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INTRODUCTION

Since 1979 (he Geothermal Research Program of the U.S. Geological Survey has carried out a multi- 
disciplinary research effort in the Cascade Range. The goal of this research is to understand the geology, 
tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. 
A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range 
that incorporates modem field studies and that has a unified and internally consistent explanation.

This map is one of three in a series that shows Cascade Range geology by fitting publi shed and 
unpublished mapping into a province-wide scheme of lithostratigraphic units; map sheets of the Cascade 
Range in California and in Oregon complete the series. The complete series forms a guide to exploration and 
evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcanic 
hazards, volcanology, and tectonics.

For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geo­ 
thermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal 
potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal 
energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) 
geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than 
about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

Rocks older than a few million years are included on the map because they help to unravel geologic 
puzzles of the present-day Cascade Range. The deeply eroded older volcanoes found in the Western Cas­ 
cades physiographic subprovince are analogues of today's snow-covered shield volcanoes and strato- 
volcanoes. The fossil hydrothermal systems of the Eocene to Pliocene vents now exposed provide clues to 
processes active today beneath the Pleistocene and Holocene volcanic peaks along the present-day crest of the 
Cascade Range. Study of these older rocks can aid in developing models of geothermal systems. These 
rocks also give insight into the origins of volcanic-hosted mineral deposits and even to future volcanic 
hazards.

Historically, the regional geology of the Cascade Range has been interpreted through reconnaissance 
studies of large areas (for example, Diller, 1898; Williams, 1916; Callaghan and Buddington, 1938; 
Williams, 1942, 1957; Peck and others, 1964; Hammond, 1980). Early studies were hampered by limited 
access, generally poor exposures, and thick forest cover, which flourishes in the 100 to 2 cm of annual pre­ 
cipitation west of the range's crest. In addition, age control was scant and limited chiefly to fossil flora. In 
the last 20 years, access has greatly improved via well-developed networks of logging roads, and radiometric 
geochronology-mostly potassum-argon (K-Ar) data-has gradually solved some major problems concerning 
timing of volcanism and age of mapped units. Nevertheless, prior to 1980, large parts of the Cascade Range 
remained unmapped by modem studies.

Geologic knowledge of the Cascade Range has grown rapidly in the last few years. Luedke and Smith 
(1981,1982) estimated that, when their maps were made, more than 60 percent of the Cascade Range lacked 
adequate geologic, geochemical, or geochronologic data for a reliable map at 1:1,000,000 scale. Today only 
about 20 percent of the range in Washington lacks adequate data to be shown reliably at the larger 1:500,000 
scale of this map. Areas that remain poorly understood in Washington include the stratovolcanoes, Mount 
Baker and Mount Rainier, and Eocene to Miocene rocks of the western part of the Cascade Range between 
lats 122° 30' and 123°.
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This present series of maps of the Cascade Range is not merely a reworking of previously published 
data. Geologic interpretations shown here are based largely on newly published and unpublished geologic 
maps and radio me trie determinations, including my own, done since 1980. To assign all map units their 
correct composition and age, I also reevaluated older published maps and incorporated recently determined 
chemical analyses and radiometric ages.

DISCUSSION

INTRODUCTION

The Tertiary and Quaternary volcanogenic 
Cascade Range in Washington is divided into two 
segments by a northeast-trending line (fig. 1; here­ 
after referred to as the northern Washington and 
southern Washington segments). Weaver and 
Michaelson (1985) originally drew this line parallel 
to the present-day direction of plate convergence 
between the Juan de Fuca and North American 
plates, basing its location on the pattern of present- 
day seismicity in Washington and northern Oregon. 
However, the two segments differ in several im­ 
portant geologic aspects, such as rate of volcanic 
production, abundance of Tertiary plutonic rocks, 
and style of deformation, suggesting that the fine 
has a significance beyond the location of earthquake 
hypocenters.

Differences in geologic characteristics of the 
segments that typify the present-day Cascade Range 
have existed at least since Eocene time. For ex­ 
ample, during the last million years, the southern 
Washington segment produced nearly 7 times more 
intermediate-composition and silicic magma per 
kilometer of arc length than the northern Wash­ 
ington segment. From late Miocene to early Pleis­ 
tocene time, the southern Washington segment 
produced about 5.3 times as much intermediate- 
composition and silicic magma per kilometer of arc 
length as the northern Washington segment. Vol­ 
canic production was also greater in the southern 
Washington segment earlier in the Tertiary as well. 
Lower Oligocene to middle Miocene volcanogenic 
strata are not common in the northern Washington 
segment, but more than 4 km of strata of com­ 
parable age are present throughout much of the 
southern Washington segment. Late Eocene and 
younger epizonal granitic plutons crop out over 
more than 2,700 km2 in the northern Washington 
segment, which is more than 7 times the area over 
which they crop out in the southern Washington 
segment. The Eocene to late Miocene tectonics of 
the northern Washington segment are characterized 
by north-northeast- to north-northwest-trending, 
steeply dipping faults, whereas the tectonics of the 
southern Washington segment are characterized by

north- to northwest-trending, gently plunging 
folds. However, timing of deformation is not well 
known in either segment. These persistent differ­ 
ences must be taken into account in any recon­ 
structions of the Pacific Northwest. In the follow­ 
ing section the characteristics of each segment are 
discussed in greater detail.

NORTHERN WASHINGTON SEGMENT 

Volcanism

Quaternary volcanogenic rocks are not abun­ 
dant in this segment of the Cascade Range, and 
volcanic production is low compared to other parts 
of the Cascade Range (Sherrod, 1986; Sherrod and 
Smith, 1989). Volcanic activity in this segment is 
found at the active stratovolcanoes Mount Baker 
and Glacier Peak and at minor basalt flows and 
cinder cones 10 to 20 km south of Glacier Peak. 
The Mount Garibaldi volcanic field, 150 km 
northwest of Mount Baker in British Columbia, is 
also included in this segment because it is similar to 
Mount Baker and Glacier Peak. Each of these areas 
has active stratovolcanoes at its center that have 
erupted mainly intermediate-composition and silicic 
lava.

As with other estimates that follow, only an 
approximation of the volume of volcanic products 
per unit time is possible for this segment. Glaciers 
and streams have removed much of the evidence; 
older valley-filling pyroclastic and debris-flow 
deposits are especially likely to have been eroded. 
Nonetheless, an estimate of volcanic production 
expressed in units of cubic kilometers per kilometer 
of arc length per million years (km 3 (km of arc 
length^m.y/1 ) enables comparison between seg­ 
ments, as long as its approximate nature is kept in 
mind. Estimates of the volume of magma produced 
at different volcanic centers are shown in table 1.

Mount Baker consists predominantly of 
andesite flows and subordinate dacite and basalt. 
The present-day volcano of late Pleistocene and 
Holocene(?) age sits on the eroded remnants of one 
or more middle Pleistocene to possibly late Pleis­ 
tocene volcanoes, but details of their history are not 
well known. Rocks of the present cone as well as 
older eroded cones are all normally polarized
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(Swan, 1980). Potassium-argon (K-Ar) dating on 
the oldest sequence of flows at Mount Baker gives 
an age of about 400 ka but has large analytical 
errors (Easterbrook, 1975). The normal polariza­ 
tion and K-Ar data indicate that both the older and 
younger volcanoes at Mount Baker formed in the 
last 730,000 yr. Mount Baker forms an impressive 
snow-covered peak whose summit is over 3,200 m 
in elevation, but the volcano is perched on a high 
bedrock ridge and is not as voluminous as it 
appears. The present main cone and associated 
middle to late(?) Pleistocene vents have produced 
approximately 70 km3 of rock in the last 730,000 
yr (R.L. Christiansen, written commun., 1987; fig. 
2). A few flank flows, volcanic debris flows, and 
tephra layers contribute less than 2 more km3 to the 
total volume (Hyde and Crandell, 1978).

Products of Glacier Peak volcano comprise 
the main cone as well as downstream and down­ 
wind deposits of explosive volcanism. A few 
nearby mafic vents may also be related to volcanic 
activity at Glacier Peak. The main summit area of 
Glacier Peak is composed primarily of dacite domes 
and short flows (Crowder and others, 1966; Tabor 
and Crowder, 1969). Few radiometric ages exist 
for the main cone, and therefore its detailed history 
is poorly known. Explosive activity was 
particularly common at Glacier Peak; numerous 
pyroclastic and debris flows, that are dominantly 
dacitic came off the mountain during the last 14,000 
yr and traveled westward as far as 100 km down­ 
stream. Eruptions of ash created extensive tephra 
deposits, mainly east and south of the peak (Porter, 
1978; Beget, 1982b). Glacier Peak rocks are all 
normally polarized (Tabor and Crowder, 1969; 
Beget, 1982a). The normal polarization, the large 
volume of explosive products less than 14,000 yr 
old, and the youthful appearance of the main cone 
indicate that Glacier Peak formed within the last 
730,000 yr and that, quite likely, the bulk of the 
mountain is much younger. Glacier Peak, like 
Mount Baker, forms an impressive snow-covered 
cone whose summit is over 3,200 m in elevation. 
Glacier Peak also sits on a high bedrock ridge and, 
like Mount Baker, appears more voluminous than it 
really is. The volume of material produced by 
Glacier Peak since the middle Pleistocene includes 
only 6 km 3 of lava and pyroclastic deposits at the 
main cone (R.L. Christiansen, written commun., 
1987; fig. 2) but some 20 km3 of near-vent tephra 
and downstream debris and pyroclastic flows

(Beget, 1982b)J . Tephra, equal to an additional 3.4 
km3 of magma, was deposited away from the main 
cone of the volcano (Porter, 1978)2 . The total 
volume of magma produced by Glacier Peak is 
29.4 km3 -

Other volcanic rocks in this segment include 
the Mount Garibaldi volcanic field (British Colum­ 
bia) and small basalt flows south of Glacier Peak. 
The volume of the Mount Garibaldi volcanic field is 
equal to approximately 23.7 km3 of magma 
(Mathews, 1958, p. 194) and the volume of the 
basalt flows is at most 1.3 km3 (fig. 2).

Adding the volumes produced in the last 
1,000,000 yr and using 310 km for the arc length 
from Mount Garibaldi to line A-A' of Weaver and 
Michaelson (1985), I calculate a volcanic produc­ 
tion of 125 km 3/310 km of arc length, which is 
equal to a rate of volcanic production of 0.40 
km3(km of arc length^m.y/ 1 for the last 1 Ma 
(fig. 2) for intermediate-composition and silicic 
rocks. This is a minimum estimate; doubling it to 
account for ash blown far from the volcanoes and 
for eroded deposits still indicates a rate of volcanic 
production of only 0.80 km3 (km of arc 
length^m.y/1 . Even this generous estimate is 
less by a factor of 3.5 than the rate for intermediate- 
composition and silicic rocks in the southern 
Washington segment during the same timespan.

Volcanic rocks ranging in age between 2 and 
1 Ma are unknown in the northern Washington 
segment

All upper Miocene and Pliocene (7 to 2 Ma) 
volcanogenic rocks in this segment within the 
United States are located within 35 km of either 
Mount Baker or Glacier Peak, suggesting that vol­ 
canic activity in the northern Washington segment 
has remained focused over approximately the same 
locations for the last 7 m.y. Principal stratigraphic 
units are the Hannegan Volcanics northwest of 
Mount Baker (Staatz and others, 1972), unnamed 
volcanic rocks under present-day Mount Baker 
(Brown, and others, 1987), and the volcanic rocks

Ml is not clear whether the volumes given by Beget 
(1982b) are those of the deposits or of an equivalent 
volume of magma. I have assumed that the volumes 
given are magma volumes. If the volumes are for 
tephra and volcaniclastic deposits then they should be 
reduced by 40 to 60 percent to get the equivalent vol­ 
ume of dacite magma.
*The volume of dacite magma erupted was calculated 
from Porter's (1978) thickness and distribution data in 
part using the method explained in the section on 
Mount St. Helens.
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of Gamma Ridge on the northeast flank of Glacier 
Peak (Crowder and others, 1966). Original areal 
extent and thickness of the 7- to 2-Ma volcanic 
rocks is unknown because of erosion. Areas of 
existing outcrops are not large and only a few rocks 
have age determinations (Engels and others, 1976). 
For these reasons, only a minimum rate of volcanic 
production can be estimated. The approximate 
volume of these units, using present-day areas and 
thicknesses, is about 52 km3. This gives a rate of 
volcanic production of 52 km3/310 km of arc length 
from 7 to 2 Ma, equal to about 0.034 km3(km of 
arc lengtrO^m.y.-1 . For the interval 7 to 1 Ma the 
rate equals 0.028 km^ (km of arc length)- 1 m.y.-1 . 
These are certainly minimum estimates, given the 
extensive erosion of these volcanic rocks.

Rates of volcanic production recorded by 
volcanogenic rocks older than a few million years 
cannot be directly compared with those for Pleis­ 
tocene to Holocene stratovolcanoes. In young 
stratovolcanoes, enough of the constructional vol­ 
canic edifices remain to make estimates of original 
volumes possible. For volcanic rocks older than a 
few million years, proximal deposits of large volca­ 
noes are largely eroded away, while distal alluvial 
facies volcaniclastic deposits are preferenially pro- 
served (see fig. 3 for an explanation of facies 
terms). Comparative rates of volcanic production 
are more accurately estimated in these older bedded 
rocks by using stratigraphic thickness to calculate 
meters of volcanogenic rock deposited per million 
years, rather than by trying to estimate magmatic 
volume. This method avoids the problem of con­ 
verting less dense volcaniclastic rocks back to an 
equivalent volume of magma and the problem of 
estimating original areal extent and volume for 
bedded units that are now partly covered by 
younger rocks or partly eroded.

In the northern Washington segment, upper 
Eocene to lower Oligocene volcanogenic rocks are 
not widespread, and middle Oligocene to upper 
Miocene volcanogenic rocks are present only in 
local areas and have imprecise thicknesses and age 
ranges. So little is known about middle Oligocene 
to upper Miocene volcanogenic rocks that deposi­ 
tion rates were not calculated. Volcanogenic rocks 
(fig. 1; geologic map) belong mostly to the upper 
Eocene to lower Oligocene volcanic rocks of Mount 
Persis (Tabor and others, 1982a) and the coeval 
Barlow Pass Volcanics (Vance, 1957). These 
sequences are poorly exposed, strongly folded, 
faulted, intruded by younger plutons, and locally

metamorphosed. Therefore, the numbers below are 
useful only in comparing rates of deposition of vol­ 
canogenic rocks between the northern Washington 
and the southern Washington segments.

The volcanic rocks of Mount Persis crop out 
in the foothills of the Cascade Range east of Seattle. 
They are dominantly pyroxene andesite, andesite 
breccia, and tuff that includes minor intrebedded 
volcanic sandstone and siltstone. They are late 
middle Eocene to early Oligocene (approximately 45 
to 35 Ma in age) (Tabor and others, 1982a). The 
top of the formation is eroded but 1,500 m of sec­ 
tion are preserved (R.W. Tabor, oral commun., 
1987). The age and thickness indicate an approxi­ 
mate deposition rate of 150 m/m.y. The Barlow 
Pass Volcanics crop out in the headwaters of the 
Sauk and Stillaguamish Rivers. The formation is 
slightly metamorphosed, folded, and locally faulted; 
it consists of basalt, rhyolite, and andesite flows, 
interbedded tuffaceous sandstones, argillite, and 
micaceous arkosic rocks. The formation is late 
middle Eocene to early Oligocene (approximately 45 
to 35 Ma) in age, although the age is not well con­ 
strained. The section is approximately 1,220 m 
thick (Vance, 1957; Tabor and others, 1982a). The 
resulting deposition rate is 122 m/m.y. Becuase 
this rate is for all rocks, not just the volcanogenic 
ones, it is somewhat high.

Granitic rocks

Granitic plutons of batholithic dimensions are 
another characteristic of the northern Washington 
segment. Even though the Cascade volcanic chain 
is more than 1,100 km long, large granitic plutons 
are mostly restricted to this segment. Prominent 
plutons in this segment include the Chilliwack 
composite batholith (Staatz and others, 1972), the 
Cloudy Pass batholith (Tabor and Crowder, 1969), 
the Railroad Creek and Duncan Hill plutons (Cater, 
1982; Church and others, 1984), the Squire Creek 
pluton and Index and Grotto batholiths (Yeats, 
1964; Frizzell and others, 1984), and the Sno- 
qualmie batholith (Erickson, 1969; Frizzell and 
others, 1984). Post-middle Eocene granitic plutons 
crop out over more than 2,700 km2 in this segment; 
this is 7 times the area that they cover in the south- 
em Washington segment. Many plutons are de­ 
scribed as having been emplaced at shallow levels; 
some may have vented to the surface (Tabor and 
Crowder, 1969; Erickson, 1969).
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Tectonics

Present-day seismicity in the northern Wash­ 
ington segment is characterized by two spatially 
distinct groups of earthquake hypocenters (Taber 
and Smith, 1985; Weaver and Michaelson, 1985). 
A zone of shallow crustal seismicity extends under 
the Puget Sound lowland into the foothills of the 
Cascade Range. Earthquake hypocenters are dif­ 
fuse throughout this area and less than 25 km deep; 
they have little obvious relation to mapped geology 
(Taber and Smith, 1985). West of Puget Sound, an 
elongate-cluster of subcrustal hypocenters that are 
deeper than 30 km defines a distinct Benioff zone 
dipping east at approximately 11° (Taber and Smith, 
1985). East of Puget Sound, a few deeper hypo- 
centers suggest that the Benioff zone dips more 
steeply as it plunges east toward the Cascade 
Range. The subcrustal earthquakes are believed to 
originate within the subducting Juan de Fuca plate, 
not at the plate boundary (Taber, 1983; Taber and 
Smith, 1985; Weaver and Baker, 1988). Sub­ 
crustal earthquakes have been recorded only in the 
northern Washington segment Weaver and Baker 
(1988) used these deep hypocenters to construct 40- 
and 60-km contours in the upper part of the Juan de 
Fuca plate (fig. 1). No subcrustal earthquakes have 
been recorded at depths greater than 80 km, nor 
have any been recorded directly under the present- 
day Cascade volcanic chain. Therefore, the config­ 
uration of the Juan de Fuca plate under the present 
stratovolcanoes is unknown.

North-northeast- to north-northwest-trending, 
steeply dipping fault systems are the most promi­ 
nent structural features of this segment. Many 
faults extend for more than 50 km and are region­ 
ally significant. Examples of prominent faults in­ 
clude the Straight Creek fault zone, which extends 
as a Tertiary fault for 110 km from east of the 
Grotto batholith southward at least to Manastash 
Ridge, where it is covered by the Columbia River 
Basalt Group; the Entiat fault, which extends 
southeast for 60 km from the Cloudy Pass batholith 
to east of the map area; and the prominent set of 
northwest-trending faults just west of Darrington. 
Many Tertiary faults are parallel to underlying 
Paleozoic and Mesozoic structures; others are pre- 
Tertiary faults reactivated in the Tertiary (Misch, 
1977; Tabor and others, 1984). For example, the 
Straight Creek fault was a major Late Cretaceous to 
early Tertiary strike-slip fault that has as much as 
160 km of right-lateral offset (Frizzell, 1979). 
Between the late Eocene and middle Miocene the

fault reactivated but movement was dominated by 
normal displacement (Tabor and others, 1984).

Details of timing and offset along these faults 
are not well known, and only those segments of 
faults that show probable post-45-Ma movement are 
shown on the geologic map. For example, the 
Straight Creek fault zone extends well north of its 
termination shown on the map. However, because 
the fault cuts only Mesozoic rocks in its northern 
part, possible post-late Eocene movement cannot be 
evaluated, and that part of the fault is not shown on 
the map.

The geologic map shows that, in general, 
major faults displace Eocene volcanic and sedimen­ 
tary rocks and are cut by middle-Miocene plutons. 
These relations suggest a period of normal faulting 
in the northern Washington segment between 40 
and 22 Ma. Other, shorter faults offset Miocene 
plutons and Miocene and Pliocene volcanic rocks 
east of Mount Baker and in the headwaters of the 
Skykomish River. These faults do not show a 
consistent trend and may be related to local features. 
For example, in the headwaters of the Skykomish 
River, faults largely bound the Eagle Tuff (Yeats, 
1977). Yeats suggested that the tuff may be the 
down-dropped fill inside a 22- to 24-Ma caldera. 
The Eagle Tuff and the adjacent Grotto batholith 
have radiometric ages within 2 m.y. of each other, 
and Yeats (1977) also suggested that they may be 
genetically related.

Few descriptions mention folding in rocks 
younger than the middle Eocene. Vance (1957) 
described the Barlow Pass Volcanics as strongly 
folded, generally dipping less than 35°; his map 
suggests a gently south-plunging, open syncline. 
Farther west, in the foothills of the Cascade Range, 
Frizzell and others (1984) contrasted the pro­ 
nounced deformation of the lower to upper Eocene 
Puget Group with the more mildly deformed upper 
Eocene volcanic rocks of Mount Persis, but few 
fold axes are shown on their map.

The paucity of upper Eocene to upper Mio­ 
cene sedimentary and volcanic rocks, and the large 
areas underlain by granitic plutons and pre-Eocene 
basement rocks are conventionally used as evidence 
for major post-middle Miocene regional uplift of the 
northern Washington segment However, details of 
timing of the uplift and the amount are rarely stated. 
Isostatic rebound following late Pleistocene glacial 
unloading of the Puget Sound lobe of the Cordi- 
lleran ice sheet at approximately 12 ka can account 
for as much as 0.14 km of uplift in the northern 
Washington segment (Thorson, 1981). Beyond
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that amount, stratigraphic evidence suggests little if 
any differential uplift of the northern Washington 
segment.

Upper Eocene rocks crop out at approxi­ 
mately the same elevation along the west side of the 
range in both segments for 250 km from Seattle 
southward to the Columbia River--an unlikely 
coincidence if extensive post-middle Miocene 
differential regional uplift had taken place. Areas 
underlain by upper Eocene rocks and their present- 
day elevations are as follows. (1) The volcanic 
rocks of Mount Persis are exposed in the Cascade 
foothills approximately 40 km east of Puget Sound 
at elevations between 50 and 1,600m. (2) The 
contact between the volcanic rocks of Mount Persis 
and the unconformably underlying pre-Tertiary 
bedrock is visible between elevations of 500 to 750 
m (Tabor and others, 1982a), although to the west 
the contact projects below sea level under the Puget 
Sound lowland. (3) In the southern Washington 
segment, upper Eocene volcanic rocks of the 
Northcraft Formation crop out along the southern 
edge of the Puget Sound lowland and extend south­ 
ward into the Centralia-Chehalis area at elevations 
between 100 and 1,000 m. (4) The contact 
between the upper Eocene Northcraft and the 
underlying middle Eocene Mclntosh Formation 
ranges in elevation from 100 to 250 m (Snavely and 
others, 1958). (5) Upper Eocene basaltic and 
volcaniclastic rocks assigned to the Coble Volcanics 
by Phillips (1987a, b) crop out approximately 50 
km south of the Centralia-Chehalis area along the 
Cowlitz River at elevations between 50 and 750 m.

Miocene plutons in the northern Washington 
segment and coeval volcanic rocks in the southern 
Washington segment can also be used to estimate 
differential uplift. The presumed elevation of the 
Earth's surface in Miocene time for the North 
Cascades is estimated from the present elevation of 
a pluton's roof and the depth at which it was 
intruded. The elevation of the restored Miocene 
Earth's surface is then compared to the elevation of 
Miocene volcanic rocks in the southern Washington 
segment; any difference should be the approximate 
amount of differential uplift between the two seg­ 
ments. This method suggests that post-middle 
Miocene differential uplift is no more than 1.5 km. 
However, assumptions are required that may not be 
correct. The first assumption is that depths of in­ 
trusion of the plutons are well known. The second 
assumption is that the elevation of the Earth's sur­ 
face above the Miocene plutons in the northern 
Washington segment was approximately equal to 
the elevation at which coeval volcanic rocks were

deposited in the southern Washington segment. 
Unfortunately, there is no way of evaluating this 
assumption.

Details of the calculations are as follows. 
The roof of the 25- to 17-Ma Snoqualmie batholith 
is presently about 1,500 m above sea level. 
Erickson (1969) estimated that the Earth's surface 
lay 1,220 to 1,440 m above the roof of the pluton. 
Therefore, the Earth's surface in Miocene time 
would have been at an elevation of 2,720 to 2,940 
m above present sea level. The roof of the 22-Ma 
Cloudy Pass batholith is presently about 1,500 to 
2,200 m above sea level. Tabor and Crowder 
(1969) state, "Intrusive breccias and hypabyssal 
phases suggest that the magma came close to the 
surface and probably vented." These observations 
suggest that the Cloudy Pass batholith was 
probably intruded at slightly shallower depths than 
the Snoqualmie batholith. I will use a figure of 800 
to 1,200 m as the distance from the presently 
exposed roof of the Cloudy Pass batholith to the 
Earth's surface at the time of intrusion. These 
figures indicate elevations of 2,300 to 3,400 m for 
the elevation of a restored middle Miocene Earth's 
surface. In the southern Washington segment, 
volcanic rocks that are 25 to 17 Ma are presently 
exposed between 750 and 2,200 m above sea level. 
If the assumptions for this method are correct, then 
no more than 1,500 m of differential uplift is 
indicated between the middle Miocene Earth's 
surface in the northern Washington segment and the 
elevation of coeval volcanic rocks in the southern 
Washington segment.

SOUTHERN WASHINGTON SEGMENT 

Volcanism

Quaternary volcanogenic rocks are much 
more voluminous in this segment than in the north­ 
ern Washington segment, and both intermediate- 
composition and basaltic rocks are common 
(table 2). Andesitic and dacitic activity is concen­ 
trated around four major stratovolcanoes-Mount 
Adams, Mount Rainier, Mount St. Helens, and 
Goat Rocks volcano. Additional intermediate and 
silicic volcanism occurrs in a field of small widely 
dispersed volcanoes north of Goat Rocks volcano. 
Major Quaternary basaltic fields include the Tumac 
Mountain area, located 20 km southeast of Mount 
Rainier, the Indian Heaven volcanic field located 40 
km southeast of Mount St. Helens; basaltic fields 
peripheral to Mount Adams that are located both
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Table 1. Estimates of magma produced at different volcanic centers in the northern Washington segment of 
the Cascade arc

Volume of magma (km3)

1 to 0 Ma

Intermediate
Volcanic center

Mount Garibaldi*
Mount Baker*
Pliocene volcanics under Mount Baker
Hannegan Volcanics
Glacier Peak
Volcanic rocks of Gamma Ridge
Mafic flows between Glacier Peak and Mount Rainier

Total volume

and silicic

23.7
71.6
0
0

29.4
0
fi

124.7

Mafic

0
0
0
0
0
0
LI

1.3

7tol

Intermediate
and silicic

0
0
7.2

40.7
0
4.15
Q

52.05

Ma

Mafic

0
0
0
0
0
0
Q

0

* Minor amounts of basalt included as part of main cone.

7|C

Table 2. Estimates of magma produced at different volcanic centers in the southern Washington segment of 
the Cascade arc

Volume of magma (km3)

Volcanic center

Mount Rainier
Mount Adams*
Basalt fields pcrphcrial to Mount Adams
Mount St. Helens*
Tumac Mountain area
Hornblende andesiic and dacite dome and flows

north of Goat Rocks volcano
Goat Rocks volcano
Twin Lakes to Bumping Lakes dacite porphyry
Devils Horns rhyolites
Devils Washbasin basalt
Simcoe volcanic field#
Indian Heaven volcanic field
Small volcanoes south of Mount St. Helens
between Vancouver and the Wind River

Total volume^

1 to 0 ma

Intermediate
and silicic

136
206

0
77.2
0

11.3
13
0
0
0
0
1.1

JL5

446.1

Mafic

0
0

10.3
0
9.8

0
0
0
0
0
0

21.3

$A

46.8

7tol

Intermediate
and silicic

0
0
0
0
0

3.8
38.8
25.7
46.6

0
1

10.1

0.64

125.64

ma

Mafic

0
0
4.9
0
9.8

0
0
0
0
0.37

45.5
37.9

12

56.2

* Minor amounts of basalt included as part of main cone.
#Simcoe volcanic field not included in totals.
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north and south of the present main cone; and a 
field of numerous, isolated, small volcanoes south 
of Mount St. Helens between Vancouver and the 
Wind River. Perhaps part of the extensive Simcoe 
volcanic field, 10 to 70 km southeast of Mount 
Adams, should be included here, but its age and 
relation to development of the Cascade arc is poorly 
known. The few published K-Ar ages (Shannon 
and Wilson, 1973; Phillips and others, 1986) indi­ 
cate that much of the field is Pliocene in age. 
However, the youthful appearance of some cinder 
cones and volcanoes suggests that a significant part 
of the field is Quaternary in age.

Mounts Adams and Rainier should be con­ 
sidered dormant. Mount St. Helens is presently 
active, following renewed eruptions in 1980. The 
Goat Rocks volcano is extinct and deeply eroded. 
Goat Rocks volcano and Mount Adams, along with 
Mount Baker and Glacier Peak, lie between 70 and 
110 km east of the 60-km contour drawn by 
Weaver and Baker (1988) in the upper part of the 
Juan de Fuca plate. Mounts Rainier and St. Helens 
are between 50 and 60 km east of the 60-km 
contour (fig. 1).

Mount Adams is a late Pleistocene and Holo­ 
cene stratovolcano built on the eroded remains of 
middle and late Pleistocene volcanic centers. 
Almost no details of the volcano's history were 
known until quite recently, but summaries of work 
in progress by Hildreth and others (1983) and 
Hildreth and Fierstein (1985) have outlined its 
history. Two samples of the oldest volcanic rocks 
peripheral to the present volcano have K-Ar ages of 
400 and 470 ka (Hopkins, 1976; Hildreth and 
others, 1983). A younger, but still deeply eroded 
volcanic center has a K-Ar age of about 200 ka. 
The present main cone is built on top of the eroded 
remnants of this 200 ka volcano, indicating the 
youth of the main cone. However, nearly all the 
main cone above 2,300 m was constructed in latest 
Pleistocene time, probably between 20 and 10 ka 
(Hildreth and others, 1983; Hildreth and Fierstein, 
1985). Lava flows that erupted from the present 
main cone contain from 54 to 62 percent SiO2 ; 
flows erupted from flank vents penecontempora- 
nepus with the main cone are, on the average, more 
silicic, although their SiO 2 content ranges from 49 
to 61 percent The eruptive style of Mount Adams 
is characterized by numerous thin flows that came 
from the summit area or flank vents. Fragmental 
deposits are uncommon except near the main vent. 
Historic activity at Mount Adams is unknown, but 
the volcano has erupted at least 7 times during the

Holocene from flank vents (Hildreth and Fierstein, 
1985). The peripheral, flank, and main cone vents 
define a recently active north-south locus of volcan- 
ism 40 km long but only 5 km wide, (Hildreth and 
others, 1983) implying underlying structural 
control.

Surprisingly little is known about Mount 
Rainier considering it is such a large volcano and is 
so close to major population centers. It has never 
been mapped in detail, and only scant chemical and 
radiometric data are available. The most complete 
description is in Fiske and others (1963), although 
they included all of the volcano's eruptive products 
in a single map unit. Products of the earliest known 
eruptions include thick intracanyon andesite flows 
on the north and west sides of the mountain and an 
extensive volcaniclastic alluvial apron, the Lily 
Creek Formation, on the northwest flank. 
Eruptions at Mount Rainier probably began more 
than 840 ka in the early Pleistocene on the basis of a 
few radiometric determinations, magnetic polarity 
measurements, and stratigraphic relations of the 
Lily Creek Formation with glacial deposits (Fiske 
and others, 1963; Crandell, 1963; Easterbrook and 
others, 1981). The present main cone of Mount 
Rainier is built of alternating thin andesite flows and 
breccia layers. From what is known, all Mount 
Rainier rocks are chemically similar-nearly all 
rocks contain from 58 to 64 weight percent SiO2 
(Fiske and others, 1963; McBirney, 1968; Condie 
and Swenson, 1973). Five explosive eruptions 
large enough to deposit tephra layers thicker than 
1.5 cm a few kilometers from the vent have 
occurred within the last 10,000 yr, and more than 
55 volcanic debris flows have been shed off the 
mountain into the surrounding lowlands during the 
same time period (Crandell, 1969; Crandell, 1971; 
Mullineaux, 1974).

Mount St. Helens is the youngest and most 
active stratovolcano in the Cascades; it began erupt­ 
ing only about 40 ka (Crandell and Mullineaux, 
1978). This short history has been divided by 
Crandell and Mullineaux (1978) into nine eruptive 
periods with dormant intervals between them. Each 
eruptive period consists of many closely spaced, 
commonly explosive volcanic events. Individual 
eruptive periods lasted from hundreds to thousands 
of years. Intervening dormant intervals were 
somewhat longer, ranging from a few hundred to 
15,000 yr (Crandell and others, 1981; Mullineaux 
and Crandell, 1981).

There are two main parts to the volcano-an 
old Mount St. Helens and the present main cone
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(Hopson, 1971). From 40 to 2.5 ka, old Mount St. 
Helens erupted only dacite. Domes and short, thick 
lava flows constructed a dome field while pyro- 
clastic flows, volcanic debris flows, and ash built 
an extensive fragmented apron around the domes, 
filled valleys that drained the mountain with vol­ 
canic diamicton, and blanketed downwind areas 
with thick tephra layers (Mullineaux and Crandell, 
1981; Crandell, in press). About 2.5 Ka the com­ 
position of eruptive products broadened and the 
present main cone started forming. Dacite con­ 
tinued to erupt, but andesite and basalt also 
appeared for the first time. The composite, sym­ 
metrical, young main cone, was built entirely dur­ 
ing the last 2,500 yr on top of the thick fragmental 
apron and domes of old Mount St. Helens. This 
cone was partially destroyed by the May 1980 
eruption.

Because so many eruptions of Mount St. 
Helens were violently explosive, pyroclastic flows, 
volcanic debris flows, and tephra form important 
components of the volcano's products. An exten­ 
sive apron of fragmental deposits nearly encircles 
the mountain, and major streams that drain it have 
thick fills of volcanic diamicton. More than 35 
volcanically induced floods have inundated streams 
as far as 50 km from the volcano, and 6 of the 
largest volcanic debris flows probably reached the 
Columbia River more than 100 km away. Rem­ 
nants of these flood deposits can still be mapped as 
far as 75 km downstream (Scott, in press). 
Widespread tephra deposits are volumetrically im­ 
portant, and individual tephra layers form distinc­ 
tive time-stratigraphic markers throughout the 
Pacific Northwest More than 100 individual tephra 
layers, each representing one or more explosive 
events, can be traced back to Mount St. Helens. 
Sequences of tephra layers of about the same age 
that can be distinguished by differences in compo­ 
sition are grouped together into sets for stratigraphic 
purposes. Presently, 10 distinctive sets of Mount 
St. Helens tephra are recognized (Mullineaux, 
1986).

The extinct Goat Rocks volcano was active 
from late Pliocene to early Pleistocene time (Elling- 
son, 1969; Clayton, 1983; Swanson and Clayton, 
1983); it is the oldest recognized stratovolcano in 
the Cascade Range of Washington that is younger 
than the Columbia River Basalt Group. Its volume 
is less than that of Mount Baker and about equal to 
that of Mount St. Helens. Deeply eroded remains 
of flank and intracanyon flows, now topographi­ 
cally inverted, cap ridges in the headwaters of the 
Tieton, Klickitat, and Cispus Rivers. Radially dis­

tributed flows whose initial dips increase up-flow 
are the principal evidence of the former volcano's 
size and location. About half of a radial dike swarm 
whose focus is consistent with that of the flows 
(D.A. Swanson, oral commun., 1987) is also pre­ 
served. Likely vent areas are indicated by small 
intrusions and altered areas near the projected con­ 
fluence of the flows and dike swarm. Pyroxene 
andesite flows predominate but breccia interbeds 
become more common near vent areas. On the 
north flank of the main volcano, andesite flows are 
intercalated with basalt flows from a large basaltic 
shield, indicating contemporaneous andesitic and 
basaltic volcanism (Swanson and Clayton, 1983; 
Clayton, 1983).

Small-volume hornblende andesite and dacite 
domes and short flows located mostly north of Goat 
Rocks form a difuse elongate volcanic field approx­ 
imately 30 km north-south by 15 km east-west 
(Clayton, 1983).

Mafic volcanic activity in the Tumac Moun­ 
tain area formed two major shield volcanoes, Hog­ 
back and Tumac Mountain, as well as numerous 
small shields, cinder cones, and valley filling 
flows. Thin olivine basalt and basaltic andesite are 
the most common rock types. The Hogback 
Mountain volcano was active during the late 
Pliocene and early Pleistocene, and is deeply 
eroded. The Tumac Mountain volcano formed 
within the last 730 ka and has a constructional 
shape (Clayton, 1983).

The Indian Heaven volcanic field consists 
chiefly of a series of north-south-trending, coalesc­ 
ing, polygenetic shield volcanoes. Cinder cones 
and subglacial palagonitized hyaloclastic pillow lava 
complexes are also present The dominant compo­ 
sition is basalt and basaltic andesite. Low potas­ 
sium, high aluminum tholeiite is common. Strong 
alignment of vents suggests that volcanism was 
structurally controlled (Church and others, 1983; 
Hammond, 1985; 1987).

Small, dominantly basaltic monogenetic vol­ 
canoes are present in two other areas in southern 
Washington-south of Mount St Helens between 
Vancouver, Wash, and the Wind River and on the 
north and south flanks of Mount Adams. Vent 
alignments in both areas suggest underlying struc­ 
tural control, although none is apparent at the 
surface.

I have calculated the volcanic production rate 
[km3 (km of arc length) ̂ m.y.*1 ] for three separate 
time periods-0-1 Ma; 1-7 Ma; and about 17-36 Ma 
(middle Miocene to early Oligocene)~in the south-
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em Washington segment. The youngest span (0-1 
Ma) is the same in both the southern and northern 
Washington segment. The spans of the two older 
time periods are slightly different but still 
comparable.

Mount Adams is the most voluminous pre­ 
sent-day stratovolcano in Washington. Widespread 
tephra layers and mass-flowage deposits are not 
common (Hildreth and others, 1983; Vallance, 
1986). The largest recognized mass-flowage de­ 
posits are found in the valley of the White Salmon 
River (Hopkins. 1976; Vallance, 1986). Their 
combined volume is less then 0.05 km3. Andesitic 
lava flows are mostly confined to the main cone, 
which has an estimated volume of 206 km3(fig. 2).

Mount Rainier is the second most voluminous 
present-day stratovolcano in Washington. Impor­ 
tant components of its total volume include (1) the 
main cone, (2) volcanic debris flows away from the 
main cone, (3) large intracanyon lava flows, and (4) 
the Lily Creek Formation. Tephra units are volu- 
metrically unimportant. Mullineaux (1974) recon- 
gized 10 separate tephra units which range in thick­ 
ness from less than 1 cm to 150 cm. However, 
most tephra units are not widespread. Mullineaux 
calculated a total probable minimum volume of 0.51 
km3 which equals about 0.3 km 3 of dense-rock- 
equivalent andesite. The volume of the main cone 
is approximately 87 km3. The volume of mudflows 
and volcaniclastic fluvial deposits away from the 
main cone is about 10 percent of the volume of the 
main cone. The combined volume of the four 
largest Holocene mudflows and debris flows 
amounts to only 2.2 km3 : "Osceola", 2.03 km 3 
(Crandell, 1971, p. 26); "Electron", 0.153 km3 
(Crandell, 1971. p. 57); "Paradise", 0.102 km3 
(CrandelJ, 1971, p. 36); and "Round Pass," 0.153 
km3 (Crandell, 1971, p. 55). These deposits are 
less dense than the lava flows from which they 
originated, and volume estimates need to be cor­ 
rected for the difference between the bulk densities. 
Unfortunately, there are no published bulk densities 
for consolidated Cascade mudflows or volcani­ 
clastic fluvial deposits. The most applicable bulk 
densities are those measured for the debris- 
avalanche and debris flow deposits of May 18, 
1980, at Mount St. Helens, which range from 1.53 
to 2.01 g/cm 3 (Voight and others, 1981, p. 373; 
Major and Voight, 1986; Glicken, in press). Using 
1.77 g/cm 3 (midpoint between the maximum and 
minimum values of the avalanche deposit) as the 
average bulk density of Mount Rainier volcanic 
debris flows and 2.7 g/cm3 for the density of

andesite, the andesitic rock equivalent for the four 
largest Mount Rainier mudflows and debris flows is 
1.44 km3. Total volume of large intracanyon flows 
is estimated to be about 40 km3 , on the basis of 
their area and thickness as mapped by Fiske and 
others (1963) and Buckovic (1974). The volume of 
the Lily Creek Formation can be estimated from its 
original extent and thickness (Crandell, 1963, p. 
A18, A20) as 11 km3 , which must also be cor­ 
rected to give an equivalent volume of magma. The 
Lily Creek Formation consists predominantly of 
mudflows, volcanic debris flows, and volcanic 
alluvial deposits, so 1.77 g/cm 3 is also an appro­ 
priate value for its bulk density. The andesitic rock 
equivalent of the Lily Creek Formation is estimated 
as 7.4 km3. Adding all the individual components, 
the approximate total volume of magma produced 
by Mount Rainier is 136 km3 (fig. 2).

As at Mount Rainier and Glacier Peak, an im­ 
portant fraction of Mount St. Helens deposits now 
lies beyond its main cone. The total volume of 
Mount St. Helens consists of (1) the main cone; (2) 
valley-filling mudflows, volcanic debris flows, and 
pyroclastic deposits; and (3) tephra. Using plani- 
metric methods, the volume of the main cone before 
May 1980 was calculated as 24.4 km3 (Sherrod and 
Smith, 19895). Crandell and MuUineau (1973, p. 
A 20) estimated its volume as 27 km3 - They also 
estimated the volume of valley fill that formed 
between about 13 and 2 ka as 3 to 4 km3. The vol­ 
ume of valley fill younger than 2 ka is probably 
small. Estimating the volume of valley fill that 
formed between 40 and about 13 ka is difficult 
because the deposits are deeply eroded. On the 
basis of what remains, mostly on the south side of 
the volcano, I estimate the volume of this older 
valley fill to be about the same as that of valley fill 
formed between 13 and 2 ka. Correcting the 6 to 8 
km3 of valley fill for the difference between the 
bulk density of the deposits (again using an 
approximate value of 1.77 g/cm3) and the density of 
dacite (approximately 2.4 g/cm 3) gives approxi­ 
mately 4.4 to 5.9 km3 of dacite rock equivalent.

No published measurements exist for tephra 
volume erupted from Mount St. Helens before May 
1980. Estimates are hard to make because no de­ 
tailed isopach maps or thickness data for tephra 
layers deposited before 1980 have been published. 
To estimate volume of tephra produced by Mount 
St. Helens, I used a ratioing method based on 
relating thickness of tephra layers to their volume.
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Wojcicki and others (1981) compared volume and 
thickness at arbitrarily chosen distances from the 
source for modem ash-fall deposits and constructed 
an empirical curve for estimating volume where 
thickness is known. Using this curve, they calcu­ 
lated that the volume of Mount St. Helens tephra 
layer Yn is 4.5 to 5 km 3 . The thickness of tephra 
layer Yn is 45 percent of the thickness of the com - 
plete tephra set Y (all thickness measurements made 
8 to 10 km downwind and given in Mullineaux 
(1986). If thickness is proportional to volume for 
the complete tephra set, then 4.5 to 5 km3 for layer 
Yn extrapolates to 10.0 to 11.1 km3 for all of tephra 
set Y. This estimate compares well with an estimate 
of 10 km3 for the volume of tephra set Y made by 
Crandell and Mullineaux (1973, p. A20). Assum­ 
ing that volume is proportional to thickness for all 
Mount St. Helens tephra and that the volume of 
tephra set Y is approximately 10 km3, then the total 
volume of tephra is 73 km3 on the basis of a total 
thickness of 1,460 cm (Mullineaux, 1986, Table 1). 
To convert this volume to an equivalent volume of 
dacite magma, the average bulk density of the tephra 
must be estimated. Bulk densities of uncompacted 
tephra from May 18,1980, are mostly between 0.5 
and 1.0 g/cm3 . Compaction by rain alone com­ 
monly increased bulk density by a factor of 2 
(Sama-Wojcicki and others, 1981). On the basis of 
these data, an average bulk density of 1.55 g/cm3 
seems reasonable for pre-1980 tephra. Therefore, 
the dacitic magma equivalent of Mount St. Helens 
tephra is about 47 km 3 . For comparison, Sama- 
Wojcicki and others (1981) calculated that the tephra 
of May 18, 1980, was equal to about 0.20 to 0.25 
km3 of solid rock. Adding all the individual com­ 
ponents, the total volume of magma produced by 
Mount St. Helens is about 77.2 km3 (fig. 2).

dayton (1983, table 2) gives the volume of 
the Goat Rocks volcano as 60 km3 and its age as 3 
to 0.7 Ma. He also estimates that 40 percent of the 
volume is breccia and tuff, which equals 24 km3 . 
Correcting this volume for the difference between 
the bulk density of volcaniclastic deposits (1.77 
g/cm3) and the density of andesite (2.7 g/cm3) gives 
approximately 16 km3 of andesite rock equivalent. 
The total dense rock equivalent volume of the Goat 
Rocks volcano is then 52 km3 . Details of age 
versus volume are not known, so I arbitrarily 
assigned 13 km3 or one-third of the total volume as 
the volume of volcanic products younger than 1 Ma 
(fig. 2). Although there are many possible sources 
of error in this calculation the volume of the Goat

Rocks volcano is small compared with the total vol­ 
ume of the other stratovolcanoes, and errors in its 
volume will not change the total calculated volume 
by much.

The volume of the remaining intermediate and 
silicic volcanic areas in southern Washington, the 
hornblende andesite and dacite domes and flows 
north of Goat Rocks, is given as 15 km3 by Clay- 
ton (1983). I estimate that one-fourth, or approxi­ 
mately 11.3 km3, was erupted in the last million 
years.

Adding the volumes of intermediate and sili­ 
cic magma produced in the last million years and 
using 160 km for the arc length (the distance from 
line A-A1 of Weaver and Michaelson (1985) to the 
Columbia River), I calculate a volcanic production 
of 446 km3/! 60 km of arc length, which is equal to 
a rate of volcanic production of 2.79 km3 (km of arc 
length)-1my1) (fig. 2). If mafic as well as inter­ 
mediate and silicic volcanism is included (table 2), 
the volcanic production rate is 3.08 km3 (km of arc 
length)' 1 m.y.- 1 . For comparison, Sherrod (1986, 
table 1) calculated rates of 3 to 6 km 3(km of arc 
length)~1Ma~1 for the Cascade Range in central Ore­ 
gon over the last 3.5 Ma. The central Oregon rates 
include mafic as well as intermediate-composition 
lavas.

About 90 percent of all upper Miocene to 
lower Pleistocene (7 to 1 Ma) volcanogenic rocks in 
the southern Washington segment lie within 45 km 
of the Goat Rocks volcano. The rest are in the In­ 
dian Heaven area volcanic field, 35 km southwest 
of Mount Adams. Extensive erosion and partial 
cover by younger rocks obscure the original areal 
extent and thickness of these rocks. Therefore, 
only a minimum rate of volcanic production can be 
calculated.

Clayton (1983) described principal units and 
calculated volumes in the Goat Rocks area. The 
oldest unit is a sequence of Pliocene rhyolite flows, 
breccia, and vitric tuff beds probably erupted from a 
caldera (Clayton's Devils Horns rhyolite). Clayton 
(1983, table 1) estimated the volume of this silicic 
unit as 60 km3 , and breccia and tuff content as 85 
percent. I have reduced its volume to 44.5 km 3 of 
magma equivalent, using Clayton's ratio of frag- 
mental rocks to flows and 1.6 g/cm3 as the average 
bulk density of the fragmental rocks and 2.3 g/cm3 
as the density of rhyolite.

The late Pliocene to early Pleistocene Goat 
Rocks volcano grew mainly on top of the Pliocene 
rhyolitic center. As described above, approximately
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52 km3 has erupted from this volcano, about 39 
km3, or two-thirds erupted before 1 Ma.

A sequence of Pliocene dacite domes and 
short flows coeval with the rtiyolite unit and the 
early part of the Goat Rocks volcano crops out on 
ridges between the Tieton River and Rattlesnake 
Creek (Clayton's (1983) dacite porphyry). Nearly 
all the dacite domes and flows are composed of 
dense lava. Clayton (1983, table 2) estimated that 
the volume of the domes and flows was between 15 
and 30 km3, and breccia and tuff content as 10 per­ 
cent. I have reduced its volume to 25.7 km3 of 
dense-rock-dacite equivalent using appropriate val­ 
ues for density of fragmental rocks and dacite.

The Pliocene to Holocene Indian Heaven 
volcanic field is predominately basalt. The field 
consists of a chain of coalesced shield volcanoes, 
associated cinder cones, and thin tephra deposits 
(Church and others, 1983; Hammond, 1985). A 
few small Pliocene and early Pleistocene andesite 
volcanoes are located along the east and west mar­ 
gins of the field. Hammond (1985) estimated the 
volume of the andesite volcanoes older than 1 Ma as 
about 10 km3 and the volume of basalt older than 1 
Ma as about 38 km3 . Other areas in this segment 
produced about 4.5 km3 of intermediate and silicic 
magma betwen 7 and 1 Ma (table 1).

Volcanic production of intermediate and sili­ 
cic magma for the southern Washington segment 
between 7 and 1 Ma equals about 126 km3. This is 
equal to a rate of volcanic production 126 km3/[(160 
km of arc length)(6 m.y.)] or 0.131 km3(km of arc 
length)* 1 !!!.y.- 1 . Including mafic magma erupted 
exclusive of the Simcoe volcanic field increases the 
rate to 0.189 km 3 (km of arc length)' 1 m.y'- 1 . 
These low rates agree with the relative paucity of 
volcanic rocks ranging in age between 7 and 1 Ma 
shown on the map. These rates are, however, 
approximately 4.5 to 7 times greater than the rate 
for coeval rocks in the northern Washington 
segment

Middle Eocene to middle Miocene volcano- 
genie rocks are widespread throughout the southern 
Washington segment; even so, estimating rates of 
volcanic production is not possible because of un­ 
certainties in volume. However, rates of deposition 
can be calculated in a few places on the basis of 
stratigraphic thickness between dated rocks. Ana­ 
lytical uncertainty of radiometric ages for this time 
period precludes calculation of meaningful rates for 
intervals of less than several million years and 
radiometric ages are not always well tied to mea­ 
sured stratigraphic sections. Eocene volcanogenic

rocks lack sufficient precise age determinations to 
calculate meaningful rates. Lower Oligocene to 
middle Miocene rocks have sufficient data on thick­ 
ness and age to calculate plausible rates of deposi­ 
tion in only four areas (see discussion bejow). To 
minimize uncertainty, rates were catenated over the 
entire time of volcanogenic deposition for each area. 
Despite these uncertainties, the estimates agree 
surprisingly well. As more radiometric age deter­ 
minations and careful stratigraphic measurements 
are made, the calculation of volcanic production 
rates for shorter time intervals will become more 
meaningful.

Mount Rainier is the first area where a middle 
Tertiary rate of deposition is calculated. Fiske and 
others (1963) mapped the area around Mount 
Rainier and defined three formations of pre-upper 
Miocene volcanogenic rocks. On the basis of gen­ 
eralized lithologic and temporal correlation, the 
names of these sequences have been extended by 
many authors throughout southern Washington. 
The oldest unit is the Ohanapecosh Formation, 
which is made up of the following components: (1) 
lava flow-mudflow complexes, that are the vent fa­ 
des of large volcanoes; (2) adjacent coarse alluvial 
facies volcaniclastic rocks, that form the deposi- 
tional aprons around the large volcanoes; and (3) 
minor ash-flow tuff and rtiyolite. The unconform- 
ably overlying Stevens Ridge Formation consists of 
quartz-bearing ash-flow tuff and alluvial facies 
volcaniclastic beds that were probably deposited on 
a volcaniclastic alluvial plain. The Fifes Peak For­ 
mation conformably overlies the Stevens Ridge 
Formation in the Mount Rainier area and is com­ 
posed predominantly of basalt and pyroxene andes­ 
ite flows, which are the vent facies of many coales­ 
ced volcanic centers. For each formation, Fiske 
and others (1963) listed their preferred thickness as 
well as maximum and minimum probable thick­ 
nesses. The preferred thicknesses total approx­ 
imately 4,700 m. The formations contain only 
scattered, poorly preserved fossils unsuitable for 
reliable age determination. Recently, V.A. Frizzell, 
Jr., R.W. Tabor, and J.A. Vance dated the three 
formations using K-Ar and fission-track methods 
on samples collected as near to the type localities as 
possible. Their data indicate that the base of the 
Ohanapecosh Formation is about 36 Ma and that the 
youngest ages on the Fifes Peak Formation are 
about 17 Ma (V.A. Frizzell, Jr., oral commun., 
1987). On the basis of the thickness and age data, 
the rate of deposition for lower Oligocene to middle 
Miocene volcanogenic rocks in the Mount Rainier 
area is approximately 247 m/m.y.
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Frizzell and others (1984) mapped the 
Ohanapecosh, Stevens Ridge, and Fifes Peak For­ 
mations in the Snoqualmie 30* by 1° quadrangle. 
The total thickness of these three formations, as 
measured from cross sections on their map, is 
4,500 m. Using the limiting ages of 36 and 17 Ma 
for these formations, the rate of deposition for these 
units is approximately 237 m/m.y.

Northwest of Mount St Helens, between the 
North Fork Toutle and Cowlitz Rivers, Evarts and 
Ashley (1984) mapped an east-dipping section of 
upper Oligocene to lower Miocene volcanogenic 
strata. The section lies between two broad gently 
south-plunging folds-an anticline to the west and a 
syncline to the east. Strata within the section are 
approximately 3,600 m thick (R.C. Evarts, oral 
commun., 1987) and were deposited between 33 
and 23 Ma (limiting ages are best estimates based 
on data in Evans and others (1987) and unpub­ 
lished 40Ar/39Ar data supplied by L.B.G. Rck- 
thom, written commun, 1988). Based on the 
thickness and age data, the rate of deposition for 
these strata is approximately 360 m/m.y.

South of Mount St. Helens, along the Lewis 
River near Swift Reservoir, Oligocene to middle 
Miocene volcanogenic rocks dip gently east. For 
this section, Phillips and others (1986) give K-Ar 
age determinations of 28.5 and 19.9 Ma, for two 
samples, which are separated by approximately 
2,700 m of volcanogenic strata. Reconnaissance 
mapping showed that the section is structurally un­ 
complicated. The rate of deposition calculated from 
the age and thickness is approximately 314 m/m.y.

Rates of deposition calculated for the four 
areas in the southern Washington segment range 
from 237 to 360 m/m.y. The range is small con­ 
sidering the lack of precision in thickness and age 
data. The rates of deposition for this segment are 
also similar to rates calculated by Verplank and 
Duncan (1987) in the Western Cascade Range of 
central Oregon for a similar timespan.

Granitic rocks

In contrast to the northern Washington seg­ 
ment, granitic plutons do not crop out over large 
areas in the southern Washington segment. Post- 
middle Eocene granitic plutons underlie only 730 
km2 in the southern Washington segment compared 
to 2,700 km2 in the northern Washington segment. 
Prominent granitic plutons in the southern Wash­ 
ington segment include the subvolcanic Tatoosh 
pluton (Fiske and others, 1963) and its satellite, the

Carbon River stock (Fischer, 1970; Frizzell and 
others, 1984); unnamed plutons in the headwaters 
of the Bumping River (Simmons and others, 1983); 
the epizonal Spirit Lake pluton (Evarts and Ashley, 
1984; Evarts and others, 1987); and the Silver Star 
stock and related small plutons (Schriener, 1978; 
Schriener and Shepard, 1981). Radiometric ages 
indicate that granitic plutons were intruded between 
24 and 14 Ma; most ages are between 22 and 17 Ma 
(Mattinson, 1977; Power and others, 1981; Frizzell 
and others, 1984; Evarts and others, 1987).

Tectonics

Present-day seismicity in the southern Wash­ 
ington segment is characterized by the near absence 
of subcrustal earthquakes. Consequently, the 
geometry of the Juan de Fuca plate is poorly known 
underneath southern Washington. The frequency 
of crustal earthquakes is also lower in southern 
Washington than it is farther north (Weaver and 
Michaelson, 1985), except for the concentration of 
earthquakes that are less than 25 km deep along the 
SL Helens seismic zone (Weaver and Smith, 1983). 
This zone passes under Mount St. Helens and ex­ 
tends from 30 km southeast of the volcano to 60 km 
northwest. Focal mechanisms of shallow earth­ 
quakes that are concentrated in the zone indicate 
mostly right-lateral strike-slip faulting along nearly 
vertical fault planes (Weaver and Smith, 1983). 
The zone does not correspond with any mapped 
geologic feature (Evarts and Ashley, 1984; Phillips, 
1987a).

Weaver and Michaelson (1985) used seis­ 
micity in Washington and northern Oregon, com­ 
bined with the distribution of active stratovolcanoes 
and other vents, to develop a segmentation model 
for the Cascade Range that is analogous to the seg­ 
mented Nazca subduction zone where it extends 
beneath the Pacific side of the South .American 
plate. According to this model, the young, 
shallow-dipping Juan de Fuca plate in the northern 
Washington segment is strongly coupled to the 
overriding North American plate, resulting in mod­ 
erate crustal seismicity in the North American plate. 
A postulated moderate dip on the subduction zone 
under the Cascade Range results in limited volcanic 
production. Farther south, in northern Oregon, the 
subduction zone associated with the arc is postu­ 
lated to dip more steeply, as much as 30°, resulting 
in extensive volcanism but almost no seismicity. 
The southern Washington segment forms a tran­ 
sition zone between the seismically active northern 
Washington segment and the nearly aseismic Ore-
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gon segment. This model, combined with the dis­ 
tribution of volcanogenic rocks and the rate of vol­ 
canic production in the two Washington segments, 
implies a stable plate-tectonic regime in the Cascade 
Range in Washington for at least the last 45 to 40 
m.y., although it does not rule out short-term fluc­ 
tuations in rate and direction of plate motion.

In contrast to the northern Washington seg­ 
ment, folds rather than long through-going faults 
are the prominent structures in the southern Wash­ 
ington segment. Most faults are less than 15 km 
long and strike nearly northwest, parallel or slightly 
oblique to nearby fold axes.

Faults are abundant, however, in the drain­ 
ages of the Yakima and Naches Rivers where the 
Straight Creek fault zone intersects the Olympic- 
Wallowa lineament. Raisz (1945) originally de­ 
fined this lineament on the basis of its physio­ 
graphic expression but was undecided whether the 
lineament "represents a transcurrent fault-zone, or 
an accidental alignment of different features*'. On 
the present geologic map, the lineament is made of 
different structural elements, and just west of the 
Cascade crest it is not clearly defined. The 
Olympic-Wallowa lineament and the Straight Creek 
fault zone meet in an area of complex geology on 
Manastash Ridge just before the lineament disap­ 
pears under the Columbia River Basalt Group. Ar­ 
cuate faults and tight folds in the Straight Creek 
fault zone swing southeast and merge obliquely 
with the Olympic-Wallowa lineament Details can­ 
not be shown on a map of this scale. The reader 
should consult Frizzell and others (1984) and Tabor 
and others (1984) for detailed maps and descrip­ 
tions of a complex geologic history involving verti­ 
cal and transverse faulting, folding, and sedimenta­ 
tion that lasted from early Tertiary time until at least 
the intrusion of the 25-Ma Snoqualmie batholith.

The White River fault (Frizzell and others, 
1984) is another unusually long fault for this seg­ 
ment of the Cascades. The fault forms a 60-km- 
long, west-northwest-trending splay off the 
Olympic-Wallowa lineament. The fault starts at the 
headwaters of the Naches River, extends across the 
Cascade Range, and disappears under glacial de­ 
posits in the Puget Sound lowland. Correlation of 
strati graphic units across the fault (Frizzell and oth­ 
ers, 1984) suggests more than 1.5 km of normal 
north-side-up separation since middle Miocene 
time. How the fault fits into the regional geologic 
history is not completely understood. Wells (in 
press) suggests that the Olympic-Wallowa 
lineament marks the boundary between a

compressional volcanic arc segment to the north and 
an extensional arc segment to the south.

North- to northwest-trending, gently plung­ 
ing folds characterize the southern Washington 
segment. Many individual fold axes have been 
traced as far as 50 km, and folds 10 to 20 km long 
are common. In general, folds in the northeast pan 
of the segment have higher amplitudes and shorter 
wavelengths than those in the southwest. Near 
Mount Rainier, major fold axes in Oligocene and 
Miocene rocks are spaced 5 to 10 km apart; limbs 
typically dip 20° to 50° (Fiske and others, 1963; 
Schasse, 1987). Between Mount St. Helens and 
the Columbia River, major fold axes in upper 
Eocene to Miocene rocks are 8 to 15 km apart, and 
limbs typically dip 5° to 30° (Roberts, 1958; 
Phillips, 1987a). Still farther south in the Western 
Cascade Range of Oregon, folds die out com­ 
pletely, and the volcanic rocks of the Western Cas­ 
cade Range form a gently east-dipping section that 
strikes north to northwest (Sherrod and Smith, 
1989).

Many areas are not mapped in detail, and fold 
axes in these areas are only approximately located. 
Volcaniclastic and ash-flow-tuff sequences (rocks 
shown as alluvial and distal facies on fig. 3b, sheet 
1), were deposited nearly horizontal and their pre­ 
sent attitudes accurately reflect regional structures. 
Flows and coarse-grained volcaniclastic sequences 
(rocks shown as vent facies on fig. 3b, sheet 1), 
however, may have been deposited with significant 
initial dip on the upper flanks of volcanoes, and 
their attitudes cannot be used to map regional struc­ 
tures. Thus, fold axes are particularly difficult to 
trace through volcanic centers. In some areas on the 
map, fold axes trend nearly at right angles to the 
regional fold trend; most of these areas are either 
poorly mapped or are probably near vents. More 
detailed mapping is needed to define fold axes more 
precisely.

The similar north- to northwest trend of most 
fold axes in Eocene through middle Miocene rocks 
in the southern Washington segment suggests a 
uniform stress field. However, the age of folding 
and its relation to proposed changes in plate-tectonic 
regime are unclear. In some areas, Eocene rocks 
are more tightly folded than the overlying Oligocene 
and Miocene rocks, and unconformities separate 
formations, suggesting episodic deformation. 
Elsewhere, older formations are no more tightly 
folded than younger ones, contacts are conormable, 
and formations interfmger, suggesting that 
deformation post-dates deposition of the youngest 
beds.
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One area where the rocks were folded in mul­ 
tiple episodes is between the Naches and Yakima 
Rivers on the east side of the range (Tabor and oth­ 
ers, 1984). There, a sequence of Eocene fluvial, 
feldspathic sedimentary rocks and less abundant 
intercalated volcanic beds are overlain by Oligocene 
volcanogenic rocks of the Cascade arc. Succes­ 
sively younger formations are less tightly folded 
than older ones, and unconformities between for­ 
mations are common. Tabor and others (1984) at­ 
tributed the deformation to "dominantly vertical 
movement along the Straight Creek fault and its 
southeasterly splays ...." Movement took place 
over an interval of at least 20 Ma, "...and vertical 
movements, significant since early Eocene Swauk 
deposition, followed late Eocene Naches deposition 
but tapered off by late Oligocene and ceased by 
Miocene time...." Because the Straight Creek fault 
zone and Olympic-Wallowa lineament merge in this 
area, it is not clear whether deformation took place 
in response to regional stresses or was localized 
along the pre-existing Straight Creek fault zone and 
Olympic-Wallowa lineament.

West of the Cascade Range along the conti­ 
nental margins of Washington and Oregon, Snavely 
and others (1980) and Snavely (1987) described in 
detail a close interplay between changes in the plate- 
tectonic regime and the sedimentary record. In their 
models, periods of more rapid underthrusting by the 
Juan de Fuca plate resulted in folding episodes in 
the overlying North American plate that were re­ 
corded as regional unconformities. In southwest 
Washington, only a few kilometers west of the 
Cascade Range, extensive regional unconformities 
occur as follows: in the middle Eocene at the base 
of the Mclntosh Formation, in the late Eocene be­ 
tween the Mclntosh and Cowlitz Formations and 
also between the Cowlitz and Lincoln Creek For­ 
mations, in the early Miocene between the Lincoln 
Creek and Astoria(?) Formations, and near the 
boundary between the early and middle Miocene at 
the top of the Astoria(?) Formation. Successively 
younger formations in any particular area are less 
folded than older ones, although differences may be 
subtle and apparent only on a regional scale.

Many of these formations, or their landward 
equivalents, have been mapped eastward to the 
margins of the Cascade Range where they interfin- 
ger with and are overlain by volcanogenic rocks 
(Fisher, 1957; Snavely and others, 1958; Roberts, 
1968; Card, 1968; Vine, 1969; Buckovic, 1979; 
Wells and others, 1983; Phillips, 1987a and b; 
Schasse, 1987). During the Eocene, a broad 
coastal plain, which was part of an extensive deltaic

tern, existed along the western margin of the mod­ 
em Cascade Range. West of the deltaic coastal 
plain lay shallow marine water.

Between the Carbon River and Mount 
Rainier, Card (1968) and Buckovic (1979) mapped 
part of the extensive Eocene delta system of south - 
em Washington and the Cascade volcanogenic 
strata that overlie it. More than 2,000 m of arkosic 
sediment were deposited in this delta. Sediment 
was transported by large rivers from crystalline 
sources to the east across the area of the modem 
Cascade Range.

Within the delta, thick piles of volcanogenic 
rocks accumulated around a few volcanic centers. 
For example, near Morion the volcanogenic North- 
craft Formation is as much as 750 m thick. Away 
from the main volcanic accumulation, volcanogenic 
strata thin and interfinger with enclosing arkosic 
deltaic sedimentary rocks (Snavely and others, 
1958; Card, 1968; Buckovic, 1974). Near Is- 
saquah, the thickest section of the volcanogenic 
Northcraft Formation is about 2,100 m. There, 
too, volcanogenic strata thin rapidly away from the 
main volcanogenic accumulation and interfinger 
with the enclosing arkosic sedimentary rocks of the 
Puget Group (Warren and others, 1945; Buckovic, 
1979).

Starting in the latest Eocene or earliest Oligo­ 
cene, volcanic activity along the axis of the Cascade 
arc greatly increased. As a result, continental vol­ 
canogenic strata derived from the growing Cascade 
arc to the east built slowly westward out over the 
delta, burying much of it. Volcanogenic deposits 
continued to accumulate along the axis of the range 
until middle Miocene time when volcanic activity 
waned or possibly stopped altogether in the Wash­ 
ington Cascades (Swanson, 1978; Hammond, 
1980; FrizzeU and others, 1984; Korosec, 1987; 
Evarts and others, 1987).

West of the growing continental volcanogenic 
apron, the shallow-water Lincoln Creek Formation 
of late Eocene to early Miocene age became the 
oldest marine formation in southern Washington to 
record the overwhelming influx of fine-grained vol- 
caniclastic sediment derived from the growing Cas­ 
cade volcanoes (Beikman and others, 1967; 
Armenrout, 1973; Prothero and Armentrout, 1985).

No close correlation has been recognized be­ 
tween changes in plate motion, regional unconfor­ 
mities, and folding episodes along the western flank 
of the Cascade Range similar to correlations 
recorded in the rocks of the Cenozoic the continen­ 
tal margin of southern Washington. Folds are at­ 
tributed to a poorly constrained period of deforma-
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tion that took place between eaiiy Oligocene and late 
Miocene time. For example, in the coal fields of the 
Cascade foothills east of the Seatile-Tacoma area. 
Vine (1969) described conformable and interfin- 
gering contacts between formations within the 
upper lower to upper part of the Eocene Puget 
Group as in well as the overlying unnamed lower 
Oligocene volcanic rocks. Farther west, unnamed 
volcanic rocks were described as interfingering with 
volcanic sandstone and tuff assigned to the Lin- 
coln(?) Formation of Weaver (1912, p. 10-22; 
equivalent to the Lincoln Creek Formation of pre­ 
sent-day terminology).

Truly regional unconformities are difficult to 
document within the volcanogenic core of the Cas­ 
cade arc in southern Washington. The range's 
stratigraphy is complex-hundreds of vents pro­ 
duced many hundreds of complexly interbedded 
lithologic units. As depicted in the facies models 
(fig. 3, sheet 1), local unconformities abound and 
spatially and temporally separate volcanic centers 
repeatedly erupted similar lithologies.

In spite of the stratigraphic complexity, re­ 
gional unconformities have been proposed on the 
basis of lithologic similarities between widely 
separated stratigraphic sections and relative 
proportions of distinctive rock units such as ash- 
flow tuff (Hammond, 1979; 1980). The regional 
importance of these unconformities is difficult to 
demonstrate because intervening areas are not yet 
mapped in detail. On large-scale detailed maps, 
proposed regional unconformities extrapolated from 
local unconformities may prove hard to extend 
when adjacent areas are mapped in detail. For 
example, on basis of detailed mapping in the Mount 
Rainier area, Fiske and others (1963) proposed that 
the "Ohanapecosh Formation was folded regionally, 
altered...uplifted and deeply eroded before the 
overlying Stevens Ridge Formation was deposited 
on it" Detailed mapping just north and east of the 
Mount Rainier area (Tabor and others, 1982b; 
Frizzell and others, 1984) failed to find such a pe­ 
riod of folding, alteration, uplift, and erosion. Only 
80 km south of Mount Rainier near Mount St. He­ 
lens, Evarts and others (1987) documented active 
volcanism and deposition of hundreds of meters of 
volcanogenic strata during this same 4-m.y. period 
of supposed regional deformation.

Many unconformities, periods of deforma­ 
tion, changes in volcanic production rate, or shifts 
in chemical composition have been proposed as re­ 
gionally significant in the Washington Cascades. 
Theoretically, regionally significant events should 
be linked to changes in the plate-tectonic regime.

However, events proposed as regionally significant 
in the Cascade Range remain largely uncorrelated 
with changes in relative plate motion. Some late 
Eocene to middle Miocene Cascade events proposed 
as regionally significant by different authors include 
(1) 50 Ma, start of Cascade volcanism, composition 
is dominantly andesitic (Hammond, 1979); (2) 30 
Ma, change from dominantly andesitic to mixed an­ 
desitic and silicic volcanism, regional unconformity 
(Hammond, 1979; 1980); 28 to 24 Ma, Ohanape­ 
cosh Formation folded on a regional scale and up­ 
lifted, followed by deposition of the Stevens Ridge 
Formation (Fiske and others, 1963; ages from V.A. 
Frizzell, Jr., oral common., 1987); (4) pre-17 Ma, 
extensive erosion surface developed on rocks 
underlying the Columbia River Basalt Group 
(Tabor and others, 1982b); (5) approximately 17 
Ma, cessation of Cascade volcanism in Tieton River 
area (Swanson, 1978); (6) 17 Ma, cessation of vol­ 
canism in southern Washington (Evarts and others, 
1987); (7) post-17 Ma, folding of the Stevens 
Ridge and Fifes Peak Formations along older axes 
(Fiske and others, 1963); and (8) 15 Ma, change 
from mixed andesitic and silicic to slightly more 
silicic than andesitic volcanism, regional 
unconformity (Hammond, 1979; 1980). Of all 
these events only those which took place about 50 
and about 17 Ma, correlate with major 
unconformities along the continental margin that are 
linked by Snavely (1987) to changes in relative 
plate motion.

The event along the continental margin that 
caused the middle Miocene unconformity at the top 
of the Astoria(?) Formation discussed earlier is also 
recorded throughout the southern Washington seg­ 
ment by a sharp decrease in volcanic production. 
Very few volcanic rocks that originated in the Cas­ 
cades of southern Washington have radiometric 
ages between 17 and 10 Ma (Laursen and Ham­ 
mond, 1974, 1979; Engels and others, 1976; 
Phillips and others, 1986), suggesting that volcan­ 
ism certainly waned and perhaps stopped altogether 
in southern Washington during this time interval. 
Indirect evidence also exists for a middle Miocene 
lull in Cascade volcanism. Sedimentary rocks de­ 
posited in the southern Washington segment 17 to 
10 Ma, although not widespread, are continental 
epiclastic sandstone and conglomerate sequences 
that formed by erosion of older volcanic edifices 
and not in direct response to volcanic activity. Fi­ 
nally, volcanogenic beds of Cascade orgin are 
rarely interbedded with flows of the Grande Ronde, 
Wanapum, and Saddle Mountains Basalts (16.6 to 
6 Ma) of the Columbia River Basalt Group as
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would be expected if Cascade and Columbia River 
Basalt Group had been simultaneously active.
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MAP UNITS

The Cascade Range suite of volcanic, vol- 
caniclastic, and nonvolcanic sedimentary rocks is 
stratigraphically complex compared to miogeosyn- 
clinal or continental-shelf sedimentary rocks. The 
complexity results from the intricate way in which 
volcanic and volcaniclastic rocks were formed, de­ 
posited, and reworked in a subaerial arc environ­ 
ment. Hundreds of small overlapping and inter- 
tonguing volcanogenic and sedimentary units com­ 
pose the range; thus, individual lithostratigraphic 
units are discontinuous and commonly intricately 
interbedded. In addition, the rocks are poorly ex­ 
posed in many places, and distinctive widespread 
marker units are uncommon. Lithologic correla­ 
tions, even of similar stratigraphic sequences, are 
unreliable without corroborating radiometric ages or 
detailed mapping.

Most previous authors responded to the 
range's stratigraphic complexity by either (1) trying 
to distinguish and name each different lithologic 
unit in an area or (2) grouping many heterogeneous 
lithologic units into a few broadly defined forma­ 
tions. These formations were thought to character­ 
ize an area, to define a volcanic episode, or to have 
volcanogenic significance. The first approach led to 
a proliferation of local formation names without re­ 
gional significance. The second approach led to the 
application of a few imprecisely defined formation 
names across a wide area.

To avoid the problems of nomenclature, con­ 
ventional stratigraphic units were not used for this 
map. Rather, I interpreted previous studies and my 
own field observations using a conceptual model of 
volcanic and sedimentary processes. The model is 
based chiefly on the models of Smedes and Prostka 
(1972) and Vessell and Davies (1981); the main 
criteria for subdivision are composition, age, and 
volcanic facies. The result is a more interpretative 
map than other maps of the Cascade Range, such as 
those of Luedke and Smith (1982) or Hammond 
(1980).

A hypothetical cross section that illustrates 
the model of volcanic and sedimentary processes 
and relations between deposits in the Cascade 
Range is shown (fig. 3). In this model, volcani­ 
clastic sediments derived from a major volcano lap 
onto an older eroded volcano and simultaneously 
interfinger with contemporaneous deposits that 
were derived from other major volcanoes (fig. 3a). 
The resulting suite of volcaniclastic rocks represents 
many different depositional environments and vol­ 
canic sources. Intermittently erupted, highly mobile

flows, lava flows, and large-volume debris flows 
may travel long distances down valleys. Far 
downstream these flows become interbedded with 
fine-grained, thin-bedded volcaniclastic deposits 
that are characteristic of a low-energy depositional 
environment. Large andesitic to dacitic volcanoes 
construct aprons of pyroclastic and epiclastic debris 
derived from dome growth and eruptions higher on 
their flanks. Basaltic shield volcanoes overlap and 
interfinger with one another and with volcaniclastic 
sediments.

The facies relations interpreted from the vol­ 
canic and sedimentary deposits (fig. 3a), using the 
facies terminology of Smedes and Prostka (1972) 
and Vessell and Davies (1981), are shown (fig. 3b). 
The drawing emphasizes the interfingering between 
rock types that make up the different facies. The 
lithologic units are then combined into volcanic or 
sedimentary map units that have patterns showing 
genetic and facies information (fig. 3c).

The compositions of volcanic rocks shown 
on the map are based on weight percent of SiO2. 
Where SiO2 content is unknown, I interpreted it 
from published rock descriptions or my own field 
studies. Publications that include chemical analyses 
are noted in the "Source References." The volcanic 
rocks are divided into the following groups: (1) 
Rhyolite, more than 70 percent SiO2; (2) Dacite, 62 
to 70 percent SiO2; (3) Andesite, 57 to 62 percent 
SiO2; and (4) Basalt and mafic andesite (basaltic 
andesite or olivine andesite of many workers), less 
than 57 percent SiO2

Ideally, it would be better to subdivide the 
last category into two separate groups-basalt and 
mafic andesite. However, petrography and field 
appearance are generally not good predictors of 
SiO2 content for Cascade rocks that contain less 
than 57 percent SiO 2. Field classification proved 
unreliable, and maps that have sufficient detail and 
supporting chemical analyses are largely lacking not 
only for Quaternary rocks, but for Tertiary rocks of 
Western Cascade Range as well.

Age is another important criterion used to 
categorize Cascade volcanism. The choices of 
temporal subdivisions, while somewhat arbitrary, 
are based on a mixture of traditional chnonostrati- 
graphic units and the more or less instantaneous 
geologic events (such as magnetic reversals) that 
punctuate Earth's history.

Map-unit ages are based on more than 300 
radiometric ages. Publications containing radio- 
metric age data are noted in "Source References" 
(sheet 2). It should be emphasized, however, that
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this map shows geology as interpreted from field 
studies; lithostratigraphic relations take precedent 
over radiometric determinations. For example, an 
andesitic sequence shown as 7 to 2 Ma (unit Taj) 
might include a few andesite flows whose age is 
somewhat outside this interval, to avoid showing 
inconsistent lithologic relations with overlying and 
underlying lithologic units.

At present, there is not sufficient data to de­ 
termine if significant changes in composition or the 
rate of volcanism took place throughout the Cascade 
Range between 45 and 17 Ma. Therefore, this 
timespan is arbitrarily divided into approximately 
10-m.y. intervals.

The last 2 Ma is subdivided into shorter 
intervals because of the important inverse relation 
between age and geothermal potential (Smith and 
Shaw, 1975). However, many Pliocene and 
younger rocks have few radiometric age determina­ 
tions. Geomorphic features such as depth of ero­ 
sion, topographic inversion of intracanyon lava 
flows, and the relative youthfulness of adjacent 
volcanoes were used to assign undated younger 
rocks to particular age divisions. Relative geomor- 
phic youth was used most effectively to date Qua­ 
ternary volcanic rock because their landforms are 
still relatively well preserved and adjacent volcanoes 
of different ages may show sharp geomorphic con­ 
trasts.

The intervals chosen and reasons for selecting 
them are discussed below. The subscripts used for 
each interval correspond to the subscripts used in 
the "Description of Map Units".

Qj, 0 to 12 ka: This interval begins at the end of 
the last major glaciation in the Cascade Range 
and adjacent Puget Sound lowland in the latest 
Pleistocene and includes the entire Holocene 
(Waitt and Thorson, 1983; Porter and others, 
1983). Most Cascade researchers relate young 
volcanic deposits to glacial stratigraphy; thus, 
the 12-ka limit for this map unit. Young vol­ 
canic deposits dated by the 14C method are 
readily assigned to this unit.

Q2, 12 to 25 ka: This interval extends from the 
end of the last major glaciation in the Cascade 
Range backward to include the period of time 
for which reliable 14C ages are still fairly easily 
determined. I distinguish this interval because 
it highlights a group of young volcanic rocks 
that are important in making geothermal

evaluations. The base of this unit is close to 
the 24-ka boundary suggested by Imbrie and 
others (1984) as the boundary between oxy­ 
gen-isotope stages 2 and 3, which is consid­ 
ered by many to separate the late Wisconsin 
from the middle.

Q3, 25 to 120 ka: This interval extends beyond 
the time for which reliable 14C ages are readily 
determined to near the middle Pleistocene-late 
Pleistocene boundary. Ages are not easily de­ 
termined by any radiometric method on Cas­ 
cade rocks in this age range, and so some 
rocks may be incorrectly assigned to this 
period. Imbrie and others (1984) suggested 
128 ka for the boundary between middle and 
late Pleistocene, whereas Richmond and 
Fullerton (in press) suggest 132 ka.

Q4, 120 to 730 ka: The boundary between the 
Matuyama Reversed-Polarity and Brunhes 
Normal-Polarity Chrons marks the base of this 
period. Some recently published geologic 
maps include magnetic polarity of stratigraphic 
units from direct measurements (see Qayton, 
1980 for example).

Q 5 , 0.73 to 2 Ma: This interval begins at the 
base of the Pleistocene and ends at the Matu­ 
yama Reversed-Polarity Chron (Harland and 
others, 1982). Although 2 Ma does not mark 
any obvious structural or stratigraphic break in 
the evolution of the Cascade Range, it does 
mark the maximum age for likely geothermal 
targets as defined by Smith and Shaw (1975).

Tj, 2 to 7 Ma: In Washington and northern 
California, 7 Ma marks the approximate onset 
of renewed volcanism in the Cascades after a 
period of relative volcanic quiescence. In 
Oregon, most rocks exposed along the crest of 
the Cascade Range are younger than about 7 
Ma. Along the boundary between the High 
Cascades and the Western Cascades physio­ 
graphic subprovinces in Oregon, 7 Ma 
approximately corresponds to radiometric ages 
obtained from the base of a widespread 
sequence of basalt and basaltic andesite lava 
flows~the "ridge-capping basalt" of Sherrod 
(1986), "basalt of the early High Cascades 
eruptive episode" of Priest and others (1983), 
or the base of the "volcanic rocks of the High 
Cascade Range" of Smith and others (1982).
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East of the crest, volcaniclastic sediments de­ 
rived from the Cascade Range in Oregon began 
accumulating about 7 Ma in the upper part of 
the Deschutes basin and now comprise the 
Deschutes Formation of Smith (1986). In all 
three states, recognizable constructional vol­ 
canic landforms predominate in rocks of this 
age.

T2, 7 to 17 Ma: Much of this interval seems to 
be one of low volcanic flux at both the north 
and south ends of the Cascade arc but not in 
the middle. In southern Washington and 
northern Oregon, stratigraphic relations 
between the Columbia River Basalt Group and 
Cascade rocks suggest that the Cascade arc 
was relatively inactive from approximately 17 
to 13.5 Ma. The Columbia River Basalt 
Group erupted between 17 and 6 Ma on the 
basis of K-Ar ages (Swanson and others, 
1979; McKee and others, 1981), but more 
than 80 percent of the group erupted between 
16.5 and 14 Ma (Hooper, 1980). Cascade- 
related volcanogenic interbeds are present 
locally between flows of the Columbia River 
Basalt Group that lapped up against and ex­ 
tended across the Cascade Range. In Wash­ 
ington, the interbeds are generally thin and are 
composed of air-fall ash. Locally, thicker 
accumulations of sediment and reworked ash 
are found in paleovalleys. Cascade lava flows 
or thick volcanic debris-flow deposits derived 
from Cascade sources have not been mapped 
as interbeds between flows of the Grande 
Ronde and older flows of the Wanapum 
Basalts. The small aggregate thickness of 
Cascade-related strata between successive 
flows of the older pan of the Columbia River 
Basalt Group suggests that while the Grande 
Ronde and older Wanapum vents were active 
there were only a few active Cascade vents in 
southern Washington and northern Oregon.

Absence of volcanic rocks in Wash­ 
ington with ages between 13.5 and 7 Ma is 
evidence for continuing volcanic quiescence in 
Washington during that interval. However, in 
northern Oregon, thick sequences of volcani­ 
clastic rocks began forming in late Wanapum 
time (Sherod and Smith (1989a).

At the other end of the Cascade arc in 
southwestern Oregon, the youngest rocks of 
the "volcanic rocks of the Western Cascade 
Range" of Smith and others (1982) are 
approximately 17 Ma. No rocks were mapped

that are 17 to 7 Ma, suggesting that here, too, 
this interval was a time of relative volcanic 
quiescence. In northern California, the 
thickness and age data of Vance (1984) and 
Hammond (1983) indicate that the volume of 
volcanogenic rocks deposited per million years 
was an order of magnitude less during this 
interval than from the beginning of Cascade 
volcanism to 17 Ma and from 7 to approx­ 
imately 4 Ma. However, the volcanic inactiv­ 
ity charcteristic of this interval is not typical for 
the entire range. In west-central Oregon, 17 
Ma marks the onset of extensive andesitic to 
basaltic volcanism that formed the Sardine 
Formation (Peck and others, 1964).

T3,17 to 25 Ma: Several ash-flow sequences in 
the Western Cascade subprovince of Oregon 
and northern California have K-Ar ages be­ 
tween 25 and 23 Ma (Smith and others, 1982; 
Hammond, 1983; Vance, 1984; and N.S. 
MacLeod, written commun.. 1987); thus, 25 
Ma is a somewhat arbitrary but convenient di­ 
vision. The lower boundary of this interval is 
also conveniently close to the Oligocene- 
Miocene boundary (about 24 Ma) to be useful 
in classifying rocks mapped simply as Oligo- 
cene or Miocene in age without corroborating 
radiometric ages.

T4,25 to 35 Ma: The base of this interval gen­ 
erally corresponds to the time when volcanism 
was widely established in the Cascade Range 
from central Oregon northward.

T5,35 to 45 Ma: The base of this interval is the 
approximate age of the base of several isolated 
calc-alkaline but presumably arc-related vol­ 
canic sequences in Washington and Oregon. 
Examples are the Tukwila Formation and 
Goble Volcanics in Washington and the Fisher 
Formation of west-central Oregon.
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DESCRIPTION OF MAP UNITS

SEDIMENTARY DEPOSITS AND ROCKS

Qal

Tsj
Ts-

Ts,

Ts5

Alluvium (Holocene and PIeistocene)--Poorly sorted to moderately sorted sand, gravel, 
and silt deposited in valleys of active major streams. Many small areas omitted for clarity. 
Locally includes glacial and alluvial fan deposits

Landslide deposits (Holocene and PIeistocene)--Debris from mass-wasting processes, 
including slumps, earth flows, block glides, debris flows, and rockfalls. Landslides are 
most common where competent lava flows overlie weaker sediments or ash flows. Land­ 
slides that cover less than a few square kilometers are generally not shown

Glacial deposits (Holocene and PIeistocene)--Unconsolidated to moderately indurated, 
slightly to deeply weathered, bouldery to clayey till that forms moraines and drift sheets. 
Locally includes glacial outwash and related glaciofluvial and glaciolacusirine deposits. 
Many small areas omitted for clarity, especially moraines and till in mountain valleys and 
cirques. Locally, glacial deposits less than approximately 100 m thick are not shown to 
emphasize bedrock units, especially in the Puget Sound lowland

Quaternary sediments and sedimentary rocks, un divided--Mostly unconsolidated 
sand, gravel, and lacustrine deposits. Commonly includes deposits mapped by original 
authors (fig. 4, sheet 2) as older alluvium, terrace deposits, upland gravel, basin-filling 
sediments, or undifferentiated Quaternary sediments. Along the Columbia River, includes 
flood deposits that were deposited during the catastrophic emptying of glacial Lake 
Missoula at approximately 13 ka

Tertiary sedimentary rocks-Rocks ranging in age from 2 to approximately 45 Ma: Tsj, 2 
to 7 Ma; Ts2,7 to 17 Ma; TS3,17 to 25 Ma; Ts4,25 to 35 Ma; Tss, 35 to 45 Ma

Patterns-In addition to primary age designation shown by color, patterns may be used to indicate different
kinds of Tertiary sedimentary rocks:

Dominantly volcaniclastic sandstone, siltstone, granule conglomerate, and 
mudstone closely related to volcanic processes in time and location-
Sedimentary units shown without pattern correspond to fine alluvial fades and distal pan 
of coarse alluvial facies of Smedes and Prostka (1972) and to distal volcaniclastic facies 
and outer pan of medial volcaniclastic facies of Vessel! and Davies (1981). Sandstone, 
siltstone, granule conglomerate, and mudstone dominate. Most sequences include beds 
interpreted as debris-flow deposits, hyperconcentrated stream-flow deposits, and ash-flow 
tuff. Sedimentary sequences whose origin and mode of formation are not closely related 
to active volcanism are excluded, even where individual beds contain significant amounts 
of volcanic detritus. Beds are generally a few centimeters to 1 m thick. Unit grades 
laterally and vertically into other sedimentary or volcanic rock units as relative number of 
other rock types increases.

Sedimentary units shown without pattern formed predominantly by immediate 
reworking of penecontemporaneous primary volcanic deposits or, less commonly, directly
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from volcanic processes. Most beds formed as a result of immediate erosion and 
redeposition of primary volcanic or volcaniclastic deposits that were presumedly mostly 
unconsolidated and probably gravitationally unstable. Tops, distal parts, and aquagene 
parts of mass-flow deposits are particularly susceptible to reworking into better sorted and 
finer grained beds. Large volumes of volcaniclastic material may be quickly transported 
and rcdeposited to form these sequences.

Beds that have quite different mechanisms of sediment transport and deposition are 
interlayered in this unit. A typical stratigraphic section would be dominated by volcanic 
graywacke, sandstone, and siltstone but would have interbeds of coarse volcanic diamic- 
ton and ashy tuff. Volcanic graywacke, sandstone, and siltstone beds are thin to medium 
bedded and fine grained. They typically show sedimentary features indicating transport 
by normal stream flow and deposition by traction-dominated grain-by-grain mechanisms. 
A few beds have characteristics of deposits transported and deposited by 
hyperconcentrated stream flows. Diamictons are dominantly matrix supported and have 
planar bed forms. Beds are 0.5 to 3 m thick. Angular volcanic clasts are the dominant 
constituent of their coarse fraction. Beds of diamicton show features typical of 
transportation by debris flow or hyperconcentrated stream flow and deposition en masse 
(Janda and others, 1981; Smith, 1986a; Pierson and Costa, 1987), although a few 
volcanic diamictons are ash-flow tuffs. Ashy tuffs, in contrast, are generally thin, and 
their average grain size is less than 0.5 mm. Because ashy tuffs are fine grained and 
mantle preexisting topography, they are interpreted as having been deposited from ash 
falls.

All the components of this unit were probably deposited at some distance from vol­ 
canic sources. Graywacke, sandstone, and siltstone are interpreted as channel and over- 
bank deposits that accumulated on aggrading volcanic dispersal aprons that had relatively 
low gradients. Volcanic diamictons probably moved off the flanks of active volcanoes as 
channelized massflows that choked existing streams and then spread out over distal parts 
of aggrading volcanic aprons as thin sheets. Ash-flow tuffs also probably followed exist­ 
ing valleys off the flanks of active volcanoes and spread out over distal pans of the 
aggrading volcanic aprons.

Some rocks included in unit, such as air-fall tuff, formed directly from volcanic 
processes.

Continental sedimentary rocks not directly related to volcanic processes-
Dominantly sandstone, conglomerate, and mudstone that lack primary volcanic detritus. 
Sediments interpreted as being deposited far from active volcanoes or deposited during 
periods of volcanic quiescence. Also includes volcaniclastic sediments that were trans­ 
ported by normal fluvial and eolian processes and deposited by traction-dominated grain- 
by-grain mechanisms. Sedimentary sequences whose origin and mode of formation were 
a direct response to penecontcmporaneous volcanic activity are not included. Commonly, 
sediments were deposited in alluvial fans, along river valleys, or in freshwater lakes. In 
original reports (fig. 4), deposits typically include older alluvium, terrace deposits, stream 
deposits, some glacial outwash deposits, alluvial fans, lacustrine sediments, windblown 
deposits, conglomerate, sandstone, siltstone, shale, and coal

Marine, brackish-water, and deltaic sedimentary rocks-Mostly sandstone, siltstone, shale, 
and mudstone. Includes minor coal and conglomerate. Sediments interpreted as being deposited 
in open ocean, in estuaries, in brackish-water swamps, or in deltas. In many places, rocks 
formed in these different environments are interbedded, as they are throughout much of the 
extensive Eocene and early Oligocenc deltaic systems of western Washington (Snavely and 
others, 1958; Fisher, 1961; and Buckovic, 1979). In original reports (fig. 4, sheet 2), deposits 
include mostly sandstone, siltstone, mudstone, shale, coal, and conglomerate. Because of their 
fine-grain size and abundant weathered component of uncertain provenance, it is impossible to 
determine whether or not specific liihologic units were deposited in response to volcanic events
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VOLCANIC ROCKS 

Basaltic and mafic andesitic rocks

Columbia River Basalt Group (Miocene) -Comprises voluminous tholeiitic basalt flows of Miocene 
age. Most lava issued from dike swarms located 400 km east of the Cascade Range, 
flowed west across the area of the present-day Columbia Plateau, and lapped against older 
rocks of the Cascade Range. Some lava flooded through low gaps in the range in northern 
Oregon and southern Washington. Although not part of Cascade-arc volcanism, the 
Columbia River Basalt Group forms an important stratigraphic horizon. Unit informally 
divided into:

Tcu

Qb2

Qb3

Qb4

Qb5

Upper part-The Saddle Mountains Basalt as defined by Swanson and others (1979). The Saddle 
Mountains Basalt forms about 1 percent of total volume of the Columbia River Basalt Group and 
was erupted between 13.S±3 and 6 Ma. All members of the Saddle Mountains Basalt, except the 
Pomona Member, are restricted to the Columbia Plateau east of the map area. The 12-Ma 
Pomona Member followed the approximate course of the modern Columbia River through the 
Cascade Range (Anderson, 1980; Tolan and Beeson, 1984). Potassum-argon ages (Swanson and 
others, 1979) indicate that the Pomona Member erupted between about 12 and 10.5 Ma. 
(Preferred age of the Pomona Member is 12 Ma acccording to D.A. Swanson, oral commun., 
1987). A few outcrops of the Pomona in the Columbia River gorge (Anderson, 1980) are too 
small to show at map scale

Lower part-The Wanapum and Grande Ronde Basalts as defined by Swanson and others (1979). The 
older Grande Ronde Basalt is the most widespread unit of the Columbia River Basalt Group in the 
Cascade Range. In the overlying Wanapum Basalt, only the Frenchman Springs Member is 
widely distributed in the Cascade Range. The Priest Rapids Member of the Wanapum defines a 
narrow intracanyon path along the axis of Bull Run syncline in northern Oregon (Vogt, 1981); 
the other members never crossed the range. Potassium-argon ages (Swanson and others 1979; 
McKee and others, 1981), as well as structural data (Reidel, 1984), suggest that the Wanapum and 
Grande Ronde Basalts were erupted between 17 and 13.5 Ma

Quaternary basaltic and mafic andesitic rocks-Dominantly lava flows but includes 
some near-vent breccia and pyroclastic rocks. Rocks range in age from 0 to 2 Ma: Qb l , 
0 to 12 ka; Qt>2.12 to 25 ka; Qb}. 25 to 120 ka; Qb4,120 to 730 ka; Qb5,730 ka to 2 Ma

Tbt

Tb2

Tb4 

Tb<

Tertiary basaltic and mafic andesitic rocks-Dominantly lava flows but includes some 
near-vent breccia and pyroclastic rocks. Rocks range in age from 2 to approximately 45 
Ma: Tb!, 2 to 7 Ma; Tl^,17 to 25 Ma; 104.25 to 35 Ma; Tb5,35 to 45 Ma
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Andesitic rocks

Qa2

Qa3

Qa4

Qas

Ta,

Ta,

Tdi

Td-

Td3

Td,

Quaternary andesitic rocks Dominantly flows and domes but includes some near-vent 
breccia and pyroclastic rocks. Rocks range in age from 0 to 2 Ma: Qalt 0 to 12 ka; Qa 2, 
12 to 25 ka; Qa3,25 to 120 ka; Qa4,120 to 730 ka; Qa5,730 to 2 Ma

Tertiary andesitic rocks Dominantly flows but includes some near-vent breccia and 
pyroclastic rocks. Rocks range in age from 2 to approximately 45 Ma: Ta lt 2 to 7 Ma; 
Ta3,17 to 25 Ma; Ta4,25 to 35 Ma; Ta5,35 to 45 Ma

Tag ,

Datitic rocks

Quaternary dacitic rocks-Dominantly flows and domes but includes some near-vent 
breccia and pyroclastic rocks. Rocks range in age from: 0 to 730 ka: Qdj, 0 to 12 
ka; Qd2,12 to 25 ka; Qd3,25 to 120 ka; Qd4,120 to 730 ka

Tertiary dacitic rocks-Dominantly flows and domes but includes some near-vent breccia 
and pyroclastic rocks. Rocks range in age from 2 to approximately 45 Ma: Td lt 2 to 7 
Ma; Td2.7 to 17 Ma; Td3,17 to 25 Ma; Td4,25 to 35 Ma; Td5,35 to 45 Ma

Rhyolitic rocks

Quaternary rhyolitic rocks-Dominantly flows and domes but includes some near-vent 
breccia and pyroclastic rocks. Rocks range in age from 120 to 730 ka

Tertiary rhyolitic rocks-Dominantly flows and domes but includes some near-vent breccia 
and pyroclastic rocks. Rocks range in age from 2 to approximately 45 Ma: Tr1( 2 to 7 
Ma; Tr3,17 to 25 Ma; Tr4,25 to 35 Ma; Tr5,35 to 45 Ma
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Patterns-In addition to primary age and composition of volcanic rocks shown by color, patterns may be
used to indicate volcanic facies or special chemical characteristics:

Volcanic rocks deposited mostly near vents-Units shown without pattern are products 
of concurrent volcanism and deposition, and they generally correspond to vent facies of 
Smedes and Prostka (1972) or to core facies and proximal volcaniclastic facies of Vessell 
and Davies (1981). Units also include lava that flowed down valleys or spread over 
lowlands far removed from vents. Typical constructional volcanic features include 
stratovolcanoes, shield volcanoes, domes, and smaller monogeneiic volcanoes. Larger 
volcanic edifices commonly intertongue in complex ways with each other and with rocks 
of other map units (fig. 3); most intertonguing relations are too detailed to show at map 
scale. Vent areas, particularly those of stratovolcanoes and shield volcanoes, contain 
undifferentiated lava flows, flow breccia, and near-vent pyroclastic deposits. Generally, 
these individual vent-facies units cannot be shown separately, particularly in older rocks 
where original constructional forms are poorly preserved. Constructional volcanic 
edifices more than a few million years old are generally poorly preserved and difficult to 
recognize

Volcanic diamicton-Unsorted to poorly sorted, poorly layered to well-layered deposits of 
direct volcanic origin that contain a wide range of clast sizes. Corresponds to more distal 
part of vent facies of Smedes and Prostka (1972) and medial volcaniclastic facies of 
Vessell and Davies (1981). Deposited from cold- or warm-fluid flows that moved rapidly 
downslope propelled by gravity. Generally described by original authors (fig. 4) as cata­ 
strophic. Includes mudflow deposits, some mass-flow deposits not further described by 
original authors (fig. 4), debris flows, landslides triggered by volcanic action, some 
deposits designated only as tuff breccia, and deposits mapped as volcanic diamicton but 
not more specifically identified. Also includes young mudflow deposits and debris-flow 
deposits downstream from major stratovolcanoes. Lava flows are rare

^afl^a Pyroclastic-flow deposits-Most deposits are poorly sorted, are rich in lithic clasts, and are 
r^/Vfe^fl nonwelded to partly welded. Pumice is common in ash-flow tuff but not in block-and- 

ash-flow deposits. Plagioclase is the most common phenocryst; variable amounts of 
clinopyroxene, orthopyroxene, and amphibole are also present. Plagioclase may con­ 
stitute as much as 20 percent of deposits; clinopyroxene, orthopyroxene, and amphibole 
rarely total more than 5 percent. Biotite, quartz, or sanidine present in only a few tuffs. 
Deposited from hot dry flows of paniculate volcanic rock, intermixed air, and volcanic gas 
that move rapidly downslope propelled by gravity. Broad volcaniclastic aprons around 
major silicic stratovolcanoes (e.g. Glacier Peak and Mount St. Helens) are composed of 
interbedded pyroclastic-flow deposits, avalanche deposits, volcanic debris-flow deposits, 
ash-flow deposits and glacial deposits. Pyroclastic-flow deposits generally make up a 
greater proportion of sections near the volcanoes' summits, but classification of these 
mixed sequences at this map scale is arbitrary. Volcaniclastic aprons generally grade 
downstream into sequences in which volcanic diamictons are dominant

In many rocks older than 10 Ma, pyroclastic-flow deposits, which were emplaced 
hot, are difficult to distinguish from mass-flowage deposits, which were emplaced cold. 
In many places, lithostatic loading compacted both kinds of deposits and flattened pumice 
clasts. Widespread very low grade metamorphic recrystallization of unstable glass, 
devitrified glass, and vapor-phase alteration minerals created fine-grained aggregates of 
metamorphic minerals dominated by zeolites and smetitic phyllosilicates.

Determining original chemical composition is also difficult. Most pyroclastic-flow 
deposits contain extraneous lithic clasts, as much as 20 percent in some ash-flow tuffs. 
Extensive low-grade metamorphic recrystallization may also have changed chemical 
composition of some deposits. Present-day temperate-humid climate favors thorough 
chemical weathering of these very low grade metamorphic rocks, which further alters their
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original chemistry. Most deposits are presumed to be andesite or dacite, although some 
are rhyolite

Subaerial and subaqueous deposits of basaltic and andesitic ejecta-Dominantly cinder 
cones and palagonite-tuff rings. Includes intraglacial deposits of palagonite, palagonitized tuff, 
and pillow basalt (for example, mObergs and tuyas)

Low-K2O basalt-Basalt fields and extensive flows characterized by low silica and potassium 
content SiO2 content generally less than 49 percent and always less than 51 weight 
percent, K2O content generally less than 0.39 percent and always less than 0.5 weight 
percent, and TiO2 content generally less than 1.35 weight percent (Hart, 1982; Hart and 
others, 1984). Examples are young basaltic volcanoes north of Mount Adams and in the 
Indian Heaven volcanic field and Oligocene basalt along the shore of Spirit Lake. Texture 
and mineralogy of low-K2O basalt and basalt that contains more than 0.5 percent K2O are 
similar, so low-K2O basalt can be distinguished only in areas where there arc abundant 
chemical analyses

INTRUSIVE ROCKS

Intrusive rocks (Quaternary)-Includes rocks that have a wide variety of textures and
compositions. Small subvolcanic fine-grained intrusions of intermediate compositions are 
most commoa Most dikes omitted for clarity

Intrusive rocks (Tertiary)--Intmsive rocks that have a wide variety of textures and
compositions. Granitic plutons of batholithic dimensions, medium- to coarse-grained 
textures, and dioritic to granitic compositions are most common in northern part of map. 
Small fine-grained to aphanitic intrusions of intermediate compositions, presumed to be 
subvolcanic magma chambers, are more common in southern part of map area. Most 
dikes omitted for clarity.

' "^ Contact-Dotted where concealed
"v/'S

Contact between individual coalesced volcanoes or areas that have different 
patterns within same map unit

Faults-Dotted where concealed

-*-- Normal fault-Ball and bar on downthrown side

-» *,. .r Thrust or high-angle reverse fault-Sawteeth on upper plate

-*   Strike-slip fault-Arrows show relative horizontal movement

Folds-Dotted where concealed. Showing crestline and direction of plunge

--£-.... Anticline 

. J Syncline

- y^  ""* Overturned syncline-Showing direction of dip of limbs
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Monocline-Dotted where concealed

i__i i_t tj Abrupt decrease of dip in direction of arrows 

TT F7 r? Abrupt increase of dip in direction of arrows

Vents

Cinder cone, spatter cone, small intraglacial vent, or other small cone

+ Dome-In rocks older than a few million years, distinguishing individual domes is not 
possible in most places, and for these rocks, symbol generally indicates presence 
of a complex dome field and not individual domes

^ Shield volcano, lava cone, andesitic cone or large mafic volcano 

vv Stratovolcano or large intermediate-composition volcano

Q Maar, palagonite-tuff ring, or tuff cone 

^, Small volcano, undivided

Caldera-Showing approximate outline of known or inferred lithologic or structural margin 
that in most places corresponds to ring faults. Hachures point toward center of caldera

Exposed lithologic or structural margin

- | . . Buried lithologic or structural margin
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