
DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

A Collection of MAPGEN Command Files Suitable for Hacking

by

James M. Robb1

Open-File Report 89-653

This report is preliminary and has not been reviewed for
conformity with U.S. Geological Survey editorial standards. The
use of trade names is for descriptive purposes only and does not

imply endorsement by the U.S. Geological Survey.

November 1989

1 Branch of Atlantic Marine Geology, U. S. Geological
Survey, Woods Hole, MA 02543

30 Nov 1989
U. S. Geological Survey

Branch of Atlantic Marine Geology
Woods Hole, MA 02543

Open-file Report 89-653

A Collection of MAPGEN Command Files Suitable for Hacking

Not quite a follow-the-dots tutorial

or, as the old feller said,
"It ain't gonna be easy, but you can get there from here."

compiled by Jim Robb

I. Introduction

This report is a compilation of MAPGEN command files (Unix
executable files, or shell scripts) that can be conveniently
modified or used as models to create plottable map-overlay files
from digital marine data maintained by the USGS Branch of
Atlantic Marine Geology (BAMG). It has three Appendixes: on
using a DOS-based PC with Kermit as a remote terminal for the map
making process; on digitizing lines from existing maps using the
BAMG digitizing tables and application programs; and on Kermit
scripts for automating a phone contact with the BAMG central
computers.

The MAPGEN map-plotting system, written by Gerald Evenden
(Evenden and Botbol, 1985; Evenden, 1986; and aperiodic
unpublished updates of program documentation), uses a core of
about a dozen programs which create computer files of plotter-
useable coordinates known as overlays from files of latitude-
longitude data. The most frequently used of those programs are
called mapdef, grid, coast, lines, points, and legend. Each
overlay file holds a specific part of the map, such as the
geographic grid, a coastline, a title, or a set of bathymetric
contours. The overlay files are fed to a plotter via a program
called plotter, which specifically instructs the plotter how to
move its pen.

Making a basemap with MAPGEN programs and a few basic
geographic data files is a straightforward operation once the
models are established, and the files compiled here will serve to
do that quickly. Some of them embody brute-force rather than
elegance, but they have worked for me. You can easily change the

parameters within the basemap, geographic, and bathymetric
command files, and you will quickly have your own map.

The script files for trackline and sample plotting are
included here as examples. The data files they were written to
process are not part of BAMG's standard support-data files, and
rewriting of most of these scripts will be needed for new
applications.

Plotting tracklines or sample locations can be complicated
because of the wide variety of data formats you may encounter.
By default, MAPGEN programs digest a data file with latitude,
longitude, time, shotpoint, etc, fields using AI (control eye, or
tab) as the field delimiter. Point-data files (e. g., core
sites) can be reformatted by using the Unix editor or they can be
fed through Unix utilities such as awk or sed and piped into the
plotting program. Trackline data, on the other hand, usually
require elaborate editing to recast them into forms that will
plot as lines with tics and annotations at selectable intervals.
There is a program that was written to do this job whose use is
illustrated here.

You will need the documentation for the MAPGEN system
(Evenden and Botbol, 1985; updated versions of MAPGEN
documentation are available within BAMG from Jerry Evenden) and
Unix instructions. Hampson and Wright (1988) provide examples of
MAPGEN and Unix script files to do a complex map-publishing task.
Helpful references for Unix programs and shell script syntax
include Kernighan and Pike (1984) or Morgan and McGilton (1987).

II. Organization and contents:

A. The Basemap: map definition, grid, and peripheral information

ddomap first step: creates a map definition file
dogrid draws a latitude and longitude graticule
doborder makes a border around the map
doprojnote sets up a map projection label
doscalbar makes a bar scale for the map
doscalfrac puts a scale-fraction label on the map
dover makes a creation label (office ID, directory,

date, time)
dotitlel emplaces a main title
dobasemap a list of the above files except ddomap so

you can run them as a batch job after
you set them up with the editor.

B. Geography; Coastline, Rivers, and Politics

docoast draws a coastline
dorivers puts the rivers on your coastline
dostates draws the state boundaries on the land areas
doeez draws the EEZ boundary

C. Bathvmetric contours

doconxx plots individual contours from digital data
compiled for the GLORIA east-coast atlas

doatconts plots bathy contours from 36°N to 42°N as a
single overlay file: 20 m contour
interval on shelf, 100 m on slope and
rise

doconshelf plots 20-m contours on continental shelf as
individual overlay files

doconhuns plots 100-m contours (except the even
thousands) as individual overlay files

doconthou plots the 1000-m contours as individual
overlay files (so you can plot them in a
different color

docont250 plots 250-m contours (those derived for
the GLORIA east-coast atlas) as a single
overlay file.

dogeography another batch list that puts on the coast,
the culture, and the 20-m shelf and
100-m slope-and-rise contours

D. Tracklines:

dofarn2 plots Farnella 87-2 cruise track from mergeS
navigation format using seltime

doa22 plots AII-89-1 cruise track from WHOI's mbatr
navigation format using seltime

lines.par a parameter file
dois781 plots Iselin 7807-1, illustrating extraction from

a TSD file and a data set without even-interval
records, where seltime is not helpful.

dogy8210 a complex script sequence illustrating awk, uniq,
seltime, and sed.

E. Samples and Sites:

dodsdpwells plots DSDP well sites
dostratwells plots East Coast stratigraphic

exploration wells

doilwells plots East Coast oil exploration sites
dongdccores plots core sites from an NGDC file;

illustrates awk
docores plots from NGDC core curator's file
dodives plots sites from an Alvin-dive file
dolegnl plots a legend to explain the Alvin-dive

symbol
doemerysamps plots Emery-project (WHOI-USGS) sample

sites
dosedlab plots sample sites of USGS-BAMG sediment

analyses
dowhoicores plots sites of samples from WHOI's

sediment lab archive; output of
muddie, a WHOI program

dodumpsite plots outline of DWD106 municipal sludge
dump site

F. Viewing and Plotting:

preview and zoom plot-viewing programs
plot970 plotter runline for Calcomp 970

III. How to use these examples:

Copy the contents of the directory /eez/demo from my area on
the BAMG Masscomp system (aka geosvy, or Shemp) using cp, as cp
/eez/jmr/demo/*/* . or create the files for yourself by typing
them into your own machine.

Ensure that the script files are executable (chmod +x ddomap
do*). Be sure the files are in a separate directory to isolate
the map files from your other files. It will quickly be very
messy if you commingle your files. Use a separate directory for
each map you make.

The first MAPGEN program to be run (mapdef, using the script
file I call ddomap) calculates an x-y map matrix based on your
specifications of projection, scale, boundaries, any rotation of
the map, and the width of bordering areas. Mapdef creates a file
containing the framework used to create plottable overlay files,
but which by itself cannot be plotted. The grid, lines, and
points programs, as packaged script files run subsequently,
create the overlay files, which are based on the map definition
in the .def file and contain the plotter instructions.

The script files for the basemap should run as they appear,
and require no alteration to produce a model map. The geographic

overlay files that call data in /coast should also run as they
appear (assuming the Branch files of geographic data remain on
the system in that directory). Some pathnames of contour-line
data refer to files within my home directory and will have to be
modified for your situation. On BANG's Shemp computer change
$HOME to /eez/jmr.

Run ddomap then dobasemap. Use preview map.def *.ov to look
at the assemblage or use preview map.def filename.ov to see an
individual overlay. Try the files individually to see what they
create. Use vi or edit to modify the script files for your own
map areas and overlays.

To see an overlay, use preview or zoom to display it on your
terminal; see runlines for those programs below. There is
information in Appendix I for those using DOS-machines as
terminals, using Kermit and its graphics emulations. If you run
a program and then rerun it with changed input parameters (trial
and error) to preview it again, the programs will overwrite old
overlays, so your directory will be current.

To plot as hard copy, on paper or mylar, etc., see your
computer gurus and use plotter; I include runlines for the BAMG's
Masscomp and the BAMG's Pacific Microcomputers, Inc. system (the
unit identified as "Moe") as configured today.

IV. Some notes on Unix quirks:

On Unix operating systems, programs known as shells act as
command interpreters. There are several shells which are very
similar to each other, but which have small differences among
them in the command syntax they recognize and in some of their
capabilities. More than one shell is likely to be present and to
operate on the same machine at the same time, so a user can
invoke the one he or she wants. The most common shells are the
Bourne shell and the C shell. The C shell has some conveniences
(such as history and the tilde (~) as "home directory") that the
Bourne shell does not have. The script files contained in this
report were created on a system using a C shell as the default
for users on terminals, but having a Bourne shell resident and
set up to run most scripts. Some of these scripts will run under
one of these shells but not the other. A pound sign (#) as the
first character in an executable script file will specify the C
shell. Other characters in first place invoke the Bourne shell;
for convention the use of a : in first place in the scripts of
this report is used to guarantee Bourne shell operation.

In order to make the script file work you must make it
executable. Use chmod +x filename. If you have a group of files
that have a common characteristic, you can use wildcards. As
these files begin with do, you can use chmod +x do* (except for
ddomap, which I find convenient to keep separate).
Alternatively, you can use the command sh filename, which will
invoke the Bourne shell and execute the file.

Within a script file a pound sign (#) as the first character
on a line not the first line marks a comment. Comments retained
in the script files help you modify the script for your next map.
One can "comment out" some lines within a file if they're not in
use; thus instructions can be kept with the file about where and
how the parameters are put in. A minor complication is that the
points and lines programs of MAPGEN accept commands from within a
data file where an initial # is the control-line marker. A
second # on those lines functions as a comment marker, however,
and the part of a line following a second pound sign is ignored
by the MAPGEN programs.

The tilde (~), used to mean "home directory" in a pathname,
is a Oshell character, and will not be recognized in Bourne-
shell scripts. The $HOME notation used in these scripts is
recognized by both Bourne and C shells.

Unix script files execute the commands they contain one
after another, line by line. However, the command lines
themselves (which include any piped-in editing and filtering
sequences, the program name, data filename(s), program options
and parameters, and output filename, etc.) must be on a single
line not interrupted by a carriage return. Long command lines
that won't fit across your screen can be made continuous for the
computer by terminating segments with a \ at the right end. That
is, the shell command interpreter will ignore a carriage return
that immediately follows the \ (see the doconhuns file below for
and example). This feature is useful, but it can be a vexing
source of blunders if spaces are inadvertently included or
excluded, and the shell consequently misinterprets your command.
Some lines in this report were made short just to fit the pages.

In many of the script files that follow there is use of
«EOF in the MAPGEN command sequence. This is a Unix capability
of directing a standard_in sequence, and allows use of additional
lines within the script file (after the first MAPGEN command
line) as input until another EOF is encountered (see ddomap and
dogrid) . This can keep all the input for a single function
together in one file.

V. The Script Files:

A. Basemap files

ddomap creates a map definition file:

mapdef -mcvs map.def «EOF
77dw 69dw 36dn 43dn
+proj=aea
1000000
0
5 5 76dw 38d 73dw 37d 70dw 38d 73dw 42d
5 5
EOF
mapdef -v map.def >mapnote
line 1 mapdef command line with EOF directive
line 2 W,E S,N,[centr mer] geogr bounds
line 3 projection codes
line 4 scale denominator
line 5 rotation CCW degrees normally 0
line 6 coord pairs: lower left data area x,y in cm default 3
and if rotated lon-lat coords on map edges, LBRT (minxy maxxy)
line 7 right and top margins in cm default 3
the EOF ends the input
mapdef -v map.def >mapnote makes an information file

Explanation:

Line 1 invokes the program mapdef. The m in -mcvs means
that the following name (map.def) is to be the name of the output
file to be created; c means create a map definition; v means
verbose; it causes messages to be sent to the terminal while the
program progresses; and s means calculate the scales.

The «EOF is a Unix shell symbol that means read the rest of
the script for program input until you get to the EOF line. This
allows the whole file definition to be in one file rather than in
a separate parameter file. One can also use the command mapdef
#mvcs map.def parameters.par, where a separate file,
parameters.par , would contain the projection, scale, bounds, etc.
The way it's done here using the «EOF notation keeps related
command items together and allows less cluttered directories.

Line 2 Bounds: The order for coordinate pairs is West
East South North. Use DMS notation. Follow degrees with d,
minutes with ' or m, and use the cardinal-direction letters for
clarity. The program accepts 30 or 30N as 30 degrees north and

71W or 71dw or -71d for 71 degrees west. It will also accept
decimal degrees and decimal minutes. See the MAPGEN
documentation.

For a rotated map or for maps in some non-rectangular
projections, you can specify a wider map area than you intend to
display for the final map, and then cut the bounds down
subsequently (see line 6 below). Such a procedure ensures that
you get your data plotted within a full rectangular area.
However, the grid annotations (which you will create in a
subsequent step using the script dogrid) can write over
themselves or appear in ways you don't expect (what can't in this
business?), so you will find you have to experiment and see what
happens.

Line 3 Projection: The mapdef program relies on another
program called proj here. Proj provides for a large number of
projections. Each has a code name and some require other
details. In this example aea stands for albers conic equal area
projection. You'll have to see the MAPGEN books here.

Line 4 is straightforward. For 1:500000 use 500000.

Line 5 is straightforward after you have used it. CCW means
counterclockwise. To recreate Uchupi's bathymetric maps use -47,
and change the projection to laea for lambert conic equal area.

Line 6 and 7 specify the data area of the map by specifying
the widths of peripheral borders outside the neat lines, to make
room for titles, peripheral notes, explanations, etc. MAPGEN
recognizes two map areas (windows): the full map sheet and a
smaller data area. Projection transformations are calculated
within the data area. Titles, legends, and scales, etc. can be
plotted inside or outside the data area (see the -w option for
legend) .

Line 6 holds pairs of coordinates; no punctuation necessary.
The first pair, x y, in cm, sets the border widths for the lower
left hand corner. A blank line or a single dash as place holder
invokes 3 cm defaults. Subsequent pairs of longitude-latitude
coordinates of points can be used to locate the neat-line borders
of the map used for rotated maps or to ensure that the
projection-calculated data area extends to a rectangular border.
These are four more pairs of entries (longitude-latitude pairs in
order of left, bottom, right, top, with no punctuation). They
specify the rectangular area you want to display within the
larger projection-calculated area you have specified in Line 2.

8

A single dash in place of any of those pairs goes to the default
values of bounds that you specified in line 2.

Line 7 holds x y coordinates of the upper right border area,
defaulting to 3 cm if blank. The 5-cm surround used in this
ddomap example makes more room for odd labels, etc.

The last line (mapdef -v etc...) puts a brief description of
the map vitals including the plot size into a file called
mapnote, handy for reference in the directory.

After running mapdef (here via ddomap), you have a map
defined in the map.def file, but you can't display anything with
this file alone. The command mapdef -v map.def will display a
description of the map that is defined (or use more mapnote) .
The best way to see what you have is to create and display a
geographic grid. Run dogridf as follows, and you can preview the
result on your screen. To preview you must have the terminal
emulation worked out first; see Appendix I.

dogrid puts a grid overlay on the map; has the graticule (as
lines or tics) and lat-lon annotations.

grid -m map.def -o grid.ov «EOF
-f -crp # font call for annotations
-pi 1 -mi 1 # p parallel, m meridian grid interval
-pu .5 -mu .5 # u major tic size cm

comment the -pu -mu out (using ## as first
characters) to make a line grid

-s .4 # cm size of annotation characters
-d .8 # cm distance of label offset from line
-a rltb # grid annotations right, left, top, bottom
-p 0 # specifies pen number
EOF

Adding a -i to the command line of the grid, lines, points,
or legend programs will display the grid on your terminal's
screen as it's being created (if you have a graphics-capable
terminal). There is an extensive list of fonts that can be used
for labels and annotations. See the MAPGEN documentation. The
grid program can make major and minor tics as well as grid lines.

The following few files use the program legend to put a
border and some of the basic information notes on the map. You
can combine the border, scale fraction, and scale bar, and other
legend products into one file if you want to, but the separate

files (and the separate overlays they produce) are convenient
because each can be picked and chosen for different maps. See
the MAPGEN documentation for legend.

doborder draws a border around the data area of the map; note
that because the border will be rectangular it may not line up
with the latitude-longitude lines, depending on the projection
you use, and the latitude-longitude annotations may not look
right. Albers equal area is narrow at the top, for example.
Similarly, unless you have defined a wide area map on line 2 of
mapdef and then bounded it on line 6, your data may not plot to
this border.

legend -mo map.def border.ov «EOF
-w d # select data window (inside the periphery)
-L 2 # pen for border
> 0 # start draw from righthand edge at bottom
> >
0 >
0 0
> 0

close the line
EOF

doprojnote labels the projection: you have to edit this so it
says the correct projection. Note the use of I to mean refer to
centerline for label position. Similarly, > can be used for
right or top reference in files like this (see dotitlel, below).

legend -mo map.def projnote.ov «EOF
-w d # data window (origin for subsequent coordinates)
-f -crp # font call
-s 0.25 # size cm of font
-xy I -4 # xy position cm

| -4 means origin center & 4 cm below data
window
-j c # center justify text
-t # title text
Albers Equal Area Conic Projection

EOF

doscalbar puts a scale bar on the map.

legend -mo map.def scalbar.ov «EOF
-w d # select data window origin
-fs - .3 # font = default, char size cm

10

-xy |-4-3 # point to measure from; I means centerline
|-4 means 4 cm left of center

-b 10,km,5,5 #scale bar, 10 km/unit, 5 units, 5 intervals left
of 0

EOF

doscalfrac puts a scale statement (as Scale 1:500,000) on the
map.

legend -mo map.def scalfrac.ov «EOF
-w d # select data window origin
-f - -s .3 # font = default, char size cm
-j c # center justify
-xy 1-1.5 # measure from x and y; cm; | means x at

centerline
-d # specifies scale fraction
EOF

dover (for do version) puts a USGS-credit, source-directory,
and date-of-creation note on the map. Then you know where the
map came from when you look at it later. In the form written
below it is placed in the lower left corner (-x 4, -y 2), out of
the way, but print size is not dependent on map size so the
script can be used for most maps without constant readjustment.

: ## Bourne shell script
(cat «EOF;echo USGS BAMG; pwd; date;.) | legend -mo map.def\
vernote.ov
-w d # data window origin
-f -crp # font call
-s .15 # size cm
-1 .40 # leading cm (space between lines)
-p 2 # pen
-x -4 # x position cm
-y -2 # y position cm
-t # to print title texts from runline
EOF

The -t in these files tells the program to expect title text
on the next line. Above, echo USGS BAMG prints the characters
USGS BAMG; pwd prints out the name of the working directory, and
date prints the date/time.

dotitlel -- puts a title on the map; Note use of I and > to refer
to center and top of map's data area. You can change the
placement using x-y coordinates (cm) of the map area. Change the

11

coordinates and the fonts for assorted legends or labels (see
dolegnlf below).

legend -mo map.def titlel.ov «EOF
-f -crp # font call
-s 1.5 # size cm
-w d # data window origin
-xy | >3 # xy position; | centerline; > top edge
-j c # text center-justified
-p 0 # pen
-t # title text
U. S. Mid-Atlantic East-Coast Offshore Region

period ends title text
EOF

dobasemap a batch-file example to get the basemap done in one
command; just make sure the script files it calls hold the right
stuff first.

dogrid
doborder
doprojnote
doscalbar
doscalfrac
dover
dotitlel

B. Geography coastlines and other commonly displayed features:

The coast program draws on specifically prepared (packed)
data sets that are maintained in the /coast directory of BAMG.
There are DOC files in that directory that explain its contents.

docoast puts a coastline on the map; calls a widely-used
coastline-data file assembled by the CIA.

coast -mo map.def coast.ov /coast/na/cil

Further note: Digitized files of coastlines, rivers,
political boundaries, and of some bathymetric contour lines are
maintained in the /coast directory on the BAMG Unix system. Many
of those files are compressed and use the coast program for
plotting. Other line-data ("vector") files for bathymetry, the
EEZ boundary, and navigation files are plotted using the lines
program. See examples farther below. There is an informative
README file in /coast.

12

dorivers rivers add interest to otherwise boring coastlines

coast -mo map.def rivers.ov /coast/na/riv

dostates adds state boundaries

coast -mo map*.def coast.ov /coast/na/pby

doeez puts that ole EEZ boundary line on the map

coast -mo map.def eez.ov /coast/eez

C. Bathymetric Contours:

The several scripts below use different ways to get
bathymetric contours. A lot depends on the data sets; at BAMG we
have at least four: (1) compressed data in the /coast directory,
which is part of the CIA geographic data set, at wide contour
intervals; (2) Generally 250-m interval contours digitized for
the GLORIA east coast atlas; and (3) 20-m continental shelf
contours and 100-m slope and rise contours digitized by National
Mapping Division and at the Office of Energy and Marine Geology
(OEM) in Reston; (4) several 1000-m contours, ocean-or-worldwide.
Please consult the BAMG Database Coordinator.

Lines, such as bathymetric contours, can be plotted with
coast if the data are in the coast format, as in the doconXX
script below, or they can be plotted using the program lines, as
in doconshelf and other files below.

The lines program reads files of latitude longitude points
and plots a line. (It can also annotate the data points.) It is
governed by commands inserted at the beginning of and within the
data stream. It reads data files in sequence, and the first data
file can be a lines.par (parameter) file which contains the line-
drawing commands. In the following files the function of a
lines.par file is contained in the «EOF notation, where the
program reads to the EOF and is guided by the MAPGEN commands
which precede the EOF. It's a way to keep the commands in a
single model file, and allows a neater directory list.

doconSO, doconlOO, doconlSO, docon200 these executable files
call the digitized-contour files assembled for the GLORIA east-
coast atlas by Eric Schmuck, Dave Lubinsky, et al., of BAMG.
Examine the /coast directory. Change the mgf. * filename to plot
the contour you want.

13

lines -mo map.def cont50.ov /coast/bathy/gloria/mgf.0050
lines -mo map.def contlOO.ov /coast/bathy/gloria/mgf.0100
lines -mo map.def cont!50.ov /coast/bathy/gloria/mgf.0150
lines -mo map.def cont200.ov /coast/bathy/gloria/mgf.0200

doconshelf this script makes overlays for all the shelf
contours using digitized data from the OEM. The for i structure,
a shell feature, does the listed depths one at a time, and
individual . ov files are produced.

for i in 0020 0040 0060 0080 0100 0120 0140 0160 0180
do
cat - $HOME/data/bathy/atbathy/??.$i.mgf «EOF | \
lines -mo map.def con.$i.ov
#-p 0 # pen
#-1 # begin line plotting at subsequent data fields
#-d 2,1 # longitude field 2, latitude field 1
EOF
done

The $HOME means home directory (for these data on BAMG's
Shemp, /eez/jmr) . It is like tilde (~), but is recognized by
both Bourne and C shells in script files. The tilde is not a
reliable symbol because it is only used by the Bourne shell.
Check your own pathnames for the data files. The lone hyphen (-)
in the above string shows where the standard_in directed from the
«EOF goes into the string. The \ just breaks the line so it
will fit in this presentation here without breaking up the lines
command line.

doconhuns Plots the 100-meter contour lines, omitting the
1000-meter contours: I did this so the 1000-meter lines could be
plotted in another color.

for i in 0300 0400 0500 0600 0700 0800 0900 1100 1200 1300 \
1400 1500 1600 1700 1800 1900 2100 2200 2300 2400 2500 2600 \
2700 2800 2900 3100 3200 3300 3400 3500 3600 3700 3800 3900 \
4100 4200 4300 4400 4500
do
cat - $HOME/data/bathy/atbathy/??.$i.mgf «EOF|lines -mo map.def
con.$i.ov
#-p 0 # pen
#-1 # begin line plotting at subsequent data fields
#-d 2,1 # longitude in field 2, latitude in field 1
EOF
done

14

Note that the backslash (\) at the end of lines here
allowing a very long line to be input as a command. See the
remarks above under "Unix quirks...". The string of numbers is
terminated by a carriage return (invisible here) following the
4500, and the command do is on the next line.

doconthou plots the 200-m and thousand-meter contours. They
are put in a separate plot file here so they can be given another
color for readability on the map.

for i in 0200 1000 2000 3000 4000
do
cat - $HOME/data/bathy/atbathy/??.$i.mgf «EOF| \
lines -mo map.def con.$i.ov
#-p 3 # pen number
#-1 # begin line plotting at subsequent data fields
#-d 2,1 # longitude field 2, latitude field 1
EOF
done

doatconts this will plot selected NMD/OEM contours.
Usage is: doatconts depth_number.

for i
do
cat - $HOME/data/bathy/atbathy/??.$i.mgf «EOF| \
lines -mo map.def con.$i.ov
#-p 3 # pen
#-1 # begin line plotting at subsequent data fields
#-d 2,1 # longitude field 2, latitude field 1
EOF
done

docont250 plots GLORIA-project 250-m contours as a single
overlay file

coast -mo map*.def cont250.ov /coast/bathy/gloria_cnt

dogeography another batch file example; make a list and make
its filename executable in the same manner as dobasemap.

docoast
dorivers
dostates
doeez
doatconts

15

D. Tracklines:

Trackline plots are not simple because they require tics and
annotations that can be plotted at different intervals for
different scales or purposes. Annotations may represent time,
shotpoint, magnetic intensity, etc. MAPGEN's lines program
accomplishes the task by using two-part data sets; it first
creates plots of the lines and associated annotations, then goes
on to the second set of data and plots the tics. The input-data
file has to be set up in two sections: the list of fixes and
annotations that make up the line, and then an appended set of
tic locations. Line breaks (where tracks are not to be plotted)
are marked by a #-b command within the data file, which instructs
the plotter not to draw a line between two sequential points.
Setting up the data set and the plot parameters (either in a .par
file or prefixed to the data set) is critical. See the MAPGEN
documentation for the lines program.

Navigation data come off the ship in various ASCII formats
that contain consecutive fixes. There are reformatting routines
such as mbrfmt, cmrfmt, fxrfmt, sgrfmt, or mrg3rfmt (for MBATR,
CALCM, FIXSE, SEAG, or merge-merge formats), or one can use awk
to reformat navigation data for a program called seltime r written
by Valerie Paskevich, which picks out tics and annotations at
selectable intervals, and produces a new data set of two parts,
along with default commands for lines. See the BAMG
documentation for seltime.

Trackline data in "lingen" format (named from an obsolete
MAPGEN program), which include data sets at several tic and
annotation intervals, are stored on magnetic tape in the BAMG
data library for a number of USGS BAMG cruises until about 1982.
Those data must be edited to insert a #-b where line breaks
occur, and the MAPGEN commands must be updated.

dofarn2 Plots Farnella 87-2 tracks in the Mid-Atlantic bight;
hourly tics and 12-hour annotations.

mrgSrfmt <farn2nav | seltime -a 12 -t 1 I \
lines -mo map*.def farn2.ov

Here's what the mrg3 data look like (minus some spaces to
get them on the page).

FARN2/87 870302 0710 36.7153 -74.6442 395 393 1053317 102
FARN2/87 870302 0712 36.7196 -74.6427 395 393 1053319 100
FARN2/87 870302 0714 36.7239 -74.6411 395 393 1053321 98

16

FARN2/87 870302 0716 36.7282 -74.6396 395
FARN2/87 870302 0718 36.7324 -74.6381 395

393 1053323 95
463 1053325 94

doa22 plots Atlantis II 89-2 tracks from the mbatr format
found on the data-library tapes (a WHOI format). This example
shows the placement of the lines.par input.

mbrfmt <a22nav | seltime -a 12 -t 1 -1 lines.par I \
lines -mo map.def a22.ov

The -a and -t call for the annotation and tic intervals to
be provided by seltime.

When -1 lines.par follows the seltime annotation command a
lines.par file is inserted in the data following the MAPGEN
instructions inserted by seltime as you see them above. The
MAPGEN processes follow the instructions they have last seen, so
old instructions are overridden by new instructions that follow
them in a data stream. The lines.par file is a separate file.
In it you can specify font and character sizes, pens (colors)
etc. It can be a general file such as the following, and you can
use the ## to comment out the parts you don't want:

lines.par
#-1 #start plotting lines
#-c #start plotting annotations

C -ss S fsymbol font,character,size
C -cs S #annotation character font,character,size

(See the MAPGEN manual and Replace the caps)
#pen number, pick your color
#fields Ion, lat
#post field 3

dois781 plots an older data set where the hourly or 5-minute
intervals were not recorded precisely on the hour or the 5-minute
times. Seltime won't work where there are no properly numbered
intervals (i. e., 5, 10, 15 ... minute) records. One approach to
get some workable tracklines for your data plotting is to label
all the points. The data were stored in TSD format, a formerly
used binary data-storage format of BAMG. A translation of the
TSD file (using the program tsd) produced the following file
(Iselin 7807-1 navigation):

#-sf
#-cf

#-p]
##-d
##-f

F
F

L
2,
3

-sc
-cc

1

20 87823122+04 35
20 87823172+04 35
20 87823222+04 35
20 87823272+04 35

16.689 -74 -26.94700 600
17.759 -74 -26.52700 600
18.779 -74 -26.18600 600
19.889 -74 -25.63800 600

17

Then, using fxrfmt produced the next data set, to which I have
added a 3-line header for identification and a format note in my
data directory:

Iselin 7807-1 navigation (aka IS781) from FIXSE format
U lat Ion yr mo dy hr
($0,4,8) (15,9) (26,4) (31,2) (34,2) (37,38)

35.27815 -74.44900 1978 8 20 23 12 12
35.29598 -74.44200 1978 8 20 23 17 12
35.31298 -74.43633 1978 8 20 23 22 12
35.33148 -74.42717 1978 8 20 23 27 12

mm
(40,41)

The above data file that I chose to use and to keep in a data
directory is then processed with the following script:

cat $HOME/data/nav/is781dat \
I sed -e '1,3d' | \
awk '{print substr($0,4,8)"d\t"substr($0,15,9)"d\t"\
substr($0,34,8)}' | lines -mo map.def is781.ov -c "-1 -d 2,1 \
-c -f 3 -cs .2 -cf -tri -ex 0.2 -cr o -s -sr o -sf - -sc - \
-ss .3"

The sed step removes the header; awk creates a 3-field data
stream of latitude, longitude, day_hour_minute; lines plots those
data, each point with a tic and an annotation of day_hour_minute.
Note the inclusion within the lines command of all the plotting
specifications. They are enclosed within the double quotes
following the -c. This script thereby avoids the extra baggage
of a special lines.par file. Note also the backslashes used as
line breaks here so that the Unix shell will treat the script as
one line. Be careful with the spaces around the backslashes.

dogy8210 A complex sequence of filters, from a TSD tape to
plottable file: all in one script. This plots Gyre 82-10 data.

Example data (stage 1) read from the TSD tape, field separator A I
1982/08/27-04:13:08.000
1982/08/27-04:13:28.000
1982/08/27-04:13:48.000
1982/08/27-04:14:08.000
1982/08/27-04:14:28.000

Here's the script file:

cat $HOME/data/nav/gy8210nav | awk '{print ($3)" "($4)\
II "substr ($1,1, 4) " "substr ($1,6, 2) " "substr ($1, 9,2) \

170
170
170
170
170

39.31365
39.31344
39.31318
39.31292
39.31262

-71.69895
-71.69924
-71.69950
-71.69972
-71.69995

18

11 "substr($1,12,2)" "substr ($1,15,2) " "substr ($1,18,2) \
11 "substr ($1,15,2)" "($2)}'| sed -e ' /NS/c\
#-b' I sed -e '/ /c\
#-b' | uniq -8 I seltime -a 3 -t 1 I uniq |\
lines -mo map.def gy8210.ov

In this example, cat feeds the data file through awk for
reformatting. In awk parlance, field 1, here containing
date-time in 21 places, is $1 (the year starts with place 1 and
has 4 characters)/ field 2, the at-sea profile line number, is
$2; field 3, the latitude $3; and field 4, the longitude, is $4.
So, what we get is latitude, longitude, year, month day, hour,
minute, second, then a repeated minute field, and the line
number. Thus:

39.31365 -71.69895 1982 08 27 04 13 08 13 170
39.31344 -71.69924 1982 08 27 04 13 28 13 170
39.31318 -71.69950 1982 08 27 04 13 48 13 170
39.31292 -71.69972 1982 08 27 04 14 08 14 170
39.31262 -71.69995 1982 08 27 04 14 28 14 170
39.31241 -71.70023 1982 08 27 04 14 48 14 170
39.31225 -71.70048 1982 08 27 04 15 08 15 170
39.31203 -71.70076 1982 08 27 04 15 28 15 170
39.31182 -71.70099 1982 08 27 04 15 48 15 170
39.31163 -71.70126 1982 08 27 04 16 08 16 170

The cat and awk stages of the script pass along data with 3
fixes per minute, as was recorded at sea. I repeated the minute
field near the end of the line so uniq could then delete lines
having duplicate minute fields (the -8 tells uniq to skip the
first 8 fields before comparing the final part of the line for
duplicates). Since the line numbers are duplicates for each data
line, they don't interfere.

The sed commands cull unwanted interline data by changing
each data line that contains TRANSIT or NSRT (conveniently "NS"
is a common string) or double blanks to #-£?. Note the form of
the sed commands. The \ line break is critical. It is placed
within the single quotes of the sed -e statement.

The seltime program picks out tics and annotations at the
intervals you choose. As input it needs latitude, longitude,
year, month, dy, hr, min, sec, using spaces as field separators.

Following seltime a second pass through uniq culls some
lines of duplicate fixes and the excess #-£>' s that were inserted
in the interline places.

19

The first few lines of the prepared data file before it is
piped into lines, following seltime, looks like this:

-p 0 #select pen number
-c # select character posting
define location of character string
-f .27.17
define lon/lat (x/y) fields
-d .13.11,.2.10
-cr o # plot characters orthogonal to track
-ex .3 # char offset from geographic point
-cs .3 # character size
-cf - # select system default for character font

39.31365 -71.69895 "1982/ 8/27 4:13"
39.31292 -71.69972
39.31225 -71.70048

Here, within a data header which seltime creates, the -d
.27.17 tells lines the annotation character string format: skip
27 characters (including space characters), then read 17
characters. The fix format -d .13.11,.2.10 says skip 13 places,
read 11 places for the first field, then skip 2 places, read 10
places for the second field. Following some font and format
instructions the data comes, and annotated fixes appear within
the file at the selected 3-hour intervals, and line breaks are
signalled by #-b.

The transition within the final data file from fix points
for the line plot to a list of tic fixes for a point-symbol plot,
that is automatically installed by seltimef looks like this:

38.71787 -72.67151
38.71771 -72.67197
38.71776 -72.67232

-b # pick up pen
tick marks; default values
select lon/lat (x/y) fields
-d .13.11,.2.10
-p 0 # select pen number
-lq # disable line plotting
-s -sr o # select orthogonal symbol plotting
-sf -tr -sc 45 -ss .3 # define symbol (-)

39.31365 -71.69895
39.28516 -71.73880
39.25163 -71.79075

20

E. Sites and Samples

dodsdpwells plots Deep Sea Drilling Project well locations and
an annotation

points -o dsdpwells.ov -m map.def «EOF - \
$HOME/data/samples/dsdpwells.dat
#-s # start plotting points
#-c # start posting
#-d 2,1 # Ion, lat fields
#-ss .2 # symbol size cm
#-f 3 # post field 3
#-sf - # point-symbol font
#-sc 10 # point-symbol character
#-cf - # char font
#-p 1 # pen number
#-cs .15 # char size cm
#-cx .2 # annotation offset x direction, cm
EOF

dostratwells -- Plots stratigraphic wells offshore U. S. east
coast from BAMG sediment-analysis laboratory's printer-formatted
file

: ## requires Bourne shell, start the file, way up top, with : or
blank.
for stratwells from Larry Poppe's printer-image file
gives lat, Ion, program and site number, year
##
(cat «EOF; cat $HOME/data/samples/stratwells .dat\
I awk '{print\
substr($0,38,2)"D"substr($0,41,5)"\t"substr($0, 48, 3)"D"\
substr($0,53,5)"\t"substr($0,20,9)" "substr($0,1,9)}')\

I points -mo map.def stratwells.ov
#-s # start plotting points
#-c # start posting
#-d 2,1 # Ion, lat fields
#-ss 0.15 # symbol size cm
#-f 3 -ex .2 # post field n, annotation offset cm
#-cs 0.2 # character size cm
#-sf - # point-symbol font
#-sc 10 # point-symbol character
#-cf - # char font
#-p 0 # pen number
EOF

21

Awk: see Unix instructions. Briefly, here, the ($0,38,2)
means: within each line (the $0) select 2 characters starting at
character 38. Those six characters become the first field piped
to points. The following $0 terms pick out the latitude and
longitude in fields 2 and 3.

dosedlab plots sample locations from BAMG sediment laboratory
files

Plots sedlab.dat, as of 17aug89.
cat «EOF - $HOME/data/samples/sedlab.dat\

I uniq -4 | points -mo map.def sedlab.ov
#-s # start plotting points
#-c # start posting
#-d 6,5 # Ion, lat fields
#-ss 0.12 # symbol size cm
#-f 2 -ex .2 # post field n, annotation offset cm
#-cs 0.1 # character size cm
#-sf - # point-symbol font
#-sc 10 # point-symbol character
#-cf - # char font
#-p 0 # pen number
EOF

dowhoicores plots sites and an annotation from WHOI core and
sample files on the WHOI's Blue Vax; from output of WHOI's muddle
program.

: ## Run with Bourne shell.
##WHOI's muddle program report format (note the comments
you can change the annotations by changing the awk statement.
##
ship 1,3
cruise 5,3
leg 12,2
##station 16,4
##samp no. 24,4
##device 31,2
##date 36,6
##lat deg 44,2
##lat min 47,6
##lon deg 54,3
##lon min 58, 6
##fix type 66,1
##marsd squar 69,6
##core,dredge no. 76,4
##depth 83,4

22

##end depth 89,4
##sample we(?) 96,4
##
This script plots date and lat and Ion; drops duplicate
lat-lon lines in a sorted file.
##
requires Bourne shell; put colon or space as first character
in file.
(cat «EOF ; cat $HOME/data/samples/whoicores.datI awk '{print\
substr($0,36,6)"\t"substr($0,44,2)"d"substr($0,47,6)"\t"\

substr($0,54,3)"d"substr($0,58,6)}')\
I uniq -1 | points -mo map.def whoicores.ov
#-s # start plotting points
#-c # start posting
#-d 3,2 # Ion, lat fields
#-ss 0.15 # symbol size cm
#-f 1 -ex .2 # post field n, annotation offset cm
#-cs 0.15 # character size cm
#-sf - # point-symbol font
#-sc 10 # point-symbol character
#-cf - # char font
#-p 1 # pen number
EOF

Uniq culls sequentially duplicate lines, here ignoring the
first field (-1), thus avoiding plot after plot of the same site
for each sample down a core. The data have to be sorted if this
is to work, of course. Note also that using awk, the ## symbols
are not useful to comment out lines in the data file because awk
just looks at whatever comes up in the sequence you give it. The
data file has to be clean, or anomalou lines have to be cleaned
out with a sed filter.

docores plots core sites from a NGDC file

: ## requires Bourne shell
docores (for core curator's format from NGDC)
(cat «EOF ; cat $HOME/data/ngdccores I awk ' {print
substr($0,44,1) " "\
substr($0,20,6)"\t"substr($0,26,2)"D"substr($0,28,2)"."substr($0,
30,2)"\t"\
substr($0,33,2)"D"substr($0,35,2)"."substr($0,37,2)}'\

I uniq -1) | points -mo map.def curacores.ov -
#-s # start plotting points
#-c # start posting
#-d 3,2 # Ion, lat fields
#-ss 0.15 # symbol size cm

23

#-f 1 -ex .2 # post field n, annotation offset cm
#-cs 0.1 # character size cm
#-sf - # point-symbol font
#-sc 10 # point-symbol character
#-cf - # char font
#-p 1 # pen number
EOF

doilwells plots oil well locations from files compiled by
Larry Poppe of BAMG; picks out the latitude-longitude and an
annotation from Larry's printer format, but you will have to edit
the data file manually or use sed to eliminate the printout-type
headers.

: ## Requires Bourne Shell.
oil well file format:
1,8 date start
11,8 date complete
21,3 region
26,6 company
34,7 protraction diagram
43,6 block and well number
50,8 feet from n/s line
59,8 feet from e/w line
68,3 degree lat
72,6 min lat
80,3 degree Ion
85,6 min Ion
94,3 water depth m
101,3 rkb sea floor feet
107,7 rkb TD feet
116,4 penetration m
124,8 comments
##
##To plot using MAPGEN:
requires Bourne shell, start file, way up top, with : or
blank.
gives lat, Ion, company_block_and_well_no (in field 3), and TD
in meters.
(cat «EOF; cat $HOME/data/samples/oilwells .dat\
I awk '(print
substr($0,68,3)"D"substr($0,72,6)"\t"substr($0,80,3)"D"\
substr($0,85,6)"\t"substr($0,26,6)" "substr($0,43,6)}')\

I points -mo map.def oilwells.ov
#-s # start plotting points
##-c # start posting
#-d 2,1 # Ion, lat fields

24

#-ss 0.25 # symbol size cm
##-f 3 -ex .2 # post field n, annotation offset cm
#-cs 0.2 # character size cm
#-sf -sr # point-symbol font
#-sc 19 # point-symbol character
#-cf - # char font
#-p 0 # pen number
EOF

dodives plots Alvin dive locations; DBASE files of Alvin
information are maintained by the WHOI data library as part of
the Alvin Archives. The example data file below was extracted
from DBASE files on a DOS PC and downloaded using Kermit. The
fields here are delimited by tabs.

alvindives: dive, date, lat, Ion, depth
extracted from WHOI data library DBASE file, 16 Aug 1989.
1 19640626 41d31N 70d40W 27
2 19640701 41d31N 70d40W 12
3 19640702 41d31N 70d40W 25
4 19640731 41d31N 70d40W 25

And, here's the script file:

points -o dives.ov -m map.def - $HOME/data/alvindives «EOF
#-s # start plotting points
#-c # start posting
#-d 4,3 # Ion, lat fields
#-ss .2 # symbol size cm
#-f 1 # post field 1 (dive number)
#-sf - # point-symbol font
#-sc 10 # point-symbol character
#-cf -crp # char font
#-p 2 # pen number
#-cs .25 # char size cm
#-cx .2 # annotation offset x direction, cm
EOF
dolegnl puts a note on the map to refer to Alvin dive sites as
plotted from dodives.

legend -mo map.def legnl.ov «EOF
#w d # measure for data window
#f -crp # font call
#s 0.25 # size cm
#p 2 # pen
#xy 27 3 # xy position cm
#t # text

25

+ Alvin dive locations

EOF

dodumpsite Here's a miscellaneous use of the lines program.
This makes an outline of DWD106 Municipal sludge area; modify it
for other rectangles or polygon drawings.

Municipal DWD dumpsite location from NOS chart 13003 dec86
lines -mo map.def dumpsite.ov «EOF
#-p 4 # pen 4 , pick your color
-1 # begin line plotting at subsequent data fields
-d 1,2 # longitude field 1, latitude field 2
72dw 39d # these are corner points,
72d5w 39d # five of them close the box
72d5w 38d40 # field delimiter is A I, or tab.
72dw 38d40
72dw 39d
EOF

F. Viewing and Plotting:

Preview and zoom are MAPGEN programs for viewing a map on a
terminal. Use preview map.def grid.ov or *.ov to see the
overlay(s) you have made, or zoom map.def *.ov. Zoom allows
enlarging selected areas of the map on the screen, and can also
locate coordinates for labels. See the program documentation.
If you are using a remote terminal it must be a graphics terminal
and you have to get the emulation right. For DOS-based terminals
that use Kermit, see Appendix I.

For ease of trial and error mapmaking insert alias prevv
'preview map.def in your . cshrc file, and use prevv *.ov. Don't
use prev for the alias because prev exists as another program.
Then, with the c shell, you can use Ipr and !vi to let the shell
do your repetetive typing as you correct and recorrect your map
parameter choices.

plot970 A runline for the BAMG Calcomp 970 plotter as run from
Shemp. This will plot all your overlays. Check that the T-bar
switch on the plotter is set to the Masscomp.

plotter -d c970 *.ov >/dev/tty2 &

26

References Cited

Evenden, G. I., 1986, The MAPGEN cartographic system, in Steiger,
D. ed., Proceedings 1986 Working Symposium on Oceanographic Data
Systems. IEEE Computer Society, p. 239-245.

Evenden, G. I., and Botbol, J. M., 1985, User's Manual for MAPGEN
(Unix version): a method of transforming digital cartographic
data to a map. U. S. Geological Survey Open-file Report 85-706,
58 pp plus appendixes on font codes and map projections.

Kernighan, B. W. and Pike, R., 1984, The Unix Programming
Environment. Prentice Hall, 357 p.

Hampson, J. C., Jr., and Wright, E. L., 1988, GLORIA Atlas
Preparation: a basic application of the MAPGEN mapping system as
a publishing aid. U. S. Geological Survey Open-file Report
88-287, 27 p.

Morgan, Rachel, and McGilton, Henry, 1987, Introducing Unix
System V. McGraw Hill, 612 p.

27

Appendix I
ver. 2

MAPGEN. Kermit, and your DOS PC
Some laboriously-garnered hints for more comfortable computing

A DOS-based PC with a graphics-capable screen can serve as a
terminal for MAPGEN map making by telephone and will also work
with the vi program on the Unix systems. The commonly used
program Kermit provides emulations for VT100 (as vt!02) and
Tektronix 4014 terminals as well as a couple of others. However,
if you identify ypur terminal session to the Unix system as a
Graphon 140, vtlOO-type signals are sent for text editing and
tek4014-type signals are sent for graphics, and your screen will
switch between the two as it's needed.

Using Kermit, dial and connect the PC to the Unix computer.
After the initial logon (username and password) the Unix system
will prompt for a terminal type, as TERMINAL=?(vtlOO) . Enter go
to override the default and set your session up as a Graphon 140
terminal. You will be able to use the terminal as if it were a
vtlOO with screen editing capability for vi. The screen will
change automatically to a tek4014 graphics mode when needed, and
the moving finger will draw your map. When the graphics display
is complete the machine beeps. After your inspection of the map,
push alt- (alt minus, both keys simultaneously). The screen will
flip back to the vtlOO emulation for keyboard work. You can
cycle the emulations through Heath-19, and VT-52, and VT102 if
you continue to push the alt-. You will find the VT102 screen is
best for vi. You will also find that the map graphics are held
on the Tektronix screen, and you can go back and look at them.

With many terminals the automatic 2-part communications,
text plus graphics, don't work. Consequently I include a further
discussion of convenient ways to flip between Unix TERMCAP ID'S
at the computer and emulations at the terminal without the
nuisance of having to logoff and logon.

There are two ends to the system you are using: the PC
serving as a terminal and the Unix computer. The two ends have
to be compatible. The Unix system communicates with terminals
through individual protocols that it sets up for each session.
If your terminal session is identified as using a vtlOO, the main
computer won't send it graphics signals. On the other hand, if
the main computer thinks your terminal is a Tektronix 4014 it
will send graphics, but it will send the vi editing program in
"open mode", which is not a screen editor mode, and is a nuisance
for you, even though the terminal on your end thinks it's a

28

VT100. If your PC thinks it's a vtlOO it won't draw maps. If
your PC thinks it's a tek4014, it will receive graphics signals
and draw maps, but there's no cursor, the text characters are not
as easily readable, and vi won't work as a screen editor. The
Unix system will use vtlOO and tek 4014 emulations automatically
for editing and graphics if you logon as a Graphon 140 terminal.

Terminal emulations at the PC end are created by Kermit or
other communications software. The Kermit-provided emulation is
identified on the lower right on the banner. There's no banner
for graphics. This is written from experience on an IBM Model 50
with a monochrome screen. According to its documentation, Kermit
can handle colors, too.

You can see what kind of terminal the Unix computer thinks
you are by looking at TERMCAP and TERM, using the Unix command,
env. You can change those terminal identification entries. Find
the files .vtlOO , .4014sm, and .go!40 in /eez/jmr on Shemp and
copy them to your own home directory. The dots just help hide
and protect those files within the directory. Then, edit your
.cshrc file to add an alias line that says alias vt 'source
$HOME/.vtlOO', and alias tk 'source $HOME/.4014sm', or alias gO
'source $HOME/.gol40'. Then the command vt, tk, or gO will
substitute its terminal identification in the TERM and TERMCAP
variables of the Unix environment. Then, depending on what
terminal you are dealing with, you can match the emulation with
the TERMCAP for these three kinds of units.

If you find you must manually switch modes, for fewer
keystrokes use the alias capability of Unix. Alias the string
tk; preview map.def to prew, and the string vt;vi to w, so that
by entering prew you switch the terminal ID to tektronix and
preview the overlays you wish to see; then to use vi f after you
use the alt- to put your own screen in the right mode, edit your
trial-and-error MAPGEN files using the w command, which you have
made equivalent to vt;vi.

Here's what those alias commands, which can go in your
.cshrc file, look like:

alias tk 'source ~/utils/.tek4014sm'
alias vt 'source ~/utils/.vtlOO'
alias me 'source ~/utils/.masscomp'
alias prew 'tk; preview map.def
alias zm 'tk; zoom map.def
alias vv 'vt;vi'

29

Pushing DOS

Without logging out of your Unix session you can switch
neatly and conveniently back into your PC's DOS and use your word
processor or look for a telephone number or run other programs
while your Unix job is running in background.

After logon to the Unix through Kermit, you can get back to
the Kermit prompt with A] (control bracket), or with control-
break if your system is set up that way. You get a response that
gives you no prompt, but puts the cursor at the bottom of the
screen. If you push c, you get the Kermit-MS> prompt. If you
wish to work with your DOS files, push p, for push, which will
bring up your DOS prompt. Do your DOS work, WordPerfect or
whatever it may be, and then enter exit, which will bring you
back to your Unix connection through Kermit. If the Kermit-MS>
prompt is on the screen while you're on line with the Unix
systems, you can use the full command push.

What you have done is initiated ("pushed") a second level of
DOS commands on top of the first set you read into memory when
you booted your machine, and when you exit you drop back down to
that former level, which is operating Kermit, which is talking to
Unix. This can be confusing and you can pile up several Kermits
or other programs on your local machine, all working at once (or
trying to), until you run out of memory. So exit, if you have
pushed.

In order to transfer files between your machine and the Unix
machines, while in your Unix subdirectory, enter Kermit -iwx.
You will get a Kermit-C> prompt from a Kermit program operating
within Unix. The -iwx tells the Unix Kermit that it should be
under control of the Kermit on your end, and cautions it not to
overwrite any existing files. See the Unix Kermit's help file.
Then enter the A] c command for the Kermit program on your local
machine. To get a file to your local disk from the Unix machine,
at the Kermit-MS> prompt, enter get <filename of file on Unix>.
To reverse the transfer, use send <DOS filename>. The file will
be transferred between the subdirectories you were logged into on
each machine.

You can use pathnames, and you can log a different directory
or disk (to copy data to a floppy) by using the cwd (change
working directory) command at the Kermit-MS> prompt. Enter

30

finish at the Kermit-MS> prompt, and the Unix-Kermit will be
turned off. Enter c to get back talking to the Unix, where you
started, or bye, which will logoff the Unix, disconnect, and
come back to DOS. Be aware of the two simultaneously operating
programs, which are identified by their prompts, Kermit-C> and
Kermit-MS>.

While you're working in Unix through the Kermit connection,
be careful about double pushes of the Escape key. Two escapes
disconnect the phone line. If you blunder and push escape twice
in sequence while you are using vi, the disconnect message from
your phone will appear. Reconnect by using the space bar to move
the hyphen under the connect prompt, and push return, and you
will be back in your vi, but with a messy screen. Fix the screen
display by pushing escape again, once, and then pushing Al
(control el) or if that doesn't work, try Ar (control r).

There's a 40 or 50 page manual on disk (i.e., floppy) for
the January-1988 MS-Kermit version that we have, and help files
(usage hermit) for the Unix version of Kermit.

31

Appendix II

How to use the digitizing table for digitizing
lines or area outlines

This is a summary of a procedure and of some of the kinks
for digitizing features on one map so they can be replotted to
another, using equipment and software maintained by the BAMG
computer group. Refer also to the digin and proj manuals on the
BAMG Unix systems: use man digin or man proj on Larry. There is
also a Projection Parameters report (see Evenden and Botbol,
1985, and its updates).

The digitizing table in the BAMG computer user's room is
wired to Larry. The program digin on Larry puts information from
the digitizing table into a file in the form of table
coordinates. The programs proj and toxy transform the table-
coordinate file into a list of latitude and longitudes which you
can use with MAPGEN or ISM. Jerry Evenden wrote the proj and
toxy programs, as well as MAPGEN, and is the expert.

Note before starting: this digitizing procedure requires the
map projection of the map you are digitizing from: not of the map
you intend to make later. There are many map projections and
each commonly has choices of parameters depending on global
location, country of origin, scale, variety of convention, etc.
The accuracy of your digitizing job will depend on your pick of
the projection and those parameters. The precision you need
depends largely on the scale you wish to plot your results at,
compared to the scale of the map carrying the data you are
digitizing. To check the job, plot it back as an overlay, and
compare it to the original map.

1. Tape map to table. Avoid the table's borders because the
digitizing area of the table doesn't extend all the way to the
edge.

2. Choose calibration points. These should be points on your
map whose longitude and latitude you can determine. They must
form a polygon which completely encloses all the area you intend
to digitize. Calibration points are simplest for you to work

32

with when they are at degree intersections (just to avoid typing
complicated numbers), but the machine doesn't require that.

There can be more than four points. They require no special
placement; they don't have to be on the same parallels or
meridians from top to bottom or side to side. The polygon can
look like an irregular star. You can do a calibration grid if
you want to, so long as the outer polygon encloses the area.
Extra points give better statistical closure, but won't repair a
wrong choice on the projection.

Mark your calibration points so you will be able to relocate
them with the cursor, in sequence. Write down their longitudes
and latitudes for later entry into a shell script for processing.
You will probably want to be able to recalibrate on the same
points again, after you have blundered.

3. Logon to Larry.

4. Enter digin > datafilename. Make up a filename.

5. Digitize the calibration points in sequence. Set the
crosshair on the point and push the 1 key on the cursor. It
beeps at each point.

6. Push F on cursor to finish the calibration phase.

7. To start the digitizing phase, push C for point mode, where
you set and choose each point, or push 0, or 1, or 2, or 3, for
stream mode, which will digitize 1, 2, 5, or 10 points per
second.

8. Digitize your data. For point mode push any numeric key
on the cursor at each point. No beeps or no screen change will
show. For stream mode, push and hold the C key while you slide
the crosshair along the line.

9. To suspend digitizing at a line break, push F. To restart
push a number or C, as above. To terminate push D.

The F inserts a #-b, the MAPGEN code for a line break, in
the datafile; for ISM usage you will have to edit those later.

On termination (D), you should see the Unix prompt on the
terminal screen. This is the end of the table phase. There
should be a datafile of digitizer counts in your directory under
datafilename. You will transform these to longitudes and
latitudes using the next procedure.

33

See the digin instructions if you have a lot of lines to
digitize. There is an automatic filenaming option for repetitive
operations.

10. Check the datafile; eliminate duplicate calibration
points. Sometimes the cursors bounce and send multiple points
for a single key stroke. Use vi or edit; look at the file you
created; count the calibration points in the initial group (they
will be in table coordinates) to be sure there is the proper
number. Delete duplicates.

If duplicate points in your data could cause a problem with
your project, you might look over the rest of the data file, and
you should see the toxy instructions for another solution. A few
duplicate data points won't hurt most plots, but be sure to fix
the calibration points.

11. Using vi or edit, make a script file (called digscrpt or
whatever you want) to transform the table's x/y coordinates to
Ions and lats. Here is a model:

f
set a='+proj=lcc'
proj $a «EOF | toxy - $1 | proj +inv $a > $l.dat
76dw 38d
72dw 34d
78dw 34d [The data fields must be separated
78dw 38d by a tab.]
EOF

This file contains a code for the projection of the map you
are digitizing from (not the one you intend to make later) and
the longitude-latitude coordinates of the calibration points, in
the sequence they were entered. It reads your datafile and
creates a new file named datafile.dat. Use DMS format for the
coordinates (see the MAPGEN manual; Evenden and Botbol, 1985) .
The projection codes and options are in the Projection Parameters
manual. End the list with EOF, as illustrated.

What this script file does (for your interest,
translated with some help from Jerry Evenden):

calls the Unix c-shell. (A blank first
character would call the Unix Bourne shell, which uses
different conventions.)

set a='+proj=lcc' sets a Unix variable (to save
some typing). The a, as set, is substituted by the

34

system for the $a's where they appear in the next line,
and the filename you specify is substituted for the $1.

In this example +proj=lcc specifies the
projection: lcc=lambert conic conformal. Other
examples, assuming you can accept defaults, follow:
(Do check the Projection Parameters report/ see Evenden
and Botbol, 1985, and its unpublished updates.)

lambert equal area: set a=' +proj=laea +lat__0=0n'
utm: set a='+proj=utm +lon_0=75w'

[75w is the central meridian/ specify yours/
but there are conventions/ read the
Projection Parameters section of Evenden and
Botbol (1985) so you get it right.]

albers equal area conic: set a='+proj=aea'
mercator: set a='+proj=merc'

Note that any options required to describe the
projection are to be included within those single
quotes.

The program proj reads the projection and
calibration points as far as the EOF, puts them into a
rectilinear x-y coordinate system and sends them to the
program toxy (the - after toxy tells it to read the
piped-in data before it reads the datafile (the $1) in
its command line. Toxy reads the datafile, compares
the table counts of calibration coordinates at the top
of that file and the list of x-y coordinates that were
piped in, and transforms the data coordinates into the
x-y system. Then, in turn, another proj operation
inverts the x-y data into latitudes and longitudes.
Clear and simple, huh? The final product goes into a
.dat file (>$l.dat); but you can change that suffix if
you don't like .dat. See the documentation of the proj
and toxy programs for explanation of options.

12. Make your script an executable file. Enter chmod +x
digscrpt.

13. Execute the script file by entering digscrpt datafilename.
Datafilename is the file that you created with digin. You will
get another file, datafilename.dat.

14. MAPGEN, using its default format, requires tabs (A I in
ascii) to separate fields in data files. You may want to change
the format of the data in the .dat file so the longitude and
latitude are separated by a tab, rather than a space. In vi, use
:l,$s/ /*!/, where AI is the tab key. If the version of proj you
are using gives you a tab, you're all set. For ISM you may have

35

to edit the tabs to blanks and the break points (#-b) to whatever
ISM calls for.

15. For a MAPGEN overlay, run the lines or points program, as:

lines -mo map.def overlay.ov lineoptions.par datafilename.bat

16. Good luck.

36

Appendix III

Kermit script files for use with ATT 7404 or 7406 telephone
instruments to connect with Shemp, Vax, Mips

within the BAMG telephone system

The following are Kermit script files that will connect your
PC as a terminal to the Vax or Microvax. When they work they're
quicker than typing. Sometimes they don't work because the
phones or the machines are slow and kermit times out, or because
they encounter an unusual response.

Place the following sets of files on your PC in the same
directory as your kermit.exe file. The batch files (.bat) invoke
Kermit and use its "take" function to call the .fil files which
hold the kermit scripts.

I. vax.bat

@echo off
kermit -f vax.fil

II. vax.fil

comment start of file
comment kermit script file for network phone logon
comment usage kermit -f vax.fil
clear
set speed 9600
set port 1
set input timeout-action quit
echo Going for Vax via network phone connection...
output \13
pause 0
output \13
pause 0
output \13
pause 0
output \13
input 5 DIAL
output 300X13
comment /avoiding entire derailing by the occasional
comment /status prompt without a login prompt
SET INPUT TIMEOUT-ACTION PROCEED
INPUT 1 STATUS
OUTPUT \13

37

SET INPUT TIMEOUT-ACTION QUIT
pause 0
output \13
input 5 Local
echo
echo There's the phone box...
echo Now for the Vax...
echo
pause 2
comment connect on whsys as the box's default
output connect\13
input 5 User
output your_sign_on\13
input 5 password
output your_jpassword\13
comment
comment ..This is an alternative if you want to keep a secret
comment ..word out of your PC file. Replace the your_jpassword
comment ..lines with the following lines that request your
comment ..password from the keyboard.
comment
comment echo Enter the Password:
comment output @CON
comment
echo
echo OK, Wait for vax inquiry and prompt...
echo
comment wait for vax set term/inquire...
comment respond esc [<query symbol> 6 ; 2 c (say we are vt!02)
comment note syntax for question mark and semicolon
input 18 \27Z
echo
echo Vax's terminal-inquiry signal received...
echo Responding, wait for the prompt...
output \27[\{63}6\/2c
input 15 $
echo
echo There's the prompt... Go...
pause 3
connect
comment EOF

III. mips.bat

@echo off
kermit -f mips.fil

38

IV. mips.fil

comment start of file
comment kermit script file logon to Mips via Network phone server
comment and whsys vax.
comment usage kermit -f mips.fil or use mips.bat which says that.
clear
set speed 9600
set port 1
set input timeout-action quit
echo Going for Vax via network connection...
output \13
pause 0
output \13
pause 0
output \13
pause 0
output \13
input 5 DIAL
output 300X13
comment /avoiding derailing by the occasional status prompt
comment ; without a login prompt
SET INPUT TIMEOUT-ACTION PROCEED
INPUT 1 STATUS
OUTPUT \13
SET INPUT TIMEOUT-ACTION QUIT
pause 0
output \13
input 5 Local
pause 0
echo Got the network server; Now for the Vax at Whsys...
comment connect to whsys by default
output connect\13
input 5 User
output your_sign_on\13
input 5 password
output your_jpassword\13
comment
comment echo Enter the Password:
comment output @CON
comment
comment wait for vax set term/inquire...
comment respond esc [<query symbol> 6 ; 2 c (say we are vt!02).
comment note syntax for question mark and semicolon
input 18 \27Z
echo Got the Vax's terminal inquiry signal...
echo Responding, wait for prompt...

39

output \27[\{63}6\;2c
input 15 $
echo Got the Vax prompt, Now going for Mips connection...
output set host mips\13
input 10 User
echo Aha! The Mips speaks...
echo
output your_sign_on\13
input 3 password
output your_jpassword\13
echo OK, Wait for microvax inquiry and prompt...
comment wait for vax set term/inquire...
comment respond esc [<query symbol> 6 ; 2 c (say we are vt!02)
comment note syntax for question mark and semicolon
input 18 \27Z
echo OK, Got the Microvax's terminal inquiry signal...
echo Responding, wait for the next prompt...
output \27[\{63}6\;2c
input 15 $
echo There it is.. Go...
pause 5
connect
comment EOF

V. shemp.bat

©echo off
kermit -f shemp.fil

VI. shemp.fil

comment kermit script file for masscomp logon
comment usage kermit -f shemp.fil
clear
set speed 9600
set port 1
set input timeout-action quit
echo
echo Telephoning Shemp...
output \13
pause 0
output \13
pause 0
output \13
pause 0
output \13
input 5 DIAL

40

pause 0
output 372X13
comment /avoiding derailing by the occasional status prompt
comment ; without a login prompt
SET INPUT TIMEOUT-ACTION PROCEED
INPUT 1 STATUS
OUTPUT \13
SET INPUT TIMEOUT-ACTION QUIT
input 5 login:
pause 0
output your_sign_on\13
pause 1
set input echo off
input 5 Password
comment echo Enter the Password:
comment output @CON
output your_password\13
set input echo on
clear
input 5 TERM
comment the go response here invokes a graphon 140 termcap
comment for vtlOO respond with carriage return (\13) only.
output go\13
connect
comment EOF

41

