count level 20 in Fig. 9^4) we assume that d is represented by the average 

spacing and divide the total range of x at that level by the number of gaps between the bins 

intersected. We then assume that the number of bins N is an approximation for 2n and 

plot logd vs. logN in Figure 9B compared with the same plot obtained for the synthetic 

period-doubling set in Figure 9C.

The similarity of slopes in Figure 9B suggests that packing densities of the trajectories 

of deep tremor durations mimic to some extent those of period-doubling attractors (they 

differ in detail because N does not correspond exactly to the sequence 2n and ratios of 

spacings at large N are not resolved). This conclusion is qualified by the fact that if there 

is roll-off in the counts of small durations because of threshold effects, then period-doubling 

could be an artifact of sampling (we return to this point in the discussion of singularity 

spectra).

Fourier analyses of tremor data in Figures 4 and 8 are shown in Figure 10. No unique 

periodicities are found (except for a low-frequency peak at 188 days in the deep tremor 

rates), and the results confirm other indications of statistically complex frequency spectra. 

If special frequencies exist they are so numerous as to be unresolvable by Fourier analysis. 

This does not necessarily indicate randomness, because it is shown in other studies that 

the frequency content of low-dimensional attractors in the vicinity of transitions between 

mode-locked resonances and chaos can be very great (Fein et a/., 1985). If the period- 

doubling suggested in Figure 9B does indeed exist, it is lost in the spectral structure of 

Figure 10.
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The ensemble of tests described so far are inconclusive as to a full description of the 

attractor object or objects under study. If we had prior information on characteristic 

frequencies, we could apply tests for coefficients of frequency mixing in Figure 10 (e.g., 

Gollub and Benson, 1980). In the absence of such knowledge we need better methods for 

detailed description of the structure of the time series data. The approaches exemplified 

by tests for general recurrence frequencies (Fig. 7) and period-doubling frequencies (Fig. 9) 

are made more precise in the next section.

PARTITIONING AND SCALE RELATIONS FOR RECURRENCE TIMES 
ON AN ATTRACTOR

In this section we develop the concept of singularity spectra as a means to describe the 

structure of attractors. We first address the mathematical framework for scaling of phase 

portraits and follow with a description of the partition function required for evaluation 

of the singularity spectra. The information needed to characterize the dynamic geometry 

of systems that sample many different scales of length and(or) time is the distribution of 

states in phase space. Loci of repetition identify basins of attraction, but we do not know 

how many regimes and types of bifurcation states may be present. Repetition is measured 

both by the densities of points and by the number of steps (recurrence times) that occur 

between like states. For example, a fixed point has infinite density at a given value of state 

parameter and the number of steps per repetition is one. The recurrence time measures the 

numerical sequence of events in the phase portraits. In the present case it also represents 

chronologic time, because events in Figure 2 each have a temporal size or 'amplitude.' 

Because event times correlate with physical parameters of state, the dynamics is mapped 

by the recurrence behavior (Packard et a/., 1980; Nicolis and Nicolis, 1984).

Clustering on an attractor is reflected by variable recurrence times, and documentation 

depends on the uncertainty with which a point on the attractor can be identified. Large 

targets of repetition are hit more often than small ones. This introduces a length scale 

and a method of quantification. Choosing a circle of fixed diameter as a yardstick, we can 

count the number of points that hit within a given target circle as well as the number 

of steps that occur between hits, as shown in Figure 11. Because the latter implies the
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former, it is the more general measurement. The concept is simple, but the number of 

ways to define and count target circles are numerous. We follow a method applied to phase 

portraits of fluid convection by Jensen et al. (1985) (their work confirmed the numerical 

results of Halsey et al. , 1986; see also Gwinn and Westervelt, 1987). These experimental 

studies demonstrated that the form of the singularity spectrum that characterizes the 

quasi-periodic transition to chaos in low-dimensional attractors is universal.

The method of enumeration is shown by a few counts in the schematic example of 

Figure 11. Each point in a phase portrait (Fig. 6) is taken as a target center, and the 

number of steps occurring between that point and the next point that falls within the 

circle is computed as a function of circle diameter (we later use normalized diameters from 

0.01 to 0.8). Permutations of the measurements for different targets generate massive 

amounts of data. For one of the sets of deep tremor data there are about 600 targets each 

of which defines a suite of recurrence times for a suite of diameters. By comparison, the 

analysis of convection patterns by Jensen et al. (1985) had 2500 data points (temperature 

readings at equal intervals of time given by the period of forcing).

Targets (Fig. 11) in the tremor portraits were divided into 60 diameters for each of 

the data points. Counts of recurrence times vary with target diameter and with location. 

We estimate that there were 10s recurrence times per portrait. The data set of Jensen 

et al. (1985) expressed as a Poincare section is only four times larger than ours, but the 

size measured in recurrence counts is much larger. Later we evaluate effects of sample size 

and the use of return maps on singularity spectra.

Jensen et al. (1985) found that in order to treat large quantities of numerical data 

smoothing is unavoidable (there are too many permutations to see trends in raw counts). 

Before we describe this smoothing, we give quantitative relationships between length scales, 

characteristic exponents, and partition functions, following Halsey et al. (1986).

Mathematical Relations for Scaling of Phase Space

The attractor is our geometric object, and each visit of its trajectories to a region of 

specified size is a recurrence event. We divide the object into a number of pieces labeled 

by an index i that runs from one up to an arbitrary number, TV, as in Figure 11. The size

14



of the ith piece is £,-, and the event occurring on it (each hit in Figure 11) is identified with 

a quantity, M,; units of Mt depend on what is being measured (it could be temperature, 

velocity, tremor duration, etc.). The time series of Figures 1 and 2 (and portraits of 

Figure 6) are assumed to define all of the events in the tremor record, ignoring thresholds 

and the finite length of the record. We associate the meaning of Mt with the probability 

that a reading occurs within the ith piece.

These sequences define the form of the attractor in a phase space of d dimensions, 

where d is the number of Euclidean dimensions. Although d = 2 for graphs in Figure 6, 

the data are plotted in terms of a single parameter of state (e.g., they could be mapped 

onto a circle of dimension d   1 by taking normalized values as fractions of the circle; we 

later compare our results with singularity spectra based on the circle map).

A singularity spectrum based on recurrence times in an assumed geometry is a measure 

of the existence of an attractor within that framework. In other words, this technique 

allows one to define the skeletal characteristics of the attractor and is reminiscent of X- 

ray analysis of complex crystals. Because we include all events in the phase space, the 

spectrum (if it exists) will be the most faithful description of the data, even if not the 

most precise. Averaging based on Figure 4, for example, could improve precision, but we 

would lose information about the dynamical structure.

Expressed in terms of the ^-dimensional space, the densities of a quantity imagined 

to fill the space is normalized by td . The ordinary spatial density is identified by:

Trajectories of events that produce the form of an attractor do not fill the entire d-space. 

We then say that the trajectories lie on an attractor of dimension D, for D < d. If we 

multiply (1) by td and divide by tD , then the density expressed relative to D is proportional 

to £~ D , the definition of fractal dimension, D.

Densities of events according to Eq. (1) depend on counts (TV;) of how often the time 

series visits target pieces of specified sizes (£,-). But our data only tell us how often a target 

within a spectrum of targets is visited (Figure 11). There is no information for portions of
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d-diinensional space not visited at a given target size. Average densities from Eq. (1) are 

not diagnostic of densities on the attractor. The information available is the number Ni 

of visits to a specified target relative to the total events on the attractor, N. The quantity 

Ni/N estimates the probability pt = limn-*oo (Ni/N). This is the concentration (strength 

of focus) of events in fractal phase space.

If the distribution were uniform over the phase space, and the dimension of the 

attractor were DCOBst. < d, the frequency of visits, AT,, would be proportional to tD (e.g., 

if D = d, uniform Ni is proportional to t for d = 1, to £2 for d = 2, and to t? for d = 3). 

When there is clustering, exponents of I are variable and generally unknown; if clustering 

is discrete, there are discrete exponents (analogous to indices of critical phenomena), and 

if clustering is interwoven, there are continuous sets of exponents.

We define a function a as a variable scaling exponent, as follows:

n~tf , (2)

where pt « Ni/N is the probability of Ni recurrences among the total set of N recurrences 

occurring within pieces characterized by length £,.

This definition of a resembles a fractal dimension, but it is usually termed the 

singularity strength. Inverting Eq. (2), I/pi ~ l^ a -> we see that a is a fractal dimension 

of a set of I/pi objects of sizes li. Because l/pt = JV/JV,-, the set represents the number 

of domains of length £t within which there are Ni recurrences relative to the total set of 

N recurrences. This number increases with decreasing 7Vt , and a gives the corresponding 

fractal dimensions; a is greater for small and rapidly varying Ni (tenuous regions) and 

smaller for large and slowly varying Ni (concentrated regions).

There is no restriction on clustering of self-similar subsets, nor on the possible values 

of a. If there were a portion of an attractor where Ni varied by four orders of magnitude 

while li varied by one order of magnitude, the proportionality is TV, ~ I* in that vicinity 

even if the Hausdorff dimension is small. The problem is to find a way to characterize the 

distribution of events in terms of a, whether it takes on discrete values or it varies over
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a spectrum of singularities. In the latter case clustering is so interwoven that individual 

domains cannot be isolated in the fabric of singularities (see Fig. 5).

In order to complete the description we need a function for the variation of a. 

Therefore, the frequency relation is expanded to bring out the fine structure of the density 

variations. Another scaling exponent, g, is introduced as an operator that generates 

arbitrary enlargements and(or) reductions of the probability distributions. This represents 

an expansion of the event counts in the phase portrait, permitting us to zoom in on different 

portions of the attractor. Expressed in terms of the event frequency, Nf, large counts are 

made arbitrarily larger or smaller while small counts are not greatly affected, so the scaling 

of frequencies is fanned out over an arbitrary range.

Recurrence times fan out under expansion, so a can also be represented by how pt 

varies with q. The recurrence time, symbolized mt , is taken to represent the inverse of 

the probability, m, = l/pt . Slopes (T) in a diagram of logmt (expanded for different 

(/-values) vs. log£t represent the magnifying factors for domains of differing singularity 

strengths. To make the parallel precise, Eq. (2) is rewritten in the form:

P?~C   (3)

We can now generate a function, /(a) by using the same logic that was applied to 

the distributions of event frequencies. The function sought represents variations of a over 

different domain sizes, £,, and can be expressed in terms of n(a, £), given by the number 

of times a takes on a value between a and a + da as a function of t. The increment in 

a times the local event density characterized by a defines n(a, t) in terms of another 

function of t:

n(a,t) = dap(a)rf(^ , (4)

where p(a) represents TV,- normalized by £Q , and /(a) is a function that scales a to the 

length-scale t.

If a. varies continuously over the attractor, then f(a) is a differentiable fractal function. 

At /(a) = 0, the scaling is invariant (constant a). Typically there are two such limits, one
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for the most rarefied region of the attractor (amax) and the other for the most concentrated 

region (amin)- Between these limits /(a) reaches a maximum that coincides with the fractal 

dimension of the attractor as a whole (the Hausdorff dimension, DO).

The Partition Function

In order to evaluate a and /(a), we need a partition function F for the complete set 

Si of measures pt . The derivation is given in Halsey tt al. (1986) and in Procaccia (1986). 

The partition equation is defined by

N q

, (5)

where summations are over all members of the set, and r is defined by

r i (?\ r = hm   ;   l-   . (6)
t o log£ '

It is shown by Halsey tt al. (1986, p. 1142 ff.) that, for large TV, Eq. (5) is of order unity, 

and Eq. (6) shows that r is the slope in logarithmic plots of expanded probability vs. t at 

constant </; r is the magnifying factor described above.

The probability is expressed in terms of a and /(a) by combining relations (3) and 

(4) and integrating to give the function

In the limit t   0, Eq. (7) is dominated by the value of a that minimizes (qa - /(a)). 

Taking logarithms and dividing by log£, it is seen that the net exponent (qa. - f(a)) can 

be substituted for the right side of Eq. (6), yielding

T = [,*(,) -/(«(«))] , (8)

and, by partial differentiation,

(9)
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Given values of q and r, a(q) is found from Eq. (9) and f(a) from Eq. (8).

Evaluation of a and /(a)

In order to obtain (g, r) sets from times series data, recurrence times from Figure 6 are 

used to evaluate probabilities, following Jensen et al. (1985). Probabilities are expanded 

over selected ranges of q to give corresponding values of T as graphical slopes over specified 

ranges of log£. We then evaluate a and /(a) usings Eqs. (8) and (9).

Prior to expansion, we associate the recurrence time, mt , with the reciprocal of the 

probability, pt (Jensen et a/., 1985):

mt = i . (10)
Pi

Therefore, from Eq. (2) we have

or

Eq. (lib) represents spot estimates of a prior to expansion, but it does not adequately 

identify f(a).

To carry out an evaluation, we average the probabilities expressed by the recurrence 

time in the expanded form (Jensen et a/., 1985):

where braces indicate that recurrence times are averaged at a fixed value of q and t over 

all of the points in phase space. This averaging is done for a range of q-values between   oo 

and 4oo, and for a range of normalized ^-values between 0 and 1. Replacing probability 

summations in Eq. 5 by averages from Eq. (12), the partition function is still of order 

unity, and T is given by the slope of log (m\~q ) vs. \ogt. The slopes (T) are negative for 

q < 1, zero for q = 1, and positive for q > 1.
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The expansion of recurrence times described by Eq. 12 satisfies two goals: (1) It 

places the phase data in a form consistent with generalized dimensions of a partition 

function (Hentschel and Procaccia, 1983; Grassberger and Procaccia, 1983). (2) It 

smooths inconsistencies of raw values of logmt vs. logti by averaging (m*"9 ) over many 

combinations of q and I.

Hentschel and Procaccia (1983) emphasized that a fractal object is not completely 

characterized by the Hausdorff dimension (c/., Mandelbrot, 1986). They designated 

families of fractal dimensions by the symbol Dq , where q is unlimited. Integer values of 

q correspond to other definitions of fractal dimensions: e.g., the values q = 0, q = 1, and 

q = 2 correspond, respectively, to the HausdorfF dimension, the information dimension, and 

the correlation dimension, symbolized D^, DI, and D^. It was shown that D? < D\ < DQ 

for the classes of fractals considered by Hentschel and Procaccia (1983, p. 436; c/., 

Grassberger and Procaccia, 1983). These values are often nearly equal and represent three 

points on the singularity spectrum clustered near the maximum value of the spectrum, Do- 

Thus, a general evaluation of Dq clarifies the issue of correlation dimension (Z?2 ) previously 

discussed. Halsey et al. (1986) described ways to express Dq in terms of variable scaling 

dimensions and coined the term singularity spectra of fractal measures. They showed that 

T = (q   l)Dq , which approaches asymptotic limits (Z?+00 , Z?_oo) at q = ±00; near these 

limits T is almost proportional to q because Dq is nearly constant beyond q = ±40.

In practice, m-values were determined as in Figure 11 over a range of target diameters 

(I-values), taking each one of the points in the phase portrait in turn as a target center. 

The number of steps between each hit represents a value of mt , and each point in the phase 

portrait could theoretically represent anywhere from zero to an infinite number of hits in 

that vicinity, depending on target size. Every mt , at given £, is raised to the power <?, and 

each set is averaged at that value of t and q over all target points, providing a list indexed 

by q and L

We chose 60 increments of q at values between  7 and +12 to represent the range of 

variation in a-sets, compared with the range  40 to +40 in Halsey et al. (1986, Figures 13 

and 14). Increments of q ranged from ±0.1 near q = 0, to ±1 at the largest values. 

Although the asymptotes of Dq (invariant limits of a) are not reached even at q = +40,
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much of the variation of f(a) vs. a occurs within q = ±10. We did not investigate larger 

absolute values of q because of propagation of errors and limitations on computer time.

Logarithmic plots of (mi ~ q } vs. normalized target diameters, £, at constant values of 

q are given in Figure 12 for each of four sets of tremor data. In each case there were 64 

values of t at equal increments between 0.01 and 0.80 within the normalized interval 0 

to 1. These plots are the primary data for the fractal properties of the phase portraits.

Figure 12 gives us a number of possible regression fits of log (m\~^} vs. logf. so that 

the estimates of r are not uniquely fixed. This is expected for limited data sets (cf., Gwinn 

and Westervelt, 1987). Instead of relying on such fits we take a more robust graphical 

approach based on Eqs. (6) and (12), combined with Eqs. (8) and (9), that allows us to 

simultaneously evaluate r, a and f(ot). This is described in Figure 13.

Figure 13A shows that when we evaluate an apparent value of r (r0 ) as slopes defined 

by the ratio of log^ 1 "9 )/ log£, the range of values is smaller than the range of partial 

regression slopes in Figure 12. The effect is similar to forcing the regression through the 

origin log^ 1 "9 } = 0, log£ = 0. Although this is not rigorously equivalent to Eq. 6. we 

found by testing many combinations of Iog(m 1 ~ <? ) and log t that results are more systematic 

on this basis, particularly for t not much greater than 0.1 nor much smaller than 0.01. 

Given sets of ra , we approximate a from Eq. 9 in the form a ~ Ara /A<jr for chosen values 

of t. This defines the product qa in Eq. 8 for each set. Eq. 8 also shows that f(a) = qot   r. 

Therefore, we plot ra and qa against q on the same coordinates. Differences between these 

values establish ranges of f(a) at each value of q. Examples are shown in Figure 13B for 

three values of log£ (   1.0,  1.4, and   2.0) for a small data sample.

This method is approximate but it is numerically direct and it identifies compatible 

ranges of r, a, and /(a). In most cases we find that relationships are most consistent for 

values near q = 0 ± 6. Outside this range, plots of T vs. qa may cross, indicating negative 

/(a) , which is not physically meaningful. The graphical method of Figure 13 is used to 

test the crossover effect vis a vis variations of \og(m l ~ ij }, log£, and ra . It also illustrates 

the stability of solutions at q = 0, where f(a) = DQ, and at nearby values corresponding to 

DI and DI (the latter can be evaluated by constructing curves of Dq based on the relation 

T = (q - l)Dq , and interpolating for q = I where the solution is indeterminate). These
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relationships are summarized schematically in Figure 13C; the dashed curves represent the 

uniform (random) set where a = /(a) = 1. Because /(a) max = 1 for the analyzed data, 

the dashed curves converge with the stippled envelope at q = 0.

SINGULARITY SPECTRA

Given numerical techniques for the characterization of singularity spectra described 

above, our main task is to apply them to the tremor data and to interpret the results 

in terms of known geometric structures of attractors and in terms of consistent physical 

processes. In the present section we give a vs. f(a) curves for tremor and compare them 

with well established singularity spectra obtained for coupled oscillators. These include 

physical experiments and a simple numerical model of coupled oscillators provided by 

the sine circle map. The latter has become widely recognized as a useful function for 

the study of nonlinear dynamic regimes; summaries of its general properties are given by 

Jensen et ai. (1984), Fein et al. (1985), Bak (1986), and Shaw (19876) (cf., Thompson and 

Stewart, 1986; Moon, 1987; and Schuster, 1988).

Results for Kilauean Tremor

Relationships summarized in the preceding section were used to determine singularity 

spectra of a vs. f(a) based on Eqs. (8) and (9) and Figures 12 and 13. Because the 

graphical determination of ra is most consistent for  2 < log I <  1, we evaluated ra 

for tremor data in Figure 12 for two values of £, 0.1 and 0.01. Using these two sets of rn 

for the range   7 < q < -1-12 we obtained the corresponding values of a and f(a) by the 

method of Figure 13 together with their averages at each value of q. The results are shown 

in Figure 14.

Reference curves in Figure 14 (solid lines) refer to a special regime of the sine circle 

map described in the next subsection. Our results can be compared to those of Jensen et al. 

(1985) obtained in a study of the quasi-periodic transition to turbulence in a system of 

coupled oscillatory convection (the spectrum they analyzed describes a structure analogous 

to that illustrated in Figure 5 near breakdown). The result for deep tremor durations
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(Fig. 14a) resembles that of Jensen et al. (1985) with regard to /(a) max = .Do   1 and 

«max   1.9 (most tenuous region of the attractor). Values of /(a) max are smaller in the 

other sets of tremor data (Figs. 146   rf), and amin is much smaller than those of the 

reference curve and the singularity spectrum of Jensen et al. (1985). Error propagation in 

our analysis of the tremor data is severe at large and small a compared to their results (see 

discussion of Fig. 13). The resolution of these spectra is discussed in the next subsection 

using an artificial data set based on the sine circle map. Physical analogies between the 

fractal structures of fluid turbulence and of tremor events will be discussed later.

Comparative Study of the Sine Circle Map at the Transition between Quasi-periodicity 

and Chaos

As a standard of comparison, we analyzed the same number of data points in artificial 

time series and return maps generated using the sine circle function (see Shenker, 1982; 

Jensen et al. , 1984; Fein et al. , 1985; Halsey et al. , 1986; Bak, 1986; Shaw, 19876).

The sine circle map is appropriate for the study of the fractal geometry of low- 

dimensional attractors for several reasons: (l) It is the simplest paradigm for coupled 

nonlinear oscillators (Bak, 1986; Shaw, 1987b). (2) It demonstrates transitions to chaos 

via quasi-periodicity that resemble the quasi-periodic transition to turbulence in fluids 

(e.g., Jensen et a/., 1985; Fein et al., 1985). (3) It demonstrates power spectra at the 

critical transition that are self-similar over an infinite range of ordered frequencies (Fein 

et a/., 1985). (4) It illustrates simple to complex clustering of trajectories in phase space 

and demonstrates several types of singularity spectra (e.g., Halsey et a/., 1986). (5) It 

shows how nonlinear systems are tuned and provides criteria for discrimination between 

mode-locking and chaos.

Finite difference recursion on the circle is analogous to studies of the quadratic 

equation of Figure 9, except that the control function is sinusoidal and there is an adjustable 

phase delay. We write a return function equivalent to zn +i = f(xn ) in terms of an angle 

0 expressed as a fraction of a revolution on the circle

( K \ 
  sin(27T0n ) , (13) 
27T/
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where 0n is the present value of the angle, 0n+i is the next value calculated from the 

function, ft is the bias (or bare winding number), and K is the strength of nonlinear 

coupling.

Numerical recursion is performed by solving for On+i, subject to assigned values of n, 

K, and an initial value of 6, and then substituting that value into the function as the next 

value of On - A transition between a regime of periodic at tractors (the regime of mode- 

locking and quasi-periodicity) and a regime of chaos occurs exactly at K = 1. This is the 

transition from a monotonic control curve to one with a local maximum; that is, there is a 

cubic inflection in the control curve at K = 1, and trajectories of motion at higher values 

of K are not invertible. The effect of maxima in the control curve is to cause overlap and 

mixing of the trajectories so that reversibility is destroyed (e.g., Fein et a/., 1985). An 

effect of this folding is that stable windows of integer period occur in the chaotic regime of 

the circle map just as they do in the chaotic regime of quadratic maps (e.g., Crutchfield 

et a/., 1986, p. 57; Shaw, 1987b, Figure 2). These windows bifurcate in period-doubling 

sets as K increases at constant H, or as H varies at constant K (in the latter case, forward 

and reverse bifurcation sets are characteristic; Shaw (1987b, Figure 2i)).

For 0 < K < 1, attractors may be either mode-locked or quasi-periodic. Mode-locked 

states are those in which the average angular iteration per cycle in Eq. (13) is a rational 

fraction. The average angle of nonlinear iteration is called the winding number (sometimes 

the dressed winding number), W, defined by:

(14)
n

where S0 signifies the total angular rotation relative to the initial position &Q, and n is 

the total number of iterations. Quasi-periodic trajectories are those for which W is an 

irrational fraction. In general, W is not simply defined in the chaotic regime.

Using Eq. (13) we generated sets of data which we plotted in the same way as the 

phase portraits of tremor. In this study, the winding number, W ', in Eq. (14) was set 

at the inverse of the Golden Mean = (5 1 / 2 - l)/2, or Wg = 0.618034 .... We term this 

universal condition of coupled nonlinear oscillations the Critical Golden Mean Nonlinearity,
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CGMN (Shaw, 19876 discusses why this state of tuning may be applicable to periodicities 

in nature). The CGMN is a powerful idea because it characterizes self-similarity over 

many scales by a single curve in a vs. f(a) space. Self-similarity occurs because Wg can be 

approximated by a unique series of rational fractions (see Shaw, 19876). In the laboratory, 

Wg can be arbitrarily set by adjusting a forcing frequency relative to the natural frequency 

of the system. By trial and error convergence we found that the value of bias, fi, required 

to give W - Wg to an accuracy of 10~ 15 is fi = 0.6066 ± 0.0001. That is, an irrational 

value of W occurs over a range of n, and it is impossible to give exact correspondances 

(problems of tuning to the CGMN are discussed in Fein et al. , 1985). We studied the 

range n = 0.61 ± 0.01 and found that spectra of a vs. /(a) within this range could not 

be distinguished on the basis of time series having 600 data points. The expansion of 

recurrence times for the circle map is shown in Figure 15A.

Singularity spectra of a vs. f(a.) for the circle map with 0 = 0.61 ±0.01 are estimated 

by the dashed curve in Figure 15J5, compared with the numerical curve of Halsey et al. 

(1986) (solid curve). The locus of points calculated by us is at slightly lower a. but has 

about the same maximum, /(a) = 1 (the HausdorfF dimension). Uncertainties evaluated 

by the method of Figure 13J5 are indicated by the error rectangles. Error bars shown 

by Jensen et al. (1985) for the singularity spectrum determined from convection data 

(2500 points) are smaller than those in Figure 15.0, and error bars shown by Gwinn and 

Westervelt (1987) for an experimental system of about 70,000 data points are smaller than 

those of Jensen et al. (1985). Based on these three data sets, the uncertainty appears to 

decrease roughly as the 1/4 power of the number of points in a phase portrait.

The form and uncertainties of the singularity spectra for the tremor data (Fig. 14) 

are similar to those in Figure 15.0. We note the following features of our tremor analyses 

relative to the CGMN curve: (1) The spectra for deep tremor roughly resemble the CGMN 

regime of the circle map (solid curves in Fig. 14) with regard to /max and amax for both 

the durations and onset times. (2) The spectra for intermediate-depth tremor are shifted 

to lower values of /max and amax in both modes. (3) The values of am in are similar in 

all the tremor spectra and are roughly half the value of ami n of the CGMN (the latter 

is theoretically 0.6326..., while amin for tremor is about 0.3 to 0.4). (4) Convergence of
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qa   T near /(a) max in Figures 13B and 13C suggests that values of DO, Z?i, and DI are 

approximately equal. Arguments summarized below favor the conclusion that uncertainties 

are partly a result of sample size and partly a result of composite effects.

Examples of Singularity Spectra for Other Objects and for Different Regimes of the 

Circle Map

As a rule, attractors can be represented by points and(or) continuous curves in 

a vs. f(a) diagrams. Continuity and ranges of dimensions determine the geometric 

distinctions. Dynamical systems tuned to more than one regime of behavior may show 

degeneracies and(or) composite effects. A phase portrait generated by the sine circle 

function (Eq. 13) for conditions where H and K take values sometimes in the mode-locked 

regime and sometimes in the chaotic regime would display composite properties. Period- 

doubling is an inherent structure of the chaotic regime (see examples in Shaw, 19876).

Examples of different singularity spectra a vs. f(a) are shown in Figure 16. 

Figure 16/1 represents a two-scale Cantor set, Figure 161? illustrates a period-doubling 

set. Figure 16C shows mode-locked sets of the sine-circle map, Figure 16Z? represents the 

critical transition of the circle map (CGMN), Figure 16£ is a schematic of a truncated 

singularity spectrum, and Figure 16F shows a degenerate set representing the nonsingular 

background /(a) = a = 1 interrupted by singularities of a discrete set with arbitrarily 

fixed a and /(a); the set plots at two points (1,1) and (a,/) in the a vs. /(a) diagram. 

A uniformly random set would plot at a single point a = f(a) = 1 (c/., Fig. 13C). 

We are especially interested in how the critical spectrum (Fig. 16Z?) relates to period- 

doubling (Fig. 1GB), mode-locking (Fig. 16C), and chaotic spectra because this may help 

explain differences between singularity spectra of tremor and the CGMN reference curves 

of Figure 14. The chaotic regime does not have a unique singularity spectrum, but period- 

doubling exists within this regime.

If tuning of the transition between mode-locked, quasi-periodic, and chaotic regimes 

of coupled oscillators is precise, the singularity spectrum is sharply defined and universal 

(Fig. 16D). We have called it the CGMN condition by analogy with the sine circle map 

(Fig.15) and with experimental data on oscillatory convection (Fein et a/., 1985; Bohr

26



et a/., 1984; Jensen et a/., 1984; Jensen et a/., 1985) and on current oscillations in tuned 

semiconductors (Bohr et a/., 1984; Gwinn and Westervelt, 1987). A Poincare section of 

continuous data would resemble the clustering of points on a closed loop or section through 

a torus, as in the lefthand diagram of Figure 5, or in Figure 16D (panel b). This is not 

seen in tremor portraits of Figure 6 because we are dealing with discontinuous sampling 

of a system of attractors and we cannot view this as a simple manifold such as that for 

the breakdown of a quasi-periodic route to chaos shown in Figure 5.

Singularity spectra of tremor (Fig. 14) resemble the transition between mode-locking 

and chaos. However, /(a) max is too low (with the exception of the curve for deep tremor 

durations, Fig. 14,4), and am in is consistently too small. Both effects could be caused by 

components of period-doubling and (or) mode-locking combined with the CGMN regime 

(compare Figs. 16.0, 16C, and 16/7). These admixtures tend to shift a and f(a) to 

smaller values than those of the CGMN spectrum. Low values of am j n suggest that the 

regions of most frequent recurrences in phase space (densest part of the attractor) have a 

flat distribution compared to the CGMN structure (see Eq. 2). However, roll-off related 

to incomplete sampling of tremor events below the detection threshold might also shift 

«min to low values (c/., Fig. 7). Despite these qualifications, the resemblances between 

singularity spectra for both tremor durations and onset time intervals in Figure 14 favor 

the idea that the tremor process is generally self-similar over all temporal scales.

PHYSICAL INTERPRETATION OF SINGULARITY SPECTRA FOR KI- 

LAUEAN TREMOR

In this section, we address the budget of magma transport under Kilauea volcano from 

the perspective of the singularity spectra that we have derived for the history of tremor. 

We interpret the volume domains of tremor sources in relation to sets of discrete fluid-filled 

fractures. Then, we analyze the relation between the relaxation process of these volume 

domains and the trigger mechanism for the activation of tremor. We express this relation 

by a mean-field model of fractal transport and forcing frequencies in which the average 

magma mobility is defined in terms of the trigger force and compatible relaxation times.
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The above indications of composite effects suggest a model of coupled nonlinear 

oscillators where a tremor-generating mechanism analogous to the circle map is tuned 

by the output of feedback functions related to magma transport regimes (Shaw, 1987a; in 

press). For these reasons, and others given below, we infer that the dynamics is manifested 

by Cantor-like distributions of fluid-filled cracks. An example of a singularity spectrum 

for a spatial distribution modeled as Cantor sets is shown in Figure 16A Accordingly, 

the singularity strength a would resemble the spatial distributions of inverse probabilities 

of flow-related tremor events, and /(a) would represent fractal distributions of these sets. 

By this view, singularity spectra provide signatures by which to compare and classify 

geometries of fracture systems that characterize mass transfer as functions of magma 

concentration, fracture geometry, rock strength, fluid pressure, and stress states. A 

schematic section of the path between the source of magma generation and the surface 

is shown in Figure 17.

Admittedly, structures in phase portraits of tremor data do not necessarily describe the 

spatial distributions of magma injection. However, evidence of universalities in singularity 

spectra for temporal data suggest possible universalities in spatial geometries by analogy 

with nonlinear periodicities of complex crystalline materials (Bak, 1986). That is, magma 

transport is envisioned to oscillate in spatial modes consistent with the temporal modes, 

and magma injection events are imagined to be analogous to particle trajectories in fluid 

flow near critical self-similarity. If so, the injection plexus is ordered over many scales of 

length and is sampled in modes departing either toward chaos or toward mode-locking 

depending on interactions of one or more forcing functions with the natural periods of the 

system.

The Volume Budget of Fracture-Related Magma Transport

Computer models of vibrating fluid-filled cracks and their radiation fields are described 

by Chouet (1988). Comparison of these models with the durations of deep and 

intermediate-depth tremor indicates that more than a single magma-filled fracture must 

be activated per episode. An enumeration based on an event duration of about 20 sec 

(Chouet, 1988, Fig. 1) for ongoing tremor lasting of the orders of 1 to 100 minutes implies
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that there are of the orders of 3 to 300 activated cracks per tremor episode; 20 seconds is 

used as a basis for the definition of a reference volume, V<j, that permits us to evaluate the 

volume budget of magma transport from our counts of tremor episodes. This assumes that 

a tremor episode is a composite of interacting long-period events, as inferred by Koyanagi 

tt al. (1987), Chouet et al. (1987) and Chouet (1988). The multiplicity of events, combined 

with variable viscosity and stiffness, suggest that the acoustic responses of tremor episodes 

have aspects that resemble the fluttering of a system of reeds or septa within a dendritic 

ensemble of fluid-filled cracks (c/., Figs. 16A and 17.Z?).

If we take an average of about 50 fractures per tremor episode within a hypocentral 

domain with an assumed radius of order 1 km and multiply by the number of episodes in the 

22-year record (about 1000 events), we obtain 50,000 fractures (the cumulative duration 

of the entire record divided by 20 sec gives about 76,000 fractures but we use 50,000 as 

a reference set). The fractures are distributed in clusters of many sizes between 5 km 

and at least 60 km depth and within a vertical cylinder of the order of 35 km radius (see 

Figure 3); this includes volumes between the conduit-like avenues of transport discussed 

by Koyanagi et al. (1987) and Ryan (1987). We do not restrict the enumeration to Kilauea 

proper because the general system includes transport paths beneath Mauna Loa and Loihi 

volcanoes, as shown in Figure 3 (if hypocenters of short-period events are included, the 

radius of influence is larger).

If the 1-km radius is an average, and if tremor episodes do not recur at exactly 

identical locations, then the cumulative volume of domains is of the order of 103 km3 

(average hypocentral volume times number of episodes). This is roughly 10~ 3 times the 

total cylinder within which hypocenters are distributed down to a source below 60 km; i.e., 

we have a structure of nested volume domains of variable dimensions: the total hypocentral 

volume fills a small fraction of the total rock column, and magma-filled fractures fill a small 

fraction of the hypocentral volume. Although we cannot measure these domains, this is a 

fractal distribution (the average magma concentration becomes smaller as the size of the 

domain in which it is evaluated becomes larger; see Mandelbrot, 1982, p. 85).

These estimates exclude fractures that correlate with tremor below the limits of seismic 

detection, but volumetric estimates will be larger only if the numbers of small-volume
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events dominate the statistics (size frequencies of basaltic dike swarms are discussed below). 

Assuming that each fracture has a characteristic volume that represents an increment of net 

magma transport in a quasi-steady process, we can estimate the mean volume of a reference 

fracture from a knowledge of magma supply. We take a supply rate of 0.1 km3 /yr (see 

Shaw, 1987a, Figure 51.7), giving 2.2 km3 of magma delivered to sites of eruptions and 

shallow intrusions over the 22-yr history. We want to know if this volume is consistent 

with a reference set of 50,000 fractures inferred from the total duration of tremor.

If we assume that these fractures have opened and closed like paired sets of bellows (on 

average, opening events and closing events balance), and the displaced volume is delivered 

to the surface, then the average volume per magma injection pulse is 2.2 x 109 /50,000 = 

4.4 x 104 m3 , and the equivalent flow rate normalized to 20 sec is about 2 x 103 m'? /sec. A 

fracture consistent with this volume would have dimensions of about 200 m x 200 m x 1 m. 

These values resemble those inferred by Aki and Koyanagi (1981, p. 7107) and by Chouet 

(1981, p. 6014) from seismic models of extensional episodes involving paired cracks: their 

estimates, respectively, were 700 m3 /sec and 929 m3 /sec, giving 1.4 x 104 and 1.9 x 104 m3 

for a magma injection pulse normalized to 20 sec during a composite episode. Fracture 

dimensions inferred from the above three volume estimates are comparable.

Dike measurements provide additional checks on fracture dimensions. The median 

value for dike thickness measured by Walker (1987) in the Koolau complex of Oahu is 

about 50 cm. He gave no estimates of dike lengths, but we can make inferences based 

on the work of Gartner (1985, 1986) on basaltic dikes of the San Rafael complex, Utah. 

Gartner (1986, Figures 7 and 8) gives histograms that show a peak frequency at a thickness 

of about 110 cm and at a length of about 150 m. The median of Gartner's thickness data is 

also about 100 cm, or roughly twice Walker's value; San Rafael dikes less than 40 cm thick 

are infrequent compared to the Koolau data, possibly because of poorer exposures of thin 

dikes. The volume of the median San Rafael dike is about the same as our estimate for the 

reference fracture based on event counts. Measurements by Walker and by Gartner are 

similar in that a power law describes the size-frequency data; they are interpreted as fractal 

sets with an average fractal dimension of about 1.5 in plan view. Despite the difference 

in median thicknesses, the fractal similarity of log-log plots suggests that the data are
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comparable. These are not rigorous comparisons, but they agree with the seismic estimates 

of fracture volumes. Thus, all estimates of fracture dimensions suggest a maximum fracture 

length less than 1 km.

Our estimation of VQ is consistent with statistics of dike measurements and with 

seismic models of the tremor source, and at first glance it would appear that the bellows 

model gives a balanced budget: i.e., there are 50,000/22 = 2273 magma injection pulses per 

year associated with a reference injection pulse of 20 sec, an average volume of 4.4 x 104 m3 

per pulse, and a total magma transport rate of 0.1 km3 per year. There are, however, 

kinematic problems with this budget. One problem is the fact that the average of 2273 

pulses per year would represent the active magma volume from 5 km down to 60 km depth. 

In order to satisfy the supply rate, fractures at all depths would have to contribute to near- 

surface intrusions and eruptions. This is inconsistent with the distribution of long-period 

events in Figure 3 and with intermittent fracture having length scales less than 1 km. The 

scale problem is clarified by considering averages over different depth zones.

Summations of data in Figure 1 give 1.60 x 104 min of deep tremor and 0.94 x 104 min 

for intermediate-depth tremor (the latter includes data from 1 January 1980 through 

31 December 1983 not shown in Figure 1). The average gradients of tremor rates are 24.2 

min yr" 1 km" 1 for 30-60 km depth, 42.7 min yr" 1 km" 1 for 5-15 km depth, and 21.0 min 

yr~ l km" 1 for 5-60 km. If the lower 1/3 of the quiet zone is added to the deep zone and 

2/3 to the intermediate zone, then a constant 21 min yr" 1 km" 1 satisfies the intervals 5-25 

and 25-60 km. Taking 1 km as a hypothetical length scale for stratification of magmatic 

injection (i.e., compatible with maximum lengths of individual fractures inferred above), 

the mean gradient (21 min yr" 1 km" 1 ) corresponds to 63 reference pulses per year per 

1-km layer (normalized to a 20 sec injection pulse and averaged over 22 years and 5-60 km).

A reference volume, V0 , that simultaneously fits the stratification, a supply rate of 

0.1 km3 /yr, and the areal distribution of hypocenters is nonunique. Let us consider the 

magmatic budget within a 1-km layer; we can write the following equation:

, (km3 ) (15) 
n
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where AS is the horizontal cross sectional area of the rock column within which incremental 

transport is assumed to occur (taken to be a vertical cylinder), 0 is the yearly ratio defined 

by the volume of magma in a 1-km layer divided by the volume of that layer, n is the yearly 

number of injection pulses of volume VQ associated with measurable tremor in the 1-km 

layer, and k   n/n* is the ratio of n to the total number of injection pulses of volume V0 in 

the layer required to give the correct yearly magma supply rate. Correlation with supply 

rate is given by the vertical drift velocity v = dz/dt. For the above parameters, the drift 

velocity is estimated by:

(km/yr)
where 0.1 is the assumed constant magma supply rate, and $ is the long term average 

volume fraction of magma within each layer. In the steady state, 0 and v are constants, 

and the former represents the fraction of magma actively transported by the fracture 

mechanism. When extensional fracture is the only displacement mechanism, 4> = $, 

otherwise 0/$ represents the ratio of fracture transport to other forms of transport and 

storage.

If all transport events are recorded by tremor, then for constant supply rate V0 

only depends on the area of the path, AS, the magma fraction $, and the incremental 

number of events, n. Shaw (1980, p. 248) estimates $ « 10~ 5 based on compressibility 

and tensile strength. For $ « 10~ 5 in Eq. (15) and V0 « 4.4 x 10~ 5 km3 , and with 

n = 63 pulses per km per year and k = 1, A5 would be much smaller than the total 

area encompassed in Figure 3 (this area has a radius of about 35 km if one includes 

Mauna Loa, Kilauea, and Loihi volcanoes). For example, if we reduce A5 to an area 

of radius 10 km (314 km2 ) and assume that all events are recorded (k = 1), we obtain 

V0 w 5 x 10~ 5 km3 . But when we use these values ($ = 10~ 5 , AS = 314 km2 ) in Eq. (16) 

we obtain v « 30 kmyr" 1 . Large values of v can exist transiently, but we assume that 

the average distance of vertical magma migration per year is much smaller than 30 km. 

A reasonable fit is obtained by setting AS = 314 km2 (radius = 10 km), $ = 10~ 4 , 

and k = 0.1, giving V0 « 5 x 10~ 5 km3 and v « 3 kmyr" 1 ; this would imply that the
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observed events are not only localized but they are a tenth of the number of equivalent 

volume pulses needed to satisfy the transport. Alternatively, if we set v « 3 krnyr" with 

$ = 10~ 5 , k = 1, A5 = 3849 km2 (corresponding to an assumption that tremor events 

document magma transport throughout the area of radius 35 km depicted in Figure 3), 

then we obtain VQ « 6 x 10~ 4 km3 , more than an order of magnitude larger than other 

estimates.

When all three coefficients, A:, $, and 4> are allowed to vary, consistent values of drift 

velocity and fracture volume can be obtained for a variety of assumptions. Also, if there is 

a threshold of VQ below which tremor is not detected, then n" can be arbitrarily large. For 

example, if the threshold were VQ   10~ 6 km3 , and n' = 104 , the transport fraction and 

drift velocity remain consistent with the above values (if n" were small, aseismic V0 would 

be very large for consistent transport areas, magma fractions, and drift velocities). Large 

aseismic VQ would imply that the medium has little strength and magma storage should 

ensue (sill-like zones), eventually causing seismic instabilities (seemingly a paradox).

With present data we cannot assign unequivocal values to the above parameters. 

However, their possible ranges are consistent with a relationship between the percolation 

of fluids through multifractal networks of fractures in solid media and the varieties of 

acoustic and seismic phenomena that accompany that transport.

A Mean Field Model of Volumetric Relaxation for the Tremor Process

Additional insight into the tremor process can be gained by considering relationships 

between magma transport, scaling of volume domains, and relaxation times that are 

simultaneously consistent with a mean trigger force and with the spectrum of tremor 

periods (dominant seismic period, episode duration, and onset interval). The mean-field 

properties of transport are associated with packets of fluid, or 'particles,' in a manner 

analogous to mean field theories of semiconductors. The rock matrix is the analog of 

a complex lattice within which mass particles are transported in response to force fields 

acting at appropriate temperatures and crystalline states. The terms 'packet' and 'particle' 

symbolize configurations of mass (fluid-filled cracks and/or rock matrix) that differ from
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the motions of individual atoms, electrons, etc. The mean flow responds to the stress- 

field vs. mass flow-field behavior of the Earth in a manner analogous to voltage vs. current 

behavior of tuned semiconductors. The record of seismic tremor identifies analogous mean- 

field properties of force vs. flow responses of the lithosphere and volcanic edifice.

Despite the fact that the vibrational properties and radiation fields of the tremor 

mechanism can be described in detail (Chouet, 1988), there are a number of puzzling 

features of the tremor process that the mean field model should address. For example, what 

is the cause of a trigger event that activates long-period events and bellows-like motions? 

The answer is complicated by the fact that each magma injection pulse corresponds to 

many trigger activations and each tremor episode represents many pulses. This suggests 

that a tremor episode correlates with a local plexus or dendrite of fluid-filled fractures 

(Fig. 17B) within the hypocentral volume and is consistent with the multifractal character 

of the tremor history. Accordingly, the trigger mechanism responds to the relaxation 

frequency of the hypocentral plexus coupled with the characteristic frequencies of the 

fluid-filled cracks.

By this view, the trigger mechanism punctuates the timing of coupled oscillations of 

fracture and flow in a manner analogous to the escapement mechanism of a nonlinear clock. 

Accordingly, it is a self-actuating mechanism. A general relationship between forces, flows, 

and relaxation times gives some insight into how this may work. The energy comes partly 

from the stresses of plate tectonic motions and partly from gravitational energy related to 

buoyancy forces of magma rise. The energetics of the mechanism was analyzed by Chouet 

(1981). He gave the magnitudes of force couples, pressure drops, and volume increments 

required to satisfy an average frequency of 1 Hz in the tremor seismogram; we assume this 

applies to deep tremor of the same frequency. The trigger force applied by the fluid to the 

crack for increments of opening at 1 per second was estimated to be F « 10 14 dynes.

Assuming that relaxation drives the tremor mechanism, we derive relaxation times 

consistent with mean-field relationships between the trigger force, F, the mobility of mass 

transport, jz, and the mass of a transport domain, m*. As in molecular dynamics, mobility 

represents the drift velocity per unit force: fi   v/F. The relaxation time is given by 

T"   m\i*. (e.g., Fraser, 1986; asterisks are to avoid confusion with symbols mt and r in
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the partition equations). The drift velocity, v, is given by Eq. (16). For a supply rate 

of 0.1 km'3 /yr and $ = 10~ 5 averaged over the total transport path (cylinder of radius 

35 km), we obtain v = 8 x 10~ 3 cm/sec.

If the trigger mechanism reflects the stress response of a hypocentral domain, then 

the total mass of that domain contributes to the mobility. A domain of radius 1 km has a 

mass of the order of 10 1G gm, giving T? « (8 x 10~ 3 )(1016)/1014 = 0.8 sec. Although this 

is not a rigorous forcing frequency, a mean-field theory of multifractal domains seems to be 

consistent with the scaling of transport parameters. In this respect the theory treats the 

tremor process in a manner analogous to triggering of electron transport in semiconductors 

and other solid state devices (Bohr et a/., 1984; Gwinn and Westervelt, 1987). Notably, 

if the trigger frequency were expressed in terms of magma instead of rock mass, then 

we would have to increase the volume scale and(or) decrease the trigger force in some 

combination that compensates the mass difference.

When the mean-field analysis is expanded to include the responses of larger-scale 

geometries, it eventually must include states of stress and relaxation tinws implied by plate 

tectonic motions. These are much longer than the time scales of tremor processes in our 

discussion. But, if the forcing frequency of the trigger mechanism involves relaxation within 

sets of fluid-filled cracks in the near-field of the hypocenter, then forcing frequencies for 

activations of different hypocenters involve interactions at distances normally considered to 

be in the far-field relative to the tremor mechanism. In the fractal context, these near-field 

and far-field effects are not dynamically separable.

To illustrate, we re-scale the mean-field parameters to describe the larger structures. 

The drift velocity is the same, and if the magnitude of the force term is not changed, 

then the scaling refers to analogous correlations of relaxation times and mass domains. 

Applying these relations to tube-like volumes described in Koyanagi et al. (1987) and 

Ryan (1987), we obtain relaxation times, r", of the orders of magnitude of the average 

tremor duration (about 25 min). By the same token, the mass of the total subvolcanic 

cylinder of radius 35 km and length 60 km correlates with the order of magnitude of the 

average onset interval between tremor episodes (about 16 days). We do not argue that 

the scaling is correct, but a spectrum of relaxation times that simultaneously describes
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forcing frequencies of tremor spectra, duration spectra, and spectra of onset times must 

be hierarchical over many volume domains that are clustered in the fractal sense. The 

'plumbing system,' 'columnar distribution,' and 'compartmentaF sources for eruptive loci 

in Hawaii, identified by the summit locations of Kilauea, Mauna Loa, and Loihi volcanoes 

(Koyanagi et a/., 1987, pp. 1248-1257), are qualitative terms for the fractal geometry of 

these dynamical processes.

There are testable distinctions between a mean field model and a conduit model (e.g., 

Eaton and Murata, 1960) or a model that implies a neck or throttle in a plexus of conduits 

and dike injections (e.g., Ryan, 1987, in press). This is because fracture is the rate-limiting 

control on transport in our model; we minimize the role of continuous flow except within the 

upper 5 km where stress states permit conduits to remain open independently of magma 

pressure fluctuations. During magma ascent from the asthenosphere (Fig. 17), solid state 

stress relaxation is sufficiently rapid and interactive with magma pressures that fractures 

open and close transiently over relatively small length scales. The model by Ryan (1987, 

in press) invokes dike injections, but he emphasizes continuity between a neutral-buoyancy 

horizon at a depth of about 3 km and a cylindrical 'primary conduit' extending to a depth 

of about 40 km below Kilauea. High transport rates in this vertical cylinder correspond to 

special sets of parameters in Eqs. (15) and (16) that give large localized magma fractions 

and (or) drift velocities v.

When the term 'conduit' is applied to sets of densely clustered magma injections 

(Ryan, in press) it is consistent with the concept of variable clustering in a fractal 

percolation model such as we describe. In that sense, Ryan's model can be viewed as an 

end member of the clustering model. However, we do not consider the 'quiet zone' at 15-30 

km in our model to be a unique neck or throttle in the flow field. It may represent a region 

of more frequent magma injections that produce vibrations below detection threshold. If 

so, it could more closely approximate the CGMN condition. A similar situation may apply 

to the region between the asthenosphere and the zone of deep tremor in Figure 3.
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DISCUSSION AND CONCLUSIONS

If the tremor process is interpreted to represent nonlinear resonances, then local 

portions of the system apparently can be tuned to a specific regime, such as the mode- 

locking regime (perhaps to a single attractor within a regime), while other portions are 

more globally tuned to the CGMN and(or) chaotic regimes. This is not a contradiction 

in a Theologically diversified medium. Local spectra of long-period events and tremor 

reflect the geometries of magma concentrations in fluid-filled cracks, while the spectra of 

tremor durations and onset times reflect the geometries of sets of hypocentral domains and 

their clustering within the lithosphere. The scaling of transport parameters in Eqs. (15) 

and (16) and structures described by Koyanagi et al. (1987) and Ryan (1987) support this 

interpretation. Such a system of attractors is largely self-regulating.

Many uncertainties and paradoxes persist in our understanding of the tremor process. 

Some aspects relate to the fact that relationships between attractor domains in the mode- 

locked, CGMN, and chaotic domains may be unpredictable, even though they are aspects 

of the same system of coupled oscillators, because of sensitive dependence on initial 

conditions. This situation is unsatisfactory to the extent that we are unable to correlate 

these regimes with volcanic behavior. We conclude by indicating data needed to elucidate 

the relationships between fractal geometry and dynamics. These data should address 

contradictions in the observations, such as the following:

(1) The geometry of time series of tremor intermittencies is roughly self-similar, as 

expressed by singularity spectra of episode durations and onset intervals of deep and 

intermediate-depth tremor, but the respective time series differ greatly in detail (see 

Figures 1 and 4).

(2) The total durations of tremor over the intermediate and deep zones divided by 

depth intervals and length of the record give similar values of average rates per unit depth. 

If these values represent moment rates per unit depth, and if moment rates correlate with 

magma transport rates per unit depth, then the gradients fluctuate in time and are not 

in phase with each other or with the total supply rate inferred from summit tilt data; 

compare depth zones in Figures 1 and 4 with supply rates in Dzurisin et al. (1984).
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(3) Rate fluctuations with depth are sometimes correlated, according to Koyanagi et al. 

(1987, p. 1256), who state: "After sustained high rates of shallow intrusions, deep long- 

period events tend to persist and the rate of reduced displacement of deep harmonic tremor 

tends to increase." A similar point was made by J. P. Eaton (written communication, 

24 June 1987) regarding observations prior to 1961. These may be failure cascades (Shaw, 

1980), suggesting that coupling of shallow and deeper tremor cannot be ignored.

(4) Because the 'quiet zone' lies between the deep and intermediate zones, fluctuations 

in gradients with time imply variable rates of magma accumulation in this zone if the 

tremor responses are not in phase (see discussion of Eqs. (15) and (16)).

(5) If different depth zones are not mutually in phase and are not in phase with 

fluctuations in the total magma supply rate, then transient storage exists at all depths 

and (or) transient fluctuations exist in lateral transport rates at all depths.

(6) Discrepancies between cumulative reduced displacements for tremor events and the 

total magma supply rate (Aki and Koyanagi, 1981) imply either that: (a) moment rates 

inferred from source models of tremor are correct, but the catalog of events is incomplete, 

or (b) deep magma transport correlates with source mechanisms that include aseismic 

behavior and(or) moments of short-period earthquakes (e.g., relaxation effects of short- 

period events represented by viscous losses within a plexus of fluid-filled fractures; cf., 

seismic efficiencies in Shaw, 1980, Fig. 18).

(7) The ratios of domain mass, mt*, to trigger force, F, in a mean-field description of 

tremor time scales are large. Because the mean-field model refers to steady-state balances, 

we infer that there are effects of very long-range coordination in the tremor process, and(or) 

the force is excessive and the triggering mechanism requires reevaluation.

This list does not exhaust questions raised by the singularity analysis, but it identifies 

some important deficiencies of documentation. These points might be boiled down to 

a central paradox in which two statements seem equally true: (a) We can account for 

the budget of magma transport by counting the observed tremor episodes and fracture 

dimensions multiplied by a constant proportion (k in Eq. (15)) of unrecorded events; i.e., 

the magma supply budget is basically measured by tremor durations, (b) Transport rates 

are decoupled from tremor rates in a way that minimizes seismic activity and maximizes
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magma storage and(or) aseismic transport in some regions; i.e., the major portion of 

magma transport is not measured by tremor durations.

A glaring problem is the lack of information concerning the relationship between 

tremor amplitudes and episode durations at the limit of seismic detection. This is 

important to the evaluation of am| n in the singularity spectra of Figure 14, to the limiting 

fractal dimensions in Figure 7, to issues of phase correlations between depth zones, and 

therefore to issues of correlations between tremor moment and magma storage as a function 

of depth. Storage events are implied over all depths if tremor episodes of decreasing 

amplitudes increase in numbers without limit. In that case, the limiting slopes in Figure 7 

that appear to define a fractal dimension D = 0, and the low values of am -, n in Figure 14, 

are artifacts of roll-off in the documentation of episodes and amplitudes. Alternatively, 

if the truncation in the counts of tremor events are real, then there is a physical limit 

below which tremor cannot be activated, and there are fracture dimensions below which 

significant increments of magma transport do not occur (i.e., the roll-off is physical, and 

relatively large-scale fracture rather than small-scale fracture and(or) porous-media flow 

is the rate-limiting mechanism of transport).

These alternatives may require new interpretations of earthquake source mechanisms. 

Existing energetic analyses of the trigger mechanism for long-period events may be 

incomplete, implying that we do not fully understand the relationship between fracture 

propagation and fluid transport. By any interpretation, the missing information concerns 

the role of magmatic interactions with the earthquake mechanism at all time scales. 

Apparently we cannot treat long-period and short-period earthquakes as phenomena with 

distinctly different and separable source mechanisms. In order to clarify these relationships, 

we need data of the following kinds: (1) catalogs that include composite indexing in space 

and time of both long- and short-period events, (2) assessment of event frequencies below 

M = 1, (3) more complete documentation of earthquake spectra at frequencies below 1 Hz, 

(4) improved resolution of amplitude data for tremor episodes, (5) more complete analysis 

of the geometries of radiation fields of different types of events, and (6) improved rheological 

insight into the nature of the fracture process in materials that involve a fluid phase that 

has significant (and over short time scales, potentially very high) vapor pressures.
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Some relevant studies are currently in progress. With even some of this information 

in hand, and the knowledge that theories of coupled nonlinear oscillators are appropriate, 

we may be able to confirm the nature of volcanic attractors. It is possible that some 

of the contradictions we have noted are dynamical artifacts of multifractal singularity 

distributions. It is therefore imperative to decrease uncertainties caused by limited 

sample size, perhaps by extending the method to include short-period earthquakes. The 

application of singularity analysis to the earthquake process has much in common with 

applications to theories of turbulence in fluids, oscillations of magnetic fields in conducting 

fluids (e.g., the core dynamo) and ordering in solid state electronic devices. Advances in 

these areas of study may permit us to map out the characteristic dynamical regimes and 

universalities that are most relevant to the coupling of tectonic and volcanic evolutions 

and to the evaluation of earthquake and eruption hazards in Hawaii.
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FIGURE CAPTIONS

Figure 1. Record of tremor durations for individual events used in this study: A. Deep 

events (30-60 km) from 1 January 1962 through 31 December 1983: total, 1.60 x 104 min; 

average, 727 min yr" 1 . B. Intermediate-depth events (5-15 km) from 1 January 1962 

through 31 December 1979. Durations exceeding 99 min occurred on 10/25/65 (210 min), 

9/6/69 (480 min), and 10/11/71 (195 min); data after 31 December 1979 available as daily 

sums: total, 7990 min to 1980; daily readings add 1410 min through 1983. 22-year total, 

0.94 x 104 min; average, 427 min yr" 1 .
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Figure 2. Durations and onset intervals in Figure 1 normalized to unit range: (a) Deep 

durations normalized to 99 min. (b) Deep intervals (days between onset of tremor episodes) 

normalized to greatest value (117.92 days), (c) Intermediate-depth durations normalized 

to 99 min. (d) Intermediate-depth intervals normalized to greatest value (412.00 days).
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Figure 3. Schematic illustration of short-period and long-period earthquake hypocenters 

beneath Kilauea (redrawn from Klein tt al. , 1987 (Figs. 43.16 and 43.17), and Koyanagi 

et al. , 1987 (Fig. 45.27)). Dots are short-period earthquakes of magnitudes greater 

than 2 to 1980 and greater than 1 after 1980 (cross-hatching indicates greatest density of 

events). Heavy dashed lines and triangles are regions of long-period events of magnitudes 

greater than about 1 (intermediate depth) to 1.5 (deep) during roughly same time 

period; horizontal lines demark intermediate-depth (5-15 km) and deep (30-60 km) tremor 

episodes. Interval 15-30 km depth is 'quiet zone' of least seismic activity at detectable 

magnitudes: A. Hypocenters within a vertical swath trending west-northwest to east- 

southeast. B. Hypocenters within a vertical swath trending southwest to northeast. 

CJ. Epicentral plot of southeast portion of island that includes Kilauea, Mauna Loa, and 

part of Loihi volcanoes, showing swaths of hypocenters in A and B.
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Figure 4. Logarithms of tremor rates vs. time calculated from Figure 1; rate (min day l ) 

defined as episode duration divided by difference of onset times between episodes: A. Deep 

tremor. B. Intermediate-depth tremor.
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R/Rc =r2.0

RESEMBLES CGMN BREAKDOWN APPROACHING CHAOS

Figure 5. Phase portraits (top) and Poincare sections (bottom) for forced convection 

(Couette-Taylor flow) near onset of turbulence (chaotic regime) (from Brandstatter et al. 

, 1983). Top gives 2-dimensional plots of radial velocity vectors from Doppler velocimetry 

at given time, t, and time shifted by t + 130 (ms), as function of Reynolds number, R (Rc 

is critical value for formation of Taylor vortices). Bottom shows sections of 3-dimensional 

phase space in which third dimension is velocity vector at t + 260 (ms); sections located by 

dashed lines. Poincare sections resemble sine circle map at onset of chaos and phase plots 

of oscillatory Rayleigh-Benard convection excited in second mode (Jensen et a/., 1985).
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Figure 6. Phase portraits (return maps) of deep tremor based on data of Figure 1 

(subdivided into six parts of about same numbers of recurrences, and total for 22 years): 

dots give one reading vs. next reading plotted in sequence of Figure 2; solid lines connect 

sequences of readings, as in return maps of quadratic equations (e.g., Feigenbaum, 1980) 

and sine circle map (e.g., Jensen et a/., 1984, Fig. 1). Clustering of points on the plane 

xn+i us- XH is analogous to clusters on the circle map, i.e., circle map is analog of Poincare 

section of portrait of coupled oscillator (see Fig. 5; Fig. 16Z), panel b): A. Durations (min).
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Figure 6. Phase portraits (return maps) of deep tremor based on data of Figure 1 

(subdivided into six parts of about same numbers of recurrences, and total for 22 years): 

dots give one reading vs. next reading plotted in sequence of Figure 2; solid lines connect 

sequences of readings, as in return maps of quadratic equations (e.g., Feigenbaum, 1980) 

and sine circle map (e.g., Jensen et a/., 1984, Fig. 1). Clustering of points on the plane 

xn+i vs. xn is analogous to clusters on the circle map, i.e., circle map is analog of Poincare 

section of portrait of coupled oscillator (see Fig. 5; Fig. 16.D, panel b): 

B. Logarithms of onset times (days).
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Figure 7. Logarithms of frequencies of occurrences of normalized durations and intervals of 

tremor episodes (data of Figure 2). Open squares connected by lines are logarithms of count 

of duration and onset interval per log increment on abscissa; open circles are logarithms 

of cumulative frequency (number of counts for size > log X on abscissa). Slopes, s, define 

fractal dimensions, D =   s (derivative of cumulative curves; regressions of incremental 

values for log X greater than about  1): (a) Deep durations; bin = 0.04 log unit, 

578 counts, (b) Deep onset intervals; bin = 0.08 log unit. 577 counts, (c) Intermediate- 

depth durations; bin = 0.04 log unit, 347 counts, (d) Intermediate-depth onset intervals; 

bin = 0.10 log unit, 346 counts.
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Figure 8. Divergence diagrams of return maps of tremor and of logistic equation, 

Zn+i = 4Axn (l   xn ). Time sequences as in Figure 2, and equal number of iterations
N N

of logistic equation (after transients). Ordinate is running sum £T Ax = £T(xn+i - xn )
o o 

(Fig. 6 expressed as fractions of unit range); zero baseline is artifact of starting value.

Highest peaks (maximum divergence) represent asymmetry of tremor plots caused by 

largest excursions relative to average. Periodic attractors have constant repeat interval of 

constant amplitude (see text): (a) Deep tremor durations; (b) Deep tremor onset intervals; 

(c) Fixed-point (4-fold) period of logistic equation (A = 0.880); (d) Chaotic regime of 

logistic equation with 4-fold bands (A = 0.990); (e) Chaotic regime with 3-fold band and 

intermittency (A = 0.970); (f) Chaotic regime lacking periodic intervals (A = 0.999).
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Figure 9. Test for period-doubling in tremor data: A. Histogram of counts of deep tremor 

durations illustrating average spacing, davg (w <?), at given count frequency, representing 

average 'period,' N, of spacing in return map (see Fig. 6A); dn is average spacing between 

branches of specific bifurcation pairs (solid bars in 9C) at fixed A, and davg is average 

spacing between entire set of N branches (solid -f dashed bars in 9C). B. Logarithm of 

(favg us. log TV from A compared with measure in period-doubling attractor (bifurcations 

of tree in C). Theoretical packing ratio, i/ = dn /dn+i, for period-doubling attractor 

is 2.5029... (universality parameter of Feigenbaum, 1978, 1980); corresponding slope w 

  1.32. C. Example of (favg « dn+ i for N   4 in period-doubling bifurcation diagram 

(from Testa et a/., 1982); return map analogous to Fig. 6 is constructed by plotting x-values 

over variable range of A (A 1? A 2 , A 3 mark successive doublings; A crj t jca i marks transition 

to chaos). Fine structure of chaotic regime (periodic windows, crises, etc.) illustrated by 

Jeffries (1985), Jensen (1987, Fig. 3).
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Figure 10. Fourier transform analyses of tremor data for tremor rates of Fig. 4 (left) 

and divergence series of Fig. 8 (right): (a) Deep tremor rates; sample size = 8192 (2n 

nearest 8030 days in Fig. 4), frequency increment = 1.2207 x 10 ~ 4 cycle/day, max. 

frequency 0.50 cycle/day. Spectrum meaningful for periods above 5 days (frequencies below 

0.2 cycle/day); evidence of unique period is weak peak at 5.33 x 10~ 3 cycle/day (188 days).

(b) Intermediate-depth tremor rates, analyzed as in (a); no indication of unique periods.

(c) Event series of deep tremor durations of Figure 8(a); sample size = 1024 (2n nearest 

577 events), no evidence of special recurrence intervals (see discussion of Fig. 8). (d) Event 

series of deep tremor onset intervals of Figure 8(b) analyzed as in (c).
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TIME SEQUENCE IN PHASE PORTRAIT

t £
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n

Figure 11. Schematic return map illustrating enumeration of recurrence times, mt , defined 

as number of steps (iterations) in phase space that occur between one visit and the next 

visit within a phase-space piece, or target, of diameter £t (see text for partitioning over 

entire space). Steps are numbered 1 through 18. Two targets are shown, one centered 

near step 1 (solid circles), the other at step 12 (dashed). Numbers on circles are values of 

t (arbitrary scale); number of steps (mj between "hits" within target t listed at right.
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Figure 13. Relationships between r, g, a, and /(a) (see definitions in text): A_. Apparent 

r (ra ) based on average slopes intersecting log£ = 0 (see Eq. (6)). B. ra from data of 

circle map in Fig. 15A for three values of log£ (   1.0,  1.4,  2.0) (symbols) and ranges 

of product qcx. (vertical bars), /(a) is difference qa   ra (Eq. (8)); negative values not 

physical (see error bars, Fig. 15B). C. Schematic of B for well-behaved data; product qa 

(upper solid curve) and r (lower solid curve) define /(a) envelope (stippled region); f(a) 

at q indicated by vertical lines. For uniform distribution in phase space (random set), 

a = dr/dq = 1 and a = f(a) = 1 (constant differences shown by dashed lines; see text 

and Fig. 16F).
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Figure 14. Singularity spectra for return maps of tremor constructed from normalized 

data of Figure 2 and method of Fig. 13 for log£ =   1 (crosses), log£ =  2 (dots) and 

their averages (open circles) for values of q from -7 to +12 (c/., Fig. 12). Solid lines are 

CGMN reference curve of Halsey et al. (1986, Fig. 14); see Fig. 16I>. Negative values of 

f(a) explained in Fig. 135: (a) Deep durations (577 points in portrait), (b) Deep tremor 

intervals (576 points), (c) Intermediate-depth durations (346 points), (d) Intermediate- 

depth intervals (345 points).
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Figure 15. Recurrence times (m 1 ~ q ) vs. t and singularity spectrum calculated for reference 

set of 600 data points in circle map of Eq. (13) for ft = 0.61 ± 0.01 and K = 1. 

A Recurrence times expanded vs. q as in Fig. 12. B Values of a vs. /(a) evaluated as in 

Fig. 13 B, illustrating propagation of errors (boxes) and averages (dashed) near reference 

curve (solid) of Halsey et al. (1986, Fig. 14). The CGMN curve (solid) corresponds to 

Wg = (5 1 / 2 - l)/2 « 0.618034... in Eq. (14) and range of n near 0.6066 in Eq. (13) 

(latter by trial and error bracket of Wg ). Theoretical limits are amin = 0.6326... and 

amax = 1.8980... at /(a) = 0, and /(a) max = 1 (exactly). Negative errors in f(a)

explained in Fig. 13B.
75



Figure 16. Examples of spectra for different measures. Maxima of /(a) are Hausdorff 

dimension, DQ\ f(a) = 0 defines limits of probability densities (amin is singularity strength 

of most dense and amax of most rarefied measures; e.g., panel c in B): A.. Two-scale Cantor 

set: (a) Singularity spectrum, (b) Recurrence ratios, (c) Standard Cantor set; spectrum 

degenerates to /(a) = a = 0.6309 ...(asterisk in (a)) (from Halsey et al. , 1986, Figs. 1, 

2, and 4). B. Period-doubling set: (a) Singularity spectrum (from Halsey et al. , 1986, 

Fig. 9). (b) Recurrence relations (from Halsey et al. , 1986, Fig. 7). (c) Bifurcation 

diagram (forcing increases downward) analogous to Fig. 9C (dense regions are mixed odd- 

period, period-doubling, and aperiodic sets of chaotic regime; from Jeffries , 1985, Fig. 2). 

CL Mode-locked sets of sine circle map: (a) Singularity spectrum, (b) Devil's staircase 

of rational winding numbers (Eq. 14) (from Halsey et al. , 1986, Figs. 10 and 12); c/., 

Bak (1986), Shaw (1987b). D. Critical transition of circle map (CGMN): (a) Singularity 

spectrum; see parameters in Fig. 15B (from Halsey et al. , 1986, Fig. 14). (b) Poincare 

section of coupled oscillatory convection tuned to CGMN condition (points are temperature 

readings; from Jensen et al. , 1985, Fig. 1). E. Schematic of truncated singularity spectrum 

for /(a)max = 1 and arbitrary a (from Halsey et al. , 1986, Fig. 5). F. Degenerate set 

representing nonsingular (uniform) background /(a) = a = 1 interrupted by singularities 

of arbitrary discrete set with fixed a and /(a). Set plots at points (1,1) and (a, /(a)) in 

the spectrum (from Halsey et al. , 1986, Fig. 6).
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Figure 17. Schematic illustration of magma transport path from source to surface, from 

Shaw (1980, Figs. 5 and 11): A. Longitudinal section of edifice, crust, lithosphere, and 

asthenosphere showing inferred stress distributions and convergent path of magma rise. 

B. Idealization of fluid-filled cracks distributed in dendritic clusters of self-similar fractal 

sets in vertical and horizontal sections; crack shapes and connectivities (after Hill, 1977) 

symbolize regimes ranging from pure extension (shaded) to pure shear (solid lines with 

arrows) according to failure regimes in Shaw (1980). See text for dike measurements and 

fractal dimensions.
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