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ABSTRACT

Current methods of building design for dynamic wind loads are based on the equivalent 

static load concept, where the dynamic components of wind loads are converted to an 

equivalent static load, under which the static deflection is equal to the dynamic deflection. 

In the equivalent static load approach, accelerations of the building cannot be incorporated 

in the design, because of their dynamic nature. It is well known, however, that in high- 

rise buildings wind induced discomfort due to excessive accelerations in the upper stories 

can be a problem. Thus, there is a need for a design procedure which can include peak 

accelerations as well as peak displacements.

In this report, we present one such method, the response spectrum method, for pre­ 

dicting the wind-induced dynamic response of high-rise buildings. The technique is similar 

to that used for earthquake loads, and incorporates not only peak displacements, but also 

peak accelerations of the building. In this report, only along-wind direction forces and 

vibrations are considered. The across-wind direction response will be considered in the 

second part of the research. We develop wind response spectra for a reference building, 

defined as a single-degree-of-freedom rectangular rigid block with a rotational base spring 

and a damper. We then show that, for a given building, we can calculate peak modal 

displacements and accelerations in terms of those of the reference building. We present 

wind response spectra for different wind and terrain conditions, and perform a parametric 

analysis to investigate the effect of various parameters on these spectra. We show that 

existing computer programs that perform spectral analysis for earthquake loads can easily 

be modified to perform spectral analysis for wind loads.

We also introduce the concept of comfort spectra. For a given building height, we plot 

the acceleration response spectrum and observe the building frequency corresponding to 

the critical acceleration for human discomfort. By doing this for a range of building heights, 

we can construct an interaction curve showing the building height versus critical frequency. 

We call this interaction curve the comfort spectrum, and present several examples. We 

conclude by discussing the development of a single design spectrum for earthquake and 

wind loads.
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1. INTRODUCTION

Wind loading is one of the most important factors to be considered in designing 

high-rise buildings. The dynamic component of wind forces have long been recognized 

and incorporated in design codes. The current practice of design for wind is based on 

the equivalent static load concept, where the dynamic component of the wind load is 

converted to an equivalent static load, under which the static deflection of the building 

is equal to the dynamic deflection (ANSI, 1982; NBCC, 1985). This load, along with the 

static component of wind load, is applied to the building, and a static analysis is performed 
for design. This approach is known as the gust factor approach (Davenport, 1961). The 

design criterion for the gust factor method is to limit the stresses and deflections, the 

same as for any other static load, since the method is based on the equivalent static 

load concept. It is well known, however, that one of the major problems in high-rise 

buildings is the wind-induced discomfort of occupants. Occupant discomfort occurs due 

to excessive accelerations, rather than deflections. This observation suggests that the 

wind design criterion of high-rise buildings should be based on peak accelerations, as 
well as peak displacements. Current codes do not have any provisions for wind-induced 

peak accelerations. Using existing theory, analytical expressions can be developed for 

peak accelerations (e.g., Simiu and Scanlan, 1978; §afak and Foutch, 1987). However, the 

expressions are probably too complex to use for practicing design engineers. There is a need 

for a simple wind design methodology that will not only incorporate peak displacements 
and peak accelerations but also will be consistent with the current methods of analysis, so 

that design engineers can easily adopt it.

One such method is the response spectrum method. The response spectrum method 

has been widely used for earthquake design, and is well known among engineers. It is very 

simple, and can incorporate peak accelerations, velocities, and displacements. It was first 

suggested by Newmark (1966), and Cevallos-Candau (1980) showed that the earthquake 

and wind loads, and corresponding building responses, have a lot of similarities. Therefore, 
similar methods of analysis, such as the response spectrum technique, can be used for both 
loads. An important advantage of using the response spectrum technique for both wind and 
earthquake loads is that when both loads need to be considered for design, the designer 

would know beforehand which load will dominate his design, without doing a separate 

analysis for each load.

In this report, we present the response spectrum technique for predicting wind-induced 

response of high-rise buildings. The technique is similar to that used for earthquake loads, 

and incorporates not only peak displacements, but also peak accelerations of the building. 
Therefore, the method can be used for design for safety (i.e., considers peak displacements), 

and also for design for comfort (i.e., considers peak accelerations). We first outline current
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techniques used for wind and earthquake response analysis of structures. We then show how 

the random vibration technique used for wind loads can be put into a response spectrum 

form. We present wind response spectra for different wind and terrain conditions, and 

perform a parametric analysis to investigate the effect of various parameters on spectra. 

We show that existing computer programs that perform spectral analysis for earthquake 

loads can easily be modified to also perform spectral analysis for wind loads. We introduce 

a comfort spectrum, by which a designer can determine whether the building will be 

susceptible to wind-induced discomfort. We conclude by investigating the feasibility of 

developing a single design spectum for wind and earthquake forces.

2. WIND FORCES ON HIGH-RISE BUILDINGS

Wind-induced vibrations in high-rise buildings are due to individual or combined 

effects of the following dynamic force mechanisms: along-wind forces due to turbulence, 
across-wind forces due to vortex shedding, wake buffeting, and galloping. Along-wind 

forces are in the direction of main wind flow. They include static and dynamic components, 

generated by the steady and fluctuating components of the wind, respectively, and are the 
most dominant force mechanism in a typical building. In general, along wind forces are 

in the form of pressures on the frontal (i.e., windward) face, and suctions on the back 
(i.e., leeward) face of the building. Across-wind forces are generated by vortecies that 

develop at the sides of the building moving clockwise and counterclockwise, and shed in 

an alternating fashion in the direction perpendicular to the mean wind flow. Across-wind 
forces can be critical for slender structures, such as buildings with very large height to width 

ratios, smokestacks, and transmission towers. Wake buffeting occurs if one structure is 

located in the wake of another structure, and can cause large oscillations in the downstream 

structure if the two structures are similar in shape and size, and less than ten-diameter 

apart. Galloping is an oscillation induced by forces generated by the motion itself. It 

corresponds to an unstable motion with negative damping, and can be seen in structures 

like transmission lines, or long slender towers with sharp edged crossections. More detail 

on wind force mechanisms can be found in Simiu and Scanlan (1978) and §afak and Foutch 
(1980). In this study, we will deal only with along-wind forces in the direction of main 

wind flow. Forces in the across-wind direction will be considered in the second phase of 

the study.

2.1. Models of wind velocity near ground:

Wind velocity generates all the force mechanisms acting on the structure. Near the 
ground, the wind velocity V(z, t) at height z can be expressed as the sum of two compo­ 

nents, as shown in Fig. 1, such that



) (1)

VQ(Z) is called the mean (i.e., average) wind velocity, and is time-invariant. w(z,t) is the 
fluctuating part of the wind velocity, superimposed over the mean part. The variation of 

VQ(Z) with height z is known as the velocity profile. The velocity profile starts from zero at 
z = 0 (i.e., the ground surface) and increases to a constant level at the height where there 

is no influence of surface friction on the velocity. This height is known as the gradient 

height, and the corresponding constant velocity is known as the gradient velocity.

There are two widely-used models for velocity profiles, the power-law model, and the 

logarithmic model. The power-law model is given by the following equation (Davenport, 

1961):

(2)

where Vo(zr ) is the mean wind velocity at the reference height zr , and a is the exponent. 

The standard value for the reference height is zr = 10 m. The power law can also be 

expressed in terms of the gradient height ZG and gradient velocity VQ(ZG} by replacing 

zr and VQ(ZT ) in Eq.2 by ZG and VQ(ZG)> Both ZG and a depend on the roughness of 

the terrain. Suggested values for ZG and a are ZG = 700, 900, 1200, 1500 feet, and a = 
0.10, 0.14, 0.22, 0.33 for open water, open country, suburban terrain, and center of large 

cities, respectively.

The logarithmic model of wind velocity is defined by the following equation (Simiu, 

1973):

where ZQ is called the roughness length. Approximate roughness lengths for various terrains 

are ZQ = 0.005, 0.007, 0.30, 1.00, 2.50 in meters for open water, open terrain, sparsely 

built-up suburbs, densely built-up suburbs, and center of large cities, respectively.

The fluctuating component w(z, t) of wind velocity is random. A widely used assump­ 

tion is that w(z,t) is a zero-mean, stationary, Gaussian random process with a specified 

power spectral density function (PSDF). As with the velocity profile, there are also two dif­ 
ferent forms suggested for the spectrum of w(z, t) (also known as the turbulence spectrum). 

The earlier form suggested by Davenport (1961) is given by the equation
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where Vb(10) is the mean wind velocity in meters per second at the reference height of 10 

meters, / is the frequency in cycles per second (Hz), and K is the surface drag coefficient. 

The value of K varies from 0.005 for open country to 0.05 for city centers. The shape of 

Davenport's spectrum is independent of the height, and has a peak at a wave length of 600 

meters (i.e., Vb(10)// = 600). This spectrum is currently used in building codes in many 

countries.

A later model for the turbulence spectrum is suggested by Simiu (1974), and can 

incorporate the variation of the spectrum with height. Simiu's spectrum is given by the 

following equation:

"« 2007V fz (5)

where w* is known as the friction velocity, calculated in terms of the reference velocity and 

the roughness length by the following equation

 *

Since N in Eq.5 is a function of 2, Sw(z,f) is height dependent. A more precise, but 

analytically more complicated, form of this spectrum is given in Simiu (1974).

The level of turbulence in a wind flow is described by its turbulence intensity. The 

turbulence intensity I(z) is calculated as the ratio of the RMS (root-mean-square) value 

of the fluctuating component of wind velocity to the mean component. That is

where crw (z) is the RMS value of w(z,t). From random process theory,

oo

<£(*) = / Sw(z, f)df (8)
/=0

For Davenport's spectrum (Eq.4), aw is constant, since the spectrum is independent of 2, 

and equal to 6XV02 (10). For tall buildings, the turbulence intensity may vary from 0.05 

to 0.30 depending on the building height and the roughness of the terrain.



2.2. Wind forces in the along-wind direction:

Forces in the along-wind direction are generated by the velocity of the wind flow. 

Neglecting the relatively small added mass term, the pressure P(z,t) acting at a point of 

height z of a fixed body in a turbulent flow can be written as

P(z,t) = \pCp(z)V\z,t) (9)

where V(z, i) is the wind velocity, Cp (z) is called the pressure coefficient, and p is the mass 

density of the air. By separating the wind velocity V(z,t) into its mean and fluctuating 

components, as in Eq.l, and also neglecting the w'2 (z^i] terms, Eq.9 can be approximated 

as

P(z, t) « \pCr(z}V*(z) + PCp(z)V0 (z)w(z, t) (10)

The omision of the i/; 2 (^,t) term is justified since the turbulence intensity is generally 

much less than one. The first term on the right hand side of Eq. 10 is independent of 

t, therefore it represents the static wind pressure. The second term is the dynamic wind 

pressure. Denoting static and dynamic wind pressures by PQ(Z) and p(z,t), respectively, 

we can write

P(z,t) = P0 (z)+p(z,t) (11) 

where

z)V?(z) and p(*,t) = pCp(z)V0 (z)w(z,t) (12)

Since PQ(Z) is a static load, the response of the structure resulting from this load can be 

calculated by using static methods of analysis.

The calculation of the response due to the dynamic pressure p(z,t) requires the ap­ 

plication of random vibration techniques because of the random w(z,t). Since p(z,t) is a 

linear function of w(z, t), we conclude that p(z, t) is also a zero-mean, stationary, Gaussian 

random variable. Its standard deviation, <fp (z}, and PSDF, 6^(2, /), can be calculated in 

terms of those of w(z,t):

op (z) = pCp(z)V0 (z)<rw (z) (13) 

and



S,(z,f) = [pCr(z)V0 (z)] 2 Sw(z,f) (14) 

5p (^,/) is sufficient to describe fully the stochastic characteristics of p(z,t\

3. DYNAMIC RESPONSE OF HIGH-RISE BUILDINGS

Vibration tests indicate that the behavior of high-rise buildings under dynamic loads 

is somewhere between that of a shear beam and a flexural beam. The closed form vibration 

equations, assuming a shear beam or a flexural beam model, can be derived in the con­ 

tinuous domain (see, for example §afak and Foutch, 1980). Vibration equations can also 

be expressed in a discrete domain by using discrete modeling techniques, such as matrix 

methods and finite element methods. We will prefer the discrete approach, so that we can 

make use of commercially available computer programs.

We will assume that the motion of the building can be modeled in terms of horizontal 

displacements at each story level. The rotations will be neglected, since their contribution 

to the response is generally very small (Hurty and Rubinstein, 1964). We will also assume 

that the building is symmetric, and moves only in the along-wind direction (we will consider 

the motion in the across-wind direction in the second phase of the study). With these 

assumptions, the building becomes an n-DOF (n-degrees-of-freedom) dynamic system, n 

representing the number of stories. The equations of motion, assuming linear behavior, 

can be written as

WWW + lC}{y(t)} + lK}{y(t)} = (F(t)} (15)

In Eq.15, [M], [C], and [K] are n x n mass, damping, and stiffness matrices, respectively, 

and {y(t)} and {F(t)} are n-dimensional displacement and force vectors. The dots over y 

denote derivatives with respect to time t. The solution of Eq.15 can be accomplished by 

using modal analysis techniques. First, assuming that [C] = 0 and {F(t)} = 0 in Eq.15, 

we solve the following n-dimensional eigenvalue equation:

[M]{y(t)} + (K}{y(t)} = 0 (16)

Eigenvalues and eigenvectors obtained from the solution of this equation correspond, re­ 

spectively, to n natural frequencies and mode shapes of the building. Using calculated 

mode shapes, the displacement vector {y(t)} can be expressed as

(17)



where [$] is a n x n matrix composed of mode shapes (i.e., each column of [$] represents 

a mode shape), and {<?(£)} is the n-dimensional generalized coordinate vector representing 

the modal amplitudes. In explicit form, the i-th component yi(t) of {y(t}} can be written

where $^ represents the element at the z'-th row and k-th column of matrix [$]. An 

important property of vibration mode shapes of an n-DOF system is orhogonality:

= 0 and {3> k }[K]{$ l }=Q for k^l (19)

where {$*} and {$/} are vectors denoting the fc'th and Vth mode shapes, and the super­ 

script T denotes the transpose. If it is assumed that the damping matrix C is a linear 

combination of mass and stiffness matrices (i.e., C = cm M -\- c^A"), the orthogonality 

property also applies to the damping matrix, that is

{*k}T[C]{$i} = Q for k?l (20)

The orthogonality property can be used to reduce the n-dimensional matrix equation in 

Eq.15 to a set of n independent modal equations. Using Eq.17 in Eq.15, and then multi­ 

plying both sides by the transpose of any (e.g., k-th) mode shape vector, and also using 

the orthogonality properties (Eqs.19 and 20), we can write for the k-th modal equation of 

the motion

(21) 

For simplicity, introduce the following notation:

(22) 

CJ = {^nCK**} (23)

(24)

(25)

M^, C^, K%, and F£(t} are called the fc-th generalized mass, damping, stiffness, and force, 

respectively. To simplify it further, we will write



2 *C*k = 2£o*(27r/o*)M; and tffc* = (27r/ofc )M,* (26)

where fofc is the damping ratio, and /o* is the cyclic frequency for the fc-th mode. With 

these, we can write for the fc-th modal equation of the motion as

qk(t) + 2&,*(27r/o*)g*(t) + (27r/0 *)2 (fc(*) = ?j&- (27)

Eq.27 is equivalent to the equation of a single degree of freedom system. The solution can 

be written, by using the Duhamel's integral, as

(28)

hk(t   T) is the impulse response function for the k-th mode, and is calculated by the 

following equation

hk (t - r) = c- 2 "'-r sin[(27r/o dO(* ~ r)] dr (29)

where fodk is the damped natural frequency given as fodk = /ofc\A   fofc-

The total response is obtained by combination of modal responses according to Eq.17.

4. RESPONSE TO WIND LOADS

We have presented equations to calculate the dynamic response of a high-rise building 

to an arbitrary load. To calculate the response for wind loads we first have to determine 

the wind load vector by integrating the wind pressures given by Eq.9 over the dimensions, 

i.e., the wind exposure area, of the building. As mentioned earlier, we will assume that 

wind blows perpendicular to one of the faces of the building, and consider only the along- 

wind direction forces at this stage of the study. We will also assume that the pressures 

on the windward and leeward faces are fully correlated, and the pressure coefficient used 

represents the sum of the averaged (over the width of the building) pressure coefficients on 

the windward and leeward faces of the building. Because they are averaged values across 

the width, the pressure coefficients will vary only with height. With these, we can write 

the j-ih component of the wind force vector {Pw (t)} as

/ /
J JA

\pCp(z)V}(z) + pCp(z)V*(z)w(x, z, t)] dxdz (30)
Z J



where Aj denotes the tributary wind exposure area for the j-th story, and x denotes the 

horizontal coordinate axis perpendicular to the main wind flow. It is assumed that VQ(Z) 

does not change in the horizontal direction. The tributary area Aj can be calculated as

   (31)
£,

Bj and hj are the width and the story height (with respect to the story below), respectively, 

at the j 'th story.

{Pw(t)} can be separated into static and dynamic components, {Po w } and {pw (t)}, 

such that

{Pw (t)} = {P0w } + [pw (t)} (32) 

The j'th components of {Po«;} and {pw (t)} can be written, from Eq.30, as

zj+hi + l /2

P0wj = ^pBj j Cp (z}V2 (z}dz (33)

Zj-hj/2

pwj (t) = P I I Cp(z)V0 (z)w(x, z,t)dxdz (34)

All the other components can be calculated similarly.

Since {PQ W } is a static load, the resulting static response, {t/o}, can easily be calculated

as

POWJ (35)

For the dynamic response, we will first calculate the generalized force vector {F*(t)}. For 

the j'th component of {F*(t)}, we can write from Eq.25 that

n

= XI *jkP*,k(t) (36)
k=l

where the vector {$j} denotes the j'th mode shape. In Eq.36, the generalized force is given 

in a discrete form as the sum of modal amplitudes multiplied by the corresponding dynamic 

story forces (i.e., dynamic pressures times the tributary story area). The same equation can 

also be written in a continuous form by using integrals instead of sums. We will prefer the



continuous form, since the available information on the stochastic description of dynamic 
wind loads is all given in the continuous domain. When the mode shapes are available 

only in discrete form, we can approximate the continuous mode shapes by connecting the 

discrete amplitudes by straight lines. Using Eq.34, we can write for the j'th generalized 

modal wind force in the continuous form as

j(z) pCp (z)V0 (z)w(x, z, t) dxdz (37) 
*i

where $j(z) denotes the continuous j'th mode shape.

Since w(x, z t t) is random, the generalized modal force Fj(t) is also random. Therefore, 
the calculation of the response requires applications of random vibration techniques. One 

popular method for stationary excitations is the spectral analysis technique, where the 

response is calculated in terms of PSDF's. For a multi-degree-of-freedom system (e.g., 

Eq.15) with random excitation, the relationship between input and output PSDF's can be 
written as (Lin, 1976)

Sy (zi,z<2~f] is the cross "PSDF of the responses at points z\ and z<i, and [Sp*(f)] is the 

PSDF matrix of the generalized force. {$(21)} and {$(^2 )} denote vectors composed of 

modal coordinates at height z\ and 22, respectively.

[H(f)] is the complex frequency response matrix of the structure, calculated by the 

equation

(39)

where i= \/--T. [H(f)] denotes the complex conjugate of [H(f)}.

The j,fc component of the PSDF matrix [Sp*(f)} of the generalized force can be 

written in the continuous domain from Eq.37 as

= [ f
J J Aj JAk

x 2 dz2 (40)

 $ti;(£i , z\ , £2 , 22> /) is tne cross-PSDF of the fluctuating wind velocitiy w(x, z, t), and can 

be written as

10



Sw (x 1 ,z1 ,x2 ,z2 ,f) = Sl 2 (z1 ,f)S 2 (z2 J)Coh(x 1 ,zl ,x2 ,z2 ,f) (41)

where Sw(z,f) is the PSDF at z, and Coh(xi,z\,x2 , z2 ,f] is the coherence function of 

the fluctuating wind velocities at points (#1,2/1) and (x 2 ,y2 ). It is assumed that Sw(z,f) 

does not change horizontally (i.e., it is not a function of x). The equation suggested for 

Coh(xi,zi,x2 ,z2 ,f) is (Vickery, 1971)

1/21
(42)

Cz and Cz are called the exponential decay coefficients. Their suggested values are Cx = 16 

and Cz = 10. Experiments show that these values can change significantly, depending on 

the terrain, height, and the wind speed, and therefore represent a source of uncertainity 

(Simiu and Scanlan, 1978).

By using expressions derived in Eqs. 39-42, the response PSDF, Sy (zi,z2 ,f), is calcu­ 

lated from Eq.38. The integral of Sy(z\,z2 ,f) over the frequency / gives the covariance 

matrix, ai (z\, z2 }, of the response. That is

oo

= f (43)

For z\ = z2 = z, &y(z) is the mean square response at z. At a given height 2, the peak 

response is calculated as

Oy(*) (44)

where y$(z) is the static response due to static wind load, and gy (z) is known as the 

peak (or gust) factor. The peak factor can approximately be calculated by the following 

equation (Davenport, 1964):

(45)

v(z) is the average number of peaks in the response y(z) per unit time, and T is the 

duration in seconds considered for the excitation and response in peak calculations. A 

commonly used value for T is 3600 seconds, corresponding to a one-hour wind storm. v(z) 

can be calculated in terms of the PSDF by the equation

11



ffSy(z,f)df
"2 W = fs         (46) 

/ S,(z, f) df
0

This approximation is based on the assumption that the response is a narrow band sta­ 

tionary random process with independently arriving peaks.

The accelerations can be calculated by taking the second derivatives of displacements. 

The PSDF Sa (zi, ^2? /) of accelerations can be written in terms of the PSDF of displace­ 

ments as

Sa (zi,Z2 J) = (2*f)*Sy ( Zl ,Z2 J) (47)

The covariance function of the accelerations is

00

= f (48)

The peak acceleration at height z is calculated in the same way as the peak displacements 

(Eq.44):

maxa(z,£) = ga cra (z) (49)

Note that the mean (i.e., static) acceleration is zero. ga is calculated similar to gy by 

replacing ay and Sy in Eqs.44-46 by aa and 5a .

5. RESPONSE SPECTRA FOR EARTHQUAKE LOADS

The response spectrum for earthquakes is a curve that shows the variation of the peak 

displacement of a SDOF ( single- degree-of- freedom) oscillator with its natural frequency for 

a specifed damping ratio and earthquake excitation. If a SDOF oscillator is subjected to 

an earthquake described by the base acceleration ag (t), as schematically shown in Fig. 2, 
we can write from the equilibrium condition that the sum of inertia, damping, and elastic 

forces are zero

M0 y0 (0 + C0yo(0 + K0 y0 (t) = -M0 ag (t) (50)

where yo(t) corresponds to the relative displacement of the oscillator with respect to 

ground, MO, Co, and KQ are the mass, damping, and the stiffness of the oscillator. In

12



terms of the natural frequency and damping, we can write the same equation (see Eq.26) 
as

tlo(0 + 2fo(27r/0 )yo(0 + (27r/0 ) 2 </0 (0 = -ag (t) (51)

Equation 50 shows that the effect of earthquake base motion in a SDOF oscillator is 

equivalent to applying a ficticious force on the oscillator, defined by the equation

F0 (0 = -M0 ag (t) (52)

Using Duhamel's integral, as in Eq.28, we can write for the displacement (relative to the 

base) yo(t) of a SDOF oscillator to earthquake base acceleration ag (t)

t 

yo(<) = -^~ j ag (r) h0 (t - r) dr (53)

r=0

where ho(t   T) is given by Eq.29. We define the response spectrum -D(/o) for frequency 
/o as

£>(/<>)= max y0 (0 (54)

The plot of D(fo) with respect to /o gives the response spectral curve. Since the response 

yo(0 is dependent on the damping in addition to the excitation, different damping ratios, 

£o, and excitations, ag (t), would give different spectral curves.

For multi-story buildings, again considering the relative displacement of the building 

with respect to the ground, we can express the load vector as the product of the mass 
matrix and acceleration vector whose elements are all equal to ground acceleration. That 

is,

{F(t)} = -lM]{I}ag (t) (55)

where {/} denotes an n-dimensional unit vector. The generalized force vector given by 

Eq.25 then becomes

where A* = -MI (56)

\k is called the participation factor for the fc-th mode, which represents the portion of 
total load associated with that mode. Using Eq.56 in Eq.28, we can write for the Ar-th 

modal response qk(t) of a building subjected to ground acceleration ag (t)

13



(57)
r=0

By comparing Eq.57 with Eq.53, we note that the right hand side of Eq.57 is equivalent 

to the response of a SDOF oscillator except the constant term \k/M£. Therefore the peak 

fc'th modal response is equal to that of a SDOF oscillator corresponding to mode k (i.e., 

the amplitude of the response spectrum for damping £ofc at frequency /ojt) multiplied by 

A fc /M£. That is

/\ JL At

maxqk (t) =    - maxy0 (<) = -^   D(fok ) (58)

For each mode, peak modal responses can be calculated similarly by using the response 

spectrum. Although the response at any given time can be written in terms modal re­ 

sponses (Eq.17), the same is not true for the peak response, because the peak modal 

responses do not necessarily occur at the same time. In other words, the peak response is 

not equal to, but less than, the sum of peak modal responses. Various methods have been 

used to approximate peak response in terms of peak modal responses, such as the absolute 

sum, the -square root of the sum of the squares, or the quadratic combination.

6. RESPONSE SPECTRA FOR WIND LOADS

Development of response spectra for wind loads can be accomplished following a sim­ 

ilar approach to that for earthquake loads. Wind response spectra should be defined for a 

given site, since the velocity and turbulence structure of the wind is strongly site depen­ 

dent. Earthquake loads are inertia loads. Therefore the spectral response involves only the 

damping and the natural frequency of a structure and not any other structural parameter. 

Wind loads, however, are strongly dependent on the outside geometry of the structure. It 

is the size and the shape of the wind exposure area that determine the total wind load 

on the building. Therefore, wind response is dependent not only on the natural frequency 

and damping, but also on the outside geometry of the structure. Since we are dealing with 

buildings with rectangular cross-sections and normally incident wind, and also considering 

only along-wind vibrations at this phase of the study, we can define the outside geometry 

with the height and frontal width of the building. Further simplification can be achieved 

for very tall buildings by neglecting the variation of wind pressures in the horizontal di­ 

rection and using pressure coefficients averaged over the frontal width. For such buildings, 

the outside geometry is represented only by the height of the building. In the formulation 

that follows we will consider both the height and the width of the building. We will define

14



wind response spectra for a given site, and given structural damping, height, and height- 

to-width ratio. The dependence of wind response spectra on height and height-to-width 

ratio is the major difference when compared to earthquake response spectra.

6.1. A reference building for wind spectra;

In order to develop wind response spectra, we will consider a reference building as 

schematically shown in Fig. 3. The reference building can be visualized as a rigid block 

of specified width, height, and mass, connected to the base by a rotational spring-dashpot 

system. Therefore, the reference system is a SDOF system, and its single mode shape is a 

straight line. We will develop wind response spectra for the reference system for different 

damping ratios, wind velocities, heights, and height-to-width ratios. We will assume unit 

mass per unit height, and a location in the middle of a city.

Using the coordinate system shown in Fig. 3, we can write for the response of the 

reference system as

where $r (z) denotes the single mode shape of the system. Since the building has only one 

degree of freedom, a rigid body rotation with respect to the base, we can write for the 

mode shape

*r« = jj (60)

The equation for qr (t), similar to Eq.28, is

qr\l) i ^sOr\^""yOrJ9r\" ) i (.^^jOr) 9rv*J =  %~f~~~ v /
lvl r

where £or and /o r are the damping ratio and natural frequency, and F* and M* are the 

generalized load and mass of the reference building, respectively. For unit mass per unit 

height, we can calculate the generalized mass of the reference system as

H H 

M; = /*fc) -1   dz = I(±-} 2 dz = %. (62)

Using Eqs.38-41, we can write for the PSDF, Syr (zi,Z2-> f}, of the displacement response 

of the reference system
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2) /) (63) 

The PSDF for the accelerations is

Sar (zl ,z2 ,f) = (2,fYSyr (z,,z2 ,f) (64)

The RMS displacement cryr (H), and the RMS acceleration crar (H) at the top of the building 
are

00 00

= Jsyr (HJ)df and aar (H) = J Sar (HJ)df (65) yr

0

For the peak displacement, maxyr (H, £), and the peak acceleration max ar (#,£), at the
I I

top, we can write (see, Eqs.44-49)

max yr (H, t) = y0r (H) + gyr (H)ayr (H) (66) 

max ar (H, t) = gar (H)crar (H) (67)
Z

where yo r (H) is the static displacement due to static wind load, and gyr (H) and gar(H) 
are the displacement and acceleration peak factors, respectively, at the top of the reference
system.

For the displacement response spectra, we will only consider the dynamic displace­ 
ment, since the static displacement can easily be calculated using static analysis. It should 
be noted here that, if desired, the static displacement can also be included in the response 
spectrum by expanding it into static modal components. We will define the displacement 
response spectra as the plot of the peak dynamic displacement response at the top of the 
reference building against the natural frequency for a range of frequencies. Therefore, for 
the natural frequency /QJ the displacement spectra, D(/oj), is

. = gtr (H)ff,T (H) (68)
dynamic

Similarly for the acceleration spectra, we can write

16



= gar(H)aar (H) (69)

6.2. Modal participation factors for wind spectra:

In order to calculate the wind response of a given building by using the response 

spectra of the reference building, we first have to determine the modal participation factors. 

The modal participation factor will be defined as the ratio of the peak modal response of 

a given system to that of the reference system that has the same modal frequency and 

damping.

The PSDF, Syj(f), of the j-th modal displacement of a given building is (from Eq.38)

(70)

where Hj(f), the frequency response function for the j-th mode, can be written from Eq.39

 Bj(f) =    f            -              T (71) 
MJ [-(2ir/)» + i(

SF? (f) can be calculated from Eq.40 by putting j = k. Similarly, the PSDF of the reference 

system, 5rj(/), corresponding to j-th mode (i.e., the reference system with frequency /QJ, 

damping £o>, and same outside dimensions) is

STi (z,f) = *(*)|JM/)|Si7//) (72)

The frequency response function of the reference system, Hrj , is the same as that of the 

actual system for the j'th mode, Hj(f), except the scaling factor (i.e., the mass term). 

The relationship can be written as

M*
(73)

Since the loading on the reference and actual systems are the same, and their frequency 

response functions are equal to within a scaling factor, we conclude that the spectral con­ 

tents of the modal response and the response of the corresponding reference system are the 

same. Therefore the peak factors for each response can be assumed equal. Consequently, 

the ratio of the peak modal response to the peak response of the corresponding reference 

system is equal to the ratio of their RMS responses. If we denote this ratio by kj(z) for 

the responses at height z, we can write
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a'iw ISrj(z,f)df
0

Because of the four-fold integration involved in the calculations of SF* (/) and SF*. 

(see Eq.40), a straightforward evaluation of kj(z) is very complicated, and would not 

have much practical use. To simplify the calculations, we will consider two extreme cases 

regarding the spatial correlation of the pressures. Case 1 will refer to the situation where 

the pressures are spatially uncorrelated, whereas Case 2 will refer to the situation where 

the pressures are fully correlated. In addition, we will assume that the PSDF of the velocity 
fluctuations is independent of the height as suggested by Davenport (1961). The simplifed 

expressions for kj(z) can then be developed as follows:

6.2.1. Case 1: Pressures are spatially uncorrelated

If the pressures are uncorrelated we can assume that

Coh(xi , z\ , #25 z2 1 f) = o(#i   #2 )v\zi   z2 ) (75)

where 6 denotes the Dirac's delta function. Using this expression, and the assumption that 

Sw (f) is independent of z, it can be shown from Eq.40 that

H

2/.,\;f,2/ \T/2,SF- (/) = (pBtfSw(f) C*M*2 (*)V02« dz (76)
0

We will also assume that Cp(z) can be taken out of the integral by using an averaged 

pressure coefficient, CD, calculated as

H B

cp (z)dxdz (77)

0 0

We, therefore, can write for the PSDF of the j-th modal response at the top

H 

Sti (H, f) = *3(lT)G>CDB>)2 |ir>(/)l 2 S«(/) / «2 («WW ** (78).
0

Similarly, for the reference system
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H

Sri (H, f) = *»(fr)(pCDB>)2 |irri(/)l2 S.(/) j &T (z)V02 (z) dz (79)
0

For Case 1, from Eq.74 and also using Eq.73, the ratio of the top-story RMS responses 

becomes

li( ' ~
Mr*

(80)

6.2.2. Case 2: Pressures are fully correlated

If the pressures are fully correlated, the coherence function is unity, that is

Coh(xi,zi,x2 ,z2 ,f) - I 

The PSDF of the generalized force (Eq.40) then becomes

(81)

(82)

Using the same approximation as in Case 1 for Cp(z), we can write for the PSDF of the 

j-th modal response at the top

H

(83)

and similarly for the reference system

Srj (HJ) = r̂ (H)(PCDB^\Hrj 

The ratio of the RMS responses, k%j, becomes

H

(84)

* S
r 0
*H 

> /
0
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As stated earlier, since the peak factors for the modal response and the corresponding 

reference system response are equal, these ratios are also valid for the peak responses. 

Therefore, the peak value of the j-th modal response at the top, maxyj(#, £), can be 

calculated in terms of the response ratio and the peak response of the reference system as

m&xyj(H,t) = kj(H)m&xyr(H,t) (86)
T t

Since we defined maxyr (#, t) as the spectral response (Eq. 68), we can calculate the peak 

modal response as

) = kj (H)D(foj ) (87)

The total peak response can be approximated by combining peak modal responses. If 

SRSS (square-root-of-sum-of-squares) method is used for the combination, the total peak 

response becomes

1/2
(88)

The "equations for accelerations are similar. Since the relationship between acceler­ 

ations and displacements is a function of frequency only (see Eq.47), the ratios kij and 

&2j calculated for displacements are also valid for the accelerations. Therefore, we can 

calculate the peak top-story acceleration for the j-th mode, maxaj(#, t] in terms of the 

spectral acceleration of the reference system as

max a.j(H, t) = kj (H)A(foj ) (89)

The total peak acceleration is obtained by combining the peak modal accelerations as in 

Eq.88.

For a given building, the value of kj(z) is somewhere between kij(z) and k2j(z). We 

have no way of knowing the exact values without explicitly incorporating the correlation 

structure of the wind. Therefore, an approximation needs to be made regarding which value 

to use for kj(z). For the first mode, the two values would be very close since the first mode 

shape in most buildings is almost a straight line, the same as that of the reference building. 

For higher modes, the ratio kij(z) would always be larger than the ratio k2j(z), because 

the value of the integral / $*(z)V£(z)dz is always larger than that of f$j(z)Vo(z)dz (the 

negative portions of mode shapes become positive in the first integral due to the square), 

whereas the values for the integrals f $*(Z)VQ(z)dz and f $r(z)Vo(z)dz are always close.
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Therefore, for higher modes kij(z) can be considered as the upper bound, while &2j(<z) is 

the lower bound. We suggest that an average value calculated as

*, = ^±^ (90) 

is an appropriate one.

7. MODIFICATION OF EXISTING COMPUTER PROGRAMS

There is a large number of commercially available computer programs that can perform 

free vibration analysis. These programs can easily be extended to perform dynamic wind 

analysis by using the spectral analysis method presented above. In order to do this, we 

first have to generate a set of response spectra that includes spectral curves for different 

meteorological (e.g., mean wind velocities, turbulence levels, etc.), and structural (e.g., 

damping, width, height) conditions, as will be shown in the next section.

To estimate the dynamic wind response of a given building, we determine the natural 

frequencies, mode shapes, and generalized masses of the building by performing free vibra­ 

tion analysis. We then add a subroutine to the program to compute the ratios k\j(z] and 

k2j(z) and the average ratio kj(z) from Eqs.80, 85, and 90 for the velocity model selected. 

Note that only the shapernot the exact amplitudes, of the velocity profile is required in the 

calculations. The mode shape and the generalized mass for the reference system are given 

by Eqs.60 and 62. For each modal frequency and damping we take the spectral amplitude 

from the corresponding response spectra, and multiply it by the modal participation factor 

to obtain peak modal responses. We then combine the peak modal responses according to 

Eq.88 to obtain the total peak response.

8. EXAMPLES FOR WIND RESPONSE SPECTRA

In this section we develop a set of displacement and acceleration response spectra 

for a location assumed to be the center of a city. We consider three wind velocities, 

three building heights, three height-to-width ratios, and two damping ratios, resulting in 

3x3x3x2 = 54 spectral curves for the displacements and accelerations. The frequency 

range used in the spectra is 0.1 Hz to 2.0 Hz with 0.1 Hz increments (20 values).

For the wind velocity structure, we assume the velocity profile and the PSDF suggested 

by Simiu (1973, 1974). The three mean wind velocities considered, at the reference height 

zr = 10 m., are Vo(10) = 50, 80, and 100 km/h. The roughness length, z0 (Eq.3) was 

chosen 0.5 m., a value representative of a city center. The friction velocity u* for each 

Vo(10) was calculated from Eq.6. The velocity spectrum used corresponds to a turbulence 

level, such that <7^ = 6uJ. The pressure coefficient taken as Cp (z) = 1.3, which is assumed
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to be the sum of the pressure coefficient on the front face (taken as 0.8), and the suction 

coefficient on the back face (taken as 0.5). It is assumed that this value represents the 

averaged value over the building (i.e., CD = Cp (z) = 1.3 in Eq.77). The exponential decay 

coefficients of the coherence function (Eq.42) were chosen as Cx = 16 and Cz = 10. The 

mass density of the air is p = 1.25 kg/m3 .

As for the structural parameters, we consider three heights, H = 100, 200, 300 m., 

and for each height, three height-to-width ratios, H/B = 2, 4, 6. The damping ratios 

used are 0.02 and 0.05. We also assumed unit mass per unit height. Since only alongwind 

direction forces and displacement are considered, the third dimension of the building (i.e., 

the depth) is not needed in the calculations.

For every combination of wind and structural parameters given above, the peak dis­ 

placement and acceleration at the top of the building were calculated for frequencies from 

0.1 to 2.0 Hz with 0.1 Hz intervals. The resulting spectral curves are plotted in Figs. 

4 through 7. Figs. 4.a-c show the displacement spectra for 2-percent damping for for 

V0 (10) = 50, 80, and 100 km/h, respectively, whereas Figs. 5.a-c show the same for 5- 

percent damping. Corresponding curves for the acceleration spectra are given in Figs. 

6.a-c and Figs. 7.a-c for 2-percent and 5-percent damping ratios. The spectra are plotted 

on a log-log scale to be consistent with the convention used for earthquake excitations. As 

the figures show, the displacement spectra are all straight lines. Recall that these spectra 

are for the displacement due to dynamic wind forces only. The acceleration spectra differ 

slightly from a straight line.

9. USE OF WIND TUNNELS FOR WIND RESPONSE SPECTRA

The wind response spectra in the previous section were developed by using an analyt­ 

ical approach. A more accurate spectra can be developed in wind tunnels. The procedure 

suggested here to develop spectra is based on a reference building, which is a rigid block 

with rotational base spring and damper. This building can easily be modeled in a wind 

tunnel by using a flexible base plate. By changing the flexibility of the base plate, the 

response spectra can be obtained for a given location and a building with specified dimen­ 

sions. By testing various buildings with different outside dimensions and damping ratios, 

and also considering different wind conditions, a data base for wind response spectra can 

be generated in the laboratory. It may be argued that modeling the roughness around the 

building is an important and critical part of the wind tunnel tests, and it is unique for each 

building. However, a generic roughness model for a given location can be approximated, 

since wind spectra will be used for preliminary design purposes, rather than exact response 

estimations.
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10. COMFORT SPECTRA

Occupant discomfort due to wind-induced motions has long been recognized as one of 

the major problems in high-rise buildings (Hansen, et. al., 1973). The discomfort is mainly 

due to excessive low-frequency accelerations in the upper stories of buildings. The critical 
values of maximum acceleration for human comfort are available from experimental studies 

(NBCC, 1985). For a given building height and width, and wind structure, we can plot 
the acceleration response spectra. The intersection of the spectra with the straight line 

representing the critical acceleration gives the critical frequency of the building. This is 

schematically shown in Fig. 8. In order not to have human discomfort, the building should 
be designed to have a frequency higher than the critical frequency. If we determine critical 
frequency by using this approach for a range of building heights, we can then construct 
an interaction curve showing the building height versus critical frequency for a specifed 

location. We will call this interaction curve the comfort spectrum. The left side of this 
curve (i.e., the lower frequency side) represents the uncomfortable side. We should select 

building height and frequency to stay on the right side of the curve.

To give an .example, a set of comfort spectra for the reference building was developed 

by considering the same set of values used for the development of response spectra in 

section 8. To make the values realistic, we used m = 150. x B2 kg/m for the mass per unit 

length instead of unit mass. The critical acceleration for human discomfort was taken as 

0.005g, where g is the gravitational acceleration. The comfort spectra are plotted in Fig. 

9 for 2-percent damping, and in Fig. 10 for 5-percent damping. Each spectra is composed 

of three points (corresponding to H =100, 200, and 300 m.), connected by straight lines.

11. JOINT DESIGN SPECTRA FOR WIND AND EARTHQUAKES

It is likely that for most buildings, either wind or earthquake will determine the design 

criteria for lateral loads. Since we now can draw the wind response spectra in the same 

way as the earthquake response spectra, we can easily plot them together superimposed on 

the same axes, and see which one dominates at each frequency. This allows the designer 

to determine which load is more critical for his building without doing any analysis.

An important drawback in this approach is that in any given location the probability of 

occurence of a large storm is not equal to the probability of occurence of a large earthquake. 
Therefore, a straightforward comparison of the two spectra is not appropriate. We can 

incorporate the probabilities of occurences in the spectra by using appropriate weighting 

factors for each spectra, or we can scale each spectra in a probabilistic manner and compare 

them for a specified exceedance (e.g., 90-percent) level.

We will investigate this topic in detail after we complete the second phase of the
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study on wind spectra, where we will develop wind response spectra for across-wind vibra­ 

tions. The reason for this is that for some buildings across-wind vibrations may dominate 

the along-wind vibrations. In such cases we need to compare across-wind spectra with 

earthquake spectra.

12. SUMMARY AND CONCLUSIONS

We have presented a response spectrum technique to estimate wind-induced dynamic 

response (displacements and accelerations) of high-rise buildings. The method presented is 

parallel to that used for earthquake excitations. At this phase of the research, we consider 

only along-wind direction forces and vibrations. We will consider across-wind direction 

response in the second phase of the research.

We develop wind response spectra for a reference building, defined as a single-degree- 

of-freedom rectangular rigid block, with a rotational base spring and a damper. The wind 

response spectrum is obtained as the peak response of the reference building for a range 

of frequencies. We present 54 response spectra considering different combinations of wind 

and structural configurations. We show that, for any given building, we can calculate peak 

modal responses in terms of those of the reference building. We obtain the total peak 

response of the building by combining peak modal responses.

We have also introduced the concept of comfort spectra. For a given building height, 

we plot the acceleration response spectrum, and observe the building frequency corre­ 

sponding to the critical acceleration for human discomfort. By doing this for a range of 
building heights, we can construct an interaction curve showing the building height versus 

critical frequency. We call this interaction curve the comfort spectrum. We present a set 

of examples for comfort spectra.

We conclude by discussing the development of a joint design spectrum for wind and 

earthquakes loads. We will do a more detailed study on this topic after we complete 

the second phase of the reserach, where we will develop response spectra for across-wind 

vibrations.
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T- Rigid block with unit 
/ mass per unit height.

FIG. 3. Schematic view of the single-degree-of-freedom reference building used 
to generate response spectra.
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 Q OJ
» rt 

11 CO

S o

s ->

"" 5T 
cn A i
 d 3
- 7

5 = 
I I;

10 4 10 2 10°

73
m 
O
c:

-

X
N

I HIM I III

GO CD CD
II II II
X XX

IIJ I I IIIJ

10
-4

10
-210'10'

m 
O
c

OO 
O

X
N

". ITTHrillHB ITTT

CD CD CD
II II II
X XX

 k -tiuiJ i i HIM i mud IIIIHJ imuj iinuJ

10
-4

10
-2

10104

73
m 
o
c 
m

X
N

CD CD CD
II II II
X XX

itJ imuJ imJ i mud IIIIHJ imyj MIIUJ t mm

O 
O

X
II 10 
O 
O

O 
O

a
m W
2,  «

0 O
.  m

m 
o z /^ H

3 v.
IT* 

a0)
3
13

m
CO

CO
m
CO

m
o o 
b H
Oi 33



A
C

C
E

L
E

R
A

T
IO

N
 

R
E

S
P

O
N

S
E

 
S

P
E

C
T

R
A

 

R
e
f.

 
V

e
l.

 
: 

5
0
 

k
m

/h
, 

D
a
m

p
. 

: 
0

.0
2

H
=

1
0
0
 

m
H

=
2

0
0

 
m

H
=

3
0
0
 

m

CO \ E o a:
 

LJ
 

_j U
J o
 

o * o
10

 
10

 
FR

E
Q

U
E

N
C

Y
 

(H
z)

CM
 O

O
 O

CM
 I O

I 
I 

I 
I 

I 
I I

II

B
=

H
/2

E 

B
=

H
/4

J

B
=

H
/6

J

1
0
° 

10
 

FR
E

Q
U

E
N

C
Y

 
(H

z)

CM
 O

O
 O

CM
 I O

I
I
I
 

IT
 T

U

I 
I 

I 
1I

I 10
FR

E
Q

U
E

N
C

Y
 

(H
z)

F
IG

. 
6
.a

. 
A

cc
el

er
a

ti
o

n
 

re
sp

o
n

se
 

sp
ec

tr
a

 
fo

r 
th

e 
re

fe
re

n
ce

 
b

u
il

d
in

g
 

fo
r 

H
 

=
 

10
0,

 2
00

, 
an

d
 3

00
 m

.:
 

U
n

it
 m

a
ss

 p
er

 u
n

it
 l

en
g

th
; 

2
-p

er
ce

n
t 

d
a
m

p
in

g
; 

ce
n

te
r 

o
f 

a 
ci

ty
 w

it
h

 V
0(

10
) 

=
 5

0 
k

m
/h

.



104* PEAK ACCELERATION (cm/s/s)

» K "^
a--5 s V*« IO  

*  09  
BT S

^«3
S § 2.

10~4 10~2 10° 102

m 
O
c 
m _^

iiiuJ i mid iniuj mild iintJ i mud imiJ iin«

I
II

O 
O

3

GO «*
£ C 5'

> 3 i a *0
01 O
w 3

"i en

g « 9 o

 o ^

o ,
2 « 5 3 «* o
a «

I ?  o c:
5' ft en D

2 o* 
. *»

10~4 10~2 10° 102

m 
O
c
z

X^k
 ^
N

CD CD CD 
II II II 
XXX 
\ \\ ;

-IIIIUJ IIIIUJ IIIIUJ I I HUB IIIIMJ lllllJ IIIIUJ Mill

10~4 10"2 10° 102

m 
o
c

X
N

CD CD CD 
ii II ii 
XXX

CD -^ K) i 
miJ i miJ 1 1 HUB iinuJ i miJ iniuJ iniuJ i nm

X
II
K)
O
O

3

X
II

OJ
o 
o

3

33 O 
0 O
-*» mr-
< m

H

oo O 
o z
*  33
3 m 
^ co
? T> 

O
0 S 0) CO
3 m

m 
o o



104* PEAK ACCELERATION (cm/s/s)

10~4 10~2 10° 102

-i 5 n ^ A j- . - Q
10 '

ar
r- CL >
  " 2 t-1 cr 2
o o JL   - a «
n 3 3
^ " sr. 
§ d o3

en 3 
>0 S

8- 2 ^ 
2 »3
a

I I 1-1
aq 3   oq 

« O1 °

O
c

xNCO CO CO
II II II X XX 

-imiW 11111 j i mm! i mini i mJi miij iniuj MUM

10~4 10~2 10° 102

~n

m 
o

IK'x'
N

10~4 10~2 10° 102

70
m 
O
c

X
N

CO CO CO
II II II III \ \\

"iiiiiJ iiuiS i lima i iinJ 11 Hid i mid iintJ i HIM

X 
II

O
o 

3

X
II
N)
O
O

3

I
II
GJ 
O 
O

3

2, m
<(D

3 m
* CO 3- "D 

O
O Z 
p CO
3 m
? CO"D

p S O H 
N> DO



A
C
C
E
L
E
R
A
T
I
O
N
 
R
E
S
P
O
N
S
E
 
S
P
E
C
T
R
A
 

Re
f.
 
Ve

l.
 

: 
5
0
 
km

/h
, 

D
a
m
p
.
 

: 
0.
05

H
=

1
0

0
 

m
H

=
2
0
0
 

m
H

=
3
0
0
 

m

LO oo

w (0 E o Z O Sc O
 

O * o

C
N

 O

O
 O

CM
 

I O

T
il

1
0
° 

10
 

FR
E

Q
U

E
N

C
Y

 
(H

z)

B
=

H
/2

1
 

B
=

H
/4

= T!

10
 

10
 

F
R

E
Q

U
E

N
C

Y
 

(H
z)

10
~

 
10

 
FR

E
Q

U
E

N
C

Y
 

(H
z)

F
IG

. 
7.

a.
 

A
cc

el
er

a
ti

o
n

 
re

sp
on

se
 

sp
ec

tr
a
 f

or
 t

h
e 

re
fe

re
n

ce
 

b
u

il
d

in
g 

fo
r 

H
 

=
 

10
0,

 2
00

, 
an

d
 3

00
 m

.:
 

U
n

it
 m

as
s 

p
er

 u
n

it
 l

en
gt

h
; 

5-
p

er
ce

n
t 

d
am

p
in

g;
 c

en
te

r 
o

f 
a 

ci
ty

 w
it

h
 V

b(
10

) 
=

 5
0 

k
m

/h
.



6 

104* PEAK ACCELERATION (cm/s/s)

1(T4 10~2 10° 102

9 H- 43

--s s

5T

^ °- >
~ W 2  -' S 2 f~> O *» *  * >-  
~ 3 «
ii E 3 00 «* c C 5* 
5- s s 3 *  

-5» ** ^
p- g 2 S T3

73 O 
01 {3

 e S rt
»1 OB 

*O 

«

2 3-
a

5* ft
« &
i o5 a ^ « SN
-J EH

O II

O
c

-iniiJ iniuJ iiiiBJ i mud i mid i miJ iiuuJ t mi

CD CD CD 
II II 
XX

iiiimf 11 HUB innJ IIIIMJ i miJ iniiJ MII

10~4
10° 102

70
m 
O
c 
m

X
N

CD CD CD 
II II II 
XXX 
\\

iniiJ 11 HIM iiiiuJ iniaJ iiuuJ IHIUJ i nit

X
II

__k
O 
O

3

X 
II
ro 
o 
o

3

X 
II 
Ut
o 
o

3

* o o " -h m r~
<

c» O
o z
*  3
3 m

O
O Z 
03 CO
3 m 
? co

?O 
01



A
C

C
E

L
E

R
A

T
IO

N
 

R
E

S
P

O
N

S
E

 
S

P
E

C
T

R
A

 

R
e
f.
 

V
e
l.
 

: 
1
0
0
 

k
m

/h
, 

D
a
m

p
. 

: 
0

.0
5

H
=

1
0
0
 

m
H

=
2
0
0
 

m
H

=
3
0
0
 

m

w m
 
\ E o Q

L 
Ld

 
_J

 
Ld

 
<J

 
<J * o

i 
I 

i 
i 

i 
i i

n

O
 O

CM
 I O

B
=

H
/2

 
B

=
H

/4
l

B
=

H
/6

]

11
 i

10
°

FR
E

Q
U

E
N

C
Y

 
(H

z)
10

CM
 O

CM
 I O

10
 

10
 

FR
E

Q
U

E
N

C
Y

 
(H

z)

CM
 O o
 o

CM
 I O

B
=

H
/6

l

1
0
° 

10
 

FR
E

Q
U

E
N

C
Y

 
(H

z)

F
IG

. 
7.

c.
 

A
cc

el
er

a
ti

o
n

 r
es

p
on

se
 s

p
ec

tr
a

 f
or

 t
h

e 
re

fe
re

n
ce

 
b

u
il

d
in

g 
fo

r 
H

 
-
 

10
0,

 2
00

, 
an

d
 3

00
 m

.: 
U

n
it

 m
as

s 
p

er
 u

n
it

 l
en

gt
h

; 
5-

p
er

ce
n

t 
d

am
p

in
g;

 c
en

te
r 

o
f 

a 
ci

ty
 w

it
h

 F
0(

10
) 

=
 1

00
 k

m
/h

.



a; y
Pu u

CO <<

Critical 
acceleration

Acceleration response spectrum 
for given B and H

Uncomfortable-*   ^Comfortable

            I      
Frequency

Critical 
frequency

FIG. 8. Development of comfort spectrum.

41



C
O

M
F

O
R

T
 

S
P

E
C

T
R

U
M

 

D
a

m
p

in
g

 
: 

0
.0

2

to

V
(1

0
) 

=
 

50
 

k
m

/h

X o LU X

o
 

o o
 

o O
 

O
 

CM O
 

O

i 
11

11
1 

r 
i 

i 
i 

i 
11

1

H
/B

 =

i 
i 

i 
i 

i 
11

1

1
0
° 

10
 

FR
E

Q
U

E
N

C
Y

 
(H

z)

V
(1

0
) 

=
 

8
0
 

k
m

/h
o
 

o o
 

o K
>

O
 

O
 

CM O
 

O

H
/B

2

H
/B

-4

1
0
° 

10
 

F
R

E
Q

U
E

N
C

Y
 

(H
z)

V
(1

0
) 

=
 

1
0

0
 

k
m

/h
o
 

o o
 

o K
>

O
 

O
 

CM O
 

O

I 
I 

I 
M

il
l

i 
i 

i 
i 

i
_L

lL 1
0

° 

FR
E

Q
U

E
N

C
Y

 
(H

z)
10

F
IG

. 
9.

 
C

om
fo

rt
 

sp
ec

tr
u

m
 f

or
 2

-p
er

ce
n

t 
d

am
p

in
g 

( 
m

as
s 

p
er

 
u

n
it

 
le

n
g

th
^

 
15

0 
x 

B
2 

kg
/m

; 
ce

n
te

r 
o

f 
a 

ci
ty

).



C
O

M
F

O
R

T
 

S
P

E
C

T
R

U
M

 

D
a

m
p

in
g

 
: 

0
.0

5

V
(1

0
) 

=
 

50
 

k
m

/h
V

(1
0
) 

=
 

80
 

k
m

/h
V

(1
0

) 
=

 
10

0 
k
m

/h

x CD
 

LJ X

o
 

o o
 

o CO o
 

o CM o
 

o

I 
I 

I 
I 

I 
I I

II

H
/B

-2 1
0

° 
10

 
FR

E
Q

U
E

N
C

Y
 

(H
z)

o
 

o o
 

o o
 

o
 

CN o
 

o

i 
r 

T 
i 

11
11

H
/B

-4

1
0

° 
10

 
FR

E
Q

U
E

N
C

Y
 

(H
z)

o
 

o o
 

o o
 

o
 

<N o
 

o

H
/B

 
2

nl 1
0
° 

10
 

FR
E

Q
U

E
N

C
Y

 
(H

z)

F
IG

. 
10

. 
C

om
fo

rt
 s

p
ec

tr
u

m
 f

or
 5

-p
er

ce
n

t 
d

am
p

in
g 

( 
m

as
s 

p
er

 u
n

it
 

le
n

gt
h

: 
15

0 
x 

B
2 

kg
/m

; 
ce

n
te

r 
o
f 

a 
ci

ty
).


