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ABSTRACT

Current methods of building design for dynamic wind loads are based on the equivalent
static load concept, where the dynamic components of wind loads are converted to an
equivalent static load, under which the static deflection is equal to the dynamic deflection.
In the equivalent static load approach, accelerations of the building cannot be incorporated
in the design, because of their dynamic nature. It is well known, however, that in high-
rise buildings wind induced discomfort due to excessive accelerations in the upper stories
can be a problem. Thus, there is a need for a design procedure which can include peak

accelerations as well as peak displacements.

In this report, we present one such method, the response spectrum method, for pre-
dicting the wind-induced dynamic response of high-rise buildings. The technique is similar
to that used for earthquake loads, and incorporates not only peak displacements, but also
peak accelerations of the building. In this report, only along-wind direction forces and
vibrations are considered. The across-wind direction response will be considered in the
second part of the research. We develop wind response spectra for a reference building,
defined as a single-degree-of-freedom rectangular rigid block with a rotational base spring
and a damper. We then show that, for a given building, we can calculate peak modal
displacements and accelerations in terms of those of the reference building. We present
wind response spectra for different wind and terrain conditions, and perform a parametric
analysis to investigate the effect of various parameters on these spectra. We show that
existing computer programs that perform spectral analysis for earthquake loads can easily
be modified to perform spectral analysis for wind loads.

We also introduce the concept of comfort spectra. For a given building height, we plot
the acceleration response spectrum and observe the building frequency corresponding to
the critical acceleration for human discomfort. By doing this for a range of building heights,
we can construct an interaction curve showing the building height versus critical frequency.
We call this interaction curve the comfort spectrum, and present several examples. We
conclude by discussing the development of a single design spectrum for earthquake and
wind loads.
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1. INTRODUCTION

Wind loading is one of the most important factors to be considered in designing
high-rise buildings. The dynamic component of wind forces have long been recognized
and incorporated in design codes. The current practice of design for wind is based on
the equivalent static load concept, where the dynamic component of the wind load is
converted to an equivalent static load, under which the static deflection of the building
is equal to the dynamic deflection (ANSI, 1982; NBCC, 1985). This load, along with the
static component of wind load, is applied to the building, and a static analysis is performed
for design. This approach is known as the gust factor approach (Davenport, 1961). The
design criterion for the gust factor method is to limit the stresses and deflections, the
same as for any other static load, since the method is based on the equivalent static
load concept. It is well known, however, that one of the major problems in high-rise
buildings is the wind-induced discomfort of occupants. Occupant discomfort occurs due
to excessive accelerations, rather than deflections. This observation suggests that the
wind design criterion of high-rise buildings should be based on peak accelerations, as
well as peak displacements. Current codes do not have any provisions for wind-induced
peak accelerations. Using existing theory, analytical expressions can be developed for
peak accelerations (e.g., Simiu and Scanlan, 1978; Safak and Foutch, 1987). However, the
expressions are probably too complex to use for practicing design engineers. There is a need
for a simple wind design methodology that will not only incorporate peak displacements
and peak accelerations but also will be consistent with the current methods of analysis, so
that design engineers can easily adopt it.

One such method is the response spectrum method. The response spectrum method
has been widely used for earthquake design, and is well known among engineers. It is very
simple, and can incorporate peak accelerations, velocities, and displacements. It was first
suggested by Newmark (1966), and Cevallos-Candau (1980) showed that the earthquake
and wind loads, and corresponding building responses, have a lot of similarities. Therefore,
similar methods of analysis, such as the response spectrum technique, can be used for both
loads. An important advantage of using the response spectrum technique for both wind and
earthquake loads is that when both loads need to be considered for design, the designer
would know beforehand which load will dominate his design, without doing a separate

analysis for each load.

In this report, we present the response spectrum technique for predicting wind-induced
response of high-rise buildings. The technique is similar to that used for earthquake loads,
and incorporates not only peak displacements, but also peak accelerations of the building.
Therefore, the method can be used for design for safety (i.e., considers peak displacements),
and also for design for comfort (i.e., considers peak accelerations). We first outline current
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techniques used for wind and earthquake response analysis of structures. We then show how
the random vibration technique used for wind loads can be put into a response spectrum
form. We present wind response spectra for different wind and terrain conditions, and
perform a parametric analysis to investigate the effect of various parameters on spectra.
We show that existing computer programs that perform spectral analysis for earthquake
loads can easily be modified to also perform spectral analysis for wind loads. We introduce
a comfort spectrum, by which a designer can determine whether the building will be
susceptible to wind-induced discomfort. We conclude by investigating the feasibility of
developing a single design spectum for wind and earthquake forces.

2. WIND FORCES ON HIGH-RISE BUILDINGS

Wind-induced vibrations in high-rise buildings are due to individual or combined
effects of the following dynamic force mechanisms: along-wind forces due to turbulence,
across-wind forces due to vortex shedding, wake buffeting, and galloping. Along-wind
forces are in the direction of main wind flow. They include static and dynamic components,
generated by the steady and fluctuating components of the wind, respectively, and are the
most dominant force mechanism in a typical building. In general, along wind forces are
in the form of pressures on the frontal (i.e., windward) face, and suctions on the back
(i.e., leeward) face of the building. Across-wind forces are generated by vortecies that
develop at the sides of the building moving clockwise and counterclockwise, and shed in
an alternating fashion in the direction perpendicular to the mean wind flow. Across-wind
forces can be critical for slender structures, such as buildings with very large height to width
ratios, smokestacks, and transmission towers. Wake buffeting occurs if one structure is
located in the wake of another structure, and can cause large oscillations in the downstream
structure if the two structures are similar in shape and size, and less than ten-diameter
apart. Galloping is an oscillation induced by forces generated by the motion itself. It
corresponds to an unstable motion with negative damping, and can be seen in structures
like transmission lines, or long slender towers with sharp edged crossections. More detail
on wind force mechanisms can be found in Simiu and Scanlan (1978) and Safak and Foutch
(1980). In this study, we will deal only with along-wind forces in the direction of main
wind flow. Forces in the across-wind direction will be considered in the second phase of
the study.

2.1. Models of wind velocity near ground:

Wind velocity generates all the force mechanisms acting on the structure. Near the
ground, the wind velocity V(z,t) at height z can be expressed as the sum of two compo-
nents, as shown in Fig. 1, such that



V(z,t) = Vo(2) + w(z, 1) (1)

Vo(z) is called the mean (i.e., average) wind velocity, and is time-invariant. w(z,t) is the
fluctuating part of the wind velocity, superimposed over the mean part. The variation of
Vo(z) with height z is known as the velocity profile. The velocity profile starts from zero at
z = 0 (i.e., the ground surface) and increases to a constant level at the height where there
is no influence of surface friction on the velocity. This height is known as the gradient

height, and the corresponding constant velocity is known as the gradient velocity.

There are two widely-used models for velocity profiles, the power-law model, and the
logarithmic model. The power-law model is given by the following equation (Davenport,
1961):

Vo(z) = Volar)(2)” 2)

where Vy(2,) is the mean wind velocity at the reference height z,, and « is the exponent.
The standard value for the reference height is z, = 10 m. The power law can also be
expressed in terms of the gradient height 2g and gradient velocity Vp(2¢) by replacing
zy and Vy(z,) in Eq.2 by 2¢ and Vy(2g). Both zg and a depend on the roughness of
the terrain. Suggested values for zg and a are zg = 700, 900, 1200, 1500 feet, and o =
0.10, 0.14, 0.22, 0.33 for open water, open country, suburban terrain, and center of large
cities, respectively.

The logarithmic model of wind velocity is defined by the following equation (Simiu,
1973):

Vo(z) = Vo(zr) - %//% 3)

where zj is called the roughness length. Approximate roughness lengths for various terrains
are zo = 0.005, 0.007, 0.30, 1.00, 2.50 in meters for open water, open terrain, sparsely
built-up suburbs, densely built-up suburbs, and center of large cities, respectively.

The fluctuating component w(z,t) of wind velocity is random. A widely used assump-
tion is that w(z,t) is a zero-mean, stationary, Gaussian random process with a specified
power spectral density function (PSDF). As with the velocity profile, there are also two dif-
ferent forms suggested for the spectrum of w(z,t) (also known as the turbulence spectrum).
The earlier form suggested by Davenport (1961) is given by the equation
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V2(10) X? vt x _ 1200f

Sw(f) =4K - 1+ X2 Vo(10) (4)

where V(10) is the mean wind velocity in meters per second at the reference height of 10
meters, f is the frequency in cycles per second (Hz), and K is the surface drag coefficient.
The value of K varies from 0.005 for open country to 0.05 for city centers. The shape of
Davenport’s spectrum is independent of the height, and has a peak at a wave length of 600
meters (i.e., V5(10)/f = 600). This spectrum is currently used in building codes in many
countries.

A later model for the turbulence spectrum is suggested by Simiu (1974), and can
incorporate the variation of the spectrum with height. Simiu’s spectrum is given by the
following equation:

_zﬁ 200N fz

7 ——-—-—(1 50N with N = () (5)

Sw(z’f) =

where u, is known as the friction velocity, calculated in terms of the reference velocity and

the roughnesé length by the following equation

_ Vo(z,-)
e = 2.51n(zr/20) (6)

Since N in Eq.5 is a function of z, Sy(z, f) is height dependent. A more precise, but
analytically more complicated, form of this spectrum is given in Simiu (1974).

The level of turbulence in a wind flow is described by its turbulence intensity. The
turbulence intensity I(z) is calculated as the ratio of the RMS (root-mean-square) value
of the fluctuating component of wind velocity to the mean component. That is

1(z) = %;;"(%) (7)

where 0,(2) is the RMS value of w(z,t). From random process theory,
o2z = [ Sula Hif ®)
f=0

For Davenport’s spectrum (Eq.4), o, is constant, since the spectrum is independent of z,
and equal to 6 KVZ(10). For tall buildings, the turbulence intensity may vary from 0.05
to 0.30 depending on the building height and the roughness of the terrain.
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2.2. Wind forces in the along-wind direction:

Forces in the along-wind direction are generated by the velocity of the wind flow.
Neglecting the relatively small added mass term, the pressure P(z,t) acting at a point of
height z of a fixed body in a turbulent flow can be written as

P(z,t) = %pCp(z)Vz(z,t) 9)

where V(z,t) is the wind velocity, Cp(z) is called the pressure coefficient, and p is the mass
density of the air. By separating the wind velocity V(z,t) into its mean and fluctuating
components, as in Eq.1, and also neglecting the w?(z,t) terms, Eq.9 can be approximated
as

P(2,1) % 5pCy(2)ViH(2) + pCpl)Vo(2)u(z, ) (10)

The omision of the w?(z,t) term is justified since the turbulence intensity is generally
much less than one. The first term on the right hand side of Eq. 10 is independent of
t, therefore it represents the static wind pressure. The second term is the dynamic wind
pressure. Denoting static and dynamic wind pressures by Py(z) and p(z,t), respectively,

we can write -
P(z,t) = Py(z) + p(z,t) (11)
where
Po(2) = 5pCp(:)VE(z) and p(z,t) = pCp(z)Vol2)u(z, ) (12)

Since Py(z) is a static load, the response of the structure resulting from this load can be

calculated by using static methods of analysis.

The calculation of the response due to the dynamic pressure p(z,t) requires the ap-
plication of random vibration techniques because of the random w(z,t). Since p(z,t) is a
linear function of w(z,t), we conclude that p(z,t) is also a zero-mean, stationary, Gaussian
random variable. Its standard deviation, o,(z), and PSDF, Sy,(z, f), can be calculated in

terms of those of w(z,t):

ap(z) = pCp(2)Vo(2)ow(2) (13)

and



Sp(z, f) = [pCo(2)Vo(2)]Su(z, f) (14)

Sp(z, f) is sufficient to describe fully the stochastic characteristics of p(z,t).

3. DYNAMIC RESPONSE OF HIGH-RISE BUILDINGS

Vibration tests indicate that the behavior of high-rise buildings under dynamic loads
is somewhere between that of a shear beam and a flexural beam. The closed form vibration
equations, assuming a shear beam or a flexural beam model, can be derived in the con-
tinuous domain (see, for example Safak and Foutch, 1980). Vibration equations can also
be expressed in a discrete domain by using discrete modeling techniques, such as matrix
methods and finite element methods. We will prefer the discrete approach, so that we can

make use of commercially available computer programs.

We will assume that the motion of the building can be modeled in terms of horizontal
displacements at each story level. The rotations will be neglected, since their contribution
to the response is generally very small (Hurty and Rubinstein, 1964). We will also assume
that the building is symmetric, and moves only in the along-wind direction (we will consider
the motion in the across-wind direction in the second phase of the study). With these
assumptions, the building becomes an n-DOF (n-degrees-of-freedom) dynamic system, n
representing the number of stories. The equations of motion, assuming linear behavior,
can be written as

[M]{§(1)} + [CH()} + [K{y(*)} = {F(1)} (13)

In Eq.15, [M], [C], and [K] are n X n mass, damping, and stiffness matrices, respectively,
and {y(¢)} and {F(t)} are n-dimensional displacement and force vectors. The dots over y
denote derivatives with respect to time t. The solution of Eq.15 can be accomplished by
using modal analysis techniques. First, assuming that [C] = 0 and {F(¢)} = 0 in Eq.15,
we solve the following n-dimensional eigenvalue equation:

[M}{§(®)} + [KHy(2)} =0 (16)

Eigenvalues and eigenvectors obtained from the solution of this equation correspond, re-
spectively, to n natural frequencies and mode shapes of the building. Using calculated
mode shapes, the displacement vector {y(t)} can be expressed as

{y(1)} = [2H{4(1)} (17)
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where [®] is a n X n matrix composed of mode shapes (i.e., each column of [®] represents
a mode shape), and {¢(t)} is the n-dimensional generalized coordinate vector representing
the modal amplitudes. In explicit form, the i-th component y;(t) of {y(t)} can be written

yi(t) = Z ®irqr(t) (18)
k=1

where ®;, represents the element at the i-th row and k-th column of matrix [®#]. An
important property of vibration mode shapes of an n-DOF system is orhogonality:

{2:}TIMN{®:} =0 and {&}T[K{&:} =0 for k#I (19)

where {®;} and {®;} are vectors denoting the k’th and I’th mode shapes, and the super-
script T denotes the transpose. If it is assumed that the damping matrix C is a linear
combination of mass and stiffness matrices (i.e., C = ¢mM + ¢ K), the orthogonality
property also applies to the damping matrix, that is

{®:}T[C{®:1} =0 for k#1 (20)

The orthogonality property can be used to reduce the n-dimensional matrix equation in
Eq.15 to a set of n independent modal equations. Using Eq.17 in Eq.15, and then multi-
plying both sides by the transpose of any (e.g., k-th) mode shape vector, and also using
the orthogonality properties (Eqs.19 and 20), we can write for the k-th modal equation of
the motion

{@x} MU 2 Ha®} {2} TICH R HI I+ {2} T IR @ Ha(1)} = {2} T{F(1)} (21)

For simplicity, introduce the following notation:

M;; = {34}7[M]){2+} (22)
Ct = {2x}7[C{ &4} (23)
K} = {2} [M]{®+} (24)
Fr(t) = {&:}T{F(1)} (25)

Mg, C¢, Kf, and F}(t) are called the k-th generalized mass, damping, stiffness, and force,
respectively. To simplify it further, we will write

7



Ci = 260k(2n for)M{ and Ky = (27 for)*M; (26)

where £ is the damping ratio, and for is the cyclic frequency for the k-th mode. With
these, we can write for the k-th modal equation of the motion as

Fe®)

G () + 260k (27 for)ge () + (27 for )2 qr(t) = M; (27)

Eq.27 is equivalent to the equation of a single degree of freedom system. The solution can
be written, by using the Duhamel’s integral, as

1 t .
M (2n foar) /=0 Fi(r)he(t —7)dr (28)

a(t) =
hi(t — 7) is the impulse response function for the k-th mode, and is calculated by the
following equation

hi(t — 1) = e~ o) =T i[9 foax )(t — 7)) dT (29)

where foqx is the damped natural frequency given as fogr = for/1 — €2
The total response is obtained by combination of modal responses according to Eq.17.

4. RESPONSE TO WIND LOADS

We have presented equations to calculate the dynamic response of a high-rise building
to an arbitrary load. To calculate the response for wind loads we first have to determine
the wind load vector by integrating the wind pressures given by Eq.9 over the dimensions,
i.e., the wind exposure area, of the building. As mentioned earlier, we will assume that
wind blows perpendicular to one of the faces of the building, and consider only the along-
wind direction forces at this stage of the study. We will also assume that the pressures
on the windward and leeward faces are fully correlated, and the pressure coefficient used
represents the sum of the averaged (over the width of the building) pressure coeflicients on
the windward and leeward faces of the building. Because they are averaged values across
the width, the pressure coefficients will vary only with height. With these, we can write
the j-th component of the wind force vector {P,(t)} as

P = [ [ [36G@VEE) + sy Waldute, 2 0)] ez (30)
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where A; denotes the tributary wind exposure area for the j-th story, and z denotes the
horizontal coordinate axis perpendicular to the main wind flow. It is assumed that V;(2)
does not change in the horizontal direction. The tributary area A; can be calculated as

hy+1 + hj

Aj=B——

(31)

Bj and h; are the width and the story height (with respect to the story below), respectively,
at the j’th story.

{Pw(t)} can be separated into static and dynamic components, { Py} and {p.(?)},
such that

{Pu(t)} = {Pow} + {Pu(t)} (32)

The j’th components of { Py} and {pw(t)} can be written, from Eq.30, as

i zj+hj41/2
Pus =308 [ CaVi(e)ds (33)
zj—h;[2

Pwj(t) = p//j;. Co(2)Vo(z)w(z, 2,t) dzdz (34)

All the other components can be calculated similarly.

Since { Py, } is a static load, the resulting static response, {yo }, can easily be calculated
as

{yo} = [K]7 {Pow} (35)

For the dynamic response, we will first calculate the generalized force vector {F*(¢)}. For
the j’th component of {F*(t)}, we can write from Eq.25 that

F; (1) = {8;} {pu(t)} = D _ ®jxpuk(?) (36)
k=1

where the vector {®;} denotes the j’th mode shape. In Eq.36, the generalized force is given
in a discrete form as the sum of modal amplitudes multiplied by the corresponding dynamic
story forces (i.e., dynamic pressures times the tributary story area). The same equation can
also be written in a continuous form by using integrals instead of sums. We will prefer the
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continuous form, since the available information on the stochastic description of dynamic
wind loads is all given in the continuous domain. When the mode shapes are available
only in discrete form, we can approximate the continuous mode shapes by connecting the
discrete amplitudes by straight lines. Using Eq.34, we can write for the j’th generalized
modal wind force in the continuous form as

Fi(t) = //A ®;(z) pCp(2)Vo(2)w(z, 2,t) dzdz (37)

where ®;(z) denotes the continuous j’th mode shape.

Since w(z, z,t) is random, the generalized modal force Fj(t) is also random. Therefore,
the calculation of the response requires applications of random vibration techniques. One
popular method for stationary excitations is the spectral analysis technique, where the
response is calculated in terms of PSDF’s. For a multi-degree-of-freedom system (e.g.,
Eq.15) with random excitation, the relationship between input and output PSDF’s can be
written as (Lin, 1976)

Sy, £) = (@O HHDISE (DIE DI (8(2))" (39)

Sy(z1,22; f) is the cross PSDF of the responses at points z; and z3, and [Sg-(f)] is the
PSDF matrix of the generalized force. {®(z;)} and {®(22)} denote vectors composed of
modal coordinates at height z; and 23, respectively.

[H(f)] is the complex frequency response matrix of the structure, calculated by the
equation

()] = [~(@nfy ) +ienniet) + (K7 (39)

where i= v/—1. [H(f)] denotes the complex conjugate of [H(f)).

The j,k component of the PSDF matrix [Sg-(f)] of the generalized force can be
written in the continuous domain from Eq.37 as

st = [ [ [ [ #@)euescye)Cozavit Vi)
Sw(zi1, 21,22, 22, f) dr1dz1dradzy  (40)

Sw(z1, 21,22, 22, f) is the cross-PSDF of the fluctuating wind velocitly w(z, z,t), and can
be written as
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Sw(xl; 21,2, ZZaf) = Stlu/z(zlsf)sglglz(zh f)COh(.’El,Zl,.’L‘g, 22, f) (41)

where Sy(z, f) is the PSDF at z, and Coh(zy, 21, 2, 22, f) is the coherence function of
the fluctuating wind velocities at points (z1,y:1) and (z2,y2). It is assumed that S,(z, f)
does not change horizontally (i.e., it is not a function of z). The equation suggested for
Coh(z1, z1, 2, 22, f) is (Vickery, 1971)

[C2(a1 = 22)? + C2e1 — 227"
VO(ZI) + V0(22)

COh(xl,Z1,$2,22,f) = exp —2f (42)
C; and C, are called the exponential decay coefficients. Their suggested values are C, = 16
and C, = 10. Experiments show that these values can change significantly, depending on

the terrain, height, and the wind speed, and therefore represent a source of uncertainity
(Simiu and Scanlan, 1978).

By using expressions derived in Eqs.39-42, the response PSDF, S, (zy, 23, f), is calcu-
lated from Eq.38. The integral of Sy(z1, 22, f) over the frequency f gives the covariance
matrix, a;‘;(zl, z2), of the response. That is

-

Sierm) = [ Syer N (43)
0

For zy = z, = 2z, az(z) is the mean square response at z. At a given height 2, the peak
response is calculated as

maxy(z,1) = yo(2) + 6y(2)0y(2) (44)

where yo(z) is the static response due to static wind load, and g,(z) is known as the
peak (or gust) factor. The peak factor can approximately be calculated by the following
equation (Davenport, 1964):

0.577

V2Inv(z)T

v(z) is the average number of peaks in the response y(z) per unit time, and T is the

9y(2) = V2Inv(2)T + (45)

duration in seconds considered for the excitation and response in peak calculations. A
commonly used value for T is 3600 seconds, corresponding to a one-hour wind storm. v(z)
can be calculated in terms of the PSDF by the equation

11



[ £25,(z, ) df
v (z) = 25 (46)
{Sy(za f) df

This approximation is based on the assumption that the response is a narrow band sta-
tionary random process with independently arriving peaks.

The accelerations can be calculated by taking the second derivatives of displacements.
The PSDF S,(z1, 22, f) of accelerations can be written in terms of the PSDF of displace-
ments as

Sa(315227 f) = (2ﬂ'f)4sy(21,22, f) (47)

The covariance function of the accelerations is

Calz1,22) = / Sa(z1, 22, ) df (48)
0

The peak acceleration at height z is calculated in the same way as the peak displacements
(Eq.44):

m?xa(z,t) = ¢q0q(2) (49)

Note that the mean (i.e., static) acceleration is zero. g, is calculated similar to g, by
replacing o, and Sy in Eqs.44-46 by o, and S,.

5. RESPONSE SPECTRA FOR EARTHQUAKE LOADS

The response spectrum for earthquakes is a curve that shows the variation of the peak
displacement of a SDOF (single-degree-of-freedom) oscillator with its natural frequency for
a specifed damping ratio and earthquake excitation. If a SDOF oscillator is subjected to
an earthquake described by the base acceleration a,(t), as schematically shown in Fig. 2,
we can write from the equilibrium condition that the sum of inertia, damping, and elastic

forces are zero

Mogo(t) + Cogo(t) + Koyo(t) = —Moay(?) (50)

where yo(t) corresponds to the relative displacement of the oscillator with respect to
ground, My, Cp, and K, are the mass, damping, and the stiffness of the oscillator. In
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terms of the natural frequency and damping, we can write the same equation (see Eq.26)
as

Go(t) + 260(27 fo)go(t) + (27 fo) yo(t) = —ay(2) (51)

Equation 50 shows that the effect of earthquake base motion in a SDOF oscillator is
equivalent to applying a ficticious force on the oscillator, defined by the equation

Fy(t) = —Myay(t) (52)

Using Duhamel’s integral, as in Eq.28, we can write for the displacement (relative to the
base) yo(t) of a SDOF oscillator to earthquake base acceleration ag4(t)

t

lt) =~ 5 [ astrhe=ryar (83)

=0

where ho(t — 7) is given by Eq.29. We define the response spectrum D(fy) for frequency

fo as

- D(fo) = max yo(t) (54)

The plot of D(fo) with respect to fy gives the response spectral curve. Since the response
Yyo(t) is dependent on the damping in addition to the excitation, different damping ratios,
€0, and excitations, a4(t), would give different spectral curves.

For multi-story buildings, again considering the relative displacement of the building
with respect to the ground, we can express the load vector as the product of the mass
matrix and acceleration vector whose elements are all equal to ground acceleration. That

is,

{F()} = —[M]{I}a,() (35)

where {I} denotes an n-dimensional unit vector. The generalized force vector given by
Eq.25 then becomes

Fi(t) = —®TMIa,(t) = Apag(t) where M = —®{MI (56)

Ax is called the participation factor for the k-th mode, which represents the portion of
total load associated with that mode. Using Eq.56 in Eq.28, we can write for the k-th
modal response gi(t) of a building subjected to ground acceleration a,(t)
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/\ t
g (t) = M’;%}W / ag(r) halt — 7)dr (57)

=0

By comparing Eq.57 with Eq.53, we note that the right hand side of Eq.57 is equivalent
to the response of a SDOF oscillator except the constant term Ax/M}. Therefore the peak
k’th modal response is equal to that of a SDOF oscillator corresponding to mode k (i.e.,

the amplitude of the response spectrum for damping {ox at frequency fox) multiplied by
Ak /My, That is

B "
max gx(t) = M; -maxyo(t) = Mz - D(fox) (58)

For each mode, peak modal responses can be calculated similarly by using the response
spectrum. Although the response at any given time can be written in terms modal re-
sponses (Eq.17), the same is not true for the peak response, because the peak modal
responses do not necessarily occur at the same time. In other words, the peak response is
not equal to, but less than, the sum of peak modal responses. Various methods have been
used to approximate peak response in terms of peak modal responses, such as the absolute
sum, the-square root of the sum of the squares, or the quadratic combination.

6. RESPONSE SPECTRA FOR WIND LOADS

Development of response spectra for wind loads can be accomplished following a sim-
ilar approach to that for earthquake loads. Wind response spectra should be defined for a
given site, since the velocity and turbulence structure of the wind is strongly site depen-
dent. Earthquake loads are inertia loads. Therefore the spectral response involves only the
damping and the natural frequency of a structure and not any other structural parameter.
Wind loads, however, are strongly dependent on the outside geometry of the structure. It
is the size and the shape of the wind exposure area that determine the total wind load
on the building. Therefore, wind response is dependent not only on the natural frequency
and damping, but also on the outside geometry of the structure. Since we are dealing with
buildings with rectangular cross-sections and normally incident wind, and also considering
only along-wind vibrations at this phase of the study, we can define the outside geometry
with the height and frontal width of the building. Further simplification can be achieved
for very tall buildings by neglecting the variation of wind pressures in the horizontal di-
rection and using pressure coefficients averaged over the frontal width. For such buildings,
the outside geometry is represented only by the height of the building. In the formulation
that follows we will consider both the height and the width of the building. We will define
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wind response spectra for a given site, and given structural damping, height, and height-
to-width ratio. The dependence of wind response spectra on height and height-to-width
ratio is the major difference when compared to earthquake response spectra.

6.1. A reference building for wind spectra:

In order to develop wind response spectra, we will consider a reference building as
schematically shown in Fig. 3. The reference building can be visualized as a rigid block
of specified width, height, and mass, connected to the base by a rotational spring-dashpot
system. Therefore, the reference system is a SDOF system, and its single mode shape is a
straight line. We will develop wind response spectra for the reference system for different
damping ratios, wind velocities, heights, and height-to-width ratios. We will assume unit
mass per unit height, and a location in the middle of a city.

Using the coordinate system shown in Fig. 3, we can write for the response of the
reference system as

yr(z,t) = @,(2)gr(t) (59)

where ®,(z) denotes the single mode shape of the system. Since the building has only one
degree of freedom, a rigid body rotation with respect to the base, we can write for the
mode shape

@,(z) = 7;- (60)

The equation for ¢,(t), similar to Eq.28, is

Fr(t)

Gr(t) + 2€0-(27 for )a-(t) + (27"f0r)2‘1r(t) = M*

(61)

where £y, and fo, are the damping ratio and natural frequency, and F} and M. are the
generalized load and mass of the reference building, respectively. For unit mass per unit
height, we can calculate the generalized mass of the reference system as

H

M = /ch?,(z) ‘1.dz= /(%)2(12 = % (62)

0

Using Eqs.38-41, we can write for the PSDF, S, (21, 22, f), of the displacement response
of the reference system
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Sy. (21,22, f) = ®(21)®+(22)|H(f)*(pCDB)* Vo(21) Vo (22)
S (21, £)Sy* (22, f)Coh(z1, 22, f)  (63)

The PSDF for the accelerations is

Sa,.(zl)z27f) =(27rf)4syr(zl,227f) (64)

The RMS displacement oy, (H ), and the RMS acceleration o,,-(H) at the top of the building

o) = [ S, (H1)df  and  our(H) = JEXERY (65)
0 0
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