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ABSTRACT

Analyses of recordings include processing of data, determining analytical models that 

match the record, and identification of the system from which the record is obtained.

Current methods that are used to analyze recordings in structural engineering are 

based on the classical filtering and Fourier analysis approach. These methods assume 

that: (a) either the signal and noise spectra are nonoverlapping, or there is a frequency 

band where the signal to noise ratio is high (i.e., noise can be neglected), and (b) the 

properties of the signal within the selected time window are time-invariant.

Recently, new methods for record analysis have been developed based on the concepts 

of adaptive filtering and stochastic approximation. These methods are commonly known as 

the stochastic-adaptive methods. Stochastic-adaptive methods make use of the statistical 

properties of the record, and integrate filtering, modeling, and identification into a single 

algorithm. The advantages of stochastic-adaptive methods over the classical methods are: 

(a) they can remove the noise from the signal over the whole frequency band, (b) they 

can track time-varying characteristics of the signal, and (c) they make it possible to apply 

adaptive control on unknown systems.

In this report, a concise theory of stochastic-adaptive methods, and their applications 

in structural engineering are presented. The theoretical part includes the following topics: 

discrete models for dynamic systems, one-step-ahead prediction, stochastic approximation, 

recursive prediction error method, model selection, model validation, spectral estimation, 

and adaptive control. The application part presents ten examples by using earthquake, am­ 

bient vibration, and simulated data. The examples include identification of time-invariant 

and time varying simulated systems; identifications of buildings with soil-structure in­ 

teraction, nonlinear behavior, and ambient vibrations; modeling of spectral shape, site 

amplification, and source scaling of earthquake ground motions; and adaptive minimum 

variance control of a simulated system and a building with ambient vibrations.

in



1. INTRODUCTION

Instrumentation of structural systems to investigate their dynamic behavior under 

various loads is becoming increasingly popular. Rapid developments in digital recording 

and computer technologies made instrumentation cheaper and more attractive today than 

they were before. In structural engineering, instrumentation has been used extensively 

to measure the quantities related to loads, such as earthquake ground accelerations, wind 

velocities, wave heights, and blast pressures. The development of models for structures 
has been mainly based on the theoretical approach, which makes use of the physical laws 
that govern the structural system (e.g., Newton's law), and the mechanical properties of 

the components (e.g., mass, stiffness, damping, etc.). When available, the recordings from 

structures were used to check the validity of the models. As a result of recent increases in 

the number of instrumented structures, the use of actual data along with the theoretical 

approach is becoming popular in structural analysis. The data from instrumented struc­ 

tures can be used to check the validity or to determine parameters of analytical models, 

and to develop empirical models. Instrumentation is also used for safety evaluation, where 
the load resistance characteristics of aging structures are determined by measuring their 

motions. A recent application of structural instrumentation is the fatigue detection of 

steel offshore platforms (e.g., Ibanez, 1987). The motion of the platform is continuously 

monitored. A sudden change in the characteristics of the recorded signal usually is a sign 

of crack initiation due to fatigue.

Increasing use of instrumentation has necessitated faster and more reliable methods 
for signal processing, modeling, and identification. It is well known that all recordings 

from dynamic systems contain noise due to mechanical imperfections in the recording 

instruments, and also due to ambient noise exists in the recording environment. Because 

of the random effects involved, it is not generally possible to determine the exact structure 

of this noise, so that it might be completely removed from the signal. The classical signal 

processing approach has been to remove the frequency components of the record that are 

dominated by noise by using band-pass filters. For the retained frequencies, although they 
still contain noise, it is assumed that the actual signal amplitudes are dominant over the 
noise, and therefore noise can be neglected. A large number of such filters are available in 

the literature (for detail, see Rabiner and Gold, 1975). Two types, the Butterworth and 

Ormsby filters, have commonly been used for earthquake recordings (Hudson, 1979).

During the last twenty years, new methods for signal processing based on the concepts 

of stochastic-adaptive filtering and prediction have been developed. These methods use 

statistical characteristics of data to filter the noise from the signal. The filter characteristics 

are initially unknown. They are estimated recursively in the time domain, and adjusted 
continuously by using the information extracted from the data. Such an approach inte-



grates filtering, modeling, and identification into a single algorithm. The filtering problem 

becomes equivalent to the estimation of the parameters of two recursive filters, one for the 

noise and one for the actual signal. Since the noise is generally unknown and random, a 

stochastic approach rather than a deterministic approach is used in the process. Various 

terms have been used in the literature to distinguish such signal processing methods, e.g., 

stochastic, adaptive, on-line, recursive, sequential, and real-time. The term that will be 

used in this report is stochastic-adaptive.

Stochastic-adaptive methods present four main advantages over the previous meth­ 

ods: (a) removal of the noise from the signal is done over the whole frequency band, which 

can not be accomplished by classical band-pass filters, (b) because of the recursive form of 

the algorithms, time-varying characteristics of the signal can be tracked, (c) only a small 

segment of the data is needed during the computations, and (d) the algorithm makes it 

possible to apply adaptive control on the system. The development of stochastic-adaptive 

methods are based on the pioneering works by Kolmogorov (1941) and Wiener (1949), and 

later by Kalman (1960) and Kalman and Bucy (1961). Today, these techniques are suc- 

cesfully being applied to various practical problems in guidance and navigation, automatic 

control, speech processing, and econometrics.

In this report basic principles of stochastic-adaptive filtering and prediction techniques 

are introduced, their use in modeling, identification, and control of discrete-time recordings 

is presented, and examples for applications in structural dynamics are given. Stochastic- 

adaptive techniques have been developed rather recently, mainly by researchers in statistics, 

electrical and control engineering, and econometrics. There are literally hundreds of papers 

on the subject, scattered in many journals in the above fields. The theory given in this 

report is concise and limited to that necessary to follow the examples. However, a large 

list of references is provided in the report for those interested in more detail.

The first part of the report presents the theoretical development, which includes sec­ 

tions 2 through 11. Section 2 gives the relationship between continuous and discrete-time 

representations of linear systems. Section 3 presents the time-domain and frequency- 

domain representation of discrete, single-input single-output (SISO) systems. Section 

4 introduces a general discrete-time domain model and its special forms for unknown 

SISO systems with noise. Section 5 presents basic components of recursive identification 

algorithms, including one-step-ahead prediction, the least-squares and maximum likeli­ 

hood methods, the concept of stochastic approximation, and the recursive prediction error 

method. Section 6 discusses the convergence and consistency of the identification, and 

section 7 gives the limits for the accuracy of the identification. Sections 8 and 9 present 

methods for model selection and model validity. Section 10 shows the use of the identifica­ 

tion algorithm for spectral estimation. Section 11 introduces an adaptive control algorithm



as an extension of the identification algorithm.

The second part of the report, section 12, starts with guidelines for preprocessing 

the data. Section 13 presents ten examples for the application of the theory, using both 

simulated data and actual recordings. Examples presented are as follows:

1. identification of a time-invariant simulated system,

2. identification of a time-varying simulated system,

3. identification of a building with soil-structure interaction,

4. identification of a building with nonlinear behavior,

5. identification of a building using ambient vibration data,

6. spectral modeling of ground accelerations,

7. identification of earthquake site amplification,

8. identification of earthquake source scaling,

9. adaptive control of a simulated system, and

10. adaptive control of ambient vibrations of a building.

Section 14 discusses the other applications of the method, and section 15 is the summary 

and conclusions.

2. DISCRETE-TIME REPRESENTATION OF CONTINUOUS SYSTEMS

Linear dynamic systems are generally described by continuous-time domain ordinary 

or partial differential equations. Modern recording instruments, however, are all digital and 

give measurements in the discrete-time domain. Thus, it is appropriate first to show the 

relationship between continuous and discrete-time representations, and present methods 

for converting from one to another.

The most straightforward approach to convert from the continuous to discrete domain 

is to approximate the differentials by difference equations. There are three approximation 

rules commonly used; they are the forward rectangular rule, backward rectangular rule, and 

the trapezoid rule. The forward rectangular rule (also known as Euler's approximation) 

approximates an nth order derivative by the following equation:

y v
L JL J \ JL /

where T denotes the sampling interval, q is the shift operator, such that q~k y(t) = y(t   k\ 

and the index t   k enumerates the sampling instant. The forward rectangular rule uses 

present and future values of y(t). A corresponding approximation using present and past 

values of y(t) is the backward rectangular rule given by the equation



(2.2)

If T is not sufficiently small (in comparison with the smallest period in the signal), rect­ 

angular approximations can give erroneous results because of the accumulation of errors. 

A better approximation is given by the trapezoid rule, or the so-called Tustin's method 

(Tustin, 1947), where the same derivative is approximated as

Inserting these discrete forms for continuous derivatives gives the equivalent difference 

equation for the system.

The second approach for converting continuous-time systems to discrete-time systems 

is based on covariance equivalence. The discrete-time system is determined by requiring 

that the output covariance function coincides at all the sampled points with that of the 

continuous system (Bartlett, 1946). For a simple damped oscillator with zero-mean white- 

noise excitation, for example, the continuous equation of motion is

) (2,)

where e(t) is the white-noise input, y(t) is the response, and m, £o, and CJQ denote the mass, 

damping ratio, and the natural frequency, respectively, of the oscillator. The corresponding 

discrete system is given by the following equation

y(t) + <*iy(t - 1) + a2 y(t - 2) = fax(t - 1) + fax(t - 2) (2.5)

The coefficients e*i, «2> ft 3 and ft can be calculated in terms of m, fo, ^o, and T from the 

equivalence of the continuous and discrete output covariance functions. They are given by 

the equations (Gersch and Luo, 1972)

= -2coso;oTyl - $ exp(-f0^0 T) (2.6)

(2.7)

ft = (V + 2*i + >>-2*i) (2.8) 

ft = |(>Ao + 2*i - >/*o-2$i) (2.9) 

where <!>i and #o are given as



= Ry(l) 4- <*i#y (0) + «2-R»(l) (2.10) 

= fly (0) 4- ai-Ry(l) 4- <*2#s,(2) 4- «ift (2.11)

y (k} denotes the autocorrelation of t/(i) for lag fc, calculated by the equation

N
Ry (k) = JE[y(*)y(* - *)] = - v(*M* - *) (

<=fc

where TV is the number of sampling points.
Two other approaches for discritization of continuous systems are the pole-zero map­ 

ping and the hold equivalence. They both aim to match the continuous transfer function 
by a discrete equivalent. More on these two techniques can be found in Franklin and Powell 

(1980).

Regardles of the approach used for discretization, the discrete-time equivalent of a 

continuous SISO linear system can be represented by a linear difference equation of the 

following form

y(t) 4- aiy(t - 1) 4-       4- an.y(* - na ) = bQ x(t) 4- blX(t - 1) 4-       4- bnb x(t - n b ) (2.13)

where a?(£) and y(t) are the discrete input and output sequences, respectively, and aj and 

bj are called the parameters of the system.

The most important element of discrete-time representation is the sampling interval, 

T. The sampling interval determines the highest frequency, the so-called Nyquist frequency, 

that the discrete signal can contain. Nyquist frequency is given in hertz as /N = 1/2T. 

No frequency information beyond /# can be extracted from a signal sampled with time 

interval T. A continuous signal f(t) with frequency content between (  /c ,/c ) can be 

completely reconstructed from its sampled values by the equation

provided that fw > fc . This is known as Shannon's sampling theorem (Shannon, 1949). 

The techniques used in practice for reconstructing continuous signals from their sampled 

forms are much simpler. The most widely used one is the zero-order hold, where the signal 

amplitude is assumed constant (i.e., equal to the value at the first sampling point) between 

two sampling points. That is



= f(sT), for sT < t < (s + 1)T (2.15) 

The largest error, CQ, made by using the zero-order hold is

e0 = max \f(s + 1) - f(s)\ < Tmax \f(t)\ (2.16)
3 t

where /'(<) is the derivative of f(t). An improved version is the first-order hold, where 

the signal amplitude is assumed linear between two sampling points. First-order hold 

reconstruction is given by the equation

- ffoT\ -L       \ ff sT\ /YeT TYI fr\r cT <" + ^ ( a -L- 1 ^T (*) 1 7^- J\SJ- ) ~T  , [J^S-L ) ~ /V5 -i ~~ -L )\-> Ior SJ- -Z * <- {S ~T J-)-L ^Z.l/J

The largest reconstruction error, t\ , for the first-order hold is

= max max
3 t

/(*) - f(*T) - -=  \f(,tr) - }(ST - T)] < T2 max \f"(t)\ (2.18)
t

3. DISCRETE-TIME MODELS FOR SISO SYSTEMS

The general form for discrete-time representation of a SISO system is given by Eq. 

2.13. Equation 2.13 can be written in a more compact form by introducing the following 

polynomials in the backward-shift operator

A(q) = 1 + aiq~ l + . . . + ana q-n * (3.1) 

B(q) = b0 + hq-1 + ... + bnb q-n " (3.2) 

Equation 2.13 then becomes

y(t) = ^ *(*) (3.3)

The coefficients a,j and bj of the polynomials A(q) and B(q) can be constant (time-invariant 

systems), or functions of t (time-varying systems). The polynomial ratio B(q)/A(q) is 

called the system transfer operator (the term operator is used since q is not a variable, 

but an operator). By actually dividing B(q) by A(q) an infinite power series H(q) in the 

variable q-1 is obtained. Equation 3.3 then becomes



y(k) = H(q)x(k) (3.4)

In terms of the more familiar impulse response functions, the input-output relationship 

can also be written as

CO

y(t) = ^ h(k)x(t - k) (3.5)
k=l

where h(k) is the discrete impulse response function of the system. By simple manipulation, 

Eq. 3.5 becomes

CO CO

y(t) = £ h(k)[q-kx(t)] = [£ h(k)q-"] x(i) (3.6)
k = l k=l

From a comparison of Eq. 3.6 with Eq. 3.4, we can write

CO

(3-7)

In terms of filtering, the transfer operator H(q) (or B(q)/A(q)) represents a recursive linear 

filter, which converts the input signal x(t) into the output signal y(t).

System equations can also be expressed in the frequency domain by taking the Z- 

transforms of the time-domain Eqs. 2.13, 3.3, and 3.4. The Z-transform is the discrete 

equivalent of the continuous Laplace transform. The Z-transform of a discrete sequence 

f(kT) is defined by the equation

* (3.8)

where Z[ ] denotes the Z transform, and z is any complex number. The theory of Z- 

transforms can be found in texts on discrete systems (e.g., Cadzow, 1973). By taking the 

Z-transform in Eqs. 3.3 and 3.4, we obtain the following frequency domain equation for 

the system

Z[y(t)} = |& Z(x(t)} = H(z)Z[x(t)} (3.9)

Polynomials A(z) and B(z) are the same as defined by Eqs. 3.1 and 3.2, respectively, with 

the <?'s replaced by z's. Because z is a variable rather than an operator, H(z} is now called 

the transfer function. The roots of the numerator polynomial



M"1 + b2 z~2 +     + bnb z-n" = 0 (3.10)

are called the zeros of the transfer function, whereas the roots of the denominator polyno­ 

mial

1 + aiz~l + a2 z~2 +       + ana z~ Ha = 0 (3.11)

are called the poles of the transfer function. The use of terms poles and zeros come from 

the observation that if H(z] is plotted in three dimensions such that the horizontal axes are 

the real and complex parts of z and the vertical axis is H(z\ the resulting shape resembles 

a tent. The poles are where the tent is supported, and the zeros are where the tent is tied 

to the ground.

The transfer function can be represented in terms of more familiar harmonic functions 

by simply selecting z = e t27r^T , where i = \/  T, / denotes the cyclic frequency, and T is the 

sampling interval. H(et2rrfT ] is known as the frequency response function of the system. 
The physical meaning of H(et2rrfT ) is that the output y(t) is obtained by multiplying the 

amplitude of each frequency component of the input x(t) by |J7(et27r^T )|, and shifting its 
phase by arg#(ei27r'T ).

In order to have a stable system, it is required that any bounded input gives a bounded 

output. This corresponds to the condition for the impulse response function h(k) that

<oo, or limfc(fc) = 0 (3.12)
k HX> 

k=l

For the transfer function, the stability means that the poles should all be in complex- 

conjugate pairs with modulus less than one (i.e., located inside the unit circle in the 

complex plane).

For HI, < rc a (Eqs. 3.1 and 3.2), the transfer function H(z] = B(z)/A(z} can be put 

into the following form by using a partial fraction expansion (if n& > na , first a polynomial 

division, then a partial fraction expansion should be made):

where pj is the jth complex root of the polynomial A(z\ and qj is the corresponding 

residue of H(z). The residue qj can be calculated from the equation (Tretter, 1976)



(3,4)

k=i

If the pairs of terms corresponding to pairs of complex-conjugate roots are combined, then

n a /2

H(z) = £ Hj(z) (3.15) 
J=l

with

where ~ and 3£ denote the complex- conjugate and the real part, respectively. Each Hj(z) 

is equivalent to a simple-damped oscillator. The form given by Eqs. 3.15 and 3.16 for 

H(z) is known as the parallel form realization, where the filter output y(t) is modeled as 

the linear combination of the outputs of second-order filters each subjected to input x(t). 

A schematic of parallel form realization is given in Fig. 3.1. From the comparison of Eq. 

3.16 with Eqs. 2.6 and 2.7, we can write

.,-) = -2cos 2vfojTy/l - $j exp(-£oj27r/0j-T) (3.17) 

<*2,' = IP,'I 2 = exp(-2£oj27T/0jT) (3.18)

where the frequency /QJ is in Hz. Solving for £0.7 and /QJ, we obtain the frequency and 

damping of the corresponding oscillator in terms of pole locations as

ln(l/r>)
1/2 v

(3.20)

where TJ and (f>j are the modulus and the arguments of the jfh pole calculated from the 

equations

^pM and ^. = tan" 1 (3.21)



with 3ft(pj) and ^(PJ} denoting the real and imaginary parts of pj. Each Hj(z) can be 

considered as a mode of the system. The numerator of Hj(z) gives the weighting factor 

(i.e., effective participation factor; Beck, 1978) for that mode.

The above interpretation of the transfer function is based on the parallel form realiza­ 

tion. Two other forms widely used in signal analysis are the ladder (cascaded) form and 

the state space form. They will not be given here, but can be found elsewhere (e.g., Tret- 

ter, 1976). A rigorous analysis of the relationship between time-series and linear systems 

is given in three sequential papers by Willems (1986a, 19866, 1987).

4. MODELS FOR UNKNOWN AND NOISY SYSTEMS

As mentioned earlier, the recordings from dynamic systems are always contaminated 

by noise due to ambient noise existing in the recording environment, as well as the imper­ 

fections in the recording instrument. In a very general case, the dynamics that generate 

the noise is different from the dynamics of the actual system. Also, not only the output but 

also the input is contaminated with noise. Since the noise in the input goes through the 

system dynamics along with the actual input, the final noise in the output would include 

input noise modified by the system dynamics, as well as noise independent of the system 

dynamics. Since the system is linear, we will consider two linear filters to represent the 

system dynamics and the noise dynamics. We will also assume that the unknown noise 

is a stationary random process, which is the case in most real-life problems, so that ac­ 

cording to the Wold decomposition theorem it can be written as the output of a linear, 

time- invariant system driven by a white-noise process (Wold, 1938).

Let B(q)/[A(q)F(q)], and C(q)/[A(q)D(q)] denote two linear filters representing the 

system dynamics and noise dynamics, respectively, with A(q) and B(q) defined as in Eqs. 

3.1 and 3.2, and

+... + cne q-n* (4.1) 

D(q) = 1 + diq~ l + . . . + dnd q-n < (4.2)

We can write the following equations for the signal sequence ys (t) and the noise sequence

(44)

10



where e(t] denotes a white-noise sequence, and k is the time delay between input and 

output. The factor l/A(q) in Eqs. 4.4 and 4.5, common to both filters, accounts for the 

effect of system dynamics on the output noise. The recorded output is the sum of signal 

and noise sequences. Therefore, by combining Eqs. 4.4 and 4.5, we obtain the input-output 

relationship (i.e., system equation) for a SISO linear system; that is

Equation 4.6 represents a general family of model structures for SISO linear systems, and is 

known as the black-box model (Ljung and Soderstrom, 1983). A schematic of the black-box 

model is given in Fig. 4.1. In the majority of applications, not all the polynomials in Eq. 

4.6 are needed (i.e., some of the polynomials can be taken equal to one). By eliminating 

various polynomials a number of special forms of the black-box model are obtained. Some 

of these forms are known by special names in the literature. They are summarized in Table 

4.1.

5. SYSTEM IDENTIFICATION

System identification constitutes determining the coefficients of the polynomials in 

the black-box model, Eq. 4.6, for a given pair of input and output sequences. The steps 

for identification are outlined in the following subsections.

5.1. ONE-STEP-AHEAD PREDICTION

One- step- ahead prediction involves predicting the output at the next time step by 

using the information available at the present and past time steps. The main problem in 

doing this is the unknown noise term. To handle the noise, let us first rewrite Eq. 4.6, 

such that the white-noise term e(t) is isolated. With some algebraic manipulations, we 

can write

It can be shown by inserting the expressions for A(q), C(q\ and D(q) (from Eqs. 3.1, 4.1, 

and 4.2) inside the bracket on the right-hand side of Eq. 5.1, that the coefficient of y(t) is 

a polynomial with order q~ l with no constant term. Therefore, the right-hand side of Eq. 

5.1 includes y(t} terms only up to time t   1. Assume that all the input, output, and the 

polynomial coefficients are known up to time t   \. Then, all the terms on right-hand-side 

of Eq. 5.1 are known, except the noise term e(t). The best estimate we can make for e(t) 

would be to use its expected value, i.e., zero. Therefore, by taking the expectation in Eq.

11



5.1, and also noting that .E/[e(tf)] = 0, we can write for the best estimate of y(tf) in terms 

of past values of the input, output, and parameters, as

<<>

y(t, 9) is the expected value of y(t) at time t for given 0, and 9 is the vector composed of 

the model parameters (i.e., coefficients of the polynomials); that is

9 = (a\ ,       , ana , 61 ,       , bnb , c\ ,       , cHc , d\ ,       , dnd , /i ,       , fn/ ) (5.3)

where superscript T denotes the transpose. y(t,9} is known as the one-step-ahead predic­ 

tion of y(t). 9 is included in the argument list of y(t,9) to emphasize that the predicted 

value depends on the past values of the model parameters. 

The difference

e(t,9) = y(t)-y(t,9) (5.4)

gives the error in the estimation at time t. Note by comparing Eqs. 5.1 and 5.2 that, 

if 9 is estimated perfectly, then the error would be equal to a white- noise sequence, i.e., 

e(t,9) = e(t). Therefore, one of the criteria for accurate identification is to have the error 

sequence £(£,#) as close to a white- noise sequence as possible.

5.2. WEIGHTED LEAST-SQUARES METHOD

The goal of any identification algorithm is to minimize the total estimation error. 

First, however, we have to decide on how to measure the total estimation error. The most 

popular and algebraically the most convenient one is to use the least-squares approxima­ 

tion, which was first introduced by Gauss to calculate the six coefficients that determine 

the elliptical orbit of a planetary body (Gauss, 1809). An historical review and evolution 

of the least-squares method is given by Sorensen (1970).

The least- squares approximation uses quadratic critera for measuring errors. We will 

also include a weighting factor in the criterion, so that we can have the flexibility of 

manipulating the effect of data on total error. With these, we will define the total error 

up to time t as

)e\s,9) (5.5)
s=l

where /3(t, s) is the weighting factor, and 7(2) is the normalization factor for /?(£, s), defined

by

12



7(0 = -      or, 7(*)£>(M) = 1 (5.6) 

E/?(M)
3=1

For time-invariant systems, weighting factors can all be taken equal to one. However, 

when the initial conditions are unknown, it is advantageous to use weighting factors that 

gradually decrease to much smaller values towards the beginning of data, so that the effect 

of unknown initial conditions on the total error is minimized. For time-varying systems, 

weighting factors are essential to track the time variation of system parameters. The 

weighting factors localize the identification by giving more weights to the current values, 

and by gradually discounting the past values.

A moving rectangular window, or exponential window can be used as the weigthing 

factor for time- varying systems. For a rectangular window

^-*" (5.7) 
, for s > t   s w v '

where s w is the length of the rectangular window in terms of number of data points (the 

actual window length is s w T). sw should be selected such that swT is not smaller than 

the largest significant period of the system.

For an exponential window, first assume that /?(£, s) has the following recursive form

, s ] = X(t)P(t -1,3) with 1 < s < t - 1 (5.8) 

where

A(f)<l, and 0(f,f) = l (5.9) 

This recursive form leads to the equations

and

If X(t) is chosen constant, i.e., X(t) = A, the weighting factors become exponential, that is

) = \t- (5.11)

where the constant A is called the forgetting factor (Ljung and Soderstrom, 1983). Also 

note from Eq. 5.10 that if X(t) = 1 and 7(0) = 1, then j(t) = l/t.
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Figure 5.1 shows three windows, a rectangular window with sw = 10, and two expo­ 

nential windows with A = 0.9, and 0.7. The smaller the A value the sharper is the decay of 

the weighting factor. For constant \(t) values the weighting factors are moving windows 
of the same shape. To reduce the effect of initial conditions and speed up the convergence 

rates, a time-varying forgetting factor, which initially is small and grows towards the value 
AQ as more data points are processed, is more appropriate. Such time variation can be 

modeled by the following recursive equation:

\(t) = \0 \(t - 1) + 1 - Ao (5.12)

In order to start the recursion, AO and A(0) values need to be specified. Suggested values 

are AO = 0.99 and A(0) = 0.95 (Ljung and Soderstrom, 1983; Young, 1984). However, these 

values should be used with care, since it is the sampling interval and the rate of change of 

the frequency content of the signal that actually determine the most appropriate values. 

As will be shown later by examples, identification results can be very sensitive to AO and 

A(0) values. It is recommended that either the frequency content and time variations of 

the signal should be investigated by Fourier analysis techniques, or several combinations 

of AO and A(0) should be tried, before deciding on the final values for identification.

In order to track fast variations in the system parameters, the window length should 

be small (i.e., the decay of the weighting factors should be steep). On the other hand, to 

remove the random noise from the signal, the number of sampled points used at any time 

(defined by the window length) should be large enough, so that averaging over the sampled 

points can actually remove the noise effects. Therefore, there is a trade-off between the 
time-tracking ability and the noise sensitivity of the identification.

Although the use of quadratic critera makes the least-squares method analytically 

simple, it also makes the propagation of estimation errors very wide. An isolated error, 

such as a large instrument noise at one sampling point, can effect the estimation in all the 

other points. One way to prevent this is to check the estimation error (Eq. 35) at every 

sampling point for a sudden large jump, and if there is one, calculate the error for that 

point by using a power less than two, say 1.5.

5.3. MAXIMUM LIKELIHOOD METHOD

Another popular method for error minimization and parameter estimation is a sta­ 

tistical one, the maximum likelihood method, attributed to Fisher (1922). The basic 

principles of the maximum likelihood method can be summarized as follows. Assume 

that the output y(t] is an observation (i.e., a sample) from a random process, whose 
probability density function depends on the unknown parameter vector 9. Let P[y;v|0] 

denote the joint conditional probability density function of y(t) for t = 1      N (i.e.,
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P[yN \0] = P[y(l),y(2),---,y(AT)|0]). For given 0, P[yN\9] shows the probability that 

the output will take the measured values y(l), y(2),       ,y(N). Once the observed values 

of y(t) are inserted, P[yw|0] becomes a deterministic function of 0. This function is called 

the likelihood function. 0 is then selected as the value which makes the likelihood function 

maximum (i.e., the observed output becomes as likely as possible). By using Bayes' rule, 

we can write

\0\ = P[yN \yN-i,9]P[yN-i\yN-2,0\     P[v2\yi,0\P[yM (5.13) 

Now, assume that the conditional densities are Gaussian, such that

where m< and crt are the conditional mean and standard deviation of y(t). They both 

depend on unknown parameters 0, and the past data. Based on the arguments for Eq. 

5.2, we can write

mt = y(t, 0); therefore, y   mt = y(t)   y(t, 9) = e(J, 9) (5.15)

The equation for 9 is obtained by maximizing P[yw\9]. Instead of maximizing P[yjv|0]> we 

can maximize its logarithm. Using Eq. 5.15 in Eq. 5.14 and the resulting equation in Eq. 

5.13, we can write for the negative logarithm of

-lnP[yW |«] = |E[(^)2 + lna?] + fin 2*- (5.16)

Maximization of P[yjv|0] is now equivalent to minimization of the right-hand side of Eq. 

5.16. Note that if cr< is constant or independent of 0, the maximum likelihood criterion 

becomes equal to the quadratic criterion of the least-squares method, given by Eq. 5.5, 

with unit weighting factor. The advantage of the least-squares method is its simplicity. The 

advantages of the maximum likelihood method are its independence from the model type, 

and better convergence properties. For Gaussian observations, however, these two methods 

are equivalent, and result in the same 9 values. The method suggested by Friedlander 

(1982) combines the least-squares and the maximum likelihood methods. The formulation 

that will follow is based on the weighted least-squares method.

5.4. STOCHASTIC APPROXIMATION

For the least-squares method, to minimize the total error we require in Eq. 5.5 that
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,) = V'(t,ff) = 0 (5.17)

where the superscript ' is used to denote derivative of V with respect to 9. Note in Eq. 5.1 

that each y(t) includes the unknown white-noise term e(t). Therefore, e(t, 0) (Eq. 5.4), 
V(t, 0) (Eq. 5.5), and V'(t, 0) are all functions of white-noise terms e(0), e(l),       , e(t). 

Since the noise is random, any new set of measurements would result in a different V'(£, #) 

function, and consequently, different 9 values. Thus, Eq. 5.17 should be considered by 

using the expected value of V'(t, 0) over the set of measurements, that is

EV'(t,0) = Q (5.18)

Solution of this equation can be accomplished by using stochastic approximation techniques. 

The general theory of stochastic approximation can be found in Albert and Gardner (1967), 

Nevelson and Khasminskii (1973), and Kushner and Clark (1978). A brief outline of the 

concept will be given below by summarizing the Robbins-Monro algorithm (Robbins and 

Monro, 1951), which is the prototype stochastic approximation scheme.
Let $(77, i/) denote a function of unknown parameters 77 and the random measurement 

vector v. The problem we want to solve is to determine the values of 77 which satisfy the 

equation

EQ(77,i/) = 0 (5.19)

Assume that the probabilistic distribution of v is unknown (the exact form of Q(rj, v) may 

also be unknown). However, since measured values of v are available, we can determine 

$(77, i/) for any chosen 77. Thus, if we have a large set of v values, we can choose a value for 

77, calculate Q(r\, v} for each set of i/, take the average, and check whether it is zero; and, if 

not, continue the procedure by choosing new 77 values until it becomes zero. However, this 

is a very tedious and time consuming procedure. Moreover, in most cases we do not have 

a large set of v. Robbins and Monro (1951) introduced a more efficient algorithm to solve 
the problem. They showed that 77 can be solved recursively by the following algorithm:

where subscript j denotes the iteration number, and OLJ is a sequence of positive constants 

satisfying the conditions (Young, 1984)

oo oo

/ j**] < °° (5.21)
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The harmonic sequence l/j (i.e., 1, 1/2, 1/3,-    ) is the best known example of the se­ 

quences that satisfy these conditions. For time-varying systems, the last condition in Eq. 

5.21 is usually violated in order to track the time variations of the parameters; however, 

the algorithm still works.
Going back to our original problem, Eq. 5.18, we can write by analogy to Eq. 5.20 

that

9j(t] = 0,_i(*) + ajV'faBj-!) (5.22)

This equation is basically the stochastic equivalent of the gradient method that is widely 
used for minimization of deterministic functions. As is well known from deterministic 

theory, the gradient method becomes very slow when the iteration approaches the minimum 

(Luenberger, 1973). An improved version of the gradient method is obtained by modifying 
the search direction of the iteration by the second derivative (i.e., Hessian), of the function. 

This results in Newton's method. There are also methods that are the combination of 
gradient and Newton's methods, such as the Marquardt algorithm (Marquardt, 1963). 

Modification of Eq. 5.22 according to Newton's method gives

9j(t] = e^t) + aj [v"(t,ej- l )]- 1 v'(t,ej- l ) (5.23)

If V is quadratic in 9 this iteration would converge to minimum V in one step (Ljung and 

Soderstrom, 1983). To speed up the calculations, the usual practice is to add one more 

data point at each iteration. When this is done Eq. 5.23 becomes

e(t) = 9(t - 1) + at [v"[t,e(t - i)]]~V[t,0(* - 1)] (5.24)

5.5. RECURSIVE PREDICTION ERROR METHOD (RPEM)

The iterative algorithm given by Eq. 5.24 with Eqs. 5.2, 5.4 and 5.5 for system 
identification is known as the Recursive Prediction Error Method, RPEM for short. For 

ease of notation, denote that

V»(t,<» (5.25)

is the gradient and R(t) is the Hessian of the prediction. Note that ?/>(£) is a vector 

with dimension dg = na -+- n& + nc + HA + ^/, whereas R(t) is a matrix with dimension 

do X d$. V'(t, 9} is calculated from Eq. 5.5 by taking the derivative with respect to 0, that 

is
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t 
V'(t, 0) = -7(0 ^ 0(t, s)il>(s)e(s, 0) (5.26)

s=l

It can be shown by using Eq. 5.10 that Eq. 5.26 can be put into following recursive form: 

V'(t, 0) = 7(0 [ ,. ^V'(* ~ M) ~ ^ (t)e(t,9)} (5-27)

or

V'(t, 0) = V'(t - 1,9} + -Y(t)[-il>(t)e(t, 0) - V'(t -1,9}} (5.28)

If we assume that V was actually minimized in the previous time step, we can then write 

V'(t - 1,0) = 0. Therefore, Eq. 5.28 becomes

V'(t, 0) = -7(*M*M*, 0) (5.29)

The components of ^(t) can be calculated by using Eq. 5.2 in Eq. 5.25. They are given 

by the following recursive equations:

(5.30)

(5.32)

(5 ' 33)

The Hessian R(i) is calculated by taking the second derivative of V(£, 0) with respect to 

0. Thus, by taking one more derivative in Eq. 5.26 we obtain

S=l

R(t) = V"(t, 6) = i(t) /3(t, s) v>(t)V>(<) + Tf>'(t)e(t, 6) (5.35)

It can be shown that close to minimum V(t, 0), the term il>'(t)e(t, 0) becomes very small, 

such that it can be neglected (Ljung, 1987). Thus we can approximate
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R(t) « 7(0 2_^ P(t, s)*l>(t)il> W (5 - 36)
5=1

can also be put in a recursive form:

Using Eqs. 5.29 and 5.35 in Eq. 5.24, and also taking at = 1 give the following final form 

for the RPEM algorithm:

0(0 = B(t - 1) + i(t)R-l (t)il>(t)e(t) (5.38)

The matrix inversion, R~l (t), in Eq. 54 makes it computationally inefficient. There 

are various algorithms developed to calculate R~l (t) without actually inverting the matrix. 

One is to use the matrix inversion lemma, by which the matrix inversion can be put into a 

form of recursive multiplications (Householder, 1964). A straightforward application of the 

matrix inversion lemma, however, leads to equations that are susceptible to accumulation 

of round-off errors. Numerically more sound forms are obtained by using the so-called 

factorization techniques, such as the square root algorithm (Potter, 1963), or the U-D 

factorization algorithm (Bierman, 1977). Application of these algorithms to obtain R~l (t) 

is given in Ljung and Soderstrom (1983).

In order to start the recursion in Eq. 5.38, we need the initial values for the vectors 

0(0, <KO> and the matrix R~l (t). For stable systems, it can be assumed that

0(0) = 0, </<0) = 0, and 7(0) J?r 1 (0) = K   / (5.39)

where K is a large constant and / is the identity matrix. A suggested value for K is 

(Franklin and Powell, 1980)

N

If there is a large amplitude difference between the input and output, either two K values 

proportional to amplitudes should be used (so that the elements of R-1 will have the same 

magnitude during the recursion), or the input and output should be scaled to have similar 

magnitudes prior to recursion.

Application of the RPEM algorithm to an input-output set can be summarized by the 

following steps:
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1. Read and preprocess the input-output series (as will be discussed in section 12).

2. Select AQ and A(0) for the weighting factor (Eq. 5.12).

3. Select initial values (9(0), 0(0), and 7(0)/r1 (0) (Eq. 5.39); set V(0) = 0 (Eq. 5.5).

4. Calculate for the next time step y(t,0) (Eq. 5.2), e(t,0) (Eq. 5.4), V(t,0) (Eq. 5.5), 

	0(<) (Eqs. 5.30-5.34), 7(t) (Eq. 5.10), and R(t) (Eq. 5.37).

5. Calculate 0(t) (Eq. 5.38).

6. Move to next time step, and repeat steps 4 and 5.

For strongly time- varying systems, step 5 may require iteration over 0 as shown by Eq. 

5.23. To select the best model order and the weighting factor, the algorithm is repated for 

different model orders and weighting factors, and the variation of total estimation error 

V(N, 9} (Eq. 5.5) is observed.

The RPEM algorithm presented above is for the general black-box model structure 

(Eq. 4.6), where all the polynomials exist. For the special model structures given in Table 

4.1, the equations would be simplified significantly. Although the general procedure for 

the black-box models would also apply to any special model, it is possible to develop more 

efficient, and model-specific algorithms for special model structures. To give an example, 

consider the ARX model given by the equation

A(q)y(t) = B(q)x(t) + e(t) (5.41)

It can be shown for the ARX model that the one- step- ahead prediction of the output 

(Eq. 5.2) is

(5.42)

where

#(*) = [-y(* ~ 1),       , V(t - "«), x(t -!),   ,*(<- nb )] T (5.43)

Equation 5.42 is simply a linear regression equation, with <j>(t) being the regression vector. 

9 can be calculated by taking y(tf, 0) = y(t) and using standard regression analysis. If the 

system is time-invariant, and all the data is available beforehand, then the ARX model can 

also be identified in off-line fashion using correlation methods. If N denotes the number 

of data points, the total error can be written as

N

V(N, ff) = ft(N,t) [y(t) - <(, T(t)9? (5.44)

Minimization of V(7V, 0) with respect to 9 gives
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9= . (5 .45)

6. CONVERGENCE AND CONSISTENCY OF ESTIMATION

As for any iteration method, the convergence and consistency of the above algorithm 
should be investigated before it is applied to real-life problems. This involves showing that 

the algorithm converges to a global minimum not a local minimum, and that the estimated 

parameters are unique. These problems have been investigated extensively (Astrom and 

Bohlin, 1965; Hannan, 1973; Ljung, 1976, 1978, 1981; Andersonet.aL, 1978; Andersonand 
Taylor, 1979; Dugard et. al., 1980; Solo, 1981; Fogel, 1981; Typskin et.al., 1981; Lai and 

Wei, 1982; Rootzen and Sternby, 1984; and Stoica and Nehorai, 1987). Basic results are 

summarized below.
For convergence and consistency, first the system and the model should satisfy the 

following three conditions: (a) the system is stable, i.e., bounded input gives bounded 

output (system does not have negative damping), (b) the selected model includes the true 

system, meaning that the number of parameters used in the model is greater or equal to 

that of the true system (although we do not know much about the true system, we can 

assume that this condition is eventually satisfied by increasing the number of parameters), 

and (c) the input is persistently exciting, which means that the input should have a non-zero 
spectral amplitudes at frequencies corresponding to frequencies of the system (generally 
satisfied because of the existence of noise).

For the black-box, ARARMAX, and ARMAX models (see Table 4.1), the conver­ 

gence to a local minimum is theoretically possible. Various model validity checks that 

will be discussed later will show clearly whether a local or global minimum is reached. If 

a local minimum is encountered, the calculations should be restarted by using different 

initial values for 9. The process is repeated until the global minimum is obtained. In 

practical applications, however, local minima are not encountered frequently. In none of 
the applications that will be presented later has a local minimum been encountered. For 

some special forms of the black-box model, it is possible to prove analytically that no local 

minima exist. They can be summarized as follows:

a. For FIR models there are no local minima (since the criterion function is quadratic in

8). 

b. For ARX models there are no local minima (since the criterion function is quadratic

in0).

c. For ARMA models there are no local minima (Astrom and Soderstrom, 1974). 
d. For ARARX models there are no local minima if the signal-to-noise ratio is large

(Soderstrom, 1974).
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e. For Box-Jenkins models there are no local minima only if F = 1 (Soderstrom, 1975a). 

f. For Output-Error models there are no local minima if the input is white noise (Soderstrom, 

1975a).

The uniqueness of the identification of a black-box model is satisfied if the polynomials 

for the true system (which will be distinguished by the superscript * from those of the 

estimated system) satisfy all of the following conditions (Astrom and Bohlin, 1965):

a. there is no common factor to all three polynomials zHa - A*(z\ znb   B*(z\ and
zn *   C*(z);

b. there is no common factor to polynomials znb - B*(z) and znb   F*(z); 

c. there is no common factor to polynomials zHc   C*(z) and znd   D*(z); and 
d. if na > 1, there is no common factor to polynomials znd - D*(z], and znf - F*(z).

7. FISHER INFORMATION MATRIX AND CRAMER-RAO INEQUALITY

No matter what the model structure and the estimation algorithm are, there is a 

limit to the achievable accuracy of the estimated parameters. This limit is known as the 

Cramer-Rao lower bound (Cramer, 1946; Rao, 1965). Let OQ denote the true value of 

the parameter vector 0, and 9(yN ) its estimate based on N sampling points. Then the 

Cramer-Rao lower bound is given by the inequality

E(6(yN ) - ff0 ][S(yN ) - 6a ] T > Mf 1 (7.1)

The matrix Mj is known as the Fisher information matrix (Fisher, 1922), defined by the 

equation

(7 '2)
where P(yN\6) denotes, as before, the conditional joint probability density of y(£), t = 

1,       , JV, for given 9. Since OQ is unknown, M/ cannot be evaluated; therefore, the Cramer- 

Rao lower bound does not have any significance, as far as the validation of estimated 9 

values is concerned. It is important, however, to know that there is such a lower bound for 

accuracy. Any unbiased estimator 9 (i.e., 9 which makes the expected value of residuals 

zero) that attains the Cramer-Rao lower bound is said to be efficient. It can be shown that 
in the linear Gaussian case, the weighted least-squares and maximum likelihood methods 

result in efficient estimators (Brogan, 1987).

8. MODEL SELECTION

Model selection involves the selection of the form and the order of the model, and con­ 

stitutes the most important part of system identification. Any prior information about the
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system behavior and noise sources can be useful. The physical laws governing the system, 

if known, give the dynamic equilibrium equations, which can be a good starting point for 

model selection. For example, equilibrium equations for the uni-directional vibration of a 

six-story building suggest that the building would have six distinct frequencies, provided 

that the input has sufficient frequency content to excite all the modes (i.e., the input is 
persistently exciting). We therefore conclude that the denominator polynomial for the sys­ 

tem transfer function should be at least twelfth order. Another useful tool is the Fourier 

analysis of the data. The number of dominant peaks in the amplitude spectra of the input 

and output give a good idea of the model order. It is also important to check whether the 

data is linear or nonlinear by using various tests available in the literature (e.g., Haber, 

1985; Varlaki, et.al., 1985). Young (1978) and Priestly (1980) have suggested that almost 
any nonlinear system can be considered as a linear system with time-varying parameters. 
However, from the identification stand point, we prefer to start with a model that is clos­ 
est to the actual system. In order to be able to describe all the possible forms of system 

dynamics the model should have a sufficient number of parameters, i.e., the model should 

be flexible. On the other hand, overparametrization causes a singular or ill-conditioned 

R(t) matrix in Eq. 5.38, and pole-zero cancellations in the transfer function. This requires 

that the model should contain the smallest number of free parameters to represent the 

system adequately, i.e., the model should be parsimonious. A general recommendation 

for selecting the model type is to start with the simplest model, and continue with the 
next simplest model until the model validity tests (which will be given in the next section) 

are satisfied, or until a pole-zero cancellation occurs (see, Soderstom, 19756 for tests for 

pole-zero cancellation).

For selecting the model order, a straightforward approach is to investigate the vari­ 
ation of total estimation error, V(N, 0) (Eq. 5.5), with model order. Normally, the total 

estimation error decreases with increasing model order. However, as schematically shown 

in Fig. 8.1, the decrease is very sharp at the beginning, and gradually flattens as the 

order increases. The end of the steep decline usually indicates the optimal model order. 

The beginning of the flat region suggests that any additional parameter is not significantly 

improving the model for the system, although it may improve the model for noise. The 

model order can be taken as the number of parameters in the denominator polynomial of 

the system transfer function.

Another test available for selecting model order is to use Akaike's information theoretic 

criterion (AIC) (Akaike, 1981). AIC seeks a model order that minimizes the information 

distance between the conditional probability density functions of the measurements and 

the true system. The definition of the information distance is due to Kullback and Leibler 

(1951). The minimization of information distance corresponds to maximizing the entropy
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of the measurement probability density with respect to the true probability density. AIC 

gives the following equation for the best model order

(8.1)

where, as previously defined, P(t, 0) is the conditional (i.e., for given 0) probability density 

function of the measurements, and d$ denotes the dimension of the vector 9 (i.e., number 

of parameters). For Gaussian prediction errors e(i) and the maximum likelihood criterion 

function, Eq. 8.1 becomes

£VW]} (8.2)
t=l '

AIC is based on the maximum likelihood estimation. For the least-squares estimation, the 

criterion corresponding to AIC is the Akaike's final prediction- error criterion (FPE). It is 

given by the equation

Note that for N » dg Eqs. 8.2 and 8.3 result in the same criterion. Also note that both 

equations penalize using too many parameters (i.e., the criterion function increases with 

increasing do).

Various other methods have also been suggested for model order selection (Hsia, 1977; 

Schwarz, 1978; Hannan and Quinn, 1979; Fine and Hwang, 1979; Inagaki, 1981; Unton, 

1981; Rissanen 1983; Fuchs, 1987). The method by Hsia (1977) allows iteration on model 

order as well as on parameter estimates. A review of existing methods is given by Stoica 

et. al. (1986).

9. MODEL VALIDATION

The final stage of an identification process is to confirm that the estimated model is a 

realistic approximation of the actual system. This is known as model validation. There are 

several tools available for model validation. The first and simplest test is to compare the 

estimated system transfer function with that obtained from the standard Fourier analysis. 

A second test may be to compare the output of the estimated system with the actual 

output. Although a perfect match is not expected, these two tests should give a fairly 

good match. Any gross mismatch is a clear indication of an incorrect model.

Another set of tests can be made over the residuals e(t) (Eq. 5.4), of the model 

(Anscombe and Tukey, 1963). As Eqs. 5.1 and 5.2 indicate, the whole estimation algorithm
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is based on the condition that the difference between the model output and the actual 

output (i.e., the residual) is a white-noise series. Therefore, the closer e(t) is to white- 

noise the better is the model. A first step would then be to plot e(£) and its Fourier 

amplitude spectrum, and see whether they look similar to those of a white-noise series. 

More precise checks can be made by using various statistical tests for whiteness. By using 

the autocovariance of the residuals, for example, we can calculate the parameter ^M for a 

sufficiently long correlation lag M (e.g., M = 20), as

AT M

where -Re (r), the autocovariance of £(£), is

N ~ T

t=i

If e(t) is indeed a white-noise series, then £M would be asymptotically %2 (M) (Chi- 

square) distributed (Ljung, 1987). To give an example, assume that for a valid identi­ 

fication we require e(t) be white-noise with 90-percent probability. We then go to the 

X2 distribution table and find the value Xg0 (M), corresponding to the 90-percentile and 

correlation lag M, and require for model validity that Xgo > CM-

In most applications, we are more interested in determining the system transfer func­ 

tion than determining the noise transfer function. This means that it is permissible to 

have an inaccurate model for the noise. In this case, there is no need to force the residuals 

to be white noise, since they would not be with inaccurate noise models. Instead, we can 

investigate the correlation of the residuals with input. This would show us whether there 

are any components common to both residuals and input. If there are, it means that more 

information can be extracted from the residuals as regards to the relationship between 

input and output than what is given by the model. The correlation of residuals with input 

is characterized by the cross-covariance function, Rex (r), which is given by

1 N*"M=tfE £W*(*- r ) (9 - 3)
t=T

If e(t) is independent of x(f) then yNR x (r^ would be asymptotically normal distributed 

with zero mean, and the standard deviation cr

T=N

a= £ Re (r)Rx (r) (9.4)
T=-N
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where R£ (T) and RX (T) are the autocovariance functions of e(t] and x(t], calculated as in 

Eq. 9.2. If we want the input and residuals to be independent with oi-percent probability, 

we require that (Ljung, 1987)

\R.,(r)\ < J-rrJV., (9.5)

Na is the a-percentage level of AT(0,1) normal distribution. Sometimes, Eq. 9.5 is satisfied 

for r > 0, but not for r < 0. This does not necessarly mean that the model is wrong. 

It does mean however that there is a feedback between the output and input (i.e., the 

system is not an open-loop, but a closed-loop system). This was observed in the analysis 

of building vibrations with soil-structure interaction effects, which will be presented in 

section 13.

The AIC and FPE criteria described in the previous section for model selection can 

also be used to validate a model among several models. More on model validation can be 

found in Ljung(1987), Bohlin(1987), Soderstrom (1987), and Brogan (1987).

10. SPECTRAL ESTIMATION

The common approach in modeling the spectral shape of a signal is to use the Fourier 

amplitude spectrum calculated by using fast Fourier transforms. For a discrete signal of 

N sampling points, the Fourier amplitude spectrum is given by N/2 amplitude-frequency 

pairs. In other words, description of the Fourier amplitude spectrum requires N/2 pa­ 

rameters. Also implicit in this approach are the assumptions that the signal is stationary, 

and the signal to noise ratio is high (or the signal and noise spectra do not overlap). For 

time-varying signals, such as ground motion records, the first assumption is not valid. The 

second assumption is valid only for a certain frequency band. To overcome these, the data 

is windowed and filtered. The windowing aims to incorporate the nonstationary charac­ 

teristics of the motion, whereas the filtering removes the segments of the data believed 

to be dominated by noise. Various smoothing and curve-fitting techniques are applied to 

the Fourier amplitude spectrum for model development. In this section, we will show how 

the adaptive identification algorithm, the RPEM, presented above can be used for spectral 

estimation.

Assume that the record at hand is the output of a linear, time-varying filter due to an 

unknown input. Since we have no access to the input, we will assume that the input is a 

zero-mean, white-noise random process. As shown earlier in section 3, when evaluated at 

z = e*2irfT the modulus of the system transfer function gives the spectral ratio, the ratio 

of the Fourier amplitude spectrum of the output to that of the input. For a white-noise 

input, the input spectrum is constant; therefore, the spectral ratio is simply the scaled
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form of the output spectrum. The scaling constant is equal to the RMS value of the white- 

noise input. Thus, for a black-box model structure with white- noise input, the spectral 

estimation of y(t), 5y (/), can be calculated from the equation

where crx is the RMS value of the zero-mean, white-noise input x(t],

The adaptive filtering approach for spectral estimation is closely related to the max­ 

imum entropy spectrum introduced by Burg (1975). It can be shown that the maximum 

entropy spectrum corresponds to the model that B(q) = F(q) = 1 in Eq. 10.1 (van den 

Bos, 1971), which is the form that an AR (autoregressive) model would give. The use of 

more complicated models than the AR model allows the modeling of sharp dips as well as 

sharp peaks with fewer parameters.

11. ADAPTIVE CONTROL

An important extension of the stochastic-adaptive identification algorithm is adaptive 

control. Adaptive control involves simultaneous estimation of the system model and the 

control input as the output of the system is recorded. The difference from classical control 

is that the system is unknown. At every sampling point, the control mechanism first 

learns the system by using adaptive identification, then determines the necessary control 

input based on the control criterion. Such control mechanisms are known as self -tuning 

regulators (Astrom and Wittenmark, 1973). The basic principles of the adaptive control 

will be summarized below by developing the adaptive control law for ARMAX models.

Consider an ARMAX model with a k-siep time delay between input and output:

A(q)y(t) = q-kB(q)u(t) + C(q)e(t) (11.1)

where the input is denoted by u(t) rather than x(t) to emphasize the difference that u(t) 

is the yet to be determined control input. The problem we want to solve is this: knowing 

y(t) how can we determine A(q), B(q), C(q), and u(t) so that y(t) becomes as close to a 

specifed value y*(t) as possible?

Since there is a fc-step time delay in the system, an input at time t can only affect the 

outputs at times t + k and beyond. We determine the predicted output at time t + k based 

on the information up to time t. By multiplying both sides of Eq. 11.1 with q k we obtain

y(t + k} = "w + e(t + k)
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Based on the data up to time t we can compute e(t), e(t   1),       , e(0) as the differ­ 

ence between recorded outputs and one-step-ahead predicted outputs, i.e., e(t] = y(t]   

y(i, 0), e(t   1) = y(t   1)   y(t   1,0),       etc. (see section 5.1 on one-step-ahead prediction). 

We cannot calculate the values e(t + 1), e(t + 2),       , e(t + &); however, we know that they 

are independent of the data up to time t. To separate the predictable and unpredictable 

portions of e(<), let us write the second term on the right-hand side of Eq. 11.2 as follows

k) = S(q)e(t + k) + e (<) (11.3)

where it can be shown that the order of polynomial S(q) is k   1, whereas the order of 

polynomial G(q) is the larger of nc   k and na   1. From Eq. 11.3, by writing e(t] as 

q~ k e(t + k) and multiplying both sides by A(g), we can obtain the following identity:

C(q) = A(q)S(q) + q-G(q) (11.4) 

Also from Eq. 11.1 we can write

Using Eq. 11.5 in Eq. 11.3, and the resulting equation in Eq. 11.2, we obtain

*> =
Finding the expression for q~ k G(q) from Eq. 11.4, and using it inside the bracket on the 

right hand side of Eq. 11.6 result in:

y(t + k) = S(q)e(t + *) + y(t) + u(t) (11.7)

Since the term S(q)e(t -f- /?) is independent of data (i.e., it is a linear combination of future 

noise terms) it cannot be predicted with the available information. The best we can assume 

is that its expected value is zero. Therefore, by taking the expectation in Eq. 11.7, we can 

write for the fc-step-ahead prediction y(t -f- fc)

y(t + t) = E[y(i + k)} = y(t) + «(0 (H-8)

For control, assume that we require y(t) = y*(t), where y*(t) is a specified sequence. Thus, 

for time t -f- fc, we simply set the predicted output y(t -f- /?) equal to the desired output 

y*(< -f- fc). We can then write
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Equation 11.9 represents the fc-step-ahead adaptive control law for the ARM AX model. 

The control input is calculated from the control law as

*

For y*(t)   0 the control law is known as the minimum variance control. For systems 

with unit delay (i.e., k = 1), where the control input at time t influences the output at 

time t +1, the equations are simplified significantly. For k = 1, it can be shown in Eq. 11.3 

that S(q) = 1 and G(q) = C(q)   A(q\ Therefore, for unit delay and minimum variance 

control, the equation for control input can be written

(ii.ii)

As the above equations show, the adaptive control algorithm involves two steps, iden­ 

tification and control. At every time step the system is first identified by using an adaptive 

identification algorithm, such as the RPEM, then the control input is calculated based on 

the identified system. This procedure is repeated at every time step.

The algorithm given above is one of several algorithms used for adaptive control. It is 

chosen for its direct connection to the identification algorithm presented earlier. Although 

the theory of adaptive control is still being developed, there is a large number of references 

already available in the literature, where more rigorous analysis of the existing methods, 

stability, and convergence properties can be found (e.g., Astrom, 1970, 1983; Wittenmark, 

1975; Landau, 1979; Goodwin and Sin,1983; Astrom and Wittenmark, 1984; Aloneftis, 

1987).

12. PREPROCESSING OF DATA

In general, recordings in their inital (i.e., raw) form do not provide a good identification 

of the system. Much better identification can be obtained if data is preprocessed prior to 

identification. Preprocessing involves removal of mean and outliers, filtering, decimation, 

and synchronization of input and output.

In identification we are interested in the dynamic characteristics of the system, since 

any static relationship can easily be determined by other means. The static part in the 

system is characterized by non-zero mean values in the input and output signals. The
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identification algorithm RPEM can handle the static part along with the dynamic part 

by adding unknown constants in the parameter vector; however, this would increase the 

size of the problem, and adversely affect the convergence properties. A better alternative 

is to remove the mean values of the input and output prior to identification. There may 

also be isolated outliers (i.e., erroneous large peaks) at several points in the data due to 

various reasons, such as temporary sensor failure, an accidental shock to the instrument, 

etc. These outliers can disturb the identification, especially if the least-squares criterion 

is used for the error measurement. They should be removed prior to identification, unless 

special precautions are included in the algorithm as discussed in section 5.2.

Another important parameter in the identification is the selection of the sampling 

interval. Sampling interval is related to the frequency resolution of the signal through 

the Nyquist frequency, /N. No frequency information beyond /w can be obtained from 

the signal. Frequency components higher than fw are folded back and superimposed over 

the smaller frequencies in the spectrum. This distortion is called aliasing. To prevent 

aliasing, signals should be filtered by using an anti-aliasing filter, which is a low-pass filter 

with cut-off frequency equal to f^. In most situations, due to the characteristics of the 

system, we are only interested in up to a certain frequency, which may be much smaller 

than the Nyquist frequency. If this is the case, there is no need for a high sampling rate. 

High sampling rates force the algorithm to identify only the high frequeny part of the 

system (Ljung and Soderstrom, 1983). We first low-pass filter the signal, then decimate it 

(i.e., increase the sampling interval) such that the Nyquist frequency is near the highest 

frequency in which we are interested. This would not only help to reduce the noise effects, 

since in general the noise spectrum has a broader band-width, but also reduce the size 

of the computations. We also need to high-pass filter the signal to eliminate the very 

low-frequency drifts in the signal. These filterings can be done off-line if we have access to 

the total record before the identification, or on-line simultaneous with the identification.

A final step in the preprocessing of data is the synchronization of the input and output, 

if they are not recorded in synchronous fashion. A lack of synchronization can be handled 

by properly selecting the time delay between input and output during the identification. 

In fact, the time delay may be due to physical characteristics of the system so that the 

input and output should not be synchronized. However, estimating the time delay is often 

not easy, and requires a trial and error procedure. It is best to use synchronized input and 

output, and assume that there is no time delay. The synchronization of input and output 

can be accomplished by matching some characteristic points in the signals, or by shifting 

them until the cross-correlation between input and output is maximum.
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13. EXAMPLES

13.1. TIME-INVARIANT SIMULATED SYSTEM

The first example is a simulated time-invariant system, given by a sixth-order ARMAX 

model (see Table 4.1) with polynomials

A(q) = 1 + OAq- 1 - Q.2q~ 2 - OAq~ 3 + O.Stf"4 + 0.5^"5 - O.ltf"6 (13.1)

B(q) = O.Ttf- 1 - 0.7g- 2 + O.Stf-3 + 0.4g-4 - 0.3g-5 (13.2)

C(q) = 1 - Q.2q~l + Q.7q~ 2 (13.3)

The input sequence x(t) is assumed to be a pseudorandom binary sequence (i.e., a random 

sequence of zeros and ones) with RMS value equal to one. The amplitude of the white-noise 

series e(t) is determined for a given signal-to-noise ratio (SNR). The SNR is calculated as 

the ratio of the RMS value of the signal sequence ys (t) to that of the noise sequence yn (t). 

For an ARMAX model the sequences ys (fy and yn (t) are

*(0 (13.4)

e(t) (13.5)

The model is simulated for SNR = 5 assuming N   500 points with T = 0.05 sec. 

for the time interval (although the actual value of the time interval is not needed in the 

estimation). The plots of output, signal, and noise series are given in Fig. 13.1.1. The 

output is the sum of the signal and noise sequences.

Assuming that the output and input are recorded and the noise is unknown, the 

parameters of the model are determined by using the RPEM algorithm. Initial values 

of the parameters and the gradient were assumed zero. The inital value for the matrix 

7(tf)./2~ 1 (tf) in Eq. 5.38 is assumed to be diagonal with elements all equal to 1000. In 

order to remove the initial transient part created by the unknown initial conditions, three 

passes are made over the data. The first pass uses 0 = 0 as the inital conditions for the 

parameters. The other two passes use the 9 values obtained at the end of the previous 

pass. The parameters were first estimated by using the values AQ = 1, A(0) = 1 (Eq. 5.12) 

for the forgetting factors. This pair corresponds to a uniform weighting factor of one for 

all the points. As explained in section 5.2, uniform weighting factors give results that are 

least sensitive to the effects of noise, which is a desirable property, but they also make 

the algorithm worst for time-tracking ability. However, since the system is time-invariant,
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AO = A(0) = 1 is appropriate. Fig. 13.1.2 gives the time variation of estimated parameters 

for this case. Exact values of parameters are also shown in Fig. 13.1.2 by arrows on the 

right hand side of the plots. The estimates are very good when compared to exact values. 

Recall that the parameters were estimated assuming that the noise is unknown.

To investigate the effect of weighting factors on the algorithm, another estimate of the 

parameters were made by using the forgetting factors AO = 0.99 and A(0) = 0.95, values 

suggested by Ljung and Soderstrom (1983) and Young (1984). These values correspond to 

a time- varying exponential weighting profile. The weighting factors have a sharp decay at 

the beginning of the data to eliminate rapidly the effects of initial conditions, then become 

flatter as more data points are fed. Figure 13.1.3 gives the profiles of weighting factors at 

two intermediate and the last sampling points (100, 300, and 500) during the recursion. 

The time variation of the estimated parameters are given in Fig. 13.1.4, again with the 

exact values marked by arrows on the right side of the plots. As the figure shows, the 

estimated values for the parameters are not constant. Instead, they fluctuate around the 

exact values such that their time averaged (by eye) values give a good estimate of the 

exact values. The reason for this is the exponentially decaying weighting factors used in 

the algorithm. With weighting factors, the algorithm has now the ability to track the 

time varying characteristics of the system, but at the same time the estimates are more 

sensitive to noise effects. Since the system is not time- varying, the use of weighting factors 

has adverse effects on the estimation.

To see the effect of noise level in the estimation, the system was simulated for two 

other signal-to- noise ratios, SNR = 1, and SNR = 10, and the parameters were estimated 

for uniform weighting factors (Ao = A(0) = 1). The results are presented in Fig. 13.1.5 

for SNR = 1, and in Fig. 13.1.6 for SNR = 10. As expected, the figures indicate that 

the higher the SNR value, the more accurate the estimates are. It is important to note in 

Fig. 13.1.5, however, that even for SNR = 1, where the RMS value of the unknown noise 

is equal to that of the signal (i.e., very noisy data), the algorithm still gives fairly good 

estimate of the parameters.

13.2. TIME- VARYING SIMULATED SYSTEM

Next we will consider a time- varying simulated system. Again, the system considered 

is an ARMAX system with orders na = 2, n& = 1, and nc = 2 for output, input, and noise, 

respectively. The system is defined by the polynomials

A(q) = 1 + ai W?' 1 + a2 (t)q~ 2 (13.6)

B(q) = & 1 (0<T 1 (13-7)

C(q) = 1 - O.TStf- 1 + O.SOtf- 2 (13.8)
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where it is assumed that the output and input parameters (ai, 02, and 61) are time- 

varying, whereas the noise parameters (GI =  0.75 and 02 = 0.50) are constant. For the 

time-varying parameters, the selected forms of time variation are plotted in Fig. 13.2.1. 

Since this is a second order system (i.e., A(q) is second order), it corresponds to a simple- 

damped oscillator, whose frequency and damping can be calulated in terms of parameters 

a\ and a^ (see section 3). The time variation of corresponding oscillator frequency and 

damping values are plotted in Fig. 13.2.2.

The system is simulated by using a pseudorandom binary sequence for x(t\ and a 

white-noise sequence for e(t). The length of the series is N = 1000, with time interval 

T = 0.1. The input is scaled such that its averaged Fourier amplitude is equal to one 

(it can be shown that a pseudorandom binary sequence has a flat spectrum, same as a 

white-noise sequence). The signal-to-noise ratio is assumed to be SNR = 2, and the 

RMS value of e(t) was chosen accordingly. The plots for the signal and noise series, and 

corresponding Fourier amplitude spectra are given in Fig. 13.2.3. Note in Fig. 13.2.3 

that the noise amplitudes are as high as half of the signal amplitudes. The output series 

(signal plus noise) and its Fourier amplitude spectrum are given in Fig. 13.2.4. Since the 

input is selected to have unit amplitude spectrum, the output spectrum also represents 

the spectral ratio. Also plotted in Fig. 13.2.4 superimposed over the Fourier spectrum 

are the exact transfer functions at three instances, t   20, 50 and 80 sec. As the figure 

shows, the transfer function changes with time, whereas the spectral ratio is time-invariant. 

This example clearly shows that for time-varying systems use of spectral ratios to estimate 

transfer functions can give misleading results.

The system is identified by using the RPEM. It was first assumed that AQ = A(0) = 1 

(i.e., uniform weighting factors). As explained in the previous example, with these A values 

the algorithm would not track the time variations in the system. Figure 13.2.5 shows the 

comparison of estimated values of the parameters (dashed lines) with the exact ones (solid 

lines). The estimated values are nearly constant, approximately equal to the average of 

the time-varying exact values, and cannot track the time variations in the system. The 

values estimated are probably the same as would have been obtained from a non-recursive 

(i.e., off-line) estimation algorithm.

Next, the parameters were estimated by using exponentially decaying weighting factors 

defined by the forgetting factor parameters AQ = 0.99, and A(0) = 0.99. Having a value 

close to one for A(0) means that the weighting factor profile does change significantly with 

time. In other words, the time tracking ability of the algorithm is similar throughout the 

data. The estimated values and the comparison with the exact ones are given in Fig. 

13.2.6. As seen in the figure, the estimation is much better this time. The time variation 

of the parameters is tracked fairly well. For the constant noise parameters, however, the
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estimates are not very smooth for the reasons explained in the previous example.

13.3. IDENTIFICATION OF A BUILDING WITH SOIL-STRUCTURE IN­ 
TERACTION

This example will show identification of a building with soil-structure interaction by 

using earthquake induced vibration recordings. The building considered is a 22-story, tri­ 

angular in plan, reinforced concrete building located in Vina del Mar, Chile. The building 

has a mat foundation without piles resting on sand. Following the 3 March 1985, Central 

Chile earthquake of magnitude 7.8, the building was temporarily instrumented to obtain 

aftershock data (Qelebi, 1985). A set of records was obtained from an aftershock with a 

magnitude 4.5. Detailed analyses of the building and the data set can be found elsewhere 

(Qelebi, 1985; Bongiovanni et al., 1987). The analysis showed that there was a significant 

amount of soil-structure interaction in the form of rocking during the earthquake. Here, 
we will consider only two records from the data, just to give an example of the application 

of the RPEM.

The records considered are the velocities at the basement and the top floor, both 

recorded in the same direction. The original records had a sampling rate of 200 per 

second, which gives a frequency resolution of 100 Hz. From the size of the building it 

was decided that any frequency component beyond 10 Hz would be insignificant for the 

building. Thus, the records were low-pass filtered beyond 10 Hz, and decimated. They 

were also high-pass filtered beyond 0.1 Hz to remove any low-frequency drifts in the data. 
The processed velocity records of the basement and top floor are given in Fig. 13.3.1 along 
with their Fourier amplitude spectra. An ARMAX model is considered for the building. 
By using the criteria for model order selection given in section 8, the orders were selected 

as 16, 15, and 3 for the polynomials A(q), B(q), and C(q) in the model. The records were 

syncronized by using the maximum cross-correlation criterion. The basement record is the 

input, and the top-floor record is the output of the model. Using the RPEM algorithm the 

parameters of the model were determined. Trying various forgetting factors indicated that 

the parameters were time invariant (i.e., building response is linear). Thus, the final results 

were obtained using AQ = A(0) = 1 for the forgetting factor. The values for the parameters 

are given in Table 13.3.1. Also included in the table are the complex poles (modulus TJ, 
and argument 4>j), and corresponding natural frequencies (/oj)> damping ratios (foj)> and 

weighting factors (last two columns). Note that all the poles have modulus less than one 

(i.e., they are inside the unit circle in the complex plane), two of the poles, poles one and 

ten, are real (i.e., pole's argument is zero, or corresponding damping ratio is one), and 

the remaining poles are in complex-conjugate pairs, each resulting in the same frequency, 
damping ratio, and weighting factor. The most dominant mode of the system is the one 

corresponding to the pole closest to the unit circle (i.e., pole with the highest r value).
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For this building, it is the 13th (or the 14th) pole, which corresponds to a frequency of 

0.917 Hz., and damping ratio 0.014. The estimated transfer function for the building and 

its match with the spectral ratio is shown in Fig. 13.3.2. The spectral ratio is obtained 

as the ratio of the smoothed Fourier amplitude spectrum of the top-floor record to that of 

the basement record. The figure shows a good match. The dominant mode of the building 

is clearly seen in the figure. Recall that, unlike the spectral ratio, the estimated transfer 

function is completely known analytically in the form of a recursive filter. The filter is 

simply the weighted sum of ten damped oscillators (as shown in Table 13.3.1) all with 

known frequency, damping, and weighting factors.

As discussed in section 9, after the model is selected and the parameters are deter­ 

mined, the next step is to check the validity of the model. The match of the transfer 

function with spectral ratio has already been given in Fig. 13.3.2. Next we will check 

the residuals of the identification following the procedure given in section 9. Residuals are 

defined as the difference between the model output and the recorded output. In order to 

have a valid identification, the residuals should be a white-noise sequence. The plot of the 

residual time series and its Fourier amplitude spectrum are given in Fig. 13.3.3. Visual 

inspection of the spectrum suggests that the residuals are close to a white-noise sequence, 

since the peaks are distributed in all frequencies. A more accurate check is to test the 

autocovariance of the residuals. This is also given in Fig. 13.3.3. Two straight lines in 

the figure show the 90-percent confidence levels for whiteness based on the x2 test. For 

model validity (with 90-percent confidence) the autocovariance should not exceed these 

levels, except at zero lag. Fig 13.3.3 shows that this criterion is also satisfied. Another 

check is the cross-covariance of the residuals with input. For positive correlation lags, the 

cross-covariance shows whether more information can be extracted from residuals by the 

input. For negative correlation lags, the cross-covariance shows if there is a feedback in 

the system (i.e., if there are any components common to both input and the residuals). 

The cross-covariance is also given in Fig. 13.3.3 with 90-percent confidence levels (straight 

lines). Figure 13.3.3 shows that the confidence criteron is satisfied for positive lags but not 

for negative lags. This does not necessarily mean the model is wrong, but an indication 

that the system has a feedback. In other words there is a frequency component in the 

motion common to both basement and top-floor records. The physical explanation of this 

is that the building is subjected to rocking which has already been shown by previous 

studies on the building (Bongiovanni et al. 1987).

As a final test for modal validity, a comparison of model output with the recorded 

output is given in Fig. 13.3.4. This is a much more strict test than the previous ones. 

However, Fig 13.3.4 shows that the match is fairly good. Based on all these, we can 

conclude that the estimated model for the building is satisfactory.
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13.4. IDENTIFICATION OF A BUILDING WITH NONLINEAR BEHAV­ 
IOR

The second building investigated is the Imperial County Services Building in El Cen- 

tro, California, which is a six-story, frame and shear-wall, office building. This building 

suffered significant damage during the October 15, 1979, magnitude 6.5, Imperial Valley, 

California earthquake. At the time of the earthquake the building was instrumented by 

a 13-channel accelerometer, central recorder system, installed by the California Division 
of Mines and Geology. The data set obtained during the earthquake contributed signif­ 
icantly to the understanding of inelastic behavior of structures during earthquakes. A 

large number of studies were done by using the data set. The detailed analysis of the 

recordings can be found elsewhere (e.g., Rojahn and Mork, 1982). Here, again by using 

only two records, the dynamic characteristics of the building and their time variations will 
be investigated. The records used are the east-west accelerations at the ground level and 
at roof (records 13 and 4 in Rojahn and Mork, 1982). The records were preprocessed as 
in the previous building. Time histories of the records are given in Fig. 13.4.1. Corre­ 

sponding Fourier amplitude spectra and the spectral ratio (roof/ground level) are given 

in Fig. 13.4.2. Following the guidelines for model selection, an ARX model with orders 

12 and 11 for the polynomials A(q) and B(q) was selected. Since it was known that the 

building was damaged extensively during the earthquake (i.e., the response was nonlinear), 

a forgetting factor with parameters XQ = 0.99 and A(0) = 0.95 was used in the algorithm, 

so that the time variations in the parameters can be tracked properly. Calculated time 

variations of the parameters are plotted in Fig. 13.4.3. The parameters clearly show three 

distinct regions. The initial part between 0 to 3 seconds corresponds to linear behaviour of 

the original structure. The second part between 3 to 9 seconds is where the damage takes 

place. The final part from 9 seconds and beyond corresponds to vibration of the damaged 

structure.

The transfer functions from each region calculated at times 1, 5, and 25 second are 
shown in Fig. 13.4.4. Their comparison with the spectral ratio is given in Fig. 13.4.5. As 

the figures show the transfer function changes with time, which can not be detected by 

the the spectral ratio approach. The values of the parameters, including the poles and the 

corresponding frequencies, damping ratios, and weighting factors are given in Table 13.4.1 

for the damaged structure at time t = 25 seconds.

The residuals of the identification, also at t = 25 sec. are plotted in Fig. 13.4.6, along 
with its Fourier amplitude spectrum, autocovariance function, and the cross-covariance 

with input. As seen in the figure, the autocovariance of the residuals exceeds the 90-percent 

confidence bounds for small lags; however, the cross-covariance satisfies the confidence 

criterion. This observation suggests that the model gives a good estimate of the transfer
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function for the actual system, but not for the noise.

13.5. IDENTIFICATION OF A BUILDING FROM AMBIENT VIBRATION 
DATA

The identification algorithm RPEM can also be used to identify structures based on 
ambient vibration data. The difference in the ambient vibration case is that there is no 

record of the input. However, the ambient excitations, such as wind and traffic noise, 
generally have a broad band width. Thus, a logical assumption for the input would be 

a white-noise sequence. Since white noise has a flat spectrum, the estimated transfer 

function becomes equivalent to the output spectrum scaled by a constant (see section 

10). The unknown scaling constant affects only the numerator of the transfer function. 

Since the denominator is unchanged, the modal frequencies and damping ratios can still 
be determined accurately. The modal weighting factors, however, cannot be determined 

because of the unknown input.

As an example for ambient vibration analysis, ambient acceleration data from the 

top-floor of a 9-story reinforced-concrete building is considered. The data and its Fourier 

amplitude spectrum are given in Fig. 13.5.1. Going through the model selection procedure, 

an ARX model with orders 24 and 23 for the polynomials A(q) and B(q) were found 

to be appropriate. Since the data is stationary, forgetting factor is assumed to be one. 
The parameters were estimated using a simulated white-noise sequence with unit spectral 

amplitude for input. The values for parameters and the corresponding modal properties 

are presented in Table 13.5.1. The estimated transfer function and its match with the 

output Fourier amplitude spectrum are given in Fig. 13.5.2. Note in the figure that the 

closely spaced two large peaks between 1 and 2 Hz are matched very well. The closeness of 

these two dominant peaks required the use of such a high order model. The model validity 

tests on the residuals are summarized in Fig. 13.5.3. The tests show that the model is 
appropriate.

13.6. SPECTRAL MODELING OF EARTHQUAKE GROUND MOTIONS

A common approach for spectral modeling of earthquake ground motions is to use the 

Fourier amplitude spectrum. This approach assumes that the signal is stationary, and the 

signal to noise ratio is high (or the signal and noise spectra do not overlap). For ground 

motion records, the first assumption is usually not valid. The second assumption is valid 
only for a certain frequency band. In this example, we will estimate the spectrum by 
using the RPEM as explained in section 10. The frequency domain plots for this and the 

following two examples are all given on log-log scales in order to be consistent with the 

usual practice in earthquake engineering and seismology.
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Assume that the motion recorded on the surface is the output of a linear, time-varying 

filter due to an unknown input. Since we have no access to the input, it will be assumed 

that the input is a random process of specified characteristics. One such process, suggested 

by Kormylo (1979) and Mendel (1983), is the Bernoulli-Gaussian sequence, which is the 

product of a Bernoulli sequence (i.e., a random sequence of zeros and ones) and a zero- 

mean, Gaussian white-noise sequence. The Bernoulli-Gaussian sequence can be considered 

as a random spike sequence. A sample function of a Bernoulli-Gaussian sequence and its 

Fourier amplitude spectrum are given in Fig. 13.6.1. It can be shown that a Bernoulli- 

Gaussian sequence is white; thus, the sample values are statistically independent, and its 

spectrum is constant (Mendel, 1983). We will model the system by an ARX model, and 

simulate the Bernoulli-Gaussian input such that it has unit variance. With these, the 

spectrum of the output can be written by putting crx = 1 and F(q) = 1 in Eq. 10.1 as

(13.9)

It should be noted here that x(t] can also be assumed to be an ordinary white-noise 

sequence similar to e(£), and the parameters of x(t) and e(£) can be combined into a single 

set of parameters. This results in ARMA models (see Table 4.1). Time-in variant forms 

of ARMA models have been used by a number of researchers for ground motion modeling 

(Polhemus and Qakmak, 1981; Chang, et al. 1982; Qakmak, et al. 1985). It is suggested 

that the Bernoulli-Gaussian sequence is a more realistic representation of the earthquake 

source mechanism (Mendel, 1983).

An example for spectral modeling will be given by using a record from the 1971 San 

Fernando earthquake (record F88S70E obtained at the basement of Glendale municipal 

services building). The time history and the Fourier amplitude spectrum of the record are 

given in Fig. 13.6.2. The model order is selected by investigating the variation of total 

prediction error with parameter na . This variation is given in Fig. 13.6.3. The figure 

suggests that a model with na > 4 is appropriate. As a first choice, na = 4, n& = 3, and 

nc = 0 (4-3 model) were used. The values for the parameters a,j and bj are calculated 

recursively by using the RPEM algorithm. Their time variations are given in Fig. 13.6.4. 

The dj values are fairly constant beyond 4 seconds. Recall that the aj's determine the 

location of the peaks (i.e., the dominant frequencies) of the transfer function. The bj values 

exhibit more fluctuations, especially within the first 10 seconds. 6j's do not affect the peak 

locations, but the peak amplitudes. The initial part of the curves, about 10 steps or so 

(i.e., up to the 0.2 second mark), represents the transient part where the results are not 

reliable due to the effects of unknown initial values. The values of a,j and 6j, pole locations, 

corresponding modal frequencies and damping ratios, and the weighting factors for each 

mode are presented for t = 18 seconds in Table 13.6.1. The dominant mode is the one that
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corresponds to the pole closest to the unit circle (i.e., the mode corresponding the largest 

TJ value in Table 13.6.1). The corresponding amplitude plot of the transfer function, and 

the match with the Fourier amplitude spectrum are given in Fig. 13.6.5. The match seems 

satisfactory, except for very low frequencies.

A closer look at the model fit can be made by investigating the residuals of the model. 

They are presented in Fig. 13.6.6. According to Fig. 13.6.6, although the amplitudes of the 

autocovariance function are fairly small, they exceed the 90-percentile value at significantly 

high lags. The test for cross-covariance of the residuals with input also fails at one point, 

although overall it is better than the autocovariance test.

For comparison, consider a higer order model with na = 8, n& = 7, and nc = 0 (8-7 

model). The amplitude of the frequency response function, again at t=18 seconds, and the 

match with the Fourier amplitude spectrum is given in Fig. 13.6.7, with the corresponding 

values of the parameters, pole locations, frequencies and damping ratios, and the modal 

weighting factors in Table 13.6.1. Since na = 8 there are four peaks in the transfer function. 

The increase of the model order improves the match at higher frequencies. The residuals 

and the related tests are given in Fig. 13.6.8. The autocovariance and cross-covariance 

functions are also better in this model. The autocovariance function exceeds the confidence 

level for small lags, but it passes the test beyond 0.1 second. The cross-covariance function 

passes the confidence test for all lags. Further studies showed that higher order models did 

not improve the match at low frequencies, nor the test for autocorrelation. This is believed 

to be because of low-frequency errors in the Fourier spectra caused by windowing.

Two more figures, Figs. 13.6.9 and 13.6.10, are presented to show the variation of 

the transfer function with time and with model order. Fig. 13.6.9 shows the superim­ 

posed transfer functions (i.e., estimated spectra) at 1, 5, and 18 seconds for (8-7) model. 

The figure confirms that the transfer function varies with time. Fig. 13.6.10 shows the 

superimposed transfer functions for (4-3), (8-7), and (12-11) models, at 18 seconds. The 

higher-order models basically improve the match at higher frequencies (i.e., a two order 

increase in na results in the determination of the next higher mode). The low frequencies 

do not seem to be affected by model increase.

13.7. SITE AMPLIFICATION OF EARTHQUAKE GROUND MOTIONS

It is well known that local geology and topography can significantly alter the char­ 

acteristics of earthquake ground motions. The alteration is in the form of amplification 

of the components at certain frequencies, and attenuation of the components at other fre­ 

quencies. This observation suggests that site amplification can be approximated by a finite 

order filter.

The commonly used technique for quantifying site amplification for a given site has 

been to calculate the spectral ratio, that is, the ratio of the Fourier amplitude spectrum
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of the record at that site to the Fourier amplitude spectrum of the record at a nearby 

reference site (usually a rock site). The accuracy of the spectral ratio approach is very much 

dependent on the signal-to-noise ratio. The standard deviation of the calculated spectral 

ratio from the exact ratio at frequency / is directly proportional to An (f)/Ax (f), where 

An (/) and Ax (f} are the Fourier amplitude spectra of the noise and input, respectively 

(Rake, 1980; Ljung, 1985). To reduce the effect of noise, various smoothing techniques 

are applied to the input and output spectra before taking the ratio (Robinson, 1967). 

Irrespective of how accurate they are, the spectral ratios that are calculated as above are 

difficult to describe analytically in terms of simple parameters, especially when there are 

several dominant peaks.

Here, it will be assumed that the site amplification can be approximated by a discrete 

linear filter with input x(t) and output ?/(£), representing the recorded ground accelerations 

from a rock site and from a soil site, respectively. Assume that the sites are close to 

each other, so that the differences in the signals are due to site effects only (i.e., no 

distance effects). The transfer function of this system represents a linear model for the site 

amplification. When evaluated at z   e t27r^T , the amplitude of the transfer function gives 

the spectral ratio in the usual sense; and when expanded into partial fractions as discussed 

in section 3, the transfer function gives the equivalent parallel system for the site in terms 

of modal frequencies, dampings, and weighting factors.

As an example, the approach presented above was applied to a site amplification 

problem observed during the March 3, 1985, magnitude 7.8, central Chile earthquake. The 

investigations after the earthquake showed that the local geological and topographical site 

conditions caused large variations in ground motion amplitudes and structural damage 

(Qelebi, 1987). The records are from a rock site, and an alluvial site. The distance 

between the stations is five km. The strong-motion accelerograms are shown in Fig. 13.7.1. 

Corresponding Fourier amplitude spectra and the smoothed spectral ratio are given in Fig. 

13.7.2. It is clear from Figs. 13.7.1 and 13.7.2 that the amplitudes and the frequency 

contents of the motions are significantly different.

After investigating the variation of total estimation error with model order, an ARX 

model with na = 12 and ra& = 11 is chosen. The parameters were calculated recursively 

by using the RPEM algorithm. Their time variations are plotted in Fig. 13.7.3. The 

amplitude of the transfer function, and its match with the spectral ratio at t   18 sec. 

are given in Fig. 13.7.4. The corresponding numerical values for the parameters, pole 

locations, modal frequencies and damping ratios, and the weighting factors are given in 

Table 13.7.1. Since na   12, the model gives the first six modes of the site. The results 

of model validity checks on the residuals are given in Fig. 13.7.5., which shows the time 

series of the residuals, and its amplitude spectrum, autocovariance, and cross-covariance
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with the input. The 90-percentile confidence levels are also given in the figure. The 

autocovariance curve crosses the 90-percentile boundaries at several points, although the 
overall correlation is fairly small. The cross-covariance curve crosses the boundaries at one 

location.

Next, a higher order model with na = 16 and ra& = 15 is tried. The transfer func­ 

tion and its match with the spectral ratio are plotted in Fig. 13.7.6, again at t = 18 

sec. The corresponding numerical values for the parameters and modal characteristics are 

given in Table 13.7.1. The residual tests are presented in Fig. 13.7.7, which shows slight 

improvement over the previous model. The cross-covariance values now are all inside the 
90-percentile confidence interval. The auto-covariance curve still exceeds the boundaries 

at some points, but the amplitudes are smaller than those of the previous model. Further 

studies on this site done using different models and records have basically shown that 
models beyond 16th order do not provide any improvement.

An important comment that should be made here is that the procedure used for site 

amplification in this example is applicable only to sites with a non-layered medium. For a 

layered medium, there is a strong correlation between the input and the output (i.e., part 
of the output becomes input), because of the reflection of waves at the layer boundaries. 

This makes the system a closed-loop system, whereas the RPEM algorithm presented is 

for open-loop systems.

13.8. SOURCE SCALING OF EARTHQUAKE GROUND MOTIONS

The term source scaling is used to characterize the relationship between two records 

obtained at the same site from two different earthquakes. In seismology, this is known as 
the source deconvolution, or the empirical Green's function deconvolution. It is assumed 

that the site effects and the path effects in the records are the same, so that the differences 

between the records can be attributed solely to the source effects. The knowledge of 

source scaling is important for predicting motions for large earthquakes by extrapolating 

from small earthquakes. As for the site amplification, the common approach has been to 

use the spectral ratio of single station recordings of co-located events.

Here, again, the discrete linear filtering approach will be used to model the source 

scaling. Assume, at a given site, that the motion from a large earthquake is a linear function 

of motions from small earthquakes, represented by an integral (e.g., a convolution) or a 

differential equation. It can be shown that this assumption leads to a discrete time domain 

equation for the relationship between the large earthquake and the small earthquake in 

the form given by an ARX model (Table 4.1). The output and input of the model are the 

records from the large earthquake, and the small earthquake, respectively.

To give an example, two records from aftershocks of the 1983 Borah Peak, Idaho, 
earthquake are considered (Boatwright, 1985). The records are a day apart, and have
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the RMS values of 2.5 and 14.2 cm /sec2 . The plots of the time series are given in Fig. 

13.8.1. Figure 13.8.2 gives the corresponding Fourier amplitude spectra and the smoothed 

spectral ratio (large earthquake/small earthquake). After studying the variation of error 

with model types and orders an ARX model with na = 6 and ra& = 5 is selected. The time 

variation of the estimated parameters are plotted in Fig. 13.8.3. The numerical values for 
the parameters, and the modal characteristics are given in Table 13.8.1 at t = 10 sec. The 

corresponding amplitude of the transfer function and the match with the spectral ratio are 

shown in Fig. 13.8.4. The model validity tests on the residuals are presented in Fig. 13.8.5. 

The tests for autocorrelation and cross-correlation in Fig. 13.8.5 show that the residuals 
fail the 90-percentile confidence critera, suggesting a higher order model. Thus, a higher 

order model with na = 14, n& = 13, and rac = 0 was selected next. The resulting transfer 
function and the match with the spectral ratio is given in Fig. 13.8.6; the numerical values 

for parameters are given in Table 13.8.1; and the residual checks are given in Fig. 13.8.7. 

The residual tests show the model is appropriate for the transfer function.

13.9. ADAPTIVE CONTROL OF A SIMULATED SYSTEM

This example will show adaptive control of a simulated system by using the theory 

presented in section 11. Consider a system described by an ARM AX (Table 4.1) model 
with polynomials

A(q) = I - l.Sg-1 + 0.6g~2 (13.10)

B(q) = q~l + 0.5g~2 (13.11)

C(q) = 1 + 0.20- 1 - 0.5g~2 (13.12)

Assume that we want to control the output by using the minimum variance control strategy. 

If the system is identified previously by using some other inputs, so that the polynomials 

A(q), B(q), and C(q) are all known prior to control, then the calculation of the control 

signal u(t) is straightforward from Eq. 11.11. Using Eq. 11.11, we can write for the 

minimum variance control input

- 1-1.7+1.1^

To see how the control works, the system is simulated assuming cre = 2.5 for the 

standard deviation of e(t). The results are given in Fig. 13.9.1 , which presents the output 

without control (i.e., u(t) = 0), output with minimum variance control, and the input 
required for the control. As seen from the figure, the control signal significantly reduces 

the output amplitudes.
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If the system characteristics are unknown, the control should be performed simulta­ 

neously with system identification. Let us consider the same system, assuming that we 

do not know the coefficients of the polynomials. We have access only to the uncontrolled 

output signal (signal obtained assuming u(t} = 0 in the model, which is plotted at the top 

of Fig. 13.9.1). Assume that we chose a control model the same as the original system 

model, i.e., an ARMAX model with second order polynomials for A(q), B(q), and C(q). 

Using the two-step algorithm the coefficients of the polynomials are determined along with 

the control signal for a minimum variance control. The results are presented in Figs. 13.9.2 

and 13.9.3. Figure 13.9.2 gives uncontrolled output, controlled output, and control signal, 

while Fig. 13.9.3 gives the time-variation of parameters. In plotting the control input it 

is assumed that the amplitudes remain constant between the time intervals. As seen in 

Fig 13.9.2, control is accomplished in a few seconds. The larger amplitudes at the begin­ 

ning of the controlled signal are due to initial transient phase in the parameter estimation 

algorithm. Figure 13.9.3 shows that estimated values for the parameters are not exactly 

equal to those of the original system, although the model type and polynomial orders were 

all assumed the same as the original system. This is due to the closed-loop nature of the 

system, where the input is determined from the output. Thus, the algorithm should not be 

expected to give the same parameters as the open-loop original system, since it is designed 

for control rather than identification.

To show that the control can still be achieved without exactly matching the system, 

we next consider an ARX model for the same system, assuming a fourth order polynomial 

for A(q) and a third order polynomial for B(q). The results for this case are given in Figs. 

13.9.4 (input and output sequences), and in Fig 13.9.5 (time variation of parameters). 

Although a different model and different number of parameters are used, the system is still 

controlled sucessfully.

13.10. ADAPTIVE CONTROL OF AMBIENT VIBRATIONS OF A BUILD­ 
ING

The last example will show how the ambient vibration amplitudes of the building in 

section 13.5 can be reduced by applying adaptive control techniques. For control purposes 

a much smaller order model was used. An ARX model with orders 6 and 2 for the poly­ 

nomials A(q) and B(q) is considered for control. Forgetting factor parameters used are 

AQ = 0.99 and A(0) = 0.95 (using AQ = A(0) = 1 gave the same results). Using the adaptive 

control algorithm of section 11, parameters of the model and the corresponding control 

input were determined at every sampling point. Figure 13.10.1 shows the uncontrolled 

output, controlled output, and the required control input. As the figure shows, the control 

is achieved very quickly, in about two seconds. The time variation of control parameters 

are shown in Fig. 13.10.2.
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It is important to note that the example presented shows only the application of the 

adaptive control algorithm. In other words, it is an example for the algorithm, not for 

the control mechanism. The actual implementation of the control involves designing the 

mechanism which would simultaneously generate and apply the calculated control input to 

the structure. Such a mechanism may be easy to develop for equipment-type structures, 

but not for buildings. However, the technique has successfully been applied to fairly large 

aerospace structures.

14. DISCUSSION AND FURTHER APPLICATIONS

Stochastic-adaptive filtering, prediction, and control techniques are powerful tools that 

can be applied to a wide range of problems dealing with analysis of discrete-time signals. 

One application is the adaptive signal processing (Widrow and Stearns, 1984), where the 

prediction, filtering, and smoothing of time series can be performed by using the same 

formulation. We have already given the equations for one-step-ahead and fc-step-ahead 

predictions (Eqs. 5.2 and 11.8). In Eq. 11.8, if k = 0 the resulting equation gives the 

filtered value of the output at £, whereas if k < 0 the resulting equation gives the smoothed 

value of the output at t   k. Another application is the adaptive noise cancelling (Widrow, 

et. al., 1975), where the noise in a recording is removed in the time domain by using a 

reference noise recording.

The examples presented in the report are related to building vibrations and earthquake 

ground motions. The main goal in the examples is to present the methodology, rather than 

presenting the best application or the best example. Similar techniques can be applied to 

data from other branches of structural engineering, such as wind velocity vs. building 

motion in wind engineering, or wave height vs. platform motion in offshore dynamics.

Stochastic-adaptive techniques are based on solid theoretical foundations, and they 

have been used sucessfully in various other engineering fields during the last ten years or so. 

However, straightforward applications of theoretical equations to raw data can give very 

misleading results. Examples presented in this paper, and numerous other examples which 

will not be given here, strongly suggest that the preprocessing of data and the selection of 

model type, model order, and initial values are crucial for accurate identification. There 

are no set rules for these choices. The familiarity with the behavior of the system, and 

the experience with analysis of similar data are the most useful assets in applications. 

One more point regarding the application of the algorithm is the computational errors 

for systems with very low damping. Due to fixed-point, finite word length arithmetic in 

computers, the roundoff errors can accumulate to a significant level. It is recommended 

that the highest precision available in the computer be used during the computations.

The RPEM presented in the report incorporates the time-varying characteristics of the
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model by using an exponentially decaying running window. A more complicated approach 

would be to introduce an additional set of equations that actually models the time variation 

of parameters as an auto-regressive process (Bohlin, 1977). The model used in this study 

is based on the transfer function representation and parallel form realization of system 

equations. There are other forms which can also be used to model systems, such as 

state-space forms and ladder forms (state-space form with diagonal covariance matrix for 

the state vector). The first form leads to the use of Kalman-Bucy filters (Kalman and 

Bucy, 1961), whereas the second form leads to lattice filters (Morf, 1977) for identification. 

Application of these filters for modeling and identification in structural dynamics will be 

presented in a separate study.

15. SUMMARY AND CONCLUSIONS

This report gives a concise review of the theory of stochastic-adaptive filtering, pre­ 

diction, and control techniques for discrete-time recordings, and presents ten examples for 

applications in structural dynamics. Included in the theoretical section of the report are 

the discrete-time representation of single-input, single-output (SISO) systems, models for 

SISO systems with noise, the concept of stochastic approximation, the recursive prediction 

error method (RPEM) for system identification, spectral estimation, and adaptive control. 

The practical aspects of the RPEM as regards the convergence and consistency of the re­ 

sults, model selection, and model validation are also given in the report. The applications 

include identification and control of building vibrations and simulated systems, as well as 

analysis of earthquake ground motions.

It is clear that the stochastic-adaptive methods have several advantages over the 

currently used techniques. The major ones are: (a) the filtering of the noise is done over 

the whole frequency band, (b) time-varying characteristics of the signal can be tracked, 

(c) the models obtained are simple recursive filters; (d) due to the recursive form of the 

algorithm, only a small segment of the data is needed during the computations, and (e) 

the method provides a basis for applications of adaptive control techniques to unknown 

systems.

More on stochastic-adaptive filtering, prediction, and control can be found in Astrom 

and Eykhoff (1971), Soderstrom and Stoica (1983), Ljung and Soderstrom (1983), Young 

(1984), Goodwin and Sin (1984), Graupe (1984), Ljung (1987), Brogan (1987), Caines 

(1988), and Soderstrom and Stoica (1988). The special issues of the journals IEEE Trans­ 

actions on Automatic Control (1974), and Automatica (1980) give reviews of the methods. 

Papers by Saridis (1974), Isermann et. al. (1974), and Soderstrom and Stoica (1981) 

give comparison of different adaptive identification algorithms, whereas papers by Astrom 

(1980), Isermann (1980), and Wittenmark and Astrom (1984) give practical aspects for 

applications.
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TABLE 4.1

Discrete-time models for SISO systems

Abbreviations:
AR : autoregressive,

MA : moving average,

X : auxilary input,

FIR : finite impulse response.

B C 
1. Black   Box : A- y =   - x +     e

B C
2. Box   Jenkins : y =   - x +   - e

3. ARARMAX : A-y = B -x +   -e

4. ARARX : A-y = B-x +   >e

5. ARMAX: A-y = B-x

6. ARMA : A-y = C-e

7. ARX : A   y = B   x + e

B
8. Output   Error : y =     x + e

F

9. FIR: = B-x
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TABLE 13.3.1

Filter parameters, pole locations, and the corresponding modal frequency, damping, 
and the weighting factors for the building with soil-structure interaction in Vina del Mar, 

Chile.

ARMAX Model with nn = 16, nh = 15, n. = 3

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16

1.000
-1.458
1.606
-0.363
-0.373

0.699
-0.415
0.275
-0.061
0.128
-0.119
0.647
-0.591
0.701
-0.120
0.028
0.188

-0

0
-0
-0

0
-0
-0

0
-0
-0

0
0
-0

0
-0

0

0.
.393
.014
.127
.387
.263
.370
.021
.096
.043
.068
.123
.107
.250
.313
.182
.000

1.000
-0.156
-0.559

0.597
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.496
0.907
0.907
0.871
0.871
0.927
0.927
0.980
0.980
0.986
0.909
0.909
0.996
0.996
0.954
0.954

0.000
-0.571
0.571
1.486
-1.486

0.739
-0.739
1.216
-1.216

0.000
-1.174
1.174
0.288
-0.288
0.982
-0.982

2.233
1.844
1.844

4.751
4.751
2.365
2.365
3.870
3.870
0.046
3.748
3.748
0.917
0.917
3.129
3.129

1.000
0.168
0.168

0.093
0.093
0.102
0.102
0.016
0.016
1.000
0.081
0.081
0.014
0.014
0.048
0.048

0.
46.
46.
19.
19.
-76.
-76.
-56.
-56.

-644.
-12.
-12.

18.
18.
24.
24.

000
331
331

856
856
777
777
042
042
330
378
378
788
788
946
946

0.000
41.811
41.811

-17.171
-17.171
118.343
118.343
38.989
38.989

-635.051
-24.829
-24.829

7.330
7.330

22.124
22.124
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TABLE 13.4.1

Filter parameters, pole locations, and the corresponding modal frequency, damping, 
and the weighting factors at t = 25 sec. for the building with nonlinear response (Imperial 

County Services Building).

ARX Model with n n = 12, m = 11: t = 25 sec. 

j aj bj TJ <t>j foj foj

0
1
2
3
4
5
6
7
8
9

10
11
12

1
-5

14
-27

41
-49

49
-41

28
-16

7
-2

0

.000

.276

.504

.766

.108

.373

.237

.101

.560

.168

.110

.195

.362

0.000
0.008
-0.038
0.097
-0.176
0.244
-0.271
0.243
-0.171
0.090
-0.033
0.007
0.000

0.882
0.882
0.898
0.898
0.894
0.894
0.940
0.940
0.930
0.930
0.973
0.973

0
-0
-1

1
1

-1

0
-0

1
-1
0
-0

.780

.780

.306

.306

.158

.158

.435

.435

.498

.498

.103

.103

5.027
5.027
8.340
8.340
7.410

7.410
2.796
2.796
9.550
9.550
0.677
0.677

0.159
0.159
0.082
0.082
0.096
0.096
0.141
0.141
0.048
0.048
0.256
0.256

23.
23.

571.
571.
-457.
-457.
130.
130.
-236.
-236.

-1072.
-1072.

697
697
951
951
427
427
695
695
982
982
202
202

-142.289
-142.289
-157.141
-157.141
510.994
510.994
79.285
79.285

825.928
825.928
1092.045
1092.045
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TABLE 13.5.1

Filter parameters, pole locations, and the corresponding modal frequency, damping, 

and the weighting factors for the building with ambient vibrations.

ARX Model with nn = 24. m - 23

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1.000
0.158

-0.177
-0.435
0.303
0.363
0.499
0.346

-0.016
-0.038
0.292
0.007

-0.043
0.112
0.218

-0.061
0.028
0.030

-0.021
-0.097
-0.036
-0.116
0.003
0.001
0.007

0
-0
-0
-0

0
0

-0
-0
-0
-0
-0
-0

0
0
0

-0

0
-0

0
-0
-0
-0

0
-0

0

.000

.794

.400

.362

.125

.090

.017

.443

.608

.243

.227

.203

.179

.317

.082

.334

.012

.190

.297

.304

.728

.405

.626

.547

.000

0.381
0.402
0.402
0.831
0.756
0.756
0.883
0.883
0.951
0.951
0.857
0.857
0.853
0.853
0.917
0.917
0.974
0.974
0.991
0.991
0.929
0.929
0.982
0.982

0
-1

1
0

-1

1
-0

0
-1

1
0

-0

1
-1
-0

0
-0

0
0

-0
-0

0
0

-0

.000

.047

.047

.000

.458

.458

.471

.471

.502

.502

.906

.906

.230

.230

.205

.205

.969

.969

.389

.389

.773

.773

.550

.550

3.070
4.420
4.420
0.590
4.726
4.726
1.549
1.549
4.784
4.784
2.926
2.926
3.949
3.949
0.709
0.709
3.085
3.085
1.240
1.240
2.473
2.473
1.752
1.752

1.000
0.657
0.657
1.000
0.188
0.188
0.255
0.255
0.033
0.033
0.168
0.168
0.128
0.128
0.391
0.391
0.027
0.027
0.023
0.023
0.095
0.095
0.033
0.033

0
0
0
5
0
0

20
20

-108
-108

-60
-60
-12
-12

63
63

271
271

-571
-571

24
24

773
773

.000

.000

.000

.101

.090

.090

.812

.812

.340

.340

.796

.796

.431

.431

.157

.157

.213

.213

.705

.705

.449

.449

.135

.135

0.000
0.000
0.000

-4.239
-0.027
-0.027
11.373
11.373

-196.705
-196.705

41.920
41.920
4.238
4.238

47.888
47.888

-154.572
-154.572
754.051
754.051
65.973
65.973

-769.838
-769.838
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TABLE 13.6.1

Filter parameters, pole locations, and the corresponding modal frequency, damping, 
and the weighting factors for the San Fernando record (record F88S70E).

Tin = 4, 1

3

0
1
2 
3
4

Oj

1.000 
-2.885 
3.672 

-2.543 
0.792

bj

0.000 
1.209 
1.079 
1.423 
0.000

Cj

1.000 
0.000 
0.000 
0.000 
0.000

Tj

0.928 
0.928 
0.959 
0.959

1* = 3: t

*
0.997 

-0.997 
0.207 

-0.207

= 18 sec.

foj

7.955 
7.955 
1.684 
1.684

eoj

0.075 
0.075 
0.198 
0.198

»<«,)
0.830 
0.830 
0.142 
0.142

nn = 8. m = 7; t = 18 sec.

-0.043
-0.043
-0.109
-0.109

0
1
2
3
4
5
6
7
8

1.000
-4.511
10.328

-15.661
17.089

-13.711
7.907

-3.007
0.585

0.000
0.118
0.288
0.395
0.218
0.048
0.188
0.591
0.000

1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.896
0.896
0.943
0.943
0.926
0.926
0.977
0.977

0.625
-0.625
1.460

-1.460
1.046

-1.046
0.184

-0.184

5.052
5.052

11.624
11.624
8.346
8.346
1.473
1.473

0.173
0.173
0.040
0.040
0.073
0.073
0.127
0.127

0.115
0.115
0.823
0.823

-1.006
-1.006
0.271
0.271

-0.381
-0.381
5.660
5.660
1.493
1.493

-0.266
-0.266
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TABLE 13.7.1

Filter parameters, pole locations, and the corresponding modal frequency, damping, 
and the weighting factors for the site amplification example (records are from the March 
3, 1985 Chilean earthquake).

Tin = 12. rih = 11; t = 18 sec.

0
1
2
3
4
5
6
7
8
9

10
11
12

3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1.000
-4.121
9.649

-16.660
23.273
-27.382
27.639
-24.082
17.982
-11.280
5.708
-2.130
0.462

«j

1.000
-4.523
11.793
-22.980
36.880
-51.014
62.412
-68.565
68.156
-61.456
50.148
-36.746
23.817
-13.295
6.113
-2.096
0.421

0.000
-0.008
0.030
-0.067
0.115
-0.160
0.184
-0.180
0.148
-0.097
0.046
-0.015
0.000

bj

0.000
-0.001
0.000
0.006
-0.024
0.056
-0.101
0.147
-0.181
0.194
-0.183
0.147
-0.102
0.057
-0.026
0.007
0.000

1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

nn

Cj

1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.928
0.928
0.920
0.920
0.944
0.944
0.948
0.948
0.927
0.927
0.960
0.960

= 16, Hh

ri

0.933
0.933
0.943
0.943
0.950
0.950
0.944
0.944
0.943
0.943
0.947
0.947
0.939
0.939
0.980
0.980

0.912
-0.912
1.311
-1.311
-1.135
1.135
0.583
-0.583
-1.484
1.484
0.183
-0.183

= 15: t =

*i

0.731
-0.731
-1.513
1.513
-1.233
1.233
0.502
-0.502
1.346
-1.346
-0.934
0.934
1.016
-1.016
0.168
-0.168

7.284
7.284

10.453
10.453
9.044
9.044
4.662
4.662

11.826
11.826
1.492
1.492

18 sec.

/o>

5.842
5.842

12.045
12.045
9.822
9.822
4.024
4.024
10.719
10.719
7.446
7.446
8.099
8.099
1.347
1.347

0.082
0.082
0.064
0.064
0.050
0.050
0.091
0.091
0.051
0.051
0.218
0.218

&J

0.094
0.094
0.039
0.039
0.042
0.042
0.113
0.113
0.044
0.044
0.058
0.058
0.062
0.062
0.119
0.119

229.574
229.574

1191.369
1191.369
436.193
436.193
-262.090
-262.090
-161.601
-161.601
-77.697
-77.697

2»(fc)

-171.195
-171.195

-2345.374
-2345.374
-1912.515
-1912.515
-162.119
-162.119
763.469
763.469

1321.034
1321.034
-45.058
-45.058
-6.407
-6.407

80.451
80.451

1052.694
1052.694
1222.136
1222.136
106.185
106.185
-557.945
-557.945
129.498
129.498

2»(fcP>)

232.077
232.077

-2339.097
-2339.097
-1970.833
-1970.833

44.324
44.324

-100.972
-100.972
-388.209
-388.209
-712.433
-712.433
107.599
107.599
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TABLE 13.8.1

Filter parameters, pole locations, and the corresponding modal frequency, damping, 
and the weighting factors for the source amplification example (records are from the 1983 
Borah Peak, Idaho earthquake).

n n = 6. rih = 5: t = 10 sec.

i «> »> c, r, * f» 6w 2*(«)

0
1
2 
3
4 
5 
6

1.000 
-2.695 
3.971 

-4.311 
3.403 

-1.916 
0.624

0.000 
-0.309 
0.664 

-0.660 
0.520 
0.037 
0.000

1.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000

0.925 
0.925 
0.885 
0.885 
0.966 
0.966

-1.499 
1.499 
1.010 

-1.010 
0.215 

-0.215

11.948 
11.948 
8.100 
8.100 
1.734 
1.734

0.052 
0.052 
0.120 
0.120 
0.161 
0.161

8.161 
8.161 

-8.031 
-8.031 
5.597 
5.597

n n = 14. rih = 13: t = 10 sec. 

Cj rj <t>j fa

12.166
12.166
1.894
1.894
-5.485
-5.485

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1.000
-3.996
9.322

-16.628
24.445

-30.897
34.337

-33.883
29.846

-23.343
16.023
-9.398
4.507

-1.623
0.339

0.000
-0.060
0.339

-0.474
0.420
0.113

-0.823
1.646

-2.223
2.382

-2.100
1.531

-0.767
0.312
0.000

1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.923
0.923
0.941
0.941
0.952
0.952
0.883
0.883
0.909
0.909
0.907
0.907
0.967
0.967

1.212
-1.212
-1.001
1.001

-1.336
1.336
0.400

-0.400
0.851

-0.851
1.525

-1.525
0.193

-0.193

9.666
9.666
7.984
7.984

10.636
10.636
3.337
3.337
6.815
6.815

12.160
12.160

1.556
1.556

0.066
0.066
0.060
0.060
0.037
0.037
0.297
0.297
0.111
0.111
0.064
0.064
0.173
0.173

27.828
27.828
23.005
23.005

-35.395
-35.395
-1.697
-1.697
-8.318
-8.318
32.199
32.199
-1.820
-1.820

74.174
74.174

-37.370
-37.370
-18.397
-18.397

1.850
1.850
1.027
1.027

10.071
10.071
0.596
0.596
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FIG. 3.1- Schematic of parallel form realization of SISO systems.
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FIG. 4.1- Schematic of black-box models for SISO systems.
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FIG. 8.1- Variation of total estimation error with model order.

60



OUTPUT TIME SERIES

TIME (SEC) 
SIGNAL TIME SERIES

10 15

TIME (SEC) 
NOISE TIME SERIES

20 25

10 15 20 

TIME (SEC)
25

FIG. 13.1.1- Simulated output, signal, and noise time series ( output is equal to signal 
plus noise).
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TIME VARIATION OF OUTPUT PARAMETERS
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FIG. 13.1.2- Estimated model parameters for A0 = A(0) = 1 and SNR = 5, and com­ 
parison with exact values (marked by arrows on the right margin).
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FIG. 13.1.3- Profile of weighting factors for A0 = 0.99 and A(0) = 0.95 at sampling points 
100,300, and 500.
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TIME VARIATION OF OUTPUT PARAMETERS

CO

0 5 10 15 20

TIME (SEC.) 
TIME VARIATION OF INPUT PARAMETERS

.DO-

i i i i I i i i i I i i i i
0 5 10 15 20

TIME (SEC.) 
TIME VARIATION OF NOISE PARAMETERS

in 
d

in
d
I

i i i i
10 15 

TIME (SEC.)

20 25

FIG. 13.1.4- Estimated model parameters for A0 = 0.99, A(0) = 0.95 and SNR = 5, and 
comparison with exact values (marked by arrows on the right margin).
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TIME VARIATION OF OUTPUT PARAMETERS
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FIG. 13.1.5- Estimated model parameters for A0 = A(0) = 1 and SNR = 1, and com­ 
parison with exact values (marked by arrows on the right margin).
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TIME VARIATION OF OUTPUT PARAMETERS
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FIG. 13.1.6- Estimated model parameters for A0 = A(0) = 1 and SNR = 10, and 
comparison with exact values (marked by arrows on the right margin).
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FIG. 13.2.1- Selected time variation of model parameters.
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FIG. 13.2.3- Simulated signal and noise series and their Fourier amplitude spectra.
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FIG. 13.2.4- Simulated output (signal plus noise) series, output Fourier amplitude spec­ 
trum, and comparison with exact transfer function calculated at t = 20, 50, and 80 
seconds.

70



TIME WMUATON Of OUTPUT PARAMETERS

cd

20 40 90 
TIME (SEC.)

 0 100

TIME VARIATION OF MPJT PARAMETERS

I I I
10 20 40 60 

TIME (SEC.)
 0 100

TIME VARIATION Of NOISE PARAMETERS

I I I
10 20 40 60 

TIME (SEC.)
 0 100

FIG. 13.2.5- Estimated model parameters for A0 = A(0) = 1 (dashed lines), and compar­ 
ison with exact values (soild lines).
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TIME VARIATION OF OUTPUT PARAMETERS
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FIG. 13.2.6- Estimated model parameters for A0 = 0.99, A(0) = 0.99 (jagged lines), and 
comparison with exact values (smooth lines).
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FIG. 13.3.1- Recorded basement and top-floor velocities, and their Fourier amplitude 
spectra.
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FIG. 13.3.3- Residual time series, Fourier amplitude spectrum, autocovariance, and cross- 
covariance with input (straight lines in autocovariance and cross-covariance plots show 
90-percent confidence levels for whiteness and independence, respectively).
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FIG. 13.4.4- Estimated transfer function at t = 1, 5, and 25 seconds.
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FIG. 13.4.5- Comparison of estimated transfer function with spectral ratio at t = 1, 5, 
and 25 seconds.
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covariance plots show 90-percent confidence levels for whiteness and independence, respec­ 
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FIG. 13.5.3- Residual time series, its Fourier amplitude spectrum, autocovariance, and 
cross-covariance with input (straight lines in autocovariance and cross-covariance plots 
show 90-percent confidence levels for whiteness and independence, respectively).
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FIG. 13.6.1- A sample function of the Bernoulli-Gaussian sequence, and its Fourier am­ 
plitude spectrum.
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FIG. 13.6.2- Time history and the Fourier amplitude spectrum of the record F88S70E 
from the 1971 San Fernando earthquake.
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FIG. 13.6.3- Model order versus prediction error for the San Fernando record: n a vs. 
V(N) with nb = na - 1 and n c = 0.
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FIG. 13.6.4- Time variation of model parameters for the San Fernando record: (a)
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FIG. 13.6.5- The amplitude of the transfer function for (4-3) model of the San Fernando 
record evaluated at t = 18 sec., and its match with the Fourier amplitude spectrum.
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FIG. 13.6.6- The residual tests for (4-3) model of the San Fernando record evaluated 
at t = 18 sec.: (a) time history of the residual; (b) Fourier amplitude spectrum of the 
residuals; (c) autocovariance function of the residuals, and the 90-percentile confidence 
limits for whiteness according to the Chi-square \2 test; (d) cross-covariance function of 
the residuals with input, and the 90-percentile confidence limits according to (0,1) normal 
distribution law.
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FIG. 13.6.7- The amplitude of the transfer function for (8-7) model of the San Fernando 
record evaluated at t = 18 sec., and its match with the Fourier amplitude spectrum.
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FIG. 13.6.8- The residual tests for (8-7) model of the San Fernando record evaluated 
at t = 18 sec.: (a) time history of the residual; (b) Fourier amplitude spectrum of the 
residuals; (c) autocovariance function of the residuals, and the 90-percentile confidence 
limits for whiteness according to the Chi-square x2 test; (d) cross-covariance function of 
the residuals with input, and the 90-percentile confidence limits according to (0,1) normal 
distribution law.
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FIG. 13.6.9- The amplitude of the transfer function for (8-7) model of the San Fernando 
record evaluated at times t = 1, 5 and 18 sec.
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FIG. 13.6.10- The amplitude of the transfer function of the San Fernando record evalu­ 
ated at t = 18 sec. for models (4-3), (8-7) and (12-11).
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FIG. 13.7.1- Input (rock site) and output (soil site) time series for the site amplification 
example. The records are from the 3 March 1985 Chilean earthquake.
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FIG. 13.7.2- Input (rock site) and output (soil site) Fourier amplitude spectra and the 
smoothed spectral ratio (soil site/rock site) for the site amplification example. The records 
are from the 3 March 1985 Chilean earthquake.
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FIG. 13.7.3- Time variation of model parameters for the site amplification example (1985 
Chilean earthquake): (a) a,, j = 1 ~ 12; (b) 6^, j = 1 ~ 11.
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FIG. 13.7.4- The amplitude of the transfer function for (12-11) model for the site ampli­ 
fication example (1985 Chilean earthquake) evaluated at t = 18 sec., and its match with 
the Fourier amplitude spectrum.
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FIG. 13.7.5- The residual tests for (12-11) model for the site amplification example (1985 
Chilean earthquake) evaluated at t = 18 sec.: (a) time history of the residual; (b) Fourier 
amplitude spectrum of the residuals; (c) autocovariance function of the residuals, and the 
90-percentile confidence limits for whiteness according to the Chi-square \2 test; (d) cross- 
covariance function of the residuals with input, and the 90-percentile confidence limits 
according to (0,1) normal distribution law.
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FIG. 13.7.6- The amplitude of the transfer function for (16-15) model for the site ampli­ 
fication example (1985 Chilean earthquake) evaluated at t = 18 sec., and its match with 
the Fourier amplitude spectrum.
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RESIDUAL TIME SEQUENCE AMPLITUDE SPECTRUM OF RESIDUALS
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FIG. 13.7.7- The residual tests for (16-15) model for the site amplification example (1985 
Chilean earthquake) evaluated at t = 18 sec.: (a) time history of the residual; (b) Fourier 
amplitude spectrum of the residuals; (c) autocovariance function of the residuals, and the 
90-percentile confidence limits for whiteness according to the Chi-square x2 test; (d) cross- 
covariance function of the residuals with input, and the 90-percentile confidence limits 
according to (0,1) normal distribution law.
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FIG. 13.8.1- Input (small earthquake) and output (large earthquake) time series for the 
source amplification example. The records are from the aftershocks of 19S3 Borah Peak, 
Idaho earthquake.
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FIG. 13.8.2- Input (small earthquake) and output (large earthquake) Fourier amplitude 
spectra and the smoothed spectral ratio (large earthquake/small earthquake) for the source 
scaling example. The records are from the aftershocks of 1983 Borah Peak, Idaho earth­ 
quake.
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FIG. 13.8.3- Time variation of model parameters for source scaling example (1983 Borah 
Peak earthquake): (a) a,, j = 1 ~ 6; (b) &,, j = 1 ~ 5.
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FIG. 13.8.4- The amplitude of the transfer function for (6-5) model for the source scaling 
example (1983 Borah Peak earthquake) evaluated at t = 10 sec., and its match with the 
Fourier amplitude spectrum.
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AUTOCOVARIANCE OF RESIDUALS CROSS-COVARIANCE OF RESIDUALS WITH INPUT

(d)

FIG. 13.8.5- The residual tests for (6-5) model for the source scaling example (1983 
Borah Peak earthquake) evaluated at t = 10 sec.: (a) time history of the residual; (b) 
Fourier amplitude spectrum of the residuals; (c) autocovanance function of the residuals, 
and the 90-percentile confidence limits for whiteness according to the Chi-square x2 t-est i 
(d) cross-covariance function of the residuals with input, and the 90-percentile confidence 
limits according to (0,1) normal distribution law.
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FIG. 13.8.6- The amplitude of the transfer function for (14-13) model for the source 
scaling example (1983 Borah Peak earthquake) evaluated at t = 10 sec., and its match 
with the Fourier amplitude spectrum.
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FIG. 13.8.7- The residual tests for (14-13) model for the source scaling example (1983 
Borah Peak earthquake) evaluated at t = 10 sec.: (a) time history of the residual; (b) 
Fourier amplitude spectrum of the residuals; (c) autocovariance function of the residuals, 
and the 90-percentile confidence limits for whiteness according to the Chi-square x2 test; 
(d) cross-covariance function of the residuals with input, and the 90-percentile confidence 
limits according to (0,1) normal distribution law.
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FIG. 13.9.1- Simulated uncontrolled output, controlled output, and control input (known 
system).
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TIME VARIATION OF OUTPUT PARAMETERS
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FIG. 13.9.3- Time variation of model parameters (ARMAX model).
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FIG. 13.9.4- Simulated uncontrolled output, controlled output, and control input (un­ 
known system, ARX model).
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TIME VARIATION OF OUTPUT PARAMETERS
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FIG. 13.9.5- Time variation of model parameters (ARX model).
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FIG. 13.10.1- Recorded (uncontrolled) top-floor acceleration, controlled top-floor accel­ 
eration, and control input.
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FIG. 13.10.2- Time variation of model parameters (ARX model).
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