HYDROLOGIC AND CHEMICAL DATA FROM SELECTED WELLS AND SPRINGS IN SOUTHERN ELMORE COUNTY, INCLUDING MOUNTAIN HOME AIR FORCE BASE, SOUTHWESTERN IDAHO, FALL 1989

By D.J. Parlman and H.W. Young

U.S. GEOLOGICAL SURVEY
Open-File Report 90-112

Prepared in cooperation with
DEPARTMENT OF THE AIR FORCE

Boise, Idaho
1990
CONTENTS

Abstract .. 1
Introduction ... 1
 Hydrologic and chemical data .. 3
 Sampling methodology and quality assurance, sample custody, and documentation procedures .. 6
 Acknowledgments ... 6
References cited .. 7

ILLUSTRATIONS

Figure 1. Diagram showing well- and spring-numbering system ... 111
2-4. Maps showing:
 2. Locations of inventoried wells and springs ... 2
 3. Concentrations of dissolved nitrite plus nitrate as nitrogen .. 4
 4. Volatile organic compounds detected .. 5

TABLES

Table 1. Records of wells and springs .. 8
 2. Onsite and laboratory analyses of selected chemical constituents 13
 3. Statistical summary of selected well-inventory and water-quality data 17
 4. Analyses of major ions and selected trace metals, 1974 to 1989 18
 5. Analyses of selected volatile organic compounds .. 19
 6. National primary drinking-water limits for volatile organic compounds 35
CONVERSION FACTORS

For the convenience of readers who may prefer to use metric (International System) units rather than the inch-pound units used in this report, values may be converted by using the factors listed below. Chemical data are given in mg/L (milligrams per liter) or μg/L (micrograms per liter), which are, within the range of values presented, numerically equal to parts per million or parts per billion, respectively. Specific conductance is expressed as μS/cm (microsiemens per centimeter) at 25 degrees Celsius.

<table>
<thead>
<tr>
<th>Multiply inch-pound unit</th>
<th>By</th>
<th>To obtain metric unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>4,047</td>
<td>square meter</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter</td>
</tr>
<tr>
<td>inch (in.)</td>
<td>25.4</td>
<td>millimeter</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer</td>
</tr>
</tbody>
</table>

Temperatures in °C (degrees Celsius) can be converted to °F (degrees Fahrenheit) as follows:

°F = (1.8)(°C) + 32

All water temperatures are reported to the nearest 0.5 °C.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada and formerly called "Sea Level Datum of 1929."
The well- and spring-numbering system used by the U.S. Geological Survey in Idaho indicates the location of wells and springs within the official rectangular subdivision of public lands, with reference to the Boise base line and Meridian. The first two segments of the number designate the township (north or south) and range (east or west). The third segment gives the section number; four letters, which indicate the $1/4$ section (160-acre tract), $1/4 - 1/4$ section (40-acre tract), $1/4 - 1/4 - 1/4$ section (10-acre tract), and $1/4 - 1/4 - 1/4 - 1/4$ section (2 $1/2$-acre tract); and serial number of the well within the tract.

Quarter sections are designated by the letters A, B, C, and D in counterclockwise order from the northeast quarter of each section (fig. 1). Forty-acre, 10-acre, and 2 $1/2$-acre tracts within each quarter section are lettered in the same manner. Well 3S-6E-27CDD1, for example, is in the SE $1/4$ SE $1/4$ SW $1/4$ sec. 27, T. 3 S., R. 6 E., and is the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 5S-4E-11DCB1S.

Figure 1.--Well- and spring-numbering system.
HYDROLOGIC AND CHEMICAL DATA FROM SELECTED WELLS AND SPRINGS IN SOUTHERN ELMORE COUNTY, INCLUDING MOUNTAIN HOME AIR FORCE BASE, SOUTHWESTERN IDAHO, FALL 1989

By
D.J. Parliman and H.W. Young

ABSTRACT

Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analyses of water from each well and spring inventoried.

Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking-water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking-water limit in a water sample from one well.

INTRODUCTION

During September through November 1989, 90 wells and 6 springs in southern Elmore County, including 7 wells on the Mountain Home Air Force Base, were inventoried (fig. 2). Onsite determinations were made of depth to water (where possible), water temperature, specific conductance, pH, and concentrations of total alkalinity, dissolved chloride, and dissolved nitrite plus nitrate as nitrogen. In addition, water samples from 17 of the 90 wells were cultured for fecal coliform and fecal streptococci bacteria analyses.

When onsite nitrite plus nitrate as nitrogen concentrations exceeded about 4 mg/L, water samples were collected for analyses of nitrite plus nitrate as nitrogen, Kjeldahl (ammonia plus organic) nitrogen, and ammonia as nitrogen. These analyses were made at the U.S. Geological Survey National Water-Quality Laboratory in Arvada, Colo.
Figure 2.--Locations of inventoried wells and springs.
Water samples were collected at 88 wells and 5 springs for volatile organics analyses. One or more volatile organic compounds were detected in water samples from 15 wells, so a second set of water samples was collected from 7 of the 15 wells to verify the initial analyses.

These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. This work was done by the U.S. Geological Survey in cooperation with the Department of the Air Force.

Hydrologic and Chemical Data

Selected well-construction and water-use data for inventoried wells and springs are shown in table 1 (tables in back of report). Results of onsite and laboratory analyses of nitrogen compounds in water samples are compiled in table 2, and a statistical summary of these data is shown in table 3. Concentrations of nitrite plus nitrate as nitrogen at well and spring sample sites are presented in figure 3; laboratory values are shown where available. Results of laboratory analyses made during 1974-89 for major ions and selected dissolved trace metals in water from 17 wells and springs inventoried during this study are shown in table 4.

Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking-water limits (tables 3 and 4). In 1989, specific conductance ranged from 92 to 2,070 μS/cm and pH ranged from 6.3 to 8.7. Concentrations of dissolved sulfate ranged from 45 to 650 mg/L; chloride, from 3 to 278 mg/L; and nitrite plus nitrate as nitrogen, from 0.5 to 13 mg/L (onsite and laboratory values). A single colony of fecal coliform bacteria was cultured from one water sample, and 9 colonies of fecal streptococci bacteria were cultured from another water sample.

Laboratory analyses of 42 selected volatile organic compounds (table 5) were conducted according to EPA (U.S. Environmental Protection Agency) method 524.2. In addition, EPA method 504 was used to analyze for total 1,2-dibromoethane (ethylene dibromide, or EDB) and 1,2-dibromo-3-chloropropane (dibromochloropropane, or DBCP). The method 524.2 detection limit for EDB was 0.2 ng/L; the method 504 detection limit was 0.04 μg/L. The detection limit for DBCP was 0.03 ng/L. Sites where volatile organic compounds were detected are shown in figure 4, and national public drinking-water limits for detected compounds are listed in table 6. The concentration of benzene exceeded the national public drinking-water limit of 5 μg/L in a water sample from one well.
Concentration of nitrite plus nitrate as nitrogen exceeds 4 milligrams per liter.

Laboratory values given when available.

Boundary of study area

Figure 3.- Concentrations of dissolved nitrite plus nitrate as nitrogen.
Figure 4.—Volatile organic compounds detected.
Sampling Methodology and Quality Assurance, Sample Custody, and Documentation Procedures

Acknowledgments

The authors are grateful to the many landowners in the study area who allowed access to their property, supplied information, and permitted measurements to be made in their wells and springs. Special thanks are given to M.P. Schroeder, B.F. Connor, M.C. Koval, and M.W. Sandstrom, U.S. Geological Survey Laboratory, for technical expertise and for volatile organics analyses.
REFERENCES CITED

U.S. Environmental Protection Agency, 1988a, Maximum contaminant levels (Subpart B of Part 141, National interim primary drinking-water regulations): U.S. Code of Federal Regulations, Title 40, Parts 100-149, revised as of July 1, 1988, p. 530-533.

----- 1988b, Secondary maximum contaminant levels (Section 143.3 of Part 143, National secondary drinking-water regulations): U.S. Code of Federal Regulations, Title 40, Parts 100-149, revised as of July 1, 1988, p. 608.

Table 1.--Records of wells and springs

[Well finish: F, perforated, gravel packed; O, open end; P, perforated or slotted; X, open hole. Primary use of water: H, domestic; I, irrigation; P, public; S, stock; C, commercial. Notations: --, no data]

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Altitude of land surface (feet above sea level)</th>
<th>Depth of well (feet below land surface)</th>
<th>Diameter of casing (inches)</th>
<th>Top of open interval (feet below land surface)</th>
<th>Well finish</th>
<th>Date well construction completed</th>
<th>Primary use of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3S-6E-2AAD1</td>
<td>3,295</td>
<td>200.0</td>
<td>6.62</td>
<td>39.0</td>
<td>X</td>
<td>6-22-76</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>7BAD1</td>
<td>3,305</td>
<td>245.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>9DDD1</td>
<td>3,194</td>
<td>200.0</td>
<td>7.00</td>
<td>140.0</td>
<td>P</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>10ACD1</td>
<td>3,225</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>11DBB1</td>
<td>3,240</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>11DDA2</td>
<td>3,250</td>
<td>228.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1987</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>12CCE1</td>
<td>3,250</td>
<td>180.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>12DAD1</td>
<td>3,258</td>
<td>178.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>13ACC1S</td>
<td>3,225</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1910</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>13ADD1</td>
<td>3,260</td>
<td>97.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1959</td>
<td>H</td>
</tr>
<tr>
<td>11</td>
<td>13CCB1</td>
<td>3,203</td>
<td>245.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1985</td>
<td>P</td>
</tr>
<tr>
<td>12</td>
<td>13CDBA1</td>
<td>3,200</td>
<td>350.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>14CDDD1</td>
<td>3,184</td>
<td>150.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1-1-60</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td>14CDDD2</td>
<td>3,183</td>
<td>37.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>I</td>
</tr>
<tr>
<td>15</td>
<td>15AAD1</td>
<td>3,210</td>
<td>523.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1987</td>
<td>H</td>
</tr>
<tr>
<td>16</td>
<td>15BAA1</td>
<td>3,210</td>
<td>165.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td>15BCD2</td>
<td>3,195</td>
<td>550.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>18</td>
<td>15DDA1</td>
<td>3,190</td>
<td>300.0</td>
<td>6.00</td>
<td>85.0</td>
<td>X</td>
<td>5-18-76</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 1.—Records of wells and springs—Continued

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Altitude of land surface (feet above sea level)</th>
<th>Depth of well (feet below land surface)</th>
<th>Diameter of casing (inches)</th>
<th>Top of open interval (feet below land surface)</th>
<th>Well finish</th>
<th>Date well construction completed</th>
<th>Primary use of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>3S-6E-16DBB1</td>
<td>3,235</td>
<td>520.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1986</td>
<td>C</td>
</tr>
<tr>
<td>20</td>
<td>22AAA1</td>
<td>3,185</td>
<td>180.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>21</td>
<td>23BDD2</td>
<td>3,173</td>
<td>525.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>5-88</td>
<td>H</td>
</tr>
<tr>
<td>22</td>
<td>23BDDB1</td>
<td>3,173</td>
<td>40.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1913</td>
<td>H</td>
</tr>
<tr>
<td>23</td>
<td>26ABC1</td>
<td>3,140</td>
<td>37.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1956</td>
<td>P</td>
</tr>
<tr>
<td>24</td>
<td>26ADA2</td>
<td>3,155</td>
<td>917.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>25</td>
<td>26BDD1</td>
<td>3,143</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1983</td>
<td>H</td>
</tr>
<tr>
<td>26</td>
<td>26CAC1</td>
<td>3,141</td>
<td>19.5</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>27</td>
<td>27CDD1</td>
<td>3,156</td>
<td>500.0</td>
<td>10.00</td>
<td>12.0</td>
<td>X</td>
<td>1-27-71</td>
<td>H</td>
</tr>
<tr>
<td>28</td>
<td>27DD1</td>
<td>3,148</td>
<td>815.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>12-20-77</td>
<td>P</td>
</tr>
<tr>
<td>29</td>
<td>28DDC1</td>
<td>3,155</td>
<td>525.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>P</td>
</tr>
<tr>
<td>30</td>
<td>33ADDc1</td>
<td>3,140</td>
<td>500.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1983</td>
<td>H</td>
</tr>
<tr>
<td>31</td>
<td>33BBC1</td>
<td>3,165</td>
<td>489.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>32</td>
<td>34DDDD1</td>
<td>3,135</td>
<td>350.0</td>
<td>8.00</td>
<td>18.5</td>
<td>X</td>
<td>7-172</td>
<td>P</td>
</tr>
<tr>
<td>33</td>
<td>35ABB1</td>
<td>3,135</td>
<td>14.5</td>
<td>--</td>
<td>--</td>
<td>O</td>
<td>1-162</td>
<td>P</td>
</tr>
<tr>
<td>34</td>
<td>35ACB1</td>
<td>3,132</td>
<td>800.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1988</td>
<td>P</td>
</tr>
<tr>
<td>35</td>
<td>3S-7E-8DBB1</td>
<td>3,313</td>
<td>225.0</td>
<td>6.00</td>
<td>--</td>
<td>X</td>
<td>6-173</td>
<td>H</td>
</tr>
<tr>
<td>36</td>
<td>18CAB1</td>
<td>3,270</td>
<td>250.0</td>
<td>6.00</td>
<td>20.0</td>
<td>X</td>
<td>7-9-74</td>
<td>H</td>
</tr>
<tr>
<td>37</td>
<td>19BBC1</td>
<td>3,230</td>
<td>261.0</td>
<td>8.00</td>
<td>19.0</td>
<td>X</td>
<td>5-3-72</td>
<td>H</td>
</tr>
<tr>
<td>38</td>
<td>30BACD1</td>
<td>3,160</td>
<td>310.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>1954</td>
<td>P</td>
</tr>
<tr>
<td>39</td>
<td>31CBB1</td>
<td>3,124</td>
<td>65.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>40</td>
<td>4S-3E-35BAD1S</td>
<td>2,605</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>S</td>
</tr>
<tr>
<td>Reference number</td>
<td>Well or spring location</td>
<td>Altitude of land surface (feet above sea level)</td>
<td>Depth of well (feet below land surface)</td>
<td>Diameter of casing (inches)</td>
<td>Top of open interval (feet below land surface)</td>
<td>Date well construction completed</td>
<td>Primary use of water</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4S-3E-35CAD1S</td>
<td>2,605</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>35DCA1S</td>
<td>2,640</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4S-4E-36AAA1</td>
<td>2,980</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>36DAB1</td>
<td>2,980</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4S-5E-9DBA1</td>
<td>3,050</td>
<td>530.0</td>
<td>--</td>
<td>--</td>
<td>1984</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>9DCA1</td>
<td>3,045</td>
<td>580.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>10CBD1</td>
<td>3,073</td>
<td>500.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>11BBB1</td>
<td>3,088</td>
<td>530.0</td>
<td>--</td>
<td>--</td>
<td>1988</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>15BBC1</td>
<td>3,058</td>
<td>500.0</td>
<td>6.00</td>
<td>20.0</td>
<td>X</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>19BCC1</td>
<td>3,005</td>
<td>400.0</td>
<td>--</td>
<td>--</td>
<td>1982</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>21CAA1</td>
<td>2,995</td>
<td>588.0</td>
<td>8.00</td>
<td>299.0</td>
<td>10-14-53</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>22CDC1</td>
<td>3,001</td>
<td>505.0</td>
<td>16.00</td>
<td>340.0</td>
<td>9-30-82</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>22DAC1</td>
<td>3,019</td>
<td>610.0</td>
<td>18.00</td>
<td>425.0</td>
<td>1-1-62</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>26ADD1</td>
<td>3,042</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>26CAA1</td>
<td>3,040</td>
<td>480.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>26DAD1</td>
<td>3,035</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>28BAD1</td>
<td>2,992</td>
<td>379.0</td>
<td>18.00</td>
<td>323.5</td>
<td>10-18-55</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>28DAB1</td>
<td>2,992</td>
<td>604.0</td>
<td>16.00</td>
<td>337.0</td>
<td>9-17-74</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.—Records of wells and springs—Continued

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Altitude of land surface (feet above sea level)</th>
<th>Depth of well (feet below land surface)</th>
<th>Diameter of casing (inches)</th>
<th>Top of open interval (feet below land surface)</th>
<th>Date well construction completed</th>
<th>Primary use of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>4S-5E-31ABA1</td>
<td>2,985</td>
<td>480.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>P</td>
</tr>
<tr>
<td>60</td>
<td>4S-6E-31BBB1</td>
<td>3,000</td>
<td>422.0</td>
<td>6.00</td>
<td>38.0</td>
<td>1988</td>
<td>I</td>
</tr>
<tr>
<td>61</td>
<td>33CDB1</td>
<td>2,996</td>
<td>420.0</td>
<td>8.00</td>
<td>--</td>
<td>X</td>
<td>P</td>
</tr>
<tr>
<td>62</td>
<td>1BAAA1</td>
<td>3,112</td>
<td>500.0</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>63</td>
<td>2DAAC1</td>
<td>3,143</td>
<td>3,118</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>64</td>
<td>3BCC1</td>
<td>3,143</td>
<td>3,118</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>65</td>
<td>2DAAC1</td>
<td>3,112</td>
<td>500.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>66</td>
<td>3DAA1</td>
<td>3,112</td>
<td>500.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>67</td>
<td>7CCB1</td>
<td>3,125</td>
<td>525.0</td>
<td>6.00</td>
<td>27.0</td>
<td>1979</td>
<td>H</td>
</tr>
<tr>
<td>68</td>
<td>7DBB1</td>
<td>3,136</td>
<td>525.0</td>
<td>6.00</td>
<td>19.0</td>
<td>4-22-74</td>
<td>H</td>
</tr>
<tr>
<td>69</td>
<td>10DDC1</td>
<td>3,134</td>
<td>525.0</td>
<td>6.00</td>
<td>50.0</td>
<td>3-31-72</td>
<td>H</td>
</tr>
<tr>
<td>70</td>
<td>11DCC1</td>
<td>3,086</td>
<td>400.0</td>
<td>10.00</td>
<td>39.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>71</td>
<td>12DAA1</td>
<td>3,096</td>
<td>525.0</td>
<td>6.00</td>
<td>22.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>72</td>
<td>13AAB1</td>
<td>3,096</td>
<td>525.0</td>
<td>6.00</td>
<td>537.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>73</td>
<td>13AABB1</td>
<td>3,086</td>
<td>525.0</td>
<td>6.00</td>
<td>525.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>74</td>
<td>14BBB1</td>
<td>3,073</td>
<td>525.0</td>
<td>6.00</td>
<td>525.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>75</td>
<td>14CCB1</td>
<td>3,073</td>
<td>525.0</td>
<td>6.00</td>
<td>525.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>76</td>
<td>15BCB1</td>
<td>3,103</td>
<td>500.0</td>
<td>6.00</td>
<td>537.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>77</td>
<td>15BCD1</td>
<td>3,085</td>
<td>500.0</td>
<td>6.00</td>
<td>525.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>78</td>
<td>19BAC1</td>
<td>3,070</td>
<td>500.0</td>
<td>6.00</td>
<td>525.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>79</td>
<td>24AADD1</td>
<td>3,070</td>
<td>500.0</td>
<td>6.00</td>
<td>525.0</td>
<td>--</td>
<td>H</td>
</tr>
<tr>
<td>Reference number</td>
<td>Well or spring location</td>
<td>Altitude of land surface (feet above sea level)</td>
<td>Depth of well (feet below land surface)</td>
<td>Diameter of casing (inches)</td>
<td>Top of open interval (feet below land surface)</td>
<td>Well finish</td>
<td>Date well construction completed</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------------</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>80</td>
<td>4S-6E-24CCB1</td>
<td>3,065</td>
<td>760.0</td>
<td>16.00</td>
<td>308.0</td>
<td>P</td>
<td>5-17-69</td>
</tr>
<tr>
<td>81</td>
<td>31DDD1</td>
<td>3,029</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>82</td>
<td>35DCA1</td>
<td>3,048</td>
<td>730.0</td>
<td>16.00</td>
<td>380.0</td>
<td>P</td>
<td>2-1-68</td>
</tr>
<tr>
<td>83</td>
<td>4S-7E-6BCB1</td>
<td>3,115</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>84</td>
<td>7BBB1</td>
<td>3,100</td>
<td>22.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>85</td>
<td>7DAA1</td>
<td>3,095</td>
<td>470.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>86</td>
<td>16BBB1</td>
<td>3,106</td>
<td>569.0</td>
<td>20.00</td>
<td>12.0</td>
<td>X</td>
<td>4-18-68</td>
</tr>
<tr>
<td>87</td>
<td>17CAB1</td>
<td>3,088</td>
<td>383.0</td>
<td>8.00</td>
<td>20.0</td>
<td>X</td>
<td>4-27-72</td>
</tr>
<tr>
<td>88</td>
<td>18AAA1</td>
<td>3,091</td>
<td>580.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1964</td>
</tr>
<tr>
<td>89</td>
<td>5S-4E-5ABB1</td>
<td>2,930</td>
<td>427.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>90</td>
<td>11DCB1S</td>
<td>2,522</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>91</td>
<td>12CAA1S</td>
<td>2,490</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>92</td>
<td>5S-5E-5AAC1</td>
<td>2,985</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>93</td>
<td>5S-6E-3BCA1</td>
<td>3,043</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>94</td>
<td>6BBB1</td>
<td>3,050</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>95</td>
<td>6DBA1</td>
<td>3,030</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>96</td>
<td>8ADD1</td>
<td>3,040</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1970</td>
</tr>
</tbody>
</table>
Table 2.--Onsite and laboratory analyses of selected chemical constituents

[°C, degrees Celsius; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; µm, micrometer; cols./100 mL, colonies per 100 milliliters; --, no data available; *; not analyzed for; <, less than; K, nonideal colony count]

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Sample date (1989)</th>
<th>Water level, below ground surface (feet)</th>
<th>Water temperature (°C)</th>
<th>Specific conductance (µS/cm)</th>
<th>pH (standard units)</th>
<th>Alkalinity (mg/L as CaCO₃)</th>
<th>Chloride (mg/L as Cl⁻)</th>
<th>Nitrogen, NO₃⁻ + NO₂⁻ dissolved (mg/L as N)</th>
<th>Nitrogen, ammonia + organic (mg/L as N)</th>
<th>Nitrogen, ammonia, dissolved (mg/L as N)</th>
<th>Coliform, fecal (cols./100 mL)</th>
<th>Streptococci, fecal (cols./100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3S-6E- 2AAD1</td>
<td>10-19</td>
<td>56.73</td>
<td>14.0</td>
<td>223</td>
<td>7.6</td>
<td>84</td>
<td>9</td>
<td>1.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>7BAD1</td>
<td>10-16</td>
<td>58.86</td>
<td>11.5</td>
<td>272</td>
<td>7.8</td>
<td>87</td>
<td>16</td>
<td>1.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>9DDD1</td>
<td>9-18</td>
<td>130.12</td>
<td>15.0</td>
<td>341</td>
<td>6.8</td>
<td>96</td>
<td>19</td>
<td>5.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>10ACDI</td>
<td>10-31</td>
<td>77.52</td>
<td>13.0</td>
<td>137</td>
<td>7.3</td>
<td>57</td>
<td>5</td>
<td>1.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>11DBB1</td>
<td>10-13</td>
<td>28.52</td>
<td>14.0</td>
<td>105</td>
<td>8.2</td>
<td>45</td>
<td>3</td>
<td>1.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>11DDA1</td>
<td>10-27</td>
<td>37.28</td>
<td>13.0</td>
<td>1,120</td>
<td>7.4</td>
<td>298</td>
<td>66</td>
<td>2.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>12CCCI</td>
<td>10-13</td>
<td>32.67</td>
<td>12.0</td>
<td>1,660</td>
<td>7.4</td>
<td>296</td>
<td>127</td>
<td>6.3</td>
<td>6.9</td>
<td>0.50</td>
<td>0.02</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>12DAD1</td>
<td>10-27</td>
<td>38.87</td>
<td>13.5</td>
<td>575</td>
<td>7.4</td>
<td>166</td>
<td>34</td>
<td>2.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>13ACC1S</td>
<td>11-2</td>
<td>--</td>
<td>12.5</td>
<td>200</td>
<td>6.7</td>
<td>78</td>
<td>8</td>
<td>1.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>13ADD1</td>
<td>10-13</td>
<td>--</td>
<td>11.0</td>
<td>157</td>
<td>6.6</td>
<td>70</td>
<td>3</td>
<td>0.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>13CCB1</td>
<td>10-30</td>
<td>79.99</td>
<td>16.0</td>
<td>225</td>
<td>8.4</td>
<td>76</td>
<td>10</td>
<td>1.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>13CDBA1</td>
<td>11-2</td>
<td>70.65</td>
<td>13.0</td>
<td>592</td>
<td>7.4</td>
<td>214</td>
<td>29</td>
<td>9.5</td>
<td>7.1</td>
<td>.80</td>
<td><.01</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>14CDDD1</td>
<td>11-20</td>
<td>--</td>
<td>12.5</td>
<td>586</td>
<td>--</td>
<td>--</td>
<td>27</td>
<td>4.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>14CDD2</td>
<td>10-19</td>
<td>--</td>
<td>13.5</td>
<td>337</td>
<td>7.0</td>
<td>106</td>
<td>19</td>
<td>3.2</td>
<td>3.6</td>
<td>.20</td>
<td>.02</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>15AAD1</td>
<td>9-28</td>
<td>173.82</td>
<td>16.0</td>
<td>114</td>
<td>8.3</td>
<td>48</td>
<td>4</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>15BAA1</td>
<td>9-28</td>
<td>115.40</td>
<td>13.0</td>
<td>240</td>
<td>6.4</td>
<td>76</td>
<td>8</td>
<td>3.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>15BCR1</td>
<td>9-28</td>
<td>181.18</td>
<td>15.5</td>
<td>330</td>
<td>6.9</td>
<td>110</td>
<td>13</td>
<td>4.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>15DDA1</td>
<td>9-26</td>
<td>156.90</td>
<td>15.5</td>
<td>92</td>
<td>8.3</td>
<td>39</td>
<td>3</td>
<td>1.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>19</td>
<td>16DDB1</td>
<td>10-26</td>
<td>237.57</td>
<td>15.5</td>
<td>182</td>
<td>8.3</td>
<td>80</td>
<td>6</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>22AAAI</td>
<td>9-28</td>
<td>--</td>
<td>14.0</td>
<td>323</td>
<td>6.8</td>
<td>101</td>
<td>13</td>
<td>3.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>21</td>
<td>23BDD2</td>
<td>9-27</td>
<td>60.02</td>
<td>13.5</td>
<td>467</td>
<td>6.7</td>
<td>75</td>
<td>37</td>
<td>9.6</td>
<td>8.8</td>
<td><.20</td>
<td><.01</td>
<td>*</td>
</tr>
<tr>
<td>22</td>
<td>23BDD1</td>
<td>10-13</td>
<td>14.44</td>
<td>14.5</td>
<td>257</td>
<td>6.7</td>
<td>79</td>
<td>9</td>
<td>3.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>23</td>
<td>26ABC1</td>
<td>10-12</td>
<td>--</td>
<td>13.0</td>
<td>276</td>
<td>6.3</td>
<td>95</td>
<td>15</td>
<td>4.9</td>
<td>4.8</td>
<td><.20</td>
<td><.01</td>
<td>*</td>
</tr>
<tr>
<td>Reference number</td>
<td>Well or spring location</td>
<td>Water level, depth below land surface (feet)</td>
<td>Water samples date</td>
<td>Specific conductance (µS/cm)</td>
<td>Water temperature (°C)</td>
<td>pH</td>
<td>Chloride (mg/L as Cl⁻)</td>
<td>Nitrogen, ammonia + NO₂ + NO₃ (mg/L as N)</td>
<td>Nitrogen, organic + Nitrogen, ammonia + NO₂ + NO₃ (mg/L as N)</td>
<td>Staphylococcus (CFU/mL)</td>
<td>Streptococcus (CFU/mL)</td>
<td>Coliform, fecal (CFU/mL)</td>
<td>Coliform, total (CFU/mL)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>----</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>24</td>
<td>3S-3E-36,4DA2</td>
<td>9.19</td>
<td>9-19</td>
<td>12.1</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>25</td>
<td>26CDD1</td>
<td>11.85</td>
<td>9-21</td>
<td>17.0</td>
<td>6.5</td>
<td>105</td>
<td>9</td>
<td>2.5</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>26</td>
<td>27CDD1</td>
<td>7.70</td>
<td>9-19</td>
<td>17.0</td>
<td>6.5</td>
<td>105</td>
<td>9</td>
<td>2.5</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>27</td>
<td>26CDD1</td>
<td>7.70</td>
<td>10-23</td>
<td>17.0</td>
<td>6.5</td>
<td>105</td>
<td>9</td>
<td>2.5</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>28</td>
<td>26CDD1</td>
<td>7.70</td>
<td>9-19</td>
<td>17.0</td>
<td>6.5</td>
<td>105</td>
<td>9</td>
<td>2.5</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>29</td>
<td>26CDD1</td>
<td>7.70</td>
<td>10-23</td>
<td>17.0</td>
<td>6.5</td>
<td>105</td>
<td>9</td>
<td>2.5</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>30</td>
<td>26CDD1</td>
<td>7.70</td>
<td>9-19</td>
<td>17.0</td>
<td>6.5</td>
<td>105</td>
<td>9</td>
<td>2.5</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>31</td>
<td>33ADD1</td>
<td>9.25</td>
<td>11-16</td>
<td>12.1</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>32</td>
<td>36ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>33</td>
<td>34ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>34</td>
<td>35ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>35</td>
<td>36ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>36</td>
<td>37ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>37</td>
<td>38ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>38</td>
<td>39ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>39</td>
<td>40ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>40</td>
<td>41ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>41</td>
<td>42ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>42</td>
<td>43ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>43</td>
<td>44ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>44</td>
<td>45ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>45</td>
<td>46ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>46</td>
<td>47ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>47</td>
<td>48ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>48</td>
<td>49ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>49</td>
<td>50ADD1</td>
<td>43.99</td>
<td>10-16</td>
<td>12.0</td>
<td>8.5</td>
<td>64</td>
<td>7</td>
<td>1.3</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Sample date</td>
<td>Well or spring location</td>
<td>Water level, depth (feet)</td>
<td>Water temperature (°C)</td>
<td>Specific conductance (μS/cm)</td>
<td>Alkalinity (mg/L as CaCO₃)</td>
<td>Chloride (mg/L as Cl⁻)</td>
<td>Nitrogen, ammonia + nitrite (mg/L as N)</td>
<td>Nitrogen, nitrate + nitrate (mg/L as N)</td>
<td>Dissolved Oxygen (mg/L)</td>
<td>pH</td>
<td>Alkalinity (mg/L as CaCO₃)</td>
<td>Laboratory (mg/L as N)</td>
<td>Onsite (mg/L as N)</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>----</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>10-17</td>
<td>22CA1</td>
<td>20.5</td>
<td>186.3</td>
<td>8.3</td>
<td>9</td>
<td>2.8</td>
<td>2.0</td>
<td>0.2</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
</tr>
<tr>
<td>10-17</td>
<td>22DA1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-18</td>
<td>22AC1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-17</td>
<td>22CA1</td>
<td>20.5</td>
<td>186.3</td>
<td>8.3</td>
<td>9</td>
<td>2.8</td>
<td>2.0</td>
<td>0.2</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
</tr>
<tr>
<td>10-17</td>
<td>22DA1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-18</td>
<td>22AC1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-17</td>
<td>22CA1</td>
<td>20.5</td>
<td>186.3</td>
<td>8.3</td>
<td>9</td>
<td>2.8</td>
<td>2.0</td>
<td>0.2</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
</tr>
<tr>
<td>10-17</td>
<td>22DA1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-18</td>
<td>22AC1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-17</td>
<td>22CA1</td>
<td>20.5</td>
<td>186.3</td>
<td>8.3</td>
<td>9</td>
<td>2.8</td>
<td>2.0</td>
<td>0.2</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
<td><0.1</td>
<td><0.2</td>
</tr>
<tr>
<td>10-17</td>
<td>22DA1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>10-18</td>
<td>22AC1</td>
<td>22.5</td>
<td>199.8</td>
<td>8.5</td>
<td>8</td>
<td>1.5</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Note: Table 2—Onsite and laboratory analyses of selected chemical constituents—Continued.
<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Sample date (1989)</th>
<th>Water level, depth below land surface (feet)</th>
<th>Water temperature (°C)</th>
<th>Specific conductance (µS/cm)</th>
<th>pH (standard units)</th>
<th>Alkalinity (mg/L as CaCO₃)</th>
<th>Chloride, dissolved (mg/L as Cl)</th>
<th>Nitrogen, NO₂⁻ + NO₃⁻ dissolved (mg/L as N)</th>
<th>Nitrogen, NO₂⁻ + NO₃⁻ dissolved (mg/L as N)</th>
<th>Nitrogen, ammonia + organic, dissolved (mg/L as N)</th>
<th>Nitrogen, ammonia, dissolved (mg/L as N)</th>
<th>Coliform, fecal, M-PC agar (cols. / 100 mL)</th>
<th>Streptococci, fecal, KF agar (cols. / 100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>4S-6E-15DCD1</td>
<td>9-25</td>
<td>--</td>
<td>18.5</td>
<td>348</td>
<td>8.0</td>
<td>120</td>
<td>21</td>
<td>2.4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>*</td>
</tr>
<tr>
<td>78</td>
<td>19BAC1</td>
<td>9-21</td>
<td>23.0</td>
<td>126</td>
<td>8.5</td>
<td>55</td>
<td>5</td>
<td>1.1</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>79</td>
<td>24ADD1</td>
<td>10-24</td>
<td>16.5</td>
<td>747</td>
<td>7.8</td>
<td>154</td>
<td>72</td>
<td>4.9</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>80</td>
<td>24CCB1</td>
<td>10-12</td>
<td>14.0</td>
<td>748</td>
<td>--</td>
<td>--</td>
<td>76</td>
<td>6.1</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td><1</td>
</tr>
<tr>
<td>81</td>
<td>31DDD1</td>
<td>9-14</td>
<td>21.5</td>
<td>275</td>
<td>8.1</td>
<td>88</td>
<td>15</td>
<td>1.8</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>82</td>
<td>35DCA1</td>
<td>10-12</td>
<td>23.0</td>
<td>316</td>
<td>7.9</td>
<td>122</td>
<td>12</td>
<td>.9</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>83</td>
<td>4S-7E-6BCB1</td>
<td>10-31</td>
<td>11.5</td>
<td>822</td>
<td>6.9</td>
<td>287</td>
<td>48</td>
<td>9.0</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td><1</td>
</tr>
<tr>
<td>84</td>
<td>7BBB1</td>
<td>10-24</td>
<td>12.5</td>
<td>486</td>
<td>6.7</td>
<td>167</td>
<td>17</td>
<td>2.7</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>85</td>
<td>7DAA1</td>
<td>10-31</td>
<td>23.0</td>
<td>481</td>
<td>7.7</td>
<td>208</td>
<td>24</td>
<td>1.8</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>86</td>
<td>16BBB1</td>
<td>9-26</td>
<td>23.0</td>
<td>424</td>
<td>8.2</td>
<td>110</td>
<td>27</td>
<td>3.4</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>87</td>
<td>17CAB1</td>
<td>9-26</td>
<td>21.0</td>
<td>509</td>
<td>7.9</td>
<td>142</td>
<td>32</td>
<td>4.0</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>88</td>
<td>8AAA1</td>
<td>10-26</td>
<td>16.5</td>
<td>525</td>
<td>7.8</td>
<td>190</td>
<td>22</td>
<td>5.2</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>89</td>
<td>5S-4E-5ABB1</td>
<td>9-25</td>
<td>18.5</td>
<td>150</td>
<td>8.6</td>
<td>62</td>
<td>5</td>
<td>1.4</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>90</td>
<td>11DCB1S</td>
<td>11-14</td>
<td>19.0</td>
<td>139</td>
<td>8.0</td>
<td>--</td>
<td>6</td>
<td>1.3</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>91</td>
<td>12CAA1S</td>
<td>11-14</td>
<td>23.0</td>
<td>424</td>
<td>8.2</td>
<td>110</td>
<td>27</td>
<td>3.4</td>
<td>5.8</td>
<td>0.20</td>
<td>0.02</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>92</td>
<td>5S-5E-5AAC1</td>
<td>9-20</td>
<td>23.0</td>
<td>526</td>
<td>8.1</td>
<td>93</td>
<td>41</td>
<td>7.7</td>
<td>7.1</td>
<td><.20</td>
<td><.01</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>93</td>
<td>5S-6E-3BCA1</td>
<td>9-14</td>
<td>24.0</td>
<td>233</td>
<td>8.1</td>
<td>99</td>
<td>6</td>
<td>.9</td>
<td>7.1</td>
<td><.20</td>
<td><.01</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>94</td>
<td>6BBB1</td>
<td>9-21</td>
<td>20.0</td>
<td>149</td>
<td>8.4</td>
<td>64</td>
<td>7</td>
<td>1.0</td>
<td>7.1</td>
<td><.20</td>
<td><.01</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>95</td>
<td>6DBA1</td>
<td>9-21</td>
<td>23.0</td>
<td>195</td>
<td>8.0</td>
<td>84</td>
<td>8</td>
<td>.5</td>
<td>7.1</td>
<td><.20</td>
<td><.01</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
<tr>
<td>96</td>
<td>8ADD1</td>
<td>9-21</td>
<td>23.0</td>
<td>195</td>
<td>8.0</td>
<td>84</td>
<td>8</td>
<td>.5</td>
<td>7.1</td>
<td><.20</td>
<td><.01</td>
<td>1.8</td>
<td>1.8</td>
<td>*</td>
</tr>
</tbody>
</table>
Table 3.--Statistical summary of selected well-inventory and water-quality data

[* onsite analysis; °C, degrees Celsius; μS/cm, microsiemens per centimeter at 25 degrees Celsius; ≤, less than or equal to; ≥, greater than or equal to; mg/L, milligrams per liter; #, laboratory analysis; <, less than; μm, micrometer; cols./100 mL, colonies per 100 milliliters; ***, mandatory maximum contaminant limits for public water supplies vary with sample method and frequency; K, nonideal colony count]

<table>
<thead>
<tr>
<th>Well-inventory data or water-quality constituent</th>
<th>Number of samples</th>
<th>Median (50 percent)</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Water level, feet below land surface.............</td>
<td>54</td>
<td>155.65</td>
<td>198.58</td>
<td>5.65</td>
<td>439.78</td>
</tr>
<tr>
<td>*Temperature (°C)...................................</td>
<td>113</td>
<td>16.0</td>
<td>16.5</td>
<td>10.0</td>
<td>24.0</td>
</tr>
<tr>
<td>*Specific conductance (μS/cm).....................</td>
<td>113</td>
<td>316</td>
<td>413</td>
<td>92</td>
<td>2,070</td>
</tr>
<tr>
<td>*pH (standard units)................................</td>
<td>96</td>
<td>8.1</td>
<td>7.8</td>
<td>6.3</td>
<td>8.7</td>
</tr>
<tr>
<td>*Alkalinity, total (mg/L as CaCO₃)..................</td>
<td>95</td>
<td>80</td>
<td>106</td>
<td>39</td>
<td>330</td>
</tr>
<tr>
<td>*Chloride, dissolved (mg/L as Cl)..................</td>
<td>113</td>
<td>14</td>
<td>26</td>
<td>3</td>
<td>278</td>
</tr>
<tr>
<td>*Nitrogen, nitrite + nitrate, dissolved (mg/L as N).....</td>
<td>113</td>
<td>2.5</td>
<td>3.3</td>
<td>.5</td>
<td>9.5</td>
</tr>
<tr>
<td>#Nitrogen, nitrite + nitrate, dissolved (mg/L as N).....</td>
<td>28</td>
<td>5.8</td>
<td>6.2</td>
<td>1.5</td>
<td>13</td>
</tr>
<tr>
<td>#Nitrogen, ammonia + organic, dissolved (mg/L as N).</td>
<td>28</td>
<td><.2</td>
<td>.3</td>
<td><.2</td>
<td>.8</td>
</tr>
<tr>
<td>#Nitrogen, ammonia, dissolved (mg/L as N)...........</td>
<td>28</td>
<td>.01</td>
<td>.01</td>
<td><.01</td>
<td>.03</td>
</tr>
<tr>
<td>*Coliform, fecal, 0.7-μm, M-FC agar (cols./100 mL).....</td>
<td>17</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>K1</td>
</tr>
<tr>
<td>*Streptococci, fecal, 0.45-μm, KF agar (cols./100 mL)...</td>
<td>17</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>K9</td>
</tr>
</tbody>
</table>

1 U.S. Environmental Protection Agency, 1988a.

2 U.S. Environmental Protection Agency, 1988b.
Table 4.—Analyses of major ions and selected trace metals, 1974 to 1989

[mg/L, milligrams per liter; µg/L, micrograms per liter; <, less than; --, no data available]

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Sample date</th>
<th>Solids, sum of constituents dissolved (mg/L)</th>
<th>Magnesium, dissolved (mg/L as Mg)</th>
<th>Sodium, dissolved (mg/L as Na)</th>
<th>Potassium, dissolved (mg/L as K)</th>
<th>Bicarbonate, water, field dissolved (mg/L as HCO₃⁻)</th>
<th>Sulfate, dissolved (mg/L as SO₄²⁻)</th>
<th>Chloride, dissolved (mg/L as Cl⁻)</th>
<th>Fluoride, dissolved (mg/L as F⁻)</th>
<th>Silica, dissolved (mg/L as SiO₂)</th>
<th>Iron, dissolved (µg/L as Fe)</th>
<th>Manganese, dissolved (µg/L as Mn)</th>
<th>Zinc, dissolved (µg/L as Zn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3S-6E-2AAD1</td>
<td>11-28-80</td>
<td>138</td>
<td>13</td>
<td>6.4</td>
<td>15</td>
<td>3.6</td>
<td>100</td>
<td>4.9</td>
<td>5.7</td>
<td>0.3</td>
<td>34</td>
<td><10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3DDDD1</td>
<td>8-9-76</td>
<td>270</td>
<td>34</td>
<td>11</td>
<td>35</td>
<td>5.4</td>
<td>180</td>
<td>34</td>
<td>17</td>
<td>0.1</td>
<td>30</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>26CAC1</td>
<td>11-21-80</td>
<td>201</td>
<td>28</td>
<td>8.8</td>
<td>17</td>
<td>5.6</td>
<td>170</td>
<td>4.9</td>
<td>4.4</td>
<td>0.3</td>
<td>30</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>34DDDD1</td>
<td>11-25-80</td>
<td>337</td>
<td>33</td>
<td>10</td>
<td>55</td>
<td>6.0</td>
<td>240</td>
<td>35</td>
<td>15</td>
<td>0.2</td>
<td>140</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>35ABB1</td>
<td>8-9-76</td>
<td>328</td>
<td>49</td>
<td>11</td>
<td>42</td>
<td>5.7</td>
<td>240</td>
<td>35</td>
<td>4.4</td>
<td>0.3</td>
<td>37</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>35-7E-18CAB1</td>
<td>8-9-76</td>
<td>165</td>
<td>22</td>
<td>7.7</td>
<td>15</td>
<td>3.0</td>
<td>120</td>
<td>10</td>
<td>3.5</td>
<td>0.4</td>
<td>39</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>19BBC1</td>
<td>11-25-80</td>
<td>140</td>
<td>21</td>
<td>6.8</td>
<td>7.5</td>
<td>2.7</td>
<td>110</td>
<td>2.7</td>
<td>2.5</td>
<td>0.2</td>
<td>39</td>
<td>20</td>
<td><1</td>
</tr>
<tr>
<td>9</td>
<td>4S-2E-SSCAD18</td>
<td>8-16-76</td>
<td>123</td>
<td>13</td>
<td>3.8</td>
<td>12</td>
<td>3.5</td>
<td>82</td>
<td>6.0</td>
<td>2.1</td>
<td>0.3</td>
<td>39</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>4S-5E-21CAA1</td>
<td>2-23-74</td>
<td>163</td>
<td>23</td>
<td>6.3</td>
<td>14</td>
<td>4.0</td>
<td>87</td>
<td>23</td>
<td>10</td>
<td>0.3</td>
<td>37</td>
<td>2500</td>
<td><10</td>
</tr>
<tr>
<td>11</td>
<td>22DAC1</td>
<td>2-23-74</td>
<td>130</td>
<td>14</td>
<td>4.1</td>
<td>10</td>
<td>3.9</td>
<td>69</td>
<td>15</td>
<td>4.0</td>
<td>0.8</td>
<td>44</td>
<td>30</td>
<td><10</td>
</tr>
<tr>
<td>12</td>
<td>11-18-80</td>
<td>250</td>
<td>33</td>
<td>6.4</td>
<td>18</td>
<td>6.5</td>
<td>63</td>
<td>66</td>
<td>28</td>
<td>1.1</td>
<td>40</td>
<td>20</td>
<td><1</td>
<td><3</td>
</tr>
<tr>
<td>13</td>
<td>26BAD1</td>
<td>2-23-74</td>
<td>214</td>
<td>34</td>
<td>11</td>
<td>16</td>
<td>4.8</td>
<td>99</td>
<td>40</td>
<td>21</td>
<td>0.3</td>
<td>39</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>14</td>
<td>32DAB1</td>
<td>11-18-80</td>
<td>408</td>
<td>60</td>
<td>19</td>
<td>24</td>
<td>6.3</td>
<td>150</td>
<td>83</td>
<td>49</td>
<td>1.1</td>
<td>38</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>33CDB1</td>
<td>2-23-74</td>
<td>218</td>
<td>34</td>
<td>10</td>
<td>17</td>
<td>4.9</td>
<td>65</td>
<td>45</td>
<td>33</td>
<td>0.3</td>
<td>40</td>
<td><10</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>11-19-80</td>
<td>379</td>
<td>59</td>
<td>16</td>
<td>24</td>
<td>6.6</td>
<td>93</td>
<td>90</td>
<td>55</td>
<td>0.1</td>
<td>38</td>
<td><10</td>
<td><1</td>
<td><3</td>
</tr>
<tr>
<td>17</td>
<td>45-6E-2DAA1</td>
<td>11-21-80</td>
<td>138</td>
<td>14</td>
<td>6.4</td>
<td>10</td>
<td>3.0</td>
<td>83</td>
<td>3.1</td>
<td>3.3</td>
<td>0.2</td>
<td>40</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>18</td>
<td>5-27-81</td>
<td>132</td>
<td>14</td>
<td>6.6</td>
<td>10</td>
<td>2.6</td>
<td>-</td>
<td>6.9</td>
<td>3.0</td>
<td>0.1</td>
<td>39</td>
<td><10</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>13AAA1</td>
<td>9-25-89</td>
<td>1,520</td>
<td>190</td>
<td>61</td>
<td>200</td>
<td>5.7</td>
<td>650</td>
<td>120</td>
<td>4.4</td>
<td>13</td>
<td>47</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>45-7E-7BB31</td>
<td>10-24-89</td>
<td>316</td>
<td>34</td>
<td>8.9</td>
<td>51</td>
<td>6.9</td>
<td>45</td>
<td>12</td>
<td>4.4</td>
<td>13</td>
<td>47</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>5S-4E-11DCB18</td>
<td>8-19-76</td>
<td>121</td>
<td>14</td>
<td>3.8</td>
<td>11</td>
<td>3.0</td>
<td>79</td>
<td>6.9</td>
<td>3.1</td>
<td>0.3</td>
<td>36</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 5.—Analyses of selected volatile organic compounds

[μg/L, micrograms per liter; <, less than]

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Sample date (1989)</th>
<th>Dibromo-methane, water, whole, recoverable (μg/L)</th>
<th>Dichloro-methane, total (μg/L)</th>
<th>Carbon-tetrachloride, total (μg/L)</th>
<th>1,2-Dichloro-ethane, total (μg/L)</th>
<th>Bromo-form, total (μg/L)</th>
<th>Chloro-dibromo-methane, total (μg/L)</th>
<th>Chloro-form, total (μg/L)</th>
<th>Toluene, total (μg/L)</th>
<th>Benzene, total (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3S-6E- 2AAD1</td>
<td>10-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>2</td>
<td>7BAD1</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>3</td>
<td>9DDD1</td>
<td>9-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>4</td>
<td>10ACD1</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>5</td>
<td>11DBB1</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>6</td>
<td>11DDA2</td>
<td>10-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>7</td>
<td>12CCC1</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>8</td>
<td>12DAD1</td>
<td>10-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>9</td>
<td>13ACC1S</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>10</td>
<td>13ADD1</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>11</td>
<td>13CCB1</td>
<td>10-30</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>12</td>
<td>13CDBA1</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>13</td>
<td>14CDDD1</td>
<td>10-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>15</td>
<td>15AAD1</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>16</td>
<td>15BAA1</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>17</td>
<td>15BCD2</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>18</td>
<td>15DDA1</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>19</td>
<td>16DBB1</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>20</td>
<td>22AAA1</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>21</td>
<td>23BDD2</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>22</td>
<td>23BDBB1</td>
<td>10-13</td>
<td><0.20</td>
<td>0.50</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>15</td>
<td><0.20</td>
</tr>
<tr>
<td>23</td>
<td>26ABC1</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>2.7</td>
<td><0.20</td>
</tr>
<tr>
<td>24</td>
<td>26ADA2</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>25</td>
<td>26BDD1</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>26</td>
<td>26CAC1</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>27</td>
<td>27CDD1</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>28</td>
<td>27DDD1</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date (1989)</td>
<td>Chloro-</td>
<td>Chloro-</td>
<td>Ethyl-</td>
<td>Methyl-</td>
<td>Methylene</td>
<td>Tetra-</td>
<td>Tri-</td>
<td>1,1-Di-</td>
<td>1,1-Di-</td>
<td>1,1,2-Tri-</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>benzene,</td>
<td>ethane,</td>
<td>benzene,</td>
<td>bromide,</td>
<td>chloride,</td>
<td>chloro-</td>
<td>chloro-</td>
<td>chloro-</td>
<td>ethane,</td>
<td>chloro-</td>
</tr>
<tr>
<td>1</td>
<td>10-19</td>
<td><0.20</td>
</tr>
<tr>
<td>2</td>
<td>10-16</td>
<td><0.20</td>
</tr>
<tr>
<td>3</td>
<td>9-18</td>
<td><0.20</td>
</tr>
<tr>
<td>4</td>
<td>10-31</td>
<td><0.20</td>
</tr>
<tr>
<td>5</td>
<td>10-13</td>
<td><0.20</td>
</tr>
<tr>
<td>6</td>
<td>10-27</td>
<td><0.20</td>
</tr>
<tr>
<td>7</td>
<td>10-13</td>
<td><0.20</td>
</tr>
<tr>
<td>8</td>
<td>10-27</td>
<td><0.20</td>
</tr>
<tr>
<td>9</td>
<td>11-2</td>
<td><0.20</td>
</tr>
<tr>
<td>10</td>
<td>10-13</td>
<td><0.20</td>
</tr>
<tr>
<td>11</td>
<td>10-30</td>
<td><0.20</td>
</tr>
<tr>
<td>12</td>
<td>11-2</td>
<td><0.20</td>
</tr>
<tr>
<td>13</td>
<td>10-19</td>
<td><0.20</td>
</tr>
<tr>
<td>14</td>
<td>9-28</td>
<td><0.20</td>
</tr>
<tr>
<td>15</td>
<td>9-28</td>
<td><0.20</td>
</tr>
<tr>
<td>16</td>
<td>9-28</td>
<td><0.20</td>
</tr>
<tr>
<td>17</td>
<td>9-28</td>
<td><0.20</td>
</tr>
<tr>
<td>18</td>
<td>9-26</td>
<td><0.20</td>
</tr>
<tr>
<td>19</td>
<td>10-26</td>
<td><0.20</td>
</tr>
<tr>
<td>20</td>
<td>9-28</td>
<td><0.20</td>
</tr>
<tr>
<td>21</td>
<td>9-27</td>
<td><0.20</td>
</tr>
<tr>
<td>22</td>
<td>10-13</td>
<td><0.20</td>
</tr>
<tr>
<td>23</td>
<td>11-6</td>
<td><0.20</td>
</tr>
<tr>
<td>24</td>
<td>10-12</td>
<td><0.20</td>
</tr>
<tr>
<td>25</td>
<td>9-19</td>
<td><0.20</td>
</tr>
<tr>
<td>26</td>
<td>11-1</td>
<td><0.20</td>
</tr>
<tr>
<td>27</td>
<td>9-21</td>
<td><0.20</td>
</tr>
<tr>
<td>28</td>
<td>10-24</td>
<td><0.20</td>
</tr>
<tr>
<td>29</td>
<td>9-19</td>
<td><0.20</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date (1989)</td>
<td>1,2-Dichloro-benzene, total (µg/L)</td>
<td>1,2-Dichloro-propane, total (µg/L)</td>
<td>1,3-Dichloro-benzene, total (µg/L)</td>
<td>1,4-Dichloro-benzene, total (µg/L)</td>
<td>Dichloro-difluoromethane, total (µg/L)</td>
<td>Trans 1,3-Dichloro-propene, total (µg/L)</td>
<td>Cis 1,3-Dichloro-propene, total (µg/L)</td>
<td>Vinyl chloride, total (µg/L)</td>
<td>Tri-chloro-ethylene, water, recoverable (µg/L)</td>
<td>1,2-Dichloro-ethene, water, total (µg/L)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>10-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>10-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>10-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10-30</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>10-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>11-6</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date</td>
<td>2,2-Dichloropropane, water, whole (µg/L)</td>
<td>1,3-Dichloropropane, water, whole (µg/L)</td>
<td>Orthochlorotoluene, water, whole (µg/L)</td>
<td>Para-chlorotoluene, water, whole (µg/L)</td>
<td>1,2,3-Tetrachloroethane, water, whole (µg/L)</td>
<td>1,2-Dibromoethane, water, whole (µg/L)</td>
<td>Xylene, total recoverable (µg/L)</td>
<td>Bromobenzene, water, whole (µg/L)</td>
<td>1,2-Dibromo-3-chloropropane, EPA method 504 (µg/L)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10-30</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9-28</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10-13</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>11-6</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.03</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Analyses of selected volatile organic compounds—Continued

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Sample date (1989)</th>
<th>Dibromo-methane, water, whole, recoverable (µg/L)</th>
<th>Dibromo-methane, total (µg/L)</th>
<th>Chloroform, total (µg/L)</th>
<th>Chloro-bromomethane, total (µg/L)</th>
<th>Chloroform, total (µg/L)</th>
<th>Toluene, total (µg/L)</th>
<th>Benzene, total (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>3S-6E-28DDC1</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>30</td>
<td>33ADDCl</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>31</td>
<td>33BCC1</td>
<td>11-3</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>32</td>
<td>34DCC1</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>33</td>
<td>35ABB1</td>
<td>9-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>34</td>
<td>35CBB1</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>35</td>
<td>3S-7E-8DBB1</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>36</td>
<td>18CAB1</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>37</td>
<td>19BCC1</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>38</td>
<td>30BACD1</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>39</td>
<td>31CBB1</td>
<td>10-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>40</td>
<td>4S-3E-35BAD1S</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>41</td>
<td>5CAD1S</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>42</td>
<td>5DCA1S</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>43</td>
<td>4S-4E-36AAA1</td>
<td>9-20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>45</td>
<td>4S-5E-9DBA1</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>46</td>
<td>9DCA1</td>
<td>11-3</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>47</td>
<td>10CBD1</td>
<td>11-3</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>48</td>
<td>11BCC1</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>49</td>
<td>15BCC1</td>
<td>9-20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>50</td>
<td>19BCC1</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>51</td>
<td>21CAA1</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>52</td>
<td>22CSC1</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>53</td>
<td>22DAC1</td>
<td>10-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>54</td>
<td>4S-5E-26ADD1</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>55</td>
<td>26CAA1</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>56</td>
<td>26DAD1</td>
<td>9-14</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date</td>
<td>Chloro-benzene, total (µg/L)</td>
<td>Chloro-ethane, total (µg/L)</td>
<td>Ethyl-benzene, total (µg/L)</td>
<td>Methyl-bromide, total (µg/L)</td>
<td>Methylene chloride, total (µg/L)</td>
<td>Tetra-chloro-fluoro-methane, total (µg/L)</td>
<td>1,1-Di-chloro-ethane, total (µg/L)</td>
<td>1,1-Di-chloro-ethylene, total (µg/L)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>29</td>
<td>10-23</td>
<td>< .20</td>
</tr>
<tr>
<td>30</td>
<td>9-25</td>
<td>< .20</td>
</tr>
<tr>
<td>31</td>
<td>11-3</td>
<td>< .20</td>
</tr>
<tr>
<td>32</td>
<td>9-19</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>.60</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
</tr>
<tr>
<td>33</td>
<td>9-18</td>
<td>< .20</td>
</tr>
<tr>
<td>34</td>
<td>9-19</td>
<td>< .20</td>
</tr>
<tr>
<td>35</td>
<td>10-16</td>
<td>< .20</td>
</tr>
<tr>
<td>36</td>
<td>10-16</td>
<td>< .20</td>
</tr>
<tr>
<td>37</td>
<td>10-16</td>
<td>< .20</td>
</tr>
<tr>
<td>38</td>
<td>9-19</td>
<td>< .20</td>
</tr>
<tr>
<td>39</td>
<td>10-25</td>
<td>< .20</td>
</tr>
<tr>
<td>40</td>
<td>10-23</td>
<td>< .20</td>
</tr>
<tr>
<td>41</td>
<td>10-23</td>
<td>< .20</td>
</tr>
<tr>
<td>42</td>
<td>10-23</td>
<td>< .20</td>
</tr>
<tr>
<td>43</td>
<td>9-20</td>
<td>< .20</td>
</tr>
<tr>
<td>45</td>
<td>9-27</td>
<td>< .20</td>
</tr>
<tr>
<td>46</td>
<td>11-3</td>
<td>< .20</td>
</tr>
<tr>
<td>47</td>
<td>11-3</td>
<td>< .20</td>
</tr>
<tr>
<td>48</td>
<td>9-27</td>
<td>< .20</td>
</tr>
<tr>
<td>49</td>
<td>9-20</td>
<td>< .20</td>
</tr>
<tr>
<td>50</td>
<td>9-27</td>
<td>< .20</td>
</tr>
<tr>
<td>51</td>
<td>10-17</td>
<td>< .20</td>
</tr>
<tr>
<td>52</td>
<td>10-17</td>
<td>< .20</td>
</tr>
<tr>
<td>53</td>
<td>11-6</td>
<td>< .20</td>
</tr>
<tr>
<td>54</td>
<td>11-1</td>
<td>< .20</td>
</tr>
<tr>
<td>55</td>
<td>11-1</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>.70</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
</tr>
<tr>
<td>56</td>
<td>9-14</td>
<td>< .20</td>
</tr>
</tbody>
</table>
Table 5.—Analyses of selected volatile organic compounds—Continued

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Sample date (1989)</th>
<th>1,2-Dichlorobenzene, total (μg/L)</th>
<th>1,2-Dichloropropane, total (μg/L)</th>
<th>1,3-Dichlorobenzene, total (μg/L)</th>
<th>1,4-Dichlorobenzene, total (μg/L)</th>
<th>Dichlorodifluoromethane, total (μg/L)</th>
<th>Trans 1,3-Dichloropropene, total (μg/L)</th>
<th>Cis 1,3-Dichloropropene, total (μg/L)</th>
<th>Vinyl chloride, total (μg/L)</th>
<th>Trichloroethylene, whole, recoverable (μg/L)</th>
<th>1,2-Dichloroethene, water, total (μg/L)</th>
<th>1,1-Dichloropropane, water, total (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>10-23</td>
<td><0.20</td>
</tr>
<tr>
<td>30</td>
<td>9-25</td>
<td><0.20</td>
</tr>
<tr>
<td>31</td>
<td>11-3</td>
<td><0.20</td>
</tr>
<tr>
<td>32</td>
<td>9-19</td>
<td><0.20</td>
</tr>
<tr>
<td>33</td>
<td>9-18</td>
<td><0.20</td>
</tr>
<tr>
<td>34</td>
<td>9-19</td>
<td><0.20</td>
</tr>
<tr>
<td>35</td>
<td>10-16</td>
<td><0.20</td>
</tr>
<tr>
<td>36</td>
<td>10-16</td>
<td><0.20</td>
</tr>
<tr>
<td>37</td>
<td>10-16</td>
<td><0.20</td>
</tr>
<tr>
<td>38</td>
<td>9-19</td>
<td><0.20</td>
</tr>
<tr>
<td>39</td>
<td>10-25</td>
<td><0.20</td>
</tr>
<tr>
<td>40</td>
<td>10-23</td>
<td><0.20</td>
</tr>
<tr>
<td>41</td>
<td>10-23</td>
<td><0.20</td>
</tr>
<tr>
<td>42</td>
<td>10-23</td>
<td><0.20</td>
</tr>
<tr>
<td>43</td>
<td>9-20</td>
<td><0.20</td>
</tr>
<tr>
<td>45</td>
<td>9-27</td>
<td><0.20</td>
</tr>
<tr>
<td>46</td>
<td>11-3</td>
<td><0.20</td>
</tr>
<tr>
<td>47</td>
<td>11-3</td>
<td><0.20</td>
</tr>
<tr>
<td>48</td>
<td>9-27</td>
<td><0.20</td>
</tr>
<tr>
<td>49</td>
<td>9-20</td>
<td><0.20</td>
</tr>
<tr>
<td>50</td>
<td>9-27</td>
<td><0.20</td>
</tr>
<tr>
<td>51</td>
<td>10-17</td>
<td><0.20</td>
</tr>
<tr>
<td>52</td>
<td>10-17</td>
<td><0.20</td>
</tr>
<tr>
<td>53</td>
<td>10-18</td>
<td><0.20</td>
</tr>
<tr>
<td>54</td>
<td>11-1</td>
<td><0.20</td>
</tr>
<tr>
<td>55</td>
<td>11-1</td>
<td><0.20</td>
</tr>
<tr>
<td>56</td>
<td>9-14</td>
<td><0.20</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date (1989)</td>
<td>2,2-Dichloropropane, water, whole (µg/L)</td>
<td>1,3-Dichloropropane, water, whole (µg/L)</td>
<td>Ortho-chlorotoluene, water, whole (µg/L)</td>
<td>Para-chlorotoluene, water, whole (µg/L)</td>
<td>1,2,3-Trichloropropane, water, whole (µg/L)</td>
<td>1,1,1,2-Tetrachloroethylene, water, whole (µg/L)</td>
<td>1,2-Dibromoethane, water, whole (µg/L)</td>
<td>Xylene, total recoverable, water, whole (µg/L)</td>
<td>Brombenzene, water, total (µg/L)</td>
<td>1,2-Dibromo-3-chloropropane, EPA method 504 (µg/L)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>11-3</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>10-16</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>9-19</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>10-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>10-23</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>9-20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>11-3</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>11-3</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>9-20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>11-6</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>9-14</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td></td>
</tr>
</tbody>
</table>

Table 5--Analyses of selected volatile organic compounds--Continued
<table>
<thead>
<tr>
<th>Reference number</th>
<th>Well or spring location</th>
<th>Sample date (1989)</th>
<th>Dibromo-methane, water, whole, recoverable (µg/L)</th>
<th>Dibromo-methane, total (µg/L)</th>
<th>Carbon-tetrachloride, total (µg/L)</th>
<th>1,2-Dichloro-ethane, total (µg/L)</th>
<th>Bromoform, total (µg/L)</th>
<th>Chloro dibromo-methane, total (µg/L)</th>
<th>Chloroform, total (µg/L)</th>
<th>Toluene, total (µg/L)</th>
<th>Benzene, total (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>4S-5E-28BAD1</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11- 6</td>
<td>< .20</td>
</tr>
<tr>
<td>58</td>
<td>28DAB1</td>
<td>10-17</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>2.5</td>
<td>1.0</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11- 6</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
<td>3.8</td>
<td>1.6</td>
<td>< .20</td>
<td>< .20</td>
<td>< .20</td>
</tr>
<tr>
<td>59</td>
<td>31ABA1</td>
<td>9-20</td>
<td>< .20</td>
</tr>
<tr>
<td>60</td>
<td>33BBC1</td>
<td>10-17</td>
<td>< .20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11- 6</td>
<td>< .20</td>
</tr>
<tr>
<td>61</td>
<td>33CDB1</td>
<td>10-18</td>
<td>< .20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11- 6</td>
<td>< .20</td>
</tr>
<tr>
<td>62</td>
<td>4S-6E- 1BAA1</td>
<td>10-25</td>
<td>< .20</td>
</tr>
<tr>
<td>63</td>
<td>2DAA1</td>
<td>10-24</td>
<td>< .20</td>
</tr>
<tr>
<td>64</td>
<td>3BBC1</td>
<td>10-26</td>
<td>< .20</td>
</tr>
<tr>
<td>65</td>
<td>3DAA1</td>
<td>10-25</td>
<td>< .20</td>
</tr>
<tr>
<td>66</td>
<td>7CCB1</td>
<td>11- 1</td>
<td>< .20</td>
</tr>
<tr>
<td>67</td>
<td>7DBB1</td>
<td>10-12</td>
<td>< .20</td>
</tr>
<tr>
<td>68</td>
<td>10DDB1</td>
<td>10-18</td>
<td>< .20</td>
</tr>
<tr>
<td>69</td>
<td>11DCC1</td>
<td>11- 2</td>
<td>< .20</td>
</tr>
<tr>
<td>70</td>
<td>12DAA1</td>
<td>10-31</td>
<td>< .20</td>
</tr>
<tr>
<td>71</td>
<td>13AAA1</td>
<td>9-26</td>
<td>< .20</td>
</tr>
<tr>
<td>72</td>
<td>13ABA1</td>
<td>10-12</td>
<td>< .20</td>
</tr>
<tr>
<td>73</td>
<td>13DDD1</td>
<td>10-24</td>
<td>< .20</td>
</tr>
<tr>
<td>74</td>
<td>14BBA1</td>
<td>9-26</td>
<td>< .20</td>
</tr>
<tr>
<td>75</td>
<td>14CCB1</td>
<td>10-26</td>
<td>< .20</td>
</tr>
<tr>
<td>76</td>
<td>15BCB1</td>
<td>11- 2</td>
<td>< .20</td>
</tr>
<tr>
<td>77</td>
<td>15DCD1</td>
<td>9-25</td>
<td>< .20</td>
</tr>
<tr>
<td>78</td>
<td>19BAC1</td>
<td>9-21</td>
<td>< .20</td>
</tr>
<tr>
<td>79</td>
<td>24ADD1</td>
<td>10-24</td>
<td>< .20</td>
</tr>
<tr>
<td>80</td>
<td>24CCB1</td>
<td>10-12</td>
<td>< .20</td>
</tr>
<tr>
<td>81</td>
<td>31DDD1</td>
<td>9-25</td>
<td>< .20</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date (1989)</td>
<td>Chloro­benzene, total (µg/L)</td>
<td>Chloro­ethane, total (µg/L)</td>
<td>Ethyl­benzene, total (µg/L)</td>
<td>Methyl­bromide, total (µg/L)</td>
<td>Methylene chloride, total (µg/L)</td>
<td>Tetra­chloro­ethylene, total (µg/L)</td>
<td>Tri­chloro­fluoro­methane, total (µg/L)</td>
<td>1,1-Di­chloro­ethane, total (µg/L)</td>
<td>1,1-Di­chloro­ethylene, total (µg/L)</td>
<td>1,1,1­Tri­chloro­ethane, total (µg/L)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>57</td>
<td>10-17</td>
<td><0.20</td>
</tr>
<tr>
<td>58</td>
<td>11-6</td>
<td><0.20</td>
</tr>
<tr>
<td>59</td>
<td>9-20</td>
<td><0.20</td>
</tr>
<tr>
<td>60</td>
<td>10-17</td>
<td><0.20</td>
</tr>
<tr>
<td>61</td>
<td>11-6</td>
<td><0.20</td>
</tr>
<tr>
<td>62</td>
<td>10-25</td>
<td><0.20</td>
</tr>
<tr>
<td>63</td>
<td>10-24</td>
<td><0.20</td>
</tr>
<tr>
<td>64</td>
<td>10-26</td>
<td><0.20</td>
</tr>
<tr>
<td>65</td>
<td>10-25</td>
<td><0.20</td>
</tr>
<tr>
<td>66</td>
<td>11-1</td>
<td><0.20</td>
</tr>
<tr>
<td>67</td>
<td>10-12</td>
<td><0.20</td>
</tr>
<tr>
<td>68</td>
<td>10-18</td>
<td><0.20</td>
</tr>
<tr>
<td>69</td>
<td>11-2</td>
<td><0.20</td>
</tr>
<tr>
<td>70</td>
<td>10-31</td>
<td><0.20</td>
</tr>
<tr>
<td>71</td>
<td>9-26</td>
<td><0.20</td>
</tr>
<tr>
<td>72</td>
<td>10-12</td>
<td><0.20</td>
</tr>
<tr>
<td>73</td>
<td>10-24</td>
<td><0.20</td>
</tr>
<tr>
<td>74</td>
<td>9-26</td>
<td><0.20</td>
</tr>
<tr>
<td>75</td>
<td>10-26</td>
<td><0.20</td>
</tr>
<tr>
<td>76</td>
<td>11-2</td>
<td><0.20</td>
</tr>
<tr>
<td>77</td>
<td>9-25</td>
<td><0.20</td>
</tr>
<tr>
<td>78</td>
<td>9-21</td>
<td><0.20</td>
</tr>
<tr>
<td>79</td>
<td>10-24</td>
<td><0.20</td>
</tr>
<tr>
<td>80</td>
<td>10-12</td>
<td><0.20</td>
</tr>
<tr>
<td>81</td>
<td>9-25</td>
<td><0.20</td>
</tr>
</tbody>
</table>

Table 5.—Analyses of selected volatile organic compounds—Continued
<table>
<thead>
<tr>
<th>Reference number</th>
<th>Sample date (1989)</th>
<th>1,2-Dichlorobenzene, total (µg/L)</th>
<th>1,2-Dichloropropane, total (µg/L)</th>
<th>1,3-Dichlorobenzene, total (µg/L)</th>
<th>1,4-Dichlorobenzene, total (µg/L)</th>
<th>Dichlorodifluoromethane, total (µg/L)</th>
<th>Trans 1,3-Dichlorobenzene, total (µg/L)</th>
<th>Cis 1,3-Dichlorobenzene, total (µg/L)</th>
<th>Vinyl chloride, total (µg/L)</th>
<th>Trichloroethylene, whole, recoverable (µg/L)</th>
<th>Styrene, whole, total (µg/L)</th>
<th>1,1-Dichloropropene, whole (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>1.2</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>58 10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>1.3</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>59 9-20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0.3</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>60 10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>1.2</td>
<td>0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>61 10-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>1.4</td>
<td>0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>62 10-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>63 10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>64 10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>65 10-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td>0.3</td>
<td>0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>66 11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>67 10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>68 10-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>69 11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>70 10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>71 9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>72 10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>73 10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>74 9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>75 10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>76 11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>77 9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>78 9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>79 10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>80 10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>81 9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0</td>
<td><0</td>
<td><0</td>
<td><0.2</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.—Analyses of selected volatile organic compounds—Continued

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Sample date (1989)</th>
<th>2,2-Dichloropropane, water, whole, total (µg/L)</th>
<th>1,3-Dichloropropane, water, whole, total (µg/L)</th>
<th>Orthochlorotoluene, water, whole, total (µg/L)</th>
<th>Para-chlorotoluene, water, whole, total (µg/L)</th>
<th>1,2,3-Tri-chloropropane, water, whole, total (µg/L)</th>
<th>1,1,2-Tetra-chloroethane, water, whole, total (µg/L)</th>
<th>1,2-Dibromoethane, water, whole, recoverable (µg/L)</th>
<th>Xylene, total water, whole, recoverable (µg/L)</th>
<th>Bromobenzene, water, whole, total (µg/L)</th>
<th>1,2-Dibromo-3-chloropropane, EPA method 504 (µg/L)</th>
<th>1,2-Dibromoethane, EPA method 504 (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>58</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>59</td>
<td>11-6</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>60</td>
<td>10-17</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>61</td>
<td>10-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>62</td>
<td>11-6</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>63</td>
<td>10-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>64</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>65</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>66</td>
<td>11-1</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>67</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>68</td>
<td>10-18</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>69</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>70</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>71</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>72</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>73</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>74</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>75</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>76</td>
<td>11-2</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>77</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>78</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>79</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>80</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>81</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.04</td>
</tr>
<tr>
<td>Reference number</td>
<td>Well or spring location</td>
<td>Sample date (1989)</td>
<td>Dibromo-methane, water, whole, recoverable (µg/L)</td>
<td>Dichloro-bromomethane, total (µg/L)</td>
<td>Carbon-tetrachloride, total (µg/L)</td>
<td>1,2-Dichloroethane, total (µg/L)</td>
<td>Bromoform, total (µg/L)</td>
<td>Chlorodibromomethane, total (µg/L)</td>
<td>Chloroform, total (µg/L)</td>
<td>Toluene, total (µg/L)</td>
<td>Benzene, total (µg/L)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4S-6E-35DCA1</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>4S-7E-6BCB1</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>7BBB1</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>7DAA1</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>16BBA1</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>17CAB1</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>18AAA1</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>5S-4E-5ABB1</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11DCA1</td>
<td>11-14</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>5S-6E-5AC1</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>3BCA1</td>
<td>9-14</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>6BBB1</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>6DBA1</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>8ADD1</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date (1989)</td>
<td>Chlorobenzene, total (µg/L)</td>
<td>Chloroethane, total (µg/L)</td>
<td>Ethylbenzene, total (µg/L)</td>
<td>Methylbromide, total (µg/L)</td>
<td>Methylene chloride, total (µg/L)</td>
<td>Tetrachloroethylene, total (µg/L)</td>
<td>1,1-Dichloroethylene, total (µg/L)</td>
<td>1,1,1-Trichloroethane, total (µg/L)</td>
<td>1,1,2-Trichloroethane, total (µg/L)</td>
<td>1,1,2,2-Tetrachloroethane, total (µg/L)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>10-12</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>10-31</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>10-24</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>10-31</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>9-26</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>9-26</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>10-26</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>9-25</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11-14</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>9-27</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>9-14</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>9-21</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>9-21</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>9-21</td>
<td><.20</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>9-21</td>
<td><.20</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.--Analyses of selected volatile organic compounds--Continued

<table>
<thead>
<tr>
<th>Reference number</th>
<th>Sample date (1989)</th>
<th>1,2-Dichlorobenzene, total (µg/L)</th>
<th>1,2-Dichloropropane, total (µg/L)</th>
<th>1,3-Dichlorobenzene, total (µg/L)</th>
<th>1,4-Dichlorobenzene, total (µg/L)</th>
<th>Dichlorodifluoromethane, total (µg/L</th>
<th>Trans 1,3-Dichloropropene, total (µg/L)</th>
<th>Cis 1,3-Dichloropropene, total (µg/L)</th>
<th>Vinyl chloride, total (µg/L)</th>
<th>Trichloroethylene, total recoverable (µg/L)</th>
<th>1,2-Dichloroethene, water, total (µg/L)</th>
<th>1,1-Dichloropropene, water, total (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>10-12</td>
<td><0.20</td>
</tr>
<tr>
<td>83</td>
<td>10-31</td>
<td><0.20</td>
</tr>
<tr>
<td>84</td>
<td>10-24</td>
<td><0.20</td>
</tr>
<tr>
<td>85</td>
<td>10-31</td>
<td><0.20</td>
</tr>
<tr>
<td>86</td>
<td>9-26</td>
<td><0.20</td>
</tr>
<tr>
<td>87</td>
<td>9-26</td>
<td><0.20</td>
</tr>
<tr>
<td>88</td>
<td>10-26</td>
<td><0.20</td>
</tr>
<tr>
<td>89</td>
<td>9-25</td>
<td><0.20</td>
</tr>
<tr>
<td>90</td>
<td>11-14</td>
<td><0.20</td>
</tr>
<tr>
<td>92</td>
<td>9-27</td>
<td><0.20</td>
</tr>
<tr>
<td>93</td>
<td>9-14</td>
<td><0.20</td>
</tr>
<tr>
<td>94</td>
<td>9-21</td>
<td><0.20</td>
</tr>
<tr>
<td>95</td>
<td>9-21</td>
<td><0.20</td>
</tr>
<tr>
<td>96</td>
<td>9-21</td>
<td><0.20</td>
</tr>
<tr>
<td>Reference number</td>
<td>Sample date (1989)</td>
<td>2,2-Dichloropropane, water, total (µg/L)</td>
<td>1,3-Dichloropropane, water, total (µg/L)</td>
<td>Ortho-chlorotoluene, water, total (µg/L)</td>
<td>Para-chlorotoluene, water, total (µg/L)</td>
<td>1,2,3-Trichloropropane, water, total (µg/L)</td>
<td>1,1,1,2-Tetrachloroethane, water, total (µg/L)</td>
<td>Xylene, total water, recoverable total (µg/L)</td>
<td>Bromobenzene, water, total (µg/L)</td>
<td>1,2-Dibromoethane, EPA method 504 (µg/L)</td>
<td>1,2-Dibromo-3-chloropropane, EPA method 504 (µg/L)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>10-12</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>10-24</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>10-31</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>9-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>10-26</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>9-25</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11-14</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>9-27</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>9-14</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>9-21</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.04</td>
<td><0.03</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.--National primary drinking-water limits for volatile organic compounds \(^1\)

[mg/L, milligrams per liter; \(\mu g/L\), micrograms per liter]

<table>
<thead>
<tr>
<th>Volatile organic compound</th>
<th>National public drinking-water limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total trihalomethanes [the sum of the concentrations of dichlorobromomethane, bromoform (tribromomethane), chlorodibromomethane, and chloroform (trichloromethane)]</td>
<td>0.1 mg/L (100 (\mu g/L))</td>
</tr>
<tr>
<td>Benzene</td>
<td>.005 mg/L (5 (\mu g/L))</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>.005 mg/L (5 (\mu g/L))</td>
</tr>
</tbody>
</table>

\(^1\) U.S. Environmental Protection Agency, 1988a.