UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Analytical results and sample locality map

of stream-sediment, heavy-mineral-concentrate, and rock samples

from the Orocopia Mountains Wilderness Study Area (CDCA-344),

Riverside County, California

By B. M. Adrian^{*}, T. A. Roemer^{*}, D. B. Smith^{*}, and C. L. Whittington

~~ .

Open-File Report 89-629

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

*DFC, Box 25046, MS 973, Denver, CO 80225

CONTENTS

Studies Related to Wilderness 1
Introduction
Methods of Study
Sample Media
Sample Collection
Stream-sediment samples
Heavy-mineral-concentrate samples
Rock samples
Sample Preparation
Sample Analysis
Spectrographic method
Chemical methods
Rock Analysis Storage System (RASS)
Description of Data Tables
Acknowledgments
References Cited

ILLUSTRATIONS

Figure 1. Location map of the Orocopia Mountains Wilderness Study Area (CDCA-344), Riverside County, California	2
Figure 2. Localities of stream-sediment and heavy-mineral-concentrate set from the Orocopia Mountains Wilderness Study Area (CDCA-344), Rivers County, California	umples side 4
Plate 1. Localities of rock samples from the Orocopia Mountains Wilderness Study Area (CDCA-344), Riverside County, California in pe	ocket

TABLES

Table	1. rock	Limits of determination for spectrographic analysis of s and stream sediments	7
Table	2.	Chemical methods used	8
Table	3.	Results of analyses of stream-sediment samples	9
Table	4.	Results of analyses of heavy-mineral-concentrate samples	13
Table	5.	Results of analyses of rock samples	17
Table	6.	Description of rock samples	38

STUDIES RELATED TO WILDERNESS

Bureau of Land Management Wilderness Study Areas

The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and the U.S. Bureau of Mines to conduct mineral surveys on certain areas to determine their mineral values, if any. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results of a geochemical survey of the Orocopia Mountains Wilderness Study Area, California Desert Conservation Area (CDCA-344), Riverside County, California.

INTRODUCTION

In March 1982, the U.S. Geological Survey conducted a reconnaissance geochemical survey of the Orocopia Mountains Wilderness Study Area (CDCA-344), Riverside County, California.

The Orocopia Mountains Wilderness Study Area comprises about 53 mi² (137 km^2) (34,172 acres) in the southeast corner of Riverside County, California, and lies about 22 mi (35 km) southwest of Desert Center (see fig. 1). Access to the study area is provided on the north by several dirt roads leading up washes from Highway 195 and Interstate 10 and on the south and southeast by way of rough and unimproved roads along Salton Creek Wash.

The study area is almost entirely comprised of the Orocopia Mountains. The Orocopia Mountains lie adjacent to the San Andreas fault and northeast of the Salton Sea. Basement rocks within them include gneiss, anorthositesyenite complex and Mesozoic granodiorite, granite, and quartz monzonite. The core of the range consists of an antiform of greenschist-facies Orocopia schist (Mesozoic?) that structurally underlies the folded Orocopia thrust. In the northeast section of the study area, about 1,460 m (4,800 ft) of marine lower and middle Eocene beds (Moniobra Formation) are overlain unconformably by about 1,500 m (5,000 ft) of nonmarine Diligencia Formation, mainly of early Miocene age. In the west, about 1,500 m (5,000 ft) of nonmarine sandstone, siltstone, and conglomerate constitute the Mecca and Palm Spring Formations of Plio-Pleistocene age (Crowell, 1975).

The topographic relief in the study area is about 1,200 ft (366 m), with a maximum elevation of 3,815 ft (1,163 m). The climate is arid, and vegetation is guite sparse.

METHODS OF STUDY

Sample Media

Analyses of the stream-sediment samples represent the chemistry of the rock material eroded from the drainage basin upstream from each sample site. Such information is useful in identifying those basins which contain concentrations of elements that may be related to mineral deposits. Heavy-mineral-concentrate samples provide information about the chemistry of certain minerals in rock material eroded from the drainage basin upstream from each sample site. The selective concentration of minerals, many of which may be ore related, permits determination of some elements that are not easily detected in stream-sediment samples.

Figure 1. Location map of the Orocopia Mountains Wilderness Study Area (CDCA-344), Riverside County, California.

Analyses of unaltered or unmineralized rock samples provide background geochemical data for individual rock units. On the other hand, analyses of altered or mineralized rocks, where present, may provide useful geochemical information about the major- and trace-element assemblages associated with a mineralizing system.

Sample Collection

There were 55 stream-sediment samples, 54 heavy-mineral-concentrate samples (figure 2), and 302 rock samples (plate 1) collected from in and around the Orocopia Mountains Wilderness Study Area. Average sampling density was about one sample site per 1 mi² for the stream sediments and heavy-mineral concentrates, and about one sample site per .14 mi² for the rocks.

Stream-sediment samples

The stream-sediment samples consisted of active alluvium collected primarily from first-order (unbranched) and second-order (below the junction of two first-order) streams. Each sample was composited from several localities within an area that may extend as much as 20 ft from the site plotted on the map.

Heavy-mineral-concentrate samples

Heavy-mineral-concentrate samples were collected from the same active alluvium as the stream-sediment samples. Each bulk sample was screened with a 2.0-mm (10-mesh) screen to remove the coarse material. The less than 2.0-mm fraction was panned until most of the quartz, feldspar, organic material, and clay-sized material were removed.

Rock samples

Rock samples were collected from outcrops or exposures in the vicinity of the plotted site location. Samples were collected from unaltered, altered, and mineralized rocks. Table 6 gives a brief description of rock samples.

Sample Preparation

The stream-sediment samples were air dried, then sieved using 80-mesh (0.17-mm) stainless-steel sieves. The portion of the sediment passing through the sieve was saved for analysis.

After air drying, bromoform (specific gravity 2.8) was used to remove the remaining quartz and feldspar from the heavy-mineral-concentrate samples that had been panned in the field. The resultant heavy-mineral sample was separated into three fractions using a large electromagnet (in this case a modified Frantz Isodynamic Separator). The most magnetic material, primarily magnetite, was not analyzed. The second fraction, largely ferromagnesian silicates and iron oxides, was saved for archival storage. The third fraction (the least magnetic material which may include the nonmagnetic ore minerals, zircon, sphene, etc.) was split using a Jones splitter. One split was hand ground for spectrographic analysis; the other split was saved for mineralogical analysis. These magnetic separates are the same separates that would be produced by using a Frantz Isodynamic Separator set at a slope of 15° and a tilt of 10° with a current of 0.2 ampere to remove the magnetite and

ilmenite, and a current of 0.6 ampere to split the remainder of the sample into paramagnetic and nonmagnetic fractions.

Rock samples were crushed and then pulverized to minus 0.15 mm with ceramic plates.

Sample Analysis

Spectrographic method

The stream-sediment, heavy-mineral-concentrate, and rock samples were analyzed for 31 elements using a semiguantitative, direct-current arc emission spectrographic method (Grimes and Marranzino, 1968). The elements analyzed and their lower limits of determination are listed in table 1. Spectrographic results were obtained by visual comparison of spectra derived from the sample against spectra obtained from standards made from pure oxides and carbonates. Standard concentrations are geometrically spaced over any given order of magnitude of concentration as follows: 100, 50, 20, 10, and so forth. Samples whose concentrations are estimated to fall between those values are assigned values of 70, 30, 15, and so forth. The precision of the analytical method is approximately plus or minus one reporting interval at the 83 percent confidence level and plus or minus two reporting intervals at the 96 percent confidence level (Motooka and Grimes, 1976). Values determined for the major elements (iron, magnesium, calcium, and titanium) are given in weight percent; all others are given in parts per million (micrograms/gram). Analytical data for samples from the Orocopia Mountains Wilderness Study Area are listed in tables 3-5.

Chemical methods

Rock samples from this study area were analyzed for gold, arsenic, antimony, zinc, bismuth, and cadmium using atomic absorption spectroscopy, for mercury using the Jerome Gold-Film Detector, and for uranium using ultraviolet fluorometry. See table 2 for a more detailed summary of these analyses.

Analytical results for stream-sediment, heavy-mineral-concentrate, and rock samples are listed in tables 3, 4, and 5, respectively.

ROCK ANALYSIS STORAGE SYSTEM

Upon completion of all analytical work, the analytical results were entered into a computer-based file called Rock Analysis Storage System (RASS). This data base contains both descriptive geological information and analytical data. Any or all of this information may be retrieved and converted to a binary form (STATPAC) for computerized statistical analysis or publication (VanTrump and Miesch, 1977).

DESCRIPTION OF DATA TABLES

Tables 3-5 list the results of analyses for the samples of stream sediment, heavy-mineral concentrate, and rock, respectively. For the three tables, the data are arranged so that column 1 contains the USGS-assigned sample numbers. These numbers correspond to the numbers shown on the site location maps (figure 2 and plate 1). Columns in which the element headings show the letter "s" below the element symbol are emission spectrographic analyses; "aa" indicates atomic absorption analyses; "inst" indicates instrumental analyses; and "f" indicates fluorometric analyses. A letter "N" in the tables indicates that a given element was looked for but not detected at the lower limit of determination shown for that element in table 1. If an element was observed but was below the lowest reporting value, a "less than" symbol (<) was entered in the tables in front of the lower limit of determination. If an element was observed but was above the highest reporting value, a "greater than" symbol (>) was entered in the tables in front of the upper limit of determination. If an element was not looked for in a sample, two dashes (--) are entered in tables 3-5 in place of an analytical value. Because of the formatting used in the computer program that produced tables 3-5, some of the elements listed in these tables (Fe, Mg, Ca, Ti, Ag, and Be) carry one or more nonsignificant digits to the right of the significant digits. The analysts did not determine these elements to the accuracy suggested by the extra zeros.

ACKNOWLEDGMENTS

A number of our colleagues also participated in the collection, preparation, and analyses of these samples: collection, Vicki Fulkerson and Jon Matti; preparation, Barbara Chazin, Joseph Fontaine, and John Unruh; and analyses, E. A. Bailey, Mark Burkhardt, Gordon Day, D. E. Detra, Kent Goldsmith, A. L. Meier, Leland J. Sherlock, and E. P. Welsch.

REFERENCES CITED

- Centanni, F.A., Ross, A.M., and DeSesa, M.A., 1956, Fluorometric determination of uranium: Analytical Chemistry, v. 28, p. 1651.
- Crowell, John C., 1975, Geologic sketch of the Orocopia Mountains, southeastern California, <u>in</u> San Andreas Fault in Southern California--A guide to San Andreas Fault from Mexico to Carrizo Plain: California Division of Mines and Geology Special Report 118, p. 99-110.
- Grimes, D.J., and Marranzino, A.P., 1968, Direct-current arc and alternatingcurrent spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p.
- McNerney, J.J., Buseck, P.R., and Hanson, R.C., 1972, Mercury detection by means of thin gold films: Science, Vol. 178, p. 611-612.
- Motooka, J.M., and Grimes, D.J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analyses: U.S. Geological Survey Circular 738, 25 p.
- Thompson, C.E., Nakagawa, H.M., and Van Sickle, G.H., 1968, Rapid analysis for gold in geologic materials, <u>in</u> Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-B, p. B130-B132.
- VanTrump, George, Jr., and Miesch, A.T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and statistical reduction of geochemical data: Computers and Geosciences, v. 3, p. 475-488.
- Vaughn, W.W., and McCarthy, J.H., Jr., 1964, An instrumental technique for the determination of submicrogram concentrations of mercury in soils, rocks, and gas, in Geological Survey research 1964: U.S. Geological Survey Professional Paper 501-D, p. D123-D127.
- Viets, J.G., 1978, Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride: Analytical Chemistry, v. 50, p. 1097-1101.

TABLE 1.--Limits of determination for the spectrographic analysis of rocks and stream sediments, based on a 10-mg sample

[The spectrographic limits of determination for heavy-mineral-concentrate samples are based on a 5-mg sample, and are therefore two reporting intervals higher than the limits given for rocks and stream sediments]

Elements	Lower determination limit	Upper determination limit
	Percent	
Iron (Fe)	0.05	20
Calcium (Ca)	.02	20
Titanium (Ti)	.002	1
	Parts per million	
Manganese (Mn)	10	5,000
Silver (Ag)	0.5	5,000
Arsenic (As)	200	10,000
Gold (Au)	10	500
Boron (B)	10	2,000
Barium (Ba)	20	5,000
Bicmuth (Bi)	10	1,000
Cadmium (Cd)	20	500
Cobalt (Co)	5	2,000
Chromium (Cr)	10	5,000
Copper (Cu)	5	20,000
Lanthanum (La)	20	1,000
Molybdenum (Mo)	5	2,000
Niobium (Nb)	20	2,000
Nickel (Ni)	5	5,000
Lead (Pb)	10	20,000
Antimony (Sb)	100	10,000
Scandium (Sc)	5	100
Tin (Sn)	10	1,000
Strontium (Sr)	100	5,000
Vanadium (V)	10	10,000
Tunysten (W)	5U 10	10,000
$\frac{1}{2} \frac{1}{2} \frac{1}$	200	
L(10 (L1)) Tirconium (Tr)	200	1 000
Thorium (Th)	100	2,000
	100	2,000

TABLE 2.--Chemical methods used

Element or constituent determined	Sample type	Method	Determination limit (micrograms/ gram or ppm)	Analyst	Reference
Gold (Au)	rocks	AA	0.05	E.P. Welsch, A.L. Meier, and T.A. Roemer	Thompson and others, 1968.
Mercury (Hg)	rocks	Ι	.02	A.L. Meier, E.P. Welsch, and Kent Goldsmith	<u>Modification</u> of McNerney and others, 1972, <u>and</u> Vaughn, and McCarthy 1964.
Arsenic (As) Antimony (Sb) Zinc (Zn) Bismuth (Bi) Cadmium (Cd)	rocks	AA AA AA AA AA	5 or 10 2 5 1 .1	A.L. Meier, E.P. Welsch, and T.A. Roemer	Viets, 1978.
Uranium (U)	rocks	F	0.05 or 1	Sherlock	Modification of Centanni and others, 1956.

[AA = atomic absorption; I = instrumental; and F = fluorometry]

TABLE 3. RESULTS OF ANALYSES OF STREAM-SEDIMENT SAMPLES FROM THE OROCOPIA MOUNTAINS WILDERNESS STUDY AREA, RIVERSIDE COUNTY, CALIFORNIA.

•

.

[N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.]

· · ·

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm
·		-	s	s	s	s	s	S	s	s
0400103	33 37 0	115 51 20	.3	.30	10.0	>2.0	300	N	N	N
0400203	33 37 5	115 51 0	.5 z	30	5.0	>2.0	150	20	N	N
0400203	33 36 50	115 52 5	.5	30	10 0	>2.0	300	N	N	N
0400/02	33 36 5	115 52 5	., z	.50	10.0	>2.0	300	30	N	100
0400503	33 35 20	115 52 30	.5	.20	10.0	>2.0	500	N	N	100 N
	JJ JJ LU					- 210	500			
OA006C3	33 35 5	115 50 40	.5	.30	15.0	>2.0	300	5	N	N
OA007C3	33 34 45	115 49 0	.7	1.00	15.0	>2.0	500	N	N	N
OA008C3	33 34 45	115 49 20	.5	.50	15.0	>2.0	500	N	N	N
OA009C3	33 33 20	115 49 30	.2	.30	10.0	>2.0	300	N	N	N
OA010C3	33 33 5	115 48 15	.3	.30	15.0	>2.0	500	N	N	N
OA011C3	33 33 5	115 48 10	.2	.30	10.0	>2.0	500	N	N	N
OA012C3	33 32 15	115 47 45	.3	.50	10.0	>2.0	500	N	N	N
OA013C3	33 31 55	115 46 25	.5	.70	10.0	>2.0	500	N	N	N
OA015C3	33 31 50	115 44 0	.7	.20	20.0	>2.0	500	N	N	N
OA016C3	33 32 50	115 44 20	.3	.30	15.0	>2.0	300	N	N	N
			_			• •				
OAU17C3	33 33 20	115 44 10	.5	.20	20.0	>2.0	300	N	N	N
OA018C3	33 34 5	115 44 40	.7	.70	15.0	>2.0	500	N	N	N
OA019C3	33 32 5	115 43 10	1.0	.50	15.0	1.5	700	N	N	N
OA020C3	33 32 0	115 43 20	.5	.20	10.0	2.0	200	N	N	N
0A021C3	33 32 40	115 42 55	1.0	.20	20.0	2.0	700	N	N	N
OA022C3	33 32 45	115 42 50	.5	.15	15.0	.7	500	N	N	N
OA023C3	33 32 30	115 42 25	.7	.20	10.0	1.0	700	N	N	N
OA024C3	33 32 15	115 42 10	.7	. 15	10.0	1.5	700	N	N	N
OA025C3	33 32 0	115 41 55	.3	. 15	15.0	.7	500	N	N	N
0A026C3	33 32 0	115 41 55	.5	.10	15.0	1.0	300	N	N	N
0402703	33 31 50	115 61 15	1 0	20	20 0	2	700	N	N	N
0402703	33 31 /5	115 40 75	1.0	.20	15 0	.2	500	2	1 000	N
0402003	72 23 55	115 40 55	.,	.20	10.0	2.0	200	2	1,000	N
0402903	33 32 33	115 41 50	.2	.10	7.0	1.0	200	2	N	
0403003	33 33 30	115 42 15	1.0	.20	7.0	1.0	200	N	N	N
UAUSILS	22 22 20	113 42 13	1.0	.30	5.0	.7	500	N	N	N
0A032C3	33 33 10	115 41 25	1.0	.50	5.0	2.0	200	N	N	N
OA033C3	33 38 40	115 39 45	.5	.30	5.0	2.0	200	N	N	N
OA034C3	33 38 45	115 39 40	.3	.15	5.0	>2.0	200	N	N	Ň
OA035C3	33 34 30	115 41 25	.7	.10	.2	.5	150	N	N	N
OA036C3	33 35 10	115 41 15	.5	.15	2.0	2.0	200	N	N	N
OA037C3	33 33 5	115 43 35	.5	. 10	10.0	.7	300	N	N	N
OA038C3	33 33 15	115 43 40	.5	.20	15.0	1.0	500	N	N	N
0A039C3	33 33 30	115 44 0	.7	.20	5.0	5	200	N	N	N
0404003	33 33 45	115 44 20	.,	30	5.0	.5	200	N	N	N
0404103	33 33 40	115 44 20	.,	.50	10 0	 >2 0	300	N	N	N
0.04103	JJ JJ 40	113 74 20			10.0	~2.0	500	n	n	n
OA042C3	33 35 45	115 44 45	.5	. 15	7.0	2.0	150	N	N	N
UAU43C3	33 35 35	115 44 25	.5	.10	10.0	2.0	300	N	N	N
OA044C3	33 35 5	115 43 20	.5	. 10	10.0	2.0	200	N	N	N
OA045C3	33 37 5	115 44 35	.7	. 15	5.0	>2.0	200	N	N	N
OA046C3	33 35 25	115 45 45	2.0	.70	20.0	1.0	1,000	N	N	N

.

~

Sample	B-ppm	Ba~ppm	Be-ppm	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm
	s	s	s	s	s	s	s	s	s	s	s
0A001c3	100	3,000	N	N	N	10	200	<10	N	N	150
0400203	100	>10,000	N	N	N	10	100	<10	100	N	<50
0400203	50	7 000	N	N	N	10	150	<10		N	150
0400/03	50	>10,000	N	N N	N	10	100	<10		N	150
OA005C3	70	5,000	N	N	N	10	150	<10	N	N	150
OA006C3	50	2,000	N	N	N	10	200	<10	N	N	150
OA007C3	200	700	N	N	N	10	300	10	<50	N	150
OA008C3	70	5,000	N	N	N	10	200	<10	N	N	200
OA009C3	50	1,500	N	N	N	10	150	<10	<50	N	100
OA010C3	70	700	N	N	N	10	150	<10	N	N	100
0A011C3	70	1,000	N	N	N	10	150	<10	N	10	200
OA012C3	70	1,000	N	N	N	10	200	<10	N	N	150
OA013C3	100	700	N	N	N	10	200	<10	<50	N	100
0401503	300	>10 000	N	N	N	10	30	<10	500	N	50
OA016C3	70	10,000	N	N	N	10	200	<10	N	N	150
0401707	700	>10.000	м		N	10	70	-10	150	ы	70
UAU 1763	300	>10,000	N	N	N	10	100	<10	200	N	100
UAU IOLD	200	>10,000	N	N	N	10	100	<10	200	N	100
UAU19C3	50	>10,000	N	N	N	10	<20	<10	200	N	N
UAU2UC3	50	10,000	N	N	N	N	20	<10	500	N	N
0A021C3	50	5,000	N	N	N	<10	<20	<10	700	N	N
OA022C3	50	10,000	N	N	N	N	<20	<10	500	N	N
OA023C3	70	>10,000	N	20	N	<10	<20	<10	1,000	N	N
OA024C3	70	>10,000	N	N	N	N	<20	<10	500	N	N
0A025C3	20	10,000	N	20	N	Ń	N	N	300	N	N
0A026C3	20	10,000	N	N	N	N	N	<10	500	N	N
0A027c3	<20	10,000	N	N	N	10	N	<10	500	N	N
0A028c3	5.000	>10,000	<2	100	70	N	<20	150	700	15	50
0402903	700	>10,000	N	N	N	N N	-20 N	N	200	<10	N
0403003	700	>10,000	N		N	10	<20	<10	200	10	<50
0A031C3	700	>10,000	N	N	N	10	N	150	200	50	<50
	4 500	. 40, 000	-						450	70	70
UAU5265	1,500	>10,000	<2	N	N	10	70	<10	150	70	70
UA033C3	1,000	>10,000	<2	N	N	N	30	<10	500	<10	50
UAU34C3	300	>10,000	<2	N	N	N	20	<10	300	15	70
OAU35C3	200	3,000	N	N	N	N	N	N	200	N	N
0A036C3	70	>10,000	N	N	N	<10	N	<10	500	N	70
OA037C3	50	10,000	N	N	N	N	<20	N	1,000	N	N
0A038C3	1,500	10,000	N	N	N	<10	30	<10	1,000	N	50
0A039C3	200	>10,000	N	N	N	10	N	<10	100	N	N
OA040C3	200	>10,000	N	N	N	10	N	<10	100	N	N
0A041C3	100	>10,000	N	N	N	10	100	10	100	N	100
0406203	200	>10 000	N	A1	M	м	< 20	~10	700	N	~50
0404203	200	>10,000	NI ki	N	71	×10	~20	~10	700	N	~50
0404202	200	>10,000	N	N	N	N	~20	<10	700	N	~50
080/507	100	7 0,000	N C	N 150	N	N -10	~20	<10	200	N	~JU 70
0404363	001 20	2,000	2	100	N	10	~20	<10 -40	200	N	70 M
UAU4DUD	20	2,000	N	N	N	15	20	<10	200	N	N

Sample	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Th-ppm
	S	S	S	S	S	S	S	S	S	S	S
OA001C3	<10	70	N		<20	700	100	N	300	N	И
OA002C3	N	100	N		N	1,000	70	N	500	N	И
OA003C3	N	50	N		<20	700	100	N	300	N	N
0A004C3	N	30	N	••	 N	1.000	150	N	300	N	N
OA005C3	N	70	N		<20	500	150	N	300	N	N
0400603	N	700	N		70	500	100	м	500	N	
0400000	N 70	500	N		-20	500	100	N	300	N	N
UAUU7L3	50	100	N		<20	500	150	N	500	N	N
UAUUSCS	N	70	N	••	50	700	100	N	500	N	N
DAUUYCS	N	200	N		<20	700	100	N	500	N	N
OAU10C3	N	50	N		<20	700	70	N	500	N	N
OA011C3	N	200	N		30	500	100	N	500	N	N
OA012C3	N	70	N		30	500	100	N	500	N	N
OA013C3	20	150	N		<20	500	100	<100	500	N	N
OA015C3	N	50	N		N	2,000	70	N	1,000	N	N
OA016C3	20	70	N		И	2,000	70	<100	500	N	N
OA017C3	N	20	N		N	5,000	100	N	300	N	N
OA018C3	30	70	N		N	1,500	100	N	500	N	N
0A019C3	N	<20	N		N	2.000	70	N	700	N	N
0A020C3	N	30	N		N	700	30	N	1.000	N	N
OA021C3	N	20	N		N	1,500	30	N	1,000	N	N
0402203	м	100	м		м	<200	20	N	2 000	м	N
0402203	N	100	N		N	<200	20	N	2,000	N	N
UAU2363	N	100	N		N	<200	50	N	3,000	N	<200
UAU2403	N	150	N		N	200	20	N	2,000	N	<200
0AU25C3	N	70	N		N	300	20	N	1,500	N	N
OAU26C3	N	70	N		N	300	20	N	2,000	N	N
0A027C3	N	<20	N		N	700	20	N	700	N	N
0A028C3	N	7.000	N		300	10.000	150	1.000	1.500	N	200
0402903	N	300	N		<u>и</u>	10,000	20	<100	2 000	N N	L.00
0403003	N	1 000	N		N	>10,000	30	N N	500	N	И
OA031C3	N	200	N		N	>10,000	30	N	200	N	N
0107007		70				. 40, 000	70		700		
0403203	N	70	N		N	>10,000	70	N	700	N	200
UAU33L3	N	100	N	••	30	7,000	70	N	1,000	N	N
UAU3463	N	500	N		N	3,000	100	N	1,500	N	N
UAUSSCS	N	30	N		N	<200	50	N	1,000	N	N
UAUSOUS	N	50	N		N	1,000	70	N	500	N	N
0A037C3	N	30	N		N	700	<20	N	1,000	N	N
OA038C3	N	70	N		N	5,000	50	N	2,000	N	<200
0A039C3	N	<20	N		N	>10,000	20	N	200	N	N
OA040C3	N	20	N		N	>10,000	20	N	150	N	N
OA041C3	N	20	N		N	00 0, c	100	N	300	N	N
OA042C3	N	20	N		N	5,000	30	N	1,000	N	N
OA043C3	N	70	И		N	. 000	30	N	1,500	N	N
OA044C3	N	70	N		N	2,000	30	N	1,000	N	N
OA045C3	N	70	N		<20	1,000	100	N	1.500	N	<200
OA046C3	N	N	N		N	1,000	70	N	500	N	N

Sample	Latitude	Longitude	Fe-p	ct. M	lg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm
			S		S	S	S	S	S	S	S
0 A047 C3	33 35 50	115 46 45	1.	0	.10	20.0	.7	700	N	N	N
0A 048C 3	33 35 45	115 46 45	1.	0	.30	10.0	.7	700	N	N	N
0A049C3	33 36 15	115 47 50		5	. 15	5.0	1.0	200	N	N	N
0A050C3	33 36 50	115 48 5		7	.20	10.0	2.0	300	N	N	N
0A051C3	33 37 10	1 15 49 15	1.	5	.70	20.0	1.0	700	N	N	N
0A052C3	33 37 15	115 49 50		5	.30	20.0	2.0	500	N	N	N
0A053C3	33 37 30	115 51 40	1.	0	.20	7.0	2.0	700	N	N	N
OA054C3	33 3 1 55	115 39 20	-	7	.15	20.0	1.0	700	N	N	N
0 A055C 3	33 32 1 5	1 15 39 50		5	.20	7.0	2.0	300	N	N	N
Sample	B-ppm	Ba-ppm	Be-ppm	Bi-ppm	Cd-ppm	Со- ррт	Cr-ppm	Cu- ppm	La-ppm	Mo -ppm	Nb-ppm
	S	S	S	S	S	S	S	S	S	S	S
0A047C3	<20	5,000	N	N	N	N	N	<10	500	N	N
0A048C3	20	3,000	N	N	N	N	<20	<10	300	N	N
0A049C3	50	>10,000	<2	N	N	N	N	<10	500	N	N
0A050C3	70	>10,000	N	N	N	<10	20	<10	300	N	<50
0A051C3	50	10,000	N	N	N	15	20	<10	300	N	<50
0A052C3	50	>10,000	N	N	N	<10	20	<10	300	N	<50
0A053C3	20	1,500	N	N	N	N	<20	<10	500	N	N
OA054C3	20	1,000	N	N	N	N	<20	1,500	1,000	<10	<50
0A055C3	1,500	>10,000	N	N	N	N	20	<10	500	20	<50
Sample	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Th-ppm
	S	S	S	S	S	S	S	S	S	S	S
0A047c3	N	N	N		N	700	<20	N	700	N	N
0A048c3	N	<20	N		N	700	20	N	700	N	N
0A049C3	N	30	N	••	N	500	20	N	1,000	N	N
OA050C3	N	1,500	N		N	1,500	50	N	70 0	N	N
0A051C3	N	30	N	• -	N	1,000	30	N	300	N	N
0A052c3	N	20	N		N	1,500	50	N	500	N	N
0 A053 C3	N	70	N	••	N	<200	30	N	700	N	N
0A054C3	N	100	N		N	<200	30	N	3 ,000	N	<200
OA055C3	N	200	N		N	>10,000	50	N	1,500	N	<200

. - ,

TABLE 4. RESULTS OF ANALYSES OF HEAVY-MINERAL-CONCENTRATE SAMPLES FROM THE OROCOPIA MOUNTAINS WILDERNESS STUDY AREA, RIVERSIDE COUNTY, CALIFORNIA.

.

[N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.]

• •

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm
•		-	s	s	s	s	s	S	s	s
0A001	33 37 0	115 51 20	3	2.0	1	.3	700	N	N	N
0A002	33 37 5	115 51 0	3	2.0	1	.5	700	N	N	N
0A003	33 36 50	115 52 5	3	1.0	1	.3	700	N	N	N
04004	33 36 5	115 52 15	उ	2 0	1	.3	700	N	N	N
0A005	33 35 20	115 52 30	3	2.0	1	.3	700	N	N	N
04006	77 76 6	115 50 /0	7	2.0	4	7	700	N	N	N
04000	33 37 7	115 50 40	3	2.0		.5	700		N	n N
UAUU7	33 34 43	115 49 0	3	2.0	1		500	N	N	N
UAUUS	33 34 45	115 49 20	3	2.0	1		700	N	N	N
0A009	33 33 20	115 49 30	3	2.0	1	.3	700	.5	N	N
OA010	33 33 5	115 48 15	3	2.0	1	.3	700	N	N	N
0A011	33 3 3 5	1 1 5 4 8 10	3	2.0	1	.3	700	N	N	N
OA012	33 3 2 15	115 47 45	3	2.0	2	.3	700	N	N	N
0A013	33 3 1 55	115 46 25	3	2.0	2	.3	700	N	N	N
OA014	33 3 2 10	115 45 15	3	2.0	2	.3	700	N	N	N
0A015	33 31 50	115 44 0	3	2.0	2	.5	700	N	N	N
0A016	33 32 50	115 44 20	3	2.0	2	.3	500	N	N	N
OA017	33 3 3 20	115 44 10	3	2.0	2	.3	500	N	N	N
0A018	33 34 5	115 44 40	3	2.0	2	.3	500	N	N	N
0A019	33 32 5	115 43 10	10	1.0	1	1.0	1,000	N	N	N
0A020	3 3 32 0	115 43 20	5	2.0	2	.5	1,000	N	N	N
0A021	33 32 40	115 42 55	5	1.0	2	.5	1,000	N	N	N
0A022	33 32 45	115 42 50	5	1.0	1	.3	700	N	N	N
0A023	33 32 30	115 42 25	5	1.0	1	.5	700	N	N	N
0A024	33 32 15	115 42 10	10	1.0	2	.5	1.000	N	N	N
0A025	33 32 0	115 41 55	5	1.0	2	.2	700	N	N	N
04026	33 32 0	115 41 55	5	1.0	1	-5	700	N	N	N
04027	33 31 50	115 41 15	10	2.0	2	1 0	2 000	N	N	N
04028	33 31 45	115 40 35	5	1.0	- 1	3	500	N	N	 N
04020	33 37 45	115 41 30	5	2.0		.5	700	N N	N	N N
0A030	33 33 30	115 42 15	5	1.0	1	.3	1,000	N	N	N
04071	77 77 70	445 10 45	F	• •		7	700	N	м	
04073	33 33 30	115 42 15	5	1.0	1	.5	700	N N	N	N
04032	33 33 10	115 41 25	5	1.0	1	.5	700	n		n N
UAU33	33 38 40	115 39 45	5	2.0	2	.>	700	N	N	N
0A034 0A035	33 38 45 33 34 30	115 39 40 115 41 25	5	1.0	1	.3	500	N N	N N	N N
0A036	33 35 10	115 41 15	3	.5	1	.3	700	N	N	N
0A037	33 3 3 5	115 43 35	10	1.0	1	.5	1,000	N	N	N
0A038	33 33 15	115 43 40	5	2.0	1	.5	700	N	N	N
0A039	33 3 3 30	115 44 0	5	1.0	1	.2	1,000	N	N	N
0A040	33 33 45	115 44 20	5	1.0	1	.2	1,000	N	N	N
OA041	33 33 40	115 44 20	5	1.0	1	.5	1,000	N	N	N
0A042	33 35 45	115 44 45	3	1.0	1	.2	700	N	N	N
OA043	33 3 5 35	115 44 25	3	.5	2	.3	700	N	N	N
OA044	33 3 5 5	115 43 20	3	.5	1	.2	500	N	N	N
OA045	33 37 5	115 44 35	3	.5	1	.3	700	N	N	N

۰ ۲

Sample	B-ppm	Ba-ppm	Be-ppm	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm
	S	s	s	s	s	S	S	S	s	s	s
OA001	30	500	1	N	N	50	200	20	20	N	N
0A002	30	500	1	N	N	20	200	20	20	N	N
0A003	20	500	1	N	N	20	200	20	30	N	N
0A004	20	500	1	N	N	30	200	20	50	N	N
0A005	20	500	1	N	N	30	200	20	30	N	N
04006	20	500	1	N	ú	20	200	20	30	N	N
04007	20	500	•	N		20	200	20	30	N	N
04008	50	500	4	N	N	20	200	20	70	N	N
04000	30	500	•	N	N	20	150	20	50	N	N
04010	20	500		N	N	45	200	20	70	N	N N
UAUTU	20	500	1	N	N	12	200	20	20	N	N
0A011	30	500	1	N	N	20	200	15	30	N	N
0A012	50	500	1	N	N	20	200	20	100	N	N
OA013	30	500	1	N	N	20	200	20	100	N	N
0A014	50	500	1	N	N	20	300	20	50	N	N
OA015	500	700	1	N	N	20	100	20	50	N	N
0A016	100	500	1	N	N	20	200	20	100	N	N
0A017	50	2,000	1	N	N	20	200	20	50	N	N
0A018	150	500	1	N	N	20	100	20	100	N	N
0A019	50	2,000	N	N	N	30	100	20	50	N	N
0A020	100	1,000	1	N	N	30	200	20	50	N	N
0A021	10	500	1	N	N	20	100	15	100	N	N
0A022	100	1.000	1	N	N	20	100	20	100	N	N
0A023	200	500	2	N	N	20	100	15	200	N	N
0A024	100	1 000	2	N	N	20 '	100	15	200	N	<20
0A025	100	700	2	N	N	20	100	15	100	N	N
04026	100	700	1	N	Ν	20	100	15	100	N	<20
04020	50	1 000	1 14	N	N	20	100	15	50	N E	<20
04028	500	700	N	N	N	50	100	20	50	5	×20
04020	300	700		N	N	20	150	15	20	N .E	N
04029	1 000	500	1	N	N	20	150	15	50	<	<20
UAUSU	1,000	1,000	2	N	N	15	70	15	50	2	N
0A031	2,000	700	2	N	N	20	70	20	50	15	N
0A032	1,500	700	2	N	N	20	70	20	50	N	<20
0A033	500	500	1	N	N	20	150	15	50	N	<20
0A034	500	700	2	N	N	10	70	15	50	N	<20
0A035	500	700	2	N	N	10	70	15	50	N	N
0A036	300	500	2	N	N	10	50	15	50	N	N
0A037	50	1,000	1	N	N	10	50	15	200	N	<20
0A038	500	500	1	N	N	20	150	15	100	10	N
0A039	1,000	3.000	2	N	N	20	100	15	50	5	N
0A040	1,000	2,000	2	N	N	20	70	15	50	N	с С
04041	70	500	1	N	ķi.	20	150	20	50	ы	LI.
04042	500	500	י ז	NI NI	N	20	130	15	00	N H	N
04042	500	1 500	2	N	N	10	5U 70	13	20	n H	N ~50
04045	500	1 500	2	N	N	13	70	13	00	n N	*20 ~20
04044	100	500	2	N	N	10	70	13	20	N	<20
04043	100	500	2	N	N	TU	50	15	100	N	<20

• • .

.

Sample	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm
	S	S	S	S	S	S	S	S	S	S	S	s
OA001	100	30	N	15	N	100	100	N	20	<200	100	N
0A002	70	30	N	10	N	100	100	N	20	<200	1,000	N
OA003	70	30	N	15	N	100	100	N	20	<200	200	N
OA004	100	30	N	20	N	200	100	N	30	<200	200	N
OA005	70	20	N	20	N	200	100	N	30	<200	200	N
0A006	100	30	N	15	N	100	70	N	20	<200	200	N
OA007	70	30	N	15	N	100	70	N	20	<200	200	N
0A008	70	30	N	20	N	150	100	N	30	<200	200	N
0A009	70	50	N	15	N	200	100	N	20	<200	200	N
OA010	70	30	N	15	N	150	100	N	20	<200	200	N
OA011	70	30	N	15	N	150	100	N	20	<200	100	N
OA012	100	20	N	15	N	300	100	N	30	<200	200	N
OA013	100	30	N	15	N	300	100	N	30	<200	200	N
OA014	100	20	N	15	N	300	100	N	30	<200	200	N
OA015	30	20	N	15	N	500	100	N	50	<200	500	N
OA016	100	30	N	15	N	500	100	N	30	<200	200	N
OA017	70	30	N	15	N	500	100	N	30	<200	200	N
0A018	50	30	N	15	N	500	100	N	30	<200	200	N
OA019	30	10	N	15	N	500	100	N	70	<200	1,000	N
0A020	100	30	N	15	N	500	100	N	50	<200	500	N
0A021	10	30	N	15	N	200	50	N	50	<200	500	N
0A022	30	50	N	15	N	100	70	N	70	<200	500	N
0A023	30	50	N	15	N	200	100	N	100	<200	1.000	N
0A024	30	50	N	15	N	200	100	N	100	<200	1,000	N
OA025	50	50	N	15	N	200	70	N	50	<200	500	N
0A026	50	30	N	20	N	200	100	N	100	<200	500	N
OA027	30	10	N	20	N	500	50	N	50	<200	200	N
04028	30	30	N	10	N	200	100	N	20	N	200	N
04029	50	30	N	15	N	200	100	N	50	<200	200	N
OA030	30	20	N	10	N	500	70	N	30	<200	200	N
OA031	30	50	N	15	N	500	100	N	30	<200	150	N
0A032	30	50	N	15	N	500	100	N	50	<200	200	N
04033	50	20	N	20	N	200	100	N	50	<200	500	N
04034	20	30	N	10	N	100	50	N	50	<200	200	N
OA035	20	30	N	10	N	200	100	N	20	<200	200	N
OA036	20	30	N	10	N	200	70	N	20	<200	200	N
OA037	20	30	N	15	N	200	50	N	100	<200	500	N
04038	50	30	N	15	N	200	100	N	100	<200	500	Ň
04030	30	30	N	15	N	2 000	50	N	50	<200	150	N
OA040	30	30	N	10	N	500	100	N	50	<200	200	N
04041	100	20	М	10	LI.	200	100	N	50	<200	150	N
04042	20	20	N	7	N	200	50	м М	30	~200	200	N
04047	20	20	N	10	PI Li	200	100	N	50	<200	200	N
04044	20	30	N	10	74 M	200	50	л М	50	<200	200	N
04045	20	30	N	10	74 14	200	50	N 1	50	<200	500	N
	20				14	200		14	20	-200	200	

Sample	Latitude	Lo ngitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn -ppm	Ag-ppm	As-ppm	Au-ppm
			S	S	S	S	S	S	S	S
0 A046	3 3 35 25	115 45 45	5	2.0	2	.5	1,500	N	N	N
0A047	33 35 50	115 46 45	10	1.0	1	.5	1,000	N	N	N
0A048	33 35 45	115 46 45	10	1.0	2	.5	1,000	N	N	N
0A049	33 36 15	115 47 50	5	1.0	1	.3	700	N	N	N
OA050	3 3 36 50	115 48 5	5	1.0	1	.3	500	N	N	N
OA051	33 37 10	115 49 15	5	2.0	2	.3	700	N	N	N
OA052	33 37 15	115 49 50	5	2.0	2	.5	700	N	N	N
0A053	3 3 37 3 0	115 51 40	7	1.0	1	1.0	1,500	N	N	N
0A054	33 31 55	115 39 20	5	1.0	2	.5	1,000	N	N	N
0A055	33 32 15	115 39 50	5	2.0	1	.5	700	N	N	N

Sample	8-ppm	8a-ppm	Be-ppm	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm
	S	S	S	S	S	S	S	S	S	S	S
0A046	20	700	1	N	N	50	70	20	50	N	N
OA047	20	700	N	N	N	15	50	15	30	N	<20
0A048	20	500	N	N	N	15	50	15	100	N	<20
OA049	20	500	1	N	N	15	50	15	50	N	20
0 A050	50	500	1	N	N	15	70	15	30	N	N
0 A05 1	50	500	1	N	N	50	100	20	50	N	N
OA052	30	500	N	N	Ń	70	200	20	50	Ń	<20
OA053	15	500	Ń	Ń	Ń	20	50	20	100	N	<20
OA054	50	500	2	N	Ń	30	50	15	200	N	Ń
0A055	150	500	1	N	Ń	50	150	20	70	<5	N

Sample	Ni-ppm	P b-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm
	S	S	S	S	S	S	S	S	S	S	S	S
0A046	50	10	N	15	N	200	50	N	50	<200	300	N
OA047	20	10	N	20	N	200	50	N	50	<200	300	N
0 A048	15	10	N	20	N	200	50	N	50	N	1,000	N
0 A049	20	20	N	20	N	200	50	N	50	N	1,000	N
OA050	50	20	N	10	N	200	50	N	20	'N	500	N
OA051	30	20	N	15	N	200	70	N	30	<200	200	N
0A052	70	20	N	15	N	200	100	N	50	<200	300	N
0A053	20	30	N	15	N	100	20	N	100	<200	1,000	N
OA054	30	50	N	15	<10	100	70	N	150	<200	1,000	N
OA055	50	20	N	15	N	300	100	N	70	<200	300	N

.

. .

[N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.]

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm	B-ppm	Ba-ppm	Be-ppm
·		-	S	S	s	S	S	S	S	s	S	S	s
0A015R	33 31 50	115 44 0	5.00	2.00	1.00	.200	700	N	N	N	30	70 0	1.0
0A023R	33 32 30	115 42 25	.50	.05	1.00	.050	1,000	N	N	N	<10	100	2.0
OA050R	33 36 50	115 48 35	10.00	2.00	1.00	1.000	1,000	N	N	N	70	200	1.0
0A051R	33 37 10	115 49 15	2.00	10 .00	10.00	.050	1,000	N	N	N	20	2 0 0	1.0
0A052R	33 37 15	115 49 50	10.00	3.00	2.00	1.000	2,000	И	И	N	200	5,000	N
0A056R	33 32 50	115 43 0	5.00	.05	2.00	.200	500	N	N	N	10	50	1.0
0A057R	33 33 0	115 43 0	.50	.02	.05	.010	100	10.0	N	15	<10	<20	1.0
OA057RA	33 33 0	115 43 0	2.00	2.00	2.00	.100	700	N	N	N	<10	50	1.0
0A029R	33 32 50	115 41 25	1.50	.15	.50	.100	70	N	N	N	70	500	N
0A029RA	33 32 50	115 41 20	20.00	5.00	15.00	>1.000	2,000	И	N	N	20	150	<5.0
0A029RB	33 32 50	115 41 20	3.00	.30	.50	. 200	200	<.5	N	N	50	500	N
0A058R	33 33 25	115 42 25	15.00	7.00	10.00	>1.000	1,500	N	N	N	30	700	N
0A059R	33 32 50	115 41 15	15.00	7.00	15.00	1.000	2,000	N	N	N	50	100	N
OA060R	33 32 35	115 41 0	10.00	2.00	3.00	>1.000	700	N	N	N	50	1,000	N
OMP01	33 31 49	115 42 22	2.00	.30	1.00	.200	300	N	N	N	<10	1,000	N
OMPO2	33 31 49	115 42 22	7.00	.70	10.00	.500	100	N	N	N	30	300	N
OMP03	33 36 15	115 49 9	1.00	.20	.30	.100	70	N	N	N	10	1,000	<1.0
OMP04	33 36 15	115 49 9	1.50	.30	.30	.100	70	N	N	N	10	700	<1.0
OMP05	33 36 15	115 49 9	15.00	7.00	7.00	1.000	1.000	<.5	N	N	10	700	N
OMP06	33 36 15	115 49 9	10.00	3.00	5.00	1.000	1,000	N	N	N	<10	3,000	<1.0
OMP07	33 36 14	115 49 32	7.00	2.00	2.00	. 700	1.000	N	N	N	10	500	1.0
OMP08	33 35 49	115 48 12	15.00	5.00	3.00	1.000	1,000	N	N	N	N	700	1.0
OMP09	33 34 28	115 45 47	2.00	.50	.70	.200	100	N	N	N	10	1,000	<1.0
OMP10	33 34 28	115 45 47	10.00	2.00	5.00	.700	1.000	N	N	N	N	500	1.0
OMP11	33 34 35	115 45 35	2.00	.50	.70	.200	100	N	N	N	N	1,000	N
OMP12	33 31 21	115 42 7	10.00	1,50	7.00	1.000	1,000	N	N	N	20	300	N
OMP13	33 35 54	115 48 16	1.50	.30	.30	. 150	100	N	N	N	10	1,000	<1.0
OMP14	33 36 1	115 48 4	10.00	5.00	5.00	1.000	500	N	N	N	20	1,500	N
OMP15	33 36 3	115 47 58	10.00	5.00	3.00	1.000	500	N	N	N	10	700	N
OMP16	33 31 29	115 40 55	15.00	5.00	5.00	1.000	700	N	N	N	30	300	N
OMP17	33 31 29	115 40 55	10.00	5.00	7.00	.500	700	3.0	N	N	N	200	N
OMP18	33 31 8	115 40 48	7.00	2.00	5.00	1.000	500	N	N	N	N	10 0	N
OMP19	33 31 8	115 40 48	7.00	3.00	3.00	.700	500	N	N	N	N	500	N
OMP20	33 31 12	115 40 56	2.00	.30	1.50	.200	500	N	N	N	10	200	<1.0
OMP21	33 31 17	115 40 58	7.00	1.00	5.00	.700	700	N	N	N	10	500	N
OMP22	33 31 0	115 41 41	10.00	2.00	5.00	>1.000	700	N	N	N	N	500	N
OMP23	33 34 41	115 46 7	10.00	2.00	5.00	1.000	1.000	N	N	N	15	1.500	1.5
OMP24	33 32 11	115 42 11	2.00	.50	1.50	.200	300	N	N	N	150	2,000	N
OMV01	33 31 55	115 43 3	5.00	2.00	1.00	.500	200	N	N	N	20	100	<1.0
OMV02	33 33 18	115 46 47	2.00	.70	.70	.200	300	N	N	N	20	70 0	1.5
OMV03	33 31 42	115 42 19	3.00	. 70	.50	.300	00د	N	N	N	70	70 0	2.0
OMV04	33 31 42	115 42 19	2.00	.50	.50	. 100	300	N	N	N	50	1,000	1.5
OMV05	33 33 7	115 42 54	5.00	3.00	1.50	.500	1,000	N	N	N	10	150	N
OMV06	33 33 5	115 42 36	10.00	5.00	1.50	.500	1,000	N	N	N	10	150	N
OMV07	33 32 53	115 42 18	7.00	7.00	1.50	.500	1,000	<.5	N	N	10	N	N
							•						

-

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm
•	s	s	s	s	S	S	s	s	s	s	s	s	s	s
0A015R	N	N	10	70	50	50	N	N	50	10	N	7	N	200
0A023R	N	N	5	10	10	N	N	20	5	50	N	5	N	100
0A050R	N	N	50	200	50	20	N	N	70	50	N	50	N	200
04051R	N	N	15	50	10	N	N	N	20	100	N	5	N	2.000
0A052R	N	N	15	<10	20	100	N	<20	5	N	N	20	N	200
040560	м		10	-10	50	м	м	N		м		E	м	200
UAUSOK	N	N	10	<10	50	N	N	N	N	N	N	2	N	200
UAU57R	N	N	10	<10	30	N	N	N	2	N	N	N	N	N
0A057RA	N	N	20	200	15	N	N	N	50	30	N	(N	200
0A029R	N	N	N	<10	N	N	N	N	N	30	N	••	N	N
0A029RA	N	N	70	10	7	50	N	N	20	30	N		20	100
0A029RB	N	N	5	10	<5	N	5	N	N	50	N		N	N
0A058R	N	N	70	300	50	70	N	N	150	10	N		N	1,000
0A059R	N	N	50	700	30	N	15	N	200	10	N		N	300
0A060R	N	N	15	30	20	50	N	<20	10	30	N		N	200
OMP01	N	N	N	N	N	20	N	N	N	20	N		N	1,000
OMP02	N	N	15	<10	30	N	N	N	N	N	N		N	1,500
OMP03	N	N	N	N	N	N	N	N	N	10	N		N	300
OMP04	N	N	5	<10	<5	N	N	N	N	N	N		N	300
OMP05	N	N	100	1 000	100	N	N	N	300	N	N		N	200
OMP06	N	N	70	200	100	N	N	N	100	N	N		N	300
OMP07	N	N	50	100	30	20	N	N	20	N	N		N	100
OMPOR	N	N	100	300	200	N	N	N	100	N	N		N	200
	N	N	10	<10	5	20	N	N N	100	N N	N 10		 N	300
	N 1	N	70	10	7	20	N	N	N	10			N 1	500
	N N		50	10	10	50	N	н 1		10	N		N N	700
OMPTI	•	n	5	N	10	N	N	N	N	10	•		•	200
OMP12	N	N	10	N	N	N	N	N	N	N	N		N	1,500
OMP13	N	N	N	<10	<5	20	N	N	N	10	N		N	200
OMP14	N	N	100	70	100	N	N	N	50	N	N		N	700
OMP15	N	N	70	500	200	20	N	N	200	N	N		N	300
OMP16	N	N	100	700	100	N	N	N	200	N	N		N	200
OMP17	N	ы	70	2 000	70	N	5	N	300	IJ	L		N	150
OMP18		N	50	<10	15	N	N	M		N	N N		N	1 000
OND10	N	N	100	200	100	70		N	100				N	500
OMP 19		N	100	200	100	50		N	100	45			N	700
OMP20	N	N	N 15	N	N	N 20	N	N	N	10	N		N	1,500
			70		450					40				
OMP22	N	N	30	150	150	20	N	N	30	10	N		N	500
UMP23	N	N	50	30	70	30	N	N	15	10	N		N	700
UMP24	N	N	N	N	N	N	N	N	N	10	N		N	700
OMV01	N	N	20	20	20	50	N	<20	15	10	N	20	N	150
UMV02	N	N	5	10	15	N	N	N	7	70	N	5	N	500
OM/v03	N	N	7	<10	10	70	N	<20	5	20	N	7	N	200
JMV04	N	N	N	<10	5	70	<5	20	5	20	N	10	N	100
OMV05	N	N	70	50	200	N	N	N	150	10	N	30	N	150
OMV06	N	N	100	20	300	N	N	N	300	20	N	30	N	200
OMV07	N	N	70	500	100	N	N	N	500	N	N	20	N	N

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg-ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	S	S	s	S	s	S	aa	inst	aa	aa	aa	aa	aa	f
OA015R	200	50	N	20	<200	150	N	N	06	50	40	. 1	N	2	
0A023R	100	10	N	50	<200	50	N	N	.12	10	10	.2	N	- 1	
OA050R	200	200	N	50	<200	200	N	N	N	10	180	.1	N	1	
0A051R	2.000	20	Ň	20	<200	200		N 14		10	110	.2	N	2	
0A052R	200	20	N	30	<200	100	N	N	N	15	170	.2	N	4	
040560	200	10		10	-200	10	м	м	07	70	70	N	-2	M	
040570	200	~10	N	10	~200 N	10	N	72 00	.02		5	N	2	n. M	
040578	200	20	N	N	N	N 40	N	52.00	. 30	N	190	1	-2	n. M	
0402785	200	15	N	10	N	10	N	.40	.00		100	• 1	~2	n. M	
040276	100	700	N	100	200		N	<.US	< 02	~ ~ ~	10	1	~2	n M	
UAU27KA	100	200	N	100	200		N	N	×.02	R	150	- 1	~2	n	
OA029RB	N	20	N	20	N		N	<.05	<.02	10	10	N	N	N	
OAU58R	1,000	200	N	50	N		N	N	<.02	10	50	N	N	N	
OAU59R	300	300	N	20	<200		N	N	<.02	5	180	N	<2	N	
OAU60R	200	100	N	50	N		N	N	<.02	N	75	N	<2	N	
OMP01	1,000	20	N	N	N	70	N	N	N	N				N	.55
OMP02	1,500	150	N	N	N	N	N	N	N	N	••			N	.15
OMP03	300	<10	N	10	N	50	N	N	N	N				N	.30
OMP04	300	<10	N	N	N	30	N	N	N	N				N	. 15
OMP05	200	300	N	30	N	50	N	N	N	N				N	. 20
omp06	300	200	N	50	N	30	N	N	<.02	N			••	N	.30
OMP07	100	100	N	70	N	100	N	N	N	N				N	.20
OMP08	200	150	N	15	N	50	N	N	N	N			••	N	.20
OMP09	300	15	N	N	N	150	N	N	N	N				N	.20
OMP10	500	150	N	50	N	70	N	N	N	N				1	.20
OMP11	300	15	N	N	N	70	N	N	N	N				N	.20
OMP12	1,500	70	N	10	N	20	N	N	N	N				N	.20
OMP13	200	20	N	N	N	150	N	N	N N	N				N	.25
OMP14	700	300	N	15	N	50	N N	N	N	N 1				N	20
OMP15	300	200	N	30	N	20 70		N		N 1				N	45
OMP16	200	300	N	15	N	30	N	N	N	N				25	.05
OND 17	150	200	м	10		-10		м	40	м				N	20
OMP18	1 000	100	N N	10		10	N	N	.12	п 1				ni M	.20
	500	200	н И	20	N	100	N	N	.04	л М				N N	.55
	700	10	N	20	N N	100	N	N	.04	N				ni N	.25
OMP21	1,500	50	N	10	N	10	N	N	∾ <.02	N				N	.40
	500	200													
OMP22	200	200	N	30	N	100	N	N	<.02	N		••	••	1	.30
UMP25	700	200	N	30	N	100	N	N	.02	N				N	1.00
OMP24	700	<10	N	N	N	30	N	N	.02	N				N	.40
OMVU1	150	50	N	30	N	150	N	N	<.02	N				N	.50
OMVU2	200	50	N	<10	N	100	N	N	<.02	N				N	.30
OMV03	200	20	N	50	N	300	N	N	N	N			••	ĸ	.40
OMV04	100	<10	N	30	N	300	N	N	N	N				N	.60
OMV05	150	200	N	30	N	50	N	N	.04	N			••	N	.10
OMV06	200	200	N	30	N	50	N	N	.04	N				N	. 15
OMV07	N	150	N	15	30 0	30	N	N	.04	N				N	.65

· .

.

ş

٠

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-ppm	Ba-ppm	Be-ppm
OHV08 33 32 53 115 42 18 10.00 5.00 2.00 .500 1,000 N N N OHV09 33 32 30 115 41 5 10.00 2.00 2.00 .500 1,500 N N N N OHV09 33 32 30 115 41 5 7.00 2.00 2.00 .500 1,500 N <th>S</th> <th>S</th> <th>S</th>	S	S	S
OHV09 33 32 30 115 41 5 10.00 2.00 2.00 .500 1,500 N N N OHV10 33 32 30 115 41 5 7.00 2.00 2.00 .300 1,500 N N N N OHV11 33 33 27 115 41 26 15.00 7.00 1.50 .500 1,500 N N N OHV12 33 32 4 115 41 31 .50 .07 .20 .015 1,500 N N N OHV13 33 31 57 115 41 3.00 .30 .70 .100 300 N N N OHV14 33 31 10 115 45 52 7.00 7.00 2.00 .500 1,000 N N N OHV16 33 33<	10	150	N
OHV10 33 32 30 115 41 5 7.00 2.00 2.00 .300 1,500 N N N OHV11 33 33 27 115 41 26 15.00 7.00 1.50 .500 1,500 .5 N N OHV12 33 32 4 115 41 31 .50 .07 .20 .015 1,500 N N N OHV13 33 31 57 115 41 11 .50 .15 .50 .015 1,000 <.5	10	100	N
OHV11 33 33 27 115 41 26 15.00 7.00 1.50 .500 1,500 .5 N N OHV12 33 32 4 115 41 31 .50 .07 .20 .015 1,500 N N N OHV13 33 31 57 115 41 11 .50 .15 .50 .015 1,500 N N N OHV14 33 31 10 115 41 4 3.00 .30 .70 .100 300 N N N OHV15 33 32 47 115 45 52 7.00 7.00 2.00 .500 1,000 N N N OHV16 33 33 14 115 48 37 2.00 .70 1.00 .200 500 N N N OHQ01 33 34	10	100	1.0
OHV12 33 32 4 115 41 31 .50 .07 .20 .015 1,500 N N N OHV12 33 32 4 115 41 31 .50 .07 .20 .015 1,500 N N N N OHV13 33 31 57 115 41 11 .50 .15 .50 .015 1,000 <.5	20	150	N
OHV13 33 31 57 115 41 11 .50 .15 .50 .015 1,000 <.5 N N OHV14 33 31 10 115 41 4 3.00 .30 .70 .100 300 N N N OHV15 33 32 47 115 45 52 7.00 7.00 2.00 .500 1,000 N N N OHV16 33 33 14 115 48 37 2.00 .70 1.00 .200 500 N N N OHQ1 33 34 26 115 46 33 .50 <.02	10	150	2.0
OHV14 33 31 10 115 41 4 3.00 .30 .70 .100 300 N N N OHV14 33 31 10 115 41 4 3.00 .30 .70 .100 300 N N N N OHV15 33 32 47 115 45 52 7.00 7.00 2.00 .500 1,000 N N N OHV16 33 33 14 115 48 37 2.00 .70 1.00 .200 500 N N N OHQ01 33 34 26 115 46 33 .50 <.02	10	100	2.0
OHV15 33 32 47 115 45 52 7.00 7.00 2.00 .500 1,000 N N N OHV16 33 33 14 115 48 37 2.00 .70 1.00 .200 500 N N N OHQ01 33 34 26 115 46 33 .50 <.02	20	700	1.5
OMV16 33 33 14 115 48 37 2.00 .70 1.00 .200 500 N N N OMQ01 33 34 26 115 46 33 .50 <.02	10	200	<1.0
OMQ01 33 34 26 115 46 33 .50 <.02 .05 .002 50 N N N OMQ02 33 33 13 115 44 27 <.05	10	500	1.5
OMQ02 33 33 115 44 27 <.05 .02 .07 .007 50 N N N OMQ03 33 33 32 115 45 55 .07 .03 .10 .015 100 N N N OMQ04 33 35 30 115 48 31 N .02 <.05	10	50	N
OMQ03 33 32 115 45 55 .07 .03 .10 .015 100 N N N OMQ04 33 35 30 115 48 31 N .02 <.05	15	N	N
OMQ04 33 35 30 115 48 31 N .02 <.05 <.002 20 N N N OMQ05 33 36 44 115 50 11 .10 .02 .10 .005 50 N N N	15	50	N
OMQ05 33 36 44 115 50 11 .10 .02 .10 .005 50 N N N	15	20	N
	15	20	N
	15	20	N
		20	n
OMQ07 33 35 5 115 49 57 .05 .05 .05 .007 30 N N N	15	100	N
OMQ08 33 35 55 115 49 44 .10 .10 .10 <.002 70 N N N	15	20	N
0MQ09 33 35 27 115 53 2 <.05 .02 <.05 .010 20 N N N	15	N	N
OMQ10 33 36 5 115 51 10 <.05 .02 .05 N 20 N N N	15	N	N
OMQ11 33 35 53 115 52 9 N <.02 .10 N 20 N N N	15	20	N
OMQ12 33 35 53 115 52 9 N <.02 <.05 N 30 N N N	15	N	N
0M913 33 35 53 115 52 9 .07 .02 <.05 <.002 30 N N N	15	N	N
0M914 33 35 53 115 52 9 < .05 .02 < .05 .002 30 N N N	15	<20	N
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15		N
OMQ16 33 35 53 115 52 9 .10 .03 .50 .002 100 N N N	15	N	N
0M017 33 35 53 115 52 9 50 70 10 100 500 N N N	15	500	<1.0
MADIR 33 35 53 115 52 9 10 05 50 005 700 N N N	15	20	N
MANDO 33 35 53 115 52 0 07 07 05 005 50 N N N	15		 N
	10	н М	N
OMQ21 33 34 10 115 49 32 .07 .02 <.05 .005 50 N N N	15	30	N
	м	N	N
UTWEEL JJ JJ 11 11 4/ J/ N N SUJ N ZU N N N N	10	n N	
UTW22 33 32 31 113 40 31 <.U3 <.U2 <.U3 <.U2 <.U2 N N N N	10	N -20	N
UTW24 33 35 51 113 46 5U N <.UZ <.US <.UUZ <iu n="" n<="" td=""><td>15</td><td><20</td><td>N</td></iu>	15	<20	N
UMQ25 33 31 47 115 46 43 N .03 <.05 N 50 N N N	15	N	N
OMQ26 33 34 23 115 46 23 N <.02 N <.002 20 N N N	15	<20	N
0M927 33 34 23 115 46 23 .07 .10 .10 .005 70 N N N	15	<20	N
OMQ28 33 35 29 115 48 33 .05 .02 N N 100 N N N	15	<20	N
0MQ29 33 34 3 115 47 43 N <.02 N N <10 N N N	10	N	N
OMQ30 33 34 9 115 48 51 N <.02 <.05 N 20 N N N	15	N	N
OMQ31 33 36 24 115 51 9 N <.02 N n 70 N N N	15	N	N
OMQ32 33 36 55 115 51 37 N .02 <.05 N 70 N N N	15	20	N
QMQ33 33 36 21 115 51 55 N .02 <.05 N <10 N N	15	N	N
OMQ34 33 36 46 115 52 23 N N N N 10 N N	10	N	N
QMQ35 33 36 45 115 53 17 N <.02 N N <10 N N	15	N	N
CMQ36 33 33 7 115 42 46 ,20 ,20 ,70 <.002 700 N N N	10	50	N

-

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm
•	s	s	s	s	s	s	s	s	s	s	s	S	S	S
OMV08	N	N	50	200	200	N	N	N	150	<10	N	20	N	150
OMV09	N	N	50	100	200	N	N	N	100	N	N	20	N	100
OMV10	N	N	30	100	50	50	N	N	100	10	N	20	N	100
OMV11	N	N	70	30	300	N	N	N	200	20	N	30	N	200
OMV12	N	N	N	N	<5	N	N	30	5	10	N	N	N	<100
ONV13	И	м	И	N	<5	И	И	30	5	20	N	<5	N	N
ONV14	N	N	N N	N	5	50	N	<20	<5	10	N	7	N	150
041/15	N	N	50	150	50	И	N	~20 N	200	N	N N	20	N	300
ONV16	N	N	7	10	10	<20	N	N N	200	20	N	5	N	300
04001	N	N	1	10	-5	~20	N	N	20	20 N	N	N N	N	
	N	N	< 3	N	5	N	N	N	5	M		N	N	n
0402	N	N	N	N	N	N	N	N	<5	N	N	N	N	N
OMQ03	N	N	N	<10	N	N	N	N	5	N	N	N	N	N
OMQ04	N	N	N	N	N	N	N	N	5	N	N	N	N	N
OMQ05	N	N	N	<10	N	N	N	N	5	N	N	N	N	N
OMQ06	N	N	N	N	N	И	N	И	5	N	N	N	N	N
OMQ07	N	N	N	<10	N	N	N	N	5	N	N	N	N	N
04008	N	N	N	N	N	N	N	N	7	N	N	N	N	N
04009	N	N	N	N	N	N	N	N	5	N	N	N	N	N
OMQ10	N	N	N	N	N	N	N	N	<5	N	N	N	N	N
OMQ11	N	N	N	N	N	N	N	N	5	N	N	N	N	N
OM012	N	N	N	И	N	N	N	N	5	N	N	N	N	N
01013	N	N	N	И	<5	500	N	N	<5	N	N	N	N	N
04014	N	N	N	<10		У СС И	N	N	5	N	И	 N	N	N
04015	N	N	N	<10	~5	N	N	N	5	N	N	N	и И	N N
OHA1J	N	N	N	×10 M	()	N	N	N	5	N N	N N	N	N	N N
Offerio	N		N	ri -	n	n	n		5		ri i	N	N	N
OMQ17	N	N	5	20	5	N	N	N	20	N	N	N	N	N
OMQ18	N	N	N	<10	15	N	N	N	10	N	N	N	N	N
04019	N	N	N	<10	N	N	N	N	5	N	N	N	N	N
04020	N	N	N	N	N	N	N	N	<5	N	N	N	N	N
OMQ21	N	N	N	N	<5	N	N	N	7	N	N	N	N	N
04022	N	м	м	N	N	м	N	м	~5	м	м	И	N	м
01426	л 1	N	N	N N		N			() ()	л 		N	N	N
OMAZ2	N	N	N	N	N	N	N	N	0	N	N	N	N	N
04424	N	N	N	N	N	N	N	N	-	N	N	N	N	N
UMQ25	N	N	N	N	N	N	N	N	5	N	N	N	N	N
UMQ20	N	N	N	N	N	N	N	N	2	N	N	N	N	N
OMQ27	N	N	N	<10	N	N	N	N	7	N	N	N	N	N
omq28	N	N	N	<10	N	N	N	N	5	N	N	N	N	N
OMQ29	N	N	N	N	N	N	N	N	<5	N	N	N	N	N
OMQ30	N	N	N	N	N	N	N	N	5	N	N	N	N	N
OMQ31	N	N	N	N	N	N	N	N	N	N	И	N	N	N
04932	N	N	N	N	N	N	N	N	<5	N	N	N	N	N
OMQ33	N	N	N	N	N	N	N	N	5	N	N	N	N	N
OMQ34	N	N	N	И	N	N	N	N	N	N	N	N	N	N
OMQ35	N	N	N	N	N	N	N	N	N	N	N	N	N	N
OMQ36	N	N	N	N	N	N	N	N	N	N	N	N	N	N

.

.

.

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg -ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	S	S	S	s	S	S	aa	inst	aa	aa	aa	aa	aa	f
OMV08	150	200	N	15	200	30	N	N	.26	N				N	.20
OMV09	100	200	N	20	<200	50	N	<.05	.02	N				N	1.20
OMV10	100	150	N	50	<200	150	N	<.05	.06	N				N	1.20
OMV11	200	100	N	50	<200	50	N	N	04	N		••		N	.20
ONV12	<100	<10	N	20	ALCO N	20	N	N	. 14	N				N	.50
OMV13	N	<10	N	20	N	20	N	N	1.60	N				N	.25
OMV14	150	<10	N	50	N	300	N	N	.04	5			••	N	.35
OMV15	300	100	N	15	N	70	N	N	<.02	N				N	.20
OMV16	300	50	N	15	N	150	N	N	N	N				N	.25
OMQ01	N	<10	N	N	N	N	N	N	.02	25				N	.40
04002	N	<10	N	N	N	N	N	N	N	N				N	.10
OMQ03	N	10	N	N	N	N	N	N	N	N				N	. 10
OMQ04	N	10	N	N	N	N	N	N	N	N				N	.10
OMQ05	N	10	N	N	N	N	N	N	N	N				N	. 15
OMQ06	N	10	N	N	N	N	N	N	N	N				N	.05
01007		.40													10
UMQU7	N	<10	N	N	N	N	N	N	N	N				N	. 10
80PMO	N	<10	N	N	N	N	N	N	N	N				N	. 10
04009	N	10	N	N	N	N	N	N	N	N				N	. 10
OMQ10	N	<10	N	N	N	N	N	N	N	N				N	.05
OMQ11	N	10	N	N	N	N	N	N	N	N				N	. 15
OMQ12	N	N	N	N	N	N	N	N	N	N				N	.10
OMQ13	N	N	N	20	N	N	N	N	N	N				N	.15
OMQ14	N	<10	N	N	N	N	N	N	N	N				N	. 15
OMQ15	N	20	N	N	N	N	N	N	N	N				N	.10
OMQ16	N	10	N	N	N	N	N	N	N	N				N	.10
04017	N	30	N	N	N	20	N	N	N	N				N	10
04018	אי	10	N N	ini M	IN N	20	N N	N N	N	N				N	15
04010	ini M	<10	N N	N N	N N	N N		N	N	N				5	. 15
04020	N N	N 10	N	N	N	N	N	N	N	N				М	10
01021	N	10	N	N	N	N	N	N	N	N				N N	. 10
OMQZI	N	10	N	N	N	N	N	N	N	N				N	. 15
0 MQ2 2	N	N	N	N	N	N	N	N	N	N				N	.10
OMQ23	N	N	N	N	N	N	N	N	N	N				N	.10
OMQ24	N	<10	N	N	N	N	N	N	N	N				N	. 05
OMQ25	N	<10	N	N	N	N	N	N	N	N				N	.05
omq26	N	<10	N	N	N	N	N	N	N	N				N	.05
04927	N	<10	N	N	N	N	N	N	N	N				N	.05
OMQ28	N	<10	N	N	 N	N	N	N	<_02	N				N	.05
00029	N	<10	N	N	N	N	N	N	N	N				N	. 10
OMO30	N N	<10	N	N	N N	N	N N	N N	ືດວ	N				N	. 05
04071	N	<10	N	N	N	N	N	N	.02	10				N	10
	N	NIU	N	N	N	N	N	N	N	10				N	. 10
OMQ32	N	<10	N	N	N	N	N	N	N	N				N	. 15
OMQ33	N	<10	N	N	N	N	N	N	N	N				N	. 15
omq34	N	N	N	ĸ	N	N	N	N	N	N				N	.20
OMQ35	N	N	N	N	N	N	N	N	N	N				N	. 10
OMQ36	N	N	N	N	N	N	N	N	N	N				N	. 10

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm	B-ppm	Ba-ppm	Be-ppm
			S	S	S	S	S	S	S	S	S	S	s
04037	33 3 2 53	115 42 18	1.00	<.02	N	N	20	1.0	N	N	20	N	N
04938	33 32 53	115 42 18	10.00	.07	.20	.015	200	15.0	N	100	300	50	1.5
04039	33 32 53	115 42 18	5.00	.02	.15	<.002	150	3.0	И	N	50	<20	<1.0
04940	33 32 52	115 41 56	.20	.02	.50	.010	150	N	N	N	20	100	<1.0
OMQ41	33 33 47	115 46 0	.20	.10	.70	.002	100	N	N	N	10	<20	N
0442	33 33 33	115 45 52	.07	.07	.05	.010	100	N	N	N	10	50	N
OMQ43	33 32 44	115 45 51	.20	<.02	<.05	.002	70	N	N	N	15	N	N
04944	33 35 2	115 51 33	.30	.03	<.05	.007	100	N	N	N	20	N	N
0445	33 35 2	115 51 33	.70	.50	1.50	.010	700	N	N	N	15	N	N
04946	33 35 2	115 51 33	5.00	2.00	5.00	.030	3,000	N	N	N	30	N	<1.0
04947	33 35 2	115 51 33	10.00	3.00	1.50	.100	3,000	N	N	N	50	N	<1.0
04948	33 31 7	115 45 40	.20	.20	.15	.005	50	N	N	N	10	<20	N
OMQ49	33 31 9	115 45 45	.07	.05	<.05	.003	100	N	N	N	10	<20	N
OME01	33 34 17	115 46 39	7.00	2.00	3.00	1.000	2,000	N	N	N	15	100	<1.0
OME02	33 33 32	115 45 18	10.00	2.00	5.00	1.000	2,000	N	N	N	20	<20	N
OME03	33 36 13	115 50 20	10.00	5,00	3.00	. 700	2.000	N	N	N	20	N	<1.0
OME04	33 35 52	115 49 50	7.00	5.00	2.00	.700	2,000	N	N	N	20	50	N
OME05	33 35 33	115 51 37	7.00	5.00	3.00	.500	2,000	N	N	N	20	<20	<1.0
OME06	33 35 56	115 51 52	10.00	5.00	5.00	.500	2,000	N	N	N	10	50	N
OME07	33 35 56	115 51 52	7.00	5.00	3.00	.500	2,000	N	N	N	20	100	<1.0
OME08	33 35 56	115 51 52	10. 00	5.00	2.00	.700	2.000	N	N	N	10	20	N
OME09	33 35 56	115 51 52	10.00	5.00	3.00	.700	2,000	N	N	N	10	N	<1.0
OME10	33 35 56	115 51 52	10.00	5.00	2.00	.500	2,000	N	N	N	20	50	<1.0
OME11	33 35 56	115 51 52	5.00	10.00	20.00	.020	3.000	N	N	N	20	N	N
OME12	33 33 35	115 47 34	10.00	3.00	3.00	.500	3,000	N	N	N	15	30	<1.0
OME13	33 31 51	115 43 45	3.00	10.00	.05	.020	500	N	N	N	10	<20	N
OME14	33 32 53	115 43 59	7.00	5.00	5.00	.500	2.000	N	N	N	10	30	N
OME15	33 33 33	115 46 45	10.00	5.00	3.00	.700	2 000	N	N	N	10	N	N
OME16	33 33 0	115 43 59	10.00	5.00	5.00	.700	1,500	N	N	N	10	N	<1.0
OME17	33 34 23	115 45 48	7.00	10.00	3.00	.300	1,000	N	N	N	15	150	N
OME18	33 34 23	115 42 52	10.00	2.00	5.00	. 700	1,000	N	N	N	15	<20	N
OME19	33 33 47	115 45 59	10.00	5.00	3.00	.700	1,500	N	N	N	20	700	<1.0
OME20	33 33 47	115 45 59	10.00	5.00	5.00	.700	2,000	N	N	N	10	<20	N
OME21	33 33 32	115 45 50	5.00	10.00	<.05	.010	500	N	N	N	10	N	N
OME22	33 33 32	115 45 50	10.00	10.00	.70	.700	1,000	N	N	N	10	50	N
OME23	33 33 32	115 45 50	5.00	10.00	.07	.020	500	N	N	N	10	N	N
OME24	33 34 10	115 45 31	5.00	10.00	<.05	.100	500	N	N	N	10	N	N
OME25	33 34 10	115 45 31	10.00	10.00	<.05	.500	1,500	N	N	N	10	50	N
OME26	33 34 10	115 45 31	5.00	10.00	. 15	.020	500	N	N	N	20	20	N
OME27	33 35 28	115 49 30	7.00	10.00	5.00	.500	1,500	N	N	N	20	50	N
OME28	33 34 5	115 47 30	5.00	10.00	.76	.015	1,000	N	N	N	15	N	N
OME29	33 34 5	115 47 30	10.00	10.00	s.05	, 150	700	N	N	N	15	N	N
OME30	33 34 5	115 47 30	5.00	10.00	<.05	.030	200	N	N	N	10	<20	N
OME31	33 34 10	115 48 21	5.00	10.00	15.00	.010	2,000	N	N	N	10	<20	1.5
OME32	33 36 38	115 51 22	7.00	10.00	5.00	.500	1,500	N	N	N	20	150	N

.

.

.

.

.

.

,

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm
·	S	s	S	S	S	S	S	S	S	S	S	S	S	S
04937	N	N	10	N	300	N	5	N	3 0	N	N	N	N	N
OMQ38	N	N	150	50	20,000	N	20	N	300	N	N	N	N	N
04939	N	N	50	20	15,000	N	10	N	150	N	N	N	N	N
OMQ40	N	N	N	N	100	N	N	N	5	N	N	N	N	N
OMQ41	N	N	N	N	20	N	N	N	5	N	N	N	N	N
0 49 42	N	N	N	<10	10	N	N	N	5	N	N	N	N	N
0443	N	N	N	<10	5	N	N	N	10	N	N	N	N	N
0MQ44	N	N	5	<10	10	N	N	N	5	N	N	N	N	N
04945	N	N	5	<10	100	N	N	N	20	N	N	N	N	N
OMQ46	N	N	20	70	10	N	10	N	70	N	N	10	N	<100
04947	N	N	20	150	7	N	N	N	100	N	N	7	N	100
04948	N	N	N	<10	N	N	N	N	10	15	N	N	N	N
04949	N	N	N	N	N	N	N	N	7	N	N	N	N	N
OME01	N	N	50	100	300	N	N	N	50	N	N	50	N	200
OME02	N	N	50	150	500	N	N	N	70	N	N	30	N	300
OME 03	N	N	50	200	150	N	N	N	100	N	N	30	N	200
OME04	N	N	50	200	200	N	N	N	100	N	N	30	N	200
OME05	N	N	30	150	200	N	N	N	100	N	N	30	N	300
OME06	N	N	50	200	200	N	N	N	100	N	N	20	N	200
OME07	N	N	50	700	200	N	N	<20	300	20	N	30	N	300
OME08	N	N	70	100	300	N	N	N	100	N	N	30	N	N
OME09	N	N	50	200	200	N	N	N	100	N	N	30	N	<100
OME10	N	N	50	200	200	N	N	N	100	<10	N	20	N	<100
OME11	N	N	50	500	10	N	 N	M	50	20	N	5	N	1.000
OME12	N	N	50	70	200	N	N	N	70	N	N	20	N	100
OME13	N	N	70	1,000	100	N	N	N	1,000	N	N	5	N	N
OME14	N	N	50	500	200	N	N	N	100	N	N	15	N	100
OME15	N	N	50	500	100	N	N	N	100	N	N	20	N	100
OME16	N	N	50	300	300	N	N	N	100	N	N	20	N	200
OME17	N	N	50	1,000	200	N	N	N	500	10	N	15	N	300
OME18	N	N	50	300	100	N	N	N	100	N	N	30	N	<100
OME19	N	N	50	1,000	200	N	N	N	200	<10	N	20	N	300
OME20	N	N	50	500	500	N	N	N	150	N	N	20	N	300
OME21	N	N	100	2,000	70	N	N	N	1,500	N	N	<5	N	N
OME22	N	N	70	200	7	100	N	<20	200	N	N	30	N	N
OME23	N	N	100	5,000	50	N	N	N	2,000	N	N	5	N	N
OME24	N	N	100	5,000	N	N	N	N	2,000	N	N	7	N	N
OME25	N	N	100	1,500	N	50	N	N	1,000	N	N	30	N	N
OME26	N	N	100	5,000	70	N	N	N	2,000	N	N	15	N	N
OME27	N	N	70	2,000	50	N	N	N	500	N	N	30	N	<100
OME28	N	N	100	3,000	<5	N	N	N	2,000	N	N	10	N	N
OME 29	N	N	70	100	N	100	N	N	100	N	N	20	N	N
OME30	N	N	100	2,000	<5	N	N	N	2,000	N	N	N	N	N
OME31	N	N	50	2,000	7	N	N	N	1,000	<10	N	7	N	N
OME32	N	N	50	1,000	200	N	N	N	300	<10	N	30	N	200

•

.

• • • •

-

·. .

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg-ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	S	S	S	s	S	S	aa	inst	aa	aa	aa	aa	aa	f
04037	N	N	N	N	N	N	N	7.00	. 10	N				N	1.50
04038	N	70	N	N	<200	N	N	62.00	.46	10				N	70.00
ONQ39	N	20	N	N	<200	N	N	10.00	.10	10			••	N	10.00
04040	N	<10	N	N	N	N	N	.05	N	N				N	.85
04441	N	N	N	N	N	N	N	.05	N	N		••		1	.20
04042	N	15	N	N	N	N	N	<.05	N	N				N	. 10
04043	N	<10	N	N	N	N	N	N	N	N				N	. 15
04044	N	<10	N	N	N	N	N	N	N	N				N	.10
OHQ45	N	10	N	N	N	N	N	. 10	.04	N				N	.30
04946	<100	30	N	20	N	N	N	N	<.02	N			••	N	.60
04947	100	100	N	15	<200	20	N	<.05	.04	N				N	.55
04048	N	15	N	N	N	N	N	<.05	N	N				N	.10
04049	N	10	N	N	N	N	N	N	.02	N				N	. 15
OME01	200	500	N	70	200	150	N	N	<.02	N				N	.45
OME02	300	500	N	50	N	150	N	N	<.02	N	••			N	.40
OME03	200	300	N	70	N	200	N	N	<.02	N				N	.40
OME04	200	200	N	50	N	100	N	N	<.02	N		••		N	.45
OME05	300	300	N	30	N	100	N	N	<.02	<5				N	. 25
OME06	200	500	N	30	N	70	N	N	<.02	N				N	.20
OME07	300	300	N	30	N	100	N	N	.02	N	••	••	••	N	.55
OME08	N	500	N	70	N	150	N	N	<.02	N	••	••		N	.30
OME09	<100	500	N	50	N	150	N	N	<.02	N				N	.30
OME10	<100	500	N	50	N	100	N	N	<.02	N		••		N	.55
OME11	1,000	20	N	<10	N	N	N	N	.02	N				N	.35
OME12	100	500	N	50	N	150	N	N	<.02	N		••		N	.35
OME13	N	20	N	N	200	N	N	N	N	<5				N	1.00
OME14	100	300	N	30	N	100	N	N	<.02	N	•-			N	.25
OME15	100	500	N	50	N	100	N	N	<.02	N		•-	••	N	. 15
OME16	200	500	N	30	N	100	N	N	<.02	N				N	.25
OME17	300	200	N	20	N	50	N	N	<.02	N				N	. 15
OME18	<100	500	N	70	N	200	N	N	<.02	N				N	.25
OME19	300	200	N	20	<200	100	N	N	<.02	N	• •			N	. 15
OME20	300	500	N	30	N	100	N	N	<.02	N	••		••	N	.25
OME21	N	30	N	N	N	N	N	N	<.02	N			••	N	.40
OME22	N	70	N	30	N	500	N	N	<.02	N		••	••	18	1.20
OME23	N	50	N	N	<200	N	N	N	<.02	15				3	.40
OME24	N	50	N	N	N	N	N	N	<.02	N		••	••	N	. 25
OME25	N	150	N	N	200	150	N	N	<.02	<5				N	.65
OME26	N	50	N	N	N	N	N	N	<.02	15				N	.75
OME27	<100	200	N	30	N	30	N	N	02	N			••	N	.45
OME28	N	50	N	N	N	N	N	N	<.02	5				1	.30
OME29	N	100	N	N	<200	70	N	N	<.02	N				N	.30
OME30	N	20	N	N	N	N	N	N	<.02	N	• •			N	.25
OME31	N	30	N	N	N	N	N	N	<.02	10				N	.20
OME32	200	200	N	20	N	100	N	N	<.02	N				N	.35

.

.

-

. .

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm	B-ppm	Ba-ppm	Be-ppm
			S	S	S	S	S	S	S	s	S	S	s
OME33	3 3 3 6 3	115 51 25	7.00	5.00	10.00	.500	2,000	N	N	N	15	N	N
OME34	3 3 3 6 42	115 52 7	10.00	7.00	5.00	1.000	1,500	N	N	N	15	N	N
OME35	33 36 29	115 50 24	10.00	7.00	5.00	.700	2,000	N	N	N	20	150	N
OME36	33 36 5	115 51 4	5.00	10.00	<.05	.030	200	N	N	N	10	N	N
ome37	3 3 33 47	115 46 0	7.00	7.00	5.00	.700	1,500	N	N	N	15	200	<1.0
OME38	33 34 57	115 51 34	10.00	7.00	10 .00	1.000	2,000	N	N	N	15	<20	<1.0
OME39	33 33 25	115 48 41	10.00	5.00	10.00	1.000	2,000	N	N	N	15	N	N
OME40	33 33 25	115 48 41	7.00	10.00	10.00	.150	2,000	N	N	N	10	<20	<1.0
OME41	33 33 25	115 48 41	5.00	7.00	.70	.150	5,000	N	N	N	15	100	<1.0
OME42	33 33 25	115 48 41	5.00	10 .00	.05	.010	700	N	N	N	15	N	N
OME43	3 3 33 25	115 48 41	10.00	10 .00	.70	.015	1,000	N	N	N	20	N	N
OMM01	33 33 27	115 44 40	5.00	5.00	10.00	.100	5,000	N	N	N	150	700	1.5
OMM02	33 33 17	115 44 31	5.00	5.00	10 .00	.200	3,000	N	N	N	50	100	2.0
OMM03	33 33 37	115 45 24	5.00	5.00	10.00	.200	3,000	N	N	N	100	200	1.5
OMMO4	3 3 3 6 27	115 49 12	10.00	5.00	2.00	1.000	1,000	N	N	N	50	700	N
OMM05	33 36 3	115 49 10	10.00	5.00	2.00	.700	1,000	N	N	N	70	150	1.0
OMM06	33 33 34	115 45 8	5.00	3.00	3.00	.500	2,000	N	N	N	70	500	2.0
OMM07	3 3 3 6 46	115 50 9	5.00	5.00	5.00	.700	1,500	N	N	N	70	100	1.0
80MMO	33 33 6	115 43 49	15.00	1.50	5.00	1.000	3,000	N	N	N	50	700	1.0
OMM09	33 36 55	115 50 21	20.00	1.00	2.00	1.000	3,000	N	N	N	70	100	1.0
OMM10	33 36 56	115 50 16	15.00	.70	2.00	1.000	5,000	N	N	N	70	700	<1.0
OMM11	33 36 50	115 50 7	10.00	1.50	2.00	.700	3,000	N	N	N	100	1,000	<1.0
OMM12	33 34 58	115 50 25	3.00	2.00	2.00	.200	1,500	N	<200	N	50	700	1.5
OMM13	33 35 19	115 51 40	3.00	2.00	1.50	.500	1,000	N	N	N	100	500	2.0
OMM14	33 35 19	115 51 40	5.00	1.50	1.50	.500	1,000	N	N	N	300	1,000	2.0
OMM15	3 3 3 6 26	115 48 25	15.00	2.00	3.00	1.000	3,000	N	N	N	50	1,500	1.5
OMM16	33 36 17	115 48 54	2.00	1.00	.50	.300	700	N	N	N	50	700	2.0
OMM17	33 35 13	115 52 32	2.00	3.00	2.00	.300	2,000	N	N	N	50	500	1.5
OMM18	33 35 13	115 52 32	5.00	2.00	.70	.500	1,500	N	<200	N	50	700	2.0
OMM19	33 3 5 13	115 52 32	5.00	2.00	5.00	. 150	3,000	N	N	N	20	700	1.5
OMM20	3 3 3 5 13	115 52 32	3.00	1.50	5.00	. 150	2,000	N	N	N	30	200	1.5
OMM21	33 31 56	115 43 37	20.00	.30	.50	.150	200	N	N	N	150	50	1.0
OMM22	33 32 6	115 43 0	10.00	10.00	2.00	.700	2,000	5.0	N	N	20	50	N
OMM23	33 32 6	115 43 0	15.00	.50	.50	.700	2,000	N	N	N	50	1,000	N
omm24	33 32 43	115 47 27	1.50	.50	.10	.200	70	1.0	N	N	50	500	2.0
OMM25	33 32 43	115 47 27	10.00	5.00	5.00	.700	2,000	N	N	N	100	700	<1.0
OMM26	33 32 28	115 43 25	5.00	1.50	2.00	.500	1,500	N	N	N	30	700	1.5
OMM27	33 32 28	115 43 25	5.00	1.50	3.00	.700	2.000	N	N	N	100	700	2.0
OMM28	33 32 28	115 43 25	7.00	2.00	2.00	1.000	1,500	N	N	N	50	700	1.5
OMM29	33 34 23	115 45 52	3.00	7.00	15.00	.100	2,000	N	N	N	15	500	2.0
OMM30	33 34 23	115 45 52	5.00	10-06	10.00	.015	2,000	- 5	200	N	20	N	1.0
OMM31	33 34 35	115 46 20	3.00	7.00	15.00	.010	1,000	N	LN	N	50	N	2.0
ONM32	33 34 35	115 46 20	5.00	10.00	20.00	.010	1,000	N	N	N	10	N	1.5
OMM33	33 34 35	115 46 20	7.00	10.00	_ 10	.020	1,000	N	N	N	20	N	N
OMM34	33 34 35	115 46 20	7.00	10.00	.05	.020	1,000	N	N	N	10	N	N

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm
·	S	S	S	S	S	S	S	S	S	S	S	S	S	S
OME33	N	N	50	500	300	N	N	N	100	N	N	50	N	100
OME34	N	N	70	1,500	150	N	N	<20	500	<10	N	30	N	500
OME35	N	N	50	1,500	200	N	N	N	300	20	N	30	N	500
OME36	N	N	70	3.000	50	N	N	N	1.000	N	N	10	N	N
OME37	N	N	50	700	200	N	N	N	200	<10	N	30	N	500
OME38	N	N	50	200	200	N	N	N	100	N	N	70	N	150
OME39	N	N	50	200	300	N	N	N	70	N	N	70	N	150
OME40	N	N	70	2.000	5	N	N	N	500	N	N	20	N	<100
OME41	N	N	30	1.000	200	50	N	N	500	30	N	10	N	<100
OME42	N	N	100	2,000	5	N	N	N	1,000	N	N	7	N	N
OME43	N	N	150	2.000	50	N	N	N	2,000	N	N	15	N	<100
ONM01	N	N	15	20	150	<20	N	N	70	50	N	10	N	200
OMM02	N	N	30	500	100	N	N	N	150	20	N	15	N	700
OMM03	N	 И	5	50	100	50	И	 N	50	15	N	10	N	500
OMM04	N	N	70	N	300	50	N	N	50	20	N	20	N	700
OMM05	N	N	50	20	70	50	N	N	70	20	N	30	N	500
OMM06	N	N	20	100	100	50	N	20	100	50	N	15	N	300
	1	N	30	300	200	N		LU N	200	20	N	30	М	300
	N	N 1	50		200	70	н М	20	200	50	н И	30	N N	500
OMM09	N	N	30	N	200	100	N	20	N	N	N	100	N	300
04410	м	м	30	м	200	100	7	<20	N	м	м	100	ы	200
OHM11		N	70	20	200	100	1	-20	70	F0		50		500
	N	N	3U 70	20	150	100	N	<20	200	50	N	50	N	200
	N	N	50	500	100	<20	N	N	200	20	N	10	N	200
UMM15	N	N	20	150	70	50	N	N	100	50	N	20	N	100
OMM 14	N	N	20	10	100	100	N	<20	15	50	N	10	N	500
OMM15	N	N	30	N	150	70	<5	<20	<5	50	N	50	N	500
OMM16	N	N	20	50	100	50	N	<20	150	20	N	10	N	200
ONM17	N	N	20	200	100	N	N	N	200	50	N	15	N	300
OMM18	N	N	50	150	200	50	N	<20	300	70	N	20	N	200
OMM19	N	N	7	50	30	50	N	N	50	20	N	10	N	700
OMM20	N	N	100	100	15	N	N	N	100	70	N	10	N	200
OMM21	N	N	20	50	100	N	N	N	70	20	N	15	N	500
OMM22	N	N	100	2.000	3.000	N	N	<20	2.000	N	<100	20	N	150
OMM23	N	N	5	-, N	70	N	 М	<20	20	20	N	20	N	150
OMM24	N	N	5	20	20	N	N	N	10	30	N	5	N	<100
OMM25	N	N	30	300	100	<20	N	N	70	20	N	15	N	1,000
OMM26	N	N	15	100	30	50	N	N	50	50	 N	15	N	700
OMM27	N N	Ч	20	200	70	50	N	20	70	50	 N	20	N	700
OMM28	N	Ч	20	200	70	50	N	20	70	70		20	N	500
OMM29	N	N	5	200	10	<20	N	20 N	5	30	N	5	N	500
OMM30	N	И	50	2.000	50	И	И	И	1 000	10	1,000	5	N	1.000
OMM31	Ы	N	70	1 000	20	N	N	N N	1 000	N	.,u	- 5	N	1,000
OMM 32	N	л Ц	10	300	5		и И	n, M	200	N	л N	л Л	N N	2,000
OMM 33	N	 Ц	70	5 000	70	N N	N N	N L	2 000	N	Ч	15	N	ш,000 Ш
OMM34	N	л Ц	70	3,000	50	N	ы	N 11	2,000	N N	N N	15	N	л Ц
0.00			10	5,000	50	14	N	N	000 م	n	ri		TH I	

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg-ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	s	s	S	s	s	s	aa	inst	aa	88	aa	88	aa	f
OME33	100	300	N	50	N	70	N	.10	<.02	N			••	N	.30
OME34	500	200	N	30	N	150	N	N	<.02	И				N	.05
OME35	500	200	N	30	N	100	N	N	<.02	И				N	.20
OME36	N	50	N	N	N	N	N	N	.10	N				N	.25
OME37	500	200	N	30	N	200	N	N	<.02	N				N	.25
OME38	150	500	N	70	И	150	N	N	<.02	N				N	.25
OME39	150	500	N	70	N	200	N	N	<.02	И			••	N	.15
OME40	<100	100	N	10	N	50	N	N	.03	И				N	.15
OME41	<100	100	N	50	N	50	N	N	<.02	N				N	.25
OME42	N	50	N	N	N	N	N	N	<.02	N			••	N	.25
OME43	<100	70	N	N	И	N	N	N	<.02	15				N	.45
OMM01	200	50	N	30	200	20	N	N	.16	20				N	1.30
	700	100	N	10	L00	20	N	N	08	40				N	1.15
OMM03	500	70	N	30	N	50	N	N	< .02	N			••	N	3.05
OMM04	700	100	N	50	200	50	N	N	.02	N				N	.40
ONM05	500	300	ы	30	<200	50	И	м	< 02	И				N	1.20
	300	150	N N	30	~200 N	150	N N	N		10				6	3.60
OMM07	300	200	N N	30	N	100	N N	N	10	40				5	1.50
	500	100	N N	50	N	50	N N	< 05	.10	40 5				3	.90
OMM09	300	10	N	100	200	70	N	N	. 18	20				24	.60
OMM 1.0	200	10	N	100	700	70	м	N	06	75				6	45
OMM 11	200	50	N	70	700	70	N N	N	.00	10				4	. 45
	200	50	N	70	200	70	N	N	.02	10				2	. 00
	200	70	N	20	200	70	N	N	N	110				2	4.00
	100	70	N	20	N	100	N	N	<.02	N				i N	1.70
Umm 14	500	70	N	20	N	200	N	N	×.02	N				N	. • 5
OMM15	500	20	N	70	N	50	N	N	.06	55				N	4.25
OMM16	200	100	N	20	300	150	N	N	.02	20				N	.85
OMM17	300	100	N	20	N	100	N	N	.02	70				N	.95
OMM18	200	200	N	50	N	150	N	N	N	80				N	1.90
OMM19	700	70	N	50	N	70	N	N	<.02	30				N	1 .9 0
OMM20	200	100	N	20	N	30	N	N	<.02	10				2	4.00
OMM21	500	100	N	20	N	20	N	N	2.40	60				66	5.40
OMM22	150	150	N	20	N	50	N	N	<.02	N				N	.35
OMM23	150	20	N	50	N	1.000	N	N	.66	N			••	N	.20
OMM24	<100	50	N	<10	N	100	N	N	<.02	60				N	.95
OMM25	1.000	100	N	30	N	50	N	N	. 12	N				N	.30
OMM26	700	100	N	30	 N	150	N	N	<u>112</u>	N				N	.65
OMM27	700	200	N	30	N	150	N	N	< 02	5				N	.85
OMM28	500	200	N	30	N	200	N	N	<.02	5				N	.65
CMM2S	500	30	N	15	N	70	N	N	<.02	N				N	1.15
OMM30	1,000	30	N	<10	И	И	N	N	<.02	210				1,200	.75
OMM31	1,000	20	N	<10	н И	N	N N	N	<.02					2	2.25
OMM32	2,000	10	N	<10	N	N N	N	N	<.02	35				- N	.75
OMM33	_,000	50	N	N	יי. א	N	N.	N	<.02	N		. -		N	.35
OMM34	N	50	N	N	 N	N	N	N	<.02	5				N	.40
		-								-					

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm	8-ppm	Ba-ppm	Be-ppm
			S	S	S	S	S	S	S	S	S	S	S
OMM35	33 34 35	115 46 20	10.00	10.00	<.05	.020	1,500	1.0	N	N	20	N	N
OMM36	33 34 35	115 46 20	10.00	10.00	20.00	.500	2,000	N	N	N	70	100	1.0
OMH37	33 3 4 3 5	115 46 20	1.00	5.00	.20	.005	200	N	N	N	20	N	1.5
OMM38	33 31 23	115 45 45	5.00	10.00	5.00	.010	2,000	N	N	N	20	100	N
OMM39	33 3 4 47	115 51 51	5.00	2.00	5.00	.200	3,000	N	N	N	30	700	1.0
OMM40	33 3 2 32	115 41 56	10.00	7.00	10.00	.500	2,000	N	N	N	700	500	3.0
OMM41	33 32 29	115 41 56	5.00	1.00	1.00	.500	1,000	N	N	N	500	1.000	2.0
OMM42	33 32 29	115 41 56	5.00	2.00	2.00	.700	1.000	N	N	N	500	500	10.0
OMM43	33 32 29	115 41 56	1.50	.50	1.00	. 200	1,000	N	N	N	50	200	5.0
OMH44	33 32 49	115 42 38	20.00	. 15	.50	.300	150	N	N	N	70	700	2.0
OMM45	33 32 53	115 42 49	1.50	.20	.50	.015	200	1.0	N	N	50	50	N
OMM46	33 32 53	115 42 49	5.00	. 10	1.00	.030	700	2.0	N	N	50	500	1.0
OMM47	33 32 53	115 42 20	10.00	.05	.05	.005	150	.7	N	20	50	<20	1.0
OMM48	33 32 52	115 42 20	1.00	.05	2.00	.005	1 000	.7	N	N	30	30	<1.0
OMM49	33 3 2 39	115 43 7	1.50	.10	.70	.200	1,000	1.0	N	N	30	700	N
0MG01	33 34 22	115 46 38	2 00	-50	. 15	300	500	N	N	М	30	700	2.0
0MG02	33 34 23	115 46 38	1 00	50	50	100	5 000	3.0	N	N	10	2 000	1.0
CM603	33 36 56	115 50 55	2 00	70	50	500	700	ы. И		N	50	700	2 0
20200	33 35 57	115 49 23	2 00	1 00	70	500	1 000	N		N N	70	700	2 0
OMG05	33 36 31	115 49 40	2.00	.50	1.00	.300	500	N	N	N	70	500	2.0
OMGO6	33 35 28	115 48 26	3.00	1.00	- 50	.500	700	<.5	N	N	100	700	2.0
04607	33 33 15	115 44 15	2 00	1 00	1 00	500	1 000	N	N	N	70	700	2.0
80.900	33 33 32	115 45 55	2 00	1 00	70	300	700	N	N	N	100	500	1 5
	33 36 10	115 49 50	2.00	70	.70	300	700	7 0	N	N	50	500	1 5
OMG10	33 35 55	115 49 44	2.00	1.00	.50	.300	700	<.5	N	N	30	500	2.0
OMG11	73 35 5	115 49 57	1 50	30	50	300	500	И	м	И	30	500	15
OMG12	33 36 5	115 51 10	2 00	50	70	500	500	< 5	N N	л к	50	700	1.5
OMC13	33 3/ 30	115 50 30	3 00	1 00	50	500	1 000	ч. J И	N N	н И	50	500	1.0
OMC1/	27 74 37	115 50 30	2.00	1.00	. 50	.500	7,000	п. М	N	л. М	50	700	2.0
OMG15	33 34 39	115 50 30	1.50	.30	.70	.300	500	N	N	N	20	500	1.0
04616	77 7/ 70	115 50 30	3 00	1 00	70	500	700	м	м	И	20	1 000	20
04617	33 34 37	115 50 30	1 50	50	70	300	500	N N	N	N N	20	500	1 5
ONC18	77 7/ 70	115 50 30	2 00	.50	50	300	500	N	N	ม	20	700	1.5
OMC10	33 34 37	115 50 30	2.00	50	50	300	500	N	N 1	н 1	20	700	1.5
OMG20	33 34 39	115 50 30	3.00	1.00	1.00	.500	1,500	N	N	N	100	500	1.0
OMG21	33 34 30	115 50 30	2 00	70	1 00	500	500	м	И	И	50	700	2.0
OMG22	33 34 30	115 50 30	5.00	1.00	1,00	500	700	N	N	N	100	700	2.0
OMG23	33 32 13	115 44 24	2 00	50	50	300	500	N	 И	N	20	700	1 5
04624	33 35 24	115 50 58	3 00	1 00	1 00	500	1 000	л Ц	N N	N N	70	500	2 0
OMG25	33 34 0	115 47 25	2.00	1.00	1.00	.500	1,500	N	N	N	50	700	2.0
0MG26	33 33 11	115 67 38	2 00	70	50	500	700	<u>د</u> ۲	N	И	50	500	20
OMG27	33 32 1	115 47 35	2.10	1 00		500	700	ر لا	ri M	n N	30	500	2 0
OMG28	77 79 57	115 /4 55	2.00	70	.70	.500	/ UU E00	N Li	Ni Ni	N.	50	700	2.0
MG20	78 8/ 53	115 52 /	2 00	50	20	.500 E00	1 000	M M	n N	N	50	500	2.0
OMCZ0	JJ J4 J2 77 76 4/	115 /7 50	2.00	.50	.20	100	5 000	N N	N hi	N	20	700	~1 0
Crigoro -	22 22 10	112 47 29	5.00	.50	.50	. 100	5,000	N	N	N	20	700	NI.0

. .

.

. . . .

.

.

,

.

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm
·	S	s	S	S	s	s	S	s	s	S	S	s	s	s
OMM35	N	N	70	5,000	50	N	N	N	2,000	N	N	15	N	N
OMM36	N	N	30	700	N	N	N	N	200	10	N	10	N	700
OMM37	N	N	20	100	N	N	N	N	500	N	N	N	N	N
OMM38	N	N	70	2,000	50	N	N	N	1,500	10	N	10	N	200
OMM39	N	N	15	70	300	50	N	N	. 70	50	N	10	N	300
OMM40	N	N	50	1,000	200	N	N	N	150	70	N	20	N	500
OMM41	N	N	10	<10	15	50	N	30	10	70	N	10	N	500
OMM42	N	N	15	70	70	150	N	20	30	70	N	15	N	300
OMM43	N	N	5	N	<5	N	N	<20	5	50	N	<5	N	200
OMM44	N	N	500	<10	2,000	50	15	N	100	500	N	10	N	<100
OMM45	N	N	50	N	100	N	10	N	30	N	N	N	N	N
OMM46	N	N	30	10	1,000	N	N	N	70	N	N	<5	N	<100
OMM47	N	N	100	50	200	N	20	N	300	10	N	N	N	N
OMM48	N	N	50	10	3.000	N	N	N	50	<10	N	N	N	N
OMM49	N	N	5	10	15	N	N	<20	5	10	N	7	N	N
OMG01	N	N	7	50	15	70	N	<20	20	10	N	7	N	<100
OMG02	N	N	20	20	200	100	7	N	100	20	N	15	N	<100
OMG03	N	N	7	50	20	50	Ň	<20	10	20	N	10	N	<100
	N	N	15	70	100	<20	M	~20 N	50	30	N	15	N	200
OMG05	N	N	10	50	70	50	N	<20	50	20	N	10	N	<100
OMG06	N	N	15	50	100	50	N	<20	50	30	N	15	N	200
OMG07	N	N	10	50	70	50	 N	N	20	30	N	15	N	200
OMCOR	N	N	10	70	50	<20	N	N	20	20	N	15	N	300
04000	N N	N	10	70	20	<20	м М	· N	20	15	N 1	10	N	200
OHGU7		ni Ni	10	70	20	<20	N	N	10	20		10		<100
OMSTU	N	n	10	50	20	20	N	N	10	20	n	10	N	100
OMG11	N	N	7	50	20	50	N	N	15	15	N	7	N	<100
OMG12	N	N	10	50	10	50	N	N	10	20	N	7	N	300
OMG13	N	N	15	70	70	N	N	N	20	15	N	20	N	<100
OMG14	N	N	15	50	100	50	N	N	30	15	N	15	N	200
OMG15	N	N	7	50	10	50	N	N	20	15	N	7	N	500
OMG16	N	N	10	70	30	50	N	N	50	20	N	15	N	200
OMG17	N	N	5	50	10	N	N	N	20	10	N	5	N	200
OMG18	N	N	5	70	15	<20	N	N	50	20	N	10	N	<100
OMG19	N	N	5	50	15	50	N	N	20	15	N	5	N	200
OMG20	N	N	20	100	50	N	N	N	100	15	N	15	N	200
OMG21	N	N	7	20	20	50	N	<20	10	50	N	10	N	<100
OMG22	N	N	15	30	70	50	N	N	20	50	N	15	N	500
OMG23	N	N	7	20	10	50	N	N	10	15	N	7	N	200
OMG24	N	N	7	50	200	50	N	<20	20	30	N	10	N	500
OMG25	N	N	7	50	50	50	N	<20	20	30	N	10	N	500
OMG26	N	N	10	50	10	70	N	<20	20	30	N	10	N	300
OMG27	N	N	15	100	20	50	N	<20	70	50	N	10	N	300
OMG28	N	N	10	70	20	50	N	<20	20	10	N	10	N	200
OMG29	N	N	10	50	15	50	N	<20	15	20	N	10	N	200
OMG30	N	N	10	50	700	50	N	-20	50	N	N	10	N	N 50
		••			,		14	14						

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg-ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	s	S	S	s	S	S	aa	inst	aa	aa	aa	aa	aa	f
OMM35	N	50	N	N	N	N	N	ы	< 02	10				N	.35
OMM36	700	100	N	20	N	50	N	N	02	N				2	8.75
OMM37	N	<10	N	<10	N	N	N	N	.02	N				- N	.65
OMM38	200	70	N	20	N	N	N	N	N	60				2	1.30
OMM39	300	150	N	50	N	70	N	N	<.02	10				N	1.90
OMM40	500	200	N	30	200	50	N	N	.08	N				N	5.90
OMM41	500	50	N	30	N	300	N	N	<.02	N				N	1.70
omm42	300	150	N	50	N	500	N	N	.04	N				N	2.45
OMM43	200	50	N	20	N	100	N	N	.02	N				N	.55
OMM44	<100	50	N	50	300	300	N	N	.30	25				N	9.50
OMM45	N	20	N	<10	N	N	N	3.10	2.10	N				N	.55
OMM46	<100	30	N	<10	N	N	N	7.70	1.30	N				N	1.15
OMM47	N	50	N	<10	<200	N	N	21.00	. 14	N				N	3.40
OMM48	N	20	N	<10	N	N	N	3.00	.08	N				N	5.15
OMM49	N	15	N	20	N	500	N	<.05	<.02	N				N	.30
04001	<100	50	N	20	N	200			. 02	Æ				N	00
OMC02	<100	70	N N	20	N N	200	N	N	<.02	5	••				.90
OMCOZ	<100	100	N.	20	N	200	N	N	<.02	5				ni M	1 30
OMC0/	200	150	N.	20	N	200	N	N	<.02	<5 -E				Ni Ni	1.00
OMC05	<100	100	N	20	N	150	N	N	<.02	<5 10				Ni Ni	1.00
	100	100	N	20	N	150	N	N	<.02	10				N	.95
OMG06	200	100	N	30	N	150	N	N	<.02	5				N	1.00
OMG07	200	100	N	30	N	150	N	N	<.02	<5			••	N	1.00
OMG08	300	100	N	20	N	150	N	N	<.02	N				N	.50
OMG09	200	100	N	20	N	150	N	N	<.02	N		••	••	N	.60
OMG10	<100	100	N	15	N	200	N	N	<.02	N			••	<1	1.20
OMG11	<100	70	N	20	N	150	N	N	<.02	5				N	1.20
OMG12	300	70	N	20	N	150	N	N	<.02	<5			••	N	.95
OMG13	<100	200	N	20	N	100	N	N	<.02	<5				N	.95
OMG14	200	100	N	30	N	200	N	N	<.02	<5				N	1.20
OMG15	500	70	N	20	N	150	N	N	<.02	N				N	.60
OMG16	200	150	м	30	М	200	м	м	< 02	M				м	85
OMG17	200	50	N	15	N	200	n. M	ni M	< 02	n. M				N	.05
OMG18	<100	70	N N	20	N N	100	n M	n. M	< 02	n. M				N N	50
OMG19	200	50	N	20	N	100	n M	n M	< 02	N				n M	
OMG20	200	150	N	30	N	150	N	N	<.02	N				-1	.50
OMG21	<100	70	N	30	N	200	N	N	<.02	10				<1	.80
UMG22	500	150	N	30	N	200	N	N	<.02	N				N	.90
OMG23	200	70	N	20	N	150	N	N	<.02	N				N	1.40
OMG24	500	100	N	20	N	200	N	N	<.02	N				N	.95
UMGZ5	500	70	N	20	N	300	N	N	<.02	N				N	1.00
OMG26	300	100	N	20	N	200	N	N	<.02	N				N	.95
OMG27	300	70	N	20	N	200	N	N	<.02	N				N	2.00
OMG28	200	70	N	20	N	200	N	N	<.02	15				N	.35
omg29	200	100	N	20	N	300	N	N	<.02	N				N	1.20
omg30	N	70	N	30	N	50	<100	N	<.02	N				3	.55

. ,

۰

,

•

-

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-ppm	As-ppm	Au-ppm	B-ppm	Ba-ppm	Be-ppm
			S	S	S	S	S	S	S	S	S	S	s
OMG31	33 35 16	115 47 59	5.00	1.50	1.0 0	.500	1,000	N	N	N	100	300	1.0
OMG32	33 35 16	115 47 59	5.00	1.50	1.00	.500	1,500	N	N	N	70	500	2.0
OMG33	33 3 5 16	115 47 59	2.00	1.00	.70	.500	1,000	N	N	N	50	70 0	2.0
OMG34	3 3 3 5 16	115 47 59	2.00	1.50	.50	.500	1,000	N	N	N	70	700	2.0
OMG35	33 35 16	115 47 59	2.00	.70	.50	.500	7 0 0	N	N	N	30	70 0	1.5
OMG36	33 33 59	115 45 50	.70	.50	15 .0 0	.050	5,000	N	N	N	10	3, 00 0	<1.0
OMG37	3 3 3 4 4	115 47 7	5.00	1.50	.70	.500	1,000	N	N	N	150	700	3.0
OMG38	33 3 4 9	115 47 47	5.00	.50	20 .00	.0 50	3,000	N	N	N	20	1,000	N
OMG39	33 3 4 11	115 48 19	3.00	1.0 0	2.00	.300	1,000	N	N	N	50	500	1.0
OMG40	3 3 3 4 8	115 48 54	2.00	.70	.50	.2 00	700	N	N	N	15	700	1.5
OMG41	3 3 3 6 55	115 51 37	5.00	2.0 0	1.0 0	.500	1, 0 00	N	N	N	100	700	2.0
OMG42	3 3 3 6 34	115 50 35	1.00	.50	.50	.100	>5,000	N	N	N	10	100	N
OMG43	33 3 6 5	115 51 4	10.00	1.50	2. 0 0	.500	3,000	N	N	N	20	700	1.0
OMG44	33 3 6 5	115 51 4	10.0 0	.70	1.00	.200	>5,000	N	N	N	20	50	N
OMG45	33 3 6 8	115 50 53	3.00	.70	.50	.300	2 ,0 00	1.0	N	N	2,000	700	N
OMG46	33 36 8	115 50 53	5.0 0	5.00	.70	.200	1,500	N	N	N	70	3,0 0 0	N
OMG47	3 3 3 4 40	115 46 8	.70	.30	3.00	.100	3,000	N	N	N	50	1,000	1.0
OMG48	3 3 33 47	115 46 0	2.00	.70	.70	.200	3,000	N	N	N	50	1,500	1.5
OMG49	33 32 44	115 45 51	1.50	.70	.50	.300	700	N	N	N	20	500	2.0
OMG50	33 35 2	115 51 33	1.50	.50	.70	.500	7 0 0	N	N	N	50	500	2.0
OMG51	33 33 34	115 48 44	1.50	.70	1.00	.500	700	N	N	N	20	700	2.0
OMG52	3 3 33 18	115 48 42	1.00	1.00	20.00	.200	1,500	.5	N	N	N	<20	N
OMG53	3 3 32 3 8	115 49 3	2.00	.70	.70	.500	700	N	N	N	2 0	70 0	2.0
OMG54	3 3 31 3 8	115 45 36	2.00	.50	.50	.300	700	N	N	N	20	700	2.0
OMG55	3 3 3 4 19	115 46 39	1.50	.50	10 .00	.030	3,000	N	N	N	10	50 0	N
OMS01	3 3 36 53	115 50 8	5.00	.50	1.0 0	.500	70 0	N	N	N	30	1,00 0	N
OMS02	33 36 23	115 50 8	7.00	.70	1.50	.70 0	2,0 00	N	N	N	50	1,00 0	N
OMS03	33 32 3	115 42 40	7.00	.70	1.50	.70 0	1,500	N	N	N	50	1,00 0	1.5
OMS04	33 3 2 3	115 42 40	.70	. 10	5.00	.100	150	N	N	N	70	30 0	N
OMS05	33 31 44	115 41 27	5.00	.70	2.00	.700	1,00 0	N	N	N	20	1,000	N
oms06	33 3 1 53	115 41 29	7.00	1.0 0	3.00	1.000	1,500	N	N	N	20	70 0	N
OMS07	33 32 8	115 41 24	7.00	2.00	3.00	.500	1,500	N	N	N	50	50 0	1.0
OMS08	33 32 9	115 41 30	1.00	.30	5.00	. 70 0	500	N	N	N	70	500	N
OMS09	3 3 32 9	115 41 30	10.00	3.0 0	3.00	1.000	2,000	N	N	N	30	2 00	N
OMS10	33 32 9	115 41 30	10.00	3.00	3.0 0	1.000	1,500	N	N	N	30	3 0 0	N
OMS11	3 3 3 2 10	115 41 34	10.00	2.00	5.00	1.000	2,000	N	N	N	3 0	700	1.0
OMS12	33 32 10	115 41 34	2.00	.70	2 .0 0	.700	1,000	N	N	N	50	1,000	1.0
OMS13	33 3 2 10	115 41 34	5.00	1.50	3.00	.700	1,500	N	N	N	30	200	1.5
OMS14	33 32 13	115 41 30	2.00	.30	1.50	.500	1,000	N	N	N	50	2,00 0	1.5
OMS15	33 32 0	115 42 30	3.0 0	.20	2.00	.500	1 ,50 0	N	N	N	50	2,0 00	1.5
OMS16	33 3 2 14	115 41 29	1.0 0	.30	1.00	. 10 0	200	N	N	N	20	50 0	1.5
OMS17	33 32 31	115 41 27	2.0 0	.50	.50	. 150	5,000	N	N	N	100	100	2.0
OMS18	3 3 32 42	115 43 31	5.00	.50	.70	.500	1,000	N	N	N	20	70	1.0
OMS19	33 3 2 31	115 41 27	. 70	.70	. 15	.100	2 0 0	N	N	N	70	500	3.0
OMS20	33 32 29	115 41 27	5.00	2.00	2.0 0	.500	2 ,00 0	N	N	N	100	300	1.5

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	sn-ppm	Sr-ppm
·	S	S	s	S	S	S	S	S	S	S	S	S	S	S
OMG31	N	N	20	100	100	<20	N	N	50	50	N	20	N	500
OMG32	N	N	20	70	70	50	N	<20	50	50	N	15	N	200
OMG33	N	N	15	70	50	50	N	<20	30	50	N	10	N	500
OMG34	N	N	15	70	100	50	N	<20	70	15	N	10	N	200
OMG35	N	N	10	50	50	50	N	<20	15	30	N	10	N	300
OMG36	N	N	15	10	5	<20	N	N	70	20	N	7	N	500
OMG37	N	N	20	50	100	100	N	20	50	70	N	15	N	300
OMG38	N	N	5	20	100	<20	N	N	70	50	N	N	N	500
OMG39	N	N	10	50	70	<20	N	N	30	20	N	10	N	300
OMG40	N	N	5	50	15	<20	N	N	20	10	N	5	N	200
OMG41	N	N	20	100	100	<20	N	<20	100	30	N	20	N	200
OMG42	N	N	10	10	10	N	N	-20 N	70	N		10	N	N
OMC/3	N	N	10	10	20	50	N	50	70	30	N	10	N	500
	N	N	10	20	150	50	N	JU	70	<u>и</u>	N N	10	N	200
OMG45	N	N	15	50	500	50	30	N	100	N	N	10	N	N
ONC/A	N	м	30	>5 000	100	м	м	м	200	10	N	10	N	<100
OMC/7	N N	N N	15	150	70	N	N N	N	50	40 N		7	N	200
	N		10	70	70	~20	N		70	10		10		200
OHC(O	N	N	10	70	50 70	<20 70	N	N -20	20	10	N	10	N	200
OHOED	N	N		70	70	70	N	<20	20	20	N	10	N	200
OMGSU	N	N	5	50	10	50	N	N	10	50	N	10	N	500
OMG51	N	N	10	100	10	50	N	N	70	20	N	10	N	200
UMG52	N	N	10	70	15	N	N	N	10	N	N	15	N	300
OMG55	N	N	10	100	20	70	N	<20	30	20	N	10	N	500
OMG54	N	N	10	70	15	50	N	<20	20	20	N	<u>′</u>	N	300
OMG55	N	N	10	20	100	50	N	N	20	30	N	1	N	700
OMS01	N	N	10	10	10	N	N	N	<5	<10	N	15	N	700
OMS02	N	N	15	20	15	50	N	N	<5	<10	N	50	N	300
OMS03	N	N	15	10	20	150	N	30	<5	20	N	30	N	300
OMS04	N	N	N	 N	N	N	N	N	5	N	N	N	N	1.500
OMS05	N	N	10	15	N	<20	N	<20	<5	10	N	15	N	700
OMS06	N	N	20	15	30	N	N	N	<5	<10	N	20	N	1,000
OMS07	N	N	50	50	150	N	N	N	50	20	N	50	N	300
OMS08	N	N	10	10	5	N	N	N	5	10	N	7	N	2.000
OMS09	N	N	50	20	50	100	N	N	5	<10	N	30	N	700
OMS10	N	N	50	20	50	70	N	N	5	10	N	20	N	700
OMS11	N	N	30	20	50	100	N	20	5	<10	N	30	N	1,000
OMS12	N	N	15	10	10	N	N	20	5	20	N	20	N	1.500
ONS13	N	N	30	20	20	50	N	L0 N	-5	<10	N	20	N	1 000
OMS14	N	л. И	5	<10	10	50	N	<20	-5	20	N	10	N	700
ONS15	N	N	5	10	10	50	N	<20	-5	30	N	20	N	500
U 10 10 10 10 10 10 10 10 10 10 10 10 10	П	r a	3	10	10	50	n	120	`	50	N	20	n	500
OMS16	N	N	5	<10	<5	N	N	N	10	30	N	N	N	700
OMS17	N	N	5	10	50	70	N	<20	<5	50	N	30	N	N
OMS18	N	N	5	10	10	150	N	50	<5	15	N	15	N	100
OMS19	N	N	N	N	N	50	N	<20	5	50	N	5	N	N
OMS20	N	N	50	50	100	N	N	N	70	10	N	30	N	<100

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg-ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	S	S	s	S	S	s	aa	inst	aa	aa	aa	88	aa	f
OMG31	500	150	N	30	<200	100	N	N	<.02	N				N	.90
OMG32	200	150	N	30	<200	200	N	N	<.02	N				N	.45
OMG33	500	100	N	30	N	500	N	N	<.02	N				N	.55
OMG34	200	100	N	30	N	150	N	N	< 02	N				N	.55
OMG35	300	100	N	20	N	200	N	N	<.02	N				N	.75
0107/	500	20		50											50
04077	200	20	N	50	N	50	N	N	<.02	N		••		N	.50
	500	150	N	50	N	200	N	N	<.02	N		••		N	.90
04070	200	70	N	30	<200	20	N	N	<.02	2				N	.35
UMG39	200	100	N	20	N	200	N	N	<.02	N		••		N 0	.40
08640	200	50	N	20	N	150	N	N	<.02	N	••	••		0	.02
OMG41	200	200	N	30	<200	200	N	N	<.02	10				N	1.00
OMG42	N	50	N	30	N	70	100	N	<.02	10				N	.25
OMG43	500	100	N	50	N	300	N	N	<.02	<5				N	.30
omg44	N	150	N	50	<200	100	N	N	<.02	<5				N	.55
OMG45	N	200	N	50	N	100	N	N	<.02	5			••	N	2.00
OMG46	<100	200	N	N	N	<10	N	N	<.02	N				N	.45
OMG47	200	50	N	30	N	30	N	N	<.02	20				N	.65
OMG48	300	100	N	20	N	100	N	N	<.02	N				N	.60
OMG49	200	100	N	20	N	200	N	N	<.02	<5				N	1.20
OMG50	300	70	N	20	N	200	N	N	<.02	N			••	N	.75
OMC51	200	100	м	20	м	150	м	N	< 02	м				м	65
OMC52	300	100	м И	10	N N	20	N	< 05	< 02	5				N	80
ONC53	300	100	N	70	N	20	N	.	< 02	J N				N N	.00
OMC54	300	100	N N	20	N	200	ni M	N	< 02	5				N	.45
OMC55	700	50	N N	20	N	200	N N	N	< 02	J N				N	.75
Gilder	100	50	n	50	n	20	N	~		N				Ň	. 45
OMS01	700	10	N	10	N	20	N	<.05	.02	<5				N	.25
OMS02	300	10	N	30	<200	30	N	N	.04	5				N	.25
OMS03	300	15	N	70	200	700	N	N	.02	N				N	.30
OMS04	1,500	15	N	N	N	N	N	N	.04	N				N	.30
oms05	700	10	N	20	N	50	N	<.05	<.02	N				N	.25
OMS06	1,000	70	N	30	N	50	N	N	. 08	N				N	.20
OMS07	300	200	N	50	<200	100	N	N	.08	N				N	.25
OMS08	2.000	30	N	N	N	10	N	N	.02	<5				N	. 15
OMS09	700	100	N	70	200	50	N	N	<.02	N				N	.35
OMS10	700	100	N	50	200	50	N	N	.04	N				N	. 15
04611	1 000	50	N	70	200	50	N		< 02	E				N	/ 0
ONE12	1 500	30	N N	70	200	70	N	N	< 02					N	.40
04512	1,000	100	N	20	N 200	70	N	N	×.02	N -5				N	.30
OME1/	700	<10	N	20	<200	70	N	N	<.UZ	<5 -E				N	.20
ONC15	500	<10	N	20	N	50	N	N	. 10	<) 				N	. 25
01313	500	< 1U	N	20	N	500	N	.05	<.02	\$				N	.35
OMS16	700	20	N	N	N	70	N	N	<.02	N				N	.10
OMS17	N	15	N	200	N	500	N	N	<.02	N				N	2.65
OMS18	100	<10	N	50	300	700	N	N	<.02	N				N	.30
OMS19	N	<10	N	20	N	100	N	N	<.02	N				N	.95
OMS20	<100	300	N	30	300	50	N	N	. 10	5				N	.55

Sample	Latitude	Longitude	Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn -ppm	Ag-ppm	As-ppm	Au-ppm	8-ppm	Ba-ppm	Be-ppm
			s	S	s	S	S	S	s	S	S	S	S
OMS21	33 32 29	115 41 27	5.00	5.00	5.00	.200	2,000	N	N	N	500	100	<1.0
OMS22	33 32 29	115 41 27	10.00	1.00	3.00	1.000	3,000	N	N	N	100	200	2.0
OMS23	33 32 3 2	115 40 25	1.00	.07	.20	.100	500	N	N	N	50	200	1.0
OMS24	33 32 32	115 40 25	10.00	.20	1.50	1.000	1,000	N	N	N	50	50	N
oms25	33 35 28	115 47 48	5.00	.15	2.00	.300	2,000	N	N	N	20	700	1.0
OMS26	33 33 0	115 43 42	.50	.03	.20	.020	150	N	N	N	20	200	1.0
OMS27	33 34 29	115 45 34	.50	.10	5.00	.050	100	N	N	N	30	200	1.0
OMS28	33 35 58	115 47 56	5.00	.20	1.50	.500	1,500	N	N	N	20	500	1.5
OMS29	33 35 59	115 47 51	1.50	.20	2.00	.200	1,000	N	N	N	20	2,000	N
oms30	33 33 7	115 42 49	2.00	.30	.70	.500	700	N	N	N	70	700	3.0
OMS31	33 32 29	115 41 27	5.00	1.50	.30	.500	1,500	N	N	N	50	500	1.0
OMS32	33 32 7	115 41 31	2.00	.50	1.00	.500	1,000	N	N	N	50	700	1.5
oms33	33 32 6	115 41 11	7.00	2.00	3.00	1.000	2,000	N	N	N	20	200	N
OMS34	33 32 2	115 41 11	1.50	.50	1.00	.500	700	N	N	N	20	2,000	N
OMS35	33 31 57	115 41 11	1.50	.20	.70	.200	1,000	N	N	N	10	700	1.5
oms36	33 31 57	115 41 11	2.00	.70	.70	.500	1,000	N	N	N	10	700	1.5
oms37	33 31 46	115 41 14	3.00	.70	1.00	.300	1,000	N	N	N	30	3,000	1.0
OMS38	33 31 46	115 41 14	10.00	1.50	1.50	1.000	2,000	N	N	N	50	2,000	N
oms39	33 31 54	115 41 21	10.00	2.00	2.00	1.000	3,000	N	N	N	20	700	N
oms40	33 31 54	115 41 21	5.00	2.00	3.00	1.000	2,000	N	И	N	20	700	N
OMS41	33 31 54	115 41 21	3.00	1.00	3.00	.500	1,000	N	N	N	30	1,000	1.0
OMS42	33 31 52	115 41 19	10.00	2.00	3.00	1.000	2,000	N	N	N	30	700	N
oms43	33 31 43	115 40 47	5.00	.30	1.00	.200	2,000	N	N	N	20	1,000	<1.0
OMS44	33 31 27	115 40 55	2.00	. 20	.70	.300	1,000	N	N	N	15	1,000	<1.0
OMS45	33 31 27	115 40 55	3.00	.20	.70	.300	1,000	N	N	N	30	1,000	<1.0
oms46	33 31 10	115 40 48	1.50	.50	1.00	.200	3,000	N	N	N	20	1,000	1.5
oms47	33 31 0	115 41 41	2.00	. 20	2.00	.200	2,000	N	N	N	30	2,000	N
OMS48	33 30 57	115 41 57	3.00	. 15	.50	.300	1,000	<.5	N	N	30	700	1.5
oms49	33 32 15	115 42 45	.50	.05	.50	.030	50	N	N	N	30	700	N
oms50	33 32 36	115 40 42	1.50	.30	.70	.200	200	N	N	N	50	700	1.0
OMS52	33 32 40	115 41 58	2.00	.70	1.00	.500	1,000	N	N	N	100	700	3.0
OMS53	33 32 15	115 41 48	5.00	.50	1.50	.500	1,500	N	N	N	20	2,000	1.0

Sample	Bi-ppm	Cd-ppm	Co-ppm	Cr-ppm	Cu-ppm	La-ppm	Mo-ppm	Nb-ppm	Ni-ppm	Pb-ppm	Sb-ppm	Sc-ppm	Sn-ppm	Sr-ppm
	S	S	S	S	S	S	S	S	s	s	S	S	s	s
OMS21	N	N	70	300	N	N	N	N	150	70	N	30	N	200
OMS22	N	N	50	20	500	50	N	<20	5	20	N	50	N	N
OMS23	N	N	5	N	<5	N	N	N	<5	70	N	N	N	N
OMS24	N	N	30	50	20	50	N	N	<5	N	N	20	N	N
OMS25	N	N	5	10	7	100	N	20	<5	20	N	15	N	200
OMS26	N	N	N	N	<5	<20	N	N	5	<10	N	N	N	N
OMS27	N	N	5	<10	<5	N	N	N	5	20	N	N	N	1,000
OMS28	N	N	5	15	10	200	N	50	<5	20	N	15	N	200
OMS29	N	N	5	<10	<5	N	N	N	<5	<10	N	5	N	700
OMS30	N	N	10	15	15	70	N	<20	10	50	N	10	N	200
OMS31	N	N	30	70	5	200	N	<20	50	70	N	20	N	N
OMS32	N	N	10	15	15	50	N	<20	10	30	N	10	N	500
OMS33	N	N	50	20	20	100	N	<20	<5	N	N	30	N	700
OMS34	N	N	10	<10	15	N	N	N	<5	<10	N	10	N	1,000
oms35	N	N	5	<10	5	50	N	N	5	10	N	10	N	200
OMS36	N	N	7	10	<5	100	N	<20	5	<10	N	15	N	100
OMS37	N	N	10	10	20	50	N	N	<5	10	N	15	N	1,000
OMS38	N	N	30	20	50	100	N	20	<5	N	N	30	N	200
OMS39	N	N	50	20	100	70	N	<20	<5	N	N	50	N	500
oms40	N	N	30	20	70	50	N	<20	5	N	N	50	N	1,000
OMS41	N	N	15	10	7	<20	N	N	<5	N	N	15	N	1,000
OMS42	N	N	50	15	100	50	N	<20	<5	N	N	30	N	1,000
oms43	N	N	5	<10	7	<20	N	N	<5	10	N	10	N	200
OMS44	N	N	5	<10	5	N	N	N	<5	10	N	15	N	300
oms45	N	N	N	<10	7	N	N	N	<5	10	N	10	N	300
OMS46	N	N	5	N	N	50	N	N	<5	50	N	5	N	700
OMS47	N	N	5	<10	<5	<20	N	N	<5	20	N	5	N	700
OMS48	N	N	5	<10	7	200	5	20	<5	50	N	10	N	200
OMS49	N	N	N	N	N	N	N	N	<5	10	N	N	N	200
OMS50	N	N	10	70	7	100	N	N	10	70	N	7	N	300
OMS52	N	N	15	10	15	100	N	<20	7	70	N	15	N	300
OMS53	N	N	10	10	20	<20	N	<20	<5	20	N	15	N	1,000

-

•

•

· .

Sample	Sr-ppm	V-ppm	W-ppm	Y-ppm	Zn-ppm	Zr-ppm	Th-ppm	Au-ppm	Hg-ppm	As-ppm	Zn-ppm	Cd-ppm	Bi-ppm	Sb-ppm	U-ppm
	S	s	S	S	s	S	S	aa	inst	88	аа	88	88	aa	f
OMS21	200	150	N	20	200	15	N	N	<.02	N				N	.30
OMS22	N	200	N	100	500	200	N	N	.04	<5				N	1.90
OMS23	N	<10	N	30	N	100	N	N	<.02	N				N	.75
OMS24	N	10	N	30	<200	50	N	<.05	<.02	35				5	.50
OMS25	200	<10	N	50	N	700	N	N	<.02	N			••	N	.25
OMS26	N	<10	N	N	N	20	N	N	N	N			••	N	.25
OMS27	1,000	10	N	N	N	10	N	N	<.02	N				N	.45
OMS28	200	<10	N	70	200	700	N	N	<.02	N			••	N	.35
OMS29	700	<10	N	N	N	N	N	N	<.02	N				N	.10
oms30	200	50	N	50	<200	150	N	N	<.02	N				N	.85
OMS31	N	150	N	70	200	150	N	N	<.02	N				N	.95
OMS32	500	70	N	30	N	200	N	N	<.02	N				N	.15
oms33	700	70	N	70	200	100	N	N	<.02	N		••		N	.55
oms34	1,000	15	N	10	N	10	N	N	<.02	<5		••	••	N	. 15
oms35	200	20	N	50	N	200	N	N	.20	N				2	.20
OMS36	100	20	N	50	N	500	N	N	.26	N				1	.20
OMS37	1,000	10	N	30	N	100	N	N	.06	N				1	.35
oms38	200	20	N	50	200	70	N	N	.03	<5				1	.25
oms39	500	70	N	50	200	70	N	N	.04	10		••	••	1	.35
oms40	1,000	50	N	30	<200	70	N	N	.02	N		••		N	.30
OMS41	1,000	20	N	20	N	50	N				••		••		
OMS42	1,000	100	N	50	200	50	N				••	••			
OMS43	200	<10	N	20	N	700	N		••						
oms44	300	<10	N	10	N	50	N				•-				
oms45	300	<10	N	15	N	50	N	••	••		••	••		••	••
OMS46	700	20	N	20	N	70	N	••	••				••		••
oms47	700	<10	N	20	N	500	N						••		
OMS48	200	<10	N	50	N	500	N						••		
OMS49	200	<10	N	N	N	N	N						••		
oms50	300	70	N	50	N	300	N		••			••			
OMS52	300	70	N	50	N	200	N								
oms53	1,000	<10	N	30	N	150	N								••

,

· · ·

0A015R	igneous	43	green schist
23R	chert or jasperoid		
29R	gneiss	OMGO 1	gray schist
29RA	metamorphic	02	gray schist
29RB	gneiss	03	gray schist
50R	felsic igneous	04	gray schist
51R	igneous	05	gray schist
52R	gneiss	06	gray schist
56R	unidentified	07	gray schist
57R	igneous	08	gray schist
57RA	schist	09	grav schist
58R	mafic igneous	10	grav schist
59R	schist	11	grav schist
60R	gneiss	12	grav schist
••••	3	13	gray schist
OMEO 1	areen schist	14	gray schist
02	green schist	15	gray schist
02	green schist	15	gray schist
03	green schist	10	gray schist
04	green schist	1/	gray schist
05	green schist	18	gray schist
00	green schist	19	gray schist
07	green schist	20	gray schist
08	green schist	21	gray schist
09	green schist	22	gray schist
10	green schist	23	gray schist
11	green schist	24	gray schist
12	green schist	25	gray schist
13	green schist	26	gray schist
14	green schist	27	gray schist
15	green schist	28	gray schist
16	green schist	29	grav schist
17	green schist	30	grav schist
18	areen schist	31	grav schist
19	green schist	32	grav schist
20	areen schist	33	gray schist
21	green schist	34	gray schist
22	green schist	35	gray schist
23	green schist	36	gray schist
24	green schist	30	gray schist
25	green schist		gray schist
26	green schist	30	gray schist
20	green schist	39	gray schist
27	green schist	40	gray schist
20	green schist	41	gray schist
29	green schist	42	gray schist
30	green schist	43	gray schist
31	green schist	44	gray schist
32	green schist	45	gray schist
33	green schist	46	gray schist
34	green schist	47	gray schist
35	green schist	48	gray schist
36	green schist	49	gray schist
37	green schist	50	gray schist
38	green schist	51	gray schist
39	green schist	52	gray schist
40	green schist	53	gray schist
41	green schist	54	grav schist
42	green schist	55	grav schist
		96	3. 23 301130

TABLE 6.--Description of rock samples from the Orocopia Mountains Wilderness Study Area, Riverside County, California

OMM01	mineralized	and/or	altered	rock
02	mineralized	and/or	altered	rock
03	mineralized	and/or	altered	rock
04	mineralized	and/or	altered	rock
05	mineralized	and/or	altered	rock
06	mineralized	and/or	altered	rock
07	mineralized	and/or	altered	rock
08	mineralized	and/or	altered	rock
09	mineralized	and/or	altered	rock
10	mineralized	and/or	altered	rock
11	mineralized	and/or	altered	rock
12	mineralized	and/or	altered	rock
13	mineralized	and/or	altered	rock
14	mineralized	and/or	altered	rock
15	mineralized	and/or	altered	rock
16	mineralized	and/or	altered	rock
17	mineralized	and/or	altered	rock
18	mineralized	and/or	altered	rock
19	mineralized	and/or	altered	rock
20	mineralized	and/or	altered	rock
21	mineralized	and/or	altered	rock
22	mineralized	and/or	altered	rock
23	mineralized	and/or	altered	rock
24	mineralized	and/or	altered	rock
25	mineralized	and/or	altered	rock
26	mineralized	and/or	altered	rock
27	mineralized	and/or	altered	rock
28	mineralized	and/or	altered	rock
29	mineralized	and/or	altered	rock
30	mineralized	and/or	altered	rock
31	mineralized	and/or	altered	rock
32	mineralized	and/or	altered	rock
33	mineralized	and/or	altered	rock
34	mineralized	and/or	altered	rock
35	mineralized	and/or	altered	rock
30	mineralized	and/or	altered	rock
3/	mineralized	and/or	altered	rock
38	mineralized	and/or	altered	rock
39	mineralized	and/or	altered	rock
40	mineralized	and/or	altered	rock
41	mineralized	and/or	altered	rock
42	mineralized	and/or	altered	rock
43	mineralized	and/or	altered	rock
44	mineralized	anu/or	altored	POCK
64 76	mineralized	and/or	altered	rock
40	mineralized	and/or	altored	rock
ግ/ // Q	mineralized	and low	altered	rock
40 /0	mineralized	and /or	altored	rack
		unu/ Ul	u i cei eu	

TABLE 6.--continued

 Mesozoic(?) foliated and unfoliated plutonic ro 	
 Mesozoic(?) foliated and unfoliated plutonic ro 	CK Ck Ck Ck Ck Ck
 Mesozoic(?) foliated and unfoliated plutonic ro 	CK Ck Ck Ck Ck
 Mesozoic(?) foliated and unfoliated plutonic ro 	ck ck ck ck
 05 Mesozoic(?) foliated and unfoliated plutonic ro 06 Mesozoic(?) foliated and unfoliated plutonic ro 07 Mesozoic(?) foliated and unfoliated plutonic ro 08 Mesozoic(?) foliated and unfoliated plutonic ro 09 Mesozoic(?) foliated and unfoliated plutonic ro 10 Mesozoic(?) foliated and unfoliated plutonic ro 	ck ck ck
 06 Mesozoic(?) foliated and unfoliated plutonic ro 07 Mesozoic(?) foliated and unfoliated plutonic ro 08 Mesozoic(?) foliated and unfoliated plutonic ro 09 Mesozoic(?) foliated and unfoliated plutonic ro 10 Mesozoic(?) foliated and unfoliated plutonic ro 	ck ck
 07 Mesozoic(?) foliated and unfoliated plutonic ro 08 Mesozoic(?) foliated and unfoliated plutonic ro 09 Mesozoic(?) foliated and unfoliated plutonic ro 10 Mesozoic(?) foliated and unfoliated plutonic ro 	ck
 08 Mesozoic(?) foliated and unfoliated plutonic ro 09 Mesozoic(?) foliated and unfoliated plutonic ro 10 Mesozoic(?) foliated and unfoliated plutonic ro 	~ I .
09 Mesozoic(?) foliated and unfoliated plutonic ro 10 Mesozoic(?) foliated and unfoliated plutonic ro	CK
10 Mesozoic(?) foliated and unfoliated plutonic ro	ck
	ck
11 Mesozoic(?) foliated and unfoliated plutonic ro	ck
12 Mesozoic(?) foliated and unfoliated plutonic ro	ck
13 Mesozoic(?) foliated and unfoliated plutonic ro	ck
14 Mesozoic(?) foliated and unfoliated plutonic ro	ck
15 Mesozoic(?) foliated and unfoliated plutonic ro	ck
16 Mesozoic(?) foliated and unfoliated plutonic ro	ck
17 Mesozoic(?) foliated and unfoliated plutonic ro	ck
18 Mesozoic(?) foliated and unfoliated plutonic ro	ck
19 Mesozoic(?) foliated and unfoliated plutonic ro	ck
20 Mesozoic(?) foliated and unfoliated plutonic ro	ck
20 Mesozoic(2) foliated and unfoliated plutonic ro	ck ck
22 Mesozoic(2) foliated and unfoliated plutonic ro	6 K
22 Mesozoic(:) foliated and unfoliated plutonic ro	ск 0 г
25 Mesozoic(:) foliated and unfoliated plutonic ru	CK
24 mesozoic(?) foilated and unfoilated plutonic ro	CK
OMOQ1 quartz vein OMO26 quartz veir	
02 quartz vein 27 quartz veir	
03 quartz vein 28 quartz veir	
03 quartz vein 20 quartz veir 29 quartz veir	
05 quartz vein 20 quartz veir	
05 quartz vein 31 quartz vein 31 quartz veir	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
00 quartz vein 35 quartz vein 24 quartz vein	
10 guartz vein 34 quartz vein 35 guartz vein	
10 quartz vein 35 quartz veir	
11 quartz vein 36 quartz veir	
12 quartz vein 37 quartz veir	
13 quartz vein 38 quartz veir	
14 quartz vein 39 quartz veir	
15 quartz vein 40 quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir19quartz vein44quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir19quartz vein44quartz veir20quartz vein45quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir19quartz vein44quartz veir20quartz vein45quartz veir21quartz vein46quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir19quartz vein44quartz veir20quartz vein45quartz veir21quartz vein46quartz veir22quartz vein47quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir19quartz vein44quartz veir20quartz vein45quartz veir21quartz vein46quartz veir22quartz vein47quartz veir23quartz vein48quartz veir	
15quartz vein40quartz veir16quartz vein41quartz veir17quartz vein42quartz veir18quartz vein43quartz veir19quartz vein44quartz veir20quartz vein45quartz veir21quartz vein46quartz veir22quartz vein47quartz veir23quartz vein48quartz veir24quartz vein49quartz veir	