UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

GEOSTAT: A Computer System for Spherical Semi-Variogram Modeling and Kriging

bу

Lewis W. Boger¹

Open-File Report 88-684

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial atandards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

¹USGS, Reston, Va.

Acknowledgements

The software subsystems incorporated into GEOSTAT were written by various people, and later adapted or synthesized into other subsystems. Initial workers were A.T. Miesch, G. VanTrump Jr., and W.D. Grundy of the U.S. Geological Survey (USGS) for subsystems related to the Statistical Package (STATPAC) and basic statistics while the initial geostatistical subsystems were contained in documents published by J.A. Skrivan and M.R. Karlinger (1980) of the USGS, H.P. Knudsen and Y.C. Kim (1978), M.David (1977), and A.G. Journel and C.J. Huighregts (1978). W.D. Grundy and N.J. Bridges improved, adapted, and/or combined subsytems. After considerable research concerning geostatistics and the several geostatistical software systems, the author enhanced, improved, and/or synthesized subsytems in order to mathematically simplify the use of a portion of geostatistics, to make the use of a portion of geostatistics more user-oriented, to produce a menu-driven system, and to fashion a system more amenable to coal applications.

Table of Contenus

Section	<u>Page</u>
Abstract	1
Introduction	1
General System Information	1
Input Data	2
Description of the System	3
Prepare STATPAC File for GEOSTAT Subsystems	4
Transform STATPAC File to Readable/Editable File	5
Transform Readable/Editable File to STATPAC File	5
Calculate Basics Statistics	5
Plot a Symbol Map at the Terminal	5
Create Control File of Semi-Variogram Paremeters	5
Compute Semi-Variogram	6
Cross-Validate Semi-Variogram	6
Krig a Grid of Points	7
Krig a Single Polygon as a Whole	7
Kriging Multiple Rectangular Blocks Within a Poly	gon.8
Test for Normality of a Variable	9
Create New STATPAC File by Sorting STATPAC File.	9
Review Status of Input/Output Files	9
Exit Kriging System	10
Selected References	11
Appendixes	
A. Representative PACER and PACR2STP Session	12
B. GEOSTAT Session	15

Abstract

GEOSTAT is a menu-driven FORTRAN 77 computer system that allows spherical semi-variogram modeling and kriging, either at a point or in a block, on Prime minicomputers. GEOSTAT was developed for use with coal data, but other data may be used if they are in the required input format.

Introduction

Kriging allows the user to obtain an unbiased linear estimate of minimum variance of a spatially correlated variable. This menu-driven FORTRAN 77 system, called GEOSTAT, allows semivariogram modeling and subsequent kriging either at a point or in a block on the Prime computers of the National Coal Resources Data System (NCRDS) in the Branch of Coal Geology (BCG), Geologic Division (GD), U.S. Geological Survey (USGS). It may be run using any terminal connected to one of the Prime computers of NCRDS. GEOSTAT is a sophisticated tool; thus, the user should be thoroughly familiar with the theory of kriging as explained in Mining Geostatistics by A.G. Journel and C.J. Huijbregts, 1978 and Geostatistical Ore Reserve Estimation by M. David, 1977. In addition, the user should also be familiar with the PACER and GARNET systems of the NCRDS even though GEOSTAT may be used without this knowledge. The purpose of this document is to provide the information necessary to use GEOSTAT. This will be done by providing general system information, detailing input data requirements, briefly describing each subsystem, and furnishing a sample run of the system. A later document will be devoted to the practical aspects of kriging.

General System Information

By using Prime System commands, the user may record an interactive session. The user would type the following and press RETURN:

COMO FILENAME

where FILENAME is any name consisting of up to 32 letters or numbers and periods (.) where the first character is alphabetic. Generally, throughout this document, the user should press the RETURN (or ENTER) key after typing in a command. After the interactive session is completed, the user may end the COMO session by typing:

COMO -END.

GEOSTAT records the name of the current input data set along with the column identifiers for data corresponding to the X and Y coordinates and variable under analysis. Likewise, the name, data set type, and number and name of the GEOSTAT step which creates each data set are recorded. The REVIEW subsystem can then be used to examine the data set status.

Input Data

GEOSTAT requires all input data to be in the STATPAC (STATistical PACkage) format used within the USGS. This data format was developed as a USGS standard for storing geochemical data that requires qualifying codes to indicate the relative reliability of the data.

The major user of GEOSTAT is the BCG which uses the PACER System of the National Coal Resources Data System (NCRDS) to store coal information in a non-STATPAC format, and it is assumed that the user is familiar with PACER.

A computer program exists to convert a PACER LIST data set to a STATPAC data set; it is called PACR2STP. The PACER format for an input record to this program follows:

POINTID 1 16 (4A4)
LATITUD 20 9 (I9)
LONGTUD 31 10 (I10)
SURFELV 42 9 (F9.3)
FROMFT 52 9 (F9.3)
TOFT 62 9 (F9.3)
THKFT 72 9 (F9.3)
BED 82 20 (5A4)
KEY 103 8 (I8)

The above record format may be stored in a disk data set that Pacer can access by use of the .STORED instruction under the LIST command when the prompt "ENTER THE LIST OF ITEM NAMES" appears. PACR2STP sums multiple bench thicknesses within a bed within a drillhole; this accumulated thickness may then be subsequently kriged. SURFELV, FROMFT, and TOFT are names of variables which the user prefers to view when kriging on thickness. Although it does not make sense to perform kriging on these variables, other variables with the same format and amenable to kriging may be substituted in their place. Likewise, another variable may be substituted for THKFT; however, any variable in this place will be summed just as thicknesses are summed.

A required input to this program is the longitude of the central meridian, in decimal degrees, of the data being used. The user may average the beginning and ending longitudes and use it as the central meridian. Also, the user must exclude headers from the PACER LIST output file.

A representative PACER session showing how to produce a PACER LIST data set for input to PACR2STP followed by an execution of PACR2STP is shown in Appendix A. Note that the DEFINE command of PACER must be used to convert the FROM, TO, and THK variables to feet to create the new variables FROMFT, TOFT, and THKFT. The BED and KEY fields are not processed by PACR2STP. North and east coordinates in kilometers, based on the UTM coordinate system are placed on the STATPAC file in place of the non-processed fields.

Description of the System

The user may start a session in GEOSTAT by typing GEOSTAT and pressing the RETURN key. The following welcome to the system will appear:

WELCOME TO THE MAGICAL WORLD OF GEOSTATISTICS

WHERE SEMI-VARIOGRAMS AND KRIGING ARE THE IN THINGS.

 $X \quad X \quad X$

X

X

X

X

X

X

*** PAUSE -PLEASE TYPE START AND PRESS ENTER OR RETURN TO CONTINUE.

After the user performs the above instruction, a menu will appear:

GEOSTAT SUBSYSTEMS CURRENTLY AVAILABLE:

- 1) PREPARE STATPAC FILE FOR GEOSTAT SUBSYSTEMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.

- 7) COMPUTE SEMI-VARIOGRAM.
- 8) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT GEOSTAT SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY

STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

The user must then type in a number from one to fifteen and press RETURN/ENTER. An actual session using all the subsystems with representative options appears in Appendix B. If a readable data set is produced by a subsystem, the data set will appear after the subsystem execution even though the data set does not print as the user executes GEOSTAT. This is done to present related information without having to scramble through this document. The individual subsystems will now be briefly described.

Prepare STATPAC File for GEOSTAT Subsystems

This subsystem (SS2DPREP) prepares a STATPAC file for input to the kriging subsystems. It reads a STATPAC file and sorts it by east coordinate of the hole within the north coordinate. Subsequently, the records are checked for duplicate locations, and duplicates are displayed on the terminal. The duplicates must be resolved and removed from the input file before the subsystem will produce the proper output. If the input file has numeric fields with no data, each data field must be preflagged with a qualifier or the user must tell the system via interaction what unique numeric value, such as -999, is used to indicate missing data in a field. The subsystem will enter a qualifier of 'B' if it sees a unique numeric value such as -999. This step is necessary to insure that the kriging subsystems do not use invalid data.

Transform STATPAC File to Readable/Editable File

This subsystem (FILTER) transforms a STATPAC file into a readable ASCII file that can be edited using the Prime Editor. Each record requires two lines on the printed page. The first row of headings applies to the first row of data and the second row of headings applies to the second row of data per record. Latitude and longitude may appear both in degrees, minutes, and seconds and in decimal degrees.

Transform Readable/Editable File to STATPAC File

This subsystem (UNFILTER) transforms the readable ASCII data set created by the subsystem FILTER to a STATPAC file.

Calculate Basic Statistics

This subsystem (BASTAT) calculates the following statistics for data in a STATPAC data set: minimum, maximum, mean, and standard deviation. Also, it optionally produces correlations, histograms, and percentiles for the whole or a selected portion of the input data set. This subsystem allows processing of several data sets without returning to the GEOSTAT menu. If a statistic can not logically be computed, a value of 1.0000E+35, which means 1×10^{35} , will appear.

Plot a Symbol Map at the Terminal

This subsystem (MAPPLT) plots a scatter diagram which, with the assist of a table, shows the range of the variable under analysis for each sample location. Optionally, the user may also create a supplementary plot which shows the number of samples per location. The user may provide the boundaries in kilometers or accept default boundaries. The range of the sample variable is divided into ten equal classes where the symbols 0-9 are used to represent these ten classes. If more than one sample occurs per location, the symbol for the class representing the mean of the samples is plotted. The user must furnish the direction in which the sample location cocordinates increase: east or west, north or south.

<u>Create Control File of Semi-Variogram Parameters</u>

This subsystem (SS2DVCTL) requires the user to furnish the name for the control file, a title for the empirical semi-variogram, the class interval which is used to group distances in kilometers between holes, and the direction and the window for the semi-variogram. The subsystem allows 20 class intervals for grouping distances; thus, the range to be covered by the class intervals should be no more than 20 times the class interval chosen. The choice of a class interval is generally arrived at by trial and error. This will be better understood after performing this step and step 7 several times.

Compute Semi-Variogram

This subsystem (SS2DGAMH) computes an empirical semi-variogram. Input to this subsystem is the STATPAC output file produced by subsystem SS2DPREP. The user must also furnish the name of the control file created by the subsystem SS2DVCTL, and supply a name for the readable semi-variogram output file. The output file provides a listing of the answers the user furnished to create the control file; the number of samples, the mean, the variance, and the standard deviation of the data being kriged; and a table and graphic representation of the empirical spherical semi-variogram created which contains the number of pairs, the gamma value (semi-variogram value) and average distance for each distance grouping.

Cross-Validate Semi-Variogram

This subsystem (SS2DXVAL) is a two-dimensional point kriging system that performs cross-validation on the theoretical spherical semi-variogram the user derives from the empirical semi-variogram computed by subsystem SS2DGAMH. There are three methods to accomplish cross-validation. One, the value for each hole is suppressed and is estimated using values for all other holes. Two, values for odd-numbered holes are estimated by using the values at even-numbered holes. Three, the rows (or records) from the specified row number to the last row in the input STATPAC data set are estimated using data from the first row of the file to the row just before the specified row number. This last option may be used in predicting the values of hypothetical data points which have not been sampled.

Input files to this subsystem are the STATPAC file created by the subsystem SS2DPREP, and the control file created by the subsystem SS2DVCTL. The user must have decided on the nugget, C, and A values for the empirical semi-variogram computed by subsystem SS2DGAMH and supply them to this subsystem. Also, the user must decide the maximum distance in kilometers from points to be kriged for a hole to be included for kriging (a circular neighborhood), and the maximum number of holes to be used within the circular neighborhood.

A character (readable) file and a STATPAC file will be created. The STATPAC file contains the same tabular data which apears in the character file. The tabular data in both files contain the hole number, X and Y UTM cooordinates in kilometers, the value of the variable (assay or Z value) being kriged, the kriged value, the kriging error, and the kriging standard deviation. The character file, in addition, contains the information provided by the user; the kriged average error, the root mean square error, and the reduced mean square error. The STATPAC file can be analyzed by using the STATPAC statistical subsystems included in GEOSTAT. The output at the terminal consists of the kriged average error, kriged root mean square error, and the kriged reduced mean square error in addition to understandable messages.

Krig a Grid of Points

This subsystem (SS2DGRID) is a two-dimensional kriging system which will krig a grid of points specified by the user. Optionally, it will also produce GARNET grid data sets for the kriged value and the kriging variance. The input data set is the one created by the subsystem SS2DPREP. At the terminal, the user must supply the nugget, the C value, and the A value of the empirical semi-variogram computed by the subsystem SS2DGAMH; the maximum distance in kilometers from a grid point for a drillhole to be included for kriging; the maximum number of holes to be used within a circular neighborhood of the grid point; the number of points in each direction to form the grid; the distance in kilometers between grid points in each direction; the column numbers, which are given in a prompt by this subsystem, for the north coordinate, the east cooordinate, and the value to be kriged; the northing and the easting of the southwest corner of the grid; and the file names for input and output. Also, if the user wishes to produce GARNET grid data sets for the kriged value and kriging variance, the central meridian for the data must be furnished. The user may average the beginning and ending longitudes and use it as the central meridian.

The outputs on the terminal are understandable messages. A character (readable) disk file and a STATPAC disk file are always created when the subsystem successfully runs. Each of these files contain X and Y coordinates in kilometers in the UTM system, the kriged value, and the kriged variance for each point on the grid. When there are not enough points within the search radius to obtain a kriged value at a grid point, a value of zero is assigned as the kriged value and to the kriging variance. The character file also contains answers that the user provided when executing this subsystem as well as headings for the tabular data. Optional outputs are two GARNET (.GRD) files which are readable by the user familiar with GARNET. The user may employ GARNET to transform these files into contours of the kriged value and the kriging variance. As was mentioned earlier, it is assumed that the user is familiar with GARNET.

Krig a Single Polygon As a Whole

This subsystem (SS2DBLOK) is a two-dimensional kriging system which computes kriged mean value and the kriging variance over a polygon. One of three inputs is the data set created by the subsystem SS2DPREP (step 1). The corners or nodes of the polygon must also be provided. If the sides of the polygon are parallel to the coordinate axes, the corners of the polygon must be entered at the terminal. Otherwise, the corners may be entered at the terminal or from a disk file. If a disk file is used, the format should be as follows:

 Y_1, X_1 Y_2, X_2

 Y_n, X_n .

In all cases, data must be entered in a clockwise direction with the northing, the y value, specified first in each pair of coordinates. At the terminal, the user must supply the nugget, the C value, and the A value of the empirical semi-variogram computed by the subsystem SS2DGAMH; the maximum distance in kilometers from the center of a the polygon for a drillhole to be included for kriging; the maximum number of holes to be used within a circular neighborhood of the center of the polygon; the number of grid points in the north and east directions; the column numbers, which are given in a prompt by this subsystem, for the north coordinate, the east coordinate, and the variable to be kriged; and the data set names for the input and output. The outputs on the terminal are understandable messages. A character (readable) disk data set is always created when the system successfully executes. This file contains, in addition to answers provided by the user, the area of the polygon, the number of holes read from the input file, the block variance, the number of grid points used, the number of holes used in kriging, the X and Y coordinates of the center of the polygon, the kriging mean for the polygon, the kriging variance, and a table showing hole number, north coordinate, east coordinate, sample value, and kriging weight for each drill hole.

Kriging Multiple Rectangular Blocks Within a Polygon

This subsystem (MULTBLK) is a two-dimensional kriging system which computes the kriging mean and the kriging variance for user-defined rectangular blocks within a polygon. One of the inputs is the data set created by the subsystem SS2DPREP.

At the terminal, the user must supply the names of the input and output files; a description of the equal-sized rectangles within the polygon; the nugget, C value, and A value of the empirical semi-variogram computed by the subsystem SS2DGAMH; the maximum distance from the center of a rectangle for a drill hole to be included for kriging; the maximum number of holes to be used within a circular neighborhood of the center of a rectangle; and the column numbers, which are given in a prompt by the subsystem, for the north coordinate, the east coordinate, and the variable to be kriged.

Other inputs are the corners or nodes of the encompassing polygon. If the sides of the polygon are parallel to the coordinate axes, the corners of the polygon must be entered at the terminal. Otherwise, the corners may be entered at the terminal or from a disk file. If a disk file is used, the format should be as follows:

$$Y_1, X_1$$

 Y_2, X_2
 \vdots
 Y_n, X_n

In all cases, the data must be entered in a clockwise direction with the northing specified first in each pair of coordinates.

The outputs on the terminal are understandable messages. A character (readable) data set is always created when the subsystem successfully runs. This file contains, in addition to answers provided by the user, the area of the polygon, the block variance, the number of holes read from the input file, the average kriged value of the variable under study, and a table giving the coordinates of the center of each rectangle, the kriging mean and the kriging variance for each rectangle.

Test for Normality of a Variable

This subsystem (NORCHI) performs a Chi-Square test for normality of a STATPAC variable. The user is required to specify only the column number, which the subsystem provides for all variables via a prompt, of the variable to be tested, and whether the data are to be logarithmically transformed before testing. The output provides summary statistics including mean, variance, standard deviation, skewness, kurtosis, maximum value, minimum value, and range. Also, class intervals for the tested variable with observed and theoretical frequencies are provided. In conclusion, the chi-square value, the degrees of freedom, and the probability level are listed. In making use of this subsystem, keep in mind that the variable being analyzed by kriging is spatially correlated.

Create New STATPAC File by Sorting STATPAC File

This subsystem (STPSORT) sorts a STATPAC data set by primary row identification, by secondary row identification, or by one, two, or three STATPAC variables. If a sort on a STATPAC variable is requested, the user may specify ascending or descending order and whether the absolute value of the variable should be used. The subsystem will currently deal with a file of 3000 rows and 100 columns. The user is required to supply the name of the input and output files as well as the answers to the prompts concerning how the file should be sorted.

Review Status of Input/Output Files

This program (REVIEW) will list the current input data set and all output data sets. For the input, it will give the column number for the north and east coordinates and the variable being analyzed. It will list the name and type of each output data set as well as that subsystem created it.

Exit Kriging System

This option will allow the user to exit the GEOSTAT System and return to normal use of the Prime computer.

.

Selected References

- Bridges, N.J., 1985, Kriging An Interactive Program to Determine the Best Linear Unbiased Estimation: U.S. Geological Open-File Report 85-112, 46 p.
- Clark, Isobel, 1979, Practical Geostatistics: Essex, England, Applied Science Publishers Ltd, 129 p.
- David, Michel, 1977, Geostatistical Ore Reserve Estimation: Elsevier Scientific Publishing Company, 364 p.
- Davis, John C., 1986, Statistics and Data Analysis in Geology: New York, N.Y., John Wiley and Sons, 646 p.
- Grundy, W.D., Collection of Geostatistical Computer Systems: U.S. Geological Survey, unpublished.
- Journel, A.G., and Huijbregts, C.H., 1978, Mining Geostatistics: London, England, Academic Press, 600 p.
- Knudsen, H.P., and Kim, Y.C., 1978, A Short Course on Geostatistical Ore Reserve Estimation: University of Arizona, Tucson, Az., 66 p.
- Skrivan, J.A., and Karlinger, M.R., 1980, Semi-Variogram
 Estimation and Universal Kriging Program: U.S. Geological
 Computer Contribution, 98 p.

APPENDIX A

Representative PACER Session Showing How to Produce a PACER LIST

Data Set for Input to PACR2STP

OK PACER

* * PACEP
* PACER *
* Program to Analyze Coal Energy Resources *
*

Welcome to the NCRDS Data Retrieval System.
Loading program
Do you want BRIEF MODE [default: YES]? Y
ENTER A NAME OR A NUMBER FOR THE DESIRED DATA BASE. 1 - USCOAL
2 - USALYT
3 - USPEAT
4 - USCHEM 5 - USGEOL
6 - BMALYT
7 - USTRAT
8 - WRKSTRAT
9 - BMRESBAS
10 - USPET
11 - ICHEM
WHICH? 7
DO YOU WISH TO SEE THE LIST OF MASTER FILE NAMES? N
P> COND
ENTER YOUR SEARCH CRITERIA.
A. BED EQ DIETZ
B. LITH EQ COAL

P> LOGIC

ENTER YOUR LOGIC.
A.AND.B

P> SEARCH

WHAT IS THE NAME OF THE FILE TO BE SEARCHED? SCLOGS

WHAT IS YOUR OUTPUT FILE NAME? LEWSC

SEARCH IN PROGRESS. PLEASE STANDBY ...

ALL 112 RECORDS OF SCLOGS SEARCHED.

8 RECORDS FOUND WHICH SATISFY THE REQUEST.
THEY HAVE BEEN STORED IN LEWSC.
DO YOU WANT TO SEARCH ANOTHER INPUT FILE? N

P> DEFINE

ENTER LIST OF NEW VARIABLE DEFINITIONS.

- 1. FROMFT = FROM/12.
- 2. TOFT = TO/12.
- 3. THKFT = THK/12.

4

P> LIST

WHAT IS THE NAME OF THE FILE YOU WANT TO LIST? LEWSC

HOW MANY LINES DO YOU WISH TO PRINT/PAGE? 60

PRESS <RETURN> TO CONTINUE, <A> AND <RETURN> TO ABORT.

SELECT C, F, OR R. F

OUTPUT TO DISK? Y

DISK FILE NAME? LEWSCD

DO YOU WISH HEADINGS OUTPUTTED TO THE DISK FILE? N

```
ENTER THE LIST OF ITEM NAMES.
    POINTID 1 16 (4A4)
1.
    LATITUD 20 9 (19)
2.
3.
  LONGTUD 31 10 (I10)
4.
   SURFELV 42 9 (F9.3)
   FROMFT 52 9 (F9.3)
  TOFT 62 9 (F9.3)
6.
  THKFT 72 9 (F9.3)
7.
   BED 82 29 (5A4)
8.
  KEY 103 8 (18)
9.
10.
LISTING IN PROGRESS...
```

P> QUIT

THE FOLLOWING FILES HAVE BEEN ACCESSED OR CREATED DURING THIS SESSION: LEWSC 1 LEWSCO USE PRIME'S DELETE COMMAND TO DELETE ANY UNWANTED FILES.

**** STOP PACER

Execution of PACR2STP Which Converts a PACER LIST Data Set to a

STATPAC Data Set

```
OK PACR2STP
 THIS PROGRAM QUALIFIES ALL ZERO VALUES WITH A "B"
 WHAT IS NAME OF PACER INPUT FILE ?:
LEWSCD
 GIVE A NAME FOR THE STATPAC OUTPUT FILE :
LEWSTP
 WHAT IS THE LONGITUDE OF THE CENTRAL MERIDIAN
IN DECIMAL DEGREES ?:
107.
     THE STATPAC FILE HAS BEEN WRITTEN
     THE FILE ID IS ALL BEDS N =
                                        3
                                             M = B
     RUN STATPAC FILE THROUGH PROGRAM TO PREPARE STATPAC FILE
     FOR KRIGING TO FIND ANY DUPLICATED POSITIONS.
**** STOP NORMAL END OF PROGRAM
```

APPENDIX B

Actual Session Using All the Subsystems of GEOSTAT System

KRIGING STEPS CURRENTLY AVAILABLE:

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 5) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 3) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

WHAT IS THE NAME OF THE STATPAC INPUT FILE - 32 CHARACTERS OR LESS? CLARKFE.STP
GIVE A NAME FOR THE STATPAC DUTPUT FILE - 32 CHARACTERS OR LESS:
CLARKFE.PR

STATPAC INPUT FILE IS: CLARKFE.STP ; COLUMN ID'S ARE:

1) X-COOR 2) Y-COOR 3) % Fe

ENTER STATPAC FILE DESCRIPTORS

WHAT IS COLUMN NUMBER OF NORTH COORDINATE

WHAT IS COLUMN NUMBER OF EAST COORDINATE?

DO ANY ROWS OF THE STATPAC FILE HAVE MISSING DATA? ANSWER YES OR NO:

NO

2

1

NOW READING STATPAC INPUT FILE

NUMBER OF RECORDS PROCESSED = 50 NOW SEARCHING FOR DUPLICATES

RECORD OF DUPLICATED COORDINATES IN FILE CLARKFE.STP

PRIMARY-ID ROW-NUMBER MATCHES PRIMARY-ID ROW-NUMBER NO DUPLICATED LOCATIONS WERE FOUND

NOW WRITING STATPAC OUTPUT FILE

NUMBER OF RECORDS PROCESSED = 50

THE PREPROCESSED STATPAC FILE HAS BEEN WRITTEN

THE STATPAC INPUT FILE WAS CLARKFE.STP

THE STATPAC OUTPUT FILE IS CLARKFE.PR

NORMAL END OF PROGRAM

KRIGING STEPS CURRENTLY AVAILABLE:

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 3) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN. **** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY STEP 1, IT IS MANDATORY TO DO IT NOW. CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR. ENTER THE NAME OF STATPAC INPUT FILE: CLARKFE.STP

> N = 50 M = % Fe Y-COOR X-COOR

DO YOU WANT TO CONTINUE? Y/N: Y

ENTER A NAME FOR THE PRINTER FILE: CLARKFE.FI

GIVE NUMBERS OF FIRST AND LAST ROWS TO BE TYPED (XX/XXX): 1,50

50 ROWS WILL BE WRITTEN ON THE OUTPUT FILE.

.....READING DATA

NUMBER OF RECORDS WRITTEN = 50 TYPE PRINTER FILE CLARKFE.FI

NORMAL END OF FILTER ROUTINE.

Contents of Data Set CLARKFE.FI:

		٨	v =	50				M	=	3			
PRIM	ID	SEC	IO		LAT	(DMS	()	LONG	DMS)				
	x-coo	R		Y-0	OOR			% Fe	•				
HOLE	1					0			0		ROW	NO:	1
	20202	0	173	.000	000		34.	3000	133				
HOLE	2	_				0			o		WCS	NO:	2
	00000	0	40	.000	200	_	35.	5000	_				_
	3	^	475	000	000	0	2.0		0		W C S	NO:	3
	20002	IJ	133	.000	JUJ	_	28.	5999	_				
HOLE	30003	Ω	1/5	.000	200	0	าง	= 000	0		WCR	NO:	4
	5	U	14)	. 005.	300	0	43.	5999	75 ()		ROW	ND:	5
	20002	n	2.3	.0003	202	U	4.1	5000	•		KUW	VU:	ر
HOLE	6	•	2.0	• 005	300	0	71.	, , , ,	0		WCS	NO-	6
	20002	0	5.3	.0003	าดด		36.	8000	•		N O W		
HOLE	7	•				o			້າ		ROW	NO:	7
120.	00000	0	180	.0003	000	_	33.	4000	31		•		•
HOLE	8					Ð			้อ		ROW	NO:	8
160.	COOOC	0	175	.0000	סככ		36.	0000	00				
	9					0			0		ROW	NO:	9
	20002	0	185	.0003	000		30.	2000	31				
	10					O			0		WCR	VO:	10
	20000	C	115	.0000	000		33.	1999	97				
	11	_				0			0		WCR	10N	11
235.	20002	0	15	•0000	000		33.	6999	97				

HOLE 12	40.00000	0	0	WCS	NO:	12
365.000000 HOLE 13	60.000000	0	34.300003	ROW	NO:	13
285.000000	110.000000	•	35.300003			
HOLE 14 345.000000	115.000000	0	31.000000	WCS	NO:	14
HOLE 15		J	0	WCS	NO:	15
334.999999 HOLE 16	173.000000	0	27.400001	ROW	NO:	16
325.000000	195.000000	2	33.900001			
HOLE 17 350.000000	235.000000	0	0 37 . 599?98	WCS	10 H	17
HOLE 18		0	0	ROW	NO:	18
290.000000 HOLE 19	229.999999	0	39.900001	ROW	NO:	19
10.300030	390.000000		27.200001			
HOLE 20 35.000000	379.999999	0	0 34.199997	ROW	NO:	20
HOLE 21	-	O	0	ROW	NO:	21
50.000000 HOLE 22	270.000000	a	30.200001	ROW	NO:	22
230.000000	280.000000		30.400001			
HOLE 23 400.000000	354.999999	0	0 39 . 900001	ROW	NO:	23
HOLE 24		0	0	ROW	NO:	24
359.999999 HOLE 25	334.999999	0	40.000000	ROW	NO:	25
334.999999	310.000000		40.599998	K J W	NO.	
HOLE 26 5.000000	195.000000	0	0 33.900001	WCS	NO:	26
HOLE 27		0	0	WCS	:CN	27
20.000000 HD_E 28	105.000000	0	32.500000 0	WCS	NO:	28
25.000000	155.000000		29.599998			
HOLE 29 50.000000	40.000000	0	0 30.599998	WCS	NO:	29
HOLE 30	45.005500	0	0	ROW	NO:	30
155.300030 HOLE 31	15.003300	0	40.400001	ROW	NO.	31
145.000000	125.000000	U	30.099998			
HOLE 32 130.000000	135.009000	0	35.300003	WCS	NO:	32
HOLE 33		Ó	Ĵ	ROW	:CV	33
175.000000 H0_E 34	185.000000	0	41.400001	ROW	NO •	34
220.303030	90.000000	U	28.500000			
HOLE 35	0.00000	0	40.099993	WCR	NO:	35
HOLE 36	9.003390	0	0	ROW	NO:	36
265.000000 HOLE 37	65.000000	Э	24.400001	ROW	M O •	37
390.000000	65.000000	J	31.599998			
HOLE 38 325.000000	105.000000	0	39.500000	WCR	NO:	38
HOLE 39	199.00000	Э	Э	ROW	NO:	39
310.000000	150.000000		34.800003			

	HOLE 40		0	0	ROW	:CN	40
	385.000000	165.000000		29.90001			
	HOLE 41		0	0	WCS	:CV	41
	325.000000	223.003300		37.800003			
	HOLE 42		0	0	WCS	:CV	42
	375.000000	215.003300		29.799999			
	HOLE 43		0	0	WCR	NO:	43
•	230.000000	229.999999		37.400001			
	HOLE 44		0	0	WCS	NO:	44
	55.300030	375.000000		27.400001			
	HOLE 45		0	0	WCS	NO:	45
	245.000000	395.000000		36.500000			
	HOLE 46		0	0	WCR	ND:	46
	165.000000	354.999999		40.800003			
	HOLE 47		0	0	WCR	NO:	47
	270.300030	285.000000		32.900001			
	HOLE 48		0	0	ROW	NO:	43
	365.000000	340.000000		40.000000			
	HOLE 49		0	0	WCR	:CV	49
	330.000000	320.000000		44.099998			
	HOLE 50		0	0	WCR	:CV	50
	330.000000	290.000000		41.400001			

KRIGING STEPS CURRENTLY AVAILABLE:

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- · 4) CALCULATE BASIC STATISTICS.
 - 5) PLOT A SYMBOL MAP AT THE TERMINAL.
 - 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
 - 7) COMPUTE SEMI-VARIOGRAM.
 - 8) CROSS-VALIDATE SEMI-VARIOGRAM.
 - 9) KRIG A GRID OF POINTS.
 - 10) KRIG A SINGLE POLYGON AS A WHOLE.
 - 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
 - 12) TEST FOR NORMALITY OF A VARIABLE.
 - 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
 - 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
 - 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

3

ENTER THE FILTER DUTPUT FILE:

CLARKFE.FI

ENTER A NAME FOR THE STATPAC OUTPUT FILE:

CLARKFE.UN

READING DATA....

```
NUMBER OF RECORDS WRITTEN =
                                50
 STATPAC FILE = CLARKFE.UN
                                                  HAS BEEN WRITTEN
: ID= ABCDEFGH N=
                     50 M=
NORMAL END OF EDIT TO STATPAC ROUTINE.
KRIJING STEPS CURRENTLY AVAILABLE:
1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
4) CALCULATE BASIC STATISTICS.
5) PLOT A SYMBOL MAP AT THE TERMINAL.
6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
7) COMPUTE SEMI-VARIOGRAM.
3) CROSS-VALIDATE SEMI-VARIOGRAM.
9) KRIG A GRID OF POINTS.
10) KRIG A SINGLE POLYGON AS A WHOLE.
11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYSON.
12) TEST FOR NORMALITY OF A VARIABLE.
13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
14) REVIEW STATUS OF INPUT/OUTPUT FILES.
15) EXIT KRIGING SYSTEM.
ENTER A NUMBER 1-15 OR CARRIAGE RETURN.
**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.
CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.
ENTER INPUT STATPAC FILE NAME =
CLARKFE PR
 NO OF ROWS
                    50
 NO OF COLJMNS=
                    - 3
 DO YOU WANT SELECTED ROWS ?
 DO YOU WANT SELECTED COLUMNS ?
 ? PART DO YOU WANT INCLUDED IN BASIC STATISTICS?
           1-ONLY UNQUALIFIED DATA
           ATAC CELETIAND YUNG-S
           3-ALL DATA (IGNORING QUALIFYING CODES)
 TYPE 1, 2, OR 3:
            READING DATA ...
```

RECORDS READ = 50

UNIVARIATE STATISTICS

```
VAR
      COLUMN
               MINIMUM
                          MUMIXAM
                                      MEAN
                                               DEVIATION
                                                           VALID B
                                                                     L
                                                                          N
                                                                              G OTHER
               0.000E-01 4.000E+02 2.119E+02 1.2728E+02
    X-COOR
                                                            50
                                                                          0
                                                                                  0
                                                            50
                                                                     0
                                                                          C
   2 Y-COOR
               0.000E-01 3.950E+02 1.857E+02 1.1216E+02
                                                                 0
                                                                              0
                                                                                  0
                                                                          n
                                                                              0
                                                                                  0
   3 % Fe
               2.44)E+01 4.410E+01 3.449E+01 4.7704E+00
                                                            50
                                                                     0
DO YOU WANT TO SEE THE CORRELATIONS ?
CORRELATIONS - COMPUTED USING ORIGINAL DATA
            2
       1
                  3
      1.00 0.11 0.30
   1
      0.11 1.00 0.15
      0.30 0.15 1.30
DO YOU WANT HISTOGRAMS FOR ANY SELECTED COLUMNS ?
ENTER COL NO. FOR WHICH HISTOGRAM IS DESIRED
DO YOU WANT TO ENTER LWR LIMIT & CLASS INTERVAL FOR THIS COL?
     IF NOT THE MINIMUM VALUE FOR THIS COL AND STURGES' RULE WILL BE USED TO
     COMPUTE THE HISTOGRAM.
NO
           READING DATA...
                          3(% Fe
HISTOGRAM FOR COL NO.
                                  PER
                        DBS CUM
                                       CUM
                                                  CLASS
    LIMIT - UPPER
                        FRQ FRQ
                                  FRO
                                       FRQ
                                                 MIDPOINT DISTRIBUTION
          V
                          0
                              0
                                  0.0
                                        0.0
                               0
                                  0.0
                                        0.0
  2.44JE+01- 2.69JE+31
                                        2.0
                          1
                              1
                                  2.3
                                                2.565E+01 X
  2.690E+01- 2.940E+01
                              7
                                12.0
                                       14.0
                          5
                                                2.815E+01 XXX
  2.940E+01- 3.190E+01
                                 20.0
                         10
                              17
                                                3.355E+01 XXXXX
                                       34.0
  3.190E+01- 3.440E+01
                         10
                              27
                                 20.0
                                       54.0
                                                3.315E+01 XXXXX
  3.440E+01- 3.690E+01
                          7
                              34
                                 14.0
                                       53.0
                                                3.565E+01 XXXX
                                       74.0
  3.690E+01- 3.940E+01
                          3
                              37
                                  6.0
                                                3.815E+01 XX
  3.940E+01- 4.190E+01
                                       98.0
                                 24.0
                                                4.065E+01 XXXXXX
                         12
                              49
                                                4.315E+01 X
  4.190E+01- 4.440E+01
                              50
                                  2.0 100.0
                          1
                                  0.0 100.0
                          0
                              50
          3
                          0
                              50
          3
DO YOU WANT ANDTHER HISTOGRAM ?
DO YOU WANT PERCENTILES FOR SELECTED DATA ?
```

¥

3

```
VAR ID
            25.0
                     50.0
                              75.J
                                       80.3
                                                85.0
                                                          93.0
                                                                   95.0
          111.1111 226.6667 331.6667 340.0000 350.0000 366.6667 386.6667 413.3333
 X-COOR
          100.9444 179.3667 263.3333 332.8333 329.1667 355.5003 381.8333 438.1667
 Y-COOR
% Fe
           30.4976
                    34.3438
                             38.9561
                                      39.5033 40.0506
                                                         40.6853
                                                                 41.3423
DO YOU WANT ANOTHER SET OF COMPUTATIONS ?
DO YOU WANT TO PROCESS DATA FROM ANOTHER FILE ?
KRIGING STEPS CURRENTLY AVAILABLE:
1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
4) CALCULATE BASIC STATISTICS.
5) PLOT A SYMBOL MAP AT THE TERMINAL.
SREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
7) COMPUTE SEMI-VARIOGRAM.
B) CROSS-VALIDATE SEMI-VARIOGRAM.
9) KRIS A GRID OF POINTS.
10) KRIG A SINGLE POLYGON AS A WHOLE.
11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
12) TEST FOR NORMALITY OF A VARIABLE.
13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
14) REVIEW STATUS OF INPUT/OUTPUT FILES.
15) EXIT KRIGING SYSTEM.
ENTER A NUMBER 1-15 OR CARRIAGE RETURN.
**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.
CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.
THE PLOTTED MAP WILL BE ON PLOTFILE
ENTER NAME OF STATPAC INPUT FILE:
CLARKFE.PR
      50
 N =
 M =
       3
  X-CODR
            Y-COOR
                      % Fe
WHICH VARIABLE IS BEING MAPPED? - GIVE NUMBER:
3
WHICH VARIABLE IS THE EAST-WEST COORDINATE ?:
1
DOES THIS COORDINATE INCREASE TO THE 1.EAST OR 2.WEST - TYPE 1 OR 2:
1
WHICH VARIABLE IS THE NORTH-SOUTH COORDINATE ?:
2
DOES THIS COORDINATE INCREASE TO THE 1.NORTH OR 2.SOUTH
                                                             TYPE 1 OR 2:
1
DO YOU WANT TO 1) SELECT THE MAP BOUNDARIES, OR
 2) ACCEPT DEFAULT BOUNDARIES?
ANSWER 1 OR 2:
```

99.)

44.1300

```
N
 DO YOU WANT A MAP SHOWING THE NUMBER OF SAMPLES PER CELL ?:
Y
MAPPLT - TYPE OUT PLOTFILE ON PRINTER
NORMAL END OF PROGRAM
Contents of Data Set PLOTFILE:
                                 HTPCM
                                                         MAXIMUM X-COOR
MINIMUM X-COOR
MAXIMUM Y-COOR
X
X
                                                                       X
X
                                                                       X
X
               4
                                                                       X
         1
X
                                                                       X
X
                                                                      7 X X X X X X X X X X
X
                            3
XXXXXXXX
                                                                7
                                                               7
                                                         9
                                                          8
                                                         3
                                                                       X
                                   3
                                                                       X
X
X
X
         2
                                                                       X
X
                                                                       7
                                                             6
                                   6
X
                                                                  2
                                                         5
X
X
                                                                       X
x 4
                                                                       X
X
                       5
                                          2
X
                            5
                                                                       X
                                                          1
                                                                    2
                                                                       X
X
X
X 5
X
X
                                                      5
    2
X
X
X
X
                                                                       X
          2
                                                                       X
X
X
X
  2
                         2
                                                            3
                                                 5
X
                                                         7
                                                                       X
X
                                                                       X
X
                                       2
X
X
                                                                       X
X
X
X
X
                                               0
                                                                5
                                                                    3
X
                              6
X
                                                                       X
                                                                       X
X
X
         3
 5
X
                                                                       X
χ
                      3
X
                           3
                                                                       X
MINIMUM Y-COOR
```

ANDTHER MAP ?:

X-COOR

MINIMUM= 0.0000 MAXIMUM= 400.0000

ACCS-A

MINIMUM= 0.0000 MAXIMUM= 395.0000

MAP SYMBOL	RANGE OF %	Fe
Э	24.4000	26.3700
1	26.3700	28.3400
2	28.3400	30.3100
3	30.3100	32.2800
4	32.2800	34.2500
5	34.2500	36.2200
5	36.2200	38.1900
7	38.1900	40.1600
8	40.1600	42.1300
9	42.1300	44.1000

NUMBERS OF SAMPLES * MEANS MORE THAN 9

```
X 1
X X X X X X X X X
                                            X
                                            X
         1
                                            ĸ
      1
                                            X
                                            1 X
                  1
                                            *******************
                                       1
                                       1
                                    1
1
                             1
      1
                               1
                                      1
                      1
                                   1
                                         1
                                   1
                          1
                                 1
   1
      1
  1
                1
                                     1
                            1
  1
                                   1
                        1
                             1
                                          1
                   1
      1
 1
              1
                                            X
                                            X
```

KRIGING STEPS CURRENTLY AVAILABLE:

1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS. 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE. 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE. 4) CALCULATE BASIC STATISTICS. 5) PLOT A SYMBOL MAP AT THE TERMINAL. 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS. 7) COMPUTE SEMI-VARIOGRAM. 3) CROSS-VALIDATE SEMI-VARIOGRAM. 9) KRIG A GRID OF POINTS. 10) KRIG A SINGLE POLYGON AS A WHOLE. 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON. 12) TEST FOR NORMALITY OF A VARIABLE. 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE. 14) REVIEW STATUS OF INPUT/OUTPUT FILES. 15) EXIT KRIGING SYSTEM. ENTER A NUMBER 1-15 OR CARRIAGE RETURN. **** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY STEP 1, IT IS MANDATORY TO DO IT NOW. CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR. ENTER A NAME FOR THE CONTROL FILE TO BE CREATED: CLARKFE.CT2 ENTER TITLE FOR VARIOGRAM RUN (79 CHARS OR LESS): GIVE CLASS INTERVAL TO GROUP DISTANCES BETWWEN HOLES : 45 ENTER DIRECTION (DEC DEG) FOR VARIOGRAM: 90. ENTER WINDOW (DEC DEG) FOR VARIOGRAM: 90. THE VARIOGRAM CONTROL FILE HAS BEEN WRITTEN CONTROL FILE NAME IS CLARKFE.CT2 NORMAL END OF PROGRAM Contents of Data Sat CLARKFE.CT2:

TEST RUN

TEST RUN 0.00000 000101 45.000 90.00 90.00 0.000 0.000 0.000 2 0.000

KRIGING STEPS CURRENTLY AVAILABLE: 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS. 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE. 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE. 4) CALCULATE BASIC STATISTICS. 5) PLOT A SYMBOL MAP AT THE TERMINAL. 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS. 7) COMPUTE SEMI-VARIOGRAM. 3) CROSS-VALIDATE SEMI-VARIOGRAM. 9) KRIG A GRID OF POINTS. 10) KRIG A SINGLE POLYGON AS A WHOLE. 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON. 12) TEST FOR NORMALITY OF A VARIABLE. 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE. 14) REVIEW STATUS OF INPUT/OUTPUT FILES. 15) EXIT KRIGING SYSTEM. ENTER A NUMBER 1-15 OR CARRIAGE RETURN. **** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY STEP 1, IT IS MANDATORY TO DO IT NOW. CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR. 7

WHAT IS THE NAME OF THE STATPAC INPUT FILE? CLARKFE_PR WHAT IS THE NAME OF THE VARIOGRAM CONTROL FILE? CLARKFE.CT2 GIVE A NAME FOR THE VARIOGRAM OUTPUT FILE: CLARKFE.VAR

COLUMN ID'S ARE:

1) X-COOR 2)Y-000R 3)% Fe

ENTER STATPAC FILE DESCRIPTORS

* TARIGACOO HTRON SHT AC NUMBER OF THE NORTH COORDINATE? 2 WHAT IS COLUMN NUMBER OF THE EAST COORDINATE? : 1 WHAT IS COLUMN NUMBER OF THE ASSAY VALUE? 3

NOW READING STATPAC INPUT FILE

NUMBER OF DATA POINTS PROCESSED = 50 + 50 JNQUALIFIED DATA POINTS HAVE BEEN STORED NOW COMPUTING VARIOGRAM(S)

NJMBER OF DATA POINTS PROCESSED = 50 NOW COMPUTING MEAN AND STANDARD DEVIATION NOW WRITING RESULTS ON OUTPUT FILE(S)

THE OUTPUT FILE(S) HAVE BEEN WRITTEN
THE STATPAC INPUT FILE WAS CLARKFE.PR
THE VARIOGRAM CONTROL FILE WAS CLARKFE.CT2
THE VARIOGRAM OUTPUT FILE IS CLARKFE.VAR
NORMAL END OF PROGRAM

Contents of Data Set CLARKFE.VAR:

VARIOGRAM

VARIABLE ID: % Fe

TEST RUN

DIREC	TION	=	90.	WODNIW	90.
CLASS	SIZE	=	45.0		
MAX.	DISTANC	CE =		900.	

DATA USE	IN	CAC	ULATIONS
MEAN		=	0.345E+02
VARIANCE		=	J.228E+02
STD DEVI	NOITA	=	0.477E+01
NO.OF SA	APLES	=	50

DIST	CANC	E	PAIRS	SAMMA (H)	AVER DIST
3	-	45	37	0.797E+01	30.74
45	-	90	106	0.203E+02	67.21
90	-	135	157	0.1925+02	113.91
135	-	180	187	0.2445+02	158.15
180	-	225	179	J.196E+02	202.09
225	-	273	174	0.2515+02	246.10
270	-	315	135	0.234E+02	290.33
315	-	360	128	0.241E+02	337.15
360	-	405	87	0.257E+02	380.50
405	-	450	27	J.249E+02	424.73
450	-	495	5	0.203E+02	464.90
495	-	540	2	0.968E+01	500.67

TEST RUN

```
0.234E+02 *
                            Χ
  0.2705+02 *
                                 X
  0.256E+02 *
                                   3
                    Х
                         X
  0.2425+02 *
                              X
  0.223E+02 *
  0.213E+02 *
G
                Χ
                                     3
  0.1995+02 *
Α
                   Χ
                       Χ
  0.1855 + 02 *
ч
  0.171E+02 *
  0.1565+02 *
  0.142E+02 *
  0.1285+02 *
  0.114E+02 *
  0.995E+01 *
4
                                       3
  0.853E+01 * X
  0.7115+01 *
  0.569E+01 *
  0.427E+01
  0.234E+01 *
  0.1425+01 *
                   0.
                    180.
                              360.
                                        540.
                                                 720.
                                                           900.
```

KRIGING STEPS CURRENTLY AVAILABLE:

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 3) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

8

WHAT IS THE PATH NAME OF THE STATPAC INPUT FILE? (MAX. OF 28 CHARS) CLARKFE.PR GIVE A PATH NAME FOR THE CHARACTER OUTPUT FILE: CLARKFE.XVC GIVE A PATH NAME FOR THE STATPAC DUTPUT FILE: CLARKFE.XVS DO YOU WANT 1) HOLE-BY-HOLE SUPPRESSION, 2) EVERY-OTHER-SAMPLE OR 3) SELECTED-ROW VALIDATION? ANSWER 1, 2, OR 3: 1 ENTER PARAMETERS OF THE VARIOGRAM ENTER THE NUGGET VALUE - USE DECIMAL : 0. ENTER C-VALUE OF VARIOGRAM - USE DECIMAL : 19.3 ENTER A-VALUE OF VARIOGRAM - USE DECIMAL : 85. ENTER THE MAXIMUM DISTANCE FROM POINT TO BE KRIGED - OR CENTER OF BLOCK IF BLOCK KRIGING -FOR A HOLE TO BE INCLUDED FOR KRIGING (THIS DEFINES CIRCULAR NEIGHBORHOOD - USE DECIMAL): 200. ENTER THE MAXIMUM NUMBER OF HOLES TO BE USED WITHIN THE CIRCULAR NEIGHBORHOOD - NO DECIMAL : 16 COLUMN IDS ARE: 1) X-COOR 2) Y-COOR 3) % Fa ENTER STATPAC FILE DESCRIPTORS WHAT IS COLUMN NUMBER OF THE NORTH COORDINATE? : 2 WHAT IS COLUMN NUMBER OF THE EAST COORDINATE? : 1 WHAT IS COLUMN NUMBER OF THE ASSAY VALUE? 3 READING DATA FROM STATPAC INPUT FILE 50 UNQUALIFIED DATA POINTS HAVE BEEN STORED IN RAM

5.0

NOW KRIGING DATA POINTS NUMBER OF POINTS CROSS VALIDATED = KRIGED AVERAGE ERROR = -0.1753

KRIGED ROOT MEAN SQUARE ERROR = 3.4740

KRIGED REDUCED ROOT MEAN SQUARE ERROR = 0.9249

THE DISK FILES HAVE BEEN WRITTEN
THE INPUT FILE WAS CLARKFE.PR
THE STATPAC OUTPUT FILE IS CLARKFE.XVS
THE CHARACTER OUTPUT FILE IS CLARKFE.XVC

'SS2DXVAL - NORMAL END OF PROGRAM.

Contents of Data Set CLARKFE.XVC:

VARIOGRAM PARAMETERS

NUGGET = 0.000 SILL = 19.800 C-VALUE = 19.800

A-VALUE = 85.000

SEARCH RADIUS = 200.00 MAXIMUM NUMBER OF HOLES USED = 16

OUTPUT OF MODEL VARIOGRAM TEST RESULTS

HOLE NO.	X-COORD.	Y-COORD.	- ASSAY VALUE	KRIGED VALUE	KRIGING ERROR	KRIGING STD.DEV	ERROR/ STD.DEV
HOLE 35	205.000	0.000	40.10	35.20	4.90	3.91	1.25
HOLE 30	155.000	15.000	40.40	39.38	1.02	3.60	0.28
HOLE 11	235.000	15.000	33.70	35.10	-1.40	3.99	-0.35
HOLE 5	125.000	20.000	41.50	35.80	5.70	3.94	1.45
HOLE 2	10.000	40.000	35.50	33.10	2.40	4.27	0.56
HOLE 29	50.000	40.000	30.60	34.81	-4.21	4.28	÷0.98
HOLE 6	175.000	50.000	36.80	35.50	1.30	4.20	0.31
HOLE 12	365.000	60.000	34.30	32.60	1.70	3.67	0.46
HOLE 36	265.000	65.000	24.40	32.04	-7.64	4.25	<u></u> 71.80
HOLE 37	390.000	65.000	31.60	32.93	-1.33	3.73	-0.36
HOLE 34	220.000	90.000	28.50	32.44	-3.94	4.26	-0.93
HOLE 27	20.000	105.000	₇ 32.50	31.07	1.43	3.88	0.37
HOLE 38	325.000	105.000	39.50	33.21	6.29	3.24	1.94
HOLE 13	285.000	110.000	35.30	35.68	-0.38	3.27	-0.12
HOLE 10	260.000	115.000	33.20	31.87	1.33	3.51	0.38
HOLE 14	345.000	115.000	31.00	36.15	-5.15	3.42	-1.51
HOLE_31	145.000	125.000	30.10	33.23	-3.13	4.49	-0.70

HOLE	3	15.000	135.000	28.60	31.32	-2.72	3.05	-0.89
HOLE	4	55.000	145.000	28.60	31.50	-2.90	3.94	-0.73
HOLE	39	310.000	150.000	34.80	31.72	3.08	3.72	0.83
HOLE	28	25.000	155.000	29.60	30.20	-0.60	2.97	-0.20
HOLE	40	385.000	165.000	29.90	30.60	-0.70	4.33	-0.16
HOLE	1	0.000	170.000	34.30	32.08	2.22	3.23	0.69
HOLE	15	335.000	170.000	27.40	31.83	-4.43	3.26	-1.36
HOLE	8	160.000	175.000	36.00	38.23	-2.23	2.90	-0.77
HOLE	7	120.000	180.000	33.40	34.07	-0.67	2.64	-0.25
HOLE	32	130.000	185.000	35.30	34.11	1.19	2.48	0.48
HOLE	33	175.000	185.000	41.40	35.93	5.47	3.12	1.75
HOLE	9	240.000	185.000	30.20	35.55	-5.35	4.55	-1.18
HOLE	26	5.000	195.000	33.90	33.87	0.03	3.69	0.01
HOLE	16	325.000	195.000	33.90	33.25	0.65	3.08	0.21
HOLE	42	375.000	215.000	29.80	34.81	-5.01	3.86	-1.30
HOLE	41	325.000	220.000	37.80	37.32	0.48	3.02	0.16
HOLE		200.000	230.000	37.40	35.06	2.34	4.26	0.55
HOLE		290.000	230.000	39.90	35.96	3.94	4.06	0.97
HOLE		350.000	235.000	37.60	35.19	2.41	3.42	0.70
HOLE		50.000	270.000	30.20	33.55	-3.35	4.69	-0.71
HOLE		200.000	280.000	30.40	36.10	-5.70	4.47	-1.27
HOLE		270.000	285.000	32.90	36.70	-3.80	4.51	-0.84
HOLE		330.000	290.000	41.40	38.70	2.70	3.31	0.82
HOLE		335.000	310.000	40.60	42.82	-2.22	2.29	-0.97
HOLE		330.000	320.000	44.10	39.58	4.52	2.60	1.74
HOLE		360.000	335.000	40.00	40.29	-0.29	2.03	-0.14
HOLE		365.000	340.000	40.00	39.62	0.38	2.06	0.18
HOLE		165.000	355.000	40.80	34.85	5.95	4.66	1.28
HOLE		400.000	355.000	39.90	36.61	3.29	4.25	0.78
HOLE	44	55.000	375.000	27.40	32.27	-4.87	3.77	-1.29
HOLE		85.000	380.000	34.20	30.85	3.35	4.00	0.84
HOLE		10.000	390.000	27.20	31.62	-4.42	4.62	-0.96
HOLE	45	245.000	395.000	36.50	36.91	-0.41	4.70	-0.09

KRIGED AVERAGE ERROR = -0.1753 KRIGED ROOT MEAN SQUARE ERROR = 3.4740

KRIGED REDUCED ROOT MEAN SQUARE ERROR = 0.9249

KRIGING STEPS CURRENTLY AVAILABLE:

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 5) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 3) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY

STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN HILL CARSE MENH TO REARREAD

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

WHAT IS THE PATH NAME OF THE STATPAC INPUT FILE? CLARKFE.PR

GIVE A PATH NAME FOR THE CHARACTER OUTPUT FILE:

CLARKFE.GRC

GIVE A PATH NAME FOR THE STATPAC DUTPUT FILE: CLARKFE.GRS

ENTER PARAMETERS OF THE VARIOGRAM

ENTER THE NUGGET VALUE - USE DECIMAL :

- D. ENTER C-VALUE OF VARIOGRAM USE DECIMAL :
- 19.3
- ENTER A-VALUE OF VARIOGRAM USE DECIMAL :
- BS.

 ENTER THE MAXIMUM DISTANCE FROM POINT TO
 BE KRIGED OR CENTER OF BLOCK IF BLOCK KRIGING FOR A HOLE TO BE INCLUDED FOR KRIGING
 (THIS DEFINES CIRCULAR NEIGHBORHOOD USE DECIMAL):
- ENTER THE MAXIMUM NUMBER OF HOLES TO BE
 USED WITHIN THE CIRCULAR NEIGHBORHOOD NO DECIMAL :

ENTER DESCRIPTORS OF GRID OF POINTS TO BE KRISED

ENTER NUMBER OF POINTS IN NORTH-SOUTH DIRECTION NO DECIMAL:

4

16

(MAX. OF 28 CHARS)

ENTER DISTANCE BETWEEN POINTS IN NORTH-SOUTH DIRECTION USE DECIMAL: 100. ENTER NUMBER OF POINTS IN EAST-WEST DIRECTION NO DECIMAL : ENTER DISTANCE BETWEEN POINTS IN EAST-WEST DIRECTION USE DECIMAL : 100. ENTER NORTHING OF SOUTHWEST CORNER OF GRID OF POINTS USE DECIMAL : 0. ENTER EASTING OF SOUTHWEST CORNER OF GRID OF POINTS USE DECIMAL : 0. STATPAC INPUT FILE ID IS: ABCDEFGH ; COLJMN IDS ARE: 3) % Fe 1) X-COOR 2) Y-CODR ENTER STATPAC FILE DESCRIPTORS WHAT IS COLUMN NUMBER OF THE NORTH COORDINATE? : 2 WHAT IS COLUMN NUMBER OF THE EAST COORDINATE? : 1 WHAT IS COLUMN NUMBER OF THE ASSAY VALUE? 3 READING DATA FROM STATPAC INPUT FILE 50 UNQUALIFIED DATA POINTS HAVE BEEN STORED IN RAM NOW KRIGING GRID POINTS THE DISK FILES HAVE BEEN WRITTEN THE INPUT FILE WAS CLARKFE.PR THE STATPAC OUTPUT FILE IS CLARKFE.GRS THE CHARACTER OUTPUT FILE IS CLARKFE.GRC DO YOU WANT TO CREATE GARNET KRIGED-VALUE AND KRIG-VARIANCE GRID FILES - ANSWER Y OR N 1 GRID POINTS COULD NOT BE KRIGED BECAUSE OF TOO FEW POINTS IN THE SEARCH

NUMBER OF GRID POINTS = 16 5S2DGRID NORMAL END OF ROUTINE

LARGER SEARCH RADIUS.

RADIUS. FOR GRID POINTS THAT COULD NOT BE KRISED, THE KRISED VALUE

AND THE KRIGING VARIANCE ARE SET TO ZERO SO THAT YOU WILL HAVE A COMPLETE GRID. YOU MAY WISH TO RERUN THIS PROGRAM USING A

Contents of Data Set CLARKFE.GRC:

VARIOGRAM PARAMETERS

NJGGET = 0.000 SILL = 19.800 C-VALUE = 19.800

A-VALUE = 65.000

SEARCH RADIUS = 35.00

MAXIMUM NUMBER OF HOLES USED = 16

A STATE OF POINTS IN NORTH-SOUTH DIRECTION = 4

DISTANCE BETWEEN POINTS IN NORTH-SOUTH DIRECTION = 100.00

NUMBER OF POINTS IN EAST-WEST DIRECTION = 4

DISTANCE BETWEEN POINTS IN EAST-WEST DIRECTION = 100.00

NORTHING OF SOUTHWEST CORNER OF GRID OF POINTS = 0.00

EASTING OF SOUTHWEST CORNER OF GRID OF POINTS = 0.00

SEARCH RADIUS = 85.00

MAXIMUM NUMBER OF HOLES USED = 16

OUTPUT OF KRIGED RESULTS

COLUMN	ROW	X-COORD.	Y-COORD.	VALUE	KRG VAR.
1	1	0.000	0.000	33.97	24.3315
1	2	0.000	100.300	32.64	11.8343
1	3	0.000	230.330	33.74	4.7777
1	4	0.000	300.000	0.30	0.0000
2	1	100.000	0.300	38.21	17.5396
2	2	100.000	100.000	31.96	20.7928
2	3	103.303	200.000	33.51	15.0782
2	4	100.000	300.000	31.94	26.3537
3	1	200.000	0.000	40.39	3.2131
3	2	200.000	100.303	30.51	12.1448
3	3	200.000	200.000	37.99	10.3024
3	4	200.000	300.000	32.27	11.6956
4	1	303.000	0.000	29.25	29.2253
4	2	300.000	100.000	36.19	7.7943
4	3	300.000	200.000	36.34	10.5059
4	4	300.000	300.000	33.59	11.5355

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS. 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE. 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE. 4) CALCULATE BASIC STATISTICS. 5) PLOT A SYMBOL MAP AT THE TERMINAL. 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS. 7) COMPUTE SEMI-VARIOGRAM. B) CROSS-VALIDATE SEMI-VARIOGRAM. 9) (RIG A GRID OF POINTS. 10) KRIG A SINGLE POLYGON AS A WHOLE. 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON. 12) TEST FOR NORMALITY OF A VARIABLE. 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE. 14) REVIEW STATUS OF INPUT/OUTPUT FILES. 15) EXIT KRIGING SYSTEM. ENTER A NUMBER 1-15 OR CARRIAGE RETURN. **** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY STEP 1, IT IS MANDATORY TO DO IT NOW. CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR. WHAT IS THE PATH NAME OF THE STATPAC INPUT FILE? CLARKFE PR GIVE A PATH NAME FOR THE CHARACTER DUTPUT FILE: CLARKFE.BLC ENTER PARAMETERS OF THE VARIOGRAM ENTER THE NUGGET VALUE - USE DECIMAL : J. ENTER C-VALUE OF VARIOGRAM - USE DECIMAL : 19.3 ENTER A-VALUE OF VARIOGRAM - USE DECIMAL : 35. ENTER THE MAXIMUM DISTANCE FROM POINT TO BE KRIGED - OR CENTER OF BLOCK IF BLOCK KRIGING -FOR A HOLE TO BE INCLUDED FOR KRIGING (THIS DEFINES CIRCULAR NEIGHBORHOOD + USE DECIMAL):
- 200. ENTER THE MAXIMUM NUMBER OF HOLES TO BE USED WITHIN THE CIRCULAR NEIGHBORHOOD - NO DECIMAL: 50
- ENTER DESCRIPTORS FOR ENCOMPASSING POLYGON TO BE KRIGED: IS POLYGON RECTANGULAR WITH SIDES PARALLEL TO COORDINATE AXES? ANSWER YES OR NO :
- YES ENTER MINIMUN NORTHING OF POLYGON - USE DECIMAL : Э.

- ENTER MAXIMUM NORTHING OF POLYGON USE DECIMAL:

 ENTER MINIMUM EASTING OF POLYGON USE DECIMAL:

 ENTER MAXIMUM EASTING OF POLYGON USE DECIMAL:

 400-
 - ENTER DESCRIPTORS OF THE KRIGING GRID
- ENTER NUMBER OF GRID POINTS IN NORTH DIRECTION:

 ENTER NUMBER OF GRID POINTS IN EAST DIRECTION:

 25
- IS 4 DRILL HOLE LIST WANTED? YES OR NO : YES
- IS LISTING OF BOUNDARY NODES WANTED? YES OR NO : YES

COLUMN IDS ARE:

- 1) X-COOR 2) Y-COOR 3) % Fe
 ENTER STATPAC FILE DESCRIPTORS
- WHAT IS COLUMN NUMBER OF THE NORTH COORDINATE? :
- WHAT IS COLUMN NUMBER OF THE EAST COORDINATE? :
- WHAT IS COLUMN NUMBER OF THE ASSAY VALUE? :
 - READING DATA FROM STATPAC INPUT FILE
 50 JNQUALIFIED DATA POINTS HAVE BEEN STORED IN RAM

EXECUTING...

SETTING UP GRID OF POINTS FOR COVARIANCE CALCULATIONS
COMPUTING COORDINATES OF CENTROID OF BLOCK
COMPUTING BLOCK VARIANCE - THIS MAY TAKE CONSIDERABLE
TIME DEPENDING ON NUMBER OF NODES FOR POLYGON.

SEARCHING FOR DRILL HOLES WITHIN SEARCH RADIUS
SETTING UP SYSTEM OF SIMULTANEOUS EQUATIONS
SOLVING SYSTEM OF SIMULTANEOUS EQUATIONS
THIS MAY TAKE CONSIDERABLE TIME - IT IS DEPENDENT ON NUMBER OF DATA POINTS AND RECTANGULAR BLOCKS.
COMPUTING MEAN AND VARIANCE
WRITING RESULTS TO OUTPUT FILE

COMPUTATIONS COMPLETE
THE STATPAC INPUT FILE WAS CLARKFE.PR
THE CHARACTER OUTPUT FILE IS CLARKFE.ELC

NORMAL END OF SSZDBLOK

Contents of Data Sat CLARKFE.BLC:

VARIOGRAM PARAMETERS

VARIOGRAM PARAMETERS

NJGGET = 0.000 SILL = 19.800 C-VALUE = 19.300
A-VALUE = 35.000

NO. OF Y-GRID POINTS 25

NO. OF X-GRID POINTS 25

DEFINITION OF BLOCK - NODES

NORTHING EASTING

(0.40000000E+03, 0.40000000E+00)

(0.40000000E+00, 0.40000000E+03)

(0.00000000E+00, 0.40000000E+00)

AREA OF BLOCK = 0.16000000E+06

SEARCH RADIUS = 0.20000000E+03

NUMBER OF HOLES READ FROM DATA FILE = 50

BLOCK VARIANCE = 0.66516

NUMBER OF GRID POINTS USED 625 NUMBER OF HOLES USED 36

OUTPUT OF KRIGED RESULTS

X-COORD. Y-COORD. KRIGING KRIGING MEAN VARIANCE

	199.993	200.000	34.099	0.620
HOLE 33 HOLE 32 HOLE 32 HOLE 32 HOLE 318 HOLE 318 HOLE 37 HOLE 37 HOLE 37 HOLE 37 HOLE 36 HOLE 47 HOLE 36 HOLE 36 HOLE 37 HOLE 37 HOLE 38 HOLE	NORTH COORD. 185.JOO 230.JOO 185.JOO 185.JOO 185.JOO 180.JOO 180.JOO 115.JOO 115.JOO 110.JOO 110.JOO 110.JOO 110.JOO 170.JOO 220.JOO 145.JOO 145.JOO 145.JOO 145.JOO 150.JOO 270.JOO 270.JOO 355.JOO 270.JOO 310.JOO 310.JOO 310.JOO 310.JOO 310.JOO 310.JOO	EAST COORD. 175.000 200.000 160.000 130.000 120.000 145.000 290.000 270.000 270.000 270.000 310.000 325.000 325.000 325.000 350.000 350.000 350.000 350.000 345.000 345.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000 335.000	SAMPLE 41.400 37.400 30.200 36.000 35.300 30.400 39.900 39.900 34.800 37.800	KRIGING WEIGHT 0.0260 0.0322 0.0438 0.0075 0.0149 0.0437 0.0277 0.0446 0.0339 0.0136 0.0345 0.0253 0.01360 0.0253 0.0143 0.0253 0.01509 0.0253 0.01509 0.0253 0.01509 0.0253
HOLE 28 HOLE 11 HOLE 40 HOLE 30 HOLE 5 HOLE 26 HOLE 3	155.300 15.300 165.303 15.300 20.330 195.300	25.000 235.000 385.000 155.000 125.000 5.000	29.600 33.700 29.900 40.400 41.500 33.900 28.600	0.J029 0.J029 0.J325 0.J152 0.J334 0.J351 0.J251

SUM OF WEIGHTS = 1.3300

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 3) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

11

WHAT IS THE PATH NAME OF THE STATPAC INPUT FILE? CLARKFE.PR

GIVE A PATH NAME FOR THE CHARACTER OUTPUT FILE: CLARKFE.MUC

ENTER DESCRIPTORS FOR MULTIPLE RECTANGULAR BLOCKS WITIHIN ENCOMPASSING POLYGON. DESCRIPTORS FOR ENCOMPASSING POLYGON WILL BE ASKED FOR LATER.

ENTER MINIMUM NORTHING FOR CALCULATION OF MULTIPLE BLOCKS -USE DECIMAL:

ENTER MINIMUM EASTING FOR CALCULATION OF MULTIPLE BLOCKS - JSE DECIMAL:

J .

ENTER SIZE (IN Y-COORD. UNITS) OF RECTANGLE IN NORTH DIRECTION - USE DECIMAL: 25.

ENTER SIZE (IN X-COORD. UNITS) OF RECTANGLE IN EAST DIRECTION - USE DECIMAL: 25.

ENTER TOTAL NUMBER OF BLOCKS (VORTH DIRECTION) TO BE KRIGED - NO DECIMAL:

ENTER TOTAL NUMBER OF BLOCKS (EAST DIRECTION) TO BE (RIGED - NO DECIMAL:

ENTER PARAMETERS OF THE VARIOGRAM

ENTER THE NUGGET VALUE - USE DECIMAL : Э. ENTER C-VALUE OF VARIOGRAM - USE DECIMAL : 19.3 ENTER A-VALUE OF VARIOGRAM - USE DECIMAL : 85. ENTER THE MAXIMUM DISTANCE FROM POINT TO BE KRIGED - OR CENTER OF BLOCK IF BLOCK KRIGING -FOR 4 HOLE TO BE INCLUDED FOR KRIGING (THIS DEFINES CIRCULAR NEIGHBORHOOD - USE DECIMAL): 35. ENTER THE MAXIMUM NUMBER OF HOLES TO BE USED WITHIN THE CIRCULAR NEIGHBORHOOD - NO DECIMAL : . 16 ENTER DESCRIPTORS FOR ENCOMPASSING POLYGON TO BE KRIGED: IS POLYGON RECTANGULAR WITH SIDES PARALLEL TO COORDINATE AXES? ANSWER YES OR NO : YES ENTER MINIMUM NORTHING OF POLYGON - USE DECIMAL : Э. ENTER MAXIMUM NORTHING OF POLYGON - USE DECIMAL : 400. ENTER MINIMUM EASTING OF POLYGON - USE DECIMAL : Э. ENTER MAXIMUM EASTING OF POLYGON - USE DECIMAL : 400. COLUMN IDS ARE: 1) X-COOR 2) Y-COOR 3) % Fa ENTER STATPAC FILE DESCRIPTORS WHAT IS COLUMN NUMBER OF THE NORTH COORDINATE? : 2 WHAT IS COLUMN NUMBER OF THE EAST COORDINATE? : 1 WHAT IS COLUMN NUMBER OF THE ASSAY VALUE? 3

READING DATA FROM STATPAC INPUT FILE

50 JNQUALIFIED DATA POINTS HAVE BEEN STORED IN RAM
SETTING UP SYSTEM OF SIMULTANEOUS EQUATIONS
SOLVING SYSTEM OF SIMULTANEOUS EQUATIONS
THIS MAY TAKE CONSIDERABLE TIME — IT IS DEPENDENT ON
NUMBER OF DATA POINTS AND RECTANGULAR BLOCKS.

Contents of Data Set CLARKFE.MUC:

VARIOGRAM PARAMETERS

NJGGET = 0.000 SILL = 19.600 C-VALJE = 19.600

A-VALUE = 35.000

AREA OF POLYGON = 160000.00000

DESCRIPTION OF RECTANGULAR BLOCKS

GCCC = QUITZAE MUMINIM CCCC. = DVIHTRCM MUMINIM

EACH BLOCK IS: 100.000 BY 100.000

THERE ARE 4 BLOCKS IN THE N-S DIRECTION AND 4 IN THE E-W DIRECTION.

BLOCK VARIANCE = 5.33096

NO. OF PRESET Y-GRID POINTS PER RECTANGULAR BLOCK = 4

NO. OF PRESET X-GRID POINTS PER RECTANGULAR BLOCK = 4

SEARCH RADIUS PER RECTANGULAR BLOCK = 85.00000

NUMBER OF HOLES READ FROM DATA FILE = 50

OUTPUT OF KRIGED RESULTS

COLUMN	ROW	CENTER OF	RECTANGLE	KRIGING	KRIGING
		X-CDORD.	Y-000RD.	MEAN	VARIANCE
			•		
1	1	50.330	50.000	33.828	2.254
1	2	50.000	150.000	30.791	1.509
1	3	50.330	250.000	31.535	5.249
1	4	50.330	350.000	29.511	3.772
2	1	150.000	50.000	36.941	1.916
2	2	150.000	150.000	34.256	1.668
2	3	150.333	250.000	35.199	5.894
2	4	150.000	350.000	38.405	5.020
3	1	250.000	50.000	30.478	1.257
3	2	250.000	150.000	32.306	1.830
3	3	250.000	250.000	34.723	1.891
3	4	250.330	350.000	34.928	7.981
4	1	350.000	50.000	34.556	4.216
4	2	350.000	150.000	31.538	0.688
4	3	350.000	250.000	36.965	1.484
4	4	350.000	350.000	41.145	3.052

AVERAGE KRIGED VALUE = 0.342408E+02

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 6) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- B) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

12

WHAT IS NAME OF STATPAC INPUT FILE?

. CLARKFE.PR

CHI-SQUARE TEST FOR NORMALITY OF STATPAC VARIABLE

COLUMN IDS ARE:

X-COOR Y-COOR % Fe

WHAT IS COLUMN NUMBER OF THE VARIABLE? :

LOGARITHMIC TRANSFORMATION WANTED? YES OR NO ?

NO

TEST VARIABLE = % Fe

MARGORY SALUCATION TO SELF CHI-SPARE PROGRAM
TEST YTHAMRON

SUMMARY STATISTICS

NO. POINTS	5 O
MEAN	0.34487938E+02
VARIANCE	0.22759010E+02
STD.DEV.	0.47705404E+01
SKEWNESS	0.24636749E-01
KURTOSIS	0.203523355+01
MAX VALUE	0.440999936+02
MIN VALUE	0.244000015+02

RANGE 0.19699997E+02

CLASS INTERVAL	OBSERVED FREQUENCY	THEORETICAL FREQUENCY
	0 0 5 10 5 11 6 7 6 0 0	0.000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00 0.52824993E+01 0.60489983E+01 0.87329993E+01 0.87329993E+01 0.87329993E+01 0.60439938E+01 0.52324993E+01 0.52324993E+01 0.0000000000000000000000000000000000
DEGREES OF FREEDOM 4 PROBABILITY LEVEL 0.24551 DO YOU WANT TO TEST ANOTHER VARIABLE? N DO YOU WANT TO PROCESS DATA FROM ANO	356E+30 Y/N:	(/\ :
N NORMAL END OF CHI-SQUARE TEST		•
KRIGING STEPS CURRENTLY AVAILABLE:		
1) PREPARE STATPAC FILE FOR KRIGING PORTION OF THE TO READABLE THE TERMINAL. 5) PLOT A SYMBOL MAP AT THE TERMINAL. 6) CREATE CONTROL FILE OF SEMI-VARIOGY. 7) COMPUTE SEMI-VARIOGRAM. 8) CROSS-VALIDATE SEMI-VARIOGRAM. 9) KRIG A GRID OF POINTS. 10) KRIG A SINGLE POLYGON AS A WHOLE. 11) KRIG MULTIPLE RECTANGULAR BLOCKS. 12) TEST FOR NORMALITY OF A VARIABLE. 13) CREATE NEW STATPAC FILE BY SORTING. 14) REVIEW STATUS OF INPUT/OUTPUT FILE. 15) EXIT KRIGING SYSTEM.	VEDITABLE FIO STATPAC FIONE ST	ERS.
ENTER A NUMBER 1-15 OR CARRIAGE RETURE **** IF INPUT STATPAC FILE NOT PREVIOUSTEP 1, IT IS MANDATORY TO DO IT NOW. CARRIAGE RETURN WILL CAUSE MENU TO RE13	SUSLY PROCESS	YB C52

WHAT IS NAME OF STATPAC INPUT FILE?
CLARKFE.PR
GIVE A NAME FOR THE STATPAC OUTPUT FILE:
CLARKFE.SOS
DO YOU WANT TO SEE THE COLUMN IDS? Y/N:
Y

N= 50 M= 3 COLUMN IDS ARE:

1

1

1) X-COOR 2) Y-COOR 3) % Fe

DO YOU WANT TO SORT FILE CLARKFE.PR

- 1) BY PRIMARY ROW ID
- 2) BY SECONDARY ROW ID
- 3) BY A SELECTED STATPAC VARIABLE,
- 4) BY TWO SELECTED STATPAC VARIABLES, OR
- 5) BY THREE SELECTED STATPAC VARIABLES?
 ANSWER 1, 2, 3, 4, OR 5:

DO YOU WANT TO SORT ROW IDS

- 1) IN ASCENDING ORDER, OR
- 2) IN DESCENDING ORDER?
 ANSWER 1 OR 2:

NOW READING STATPAC INPUT FILE

RECORDS PROCESSED = 50 NOW SORTING ARRAY OF POINTERS NOW WRITING STATPAC OUTPUT FILE

RECORDS PROCESSED = 50 THE SORTED STATPAC FILE HAS BEEN WRITTEN THE OUTPUT FILE IS CLARKES.SOS FILEID= ABCDEFGH N= 50 M= 3

NORMAL END OF STPSORT ROUTINE.

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 5) CREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 3) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) (RIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY
STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

14

INPUT FILENAME: CLARKFE.PR

NORTH COORDINATE COLUMN NO: 2 ID: Y-COOR EAST COORDINATE COLUMN NO: 1 ID: X-COOR ASSAY VALUE COLUMN NO: 3 ID: % Fe

OUTPUT FILES CREATED

	OUT OF TELS ONERTED	
FILENAME:	FILE TYPE:	CREATED BY:
CLARKFE.PR	STATPAC	1) PREP STATPAC FILE
CLARKFE.FI	CHARACTER	2) STATPAC TO EDIT
CLARKFE.UN	STATPAC	3) EDIT TO STATPAC
PLOTFILE	CHARACTER	5) SYMBOL MAP
CLARKFE.CT2	CHARACTER	6) CR CONTROL FILE
CLARKFE.CT2	CHARACTER	6) CONT. FILE
CLARKFE.VAR	CHARACTER	7) SEMI-VARIOGRAM
CLARKFE.XVC	CHARACTER	8), 9) XVAL OR GRID
CLARKFE.XVS	STATPAC	8), 9) XVAL OR GRID
CLARKFE.GRC	CHARACTER	3), 9) XVAL OR GRID
CLARKFE.GRS	STATPAC	8), 9) XVAL OR GRID
CLARKFE.BLC	CHARACTER	10-11) KRIG POLYGON
CLARKFE.MJC	CHARACTER	10-11) KRIG POLYGON
CLARKFE.SOS	STATPAC	13) STATPAC SORT

- 1) PREPARE STATPAC FILE FOR KRIGING PROGRAMS.
- 2) TRANSFORM STATPAC FILE TO READABLE/EDITABLE FILE.
- 3) TRANSFORM READABLE/EDITABLE FILE TO STATPAC FILE.
- 4) CALCULATE BASIC STATISTICS.
- 5) PLOT A SYMBOL MAP AT THE TERMINAL.
- 5) SREATE CONTROL FILE OF SEMI-VARIOGRAM PARAMETERS.
- 7) COMPUTE SEMI-VARIOGRAM.
- 8) CROSS-VALIDATE SEMI-VARIOGRAM.
- 9) KRIG A GRID OF POINTS.
- 10) KRIG A SINGLE POLYGON AS A WHOLE.
- 11) KRIG MULTIPLE RECTANGULAR BLOCKS WITHIN A POLYGON.
- 12) TEST FOR NORMALITY OF A VARIABLE.
- 13) CREATE NEW STATPAC FILE BY SORTING STATPAC FILE.
- 14) REVIEW STATUS OF INPUT/OUTPUT FILES.
- 15) EXIT KRIGING SYSTEM.

ENTER A NUMBER 1-15 OR CARRIAGE RETURN.

**** IF INPUT STATPAC FILE NOT PREVIOUSLY PROCESSED BY

STEP 1, IT IS MANDATORY TO DO IT NOW.

CARRIAGE RETURN WILL CAUSE MENU TO REAPPEAR.

15

**** STOP