
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Review of Three Cubic Spline Methods in Graphics Applications

by

Gerald I. Evenden 1

Open-File Report 89-19

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial stan­
dards and nomenclature. Any use of tradenames is for descriptive purposes only and does not imply endorsement
by the USGS.

Hole, Mass.

1989

CONTENTS

1. Abstract 1
2. Introduction 1
3. Basic concepts 1
4. Behavior of spline curves 2
5. Determination of spline coefficients 4

5.1 Osculatory spline knot derivatives
5.2 Akima spline knot derivatives 5
5.3 Standard spline knot derivatives 5

6. Parametric splines 6
7. Bezier splines 6
8. C spine procedures 8

8.1 Usage of spline procedures 8
9. Conclusions 9

10. References 10
11. Appendix 11

FIGURES
1. Nonparametric spline curves for a step function 2
2. Effects of various end conditions at the beginning of a curve for a nonperiodic

standard spline 3
3. Nonparametric nonperiodic and periodic spline curves for a square wave func­

tion 4
4. Parametric spline curves for an open and closed box 4
5. Representative sets of Bezier control points and their representative interpolated

curves 7
6. Bezier control points determined for a standard parametric spline curve determined

for the circled knots 8

TABLE
1. Knot derivatives for test data set 9

LISTINGS
1. Example C test program executing spline procedures 11
2. C procedure to determine knot derivatives by Akima's method 12
3. C procedure to determine knot derivatives by the osculatory method 12
4. C procedure to determine knot derivatives by the standard nonperiodic spline 13
5. C procedure to determine knot derivatives by the standard periodic spline 14

Review of Three Cubic Spline Methods
in Graphics Applications

by Gerald I. Evenden

1. Abstract
Three basic cubic spline methods Akima's, oscillatory, and standard are reviewed with

respect to graphics applications. Basic concepts are discussed and performance comparisons are
made as well as a complete, practical mathematical formulary for determination of spline curves.
The Bezier method is also discussed as a general means for description of cubic line segments.
C language source code for determination of spline derivatives, test program, and results are
included.

2. Introduction.
In graphic operations associated with presentation of scientific and engineering

information, it is often desirable to interpolate a smooth, continuous line through a set
of data points. A single function can usually be determined for a data set of limited
size and evaluated for intermediate smoothing values, but determinating the function
for larger data sets can be difficult and (or) time consuming. The results, especially for
the purposes of graphics, are often less than desirable. As an alternative, a relatively
simple, easily determined set of functions for each interdata point interval can be
employed that establishes a piecewise description of the line.

The purpose of this report is to review a common form of piecewise
interpolation the cubic spline function and to define associated terminology, methods
of computation, and examples of performance in graphic operations. The cubic Bezier
function is also discussed as a practical mechanism for communicating the properties of
spline curves in the graphics environment.

Readers involved only in the application of existing software employing splines
such as the Unix utility program spline or the author's expanded version xspline
(Evenden, 1988) will be primarily interested in the preliminary sections dealing with
basic concepts and behavior of splines. The formulary for the determination of the
cubic spline coefficients is included for programmers who need to develop non-
FORTRAN versions of the discussed splines. Ancillary to the formulary, C compiler
language procedures are included as well as a test program and resultant output.

3. Basic concepts
The original spline is a draftsman's tool, consisting of a thin flexible bar held in

place by weighted pins, called ducks, that is used to draft smooth lines created by the
natural curvature of the bar flexed between the constraining pins. The mathematical
equivalent of the mechanical spline is described by Ahlberg et al. (1967) and consists
of a set of polynomials between each pair of adjacent knots (ducks) that not only gen­
erates a curve that passes through the knots but has continuous first and higher deriva­
tives. For the purposes of this report, this mathematical definition of the spline will be
referred to as the standard spline.

REVIEW OF CUBIC SPLINE METHODS

In graphics applications, the standard spline polynomials are generally third
degree where the first and second derivatives are continuous. Continuity of the first
derivative is the spline property of principle interest in graphics applications because it
determines the smoothness of the curve passing through the knots and thus enhances
the visual appearance of the graphic. Nongraphic spline applications, such as numeri­
cal integration or differentiation, are often concerned with continuity of the higher
derivatives, but they have no effect on the visual appearance of the curve.

One undesirable aspect of determining the polynomial coefficients for a standard
spline is that it is computationally complex and for graphics purposes, other, less com­
putationally intensive, methods may produce acceptable results. In addition, the
minimum curvature property of standard splines also produces curves with "wiggles"
which may be deemed unnatural in appearance and unacceptable for certain graphic
presentations.

Akima (1970, 1972) developed a cubic spline interpolation method that reduces
the wiggles of the standard spline, producing a curve that tends to be more natural in
appearance or, at least, a curve that approximates one which might be expected by
manual drafting. Akima also includes in the same paper the osculatory interpolation
method that produces curves that are often intermediate to the standard spline and his
method. In both of these methods, the polynomial coefficients are readily determined
from local knot values.

It should be noted that Cline (1974) developed a tensioned spline system that
provides a continuous degree of control over the degree of wiggle of the curve. But
this method requires hyperbolic functions and not simple cubics.

Before proceeding, two additional terms related to spline functions should be
mentioned: periodic and parametric. Periodic splines assume that the curve is cycli­
cally repeated at both ends of the given set of knot points and that the first and last
ordinal values are identical. For example, signal wave forms are often periodic in
nature. Parametric splines assume that the ordinate and abscissa values are functions of
a third variable or parameter. Contour lines are typical examples of parametric curves
where open and closed contour lines can be respectively considered nonperiodic and
periodic in nature.

1.0

0.0<>

 natural

 ----- osculatory

 Akima

o knots

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 1. Nonparametric spline curves for a step function.

4. Behavior of spline curves
One of the most descriptive means of demonstrating the action of a non-

parametric interpolation method is with a simple step function as shown in Figure 1.
The wiggles or overshoot and damped oscillation of the standard spline are quite

REVIEW OF CUBIC SPLINE METHODS

evident, whereas overshoot of the oscillatory spline only occurs within the neighboring
points of the step. Akima's method is a straight line on either side of the step interval
and only exhibits curvature within the step by creating curve sections that have much
smaller radii of curvature than either the standard or osculatory splines.

Whether the wiggles of the standard spline or osculatory curves are as unnatural
as Akima claims depends a great deal upon the nature of the portrayed data. In many
situations the data may have a minimum curvature attribute and are more properly
represented by standard splines. Indeed, manual smoothing performed with an a priori
knowledge of the data will often introduce appropriate wiggles and curvature. But
without any special knowledge of the data, manual drafting will probably more closely
match the Akima method.

 second derivative 0

 - first derivative 0

 not o knot

° knots

Figure 2. Effects of various end conditions at the beginning of a curve for a non-
periodic standard spline.

The standard nonperiodic spline also requires that end point conditions must be
specified. This is commonly performed by one of the following methods: specification
of either the first or second derivative values or the "not-a-knot" condition. The latter
method is recommended by de Boor (1978, p. 55-56) when no other information about
the end conditions is available, but the zero second derivative method is employed in
most of the illustrations in this report. Figure 2 shows the effect at the beginning of a
curve segment for each of these methods. Zero second derivatives for both ends of the
curve create what is termed the natural spline; the curve most closely approximates the
mechanical spline with unconstrained ends.

Nonperiodic splines can be computed as periodic functions provided the first and
last ordinates are equal and the endpoint derivatives are identical. Figure 3 compares
the periodic splines for one cycle of a square wave defined by a 9 knot data set with
the nonperiodic splines. The symmetry of the peak and trough of the periodic curve
versus the asymmetric character of the nonperiodic curve are clearly what would be
desired if the waveform represented a single cycle sampling of a continuous signal.

Since the Akima and osculatory methods determine coefficients from data value
local to the knots, the periodic curves are achieved by simple replication of the data
from either end of the data set to the alternate end. Standard splines, however, require
a significantly different algorithm for periodic data because the entire data set is
analyzed in coefficient determination.

Figure 4 shows an open and closed square box, demonstrating the three types of
splines in parametric form for both open and closed curves. It is interesting to note
that the closed standard spline for the square box closely approximates a circle. Again,
the Akima method minimizes overshoot at the expense of smaller radii of curvature at
the knots. In both cases the osculatory spline curve is virtually identical to, and conse­
quently hidden by, the Akima method curve.

REVIEW OF CUBIC SPLINE METHODS

\^

Figure 3. Nonparametric nonperiodic and periodic spline curves for a square wave
function.

Figure 4. Parametric spline curves for an open and closed box.

The open and closed parametric splines employ the same algorithms as the
respective nonparametric nonperiodic and periodic splines where the knot coordinate
pairs are both considered ordinates and the abscissa for each axis is a summation of the
internode hypotenuse. Units for each axis are also considered identical.

5. Determination of spline coefficients
Nonparametric splines consist of a set of N-l cubic polynomial equations deter­

mined for a set of N knots defined by the coordinate pairs xiyi,X2y2," ' *XN UN
where x\<X2< XN-\ <XN and where the derivatives are continuous across the knots.
The value of y for any x in the interval xk , xk+i can be determined by:

3

«=0

where l<k <N-l. The polynomial coefficients for each knot interval can be deter­
mined from the relations:

c*3=[(y*+i-;yt)/*t -2(mt ->£

where y'k is the first derivative at each knot, hk =xk+i-xki and mk =(yk+i-yk ')/hk .

REVIEW OF CUBIC SPLINE METHODS

Determination of the knot derivatives is the purpose of algorithms associated with the
oscillatory, Akima and standard splines. The following is a summary of the methods
for determining the spline derivatives which are also presented as C language pro­
cedures in Appendix 1 along with tabulation of the results from a test data set

5.1 Osculatory spline knot derivatives.

The osculatory derivatives are simply based upon the derivative of a quadratic
passing through three adjacent knots, which can be expressed as:

for k <- 2,3, ,#-1,
y\ <- 2m i -y'2 and
y'N <-2mjV_1 -^_1

Note that in each of the methods only the interval size, h , and the divided differences,
m , are required in the computations.

5.2 Akima spline knot derivatives.

The internal derivatives for Akima's method are obtained from:

, -m* \ntk-i+ \mk-i-mk-2\mk y'k <- ; for k <- 1,2, ,N.
l Mk+i - flu I + 1 mk-i - rrik-2 1

For the indeterminate case represented by a zero denominator the derivative can be
determined by:

y'k<-(mk-i+mk)/2.

For the end conditions k <- l,2,Af-l, and N, it is assumed that:

ntQ< 2m\ wi2>
-i - mjv_2, and

5.3 Standard spline knot derivatives.

The standard spline requires the solution of a set of simultaneous equations
which fortunately involves a tridiagonal matrix with a computationally efficient algo­
rithm for solution. In addition, the nonparametric form requires specification of either
the first or second derivatives or the not-a-knot condition at the end knots in order to
completely define the system of equations.

To determine the knot derivatives for a nonperiodic standard spline, one of the
following initialization steps must be selected:

second derivative first derivative not-a-knot______________
w < 1 w < 2 w < 1

'2 wi<-0 H»I<-

yi<-(om 1 -/i 1;yi/)/4 y\4-
(Hi + h2)h 2

Then perform the following sequence:

As with the initial knot specifications, the ending knot method must be selected. If the
last knot's second derivative is known, then:

y'N <- (3mN +3ft_i/Atf-i-V

Otherwise, if a not-a-knot end condition is required then:

REVIEW OF CUBIC SPLINE METHODS

-yN-ir

where r <- /itf-i/fyv-2- No action is required if the last knot's first derivative is known.
Finally, determine the remaining knot derivatives with:

y'k <-y'k-Wky'k+i for k *-N-l,N-2t ,n

End conditions of the nonperiodic spline are not required by the periodic spline
but the method of solution is more complex and it is also important to remember that
the ordinate value of the last knot is the same as the first. After setting y\ < w i < 0
and Vi < 1 the first pass is similar to the nonperiodic method:

for£<-2,3,Vk < -V*_:

yk <r- [3m* + (3m*_i -yk-]

After setting v#_i«- WN-I".

,2

The end knot derivatives are now determined from:

-i -3&-i)Ai + (3m i -yDfo-i

and the intermediate derivatives by:

i for k

6. Parametric splines.
The parametric spline is basically the same as the nonparametric form except that

there are two functions of the parametric parameter t :

i=0 *=0

where 0 < t < [(xk+i~xk)2 + (yk+i~yk)2] 1/2. Determination of the polynomial coefficients is
similar to that of the nonparametric form except that y'=dy/dt,xf=dx/dt, and hk is the
inter-node hypotenuse.

7. Bezier coordinates.
The Bezier system is often employed in CAD packages as a method to describe

complex curves because the user can visualize the expected curve based upon discrete
points that are interactively entered. Figure 5 shows several representative curves gen­
erated by Bezier interpolation based upon the points digitized. What is of interest here
is the use of the Bezier system as a mechanism for describing curves such as splines
without having to transmit information that is not in the same unit space as the knot
coordinates or interpolate what might be a large number of intermediate values. For
example, the spline knot coordinates and the first derivatives are impossible to handle
by software without specialized coding and entry of other specialized descriptor infor­
mation. If intermediate Bezier coordinates are introduced into the original data knot
stream, then the entire set can be translated, scaled and (or) rotated in an identical
manner and final conversion to a drafted curve can be deferred to the primitive device
software or (in some cases) to the graphics hardware.

In the Bezier system, each axis (M) of a parametric curve segment is defined by
the general polynomial expression (Newman and Sproull, 1979, p. 315):

REVIEW OF CUBIC SPLINE METHODS

Figure 5. Representative sets of Bezier control points and their representative interpo­
lated curves.

"(0= Z«/(?)''(l-On ~'
;=o

where 0<f<l. For two dimensional, third degree (n=3) parametric polynomials, the
following coefficients can be obtained:

Note that when t=Q the curve passes through XQ¥Q and when t=l it passes though
XiYi. The intermediate Bezier coordinates X\Y\ and X2Y2 act as control for the shape
of the curve, which does not pass through these points except in a straight line situa­
tion.

Another property of interest in graphics windowing or clipping operations or in
data retrieval is that the interpolated curve is always within the convex hull formed by
the Bezier coordinates. Consequently, a Bezier set can be rejected if all of its points
are outside a region of interest because there is no possibility that evaluation of inter­
mediate values will produce curve segments inside the region.

Any spline segment arrived at by the previously discussed methods can be now
expressed by adding two intermediate Bezier points to the data set using the following
expressions:

x-axis
nonparametric

Xk \ = xk +hk/3
Xk2 = Xki+hk /3

parametric

Xki = xk+hk dkl/3
Xk2 = Xkl+(hk dkl+hk2dk2)/3

y-axis
(both forms)

Yki=yk+hk ckl/3
Yk2 =

Regardless of how complex the shape of the original curves are, the Bezier
method of defining this complexity only increases the size of the original set data from
N to N+2(N-l) points. Figure 6 shows a parametric standard spline curve where the
the Bezier intermediate coordinates have been determined and employed in the graphics
operation that generated the interpolated vectors.

REVIEW OF CUBIC SPLINE METHODS

Figure 6. Bezier control points (crosses and dashed line) determined for a standard
parametric spline curve determined for the circled knots.

8. C spline procedures
The FORTRAN programmer will have no difficulty locating source code or

libraries for spline procedures discussed in this paper, but routines for the C program­
ming language tend to be difficult to locate. A great deal of this problem is due to the
relative newness of the C language and the somewhat slow adoption of the language by
the scientific and engineering community. But there has recently been published a non-
periodic standard spline version (Press et al., 1988, p. 94-98) which is part of a
significant collection of scientific C procedures.

One difficulty in developing general computer procedures for spline functions is
that the potential usage is sufficiently varied so that any single method developed for
one application will be less than optimal for another. To avoid the undue complexity
that would be associated with code designed to cover a wide variety of possible appli­
cations, the following procedures are presented as reasonably optimal algorithms for
basic determination of knot derivatives. In addition, the pre- and post-processing of the
data is omitted as well as various checks on the veracity of the data because these are
more properly a function of the application program rather than of the algorithms them­
selves.

8.1 Usage of spline procedures.

The synopsis of the basic spline functions is:

#include "spline.h"

void osc(C, n)
void aki(C, n)
void spl(C, n, derO, dern)
void pspl(C, n)

COEF *C;
int n, derO, dern;

where the functions osc, aki, spl and pspl are the respective osculatory,
Akima, standard nonperiodic and standard periodic splines. C is a structure array
defined in the header file spline.h:

REVIEW OF CUBIC SPLINE METHODS

typedef float REAL;
typedef struct { REAL h, m, cl; } COEF;

The typedef of REAL is a convenient means to change the procedures from
single to double precision for nongraphic applications (especially those involving the
standard splines) such as numerical approximation, integration or differentiation. The
structure element h is the positive interknot interval size, m is the divided differences,
and cl is the knot first derivative determined by the procedure. The number of knots,
n, should be greater than 2 for all procedures.

In the case of the standard nonperiodic spline, spl, two flagging values, derO
and dern, are used to indicate conditions to be applied to the respective first and last
knot. A value of 1 or 2 indicates that the respective first or second derivative is
specified, otherwise the not-a-knot condition is to be applied. When the derivative is
specificed, the appropriate el's must be initialized by the user before execution. For
example, for the natural spline where the second derivatives of the end points are zero,
then derO=dern=0 and C[0] .cl=C[n-l] .cl=0 (granted, cl is the first deriva­
tive, but this is a practical expediency).

The standard spline procedures require a user-supplied routine bomb that is
called with a string pointer argument in case temporary allocation of work memory
fails. Do not return from this routine! Spl and pspl require n REAL and 2n
REAL words respectively of temporary work space.

Listing 1 in the Appendix is a test program that demonstrates the execution of
the spline procedures as well as the means to verify their proper functioning by com­
parison of the printed results with Table 1. Appendix Listings 2 to 5 contain the code
for the spline procedures.

Table 1. Knot derivatives for test data set.

X

0
0.8
1.7
3
4.1
4.9
6

y

1
1.5
2.2
4
1

-1
1

Akima

0.548611
0.655727
0.799517

-1.60689
-2.61642
-2.28409

3.97727

Oscu-

latory

0.553105
0.696895
1.02603

-0.842658
-2.59569
-0.681817
4.31818

note 1

1.19225
0.358526
1.57769

-0.706826
-3.39218
-1.21792

5.59144

Standard splines
Nonperiodic

note 2 note 3

0
0.70386
1.45131

-0.587738
-3.72494
-0.15498

1

0.684372
0.506256
1.5212

-0.64403
-3.57624
-0.627739

3.04114

Periodic

1.69459
0.219145
1.60492

-0.638622
-3.66705
-0.317968

1.69459

note 1: not-a-knot end conditions
note 2: 0 and 1 beginning and ending first derivative conditions
note 3: zero second derivative end conditions

9. Conclusions.
Cubic spline functions are an important tool in scientific and engineering graphics

applications, and application programs and procedures for their determination are
widely available. However, there are many spline function variations and it is difficult
to find any single source of material which provides more than one or two variants and
presents the information in a truly practical manner.

The use of the cubic Bezier appears to be a viable mechanism for the description
of any cubic function and suggests that it should be considered as a basic primitive in a
comprehensive graphic systems. Use of Bezier coordinates should also be considered
as a basic storage mechanism when mass storage is less important than CPU time
required for regeneration of smoothed curves.

REVIEW OF CUBIC SPLINE METHODS

10. References.
Ahlberg, J.H., Nilson, E.N., Walsh, J.L, 1967, The Theory of Splines and Their Aplica-

tions: New York, Academic Press, 284 p.

Akima, Hiroshi, 1970, A new method of interpolation and smooth curve fitting based
on local procedures: JACM, v. 17, no. 4, p. 589-602.

Akima, Hiroshi, 1972, Algorithm 433 Interpolation and smooth curve fitting based on
local procedures: CACM, v. 15, no. 10, p. 914-918.

Cline, A.K., 1974, Scalar- and planar-valued curve fitting using splines under tension:
CACM, v. 17, n. 4, p. 218-223.

de Boor, Carl, 1978, A Practical Guide to Splines: New York, Springer-Verlag, 392 p.

Evenden, G.I., 1988, Xspline.l Unix documentation of enhanced spline filter utility:
U.S. Geological Survey Administrative report, Woods Hole, Mass., 2 p.

Newman, W.M., Sproull, R.F., 1979, Principles of Interactive Computer Graphics:
New York, McGraw-Hill, 541 p.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1988, Numerical
Recipes in C the Art of Scientific Computing: Cambridge, Cambridge Univer­
sity Press, 735 p.

10

REVIEW OF CUBIC SPLINE METHODS

11. Appendix
The procedures presented here are written with optimization of the process as a

principle guideline and consequently, may lack in clarity for the less experienced C
programmer. However, the best efforts of the author may still miss mechanisms which
can enhance performance and improvements may be determined by the reader. The
code is sufficiently structured so that alterations in execution, parameter testing, etc.,
can certainly be inserted. For example, the use of the user-supplied bomb procedure
can be replaced with an appropriate error code return.

Listing 1. Example C test program executing spline procedures.

f include <stdio.h>
f include "spline. h"
#define N 7

static
struct { REAL x, y; } data[N] = {

0, 1, .8, 1.5, 1.7, 2.2, 3, 4,
4.1, 1, 4.9, -1, 6, 1);
void

bomb(s) char *s; {
fprintf (stderr, "fatal error: %s\n",s);
exit (1) ;

}
main() {

int i, j;
COEF C[N];
voidaki(), osc(), spl(), pspl();

for (i =0; i < N-l; ++i) {
= data[i+l].x - data[i].x;
= (data[i+l].y - data[i].y) / C[i] .h;

for (j = 0; j < 6; ++j) {
switch (j) {
case 0: aki(C, N) ; break;
case 1: osc(C, N) ; break;
case 2: spl(C, N, 0, 0); break;
case 3: C[0].cl - 0; C[N-l].cl = 1;

spl(C, N, 1, 1); break;
case 4: C[0].cl = C[N-l].cl = 0;

spl(C, N, 2, 2); break;
case 5: pspl(C, N) ; break;

for (i = 0; i < N; ++i)
print f ("%g\t%g\t%g\n" ,

data[i] .x, data[i].y,
} ,
exit (0) ;

11

REVIEW OF CUBIC SPLINE METHODS

Listing 2. C procedure to determine knot derivatives by Akima's method.

#include "spline.h"
void

aki(C, n) COEF *C; {
double fabs ();
REAL ml, m2, m3, m4, b, tl, t2;

m3 = C->m;
tl = m3 - C[l] .m;
m2 = m3 + tl;
ml = m2 + tl;
while (n) {

m4 = n > 1 ? C[l].m : m3 + m3 - m2;
tl - fabs(m4 - m3);
t2 - fabs (m2 - ml);
(C++)->cl = (b - tl + t2) ? (tl * m2 + t2 * m3) / b

.5 * (m2 + m3);
ml » m2;
m2 - m3;
m3 = m4;

Listing 3. C procedure to determine knot derivatives by the osculatory method.

tinclude " spline. h"
void

osc(C, n) COEF *C; {
struct { REAL m, h; } L, N;
COEF *D - C;

L.m = C->m; L.h » C->h;
C->cl - L.m + L.m;
 n;
while (n) {

N.m = (++C)->m; N.h = C->h;
C->cl = (N.h * L.m + L.h * N.m) / (N.h + L.h) ;
L - N;

D->cl D[l] .cl;
C[l].cl = L.m + L.m - C->cl;

12

REVIEW OF CUBIC SPLINE METHODS

Listing 4. C procedure to determine knot derivatives by the standard nonperiodic spline.

finclude "spline.h"
void

spl(C, n, derO, dern) COEF *C; {
int is, i;
char *malloc();
void free () ;
REAL hi, m31, r, m3, cl, w, h, *W, *B;

if (!(B = (REAL *)malloc(n * sizeof(REAL))))
bomb("spl memory alloc. failure");

W = B;
m3 = C->m;
h = C->h;
switch (derO) { /* set starting conditions */
case 2: cl = C->cl = 1.5 * C->m - .25 * C->h * C->cl;

w = .5; is = 1;
break;

case 1: cl = C->cl;
w = 0.; is = 2;
break;

default: hi = C[l].h; r = hi + h;
cl = C->cl = ((h + 2.*r)*hl*m3 + h*h*C[l].m) / (r * hi);
w = r / hi; is = 1;
break;

}
*W = w; m3 *= 3.;
for (i = 2; i<n; H-H-i) { /* decomp. and forward subst. */

hi = h; m31 = m3;
r = (h = (++C)->h) / hi;
m3 = 3. * C->m;
w - *++W =1. / (2. + r * (2. - w));
cl - C->cl = (m3 + r * (m31 - cl)) * w;

}
switch (dern) { /* set ending conditions */
case 2: cl = C[l].cl = (m3 + .5 * C[l].cl * h - cl)/(2. - w);

break;
case 1: cl = C[l].cl;

break;
default: r = h + hi;

cl = C[l].cl = ((h*h*m31 + (2.*r + h)*hl*m3)/(3.*r)
- r*cl) / (hi - w * r);

break;
}
/* backsubstitution */
while (n >= is) cl = (C)->cl *W * cl;
free((char *) (B)) ;

13

REVIEW OF CUBIC SPLINE METHODS

Listing 5. C procedure to determine knot derivatives by the standard periodic spline.

tinclude "spline.h"
void

pspl(C, n) COEF *C; {
REAL rhl, dylf, dyl, rh, r, dy, fnn, cl, w, v;
struct DEL { REAL w, v; } *W, *WA;
char *malloc () ;
void free () ;
int i;

if (! (WA = W = (struct DEL *)
malloc(n * sizeof (struct DEL))))

bomb("nspl memory alloc. failure");
cl = w = C->cl = W->w = 0.;
v = W->v = 1.;
rhl = 1. / C->h;
dyl = dylf = 3. * C->m;
n -= 2;

rh = C[n].h * rhl;
for (i = 1; i <= n; ++i) {

r = (dy = (++C)->h) * rhl;
rhl - 1. / dy;
dy = 3. * C->m;
(++W)->w - w = 1. / (2. + r * (2. - w));
W->v = v = -r*v*w;

C->cl = cl = (dy + r * (dyl - cl)) * w;
dyl = dy;

}
W->v = (v -= w) ;
for (i = n - 1; i > 0 ; i) { /* reverse loop */

w = (W)->w;
v = (W->v -= w * v);

cl - ((C)->cl -= w * cl);
}
 C; W; /* compute endpoint derivative. */
C->cl = fnn = (dyl - C[n].cl + (dylf - cl) * rh) /

((v + 2.) * rh + WA[n].v + 2.);
for (i = 1; i <= n; ++i) /* second forward loop */

(++C)->cl += (++W)->v * fnn;
(++C)->cl = fnn;
free(WA);

14

