

STREAMFLOW AND WATER-QUALITY DATA FOR THREE MAJOR TRIBUTARIES TO REELFOOT LAKE, WEST TENNESSEE, OCTOBER 1987-MARCH 1988

Prepared in cooperation with the

TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT DIVISION OF CONSTRUCTION GRANTS AND LOANS

U.S. GEOLOGICAL SURVEY

Open-File Report 88-311

STREAMFLOW AND WATER-QUALITY DATA FOR THREE MAJOR TRIBUTARIES TO REELFOOT LAKE, WEST TENNESSEE, OCTOBER 1987-MARCH 1988

By M.C. Yurewicz, W.P. Carey, and J.W. Garrett

U.S. GEOLOGICAL SURVEY Open-File Report 88-311

÷

,, ř, ř

Prepared in cooperation with the TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT DIVISION OF CONSTRUCTION GRANTS AND LOANS

Nashville, Tennessee

1988

DEPARTMENT OF INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

ب ۲ ۲ ۶

> District Chief U.S. Geological Survey A-413 Federal Bldg. U.S. Courthouse Nashville, Tennessee 37203

Copies of this report can be obtained from:

-

U.S. Geological Survey Books and Open-file Reports Section Federal Center, Bldg. 810 Box 25425 Denver, Colorado 80225

-

CONTENTS

ے میں جب جب

	Page
Abstract	1
Introduction	1
Purpose and scope	2
Previous and ongoing investigations	2
Collection of hydrologic data	
Data-collection program	2
Methods of data collection	4
Data	6
Summary of preliminary data	6
Selected references	20

ILLUSTRATIONS

Figure	1.	Map showing project area, Reelfoot Lake, and	
		surface-water monitoring stations	3
	2.	Hydrograph showing mean daily discharge for the	
		North Reelfoot Creek station	18

TABLES

Table	1.	List of data-collection sites and summary of data-collection program for the investigation	5
	2.	Daily mean values for streamflow, suspended-sediment concentration, and suspended-sediment discharge for	
		North Reelfoot Creek at Hwy. 22, near Clayton, Tenn	7
	3.	Mean daily discharge in cubic feet per second,	^
		for South Reelfoot Creek near Clayton, Tenn	9
	4.	Mean daily discharge, in cubic feet per second, for Running Slough near Ledford, Ky	10
	5.	Water-quality data for North Reelfoot Creek at Hwy. 22,	
		near Clayton, Tenn	11
	6.	Water-quality data for South Reelfoot Creek at	
		Clayton, Tenn	14
	7.	Water-quality data for Running Slough near Ledford, Ky	16

CONVERSION FACTORS

Factors for converting inch-pound units to International System of Units (SI) are shown to four significant digits.

Multiply	<u>By</u>	<u>To obtain</u>
cubic feet per second (ft ³ /s) microsiemens per centimeter at 25°C (uS/cm)	0.02832 1	cubic meter per second (m ³ /s) micromhos per centimeter at 25 [°] C (umhos/cm)

STREAMFLOW AND WATER-QUALITY DATA FOR THREE MAJOR TRIBUTARIES TO REELFOOT LAKE, WEST TENNESSEE, OCTOBER 1987-MARCH 1988

بر ۲۰۰۰ ۲۰۰۰ ۲۰۰۰

By Michael C. Yurewicz, William P. Carey, and Jerry W. Garrett

ABSTRACT

Streamflow and water-quality data were collected for three major tributaries to Reelfoot Lake, in West Tennessee, for the period October 1987 through March 1988. The data are presented in graphs and tables. Mean daily discharge data were collected at one site each in the drainage basins of North Reelfoot Creek, South Reelfoot Creek, and Running Slough. Daily mean suspendedsediment concentration data were collected at a site in the North Reelfoot Creek basin. Water-quality samples were collected during storm events at the same locations that daily mean streamflow data were collected. Water-quality samples were analyzed for concentrations of nutrients and triazine herbicides. Water temperature and specific conductance were measured at the time that samples were collected.

INTRODUCTION

Reelfoot Lake, in West Tennessee, is one of the most important natural resources in the State. The area surrounding the lake is part of a National Wildlife Refuge as well as a State Conservation Area. The lake and surrounding forests are a key tourism and recreation area in West Tennessee and has been a traditional commercial fishery.

Because of the high level of agricultural activities in the area surrounding Reelfoot Lake, storm runoff for tributaries to Reelfoot Lake is expected to contain considerable amounts of residues of fertilizer and pesticides. On a statewide basis, Obion County, Tennessee (directly to the east of Reelfoot Lake), was ranked number 1 in corn production, number 2 in wheat production, number 2 in soybean production, number 7 in sorghum production, and number 19 in cotton production (Tennessee Agricultural Statistics Service, 1987: reference period is for 1986). No pesticide-usage data are available from State agencies or the Soil Conservation Service for Obion County.

In 1976, The U.S. Environmental Protection Agency referred to Reelfoot Lake as being hypereutrophic and estimated total phosphorus loading to be 117,300 kg (129.3 tons) phosphorus per year, and total nitrogen loading to be 476,440 kg (525.3 tons) nitrogen per year (Johnson and Brown, in press). Measurements of nutrient concentrations in the waters and tributaries of Reelfoot Lake have been made by state and Federal agencies and universities. Data indicate that Reelfoot Creek is an important source of sediment and nitrogen for the lake (Denton. 1986; Johnson and Brown, in press). A major source of these constituents in the lake is from inflows of the principal tributaries (North Reelfoot Creek, South Reelfoot Creek, and Running Slough). The extent of contribution and the percentage contributed by storms have not been defined. The annual budget of nutrients and pesticides flowing into the lake is poorly quantified.

To address these problems, the U.S. Geological Survey, in cooperation with the Tennessee Department of Health and Environment, Division of Construction Grants and Loans, initiated an investigation in October 1987 to study the impact of agricultural activities on runoff into Reelfoot Lake.

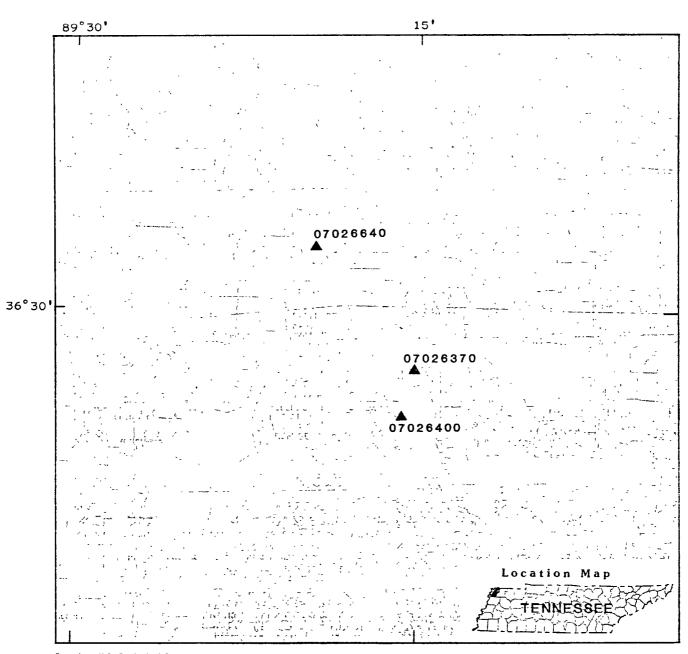
Purpose and Scope

This investigation has two objectives:

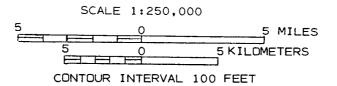
- o Identify the variation in concentrations of nutrients and pesticides relative to seasonal effects and discharge for storm events at three principal tributaries to Reelfoot Lake (North Reelfoot Creek, South Reelfoot Creek, and Running Slough).
- o Estimate the annual nutrient and pesticide loading from these tributaries to Reelfoot Lake.

The data-collection program for the investigation was initiated October 1, 1987, and consisted of collection of mean daily streamflow data at three stations, mean daily suspended-sediment concentration data at one station, and storm-event sampling at three stations for nutrients, pesticides, and field measurements for water temperature and specific conductance. The study area and data-collection sites are shown in figure 1. The data-collection program will continue until July 31, 1988.

This report describes the data-collection program for the investigation and presents hydrologic data collected and analyzed during the period October 1987 through March 1988. An interpretive report for the investigation will be submitted in December 1988.


Previous and Ongoing Investigations

There have been several previous investigations of the hydrology and water quality of Reelfoot Lake. Robbins (1985a) presented the first comprehensive description of the hydrology of the Reelfoot Lake basin. A water budget and estimated suspended-sediment inflow for Reelfoot Lake, Obion, and Lake Counties for the period May 1984 through April 1985 was discussed by Robbins (1985b); the data collected for this investigation are presented in Robbins and others (1985).Denton (1986) documented results of sedimentation studies of Reelfoot Lake. A comprehensive report of the water quality of Reelfoot Lake was prepared by Denton (1987); in this report, water-quality trends were identified, seasonal and annual water-quality variability was characterized, and causes of waterquality changes were discussed. Gaydos (1983) presented results of pesticide sampling at surface-water sites in Tennessee. In cooperation with the Tennessee Wildlife Resources Agency, the U.S. Geological Survey is presently conducting an investigation to more accurately describe the water budget of Reelfoot Lake; this investigation will be completed September 1988.


COLLECTION OF HYDROLOGIC DATA

Data-collection Program

A data-collection program was established at three stations, with one sampling site for each of the three major tributaries to Reelfoot Lake. The

Base from U.B. Geological Burvey Dyersburg, Tennessee, Kentucky, Missouri, Illinois, 1958, revised 1970

EXPLANATION

▲ Surface-water monitoring station and number 07026370

Figure 1.--Location of project area, Reelfoot Lake, and surface-water monitoring stations. data-collection program is summarized in table 1. Each of these sites has historical hydrologic data collected for earlier or ongoing investigations.

To meet the objectives of the investigation, the data-collection program was designed to collect water-quality samples during storm events. Most of the loads of nutrients and pesticides will be transported from the tributaries into Reelfoot Lake during these periods. The data-collection program was also designed to be conducted over the longest possible time period (within budgetary constraints) to ensure adequate documentation of seasonal variation in transport characteristics of nutrients and pesticides in storm runoff. Considerable variation in transport characteristics may occur on a seasonal basis because of seasonal application of fertilizers and pesticides to areas under cultivation within the drainage basins of the three tributaries.

The water-quality constituents selected to best represent those constituents being transported into Reelfoot Lake from the nonpoint sources associated with agricultural activities include nitrogen and phosphorus species, triazine herbicides, and suspended-sediment. Samples at each of the three sites were analyzed for these water-quality constituents. As a group, triazine herbicides are most closely associated with the crops grown in this area. All attempts were made to collect water-quality samples during storm events.

Methods of Data Collection

Hydrologic data were collected using procedures established and documented by the U.S. Geological Survey. This applies to all hydrologic data collected for this investigation. The reader is referred to the series of U.S. Geological Survey publications titled "Techniques of Water-Resources Investigations" (TWRI). The publications in this series provide formal documentation used by the U.S. Geological Survey for collection of hydrologic data. A list of TWRI publications is provided in U.S. Geological Survey (1987).

All three data-collection stations are existing data-collection stations for mean daily discharge. Continuous discharge records for all three stations were judged to be good for the period October 1, 1985 through September 30, 1986 (U.S. Geological Survey, 1987). A recorder is maintained at each station to provide a continuous record of water stage. This is used to compute the mean daily discharge at each station. It is also used to provide an instantaneousdischarge value for each water-quality sample.

Water-quality samples were collected either by use of a depth-integrating isokinetic sampler, by a weighted-bottle sampler, or by an automatic stationary sampler. All samples were collected by personnel of the U.S. Geological Survey.

To compute mean daily suspended-sediment concentrations, an adequate number of samples must be collected, particularly during storm events when the concentration of suspended sediment and other water-quality constituents can vary significantly during short periods of time. To ensure an adequate number of samples, an automatic sampler was used to collect water-quality samples at the North Reelfoot Creek station. During periods of base flow, samples were collected manually. During storm events, additional samples were collected by the automatic sampler. The sampler automatically began collecting a series of water-quality samples when the water stage exceeded a preset level.

Station	Continuous streamflow	S Continuous suspended sediment	Storm-event sampling for nutrients, pesticides, and field measurements		
07026370 North Reelfoot Creek at Hwy. 22. near Clayton, Tenn		10/01/87 to 07/31/88	10/01/87 to 07/31/8		
(drainage area=56.3	mi ²)				
07026400 South Reelfoot Creek near Clayton, Tenn.	10/01/87 to 07/31/88		10/01/87 to 07/31/8		
(drainage area=38.6	mi ²)				
07026640 Running Slough near Ledford, Ky.	10/01/87 to 07/31/88		10/01/87 to 07/31/8		
(drainage area=10.8	mi ²)				

•

-

.

-

Table 1.--List of data-collection sites and summary of data-collection program for the investigation

** * . . . * *

-

Samples of suspended sediment were collected at selected times both manually and by use of the automatic sampler. Comparison of results by both the manual method and automatic sampler method indicate that samples collected by use of the automatic sampler are comparable with samples collected manually. Results generally compare within 10 percent. This is an acceptable level of comparison, and no adjustments were applied to samples collected by the automatic sampler.

All analytical analyses for water-quality samples were done by the U.S. Geological Survey. Suspended-sediment samples were analyzed by personnel of the Water Resources Division, Tennessee District. Water temperature and specific conductance were measured on site using calibrated equipment. Samples for concentrations of nutrients and triazine herbicides were submitted to the U.S. Geological Survey laboratory in Arvada, Colorado. Procedures for the processing and analysis of samples analyzed by the Aravda laboratory are given by Feltz and others (1985), Fishman and Friedman (1985), and Wersham and others (1987). Analytical results were reviewed for quality assurance by personnel at the Arvada laboratory as well as by personnel in the Tennessee District. If needed, samples were requested to be reanalyzed by the laboratory.

<u>Data</u>

All hydrologic data collected and analyzed for the period October 1987 through March 1988 are presented in tables 2 through 7. Hydrologic data for the North Reelfoot Creek station are presented in tables 2 and 5. Hydrologic data for the South Reelfoot Creek station are presented in tables 3 and 6. Hydrologic data for the Running Slough station are presented in tables 4 and 7.

SUMMARY OF PRELIMINARY DATA

The hydrologic data provided in this report are expected to be representative of the nongrowing season for agricultural activities in this area. Therefore, in general, concentrations of nutrients and pesticides are expected to be lower than during the active cultivation season when fertilizers and pesticides are applied. Also, mean monthly discharge is generally low during October compared to most other months.

Streamflow at all three stations reflected the fact that discharge generally is low during October. Zero discharge occurred for the entire month of October at the North Reelfoot Creek station and the Running Slough station. The occurrence of storm events is indicated in figure 2, which shows a hydrograph of mean daily discharge for the North Reelfoot Creek station. Maximum mean daily discharge for the three stations (North Reelfoot Creek, South Reelfoot Creek, and Running Slough: 1,030 ft /s, 1,430 ft /s, and 93 ft /s, respectively) for the period October 1987 through March 1988 are well below the maximum mean daily discharge for the period of published record for the same three stations (2,170 ft /s, 3,440 ft /s, and 278 ft /s, respectively) (U.S. Geological Survey, 1987).

Analyses of water-quality samples indicate considerable variation in concentrations of constituents. The daily mean suspended-sediment concentration for north Reelfoot Creek ranged from 18 to 3,600 milligrams per liter (mg/L)

6

Table 2--Daily mean values for streamflow, suspended-sediment concentration, and suspended-sediment discharge for North Reelfoot Creek at Hwy 22, near Clayton, Tenn.

· · · ·

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER			DECEMBER	
1	.00	0	.00	.00	0	.00	6.6	28	.50
2	.00	0	.00	.00	0	.00	5.7	25	38
3	.00	0	.00	.00	0	.00	5.7	22	. 34
4	.00	0	.00	.00	0	.00	5.4	20	. 29
5	.00	0	.00	.00	0	.00	6.2	18	. 30
6	.00	0	.00	.00	0	.00	7.2	25	.49
7	.00	0	.00	.00	0	.00	8.7	38	.89
8	.00	0	.00	.00	0	.00	8.1	35	.77
9	.00	0	.00	.00	0	.00	7.8	30	.63
10	.00	0	.00	.00	0	.00	7.4	29	.58
11	.00	0	.00	.00	0	.00	7.1	28	.54
12	.00	0	.00	.00	0	.00	6.7	25	.45
13	.00	0	.00	.00	0	.00	6.6	22	. 39
14	.00	0	.00	.00	0	.00	126	490	303
15	.00	0	.00	.00	0	.00	536	918	1650
16	.00	0	.00	. 53	100	.14	164	375	166
17	.00	0	.00	25	585	53	75	250	51
18	.00	0	.00	2.2	240	1.4	39	225	24
19	.00	0	.00	. 42	135	. 15	30	240	19
20	.00	0	.00	. 23	73	.05	40	325	35
21	.00	0	.00	.23	59	.04	22	220	13
22	.00	٥	.00	.22	51	.03	16	175	7.6
23	.00	0	.00	.21	45	.03	12	125	
24	.00	0	.00	.35	39		86	562	
25	.00	0	.00	17	321	71.4	1030	971	2510
26	.00	0	.00	25	390	26	675	400	729
27	.00	0	.00	11			411	375	
28	.00	0	.00	25			448	300	
29	.00	0	.00	11			332	220	
30	.00	0	.00	8.0	40	.86	297	170	
31	.00	0	.00				358	250	242
TOTA	L .00	* * *	.00	126.39			4786.2		7289.15

-

Table 2--Daily mean values for streamflow, suspended-sediment concentration, and suspended-sediment discharge for North Reelfoot Creek at Hwy 22, near Clayton, Tenn.--Continued

		MEAN			WEAN			MEAN	
AY	MEAN DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY
<u> </u>		JANUARY			FEBRUARY			MARCH	
1	236	150	96	171	590	272	11	60	1.
2	105	120	34	619	1920	3480	12	61	2.
2	52	98	14	308	580	482	37	420	42
4	33	92	8.2	301	500	406	28	180	14
5	23	85	5.3	211	280	160	23	142	8.
6	18	78	3.8	90	150	36	20	130	· 7.
7	16	90	3.9	45	98	12	18	118	5.
8	14	90	3.4	33	´ 92	8.2	73	901	456
9	11	83	2.5	28	87	6.6	145	645	309
10	9.4	78	2.0	24	83	5.4	263	855	6 54
11	8.1	70	1.5	22	83	4.9	132	300	107
12	9.9	72	1.9	20	87	4.7	90	400	97
13	16	89	3.8	18	82	4.0	52	190	27
14	10	73	2.0	41	320	80.2	36	91	8
15	9.3	66	1.7	98	515	179	28	74	5
16	9.7	58	1.5	53	150	21	23	59	3
17	80	558	168	34	140	13	21	55	3
18	63	140	24	27	110	8.0	74	350	74
19	850	3220	8940	77	621	146	44	140	17
20	504	900	1220	59	210	33	34	110	10
21	354	600	573	36	140	14	27	95	6
22	317	425	364	27	122	8.9	23	80	5
23	289	300	234	23	105	6.5	19	78	4
24	256	200	138	19	98	5.0	17	74	
25	143	142	55	17	92	4.2	281	3600	4250
26	61	131		16	88	3.8	146		-
27	36	119		15	80	3.2	71		-
28	28	105		13	71	2.5	42		-
29	25	95		12	66	2.1	38		-
30 31	23 63	83 338					56 260		-
		200							
τοται	. 3672.4		12077.0	2457		5412.2	2144		-

÷

8

....

DAY	ОСТ	NOV	DEC	JAN	FEB	MAF
1	.00	4.9	24	147	137	11
2	.07	4.3	19	71	649	12
з	. 18	7.4	24	43	263	70
4	.13	7.2	27	30	201	36
5	.00	6.6	25	19	109	25
6	. 08	8.6	26	16	57	21
7	.00	10	28	13	38	18
8	.00	8.0	25	16	31	89
9	.00	6.5	25	12	28	121
10	.00	__ 10	24	12	24	195
11	.00	5.5	21	11	22	85
12	.00	2.0	19	12	19	77
13	.00	2.0	18	17	18	49
14	.09	2.3	216	11	49	34
15	.04	1.7	661	10	87	26
16	. 49	32	165	11	41	21
17	1.6	81	76	94	30	19
18	1.3	38	36	65	25	65
19	1.7	27	23	983	82	41
20	1.6	22	36	434	49	30
21	2.2	18	18	285	31	24
22	1.4	17	15	166	27	20
23	.85	20	13	109	22	18
24	1.1	24	127	79	18	16
25	1.0	69	1430	48	16	166
26	6.2	85	611	24	15	58
27	4.7	52	387	17	15	31
28	4.2	87	427	16	13	22
2 9	3.1	47	308	14	12	24
30	3.9	31	190	14		39
31	4.5		217	75		214

.

.

Table 3.--Wean daily discharge, in cubic feet per second, for South Reelfoot Creek near Clayton, Tenn.

· · · · · · ·

.

-

.

DAY	ОСТ	NOV	DEĊ	JAN	FEB	MAR	
٦	.00	.00	.00	3.7	2.4	2.0	
2	.00	.00	.00	2.8	76	2.2	
3	.00	.00	.00	2.7	93	2.9	
4	.00	.00	.00	2.6	62	3.0	
5	.00	.00	.00	2.5	34	3.9	
6	.00	. 90	.00	2.4	17	3.3	
7	.00	.00	.00	2.3	12	3.0	
8	.00	.00	.00	2.2	9.1	3.6	
9	.00	.00	.00	2.1	7.9	6.3	
10	.00	.00	.00	2.1	7.2	17	
11	.00	.00	.00	2.1	6.5	17	
12	.00	.00	.00	2.1	6.5	8.4	
13	.00	.00	.00	2.1	6.3	3.9	
14	.00	.00	.00	2.1	6.6	2.7	
15	.00	.00	.00	2.3	8.8	1.7	
16	.00	.00	.00	2.8	9.0	.96	
17	.00	.00	.00	3.1	7.3	.81	
18	.00	.00	.00	3.5	5.9	1.4	
19	.00	.00	.00	36	7.2	2.9	
20	.00	.00	.00	73	8.3	3.1	
21	.00	.00	.00	55	7.4	1.7	
22	.00	.00	.00	22	6.2	1.2	
23	.00	.00	.00	8.7	4.2	.72	
24	.00	.00	. 15	4.8	3.3	.05	
25	.00	.00	41	3.0	3.1	11	
26	00	00	01				
26	.00	.00	91 50	2.1	2.5	30	
27	• .00	.00	69 27	1.6	2.3	18	
28 29	.00	.00	37	1.5	1.9	8.1	
29 30	.00	.00	15	1.5	1.9	5.4	
30	.00	.00	5.2	1.6		9.5	
ا د	.00		5.1	1.5		34	

.

Table 4.--Wean discharge, in cubic feet per second, for Running Slough near Ledford, Ky.

• • •

				<u> </u>					
		STREAM- FLOW, INSTAN-	TEMPER-	SPE- CIFIC CON- DUCT-	GEN,AM- MONIA + ORGANIC TOTAL	NITRO- GEN, ORGANIC TOTAL	NITRO- GEN, AMPONIA TOTAL	GEN, AMMONIA DIS~ SOLVED	GEN, NITRITE DIS- SOLVED
DATE	TIME	TANEOUS (CFS)	WATER (DEG C)	ANCE (US/CM)	(MG/L AS N)	(MG/L AS N)	(MG/L As n)	(MG/L AS N)	(MG/L AS N)
		(00061)	(00010)	(00095)	(00625)	(00605)	(00610)	(00608)	(00613)
NOV 1987									
17	0800	14	13.0	140					
DEC									-
14	1425	266	4.5	75	1.1	0.82	0.280	0.170	<0.010
14	1715	228			0.90	0.71	0.190	0.120	<0.010
14	2300	174			1.2	0.99	0.210	0.170	<0.010
15	1115	390	6.5	105	1.3	1.1	0.200	0.140	<0.010
15	1500	274	6.0	140	1.2	0.92	0.280	0.210	<0.010
15	1515	274	6.0	140			** **		
15	2200	279							
25	0730	739							
26	1110	599	8.0	90	1.0	0.81	0.190	0.120	<0.010
28	1255	415	6.0	80	1.0	0.52	0.480	0.120	<0.010
JAN 1988									
19	0845	574	9.0	105	1.6	1.2	0.380	0.190	0.010
19	1000	913	9.0	100	1.2	0.86	0.340	0.140	<0.010
19	1500	1470	9.5	80	0.60	0.37	0.230	0.100	<0.010
FEB									
02	0850	950	6.5	100	3.0	2.7	0.260	0.120	0.020
02	1145	814	7.0	110	1.0	0.79	0.210	0.110	0.020
MAR									
08	1945	250							
10	0745	343	7.0	180					
25	0345	247							
25 <i>.</i>	0645	679							
25	0830	579	15.0	120					
25	1000	431	15.5	140					

Table 5.--Water-quality data for North Reelfoot Creek at Hwy 22, near Clayton, Tenn.

• • • • • •

-

DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (OD631)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (D0671)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (DD666)	PHOS- PHORUS, TOTAL (WG/L AS P) (00665)	SEDI- MENT. SUS- PENDED (NG/L) (B0154)	SEDI- MENT, DIS- CHARGE. SUS- PENDED (T/DAY) (80155)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	AME- TRYNE TOTAL (82184)	ATRAZINE TOTAL RECOVER (39360)
NOV 1987										
17 DEC						487	19	<0.10	<0.10	0.10
14		0.350	0.160	0.200	0.410	1460	1040	<0.10	<0.10	1.6
14		0.380	0.180	0.220	0.390	687	423			
14		0.420	0.280	0.360	0.710	500	235			
15		0,270	0.190	0.230	0.630	715	753	<0.10	<0.10	1.0
15		0.270	0.140	0.180	1.20	664	491			
15						664	491			
15						525	395			
25						1300	2590			
26		0.240	0.210	0.260	0.480	413	668	<0.10	<0.10	0.20
28		0.190	0.230	0.240	0.450	248	278	<0.10	<0.10	0.30
JAN 1988										
19	0.440	0.450	0.150	0.170	1.00	7760	12000			
19		0.460	0.160	0.200	0.860		19700	<0.10	<0.10	0.30
19		0.270	0.180	0.210	0.620	3260	13000			
FEB										
02	0.300	0.320	0.140	0.180	0.580	1870	4800	<0.10	<0.10	<0.10
02	0.320	0.340	0.150	0.210	0.920	1220	2680			
MAR										
08						3540	2390			
10		+-				1060	982			
25						12800	8540			
25						9890				
25						4740	7410			
25						2690	3130			

Table 5.--Water-quality data for North Reelfoot Creek at Hwy 22, near Clayton, Tenn.--Continued

• • • •

-

.

•••

DATE	CYAN- AZINE TOTAL (UG/L) (81757)	METOLA- CHLOR WATER WHOLE TOT_REC (UG/L) (B2612)	METRI- BUZIN WATER WHOLE TOT.REC (UG/L) (82611)	PROME- TONE TOTAL (UG/L) (39056)	PROME- TRYNE TOTAL (UG/L) (39057)	PR0- PAZINE TOTAL (UG/L) (39024)	SIMA- ZINE TOTAL (U3/L) (39055)	SIME- TRYNE TOTAL (UG/L) (39054)	TRI- FLURA- LIN TOTAL RECOVEJ (UG/L (39030)
NOV 1987									
17	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
DEC									
14	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
14									-
14									
15	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
15									_
15									-
15								*-	-
25									<u> </u>
26	<0.10	<0.1		<0.1					
28 JAN 1988	0.10	<0.1	<0.1	0.1	<0.1	<0.10	<0.10	<0.1	<0.10
19									-
19	<0.10	<0.2	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
19								 -	-
FEB									
02	<0.10							<0.1	<0.10
02									-
MAR									
08									-
10									-
25									-
25									-
25 25									-

13

Table 6Water-quality	data for	South Reelfoot	Creek a	at Clayton,	Tenn.
----------------------	----------	----------------	---------	-------------	-------

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (DC095)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (D0625)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN. AMMONIA TOTAL (WG/L AS N) (DD610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	
DEC 1987 14 15 26 28 JAN 1988	0800 0930 1215 1100	93 352 529 402	3.5 6.5 7.0 7.5	240 180 125 125	1.0 0.90 0.60 1.0	0.81 0.70 0.37 0.75	0.190 0.200 0.230 0.250	0.170 0.130 0.120 0.100	0.010 <0.010 <0.010 <0.010	-
19 19 FEB 02	0930 1425	739 2260	9.5 9.5	105 80	0.80 0.70	0.56	0.240 0.260	0.150 0.140	<0.010 <0.010	
MAR 10 25 25	0930 0815 0745 0930	1100 261 365 282	6.5 6.0 14.5 15.0	100 210 140 160	0.90 	0.70	0.200	0.090	0.020	
	NITRO-	NITRO-	PHOS-				SEDI-			
DATE	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (DD631)	PHORUS, ORTHO, DIS- SOLVED (WG/L AS P) (00671)	PHOS- PHORUS, DIS- SOLVED (WG/L AS P) (00666)	PHOS- PHORUS, TOTAL (MG/L AS P) (D0665)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	AME- TRYNE TOTAL (82184)	ATRAZINE, TOTAL RECOVER (UG/L) (39630)
DEC 1987 14 15 26 28 JAN 1988	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.460	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (D0631) 0.470 0.290 0.280 0.250	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.230 0.120 0.160 0.160	PHORUS, DIS- SOLVED (MG/L AS P) (00666) 0.290 0.140 0.200 0.170	PHORUS, TOTAL (MG/L AS P) (DD665) 0.560 0.460 0.410 0.360	MENT, SUS- PENDED (MG/L) (80154) 719 188 384	WENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 683 269 417	CHLOR TOTAL RECOVER (UG/L) (77825) <0.10 <0.10 <0.10	TRYNE TOTAL (82184) <0.10 <0.10 <0.10	TOTAL RECOVER (UG/L) (39630) 0.20 <0.10 0.20
DEC 1987 14 15 26 28	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.460	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (DD631) 0.470 0.290 0.280	PHORUS, ORTHO, DIS- SOLVED (WG/L AS P) (00671) 0.230 0.120 0.160	PHORUS, DIS- SOLVED (WG/L AS P) (00666) 0.290 0.140 0.200	PHORUS, TOTAL (MG/L AS P) (D0665) 0.560 0.460 0.410	MENT, SUS- PENDED (MG/L) (80154) 719 188 384 5770	WENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 683 269	CHLOR TOTAL RECOVER (UG/L) (77825) <0.10 <0.10	TRYNE TOTAL (82184) <0.10 <0.10	TOTAL RECOVER (UG/L) (39630) 0.20 <0.10

DATE	CYAN- AZINE TOTAL (UG/L) (81757)	WETOLA- CHLOR WATER WHOLE TOT.REC (UG/L) (B2612)	WETRI- BUZIN WATER WHOLE TOT.REC (UG/L) (B2611)	PROME- TONE TOTAL (UG/L) (39056)	PROME- TRYNE TOTAL (UG/L) (39057)	PRO- PAZINE TOTAL (UG/L) (39024)	SIWA- ZINE TOTAL (UG/L) (39055)	SIME- TRYNE TOTAL (UG/L) (39054)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)
DEC 1987									
14	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
15									
26	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
28	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
JAN 1988									•
19	<0.10	<0.2	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
19									
FEB									
02	<0.10	<0.5	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
MAR									
10									
25									
25									

Table 6.--Water-quality data for South Reelfoot Creek at Clayton, Tenn.--Continued

· · · ·

.

.

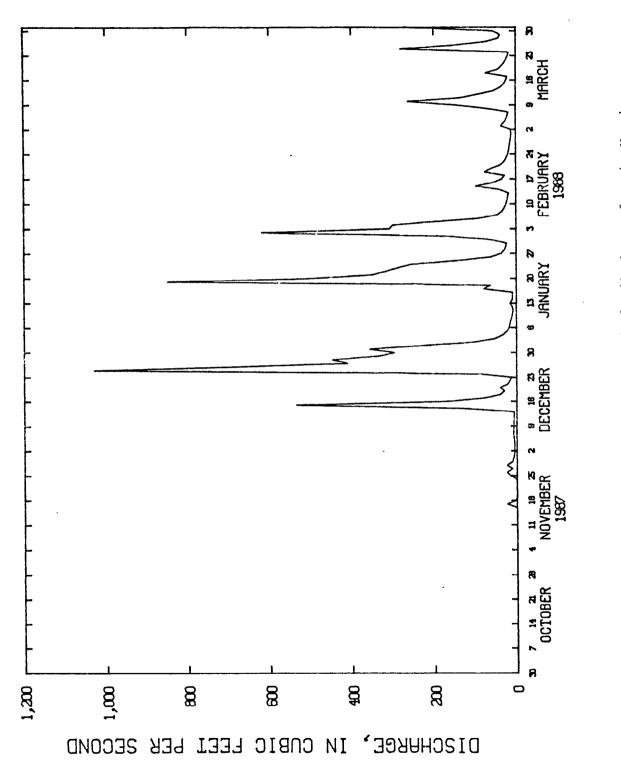
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	NITRO- GEN,AM- WONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (D0610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	_
DEC 1987 26 26 Jan 1988 20	1445 1500 1600	91 91 78	6.5 6.5 8.0	200 200 300	0.60	0.44	0.160	0.020	<0.010	
FEB 02	1545	88	6.5	240	0.60 1.1	0.42 0.96	0.180 0.140	0.030 0.060	<0.010 0.020	
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (D0618)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (OO631)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS, DIS- Solved (MG/L AS P) (DD666)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	SEDI- NENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	AME- TRYNE TOTAL (82184)	ATRAZINE, TOTAL RECOVER (UG/L) (39630)
DEC 1987 26 26 JAN 1988		0.520	0.120	0.160	0.440	178 178	44 44	<0.10	<0.10	<0.10
20 FEB 02	 0.780	0.640 0.800	0.120 0.080	0.140 0.100	0.46 0 0.760	202 438	42 104	 <0.10	 <0.10	 <0.10

Table 7.--Water-quality data for Running Slough near Ledford, Ky.

• • • •

.

.


.

DATE	CYAN- AZINE TOTAL (UG/L) (81757)	METOLA- CHLOR WATER WHOLE TOT.RFC (UG/L) (82612)	METRI- BUZIN WATER WHOLE TOT.REC (UG/L) (B2611)	PROME- TONE TOTAL (UG/L) (39056)	PROME- TRYNE Total (UG/L) (39057)	PRO- PAZINE TOTAL (UG/L) (39024)	SIMA- ZINE TOTAL (UG/L) (39055)	SIME- TRYNE TOTAL (UG/L) (39054)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)
DEC 1987		<u> </u>							
26	<0.10	<0.1	<0.1	<0.1	<0.1	<0.10	<0.10	<0.1	<0.10
26 JAN 1988						÷-			
20 FEB									

Table 7.--Water-quality data for Running Slough near Ledford, Ky,--Continued

· · · ·

n. N

e a, a \$

during the period October 1, 1987 to March 25, 1988. The maximum instantaneous suspended-sediment concentration shown in table 5 for this station is 12,800 mg/L. Concentrations of suspended sediment for the South Reelfoot Creek station ranged from 188 to 5,770 mg/L.

Analyses for nutrients and pesticides indicate that most nitrogen occurs as organic nitrogen, and that very few samples had detectable concentrations of pesticides. In almost all cases, concentrations of pesticides were reported as less than 0.1 micrograms per liter (ug/L). Concentrations of total organic nitrogen ranged from 0.37 to 2.7 mg/L for the North Reelfoot Creek station. Concentrations of nutrients were generally similar at the South Reelfoot Creek station and the North Reelfoot Creek station. Because Running Slough flowed much less frequently, only three water-quality samples could be collected at the Running Slough station. Only one sample for pesticides at the North Reelfoot Creek station had a detectable concentration for triazine herbicides analyzed: cyanazine concentration of 0.1 ug/L for the sample collected December 28. No pesticides were detected for the samples collected at the South Reelfoot Creek station and the Running Slough station.

REFERENCES

- Denton, G.M., 1986, Summary of the sedimentation studies of Reelfoot Lake, 1982-1986: Tennessee Department of Health and Environment, Office of Water Management, 35 p.
- Denton, G.M., 1987, Water quality of Reelfoot Lake 1976-1986: Tennessee Department of Health and Environment, Office of Water Management.
- Feltz, H.F., Duncan, S.S., and Zepp, A. (eds.), 1985, 1986-87-88 National Water Quality Laboratory Services Catalog: U.S. Geological Survey Open-File Report 86-232.
- Fishman, M.J., Friedman, L.C., 1985, Methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 709 p.
- Gaydos, M.W., 1983, Results of pesticide sampling in Tennessee: U.S. Geological Survey Open-File Report 83-148, 22 p.
- Johnson, J., and Brown, P., in press, The 50 year management for Reelfoot Lake: Tennessee Wildlife Resources Agency.
- Robbins, C.H., 1985a, Hydrology of the Reelfoot Lake basin, Obion and Lake Counties, northwestern Tennessee: U.S. Geological Survey Water-Resources Investigations Report 85-4097.
- Robbins, C.H., 1985b, Water budget and estimated suspended-sediment inflow for Reelfoot Lake, Obion and Lake Counties, northwestern Tennessee, May 1984-April 1985: U.S. Geological Survey Water-Resources Investigations Report 85-4284.
- Robbins, C.H., Garrett, J.W., and Mulderink, D.M., 1985, May 1984-April 1985 water budget of Reelfoot Lake with estimates of sediment in flow and concentration of pesticides in bottom material in tributary streams--Basic data report: U.S. Geological Survey Open-File Report 85-498.
- Tennessee Department of Health and Environment, 1984, A clean lakes study: The upper Buck basis of Reelfoot Lake, Tennessee: Part A, Diagnostic study: Division of Water Management.
- U.S. Geological Survey, 1987, Water resources data for Tennessee, water year 1986: U.S. Geological Survey Water-Data Report TN-86-1.
- Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe, L.E., 1987, Methods for the determination of organic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 80 p.

20

Sec. Sec.