
A GENERAL METHOD FOR GENERATING BATHYMETRIC DATA 

FOR HYDRODYNAMIC COMPUTER MODELS 

By Jon R. Burau and Ralph T. Cheng

U.S. GEOLOGICAL SURVEY 

Open-File Report 89-28

Prepared in cooperation with the

CALIFORNIA STATE WATER RESOURCES CONTROL BOARD and the

CALIFORNIA DEPARTMENT OF WATER RESOURCES

O
00

Sacramento, California 
1989



DEPARTMENT OF THE INTERIOR 

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY 

Dallas L. Peck, Director

For additional information 
write to:

District Chief 
U.S. Geological Survey 
Federal Building, Room W-2234 
2800 Cottage Way 
Sacramento, CA 95825

Copies of this report may be 
purchased from:

U.S. Geological Survey
Books and Open-File Reports Section
Box 25425
Building 810, Federal Center
Denver, CO 80225



CONTENTS

Page

Abstract ........................................................................ 1
Introduction .................................................................... 2
Bathymetric data base - preprocessing ........................................... 4

Calculating the point densities ............................................ 4
Calculating the surface gradients .......................................... 4

Generating bathymetrie data ..................................................... 8
Location of bounding points ................................................ 8

Phase 1: Finding the neighborhood of the bounding points ............. 8
Phase 2: Isolating the three bounding points ......................... 11

First point ...................................................... 11
Second point ..................................................... 11
Third point ...................................................... 13

Interpolation algorithms ................................................... 13
Linear triangles - C° continuity ...................................... 13
Cubic triangles - C 1 continuity ....................................... 15

Description and operation of computer programs .................................. 16
Program operation - PREGRID.F77 ................................................. 18
Program operation - GRID.F77 .................................................... 22

Finite-difference grids .................................................... 23
Input requirements .................................................... 24
Output format ......................................................... 27

Interpretations for finite-element grids ................................... 28
Input requirements .................................................... 28
Output format ......................................................... 30

Cross sections ............................................................. 30
Input requirements .................................................... 32
Output format ......................................................... 33

Example: San Francisco Bay data set ............................................ 35
Summary ......................................................................... 35
References ...................................................................... 35
Appendix A ...................................................................... 36

Program flow charts and subroutine descriptions ............................ 36
Preprocessing specific routines ............................................ 37

Appendix B ...................................................................... 41
Variable list .............................................................. 41

Contents III



ILLUSTRATIONS

COVER: A computer-generated graph illustrates the shape of the bottom of 
San Pablo Bay. Vertical scale is exaggerated a factor of 800.

3J Page 
Figure 1. Example of calculation of point density, -r  (J) ...................... 6dy

2. Graph showing linear shape functions N over a triangular
(I) element ft and their linear combination .......................... 7

3. Example of contiguous relation between sorted data

and spatial location ............................................... 9

4. Diagram showing criteria for points that make up bounding triangle ... 12

5. Example of interpolation relations based on three known points ....... 14

6,7. Diagrams showing:

6. Three-dimensional perspective plots of three cubic

shape functions associated with node 1 ...................... 17

7. Definition of input variables for finite-difference

option in PREGRID.F77 ....................................... 20

8. Spatial extent and variability of bathymetric data base .............. 25

9. San Pablo Bay finite-difference grid shown in relief ................. 26

10. Example output for finite-difference option .......................... 29

11. Diagram showing definition of terms used in cross-section option ..... 31

12. Example cross section through Central Bay ............................ 34

13-15. Flow charts of:

13. Main program .................................................. 38

14. Subroutine FIND and XSEC ...................................... 39

15. Preprocessing program PREGRID.F77.............................. 40

CONVERSION FACTORS

Metric (International System) units are used in this report. For those readers 
who prefer to use the inch-pound system, the conversion factors for the terms used in 
this report are listed below:

Multiply metric unit By To obtain inch-pound unit

meter (m) 3.281 feet (ft) 
kilometer (km) 0.6214 mile (mi)

IV Contents



A GENERAL METHOD FOR GENERATING BATHYMETRIC 

DATA FOR HYDRODYNAMIC COMPUTER MODELS

By Jon R. Burau and Ralph T. Cheng

ABSTRACT

This report describes a general method for generating water-depth data from ran­ 

domly distributed bathymetric data for numerical hydrodynamic models. Raw input data 

from field surveys, water-depth data digitized from nautical charts, or a combination 

of the two are sorted to give an ordered data set on which a search algorithm is used 

to isolate data for interpolation. Water depths at locations required by hydrody­ 

namic models are interpolated from the bathymetric data base using linear or cubic 

shape functions used in the finite-element method. The bathymetric data-base organi­ 

zation and preprocessing, the search algorithm used in finding the bounding points 

for interpolation, the mathematics of the interpolation formulae, and the features of 

the automatic generation of water depths at hydrodynamic model grid points are dis­ 

cussed. This report includes documentation of two computer programs which are used 

to (1) organize the input bathymetric data and (2) to interpolate depths for hydro- 

dynamic models. An example of computer program operation is drawn from a realistic 

application to the San Francisco Bay estuarine system.
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INTRODUCTION

Realistic hydrodynamic models of bays and estuaries require accurate representa­ 

tions of the bathymetry of the embayment. In general, preparation of input bathy- 

metric data for modeling is tedious and time consuming. The algorithms and associated 

computer programs described in this report provide a streamlined method for con­ 

structing detailed bathymetric data for input to hydrodynamic models. Raw input data 

from field surveys, water-depth data digitized from nautical charts, or a combination 

of the two are sorted to give an ordered data set on which a search algorithm is used 

to isolate data for interpolation. Water depths at locations required by hydrody­ 

namic models are interpolated from the bathymetric data base using linear or cubic 

shape functions from the finite-element method. The bathymetric data-base organiza­ 

tion and preprocessing, the search algorithm used in finding the bounding points for 

interpolation, the mathematics of the interpolation formulae, and the features of the 

automatic generation of water depths at hydrodynamic model grid points are discussed. 

This report prepared by the U.S. Geological Survey in cooperation with the California 

State Water Resources Control Board and the California Department of Water Resources 

includes documentation of two computer programs which are used to (1) organize the 

input bathymetric data and (2) to interpolate depths for hydrodynamic models. In 

this report, the preprocessing part of this method is discussed first, followed by a 

description of how bathymetric grids are generated. Finally, the interpolation 

algorithms are discussed along with a description of the computer code and its usage.

Most commonly used interpolation algorithms (Barnhill, 1977; Franke and Neilson, 

1980) applied in surface approximation invoke statistically motivated averaging tech­ 

niques which have little physical justification. In some statistical algorithms, a 

large number of data points often are used to ensure that a given interpolation is 

"well represented" but not necessarily bounded by the data. Surface approximations 

at points that are "well represented" but are not bounded by the data are essentially 

extrapolated values with a higher probability of incorrect representation. Even if 

the interpolation point is bounded using these techniques, the effect of the actual 

bounding points may be minimal because of the averaging used. Because the computa­ 

tional effort associated with defining the bounding relations is complex and exten­ 

sive, most existing algorithms do not explicitly ensure their interpolations are
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based on data that locally bound the location in question. Indeed, isolating the 

bounding points on which the approximations are based from the overall data base is 

the most CPU intensive task in this entire method.

Practical application of the method for generating water-depth data is a three- 

step process. The first step involves collecting bathymetric data at known locations. 

Data entered into this system consist of a series of spatial coordinates, x,y,z, that 

define the surface of the bottom of an embayment, where x,y,z can be referenced to 

any convenient orthogonal right-handed coordinate system. In this report, x and y 

define the horizontal plane, and the z coordinate defines the depth of the embayment. 

Unlike many methods that require the spatial location of the known data to fall on a 

regular orthogonal grid, depth data can be entered into this system in a completely 

random fashion. This feature provides simplified data entry that can accommodate 

bathymetric data collected from a variety of sources using differing techniques. For 

example, this system can easily incorporate data generated directly from boat sur­ 

veys, or, when direct bathymetric data are not available, data collected from nauti­ 

cal charts. A large quantity of data can be quickly generated for modeling studies 

by digitizing the bathymetric contours on nautical charts. The randomly distributed 

depth information typically supplied on the charts can be used to fill in the gaps 

between contours on the charts.

The second step in the application of the method for generating water-depth data 

involves the creation of a data base by sorting the data and by making preliminary 

calculations. This is done by a computer program, which also is used to edit the 

data base. After the data base is created, the third and final step involves a 

separate computer program that interpolates depths for hydrodynamic models that use 

either finite-difference grids or finite-element grids. Additionally, cross-sectional 

information of a basin can be generated using this program.

Interpolations in this method are based on a local surface that bounds the
* * 

interpolation point x ,y by a triangle of known data points. The interpolated
* 

depth, z , is defined locally within the triangle of known data by either linear or

cubic shape functions used in the application of the finite-element method (Lapidus 

and Pinder, 1982).
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BATHYMETRIC DATA BASE - PREPROCESSING

In order to increase the efficiency of the interpolations, certain calculations 

are performed by a preprocessing computer program and stored along with the basic 

topological x,y,z data. The data are sorted first according to the y-coordinate mag­ 

nitude using a simple "paired interchange sort" (Cole, 1978); subsequent to that, 

point densities (to be defined) are calculated. The program then deletes any data 

points that have the same x,y coordinates, keeping only the first occurrence at a 

given location. Finally, surface gradients at each data point are estimated using 

linear triangles.

Calculation of the Point Densities

8 J
The local point density is denoted as -r-(J) , where J is the counter for thedy

sorted data J=1,2,..J . The point densities are used in the search algorithm (toin 9.x
be discussed in "Location of Bounding Points" section) and represent the rate of 

change of the data base pointer, AJ, by the corresponding distance in the sort, or y 

direction, Ay. If a change in the data base pointer, AJ, is represented by N in the 

sorted data base, the following relation is used to calculate the point densities:

AJ 2N+1
ay Ay y -y 7 y yj+N yj-N

where N is an even number (see fig. 1).

Calculating the Surface Gradients

In order to use cubic polynomials as the basis for interpolations on triangular 

distributions of known data, surface gradient estimates are needed at each data 

point. Gradient estimates at known points are based on linear triangles from the 

finite-element method using three nearby bounding points from the known data, Z . A 

surface within a triangular element can be described by a plane that retains a value 

of z within the bounding triangle:

3
z = S N (x,y)Z , (2) 

1=1 X L
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where z is a planar surface defined over any arbitrary triangle, ft of known 

points, the Z f s are known data values at the vertices or nodes of a triangle, and 

the N (x,y)'s are the so-called shape functions (see fig. 2). The index i denotes 

the first, second, and third points found in the search process (to be discussed in 

"Phase 2: Isolating the Three Bounding Points") that make up the bounding triangle. 

The shape functions, N., have the property of retaining a value of unity at the i'th 

node and zero at the other nodes in the triangle. This property ensures that z = Z 

at the i'th node (Zienkiewics, 1979).

The shape functions used for simple triangular elements are defined 

mathematically as:

N^x.y) = ( &i + b iX + c..y)/2A i = 1,2,3 (3)

where i represents the permutation of the i'th node and v represents the area of the 

triangular element. The a., b., and c *s are constant over the element and are cal­ 

culated, strictly from the geometry of the triangle, using the following relations:

a i - X2Y 3 - x 3 y 2 , ( 4a )

b i = ?2 - y s , (4b)

Cj = X 3 - X 2 . ^c ^

where (xj,yi) represents the spatial location of node "1" and the other coefficients 

(such as a£» b£» and c?) are found by a cyclic permutation of the subscripts. The 

2A in equation 3 is given by:

2A

1 *i Yi

1 X 2 72

*

Finally, the gradients of this planar triangular surface can be determined by:

a 3 3N. 3 3N.oz _, _i, ._ 3z _ i,
T~ = 2 - (x,y)Z. and   = S - (x,y)Z. (^ox . ^ ox y i oy . , oy J i ^ D -'1=1 i=l

where:
3N. 5N.
T-^Cx.y) = b./2A and T-^Cx.y) = c./2A 1=1,2,3. (7) ox i oy i
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Point density relations

2N
Y2N " y 

2N+1

j - 1.2N

1 - (2N+1),(J -2N-1) J x ' ' max

2N

'j y (J -2N),J 
max max max

1 = (J -2N),J J max max

Example calculation for N=3

Sorted input data file

J
1
2
3

j-N

j
.

j+N

J

X

0.
1.

-3.

9.
10.

5.
-0.
0.
1.

11.

0.

0
0
1

1
5
5
3
0
2
0

2

v
1
1
1

["5

5
5
6
6
6
£

10

.0

.2

.3

t4|
.5
.7
.0
.2
.4

.4

8J 2N+1
Z   V J / ~ * 

fl t r t r - -ir

2.0 Y YJ+N yj-N
1.0
0.0 7 .

7.0 - 5.4 ' J/!5

2!o T T
2.1
3.7
0.0
1.0
5.2

-0.1

0.9

_ a j
FIGURE 1. Example of calculation of point density,   (J).
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z(x,y)

Nk(x,y)

N (x,y)
 J

Ni (x,y)

z(x,y) = Z iNi (x,y) + ZjN +

FIGURE 2. Linear shape functions N . over a triangular element 0 and their linear combination.
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GENERATING BATHYMETRIC DATA

The basic task in generating bathymetric data is to interpolate depths at any 

arbitrary location from known data. The completion of this task is a two-step pro­ 

cedure: (1) The appropriate data on which the interpolations will be based must be 

isolated from the overall data base, and (2) interpolations need to be performed at 

user-specified (arbitrary) locations. The following sections outline the fundamentals 

of these procedures.

Location of Bounding Points

This method allows the data to be entered in a spatially random fashion (many 

data bases rely on regular orthogonal spacing of the data), which requires algorithms 

that search for a given subset of the data on which the interpolations are based.

The interpolation method used in this report derives its interpolations from three
* * * * 

nearby bounding data points of x ,y , where x ,y denotes the desired interpolation

location. The algorithm that defines these three points from the overall data base 

uses a two-phase procedure. The first phase of the location algorithm isolates a
it *

subset of the overall data base in the general neighborhood of x ,y . The second 

phase performs the final isolation of the three points used in the interpolation from 

the subset obtained in the first phase.

Phase 1: Finding the Neighborhood of the Bounding Points

In the preprocessing program, the data base is sorted according to the magnitude

of y(J) to create a monotonically increasing relationship between y and J, and in
3 J 

addition, data point densities, y(J), are calculated and stored for each data point

in the data base. When the data is sorted in ascending value of the y-coordinate, a 

strip taken parallel to the x-axis, as shown in figure 3, corresponds directly to a 

contiguous section in the data file. An efficient search algorithm that takes advan­ 

tage of these properties locates the neighborhood of the bounding points, using the 

first two terms in a Taylor series expansion about the data base index "J."
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San Francisco Bay Bathymetric Data

28

Example Input Data File 
for San Francisco Bay

X(J) Y(J) aj/ay(j)

1
2
3
4
5
6
7
8
9

10
11
12
13

1
1
1
1
V

.XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

32.
36.
36.
36
32.
32.
36.
36.
39.
32.
36.
36
36.

1
1
1
1
V

38
36.
36.
36
39.
39
37.
39
36.

14606
85789
57915
62443
14378
12929
70097
99100
07970
21795
67706
46693
76245

14809
59447
58940
48965
38316
19900
33617
25598
34970

-38.
-38.
-38
-38.
-38
-38.
-38.
-38.
-38.
-38.
-38.
-38.
-38.

1
1
1
1
V

-38
-38
-38
-38
-38.
38.
38

-38
-38.

47638
43570
42076
41873
41751
39263
37772
36908
36250
35764
35685
35336
35114

6
0.
6.
0.
6.
0.
6.
0.
0.
6.

12.
6.
6.

1
1
1
1

00000
50000
00000
50000
00000
00000
00000
50000
00000
00000
00000
00000
00000

V
34484
34082
33873
33033
32312
32044
31445
31365
30975

0.
12.
12.
12.
0.
0.
0.
7.
0.

00000

-35.
-4.

-30.
-12.
105.

0.
-75.
-1.
0.

-59.
42.

118.
-24.

1
1
1
1

66434
82567
06991
49994
08198
00000
34521
28844
00000
08936
92615
57564
81398

V
0.

00000-152.
00000-152.
00000
00000
50000
50000
00000
50000

31.
0.

81.
-10
-2.
58.

00000
08115
08115
48812
00000
67938-
77600
84888
78352

44.
15.
-8.

105.
-63.

0.
223.
17.
0.

38.
108.
190.
72.

1
1
1
1

18159
93940
98464
53213
62447
00000
79632
06019
00000
13100
39639
48160
41307

V
0.

67.
67.

116.
0.

165.
30.
-0.

106.

00000
80998
80998
03845
00000
25207
48633
79439
55733

54.61356
56.21644
58.35848
58.62131
62.97148
62.82208
64.09514
64.40726
69.46567
69.51503
70.58835
72.20444.
73.37706

1
1
1
1
V

75.18268,
75.63039
76.02960
76.91656
77.32587
79.88005
80.12959
80.61058
81.05524

26

j A spatial slice taken horizontally corresponds directly 
to the sequential storage of known data

FIGURE 3. Example of contiguous relation between sorted data and spatial location.
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Let x T ,y T denote any point in the data base. The first two terms in a Taylor J J
series applied to the data base pointer, J, can be written as:

(8)

*
which relates a spatial distance [y -y T ] to a corresponding change in the pointer, J.

* * J 
For a given y , J is not known. Equation 8 can be used to estimate the data base

* * * 
pointer, J . An approximate J is the index of a known data point such that y_ is

* 
"close" to y . This form of the Taylor series is of little computational use

3 J 3 J 
because -r  (J) varies within the data base with respect to J, or, alternatively, -5 (J)d y * dy
depends on the value of J. Thus, an approximate value of J given by equation 8 may

not be sufficiently accurate. This observation suggests an iterative method based on
* 

equation 8 to make successive iterations to locate J . A recurrence relation for

finding an index value, J, within a user-specified neighborhood 6 of y can be given 

as:

jo-/1 ' 1 * [y'-y^-l^Cj"- 1 ) n-2,3,4..., (9)

where the superscript n indicates the order of iteration in the recurrence relation.

The search for J is complete when a J in equation 9 is found as |y -Y | ^ 6. To
J

start the iteration sequence, an initial guess, n=l, is needed. In this method, the 

initial guess is estimated by:

where yj is the first (or lowest y-value) known data point in the sorted data base,
3 J 

and ( ) is the average value of the point density taken over the entire data base

calculated by:

aj N
(IDmax

where J is the total number of data points in the data base. Once the pointer
max * * 

is placed within 6 of y , all the data within a o radius of y are placed in a

subdata base, which is used as the basis for the second phase of the search 

algorithm.
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Phase 2: Isolating the Three Bounding Points

Given the subdata base found in phase 1, the basic algorithm used to locate the 

three bounding points (denoted 1,2,3 in fig. 4£) about a given spatial location 

(denoted 0 in fig. 4) is given in Thompson and Johnson (1985) and is summarized, with 

some modification, in this section. If the following set of conditions are not met 

for a given x,y coordinate location, the computer code assigns a zero for the 

interpolated value.

First point

The first point selected from the data base is the nearest point to the interpo-
* * 

lation location, x ,y , found by searching sequentially within a o radius. This

criterion is shown in figure 4A where TQI represents the vector from point 0 to 

point 1.

Second Point

The second point selected is the next closest point to 0 whose vector from point

0 forms an obtuse angle, <J> (<J> ^ <J> ^ <J> .), with the vector rni where <J> ande max min U1 max
<J> . are user specified (see fig. 45). Thus, the second point must satisfy: 
mm

where the " " is the familiar inner or dot product of vectors, and UQI, UQ2 are unit
-»  -» 

vectors in the TQI, TQ2 directions, respectively. Values of <J> and <J> must be in
nun

the range of 0° to 180°. The terms "<J> , <J> . " provide a means for specifying the
max mm

admissible region for the second point. Restricting the admissible region of the 

second point ensures the bounding points selected by this algorithm will produce 

triangular regions with aspect ratios (height/base) on the order of one. In general, 

interpolation of surface gradients from a collection of points that have triangular 

regions which are nearly equilateral   aspect ratios roughly equal to one   produces 

better results. Erroneous gradients may be calculated from points that make up long 

narrow triangles.

Generating Bathymetric Data 11



A. First point   ->  I 
Minimum J r 0 1 \

B. Second point

mm

C. Third point

u = unit vector

U01+U02+U03l <

FIGURE 4. Criteria for points that make up bounding triangle, "o" represents the interpolation location.
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Third Point

the backward extensions of rgi and rgz in figure 4C1'. The third point will lie in the

The third point is the closest data point that lies within the zone created by 

>ackward extenj 

designated zone if

U0 3 ' (-U) > (~ U02) * (~ u )»

where UQS represents the unit vector between points 0 and 3, and
->  -> 

_,. U 01 + U02 

U= h .-I
 u01 + u02 '

is the unit vector along the angular bisector between TQI and rQ2« Tne vertical bars 

in equation 14 represent the vector magnitude or Euclidian norm. When equation 14 is 

substituted for r in equation 13 and the identity

(u01 +u02+u03 ) 2 = 3 + 2(u01   u02 + u02   u03 + u03   u01 ) (15) 

is applied, equation 13 becomes:

1 + [!/2(u01 +u02 +u03 ) 2 + 3/2] < 0. (16) 

Or, finally the third point must satisfy,

Notice that a restriction on the admissible region for point 2 effectively reduces 

the admissible region for point 3.

Interpolation Algorithms

Two different interpolation algorithms have been considered. One uses linear 

interpolation; the other, cubic polynomial interpolation (see fig. 5). Both are based 

on data found through the methodology of the preceding search sections.

Linear Triangles - C° Continuity

Equation 2 describes a planar surface within a triangular element. The plane 

described retains a value of Z. at each interpolation point. Details of the mathe­ 

matics behind this interpolation are given in the section, "Calculating the Surface 

Gradients."

Generating Bathymetric Data 13



Linear triangular element - C° continuity

z = 2 N (x,y)Z

Cubic triangular element - c 1 continuity

z

'3' ax j

az az
i' ax 'ay

'2' ax 'ay

z = Z </> + 2 Z.(/>. +

3 az. ax az -
ax

FIGURE 5. Example of interpolation relations based on three known points.
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Cubic Triangles - C 1 Continuity

One approach to higher order interpolation using triangles is through the appli­ 

cation of cubic polynomials. Using cubic polynomials allows for higher order inter­ 

polation by providing C 1 continuity: continuous mapping of the surface z across 

adjacent triangle boundaries as well as continuous first-order derivatives. The 

shape functions are derived using a cubic polynomial expansion (Lapidus and Finder,

1982):
d>. - a + bN, + cN0 + dN? + eN^ + flSLlSL + gN*N0 + hN 1 N^ + iN^ + JN2 , (18) 
1 1 2. 1 2. 1 2. 1 i. 1 f. -L ^

which involves 10° of freedom represented by the 10 coefficients a through j; the N's
az. az.

are the shape functions introduced for the linear triangles. When Z.,  ^  t are
i ax ' ay 

specified at the corner nodes, the system is not closed; 1° of freedom is still

needed. Normally, the last degree of freedom for this type of element is accounted 

for by applying a known value of Z at the centroid of the triangle. Obviously, given 

the expected randomness of the data used in this method, it is unlikely there will be 

a known data point at the centroid of every collection of three points in a spatially 

random data base. Therefore, another method must be used to obtain the last degree 

of freedom. Fortunately, by using the Z and its gradients at the corner nodes, a 

second-order accurate estimate can be made for Z at the centroid. At each node, a
az. az. az. az.

plane can be defined by Z.,  - an(\  ^ where  ^ and  - are calculated for each
1 ax ay ' ax ay

data point from nearby data in the preprocessing step. (See the section, "Calculating 

the Surface Gradients" for details.) Each plane can be used to estimate the value of 

Z at the centroid. By exploiting the properties of the centroid, a simple arithmetic 

average of these nodal estimates is used to close the cubic polynomial. Mathemati­ 

cally, Z at the centroid x ,y , denoted Z , is estimated by:
c c c

3 az. az.
Z =1/3 Z [Z. + T-^x -x.) + T-^Cy -y.)]- f iq\c i ax c i av c i \ LJ j1=1 J

With the system closed using Z , the functional mapping of the surface using 

cubic polynomials is:

3 3 9Z - dz -

az. az. d
ay ^xj^N- + ay (<^yj ) aN 0 ] » (20)
j j \ J j *j )

Generating Bathymetric Data 15



Where the shape functions using cubic polynomials are:

Node 1:
<f> l = N|(N1 + 3N2 + 3N 3 ) - 7N1N2N3 (21)

*xl - N! (C 3N2 - C 2N 3> + (C 2 - C 3 )N1N 2N3 (22)

V = Nl (b 2N3 ' b 3N2 } + (b 3 " b 2 > NlN 2N3 (23 >

Node 2: 
^2 = N2 (N2 + 3N 3 + 3N1 } " 7N1N 2N 3 (24)

^x2 = N2 (C 1N3 ' C 3N1 } + (C 3 ' C 1 )N 1N 2N 3 (25)

*y2 = N2 (b 3Nl " b !N3 } + (b l " VN1N2N3 (26)

Node 3: 
> 3 = N|(N3 + 3NX + 3N2 ) - 7NXN 2N3 (27)

x3 - N3 (C 2N 1 - C 1N2 } + (C 1 - C 2 )N1N2N3 (28) 

3 - N^b^ - b 2Nx ) + (b 2 - b 1 )N1N 2N 3 (29)

Node 4:

N (30)

The N., b , and c. are defined in the section, "Calculating the Surface Gradients." 

The <j>.'s retain a value of unity at each node i, and the <j> ., <J> . retain values of
1 X X y 1

unit slope in the x and y directions, respectively (fig. 6).

DESCRIPTION AND OPERATION OF COMPUTER PROGRAMS

In the following sections, the details of program operation are given. Because 

the output from these programs is used as input to other computer codes, it is help­ 

ful to know the exact output formats so that an efficient transfer of information can 

be made between programs. Thus, in order to describe explicitly the input and output 

requirements, the input and output sections of the computer code are given in this 

document along with detailed descriptions of how they work.

To increase the efficiency of the search algorithms, the data are run through a 

preprocessing program (PREGRID.F77), which principally sorts the data and performs
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XI

FIGURE 6. - Three-dimensional perspective plots of three cubic shape functions associated with node ' 1'.

calculations of associated properties. Additionally, the preprocessing program 

allows the data base to be edited so that, for example, changes in bathymetry can 

easily be incorporated into the existing data structure.
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The interpolation program, GRID.F77, has three options designed specifically to 

generate depths for the computational networks of hydrodynamic models. The first 

option returns depths for finite-element networks. The second option calculates 

depths on regular orthogonal grids consistent with finite-difference methods. By 

taking advantage of the regularity of the grid in the second option, the depths are 

summed and used to estimate volumes. The final option calculates depths and areas 

along cross sections.

The computer codes for this method were designed as general, transportable, 

stand-alone programs. All input/output data used by the program are standard ASCII 

files. Both computer programs are written in standard FORTRAN 77 programming lan­ 

guage and were developed and tested on PRIME 850 and 9955(11) computers. Flow charts 

and subroutine descriptions of both GRID.F77 and PREGRID.F77 are given in Appendix A.

The program dimensions are specified by the use of $INCLUDE (or $INSERT) files 

or equivalent. $INCLUDE files enable the COMMON blocks in all subroutines to be 

automatically dimensioned by specifying the dimensions on the COMMON blocks in the 

$INCLUDE file(s). $INCLUDE files allow for quick modification of the computer code 

to accommodate a wide variety of problem specifications. For both programs, the 

dimensions of all variables in the $INCLUDE files must be dimensioned to values 

greater than or equal to the number of known data points in the data base.

PROGRAM OPERATION - PREGRID.F77

To create a data base or to add, delete, or replace data in a pre-existing data 

base, two lines of control parameters must be included along with the data (if 

necessary) in a file called "ADD.DEPTH". An example of this file is given below:

-NBND   ANGMIN   ANGMAX    MAXT     PER   IPOINT 
100 50.0 180.0 3 0.5 50

 IEDIT    XORIG    YORIG    XLEN    YLEN     PHI 
1 10.0 5.0 12.0 6.0 13.0 

.       X       Y       Z
10.0800 10.0000 7.9996
10.1600 10.0000 7.9984
10.2400 10.0000 7.9964
10.3200 10.0000 7.9936
10.4000 10.0000 7.9900
10.4800 10.0000 7.9856
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A header line indicating the variable name and placement is inserted prior to 

each control line. The header lines are not read by the program but are necessary 

for the program to run properly. The program, as delivered, assumes the depths or 

z-values are in feet, and the x-values and y-values are in kilometers. The variables 

in this control file are defined as follows:

NBND = Twice the maximum number of points considered when searching for 
the second and third points from the first point.

ANGMIN Kmin Minimum allowable angle for selection of the second point. (See the 
section, "Isolating the Three Bounding Points" for details.)

ANGMAX
max

Maximum allowable angle for selection of the second point. (See the 
section, "Isolating the Three Bounding Points" for details.)

MAXT = Maximum number of attempts made at finding a high aspect ratio
triangle of bounding points, 0<MAXT<10. If a high aspect triangle 
is not found in the specified number of tries, the interpolations 
are based on the largest aspect triangle within the NBND search 
radius.

PER

IPOINT

Minimum acceptable aspect ratio for the triangle of bounding points 
in the gradient calculation. For an equilateral triangle the aspect 
ratio is 1.0. A typical value for this variable is 0.5.

["N" in point density calculation] 
culate point densities.

Number of points used to cal-

(XORIG,YORIG) 

(XLEN,YLEN)

IEDIT = Flag that denotes the type of changes to be made in the data set to 
be made:

If IEDIT =1: the data which are input through the file "ADD.DEPTH" 
REPLACES the existing data in the rectangular area 
defined by the following input quantities.

If IEDIT =0: the data which are input through the file "ADD.DEPTH" 
are appended to the pre-existing data set without any 
deletions.

X ,Y (fig. 7) The global coordinates of the lower left-hand grid 

point.

L ,L (fig. 7) The lengths (kilometers) of the grid coordinate axes in x y
the horizontal and vertical directions, respectively.

PHI = <J> (fig. 7) The angle the finite-difference grid makes with the global 
coordinate system.
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Finite-difference grid generation

X ,Y o o

Nodes

X

(0,0)

Input: (X ,Y ), (L ,L ), (6 ,6 ), <t> o o x y x y

Output: Depths at all nodes

FIGURE 7. Definition of input variables for finite-difference option in PREGRID.F77.
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The following FORTRAN statements are used to read in these data:

READ (5,231) NBND , ANGMIN , ANGMAX , MAXT , PER , IPOINT 
231 FORMAT (/HO, 2F10. 5, 110, F10. 5, HO/)

READ (5, 233) IEDIT,XORIG,YORIG,XLEN,YLEN,PHI 
233 FORMAT(I10,5F10.57)

READ(5,5,END=6) X(N) ,Y(N) ,Z(N) 
5 FORMAT (5X,8F10. 5)

The output from PREGRID.F77 is put in a file called "DEPTH. DATA. NEW." In order 

to use the interpolation program GRID.F77, the name of this file must be changed from 

"DEPTH. DATA. NEW" to "DEPTH. DATA. " Output from the PREGRID.F77 is accomplished 

through the following FORTRAN statements:

WRITE(10,5) X(I) ,Y(I) ,Z(I) ,PARX(I) ,PARY(I) ,D
5 FORMAT (5X,8F1 0.5)

which puts the bathymetric data in the following form:

37.36411 -38.23727 6.00000 -38.18353 37.66636 113.40565
31.76653 -38.23658 0.00000 0.00000 0.00000 127.01021
37.55679 -38.22966 6.00000 -24.35769 73.21034 127.62857
36.21996 -38.22842 6.00000 0.00000 0.00000 128.91650
39.35606 -38.22591 0.00000 0.00000 0.00000 128.73544

Where PARX(I) ,PARY(I) are the calculated surface gradients (see the section 

"Calculating the Surface Gradients") and "D" is the point density for the i'th point 

(see the section "Calculating the Point Densities") .

When running the preprocessing program, IPOINT ("N" in equations 1, 2, and 3)

must be specified as input by the user. Large values of IPOINT will mask local fluc-
8 J 8 J

tuations in -r  (J) , providing a smooth functional relation between -5  (J) and J.dy dy
Because each successive iteration for the pointer location in the Taylor series

8 J 8 J
search algorithm is based on -r- (J) , a highly variable -5  (J) could lead to an oscil-dy dy
latory convergence, or, in the worst case, to no convergence at all. Therefore, some

smoothing of T~(J) is desirable as long as it does not impact the larger scale trendi\ T y ^ T
in TT  (J) . The large scale variations in -r  (J) are what drive the convergence of this

dy dy
method; thus, an appropriate value (=1 percent of the total number of data points) of 

IPOINT should be selected to match each data base.
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PROGRAM OPERATION - GRID.F77

The first part of the program reads the user's data requests, opens files, and

reads the depth data. The program then begins the two-phase search process and
* *

subsequently performs the interpolation for each requested x ,y location.

To run the interpolation program GRID.F77, a control file called 

GRID.INPUT must be created that contains the input and output file names and 

the other operational parameters needed for each run of the program. The 

following is an example GRID.INPUT file:

 METHOD  METER  INTER   NBND    RMAX   ANGMIN   ANGMAX 
1 1 0 100 1.0 50.0 180.0

    XORIG    YORIG    XSPAC    YSPAC    XGRID    YGRID    PHI
-2.892 14.840 24.5 23.5 0.25 0.25 0.0

                             OUTPUT FILENAME 
SANPAB.DEPTH

As with ADD.DEPTH, a header line precedes each new data line. The header state­ 

ment is intended to aid in the readability of this file and to be used as a template 

when generating new data sets. To use the template, right-justify the data entries 

to the last letter in the variable name of the header statement. The program skips 

these headers but depends on their placement to run properly. The input variables are 

defined as follows:

METHOD - Interpolation option flag:
If METHOD=1; Interpolate a finite-difference grid.
If METHOD=2; Interpolate at x,y coordinates contained in a user specified

file. 
If METHOD=3; Interpolate on cross sections.

METER = Output units flag:
If METER=1; Depths are output in feet. 
If METER=2; Depths are output in meters.

INTER = Interpolation flag:
If INTER=0; Linear interpolation. 
If INTER=1; Cubic interpolation.

NBND = Two times the maximum number of points considered when searching for the 
second and third points from the first point.

RMAX = The radius that defines the maximum distance within which points will be 
considered for interpolation. Interpolations outside this distance are 
considered zero.

ANGMIN = <f> = Minimum allowable angle for selection of the second point. (See the 
section, "Isolating the Three Bounding Points" for details.)

ANGMAX = <f> = Maximum allowable angle for selection of the second point. (See the 
max section, "Isolating the Three Bounding Points" for details.)
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The top line of data is required for all interpolation options. In this example, 

the finite-difference option (interpolation on regularly spaced orthogonal grids) is 

used. The remaining variables and parameters in this example are considered in the 

next sections where the specifics of the interpolation options are discussed.

Finite-Difference Grids

The spatial attributes of a given finite-difference grid can be defined by the

global coordinate location of its lower left-hand grid point, X ,Y , the length of
o o

the grid in the horizontal and vertical directions, L ,L , the incremental spacing of
X X

the sampling points, 6,6, and by the angle, <f>, the grid makes with the global
x y

coordinate system (fig. 7). The computer code transforms a coordinate system based 

on the user-specified finite-difference grid into the global coordinates using the 

following translation and rotation relations:

x*
1, J

*

x + (1-1)6 cos* - (j -1)5 sin* i = l,2,..I ax , j = L 2 ,..^ (31)

y . - yo + - y(i-DScos* + (j-l)5sin* i - l,2,..Imax , J - 1 . 2 >-- Jmax (32)
x

where I = INT(L /S ) + 1, and
[II dX A. " 

J - INT(L /<$)+!. (34) 
max y y

Volumes of the area covered by a given grid are calculated by summing over the 

entire grid the product of the average of the depths at the corners of a cell and the 

area of the cell. Mathematically this can be expressed as:

(I -1) (J -1) v max max
Vol - (S4) [d.. + d + d + d], (35)

where d . is the interpolated depth at the mesh point i,j. By rearranging the sum-
i» J 

mations, a computationally more efficient form of the volume computation can be given

as:

where:

Vol - 8 8 [V /4 + V /2 + V.], (36)
x y .L £- -*

di ,1 + di,j + di ,j (37)
max max max max
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V2 = S [d. , + d ]+ 2 [d + d j], (38) 
i=2 1 ' 1 '"'max j=2 ' J max' J

(I -1) (J -1) v max ' v max
V3 = 2 S d (39)

i-2 j-2 1>J

The volume of a given grid is output to a file named "VOL. OUT."

Input Requirements

The input requirements for the generation of finite-difference grids essentially 

include the parameters that control the search sequence as previously discussed, the 

quantities in figure 7 that relate the finite-difference grid-coordinate system to 

the global coordinates, and, finally, the output filename. The following is an 

example control file (GRID. INPUT) for the finite-difference option:

 METHOD    METER    INTER     NBND       RMAX     ANGMIN     ANGMAX
1 1 0 100 1.0 50.0 180.0

     XORIG      YORIG      XSPAC      YSPAC      XGRID      YGRID       PHI
-2.892 14.840 24.5 23.5 0.25 0.25 0.0

                              OUTPUT FILENAME 
SANPAB. DEPTH

where :

(XORIG, YORIG) = X ,Y (fig. 7) The global coordinates of the lower left-hand grid 
point.

(XSPAC, YSPAC) » L ,L (fig. 7) The lengths (kilometers) of the grid-coordinate axes 
in the horizontal and vertical directions, respectively.

(XGRID, YGRID) =6,6 (fig. 7) The grid spacing (kilometers) in the horizontal and 
vertical grid-coordinate directions, respectively.

PHI = <f> (fig. 7) The angle the finite-difference grid makes with the global 
coordinate system.

Using the San Francisco data set shown in figure 8 as an example, a three- 

dimensional perspective warped surface of the finite-difference mesh generated 

using the control file given above for San Pablo Bay is shown in figure 9. The 

following read statements are used to input the data for the finite-difference 

option:

READ (64, 601) METHOD, METER, INTER, NBND, RMAX, ANGMIN, ANGMAX
601 FORMAT(/4I8,3F10.5)

READ (64, 602) XORIG, YORIG, XSPAC, YSPAC, XGRID, YGRID, PHI
602 FORMAT (/8F10. 5)

READ (64, 661) JFILE 
661 FORMAT (/A50)
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FIGURE 8. Spatial extent and variability of bathymetric data base. 
Each '+' represents a location of known depth.
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FIGURE 9. - San Pablo Bay finite-difference grid shown in relief.
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Output Format

Interpolated depths from the finite-difference grid generation option are pro­

vided in a matrix of depths, d .. The output is in integers with the decimal place
i 'J * 

moved to the right by one digit; that is, the output depths = INT(10.0 d. .). This
1 > J 

format saves storage by not writing out all the decimal points. In general, the

entire d. . matrix of interpolated depths will not fit on an 80-column page width;
i» J

therefore, d . is output in increments of j=10 (fig. 10). Thus, the first 10 j 
1> J

values are output for all i, 1=1,1 and then the j values, ll^j^20 are output and
inciA

so on until all the j values have been output for all i. The following FORTRAN code 

is used to accomplish this output format:

NR1 = 1
NR2 = 10 

C
IX - IFIX(XSPAC/XGRID)
IY - IFIX(YSPAC/YGRID)
11=0 - 0 

732 CONTINUE
IF(NR2.GT.(IY+1)) NR2 - IY+1
DO 631 I = 1,IX+1 

KK = 0 
II = II + 1 
DO 632 J - NR1.NR2

KK = KK + 1 
C
C. . .Calculation of depths occurs in this block 
C
632 CONTINUE 
C ^

WRITE(55,912)(NINT(ZMAT(II,KP) 10.0) ,KP=1 ,KK) 
912 FORMAT (1015) 
C
631 CONTINUE 
C

NR1 - NR1 + 1
NR2 = NR2 + 10
IF(NR1.LE.(IY+1)) GO TO 732
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Where:

IX+1 =1 = The total number of mesh points in the finite-difference grid in the 
horizontal direction,

IY+1 = J = The total number of mesh points in the finite-difference grid in the 
max , ,. . , vertical direction, and

ZMAT - d = The matrix of the interpolated depths. 
i» J

Interpolations for Finite-Element Grids

Unlike the finite-difference calculations, the spatial location of the nodes 

that make up finite-element networks do not, in general, follow any regular pattern. 

Thus, to interpolate depths using the finite-element option, the user must supply 

a file which contains the spatial location of each node in the network in the 

coordinate system on which the known data was collected.

Input Requirements

The control file for this option contains the interpolation parameters (the 

first line of the control file), the name of the input file that contains the coordi­ 

nates of the computation points where the interpolations are desired, and the output 

file name which will contain the interpolated depths along with the coordinates at 

each desired interpolation point. An example control file has this form:

 METHOD  METER  INTER   NBND     RMAX   ANGMIN   ANGMAX 
2 1 0 100 1.0 50.0 180.0

 _-_-_-_-_-_-____-_-_-__-_ _____ _____________T 1NrPTTT TTTT PTJAMTTJ.liJTUJ.I7JLJ_i Uli £\L JJ-i

FINITE.E.INPUT
                             OUTPUT FILENAME 
FINITE.E.OUTPUT

The file that contains the input coordinates is read using the following FORTRAN 

code:

622 READ(13,620,END=621) XF,YF
620 FORMAT(3F10.3) 

GO TO 622
621 CONTINUE
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Example 
Finite-difference output format

Imax
Jmax

i-1 0

i

0
10
12
18
30
74

145
180
199r

1 258
i=Imax 344

i=l / 0

^

^

/ 0
1 10
\ 12

1 18
) 30
\ 74
I 145
/ 180
I 199

r I 258
i=Imax\344

0
0
0
0
3

30
72

117
180
180
241
300

0
0
0
0
3

30
72

117
180
180
241
300

i=l 0 0

1

0 0
6 4
8 6

10 1C
10 10
10 18
42 18
44 1
24 0

r 35 9
i=Imax 49 30

0
0
0
0
9

22
55
94

122
158
202
300

0
0
0
0
9

22
55
94

122
158
202
300

0
0
3
5
5
5
5
7
3
6

19
32

0
0
0
1

15
43
50
81

104
73

185
52
0
0
0
1

15
43
50
81

104
73

185
52
0
1
1
4
5
2
3
7
7

10
17
28

0
0
7
4
8

28
47
60
60
96

150
223

0
0
7
4
8

28
47
60
60
96

150
223

0
0
0
3
0
0
4
8

10
10
13
21

= 12
= 25

0
0
7
7

12
19
38
60
60
63

119
139

0
0
7
7

12
19
38
60
60
63

119
139

0
3
5

10
10
10
28
48
60
60
88

126
0
3
5

10
10
10
28
48
60
60
88

126

0
6
8

10
10
10
19
22
26
60
75

115
0
6
8

10
10
10
19
22
26
60
75

115

i=l (

0
6
9

10
10
10
13
25
38
30
55
87
0
6
9

10
10
10
13
25
38
30
55
87

j 

0
6
8

10
10
22
29
48
54
60
60
60
0
6
8

10
10
22
29
48
54
60
60
60

j=20

j-21 j=Jmax

FIGURE 10. Example output for finite-difference option. Interpolations 
for a (12 x 25) finite-difference grid.
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Where XF,YF are the coordinates of the location where the interpolation is desired, 

The input file takes on the following form:

13.943 -10.231
9.123 100.345
2.987 -20.980

-2.937 22.567

Output Format

The file that contains the interpolated depths for the finite-element option is 

produced using the following FORTRAN code:

WRITE(55,620) XF,YF,ZZ 
620 FORMAT(3F10.3)

which produces the following output:

13.943
9.123
2.987

-2.937

-10.231
100.345
-20.980
22.567

0.000
2.985
10.312
1.768

where ZZ is the interpolated depth.

Cross Sections

In the study of flow problems there often is a need to look at cross-sectional 

information. Points on a cross section can be uniquely defined by the coordinates of

the cross-section endpoints X.,Y. and X , Y and a constant spacing interval 6
max max 

(fig. 11). Cross sections can be determined between any two arbitrary endpoints at

any orientation.
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Example cross section
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(Xo'V

Global
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8 =
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-X ) 2 + (Y -Y ) 2 
1 -L max L

FIGURE 11. Definition of terms used in cross-section option.
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Because constant interval sampling is used to determine cross sections, the 

trapezoidal rule is used for the calculation of the cross-sectional area, A:

(I -1) max
A = 6/2[d1 + dx ] + 6[ S d.]. (4Q) 

max i=l

Because the total cross-sectional area can be expressed as the product of the average 

depth and the top width of the section, the average depth can be calculated as:

: -X1 ) 2 + (Yx ^F" (41) 
max max

where the denominator represents the cross-section length or top width.

Input Requirements

To run the cross-section option, the user must provide in the control file the 

interpolation parameters (given in the first line of the control file), the input and 

output file names, and the number of sampling points, NGRID.

 METHOD  METER  INTER   NBND     RMAX   ANGMIN   ANGMAX 
3 1 0 100 1.0 50.0 180.0

                              INPUT FILENAME 
SAMPLEJCSEC.INPUT
                             OUTPUT FILENAME 
SAMPLE_XSEC.OUTPUT
  NGRID 

100

In the input file, the user specifies a cross-section designation or name and 

the endpoints of the cross section for each cross section desired (a maximum of 50 

cross sections can be run in a single program run).

-    XSECTION NAME    XSTRT    YSTRT    XSTOP    YSTOP 
XSEC1 -4.7 -0.5 1.7 8.5 
XSEC2 -4.7 -0.5 9.0 -0.5
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where: 

(XSTRT,YSTRT) (fig. 11) = The first pair of end points defined in global 
coordinates.

(XSTOP,YSTOP) = X , Y (fig. 11) = The second pair of end points defined in 
max max global coordinates.

NGRID = I = The number of sampling points (fig. 11).
filciX

Output Format

Output for the cross-section option includes, from left to right in the first 

line of the example shown below, the cross-section name, the starting location, 

XSTRT,YSTRT, and the ending location, XSTOP,YSTOP, of the cross-section line, 

the mean depth, the number of sampling points, and the cross-sectional area. After 

the first line, a sequence of lines are given each containing the coordinate loca­ 

tion x,y, the interpolated depth, and the length along the cross section measured 

from XSRT,YSTRT for each sampling point along the cross section. An example cross 

section taken in San Francisco Bay from Pier 39 in San Francisco across Alcatraz 

and Angel Islands to the Tiburon Peninsula is shown in figure 12.

XSEC1 0.000 0.000 0.000
0.000000 0.000000 1.068722
0.000000 0.100000 6.638384
0.000000 0.200000 12.426405
0.000000 0.300000 17.998901
0.000000 0.400000 42.654488
0.000000 0.500000 59.074371
0.000000 0.600000 60.000084
0.000000 0.700000 60.000183
0.000000 0.800000 59.999123

10.000 57.9
0.000000
0.100000
0.200000
0.300000
0.400000
0.500000
0.600000
0.700000
0.800000

101 579.087
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FIGURE 12. Example cross section through Central Bay.
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EXAMPLE: SAN FRANCISCO BAY DATA SET

This bathymetrie interpolation method has been extensively applied in the study 

of hydrodynamic processes in the San Francisco Bay estuary using a data base consist­ 

ing of roughly 26,000 points of known depth (see fig. 8). All depths in the data 

base were obtained directly from the NOAA-NOS charts, measured in feet referenced to 

Mean Lower Low Water (MLLW). Roughly 80 percent of the data base consists of points 

that were taken from bathymetric contours on the NOAA-NOS charts; the remaining 

20 percent consists of random points that fill in the gaps between contours. Each + 

in figure 8 represents a known depth position. Spatially, the depths are referenced 

to a coordinate system whose origin is centered on the Presidio tide station 

(lat 37°48 I 24", long 122°27'54") and whose coordinate axes are measured in kilometers 

east (positive X) and north (positive Y).

SUMMARY

An efficient methodology for creating the bathymetric data necessary for hydro- 

dynamic numerical modeling studies is presented. The search algorithms, interpolation 

routines, and all necessary preprocessing procedures are discussed. Detailed computer 

program documentation and operational procedures are given, including example 

applications of the various program options to the San Francisco Bay estuary.
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APPENDIX A

Program Flow Charts and Subroutine Descriptions

Depicted in figures 13, 14, and 15 are flow charts of the subroutine calls used 

in GRID.F77 and PREGRID.F77, which are described in greater detail here.

INPUT:

Reads in the data base of known depths, including:

a) x,y,z information for each known point.
^ t\ ^ T

b) The surface gradients -5 , -%- and point density, -r-(J) » at each point.
oy £j oy

c) Calculates the average point density (r )ave.
dy

FIND:

Places the data-base pointer within 6 of the interpolation point using the Taylor 

series expansion technique. This routine first checks to see if the interpolation 

point falls within the limits of the known data. If the interpolation point is out­ 

side the limits of the known data, a value of zero is returned for the depth. If the 

data-base pointer is not within 6 in 10 tries, a sequential search is used to locate 

an appropriate pointer location. Subroutine FIND calls POINTS, TRILIN, TRICUB 

(fig. 14).

POINTS:

Finds the closest three bounding points following a modified version of Thompson's

algorithm. Subroutine POINTS calls SEARCH.

SEARCH:

Finds the closest point to the interpolation point. This routine skips points

that are discarded by subroutine POINTS for not fitting the bounding criterion.
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TRILIN:

Given three bounding points and the interpolation point, this routine returns a depth 

based on linear interpolation (interpolation based on a plane through the three 

points).

TRICUB:

Given three bounding points and the interpolation point, this routine returns a depth

based on cubic polynomial interpolation. Subroutine TRICUB calls CENT and SHAPE.

CENT:

Given the x,y coordinates of the bounding triangle, this subroutine exploits the fact 

that the centroid of any triangle in local coordinates is 1/3,1/3 to calculate the 

global coordinates of the centroid of the bounding triangle.

SHAPE:

This subroutine calculates the value of the cubic polynomial shape functions given

the coordinates of the interpolation point and the linear shape function values.

Preprocessing Specific Routines

GRAB:

Given three known bounding points, this subroutine calculates the gradients -r , y at 

the known data points based on linear triangular shape functions. When no bounding 

points are found, as is the case for data along the domain boundary, then a gradient 

of zero is returned (fig. 15).

EDIT:

This subroutine deletes all of the data within a user-specified rectangular region by 

evaluating the signs of the dot products between each data point and the four corners 

of the rectangle.
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Read in control 
parameters

Calculated coordinates
of mesh point

using translation and
rotation relations Read in 

user-specified coordinates

All depths 
interpolated?

All depths 
interpolated?

FIGURE 13.- Flow chart of main program.
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Read in cross-section 
control information

Calculate coordinates 
tor sampling point 
in cross section

All coordinates
in cross section

calculated

YES

Calculate mean depth 
and cross-sectional area

All cross sections calculated

YES

RETURN

NO

FIGURE 14. -Flow chart of subroutines FIND and XSEC.
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READ IN CONTROL 
PARAMETERS

INPUT 
EXISTING DATA

INPUT ADDITONS 
TO DATA BASE

SORT DATA

DELETE SUBSEQUENT DATA POINTS 
WITH THE SAME COORDINATES

CALCULATE GRADIENTS

CALCULATE POINT 
DENSITIES

FIGURE 15. Flow chart of preprocessing program PREGRID.F77.
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APPENDIX B

Variable List

Name FORTRAN name
Array 
size Type Remarks

Data Base Variables

NMAX 

x X

INT Number of known data points.

NMAX REAL X-coordinate location of known 
data.

NMAX REAL Y-coordinate location of known 
data.

NMAX REAL Depth of known data.

NMAX REAL Point density of known data.

(-r-)ave DENS dy

3z 
3y

PARX

PARY

Search Control Variables

METHOD

METER

INTER

NBND

NMAX REAL Average point density.

NMAX REAL Surface gradient with respect 
to x.

NMAX REAL Surface gradient with respect to y,

INT Interpolation option flag: If 
METHOD=1, Interpolation for 
finite-difference grids; If 
METHOD=2, Interpolation at 
x,y coordinates contained 
in a user-specified file; If 
METHOD=3, Interpolation on cross 
sections.

INT Output units flag: If METER-1,
Depths output in feet; If METER=2, 
Depths output in meters.

INT Interpolation flag: If INTER=0, 
Linear; If INTER-1, Cubic.

INT Two times the maximum number of
points considered when searching 
for the second and third points 
from the first point.
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APPENDIX B Continued

Name FORTRAN name
Array 
size Type Remarks

RMAX

"min ANGMIN

<J> ANGMAX max

(CMIN,CMAX)

Search Variables

XF

YF

ZF

IFIND1,IFIND2,IFIND3

RMIN

IEXCL

NUMEX

XXMIN,XXMAX,YYMIN,YYMAX

REAL The radius that defines the maximum 
distance within which points will 
be considered for interpolation. 
Interpolations outside this dis­ 
tance are considered zero.

REAL Minimum allowable angle for selec­ 
tion of the second point. (See 
the section, "Isolating the Three 
Bounding Points" for details.)

REAL Maximum allowable angle for selec­ 
tion of the second point. (See 
the section, "Isolating the Three 
Bounding Points" for details.)

REAL Cosines of ANGMIN and ANGMAX, 
respectively.

REAL X-coordinate location where 
interpolation is desired.

REAL Y-coordinate location where 
interpolation is desired.

REAL Interpolated depth at XF,YF.

REAL The pointer locations that define 
the bounding triangle.

REAL Keeps track of the minimum distance 
from the interpolation point to 
the first point in the bounding 
triangle.

1000 INT Stores the pointer number of each 
point that does not meet the 
bounding triangle requirements.

INT Counter: The total number of points 
that did not meet the bounding 
triangle requirements.

REAL Limits of known data.
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APPENDIX B Continued

Name FORTRAN name
Array 
size Type Remarks

Finite-Difference Variables

x > 
o

max

max

XORIG,YORIG

L ,L XLEN,YLEN x' y

6 ,6 XGRID,YGRID 
x y

PHI

CPHI,SPHI 

IX

IY

ZMAT 10

REAL The global coordinates of the 
lower left-hand grid point.

REAL The lengths of the grid coordinate 
axes in the horizontal and ver­ 
tical directions of the finite- 
difference grid.

REAL Grid spacings in the horizontal 
and vertical directions of the 
finite-difference grid.

REAL The angle the finite-difference 
grid makes with the global 
coordinate system.

REAL Cosine and sine of <J>, respectively,

INT Number of finite-difference grid 
points in the X-direction.

INT Number of finite-difference grid 
points in the Y-direction.

REAL Temporary storage of finite- 
difference depths.

Preprocessing Variables 

N IPOINT

IEDIT

INT The number of points used to 
calculate point densities.

INT Flag that denotes the type of 
additions to be made: If 
IEDIT = 1, the added data 
REPLACES the existing data in 
the rectangular area defined 
by the parameters used to 
define the finite-difference 
grids. If IEDIT =0, the 
added data is appended to the 
pre-existing data set without 
any deletions.
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APPENDIX B Continued

Name FORTRAN name
Array 
size Type Remarks

MAXT REAL The maximum number of attempts 
made at finding a high aspect 
ratio triangle of bounding 
points; an integer such that 
0<MAXT<10.

PER REAL Controls the minimum acceptable 
aspect ratio for the triangle 
of bounding points for the 
gradient calculation. For an 
equilateral triangle, the 
aspect ratio is 1.0. A 
typical value for this 
variable is 0.5.

Cross-Section Variables

NAME 

X

DEPTH

50 CHAR Cross-section name.

50,201 REAL Temporary storage for all
X-coordinates of cross-section 
sampling points.

50,201 REAL Temporary storage for all
Y-coordinates of cross-section 
sampling points.

50,201 REAL Temporary storage for all
calculated depths at cross- 
section sampling points.

50 REAL Average depth for each cross 
section.

X I ,Y I xi,YI

max 
Y,
max

X2,Y2

50 REAL Starting end-point coordinates 
for cross section.

50 REAL Ending end-point coordinates 
for cross section.

DIS 50 REAL Distance measured along the 
cross, section.

44 General Method for Generating Bathymetric Data for Computer Models



APPENDIX B Continued

Name FORTRAN name
Array 
size Type Remarks

NGRID K

MAX 

MAXNUM

XDIV 

YDIV

XL

SLOPE

Interpolation Variables 

a.,b.,c. A,B,C 

A Al 

Z ZC

INT Number of sampling points along 
the cross section.

INT Maximum number of cross sections

INT Maximum number of allowable 
sampling points.

REAL Sampling increment in the 
x-direction.

REAL Sampling increment in the 
y-direction.

REAL Total length of cross section. 

REAL Slope of the cross-section line.

REAL Linear shape function constants. 

REAL Area of the triangular element.

REAL Estimated depth at centroid of 
element.

x ,y 'XBAR,YBAR REAL Coordinates of the centroid of 
the triangle.

N. L 3 REAL Value of linear shape 
1 at XF,YF.

<j> PH 4 REAL Cubic shape function: 
one at i.

<j>xi PHX 3 REAL Cubic shape function: 
equals one at i.

<j> PHY 3 REAL Cubic shape function: 
equals one at i.

function

equals

x-gradient

y-gradient
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