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CONVERSION FACTORS AND ABBREVIATIONS

Metric (International System) units used in this report may be converted
to inch-pound units by use of the following conversion factors:

Multiply Metric Unit By To Obtain Inch-Pound Unit

micrometer {(um) 0.00003937 inch (in.)

millimeter {(mm) 0.03937 inch (in.)

meter (m) 3.281 foot (ft)

kilometer (km) 0.6214 mile (mi)

cubic meter (m3) 35.31 cubic foot (ft3)

hectare (ha) 2.4M acre

kilogram (kg) 2.205 pound, avoirdupois (1b)

gram (g) 0.03527 ounce, avoirdupois (oz)

liter (L) 0.2642 gallon (gal)

liter (L) 33.82 ounce, fluid (oz)

milliliter (mL) 0.03382 ounce, fluid (oz)

gram per cubic centimeter 0.5782 ounce per cubic inch
(g/cm3) (0z/in3)

square meter per gram 304.2 square foot per ounce
(m2/g) (ft2/0z)

kilopascal (kPa) 0.1450 pound per square inch (lb/inZ2)

0.009869 atmosphere (atm)
degree Celsius (°C) °F=1.8 x °C + 32 degree Fahrenheit (°F)

- am wm wm am wm w e e e em e e e wm wn e w w e e wm e mm e e e w w w em ws s s ws s we = =
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CONVERSION

»

Multiply Metric Unit

nanocurie (nCi)

nanocurie per liter (nCi/L)
nanocurie per liter (nCi/L)
picocurie per gram (pCi/g)
milligrams per liter (mg/L)
micrograms per liter (ug/L)

milligrams per liter calcium
carbonate (mg/L CaCO3)

Milligrams per liter (mg/L)

FACTORS AND ABBREVIATIONS

By To Obtain Inch-Pound Unit
0.02702 becquerel (BQq)
37.01 becquerel per liter (Bq/L)
310.6 tritium unit (TU)
0.03701 becquerel per gram (Bg/g)
1.00 parts per million (ppm)
1.00 parts per billion (ppb)
1.219 milligrams per liter bicarbonate

x F1 - milliequivalents per liter (meq/L);

milligrams per liter (mg/L) x F2 - millimoles per liter (mmols/L)

Bicarbonate (HCO37)
Calcium (ca*™)
Chloride (Cl7)

Iron (Fe)
Magnesium (Mg'™t)
Silica (Sio,)
Sodium (Na*)
strontium (sr**)
Sulfate (SO04™7)
zinc (zn*")

F1 F2
0.01639 0.01639
.04990 .02495
.02821 .02821
—-—- 01791
.08229 .04114
- .01664
.04350 .04350
.02283 01141
.02082 .01041
.03059 .01530

Sea level: In this report, "sea level"” refers to the National Geodetic
Vertical Datum of 1929 (NGVD of 1929)-~a geodetic datum derived from a general
adjustment of the first-order level nets of both the United States and Canada,
formerly called Sea Level Datum of 1929,

viii



EFFECTS OF LOW-LEVEL RADIOACTIVE-WASTE DISPOSAL ON WATER CHEMISTRY IN

THE UNSATURATED ZONE AT A SITE NEAR SHEFFIELD, ILLINOIS, 1982-84

By C.A. Peters, R.G. Striegl, P.C. Mills, and R.W. Healy

ABSTRACT

A 1982-84 field study defined the chemistry of water collected from the
unsaturated zone at a low-level radioactive-waste disposal site near Sheffield,
Bureau County, Illinois. Chemical data were evaluated to determine the prin-
cipal naturally occurring geochemical reactions in the unsaturated zone and to
evaluate waste-induced effects on pore-water chemistry.

Samples of precipitation, unsaturated-zone pore water, and saturated-zone
water were analyzed for specific conductance, pH, alkalinity, major cations
and anions, dissolved organic carbon, gross alpha and beta radiation, and
tritium. Little change in concentration of most major constituents in the
unsaturated-zone water was observed with respect to depth or distance from
disposal trenches. Tritium and dissolved organic carbon concentrations were,
however, dependent on proximity to trenches. The primary reactions, both on-
site and off-site, were carbonate and clay dissolution, cation exchange, and
the oxidation of pyrite.

The major difference between on-site and off-site inorganic water chemis-
try resulted from the removal of the Roxana Silt and the Radnor Till Member of
the Glasford Formation from on-site. Off-site, the Roxana Silt contributed
substantial quantities of sodium to solution from montmorillonite dissolution
and associated cation-exchange reactions. The Radnor Till Member provided
exchange surfaces for magnesium.

Precipitation at the site had an ionic composition of calcium zinc sulfate
and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating
rain water or snowmelt changed to an ionic composition of calcium sulfate off-
site and calcium bicarbonate on-site and had an average pH of 7.9; below that
depth, pH averaged 7.5 and the ionic composition generally was calcium magne-
sium bicarbonate. Alkalinity and specific conductance differed primarily
according to composition of geologic materials. Tritium concentrations ranged
from 0.2 (detection limit) to 1,380 nanocuries per liter.

The methods of constructing, installing, and sampling with lysimeters
were evaluated to ensure data reliability. These evaluations indicate that,
with respect to most constituents, the samples retrieved from the lysimeters
accurately represented pore-water chemistry.



INTRODUCTION

Disposal of low-level radioactive waste in Pleistocene and Holocene
deposits near Sheffield, Bureau County, Illinois (fig. 1), has caused
rearrangement of existing geologic materials and placed chemically reactive
and potentially hazardous substances in the unsaturated zone. In order to
improve understanding of the hydrologic effects of the disposal operations,
the U.S. Geological Survey began a series of field investigations at the
disposal site in 1976. This study of the hydrogeochemistry of the unsaturated
zone is one part of that research effort.

Purpose and Scope

This report details the changes in the chemistry of pore water as it in-
filtrates through areas undisturbed and disturbed by waste-disposal operations.
The report (1) describes the techniques used to obtain representative samples
of geologic materials and water fram the unsaturated zone; (2) describes the
chemistry of geologic materials and water in the unsaturated and saturated
zones at off-site and on-site locations; and (3) infers, by statistical analy-
sis and use of geochemical models, the geochemical reactions that occur
naturally in the unsaturated zone and the effects of low-level radioactive-
waste disposal on pore-water chemistry.

Site History

The Sheffield low-level radioactive-waste disposal site is located on
8.1 hectares of rolling terrain 5 km (kilometers) southwest of Sheffield,
Illinois (figs. 1 and 2). The site was established by authority of the 1963
Illinois Radioactive Waste Act to dispose of wastes generated in Illinois by
nuclear plants, hospitals, medical research facilities, and industry. Twenty-
one trenches (fig. 3) were excavated and filled with solidified low-level
radioactive waste. The trenches were backfilled with earthen material, and,
for some trenches, a layer of clayey silt was compacted over the backfill. The
compacted layer inhibits the infiltration of precipitation into the trenches.
Additional earthen material was mounded lengthwise over the trenches to form
ridges that direct runoff from the trench caps (fig. 4).

Burial of waste at the disposal facility was terminated in 1978 because
all licensed space had been used. During the period 1967-78, nearly 90,500 m
(cubic meters) of waste were buried, including 13,000 g (grams) of plutonium-
239, 1.7 g of uranium-233, 40,000 g of uranium-235, and 270,000 kg (kilograms)
of source material (K. Dragonette, U.S. Nuclear Requlatory Commission, written
commun., 1979). The buried wastes include such items as resins, the carcasses
of laboratory animals, sorbed liquids, glassware, building materials, clothing,
containerized gases, paper, and cleanup materials (Foster and others, 1984).
Containment vessels for these materials include steel drums, wooden crates,
plastic containers, concrete casks, and cardboard cartons. A chemical-waste
disposal facility is located northwest of the site and is separated by a 60-m
(meter)-wide buffer zone.
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Figure 4.--Side and end views of a typical trench (modified
from Foster and others, 1984, fig. 4).

Related Studies

Reports on hydrology, geology, and water quality at the Sheffield site
(Foster and Brickson, 1980; Foster and others, 1984, 1984a, and 1984b) pro-
vided much of the background information for this study. A Brookhaven
National Laboratory study (Piciulo and others, 1982) contributed information
on chemical and physical properties of geologic materials in the unsaturated
zone. Other investigations of the unsaturated zone at the site concern the
role of trench caps in inhibiting infiltration (Healy, 1989), the deter-
mination of evapotranspiration from trench caps (Healy and others, 1989), the
modeling of unsaturated-zone water flow (Mills and Healy, 1991), and a study
of gas transport (Striegl, 1988).



Data-collection techniques used in this and other unsaturated-zone
investigations at the site are described in Healy and others (1986). A tunnel

originally constructed for the study by Foster and others (1984) was used to

provide access for sampling directly beneath several trenches on-site. The
90-m-long by 2-m-diameter tunnel extends northward under the eastern ends of

trenches 11, 3, 2, and 1 (fig. 3).
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DESCRIPTION OF STUDY AREA
Climate

The climate at Sheffield is continental, characterized by an average
annual temperature of 10 °C (degrees Celsius) (State of Illinois, 1958), with
warm, humid summers (average temperature, 22.2 °C) and cold winters (average
temperature, 7.5 °C) (Wallace, 1980, p. 26-28). Average annual precipitation
computed from records of three National Weather Service stations located within
25 km of the site (fig. 1) was 890 mm (millimeters) for the period 1939 through
1979 (U.S. Department of Commerce, 1939-79). There is a dry period, November
through March; a wet period, April through July; and a moderate period, August
through October. During the study, monthly precipitation averaged 49.3 mm
during the dry period, 107 mm during the wet period, and 80.8 mm during the
moderate period. Additional information concerning precipitation and evapo-
transpiration can be found in Healy and others (1989).

Geology

The site is located in the Galesburg Plain Division of the Till Plains
Physiographic Region (Thornburn, 1963) and is characterized by Illinoian till
plains that have an undulant surface. The tills have weathered zones up to
2-m thick and leached zones up to 4-m thick (Piskin and Bergstrom, 1975, p.
11-17). Present topography generally reflects the preglacial bedrock surface.

The stratigraphic nomenclature used in this report is that of the
Illinois State Geological Survey (Willman and Frye, 1970, p. 12) and does not
necessarily follow the usage of the U.S. Geological Survey. Figure 5 shows
the time-stratigraphic and rock-stratigraphic classification.
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Figure 5.--Time-stratigraphic and rock-stratigraphic classification
of the Illinois State Geological Survey (modified from
Willman and Frye, 1970, fig. 1).

Quaternary deposits form the unconsolidated geologic cover and vary in
thickness from 3 to 28 m. These deposits include eight rock-stratigraphic
units (fig. 5) (Foster and others, 1984) that range in lithology from a silty
clay to a pebbly sand. Areal and vertical distribution of these units varies
greatly across the site (figs. 7 and 8, lines of section in fig. 6). The
units overlie about 140 m of bedrock composed of fossiliferous shale, coal,
and mudstone of the Pennsylvanian Carbondale Formation (H., W. Smith, Illinois
State Geological Survey, written commun., 1966).

The oldest Quaternary deposit at the Sheffield site (fig. 5) is the
Pleistocene Duncan Mills Member of the Glasford Formation (Willman and Frye,
1970, p. 12) that consists of silt interbedded with silty clay and some pebbly
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The next oldest unit is the Hulick Till Member of the

silty sand layers.
The textural composition of the Hulick Till Member ranges

Glasford Formation.
from clayey silt to sandy silty clay.

The Toulon Member of the Glasford Pormation, a channel-like outwash

deposit, consists of a well-sorted, pebbly sand grading to a pebbly silty sand.
The Radnor Till Member of the Glasford Formation, present only in the southern

half of the site, consists of a clayey silt or a sandy silty clay (Foster and
others, 1984, p. 14). The Berry Clay Member of the Glasford Formation is an

accretion~gley deposit; because it is restricted to a few locations in the
western part of the site, it was not evaluated in this study.
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During the Wisconsinan, glacial ice did not cover the Sheffield site;
eolian and other postglacial materials were deposited there. Wisconsinan
eolian deposits are designated as the Roxana Silt and the Peoria Loess.
Deposition of Cahokia Alluvium, a sandy silt, began in the Wisconsinan and
extended into the Holocene; because it is restricted to the northeastern
corner of the site, it was not evaluated in this study.

The last major soil development began in the Holocene and continues to
the present. This soil is developed in the upper part of the Peoria loess and
has been designated as Modern soil. The uppermost layer of material at the
site is the fill material, brought in for construction of trench caps and to
fill low areas. Composition of the fill ranges from silt to silty clay
(Foster and others, 1984, p. 15).

Hydrology

The average annual precipitation measured at the site for the period
July 1982 through June 1984 was 948 mm (Mills and Healy, 1991). Mills and
Healy (1991) also estimated that average annual evapotranspiration was 657 mm,
runoff was 220 mm, and recharge to the unsaturated and/or saturated zone was
131 mm, Runoff that originates on the site drains to Lawson Creek, about 1.6
km east of the site (fig. 9).

Ground water in the Pleistocene deposits flows to the east and discharges
to a strip-mine lake 0.4 km from the site (fig. 9). Ground-water flow is pri-
marily within the pebbly sand of the Toulon Member. Altitude to the saturated
zone ranges from 8 to 16 m and is highly variable. The altitude of the water
table beneath the study area changes by as much as 6 m over a distance of 60 m.

All of the Quaternary deposits that have been identified at the site are
present within the unsaturated zone. BAll trenches, with the possible excep-
tion of trench 18, were constructed entirely within the unsaturated zone.

Percolation of water to the saturated zone generally occurs only during
spring. The rest of the year there is less water movement in the unsaturated
zone because of frozen ground and low precipitation in the winter, high evapo-
transpiration during the summer, and moderate precipitation during the fall.

Water movement through the unsaturated zone is complex because of
seasonal variations of precipitation and evapotranspiration, physical hetero-
geneity of the waste trenches, and variability in areal distribution and
physical character of the unconsolidated surficial deposits. The direction of
water movement within the unsaturated zone is primarily downward. The
layering of the different geologic units affects the direction as well as the
rate of water (Mills and Healy, 1987). Sloping interfaces between geologic
units, as shown in figure 10, may function as preferential pathways, adding a
horizontal component to unsaturated-zone flow. Throughout the length of the
tunnel, the sand-silt-clay Hulick Till Member is overlain by well-sorted,
medium-grained sand of the Toulon Member. The saturated hydraulic conduc-
tivity for the sand is about three orders of magnitude greater than for the
till (Poster and others, 1984, p. 18), and the interface between the sand and

12
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till units has a steep slope near the north end of the tunnel (fig. 10).
Because the hydraulic conductivity for the till is much less than for the
sand, the water content of the sand becomes nearly saturated at the interface
and water tends to move along the interface instead of through the till
(Foster and others, 1984, p. 17). The effects of interfaces between other
units are more difficult to interpret because the differences in hydraulic
conductivity are smaller and interface slopes are not nearly as steep as for
the sand/till interface. Figure 10 also shows probable flow paths for water

movement through the unsaturated zone at geologic section A-A'. Ground-water
flux along each of these paths was not quantified.

METHODS OF INVESTIGATION

Collection and Analysis of Geologic Materials

Physical and chemical properties of geologic materials were determined
from core samples removed during the drilling of boreholes and the installa-
tion of sampling equipment. Physical properties tested included particle-size
distributions, surface area, bulk density, and porosity. Chemical properties
tested were carbonate and clay mineralogies; petrography of fine sands; cation-
exchange capacity; exchangeable calcium, magnesium, and iron concentrations;
pH; and percent organic content. Geologic materials were analyzed according

to methods outlined in table 1. Figure 3 shows locations where samples were
collected for analyses of physical and chemical properties.

Samples of fill material, Peoria Loess, and the Toulon Member and Hulick
Till Member of the Glasford Formation were obtained during installation of many
of the lysimeters and were analyzed for the above-listed physical properties
and gross alpha and beta radiation. Gamma-spectral analyses for non-naturally
occurring gamma-emitting radionuclides and high concentrations of naturally
occurring gamma-emitters were performed on four cores collected from between
the top of the tunnel and the bottom of trenches 2 and 3.

Samples of fill material, Peoria Loess, Roxana Silt, Radnor Till Member
of the Glasford Formation, and Toulon Member from nine different well borings
(Foster and others, 1984b) were analyzed for particle-size distribution,
mineralogic composition, clay mineralogy, and cation-exchange capacity.
Samples of Peoria Loess, Roxana Silt, Radnor Till Member, Toulon Member, and
Hulick Till Member also were analyzed for cation-exchange capacity, pH,
calcium, magnesium, iron, and percent iron, percent carbonates, and percent
organic matter (Piciulo and others, 1982).

Samples of geologic materials were obtained by driving 25-, 50-, or
75-mm-diameter sampling tubes into sediments and by using split-spoon samplers.
Samples were removed from the tubes by extrusion or by cutting the tube length-

wise (Healy and others, 1986, p. 29).

Sample-collection procedures can introduce substantial error in physical
and chemical measurements. Stainless-steel samplers were used to prevent chemi-
cal reactions that may occur between wet soils and samplers. Cores were sealed
from the atmosphere during storage to prevent loss of water by evaporation.

15



Table 1.--Laboratory procedures for analyses of physical and chemical
: properties of geologic materials

-~

Property : - Analytical method Reference Agency !
Particle size Pipette Day, 1965 ISGS, USGS,
UI Geo.
Bulk density Core Blake, 1965 USGS IL Dist.

Carbonate
mineralogy

Clay
mineralogy

Total
mineralogy

pH
Organic
matter

Soluble ions

Gamma spectral
Cation exchange
capacity

Porosity

Surface area

Chittick analysis
X-ray diffraction

Petrographic
analysis

1:1 distilled water
to soil mixture

Ignition

X-ray flourescence,
Neutron activation,
Atomic adsorption,
Gravimetric

Gamma-ray
spectrometry

Ammonium displacement

Calculated (BD/SPD2),

Mercury porsimeter

Nitrogen adsorption

by Monosorb analyzer

Dreimanis, 1962

Hurlbut and
Klein, 1977

Hurlbut and
Klein, 1977

Pietrzak and
Dayal, 1982

Broadbent, 1973

Pietrzak and
Dayal, 1982

Crouthamel, 1970

Chapman, 1965

Freeze and
Cherry, 1979

Vomocil, 1965
Brunaer, Emmett,

and Teller, 1938

BNL, UW Geo.,
UI Geo.

ISGS

UI Geo.

BNL

BNL

BNL

USGS IL Dist.,
UI ERL

USGS, BNL,
UI Geo.

USGS IL Dist.

USGS
USGS NRP

1 1SGS - Illinois State Geological Survey;
UI Geo. - University of Illinois Geology Department;

USGS - U.S8. Geological Survey laboratory

at Denver, Colorado;

USGS IL Dist. - U.S. Geological Survey laboratory at Urbana, Illinois;

BNL - Brookhaven National Laboratory:;

UW Geo. - University of Wisconsin Geology Department;
UI ERL ~- University of Illinois Environmental Resources Laboratory; and
USGS NRP - U.S. Geological Survey laboratory at Reston, Virginia.

2 BD/SPD - Bulk density/Standard particle density of 2.65 grams per cubic

centimeter.
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Collection and Analysis of Water Samples

Water samples were collected from a rain collector, pore-water pressure-
vacuum lysimeters, ground-water observation wells, and soil cores. Specific
conductance, pH, alkalinity, and concentrations of major cations, anions,
dissolved organic carbon (DOC), gross alpha and beta radiation, and tritium
were measured in water samples. Tritium is a radioisotope of hydrogen that
decays by pure beta emission and has a half life of 12.3 years.

Water Analysis

Specific conductance was measured in the field for all sample volumes
greater than 10 mL (milliliters). Measurements of pH in water were made in
the field using a pH meter and combination glass electrode (Skougstad and
others, 1979, p. 543). Mean pH values were derived by converting pH units to
hydrogen-ion concentrations, determining mean concentrations, and converting
the means back to pH units.

Alkalinity was determined by incremental electrometric titration (Barnes,
1964, p. 17) using 5 to 100 mL of sample. For the range in pH that was
measured, titrated alkalinity was assumed to be bicarbonate-ion alkalinity.

Major ions, metals, and DOC were analyzed at the Illinois Environmental
Protection Agency (IEPA) lab using methods described by IEPA (1982) and at the
U.S. Geological Survey National Water Quality Laboratory in Doraville, Georgia,
using methods described by Skougstad and others (1979). Samples for metals
analysis were acidified in the field with nitric acid to a pH of 2 and were
kept chilled. Samples for DOC analysis were filtered through a silver filter
in the field using a stainless-steel filter chamber. Dissolved-organic-carbon
samples were kept chilled and dark until analyzed.

Gross alpha and beta radiation were measured with a NMC Model PC-5! gas
proportional counter (Nuclear Measurements Corporation, 1975). Tritium con-
centrations were measured by liquid scintillation (Thatcher and others, 1977,
p. 63-71). Two counts of 200 minutes each were made of each sample, using a
Beckman LS100 scintillation counter. Duplicate counts, analyses of replicate
samples by other labs, and longer-than-recommended count periods were employed
for quality control.

The limit of detection of tritium by the liquid scintillation counting
method is about 0.2 nCi/L (nanocuries per liter) (62.1 tritium units) (Thatcher
and others, 1977, p. 79); this value is considered to be the background concen-
tration of tritium at the Sheffield site. The accuracy of the method used for
tritium analysis did not allow determination of actual tritium concentrations;
the method did allow distinguishing between values at +10 percent.

lyse of brand names in this report is for identification purposes only and
does not constitute endorsement by the U.S. Geological Survey.
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Collection of Precipitation Samples

Precipitation samples were collected using a stainless-steel rain collec-
tor with a 300-mm opening on top that drained immediately into a polyethylene
bottle (Brackensiek and others, 1979, p. 32-36). The collector was located at
a height of 2.5 m above land surface near borehole 585 (fig. 6). The precipi-
tation-collection system was cleaned with laboratory-glassware detergent and
rinsed thoroughly with distilled water before each sample was collected.
Samples were collected from six rainstorms between June and December 1983.
Specific conductance, pH, alkalinity, and tritium concentrations were measured
for all samples, and major ions were analyzed for three samples.

High values of zinc in precipitation samples suggested possible contamina-
tion problems. To determine if the samples were contaminated with zinc by the
collection apparatus, distilled water (pH 5.9) was poured through the apparatus
and then analyzed for zinc. The average concentration of zinc in these samples
was 40 ug/L (micrograms per liter) as compared to an average zinc concentration
in rain water of 1,300 ug/L.

Collection of Water Samples from the Unsaturated Zone

Pore-water pressure-vacuum lysimeters (vacuum lysimeters) were used to
collect pore-water samples from the unsaturated zone. Vacuum lysimeters con-
sist of a porous-ceramic cup attached to one end of a cylinder that has an
air-tight plug fitted in its other end. Two tubes lead through the plug into
the cylinder, with one ending near the plug and the other ending proximal to
the base of the cup. The tubes lead to land surface where each is terminated
with a gas-tight valve (fig. 11). To collect water, a vacuum that exceeds the
existing soil-water tension is applied to the lysimeter (Healy and others,
1986, p. 28). The resulting pressure gradient causes water to flow through
the ceramic cup into the lysimeter. Pore-water samples are withdrawn by
opening the valves on the access tubes and applying positive pressure with
compressed nitrogen gas to the upper tubing, forcing water up the lower access
tube and out of the lysimeter. Details of construction and installation of
vacuum lysimeters are described by Healy and others (1986). Pore-water samples
are filtered as they pass through the lysimeter cup; therefore, only dissolved
fractions were measured.

Vacuum lysimeters allow numerous samples to be obtained from the same
location at a relatively inexpensive cost. There are several problems inherent
in their operation. These include (1) the materials that lysimeters are con-
structed of can contribute constituents to, or remove constituents from, the
sample obtained; (2) the application of suction to retrieve lysimeter samples
can change the natural pore-drainage rate or sample an area rather than a
point; and (3) the application of suction can change the chemical equilibria
of the sample as it is drawn into the lysimeter.

The porous-ceramic cup has been shown to contribute several milligrams per

liter of calcium, magnesium, sodium, bicarbonate, and silica to water samples
(Wolfe, 1967) and to reduce dissolved-metals concentrations in samples by as
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Figure 11.--Typical installation of pore-water
pressure-vacuum lysimeter.

much as 5 to 10 percent (Tsai and others, 1980). To avoid similar uncertain-
ties, lysimeter cups used in this study were leached with hydrochloric acid
and rinsed with distilled water until the specific conductance of distilled
water drawn through the cups did not increase. The effect of the leached cups
on water chemistry was tested by drawing a water sample of known constituent
concentrations through a leached cup and analyzing the sample. The known
water concentrations, leached-cup water sample concentrations, and the percent
changes between the two are shown in table 2. The analyses indicated that
although major ions were only slightly altered, metals concentrations were
subject to large changes.

The potential for contamination of samples by other lysimeter materials
(polyvinyl chloride, brass, stainless steel, and galvanized metal) also was
investigated by camparing chemical analyses from similarly situated lysimeters
constructed with the various materials. Results indicated that the use of
galvanized materials in lysimeter construction may have an effect on con-
centrations of zinc and manganese (table 3). Concentrations of zinc and
manganese from lysimeters constructed with some galvanized material averaged
50 percent and 160 percent higher, respectively, than concentrations from
lysimeters constructed without galvanized materials. The use of other
materials in lysimeter construction showed no noticeable effects.
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Table 2.--Concentrations of selected constituents for a known water sample,

for the known sample collected through a leached

porous-ceramic cup, and the percent difference

between the concentrations

[mg/L, milligrams per liter; ug/L, micrograms per liter]

Sample collected

Known through leached Percent

sample ceramic cup difference
Calcium 33 mg/L 34 mg/L + 3
Magnesium 15 mg/L 18 mg/L +20
Sodium 57 mg/L 58 mg/L + 2
Sulfate 54 mg/L 59 mg/L +9
Chloride 67 mg/L 72 mg/L + 7
Cadmium 36 ug/L 7 ug/L -81
Copper 58 ug/L 40 ug/L -31
Iron 330 pg/L 19 ug/L -94
Manganese 73 ug/L 16 ug/L -78
Strontium 53 ug/L 80 ug/L +51
Zinc 42 ug/L 88 ug/L +110

Table 3.--Mean concentrations of selected metals in water samples

collected using lysimeters that contain, and

that do not contain, galvanized materials

[All mean values are in micrograms per liter]

Galvanized No galvanized
materials materials P &
Number Number di;;:en o
Mean of Mean of renc
samples samples
Iron 110 32 96 35 +14.6
Lead 1 33 25 28 -56.0
Manganese 140 35 54 34 +159.3
Zinc 690 32 460 33 +50.0
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During installation, the borehole annulus surrounding the lysimeter cups
was packed with silica flour to reduce clogging by finer soil particles and to
ensure good contact between the cup and the surrounding geologic material. To
test the effect of silica flour on water chemistry, one lysimeter was
installed without silica flour. Chemical analyses of water from the control
and the silica-packed lysimeters were similar. 1In a laboratory study, water
collected from well 505, distilled water, and distilled water acidified with
sulfuric acid to pH 2.7 were mixed with silica flour, filtered, and analyzed
for specific conductance, pH, alkalinity, and chloride. Those measurements,
and measurements for aliquots of the same waters not mixed with silica flour,
are listed in table 4. Results indicate that water mixed with silica flour
was very similar to untreated water for the four constituents. Although
silica was not quantitatively evaluated, the use of ceramic-cup lysimeters did
appear to result in elevated concentrations of silica in the water samples.

Table 4.--Values of specific conductance, pH, alkalinity (as CaCO3), and
chloride for untreated and for silica-saturated solutions
from well 505, distilled water, and distilled

water acidified to pH 2.7 with sulfuric acid

[Specific conductance in microsiemens per centimeter at 25 degrees Celsius;
pH in standard units; alkalinity and chloride in milligrams per liter;
<, less than]

Saturated with

Untreated silica flour
Specific
conductance 1,260 1, 140
pH 7.4 7.9
Well 505 Alkalinity 420 420
Chloride <17 3
Specific
conductance 0 12
Distilled pH 6.1 6.1
water Alkalinity 4 4
Chloride <10 3
Distilled Specific
water conductance 620 570
acidified pH 2,7 2.7
to pH 2.7 Alkalinity 0 0
Chloride ) <9 3

Hansen and Harris (1975) suggest that the sample collection rate of
lysimeters should equal the pore-water drainage rate because the sample intake
rate of a lysimeter could affect constituent concentrations in samples from a
system that has solute concentrations that vary considerably in space. To
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determine variations in water chemistry caused by different sampling rates,
two samples were collected from a lysimeter located in the Hulick Till Member.
These samples were collected at -80 kPa (kilopascals) suction, the estimated
most negative suction in the till, and at -20 kPa. Water chemistry was simi-
lar for the two samples (table 5).

Table 5.--Concentrations of selected constituents in pore water
collected at -20 and -80 kilopascals (kPa) suction

[mg/L, milligrams per liter; ug/L, micrograms per liter]

-20 kpal -80 kpa?
Calcium (mg/L) 110 110
Magnesium {mg/L) 53 54
Sodium (mg/L) 50 49
Alkalinity (mg/L as CaCO;) 410 410
Silica (mg/L) 43 36
Copper (ug/L) 20 20
Manganese (ug/L) 1 8
Strontium (ug/L) 440 380
Zinc (ug/L) 160 110

1Sampled 12-07-83; vacuum lysimeter 62 (Hulick Till Member
of the Glasford Formation).

2gampled 12-08-83; vacuum lysimeter 62 (Hulick Till Member
of the Glasford Formation).

Disturbance of flow patterns by suction-induced sampling can result in
samples that represent a larger soil volume than would be represented by a
sample that reached the cup by way of undisturbed flow (Warrick and
Amoozegar-Fard, 1977). However, tensiometers installed within 0.5 m of
lysimeter cups showed no effect fram suction-induced sampling, indicating that
lysimeter samples in this study were drawn from a soil volume samewhat less
than 0.5 m3,

Changes in pH might occur as a result of the degassing of carbon dioxide
from water collected in the lysimeter. This was investigated by installing a
sample-sized lysimeter at the same depth as a full-sized lysimeter. The
volume of the sample-sized lysimeter was similar to the volume of the sample
collected, allowing no empty space above the sample within the lysimeter.
Results from four pairs of samples collected during March 1984 indicated no
differences in pH between samples from the two lysimeters. Although it is
possible that degassing occurred as water was drawn into the lysimeters, the
potential for sample change due to degassing while in the lysimeters was con-
sidered negligible.
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Lysimeters located in sand yielded insufficient amounts of water for
water-chemistry analyses. To obtain sufficient sample volumes from the sand,
samples were composited over a few days. Results of chemical analyses on
uncomposited and composited water samples from a lysimeter located in the till
(table 6) indicated no significant difference in major constituents between
the two samples.

Table 6.--Concentrations of selected constituents for uncomposited
and composited pore-water samples

[mg/L, milligrams per liter; ug/L, micrograms per liter]

Uncomposited Composited
pH (standard units) 7.7 7.5
Calcium (mg/L) 130 130
Magnesium (mg/L) 71 72
Sodium (mg/L) 14 13
Alkalinity (mg/L as CaCO3) 540 540
Sulfate (mg/L) 68 67
Chloride (mg/L) 14 14
Silica (mg/L) 34 40
Copper (ug/L) 20 40
Iron (ug/L) 10 30
Manganese (ug/L) 38 39
zinc (ug/L) 110 130

Claassen (1982, p. 32) reported that sampling with nitrogen affects
sample chemistry less than sampling with air. Lysimeter samples for this
study were collected using nitrogen gas to force samples out of lysimeters.
For a more complete discussion of the representativeness of water samples
collected from the unsaturated zone by using pressure-vacuum lysimeters refer
to Peters and Healy (1988).

Five lysimeters were installed in borehole 585 (figs. 6 and 12), about
30 m east of trench 2, to define the water chemistry in undisturbed sediments.
The lysimeters referred to as "off-site" lysimeters, were located at depths
from land surface of 1.2, 3.5, 6.7, 10.1, and 13.1 m in Peoria Loess, Roxana
Silt, Radnor Till Member, and Toulon Member.

Five lysimeters were installed in surficial sediments (within 3 m of
land surface) near the center of the site to define the water chemistry in
disturbed sediments. Three of the lysimeters were installed at depths of 0.3,
0.6, and 1.4 m in the cap of trench 2, and two were installed at depths of 0.5
and 0.8 m in the swale between trenches 2 and 3 (figs. 6 and 13).
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Figure 12.--Lysimeter locations off-site (borehole 585).
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Figure 13.--Geologic section C-C' showing on-site, above-trench lysimeter
locations (modified from Healy and others, 1986, fig. 8;
see fig. 6 for location of line of section).

Seven lysimeters were installed in the trench caps and swales directly
above the tunnel to define the water chemistry in the disturbed sediments of
the unsaturated zone above the trenches. The lysimeters were installed at
depths of 0.4, 0.7, 1.0, 1.1, 1.3, 2.2, and 2.3 m in fill material, trench
material, compacted clayey silt cap, and in Peoria Loess (fig. 14). The 12
lysimeters in the disturbed sediments are referred to as "on-site, above-
trench® lysimeters.

Thirteen lysimeters were installed from inside the tunnel into the Hulick
Till Member and the Toulon Member within 2 m of the tunnel wall., These lysim-
eters, referred to as "on-site, below-trench" lysimeters, were spaced at dis-
tances of about 8 m along most of the tunnel. Five were installed along 12 m
of the tunnel near the sloping Toulon Member/Hulick Till Member interface
(fig. 14). Below-trench lysimeters were used to define the water chemistry in
the unsaturated zone beneath the waste trenches.

During the period July 1982 through June 1984, pore-water samples were
collected from lysimeters every 2 weeks and analyzed for specific conductance,
pH, and tritium, Alkalinity was measured every 6 weeks, and major ions were
determined quarterly. Generally, one pore-water sample from each lysimeter
was analyzed for DOC. Gross alpha and beta scans were run annually on water
samples from each lysimeter. During dry periods and winter, pore-water samples
could not be collected from all lysimeters.
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Collection of Water Samples from the Saturated Zone

Water-chemistry data collected from seven wells by Foster and Erickson
(1980) and Foster and others (1984a) were used to define the chemistry of
local ground water. The wells were selected because they were near the lysim-
eter locations (fig. 6), their water-chemistry data were relatively complete,
and the wells were screened in geologic materials similar to the materials
surrounding the lysimeters. Of the seven wells, two (502, 505) are legally
considered "off-site" wells. For the purpose of this report, wells 502, 524,
and 527 also are considered off-site wells on the basis of their relative

distances from the trenches.

Wells were drilled using hollow-stem augers, cased in steel, screened
in stainless steel, and sealed with bentonite and portland-cement-based grout.

From 1978 through 1982, water samples were collected either once or twice
annually and analyzed for major ions. Tritium concentrations were measured

quarterly in the seven wells in 1982 and 1983 (Foster and others, 1984a).

Prior to sampling, wells were purged of three casing volumes of water or bailed
until dry, then allowed to recover. Water samples were collected by using a
bailer or a peristaltic pump.

Interpretive Techniques

Graphs, statistics, and geochemical models were used to interpret the
spatial heterogeneity of pore-water chemistry in the unsaturated zone. Graphs
included trilinear diagrams, fence diagrams, and two-dimensional graphs.
Trilinear diagrams (Piper, 1944) were used to show the differences in pore-
water chemistry between different lithologic units. Graphs were used to com-
pare concentrations of different constituents, relate concentrations of single
constituents to a specific time frame, and show relations between constituent

concentrations and lithology.

Descriptive statistics, correlation coefficients, time trends, and analy-
sig of variance were computed using P-STAT (Buhler and others, 1983) and SAS
(sAsS Institute, Inc., 1982) data-management and statistical-analysis computer
software. The programs computed correlations between concentrations of
various constituents and between concentrations and time. In all statistical
analyses, analytical values less than detection limits were assumed to follow
a uniform distribution between zero and the detection 1limit (D.A. Rickert,
U.S. Geological Survey, written commun., 1985).

Analysis of variance (ANOVA) was used to determine the relative importance
of factors influencing constituent concentrations. A two-by-six factorial
design was used to determine simultaneously the effects of two factors on the
concentrations of constituents (for example, on-site Hulick Till Member with

respect to off-site Roxana Silt).

Two geochemical models were used. The first, WATEQF (Plummer and others,
1976), employs chemical speciation to calculate the saturation indices (SI) of
aqueous solutions with respect to solids. The second, BALANCE (Parkhurst and
others, 1982), calculates the mass transfer of constituents entering or leaving
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the agueous phase to account for observed changes in the chemical composition
of water. Mass transfer calculations (BALANCE), when combined with speciation

calculations (WATEQF), are useful for defining chemical reactions that may
occur in the geologic medium.

Simulations of chemical equilibria by WATEQF and BALANCE are dependent on
pH. A sensitivity analysis to determine the magnitude of possible error in pH
measurements was made by comparing calculated partial pressures of carbon
dioxide ( coz) determined by WATEQF for lysimeters at borehole 585 to Pc02
measured from similar depths from three boreholes (a, b, and c) near borehole
585 (fig. 9) (Striegl, 1988). Inputs of pH to the WATEQF model from the bore-
hole 585 lysimeters were changed until calculated 'co,'s equaled measured
Pc02 s. The pﬁ change that was required to attain agreement between calculated
and measured co2 's averaged -0.2 pH units in the Toulon Member and the Hulick
Till Member, -0.7 in the Roxana Silt, -0.5 in the Radnor Till Member, and -0.9
in the Peoria Loess. The average decrease in pH required to match calculated
and measured Pc02 s was -0.46. Possible reasons for this pH discrepancy
include (1) measured c02 's from boreholes a, b, and ¢ may not accurately
represent coz concentrations in borehole 585; (2) the probability that equi-
librium conditions do not exist in major portions of the unsaturated zone; and
(3) the effect of degassing of the sample as it is drawn into the lysimeter.
Additionally, possible lasting effects of the leaching of ceramic cups with
hydrochloric acid (Suarez, 1986) could cause the measured pH's to be lower
than in situ pH's. The decreased modeled pH's caused lowered saturation
indices (SI = log IAP/K; where IAP = the activity product of aqueous ions pro-
duced by a reaction and K = the chemical-equilibrium constant for the reaction)
for both calcite and dolomite, an average of -0.35 and -0.60, respectively.
However, in only a few instances were these changes large enough to cause them
to fall below saturation. Saturation indices for aragonite and montmorillonite
were not substantially changed.

PROPERTIES OF GEOLOGIC MATERIALS

Particle-size distributions, surface area, bulk density, and bulk porosity
of geologic materials from the various lithologic units are listed in table 7.
Particle-size distributions of the Hulick Till Member and Radnor Till Member
of the Glasford Formation were similar, although sand content in the Hulick
Till Member was slightly higher. Peoria Loess and Roxana Silt had the highest
percentage of silt. Surface areas were highest in the Roxana Silt, the Hulick
Till Member, and the Radnor Till Member, followed by the Peoria Loess. Bulk
density was least in the Peoria Loess and the Roxana Silt, greatest in the
Radnor Till Member and Hulick Till Member, and most variable in the trench
material. Porosity trends were inversely related to bulk-density trends.

Mean values of pH, cation-exchange capacity, concentrations of calcium

and magnesium, percent iron, and percent organic matter are presented in table
8. Values of pH for geologic materials averaged 7.5. The total range of pH

was from 6.2 to 8.4 (Piciulo and others, 1982). The lowest pH values were in
the Hulick Till Member, and the highest values were in the Toulon Member of

the Glasford Formation.
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Table 8.--Mean values of chemical

[meq/100 g, milliequivalents

pH! Cation-
Number (stand- Number exchange Number Calcium!l
Geologic of ard of capacity2 of (meqg/100
unit samples units) samples (meg/100 g) samples g as Ca)
Peoria
Loess 3 7.7 123 14.0 130 >190
Roxana
2 . .
Silt 7.4 12 17.4 17 17
Radnor Till
Member of
the Glasford 4 7.5 42 20,2 51 50
Formation
Toulon Member
of the
Glasford 4 8.0 60 4.4 66 59
Formation
Hulick Till
Member of
the Glasford 1 7.1 39 16.5 43 >105
Formation

lpata from Piciulo and others (1982).
2pata from Piciulo and others (1982); Foster and others (1984b).

Mean cation-exchange capacities (CEC) for lithologic units ranged from
4.4 meq/100 g (milliequivalents per 100 grams) in the Toulon Member to 20.2
meq/100 g in the Radnor Till Member. Cation-exchange capacities are a signi-
ficant factor when determining the exchangeability of radionuclides (Piciulo
and others, 1982).

The most abundant of the exchangeable ions listed in table 8 were calcium,
having mean bulk-sample concentrations of 17 to greater than 190 meg/100 g;
and magnesium, having mean concentrations of 3.6 to greater than 73 megq/100 g.
Concentrations of exchangeable ions in the geologic materials indicate their
relative availability to pore water.

Iron content (as percentage of fine sands by weight) is an indicator of
the potential of the medium for adsorbing chemical constituents (Jenne, 1977;
Means and others, 1978). Also, iron-oxide precipitates may interact with
electronegative clay minerals and adsorb radionuclides (Reesman and others,
1975, p. 12-5). The highest iron values were found in the Radnor Till Member,
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properties for geologic materials

per 100 grams; >, greater than]

Iron! Organic
(percent matter!
Number Magnesium!l Number of fine Number {percent
of (meq/100 g of sands, of of total,
samples as Mg) samples by weight) samples by weight)
130 >73 4 3.2 4 2.1
17 3.6 3 3.3 3 .1
51 22 5 8.3 5 .5
66 19 4 .4 4 .3
43 >35 3 1.4 3 1.9

which is visibly mottled with oxidized iron, and the lowest values were in the
Toulon Member.

Organic content of geologic materials can affect cation exchange, the
sorptive capacity of the sediment-water system, and water movement in the
materials (Brady, 1974, p. 150). Percent organic matter commonly varies from
a trace to 15 percent (Brady, 1974, p. 154). Mean values of percent organic
matter in uncensolidated deposits at the Sheffield site ranged fraom 0.1 to
2.1. The highest percentage of organic matter was in the Peoria Loess, where
modern soil is developed. :

Mineralogic properties of the lithologic units are shown in table 9.
The matrix (in "Petrographic analysis"), which is the portion of sample that
is unidentifiable because of small size, probably consists of clay minerals,
silica, and feldspars. Aluminosilicate clays are derived from feldspars.
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Table 9.--Mean values of mineralogic

[Dashes indicate

Petrographic analysis!
(percentage of fine sands)

Number Organic Calcite
Geologic of Matrix Quartz Peldspar Marble g Volcanic
s matter cement
unit samples

Fill material 0 - -- - - - -- --
Peoria Loess 4 31 41 5 0 5 2 11
Roxana Silt 0 - - - - - - -
Radnor Till

Member of

the Glasford 4 32 33 6 0 8 8

Formation
Toulon Member

of the

Glasford 9 4 49 6 20 0 8 5
Formation
Hulick Till

Member of 0 - . - . . . .
the Glasford

Formation

lpata from Foster and others (1984b).
2pata from Piciulo and others (1982); Foster and others (1984b).

The buffering capacity of geologic materials can be inferred from car-
bonate content. Peoria Loess had the highest bulk-carbonate content, and the
Roxana Silt had the lowest. The Hulick Till Member had the highest calcite to
dolomite ratios in the silt- and clay-size fractions.

Clay-sized particles accounted for 6 to 30 percent of the geologic
materials (table 7). Minerals in the clay-sized fraction included montmoril-
lonite, illite, and kaolinite plus chlorite. Montmorillonite, a sodium con-
taining aluminosilicate of the smectite group, ranged from 82 percent of the
clay mineral portion of the Roxana Silt to only 17 percent of the clay mineral
portion of the Toulon Member (table 9). 1Illite ranged from 62 percent of the
clay minerals in the Toulon Member to 10 percent in the Roxana Silt. Kaolinite
plus chlorite ranged from 27 percent in the Hulick Till Member to 8 percent in
the Roxana Silt.

Gross alpha and beta radiation did not exceed detection limits in any

core samples of geclogic materials. Detection limits were less than 1 count
per hour for alpha activity and about 1 count per minute for beta activity.
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properties for geologic materials

no data]
Carbonate minerals? c1 . 1sl
(percentage of silt and (perce :Y mgefarals o
clay-size particles, P ct: ;ge ¢ a{ ::?e
by weight) particles, by weig
Number Calcite/ Number Montmoril~ Kaolinite
Other of Total dolomite of . Illite and
. lonite .
samples ratio samples chlorite
- 24 16.0 0.01 15 69 17 14
5 88 21.7 .14 124 58 27 15
- 17 4.0 11 10 82 10 8
13 44 10.6 .12 39 44 42 14
8 38 6.0 13 33 17 62 21
- 24 16.0 .26 34 30 43 27

Results of gamma-spectral analyses of 245 core samples obtained from
above the tunnel were virtually identical to those determined for background
samples. The highest potassium-40 concentrations measured were 7 pCi/g
(picocuries per gram), followed by radium-226 at 1 pCi/g. Trace amounts of
radium-228, thorium-228, and thorium-234 also were detected. Concentrations
refer to activity of the bulk sample and include the pore water.

CHEMISTRY OF WATER SAMPLES

The chemistry of water in the unsaturated zone is a function of the ini-
tial infiltrate chemistry, the pathway the water has taken between infiltration
and the sampling points, and the rate of the water movement along the path.
Chemical analyses of pore-water samples indicated bicarbonate (reported as
CaCoO3 (calcium carbonate) alkalinity), calcium, magnesium, sodium, sulfate,
silica, chloride, iron, and zinc were the primary inorganic constituents,
Samples also were analyzed for specific conductance, pH, DOC, gross alpha and
beta radiation, and tritium. Table 14 (located at the end of the report) pro-
vides physical characteristics of the water-chemistry sampling sites. Results
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of analyses for inorganic constituents, DOC, and tritium also are shown in
tables 15 through 19 (located at the end of the report). Table 14 aids
interpretation of tables 15 through 19 and aids interpretation of table 20
(regarding saturated-zone water samples; located at the end of the report).
The concentrations listed in tables 16 through 19 are for samples collected
after an initial stabilization period following lysimeter installation.
Chemical concentrations for some samples collected during the stabilization
period were influenced by water used in grout and backfill slurries. Those
concentrations were deleted from the data set. The stabilization period at
borehole 585, a 150-mm-diameter borehole that contains five lysimeters, was
about twice as long (about 0 to 4 months) as it was at 25-mm-diameter bore-
holes that contained only one lysimeter (about 0 to 2 months).

Precipitation

The specific conductance of precipitation ranged from less than 10 to 70
pS/cm (microsiemens per centimeter at 25 °C) and averaged 28 uS/cm (table 15).
Values for pH ranged from 3.8 to 7.5. The average hydrogen-ion concentration,
expressed as pH, was 4.6. The ionic composition of precipitation was calcium
zinc sulfate (fig. 15). The average zinc concentration in precipitation was
1,300 ug/L; this was higher than in pore water from the unsaturated zone
(averaged 340 ug/L) or in ground water (averaged 240 ug/L). Elevated con-
centrations of zinc have previously been noted in precipitation in Illinois
(D.F. Gatz, Illinois State Water Survey, oral commun., 1984). The source of
elevated concentrations of zinc in precipitation is not known. Gross-alpha
and gross-beta radiation did not exceed detection limits in any precipitation
or subsurface water samples. Tritium concentrations in precipitation were
0.2 nCi/L.

Unsaturated-Zone Pore Water

Undisturbed Unsaturated Zone, Borehole 585

Water samples from five depths in borehole 585 were analyzed to evaluate
conditions in an undisturbed area (table 16; mean values in table 10). Values
for pH ranged from 7.1 to 8.4 and averaged 7.5. The lowest average pH was
7.4 in the Toulon Member of the Glasford Formation, and the highest was 7.7 in
the Peoria Loess and the Roxana Silt. Specific conductance ranged from 815 to
2,250 yS/cm and averaged 1,200 uS/cm. Specific conductances varied most at
lysimeter 585D in the Roxana Silt.

The ionic camposition of water in the Peoria lLoess was calcium sulfate,
sodium bicarbonate sulfate in the Roxana Silt, and calcium magnesium bicar-
bonate in the Radnor Till Member of the Glasford Formation and Toulon Member
(fig. 15). Alkalinity averaged 500 mg/L (milligrams per liter) as CaCO3 with
a standard deviation of 100 mg/L. Alkalinities are virtually equal to bicar-
bonate for the range of pH of all samples. Bicarbonate was the predominant
anion in all water samples except for one sample from the Peoria Loess. About
32 percent of anion equivalent weight was bicarbonate in the Peoria Loess, and
66 percent was bicarbonate in the Toulon Member. Sulfate was the second most
predominant anion and had the highest concentrations in water from the Peoria
Loess and Roxana Silt.
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CATIONS ANIONS
PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER
EXPLANATION
BOREHOLE SITE 585 AND GEOLOGIC UNIT MEAN SPECIFIC CONDUCTANCE, IN
--Symbol size represents relative specific MICROSIEMENS PER CENTIMETER
conductance value AT 25 DEGREES CELSIUS
XE Peoria Loass 1,100
D D Roxana Silt 1,410
AC Radnor Till Member of the Glasford Formation 1,020
OA; B Toulon Member of the Glasford Formation 1,160; 1,240
op PRECIPITATION 28

oA SITE--Cations or anions

Figure 15.--Ionic composition of water collected from off-site
lysimeters (borehole 585) and precipitation.
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The milliequivalent ratio of calcium to magnesium varied with depth and
geologic material, with the lowest ratio (1.16) in the Toulon Member, and the
highest ratio (1.50) in the Roxana Silt (as calculated from data in table 16).
Sodium concentrations averaged 49 mg/L and had a standard deviation of 26 mg/L,
except in the Roxana Silt where they averaged 200 mg/L and had a standard
deviation of 45 mg/L.

Silica concentrations were relatively constant throughout the profile and
averaged 70 mg/L. Chloride concentrations averaged 8.4 mg/L, with the highest
concentration, 43 mg/L, in the shallowest lysimeter location (Peoria Loess);
the next highest concentration, 25 mg/L, was in the deepest lysimeter location
{Toulon Member). 2Zinc concentrations averaged 30 ug/L, and concentrations
increased slightly with depth. High sulfate and chloride concentrations in the
Peoria Loess do not appear to be representative of typical conditions elsewhere
off-site and on-site and may represent localized conditions.

Dissolved-organic-carbon concentrations ranged from 2.2 to 3.7 mg/L and
averaged 2.9 mg/L at off-site lysimeters; background concentrations are con-
sidered to be approximately 3 mg/L. Tritium was the only radionuclide
detected. Concentrations of tritium ranged from 0.2 to 6.9 nCi/L. The average
off-site pore-water tritium concentration was 0.7 nCi/L and was 0.3 nCi/L in
the Peoria Loess and 1.2 nCi/L in the Toulon Member., Water-quality criteria
(U.S. Environmental Protection Agency, 1976) include a tentative limit of 20
nCi/L tritium for drinking water. The U.S. Nuclear Regulatory Commission's
(1975) maximum permissible concentration for tritium in effluent released to
uncontrolled areas is 3,000 nCi/L.

Disturbed Unsaturated Zone, Above Trench

Results of chemical analyses of water samples collected from 25 on-site
lysimeters, including 12 above-trench and 13 below-trench lysimeters, are
listed in tables 17 and 18. Mean concentrations of constituent are presented
in table 11,

Specific conductance of pore water from on-site, above-trench lysimeters
(table 17) ranged from 480 to 2,200 uS/cm and averaged 1,100 uS/cm. Lowest
specific conductances were for water samples from the Peoria Loess and repre-
sent recently infiltrated precipitation. The pH averaged 7.4 and ranged from
6.8 to 8.7.

The ionic camposition of water in the above-trench sediments, within at
least 0.3 m of land surface, was calcium bicarbonate; below that depth the
water generally changed to calcium magnesium bicarbonate. Alkalinity values
averaged 460 mg/L as CaCOj; the minimum was 270 mg/L and the maximum was 760
mg/L. Bicarbonate was the predominant anion in all water samples except one
sample from lysimeter 39, Sulfate values were nearly as dominant as bicar-
bonate in lysimeters 38 and 87 (clayey silt cap, figs. 13 and 14) and 39 (fill
material, fig. 13). Percent anionic composition of samples from lysimeters
ranged from 93 percent bicarbonate in water from lysimeters 40 and 51 (Peoria
Loess) to 53 percent sulfate in water from lysimeter 39 (£ill material,
fig. 16). Percent compositions remained relatively constant over time for
individual lysimeters.
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CATIONS ANIONS
PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER

EXPLANATION

SITE AND GEOLOGIC UNIT MEAN SPECIFIC CONDUCTANCE, IN

--Symbol size represents relative MICROSIEMENS PER CENTIMETER
specific conductance value AT 25 DEGREES CELSIUS

A 87,38 Clayey silt cap 1,310; 1,130

O 39 Fill material 1,330

O 52 Fill material 875

D 91,88 Trench material 1,370; 1,030

* 8940 Peoria Loess 974;804

* 51 Peoria Loess 629

o 87 SITE--Cations or anions

Figure 16.--Ionic composition of pore water collected from
on-site, above-trench lysimeters.
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Calcium was the predominant cation in all above-trench water samples
except lysimeter 52 (fill material). Magnesium was the second most abundant
cation in all above-trench pore-water samples except lysimeter 52, where it
was most abundant. Equivalent-weight ratios of calcium to magnesium ranged
fram 0.79 to 2.17 (computed from data in table 16); ratios for a 1:1 dolamite
(equal parts calcium and magnesium) are about 1.65 (Reesman and others, 1975,
p. 12-7). Sodium concentrations ranged from 1.4 to 22 mg/L and averaged 13
mg/L.

Silica concentrations ranged from 3.4 to 74 mg/L and averaged 32 mg/L;
water samples from lysimeter 51 (Peoria Loess) averaged only 5.8 mg/L. Lower
concentrations of other constituents also were reported in samples collected
from lysimeter 51.

Chloride concentrations ranged from 0.1 to 72 mg/L and averaged 25 mg/L.
Zinc concentrations averaged 140 ug/L.

Dissolved organic carbon concentrations ranged from 2.8 to 63 mg/L, with
a mean of 15 mg/L. The highest concentration was in water from lysimeter 88,
which is located just below the clayey silt cap in trench 2. The mean concen-
tration for all water samples, excluding lysimeter 88 samples, was 8.5 mg/L.

Tritium concentrations ranged from 0.2 to 1,380 nCi/L with a mean value
of 140 nCi/L and a median value of 11 nCi/L. The highest average concentra-
tion (1,270 nCi/L) and the highest individual concentrations were in water
samples from lysimeter 88. Excluding the uncharacteristically high tritium
concentrations of water samples from lysimeter 88, tritium concentrations in
water from on-site, above-trench lysimeters averaged 22 nCi/L. Water from
lysimeter 52, located in the fill material and nearest land surface, had the
lowest mean concentration (0.5 nCi/L).

Tritium concentrations at above-trench lysimeters varied seasonally. The
highest concentrations occurred (with a slight lag time) during dry periods in
the late summer and early fall when samples were less diluted by infiltrating
precipitation and when evapotranspiration rates were highest (fig. 17).

Tritium concentrations in water from soil cores collected at the points
of lysimeter-cup installation ranged from 0.2 to 1,230 nCi/L and averaged 68
nCi/L in the above-trench samples (table 19); the median concentration was
2.1 nCi/L. Tritium concentrations in pore water from the cores increased with
depth and with proximity to trenches. The tritium concentrations in the cores
generally were similar to the initial concentrations in pore water collected
from lysimeters installed at the same locations.

Disturbed Unsaturated Zone, Below Trench

Specific conductances ranged from 250 to 3,500 uS/cm (table 18), averaged
1,060 uS/cm, and had a standard deviation of 440 uS/cm. The highest and most

variable specific-conductance values were in water samples fram the Toulon
Member. The highest values in the Toulon Member (most notably at lysimeter 64)

42



IN NANOCURIES PER LITER

150 N S S B B B N e H T e U A
EVAPOTRANSPIRATION -
A ——————— SOIL SATURATION L
o — —— — ESTIMATED DATA ®)
.'..hf 5
z
C)gé Q.
<o 100 80 Z
0 O =
CLU) -z
7]
zx / o
&t =
o= o
%j 50 |- 60 E
oz <
z n
- =
| 5
o - 40 U
) @
2 TR 1 o po s S st S e S B S S e e e R VAT
o B ———— LYSIMETER 89 (PEORIA LOESS) 5
- — — LYSIMETER 38 (CLAYEY SILT CAP) —
Wao 25 + | LJ
=0 4140 =
nkE 0
> >
S or -
<o 4105 <
ZWw z
ow 15 | o
o =
< <
0!8 4170
z 10 =
Ll.Jz wl
o« O
gz 435 3
OZ‘ ST O
= p3
2 bos
= 0+ — 0 =
x JASONDJFMAMJIJJASONDJFMAMJ o
- 1982 | 1983 | 1984 -

Figure 17.--Seasonal trends in evapotranspiration and soil saturation (3),
and tritium concentrations at two above-trench lysimeter
locations (B), July 1982 through June 1984 (modified from
Mills and Healy, 1991, figs. 39 and 50).
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were commonly associated with the highest pH values, and alkalinity and DOC
concentrations. Samples from lysimeter 96, located in the Hulick Till Member
of the Glasford Formation near the interface with the Toulon Member, were the
most dilute (figs. 7 and 18). The interface intersects the tunnel as the
Hulick Till Member dips toward the northeast. Specific conductances decreased
with increased distance of the lysimeters from the trenches.

The average pH was 7.5, minimum pH was 6.9, and maximum pH was 9.2,
Highest pH values were in samples from lysimeters located in the Toulon Member.

The ionic composition of water generally was calcium magnesium bicarbonate.
Samples from lysimeter 68, located in the Hulick Till Member near the Toulon
Member/Hulick Till Member (sand/till) interface, had slightly higher sulfate
{(calcium magnesium sulfate) and chloride concentrations than those away from
the interface and varied more chemically (fig. 18).

Alkalinity ranged from 87 to 820 mg/L and had a mean value of 410 mg/L.
Water samples from lysimeter 96 had the lowest mean alkalinities. The highest
mean-alkalinity values were for samples from lysimeters 64, 82, and 83,
Lysimeter 64, installed in sand near the sand/till interface below trench 2,
had the highest alkalinity value. Lysimeters 82 and 83 are located below
trench 11, Bicarbonate was the predominant anion in all samples except

lysimeter 68. Bicarbonate and sulfate were present in nearly equivalent con-
centrations in samples from lysimeter 68 (Hulick Till Member).

Calcium and magnesium were the most abundant cations in water samples.
Sodium concentrations ranged from 8.9 to 28 mg/L in all below-trench water

samples except for samples from lysimeters 26, 62, and 64 where concentrations
ranged from 32 to 140 mg/L. Sodium concentrations in the Hulick Till Member
near the sloping sand/till interface averaged 35 mg/L, and those in the Hulick
Till Member away from the interface averaged 16 mg/L.

Silica concentrations in water samples ranged from 34 to 81 mg/L at all
lysimeter locations except lysimeter 64 (Toulon Member); the single measurement
of silica concentration at that location was 120 mg/L. Chloride concentrations
ranged from 3.6 to 73 mg/L. The highest average concentration was from lysime-
ter 65 in the Toulon Member. Chloride concentrations averaged 26 mg/L in water
samples from lysimeters near the sand/till interface compared to 10.9 mg/L in
samples collected away from the interface. 2Zinc concentrations ranged from 12
to 9,700 pg/L, had an average value of 560 ug/L, and a median value of 140 ug/L.

Dissolved-organic-carbon concentrations ranged fram 5.8 to 70 mg/L and
had a mean concentration of 32 mg/L. Highest concentrations were in water
samples from lysimeters 62, 64, 65, and 96, near the sand/till interface.
Concentrations of DOC decreased as distance fram the trenches increased.

Tritium concentrations in below-trench water samples ranged from 0.2 to
450 nCi/L and had a mean value of 70 nCi/L and a median value of 28 nCi/L.
Average tritium concentrations near the interface (86 nCi/L) were higher than
concentrations away from the interface (60 nCi/L). Pore-water tritium con-
centrations in samples from some below-trench lysimeters varied seasonally
(fig. 19), and highest concentrations occurred in the spring (wetter) months.
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WITH TOULON MEMBER OF THE GLASFORD MICROSIEMENS PER CENTIMETER
FORMATION--Symbol size represents relative AT 25 DEGREES CELSIUS
specific conductance value
D 68; 62 Near interface 1,060; 1,000
63 Near interface 978
0 96 Near interface 407 °
. 83; 82 Away from interface 1,120; 1,030
@c1:81;84 Away from interface 954; 938; 826
® 68 SITE--Cations or anions

Figure 18.--Ionic composition of pore water collected from on-site,
below-trench lysimeters in the Hulick Till Member of
the Glasford Formation.
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TRITIUM CONCENTRATION, IN NANOCURIES PER LITER
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19.--Seasonal trends in tritium concentrations in
pore water from three below-trench lysimeters,
November 1982 through May 1984.
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High tritium concentrations in below-trench water samples in the spring
may be due to freshwater infiltrating the trenches and flushing tritium from
the waste materials, or due to water that had been in contact with the waste
since the previous spring being flushed from the trenches. Tritium concen-
trations in water samples from lysimeters 62, 65, and 82 increased with time
(18 months) by factors of about 4.5 to 9 (fig. 20). The relatively sudden
increases in tritium concentrations at lysimeters 62 and 65 appear to be
related to the simultaneous occurrence of a large rainfall (124 mm) during
July 29-30, 1983, and the development of several sinkholes in overlying trench
caps. Tritium concentrations remained high after that time.

800 T T T T T T T T T T T T T T T T T
LYSIMETER 62-HULICK TILL MEMBER

=& GLASFORD
OE oL LYSIMETER 65-TOULON MEMBER FORMATION |
= -
§E§ — —  LYSIMETER 82-HULICK TILL MEMBER
'—-
ZECL
59
ZE 400 -
oo
OO0

o
2z
2%
=X 200 |
Fz

0 1 1 [} 1 L 1 1 1 1 L 1 L 1 i L ) 1
NDJFMAMGUJIUJIASONDUIFMAM
1982 | : 1983 I 1984

Figure 20.--Tritium concentrations in pore water from three below-trench
lysimeters, November 1982 through May 1984.

Tritium and DOC concentrations in water samples from below-trench lysime-
ters had a moderate positive correlation (correlation coefficient of 0.55).
This indicates an association between the sources of tritium and organic carbon
(most probably the waste containers in the trenches).

Tritium concentrations in water from soil cores ranged fram 0.4 to 170
nCi/L and averaged 44 nCi/L in the below-trench samples (table 19); the median
concentration was 34 nCi/L. Tritium concentrations in the below-trench cores
were, for the most part, higher in sand cores than in the. till cores.
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Concentrations varied most near the sloping interface between the Toulon Member

and Hulick Till Member. In cores collected from the tunnel, concentrations of
tritium in the tills often decreased with distance from the tunnel.

Saturated-Zone Water

Chemical analyses of water collected from the observation wells were used
to define ground-water chemistry near the lysimeters (fig. 6 and table 20).
Specific conductances of ground water averaged 1,140 uS/cm and ranged from 328
to 2,130 uS/cm. The pH ranged from 6.2 to 9.0 and averaged 7.0.

The ionic composition of water was magnesium bicarbonate in all wells
except well 502, where it was sodium magnesium bicarbonate., Sulfate concen-
trations in water samples from well 507 were higher than in samples from other
wells (fig. 21).

Calcium and magnesium were the predominant cations. The mean calcium
concentration was 92 mg/L; the mean magnesium concentration was 85 mg/L.
Sodium concentrations averaged 30 mg/L. In well 502 (Hulick Till Member,
off-site) water samples, sodium was the predominant cation having an average
concentration of 61 mg/L. '

Alkalinity ranged from 36 to 1,150 mg/L and averaged 490 mg/L.
Bicarbonate was the predominant anion in all samples. Bicarbonate equivalents
composed 65 to 85 percent of the anions in all samples, with the exception of
the samples from well 507 (Hulick Till Member, on-site) where bicarbonate com-
posed 52 percent of the anions.

Silica concentrations ranged from 0.9 to 23 mg/L and averaged 12 mg/L.
Chloride concentrations ranged from 1.8 to 37 mg/L and averaged 8.5 mg/L;
lowest concentrations were from wells 502, 524, and 527, the wells that are
located farthest off-site. Highest chloride concentrations in ground water
were in samples from wells 505, 523, and 528, which are located adjacent to
trench 11. Zinc concentrations ranged from less than 50 to 1,100 ug/L and
averaged 240 ug/L.

Dissolved-organic-carbon concentrations were measured in water samples
collected from wells 502 and 528. Concentrations in these wells were near
background levels; DOC concentrations ranged from 1.5 to 2.8 mg/L and had a
mean of 2.3 mg/L.

Tritium concentrations averaged 38 nCi/L, with a minimum of 0.2 nCi/L and
a maximum of 170 nCi/L. The lowest concentrations were in water from wells
502, 524, and 527, located farthest from trenches (off-site wells). The high-
est concentrations were in water fram well 523 located adjacent to trench 11.
Tritium concentrations in ground water were significantly different between
on-site and off-site wells. On-site concentrations averaged 81 nCi/L, and
off-site concentrations averaged 2.9 nCi/L.
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specific conductance value AT 25 DEGREES CELSIUS
507, 523; )
505 528 Hulick Till Member of the Giasford 1,630; 1,480; 1,350; 1,250
! Formation, On-site
¥ 527 Roxana Sitt, Off-site 946
A 502 Hulick Till Member, Off-site 828
A 524 Hulick Till Member, Off-site 414
e 507 SITE--Cations or anions

Figure 21.--Ionic composition of water collected
from the saturated zone.
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EFFECTS OF RADIOACTIVE-WASTE DISPOSAL ON WATER CHEMISTRY
IN THE UNSATURATED ZONE

Affected Constituents

Burial of low-level radioactive waste in the unsaturated zone has the
potential to alter the chemistry of pore water that percolates to the aquifer.
Excavation during waste-trench construction removes geologic material that
naturally interacts with water to neutralize precipitation, provides surfaces
for chemical adsorption and ion exchange, and contributes ions to solution
through solution-recrystallization reactions. Replacement of those materials
with low-level radioactive waste provides a source that can contribute radio-
nuclides, metals, and various organic solvents and petrochemicals to the
ground-water system. Compaction of trench-cap materials over waste materials
can inhibit communication between the unsaturated zone and the atmosphere,
creating localized redox conditions that can mobilize some waste types. The
failure of trench caps (Gray and McGovern, 1986) can provide pathways for
channelized flow of surface runoff through waste materials. The sections that
follow discuss the hydrogeochemical processes that determine the occurrence of
dominant ions in the unsaturated zone, apparent effects of waste disposal on
those processes, and chemicals present in the pore water that have a source at
the waste.

Carbonate Minerals

Reactions of water and carbon dioxide with carbonate minerals largely
determine the concentrations of bicarbonate, calcium, and magnesium ions in
solution. Important carbonate-dissolution reactions that occur in various
units in the unsaturated zone at the Sheffield site include congruent dissolu-
tion of ca1c1te (1) and dolomite (2), which contribute HCO5 (aq)’
and Mgt (aq) ions to solution; and 1ncongruent dlssolutlon of golomlte to

ca151te (3), which contributes a Mgt (aq) ion to solution and precipitates a
(aq) ion to calcite.

CaCO3(S) + H20 (1) + COz(aq) = Ca+2(aq) + 2Hm3‘(aq) (1)
CaMg(C03)p(g) + 20y0(q) + 20p(aq) = Ca*?(aq) *+ Mg*2(aq) + 4HCO3™(5q)  (2)
CaMg(CO3) gy *+ Ca*2(aq) = Mg*2(5q) + 2CaCOy (3)

Sufficient amounts of carbonate minerals are present in the unsaturated
zone for reactions 1-3 to be maintained at or near chemical equilibrium.
Therefore, the mass transfer of bicarbonate, calcium, and magnesium to and
from solution depends on the coz in the unsaturated-zone atmosphere. At

borehole 585, average Pc02 increases from about 0.035 percent by volume at the

land surface to about 3.9 percent at a depth of 11 m (Striegl and Ruhl, 1986).
The largest annual variation in CO,, from about 1.2 to 5 percent, is found in
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the near-surface root zone where annual peak £CO, coincides with peak periods
of soil-microorganism and root respiration during late summer (Thorstenson and
others, 1983, p. 324-325; Suarez, 1982, p. 303).

Saturation indices were determined using the geochemical model WATEQF
with the equilibrium constants shown in table 12. The SI (table 13) indicated
that water samples from nearly all sites were supersaturated (SI greater than
zero) with calcite and dolomite. Pore water from lysimeter 96 was under-
saturated for three of four samples with respect to both calcite and dolomite.
Highest SI generally were found near the surface both on-site and off-site.
Lowest SI were found in the trench material on-site and just below the Roxana
Silt in the Radnor Till Member of the Glasford Formation off-site (table 13).
Greatest variability in the SI was in the Peoria Loess on-site and in the
Roxana Silt off-site. Most samples were more saturated with dolomite than
with calcite (fig. 22). This could be due to incongruent dissolution of dolo-
mite, preferential exchange of calcium for magnesium in cation-exchange reac-
tions with clay minerals, preferential precipitation of calcite with respect
to dolomite (Drever, 1982; Thorstenson and others, 1979; Henderson, 1984), or
the carbonate mineralogy of the geologic materials (table 9).

Table 12,--Equilibrium constants used in calculation of
saturation indices

Equilibrium Equilibrium
Mineral constant, constant at
specie temperature 25 degrees
adjusted Celsius
Aragonite -2.5890 -8.3360
Calcite -2.2970 -8.4800
Dolomite -9.4360 -17.0900
Gypsum -0.0280 -4,6020
Magnesite -6.1690 -8.2400
Montmorillonite 60.355 -45,2600
Pyrite 11.3000 -18.4800

Calculations made using the BALANCE model indicated the possibility of
calcite precipitation from supersaturated water in the fill material, the
clayey silt cap, and the Toulon Member of the Glasford Pormation. Microscopic
examination indicated that sand grains from upper parts of the Toulon Member
at borehole 585 had secondary deposits of calcite. Calcium to magnesium
ratios in the pore water decreased with depth in the unit near that location.

Rates of calcite dissolution are relatively rapid, even for extremely

small ratios of calcite surface area to water volume; calcite dissolution is
rapid relative to dolomite dissolution (Plummer and others, 1978). At the
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Table 13.--Saturation indices for calcite and dolomite on-site and off-site

[dashes indicate not applicable]

Calcite Dolomite
vean Namber Soeiarie.  Memn Namber Seors
On-site
Fill material 0.79 3 0.57 0.89 3 1.02
Clayey silt cap .65 5 .43 1.33 5 1.44
Trench material .40 3 .17 .77 3 .81
Peoria Loess .69 5 .61 1.22 5 1.33
Hulick Till Member! .54 12 .27 1.10 12 1.09
Hulick Till Member .53 14 .41 1.20 14 1. 11
(near Toulon Member!/
Hulick Till Member
interface)
Off-site
Peoria Loess .59 1 - .96 1 -
Roxana Silt 1.04 3 .83 1.98 3 1.90
Radnor Till Member! .47 3 .05 .72 3 .53
Toulon Member .45 3 .01 .81 3 .59
(shallow)
Toulon Member .51 3 .56 1.23 3 1.44

(deep )’

-

lof the Glasford Formation.
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Figure 22.--Relation of dolomite saturation index
to calcite saturation index.

Sheffield site, Ca+2(aq) concentrations increased more rapidly in the first
meter of depth than did M9+2(aq)' even though dolomite was more abundant than
calcite in those geologic materials (tables 9, 16-18, and 20).

Dissolution of carbonate minerals is more extensive at a low pH than at
a high pH. 1In turn, the ions produced by the dissolution of carbonates buffer
the pH of the water that contacts the carbonate minerals. Water that infil-
trated the unsaturated zone increased from an average pH of 4.6 in precipita-
tion to an average pH of 7.9 in the first 0.3 m from the land surface. Below
that depth, the pH of water in the unsaturated zone averaged 7.5 and remained
between 6.8 and 9.2.

Pore-water pH was highest and most varied in the Toulon Member. High pH
and large variances in pH can result from CO2(aq) degassing fram pore water
collected in lysimeters. Degassing occurs more rapidly than precipitation of
carbonates and can cause increases in pH and supersaturation of water with
respect to carbonate minerals (Freeze and Cherry, 1979, p. 255). It is likely
that the effects of coZ(aq) degassing would be most goticed for samples
collected from the Toulon Member, where the average CO, is highest. Another
possible reason for higher and more variable pH's in the Toulon Member could
be relatively rapid water movement from the trenches through the sand of the
Toulon Member.
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The equilibrium chemistry of carbonate minerals also can be affected by
cation-exchange processes. The Hoffmeister series, which predlcts the affin-
ity of cations to sediment surfaces in the order of Ca 2>Mg >Na (stumm and
Morgan, 1981, p. 645; Brady, 1974, p. 75), favors Ca *2 ana Mg *2 o adsorb to
surfaces and Na® to move into solution as follows:

2+

4 X Na + Ca + qu+ aNat + xca + Mg .

Increased Na‘t concentrations coupled with decreased cat (a ) and Mq
concentrations (fig. 23) are indicative of cation exchange (Henderson, ?984,

p. 13-15). 1In general, high concentrations of Na*t (aq) Were present in geologic
units where the montmorillonite content of the clay-mlneral fraction was high
(fig. 24). As much as 250 mg/L Na’ was measured in pore water collected from
the Roxana Silt, where the montmorillonite content was highest (82 percent).

Ratios of ca™ (a ) to Mg+2 (aq) generally were related directly to the
calcium content of the geologic materlals from which pore water was collected
(fig. 25). Both Ca/Mg ratios and the content of calcium in the soil were high-
est in the Peoria Loess. The ratio decreases considerably from the surficial
deposits to the Toulon Member both off-site and on-site (figs. 23 and 25). The
pronounced decrease in the Ca 2(a ) to Mg 2(a ) ratio in the Toulon Member on-
site is possibly induced by the presence of the tunnel. The partial pressure
of CO, in the air that is mechanlcally circulated through the tunnel is about
two orders of magnitude less than the 002 that is naturally found in the
Toulon Member. Mixture of that air into the unsaturated zone that surrounds
the tunnel can cause extensive crystallization of calcite as a secondary
mineral on grain surfaces. Dolomite does not readily recrystalize at the
temperatures found in the unsaturated zone (Hostetler, 1964, p. 34-49); hence,
Mg+ (aq) concentrations remain nearly constant from the trench material to the
Toulon Member. Also, more cation exchange might take place in the Roxana Silt
(SI = 1.04 for calcite and 1.98 for dolomite), which is present off-site only,
resulting in decreased dissolved calcium and magnesium concentrations in the
off-site Toulon Member.

Sulfate

Sulfate is the second most predominant anion found in the unsaturated
zone at the sheffield site. The possible sources of sulfate (SO4 (aq )) in
unsaturated-zone pore water include fragments of sulfate-rich bedrock incor-
porated in the till during its deposition; the oxidation of organic sulfur,
which was deposited in the till after glacial-ice erosion of organic-rich
bedrock; and the oxidation of the sulfide minerals pyrite and marcasite.

The availability of sulfate in the till from fragments of sulfate-rich
bedrock is minimal (0.008 to 0.056 meq/100 g in dry soil). Furthermore, there
is no apparent correlation between sulfate available in the various geologic
units and the pore-water sulfate concentrations in those units. The oxidation
of organic sulfur as a source for pore-water sulfate concentrations (Hendry
and others, 1986) is possible. However, sulfate concentrations generally
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cannot be correlated with percent organic matter in the sediments. Thus, the
apparent source of sulfate in unsaturated-zone pore water at the Sheffield
site is the oxidation of sulfide minerals.

Although average concentrations of S0472(,q) Were higher off-site than
on-site, the shape of curves that depict sulfate concentrations with respect
to depth (fig. 26) are similar for both locations (with the exception of an
anomalously high SO, value in the Peoria Loess). As previously mentioned, the
high sulfate concentrations in the Peoria Loess at borehole 585 might not be
representative of sulfate concentrations throughout the geologic deposit;
there is no obvious source for sulfate in the silt material. An anamalous
source for sulfate at borehole 585 could account for the difference in on-site
and off-site concentrations.

Highest sulfate concentrations were at depths of 3 m or less both off-
site and on-site. Maximum near-surface sulfate concentrations were 720 mg/L
in the Peoria Loess at borehole 585, 390 mg/L in on-site fill material, and
240 mg/L in the clayey silt trench caps. The fill material and clayey silt
cap on-site had the highest percentage of off-site material mixed with them.
The off-site material used on-site was obtained from coal-mining overburden
from the area. The decrease in sulfate concentrations below 3 m is possibly
due to sulfate precipitation.

Sulfate concentrations in the Radnor Till, Hulick Till Member of the
Glasford Formation, and the Toulon Member ranged from 30 to 280 mg/L and had a
mean of 130 mg/L. These sulfate concentrations were similar to those found in

ground water that ranged from 13 to 710 mg/L and averaged 140 mg/L.
Other Inorganic Constituents

Chloride concentrations can be indicative of the leaching of waste
materials from burial sites (Johnson and Cartwright, 1980; Freeze and Cherry,
1979, p. 436). Concentrations of chloride in lysimeter pore-water samples
ranged from 0.1 to 73 mg/L and had a mean of 18 mg/L. Mean chloride con-
centrations were higher on-site (23 mg/L) than off-site (8.4 mg/L). Highest
chloride concentrations in the unsaturated zone were from the clayey silt
trench caps and from below the trenches, in the Toulon Member and near the
Toulon Member/Hulick Till Member interface. As previously mentioned, the
high chloride concentration of 43 mg/L at borehole 585E does not appear to
represent natural conditions elsewhere in the Peoria Loess. Highest chloride
concentrations in the saturated zone were from wells located on-site.

The average silica concentration from lysimeter pore-water samples was

53 mg/L. Concentrations of silica in ground water averaged 12 mg/L. Silica
concentrations in ground water collected from sandstones and shales are ordi-
narily between 2 and 60 mg/L (Hem, 1985, p. 69-73).

Lowest silica concentrations in pore water were from on-site, above-
trench sediments; mean concentrations ranged from 20 mg/L in the Peoria Loess
to 40 mg/L in the clayey silt cap. Mean concentrations in geologic materials
below the trenches and off-site ranged from 53 mg/L in the Hulick Till Member
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to 82 mg/L in the Peoria Loess. Likely sources of silica in the pore-water
samples include the desorption of monomeric silica from the soil matrix (Wood
and Signor, 1975, p. 486-488), the leaching of silica and cations from alumino
silicates by water high in carbon dioxide, the dissolution of montmorillonite,
and the dissolution of oxidized plant material (Reesman and others, 1975).

The lower concentrations in the on-site, above-trench sediments possibly
result from trench-construction activities; reworking the sediments may have
accelerated the leaching process and depleted much of the silica-source
materials.

The highest silica concentration, 120 mg/L, occurred in the Toulon Member
below trench 2. 8Silica concentrations greater than 100 mg/L may indicate
saturation with respect to silicate minerals present (Thorstenson and others,
1979, p. 1488; Reesman and others, 1975, p. 12-2); WATEQF results indicated
supersaturation,

Comparisons between on-site, above-trench and below-trench pore-water
silica concentrations show a seasonal trend (fig. 27). The high silica concen-
trations in late summer and early fall in samples from above-trench lysimeters
indicate an increase of about 25 to 35 mg/L of silica in above-trench unsatu-
rated-zone water. This could be due partly to the lysimeters proximity to
decaying plant material. Lovering (1959) stated that grasses, such as those
present at the Sheffield site, accumulate about 3.5 percent of their mass as
silica. 8ilica in plant material is concentrated by plant decay and is trans-
formed into a more soluble form of silica as organic matter. Seasonal shifts
in silica concentrations of about 20 mg/L in samples from below-trench lysime-
ters indicate seasonality due to something other than proximity to decaying
plant tissue.

The high concentrations of zinc present in precipitation (average of
1,300 ug/L) are not present in typical unsaturated-zone pore waters (340 ug/L)
at the site. This is probably because at pH ranges in pore water of 6.8 to
9.2, zinc is strongly adsorbed by manganese or iron hydroxides (Stumm and
Morgan, 1981, p. 625-640; Jenne, 1977). These oxides are ubiquitous in soils
that are not strongly reducing. Additionally, organic matter will adsorb zinc,
and zinc can substitute for aluminum in montmorillonite clays. Water from
lysimeters that have average zinc concentrations greater than 200 pg/L were
either constructed, in part, with galvanized materials or were below the
trenches and, hence, the contribution of the decaying metal waste containers
was available. Zinc concentrations in pore-water lysimeters from off-site,
where no galvanized materials were used in construction, averaged 30 ug/L.

The oxidation of pyrite probably is the source of most of the iron in the
pore water. Most of the iron released during this oxidation process likely
sorbs to soil particles or precipitates as an oxide or hydroxide (B.F. Jones,
U.S. Geological Survey, oral commun., 1984) and, thus, shows no correlation to
high sulfate concentrations. However, mass balance calculations indicate that
if the iron present in the sediments and the pore water was derived from pyrite
oxidation this reaction would have been sufficient to produce the sulfate con-
centrations that exist in the pore water.
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Figure 27.--Average concentration of silica in pore water from above-trench
and below-trench lysimeters, August 1982 through May 1984.

Lysimeters yielding water samples with the highest iron concentrations
also had high concentrations of zinc. However, not all lysimeters yielding
water with high zinc concentrations had correspondingly high iron concentra-
tions. High iron concentrations did not appear to be related to lysimeter
construction materials nor to trench proximity. All the water from wells in
the saturated zone had high iron concentrations due to steel well casings.

Dissolved Organic Carbon

Dissolved organic carbon that occurs naturally in the unsaturated zone is
contributed by the breakdown of plant and animal matter that was recently
deposited on or near the land surface and fram oil shales and coal of the
Carbondale Formation. Dissolved organic carbon also may originate from
solvents, petroleum products, plastics, scintillation fluids, plant and animal
tissues, and other organic wastes buried with the radioactive wastes.

Dissolved organic carbon concentrations were highest in water samples from
below-trench lysimeters (average of 32 mg/L) (tables 10 and 11). The highest
average DOC concentrations in water samples from the below-trench lysimeters
were from lysimeters located in the Toulon Member (50 mg/L) and near the Toulon
Member/Hulick Till Member interface (39 mg/L). Average concentrations of DOC
in water near the interface were higher in July 1983 (45 mg/L) than in March
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1983 (28 mg/L). Primary annual water movement below the trenches in 1983
occurred in mid-May (Mills and Healy, 1987). Concentrations of DOC in water
samples probably were elevated in May by the flushing of DOC from the trenches
due to rain-water and snowmelt percolation and remained elevated after the
water had moved through.

Average DOC concentrations in water from on-site, above-trench lysimeters,
excluding lysimeter 88, were about three times as high (8.5 mg/L) as in water
from off~-site lysimeters (2.9 mg/L) and saturated-zone water (2.3 mg/L).
Lysimeter 88, which was installed just below the compacted clayey silt cap into
the trench fill material, yielded water having a DOC concentration (63 mg/L)
as high as concentrations below the trenches. Concentrations of DOC in water
samples had a positive correlation with tritium in water samples.

Tritium

Natural concentrations of tritium in pore water at the Sheffield site are
near the analytical detection limit. Pore water that has greater concentra-
tions of tritium originates, at least partly, from the waste material. Waste-
derived sources of tritium include tritiated water in containers, tritium that
has exchanged with pore water from solids, and biologic decamposition of tri-
tiated organic wastes.

Tritium migration appears to be directly related to water movement in the
unsaturated zone. Tritium movement in the gaseous phase has not been detected
at the Sheffield site (Striegl and Ruhl, 1986, p. 725). Tritium concentrations
in the unsaturated zone often change in response to the seasonal movement of
water. Differential rates of water movement through the various lithologic
units and along interfaces between lithologic units, and the variability in
the source terms cause variable rates of tritium migration and, hence, areal
variability of tritium concentrations. This can be observed in concentrations
of tritium in soil cores (table 19) taken at the time of tunnel construction,
where slower migration rates through the till apparently resulted in lower
tritium concentrations in the till than in the sand at the same altitude or
distance from the trenches. The variability of tritium concentrations around
the Toulon Member/Hulick Till Member interface is evidence of the importance
of these interfaces as flow routes through the unsaturated zone.

Seasonal movement of water through the unsaturated zone initiates the
migration of pore water stored in contact with the waste and also leaches
radionuclides from the waste as water moves through the trenches. High tritium
concentrations in water samples from below-trench lysimeters in spring months
(fig. 19) reflect the annual wetting cycle (Mills and Healy, 1987, p. 178).
High tritium concentrations in samples from some lysimeters above the trenches
occur during the summer and early fall when evapotranspiration rates are high
(fig. 17). This seasonal increase in tritium is caused by rewetting of the
surface sediments as tritiated pore water moves upward from the trenches. The
upward movement of tritiated water during high evapotranspiration periods also
was indicated by tritium in the tissue of plant-cover material at the site
(M.P. deVries, U.S. Geological Survey, oral commun., 1985). In addition to
seasonal water movement, molecular diffusion (Freeze and Cherry, 1979, p. 103)
may dictate tritium-concentration changes.
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The amount of tritium available for migration changes as the waste con-
tainers deteriorate and as the water available to cause migration increases
with trench-cap deterioration. Collapse holes that develop in trench caps may
allow water to move through a trench in amounts greater than usual and at
atypical times. This is exemplified by the previously discussed incident in
which tritium concentrations at three below-trench locations increased drama-
tically following the development of several collapse holes during a large
precipitation event (see "Disturbed unsaturated zone, below-trench"). These
collapse holes may have allowed the movement of significant quantities of
water through previously isolated wastes. Water movement was not detected
in connection with this precipitation event at other tunnel-area locations.
Mills and Healy (1989) also discuss an incident in which an estimated 1,700
liters of water entered one trench at the Sheffield site during a single pre-
cipitation event.

Both instantaneous and continuous releases of tritium from the waste con-
tainers may occur. An instantaneous release of tritium, such as may occur when
waste containers break down, may move through the unsaturated zone as a slug
over several months and over a number of precipitation events. Instantaneous
releases of tritium, as measured at below-trench lysimeters, show a gradual
increase in tritium concentrations followed by a gradual decline. A continuous
tritium release may result in continuously increasing tritium concentrations
until a steady state is reached; the concentrations stabilize until the tritium
source is exhausted and a gradual decline begins. These long-term fluctuations
in tritium concentrations have been observed in water samples from several
below-trench lysimeters. The early variability of tritium concentrations in
the soil cores along the length of the tunnel has become less variable (as
observed in pore-water samples).

In general, tritium concentrations increased during the 2-year study
period. Tritium concentrations, however, decreased in water from some lysime-
ters while increasing at others. Figure 28 shows trends in tritium concen-
trations in pore water and ground water in the vicinity of the Sheffield site
during July 1982 through May 1984; the values represent average concentrations
on dates when samples were obtained from all instruments located at the speci-
fied sample sites (all "above-trench" lysimeters, for example). Most notable
increases in tritium concentrations were in pore water below the trenches and
in ground water on-site. The greatest tritium concentrations in ground water
were in water samples from on-site wells. However, because of the complex
nature of ground-water flow at the site (Foster and others, 1984), it is not
always possible to relate tritium concentrations in the saturated zone to the
proximity of the sampling point to the trenches. The movement of tritiated
water may be short-circuited in the unsaturated zone, as lateral flow occurs
along boundaries between geologic units of contrasting permeability. This
phenomenon has been described at the Sheffield site by Mills and Healy (1987,
p. 183) and might account for the unexpectedly rapid migration of tritium
along a flow path in the southeast corner of the site (Foster and others,
1984, p. 23).
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Figure 28.--Average concentration of tritium in pore water and
ground water, July 1982 through May 1984.

Contributing Influences

Changes in water chemistry in the unsaturated zone resulted in part from
dissolution reactions involving calcite, dolomite, and montmorillonite; the
oxidation of pyrite; cation-exchange reactions; sorption of zinc by iron- and
manganese-oxides and hydroxides; precipitation of calcite and sulfate; and the
transport of DOC and tritium from the trenches. Information gained fram other
unsaturated-zone flow studies at the Sheffield site (Foster and others, 1984;
Mills and Healy, 1987) was used to construct water-flow paths that show the
lysimeters that are hydraulically downgradient from one another. Flow paths
and geochemical reactions that are thought to occur in each lithologic unit
are shown in figure 29.

Average differences in chemistry of water between lysimeters located on-
site and off-site are depicted in figure 30 and tables 10 and 11. The major
difference between on-site and off-site water chemistry was the elevated tri-
tium and DOC concentrations and the slight decrease in sodium concentrations
in on-site water; this difference is attributed to the effects of waste burial
and removal of Roxana Silt and Radnor Till Member from on-site.

Below-trench pore-water chemistry varied depending on proximity to the
Toulon Member/Hulick Till Member interface. Lysimeters near the interface had
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more seasonally varied water chemistry than those not near the interface; this
may be explained by mixing of various chemistries of pore waters by lateral
flow at the interface (M.P. devVries, U.S. Geological Survey, oral commun.,
1985). The major effect of the trenches was to contribute DOC and tritium to
the pore water.

Off-site, the Roxana Silt contributed substantial quantities of sodium
to solution from montmorillonite dissolution and associated cation-exchange
reactions, The Radnor Till Member provided exchange surfaces for magnesium.

SUMMARY

The geologic materials found in undisturbed and disturbed unsaturated
deposits were described and the change in chemistry of infiltrating water
was defined at a low-level radioactive-waste disposal site near Sheffield,
Illinois. The ability to sample water effectively from the unsaturated zone
using ceramic-cup soil-water pressure-vacuum lysimeters was evaluated.

Precipitation was collected in a stainless-steel collector six times dur-
ing a 6-month period (June through December 1983). Pore water was collected
monthly from 30 soil-water pressure-vacuum lysimeters during a 2-year period
(1982-84). On-site lysimeters were installed above, within, and below
trenches. Lysimeters that were located below trenches were installed through
the wall of a 90-m-long by 2-m-diameter tunnel that extends beneath trenches
11, 3, 2, and 1. Five lysimeters were located 30 m east of the tunnel in
undisturbed materials outside the site boundary. The saturated zone was
sampled for 5 years (1978-83) as part of another study. Chemical data of
water from seven wells near the lysimeters were compared to chemical data of
water from the lysimeters.

The ionic composition of precipitation at the site was calcium zinc
sulfate, and it had an average pH of 4.6. The average concentration of zinc
in precipitation was 1,300 ug/L. The ionic composition of precipitation infil-
trating the unsaturated zone changed to calcium sulfate off-site and to calcium
bicarbonate on-site within 0.3 m of the land surface and had an average pH of
7.9; below that depth, pH averaged 7.5 and generally was calcium magnesium
bicarbonate.

Some variability in water type of pore water was noted. Pore water from
one lysimeter installed in the Hulick Till Member of the Glasford Formation
on-site was calcium magnesium sulfate, and pore water from one lysimeter in the
Roxana Silt off-site was sodium bicarbonate sulfate. Alkalinity concentrations
(as CaCcO3) of pore water ranged from 87 to 820 mg/L. The pH values ranged from
6.8 to 9.2 and were highest in water samples from the Toulon Member of the
Glasford Formation. Dissolved-organic-carbon concentrations were higher than
the background level in water from a few on-site lysimeters close to the
trenches. Tritium was the only radionuclide found in the pore water. The
highest concentration of tritium was 1,380 nCi/L in a pore-water sample
collected from trench material. Median concentrations of tritium in pore water
at above-trench and below-trench lysimeter locations were 11 and 18 nCi/L,
respectively. Tritium concentrations in the below-trench, tunnel-area geologic
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deposits ranged from 0.2 to 450 nCi/L. Water chemistry was most variable near
the sloping Toulon Member/Hulick Till Member interface, a major pathway for
unsaturated-zone flow.

The ionic composition of water from the saturated zone was magnesium
bicarbonate except in well 502, where it was sodium magnesium bicarbonate. The
pH values of ground water ranged from 6.2 to 9.0, and alkalinities ranged from
36 to 1,150 mg/L. Average silica concentrations were lower in the saturated
zone (12 mg/L) than in the unsaturated zone (53 mg/L). Dissolved-organic-
carbon concentrations were near the background level in all wells. Tritium was
the only radionuclide detected in the saturated zone and the highest concentra-
tion (170 nCi/L) was from a well on-site.

The highest specific conductances in the unsaturated zone occurred where
the highest alkalinity and DOC concentrations occurred. The cations and

anions that were dominant in the pore water also were dominant in the geologic
materials.

Geochemical modeling indicated that nearly all unsaturated-zone pore
water and saturated-zone waters were supersaturated with respect to calcite
and dolomite. Concentrations of calcium, magnesium, and bicarbonate in
unsaturated-zone pore water were increased by the dissolution of carbonates.
Cation-exchange reactions caused concentrations of calcium and magnesium to
decrease and concentrations of sodium to increase. The oxidation of pyrite
was the likely source of sulfate at the site. On-site sulfate concentrations
could be correlated with the amount of clayey silt materials present. Trench
construction activities appear to account for low silica concentrations in
pore water from on-site, near-surface sediments.

The major difference between on-site and off-site water chemistry was the
higher tritium and DOC concentrations and reduced sodium concentrations on-site;
this difference is attributed to the effects of waste burial and removal of the
Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site.

Tritium and DOC concentrations were highest near the trenches. Tritium
and DOC concentrations in ground water were near background levels in off-site
areas. Tritium concentrations in ground water varied seasonally in on-site
areas. Seasonally elevated tritium concentrations in water samples fram the
below-trench lysimeters result from increased percolation of pore water during
the spring; elevated concentrations in the above-trench lysimeter samples occur
during the summer as a result of increased evapotranspiration. Large increases
in tritium concentrations in pore water fram three below-trench lysimeters
apparently coincided with large rainfall and the development of collapse holes
in the trench surface above the tunnel. Both instantaneous and continuous
releases in tritium from the trenches may occur, each represented by different
patterns of increasing and decreasing pore-water tritium concentrations.

Off-site, the Roxana Silt contributed substantial quantities of sodium

to solution from montmorillonite dissolution and associated cation-exchange
reactions. The Radnor Till Member provided exchange surfaces for magnesium.
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Ceramic-cup soil-water pressure-vacuum lysimeters were determined to be
an adequate means of collecting representative samples from the unsaturated
zone. The constituents whose concentrations may have changed because of
lysimeter-cup leaching and degassing were silica (concentrations increased),
certain heavy metals (concentrations either increased or decreased depending
on the metal), and pH. All other major cations and anions appeared to be
unaffected by the use of ceramic-cup pore-water pressure-vacuum lysimeters.
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Table 14.--Physical characteristics of water-chemistry sampling sites

[m, meters]

Site Height
number Type of . above Sample
(see salelng Location land material
£1 6) site surface
g- (m)
0001 Precipitation Off-site 2.5 Atmospheric
deposition
Site Depth
number Typ?.of Locat i ?elgw Geologic
(see samQ ing cation an material
fig. 6) site surface
* (m)
585A Lysimeter Off-site 13.1 Toulon Member!
585B do. do. 10.1 Toulon Member
585C do. do. 6.7 Radnor Till Member!
585D do. do. 3.5 Roxana Silt
585E do. do. 1.2 Peoria Loess
38 do. On-site, above trench 1.4 Clayey silt cap
39 do. do. .6 Fill material
40 do. do. 1.0 Peoria Loess
51 do. do. .5 Peoria Loess
52 do. do. .3 Fill material
87 do. do. 1.1 Clayey silt cap
88 do. do. 2.3 Trench material
89 do. do. 1.3 Peoria Loess
90 do. do. .7 Fill material
91 do. do. 2.2 Trench material
92 do. do. 1.0 Fill material
93 do. do. .4 Fill material
26 do. On-site, below trench 11.6 Toulon Member
61 do. do. 7.0 Hulick Till Member!
62 do. do. 11.6 Hulick Till Member
63 do. do. 11.6 Hulick Till Member
64 do. do. 11.6 Toulon Member
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Table 14.--Physical characteristics of water-chemistry
sampling sites--Continued

Site Depth
number Type.of . below Geologic
sampling Location land :
(see . material
£i 6) site surface
g- (m)
65 Lysimeter On-site, below trench 11.6 Toulon Member
66 do. do. 11.6 Toulon Member
68 do. do. 11.6 Hulick Till Member
81 do. do. 9.1 Hulick Till Member
82 do. do. 8.2 Hulick Till Member
83 do. do. 7.6 Hulick Till Member
84 do. do. 10.4 Hulick Till Member
96 do. do. 11 6 Hulick Till Member
502 Well Of f-site 11.9 Hulick Till Member
505 do. On-site 8.2 Hulick Till Member
507 do. do. 8.4 Hulick Till Member
523 do. do. 8.3 Hulick Till Member
524 do. Of f-site 8.4 Toulon Member
527 do. do. 6.9 Toulon Member
528 do. On-site 8.4 Hulick Till Member

lof the Glasford Formation.
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Table 19.--Tritium concentrations in pore water from soil cores
[m, meters; nCi/L, nanocuries per liter;
dashes indicate no datal
Depth Initial
Location below tritium
of land Tritium concentration
soil Geologic surface concentration in lysimeters
cores material (m) (nCi/L) (nCi/L)
Above trench
Lysimeter 38 Fill material 0-0.15 0.8 --
Fill material .30- .46 1.2 -
Fill material .61- .76 5.0 -
Clayey silt cap .91-1.07 11 -
Peoria Loess 1.22-1.37 16 -
Peoria lLoess 1.37-1.57 17 19
Lysimeter 39 Fill material .51- .61 5.0 4.8
Lysimeter 40 Peoria Loess .46- .61 1.8 -
Peoria loess .79- .94 1.8 -
Peoria Loess 1.09-1.24 1.9 5.1
Lysimeter 51 Peoria Loess .15- .30 .6 -
Peoria Loess .46- .61 2.1 1.7
Lysimeter 52 Fill material .15- .30 1.1 .4
Lysimeter 87 Fill matieral .66- .71 1.2 --
Clayey silt cap 1.12-1.17 100 94
Lysimeter 88 Peoria Loess 2.26-2.31 1,230 1,230
Lysimeter 89 Peoria Loess .66- .71 .2 -
Peoria Loess 1.37-1.42 46 42
Lysimeter 91 Fill material .66~ .71 .2 -
Fill material 1.30-1.35 1.5 -
Peoria Loess 2,16 30 64
Lysimeter 93 Fill material .41- .46 2.1 10



Table 19.--Tritium concentrations in pore water from soil cores--Continued

Distance Initial
Location from tritium
of tunnel Tritium concentration
soil Geologic liner concentration in lysimeters
cores material (m) (nCi/L) (nCi/L)
Below trench
Lysimeter 111 Toulon Member?2 0.05-0.20 16 -
Toulon Member .36- .51 18 -
Toulon Member .60- .81 22 -
Toulon Member .91-1.07 26 -
Toulon Member 1.22-1.37 51 -=
Toulon Member 1.52-1.68 70 -
Hulick Till Member? 1.83-1,98 36 70
Lysimeter 61  Hulick Till Member .25- .41 3.4 -
Hulick Till Member .64- .76 1.2 -
Hulick Till Member 1.27-1.42 .8 1.1
Lysimeter 62 Hulick Till Member .05- .18 17 -
Hulick Till Member .46- .61 17 -
Hulick Till Member 1.02-1.17 33 54
Lysimeter 63 Hulick Till Member .08~ .23 9.5 -
Hulick Till Member .97-1.12 4,2 4.9
Lysimeter 64 Toulon Member 0- .05 89 -
Toulon Member .69~ .74 76 -
Toulon Member 1.42-1.47 100 120
Lysimeter 65 Toulon Member .05- .10 27 --
Toulon Member .66- .71 47 -
Toulon Member 1.32-1.37 64 70
Lysimeter 66 Toulon Member .05- .10 14 --
Toulon Member .66~ .74 14 35
Lysimeter 68 Toulon Member .41- .46 28 --
Hulick Till Member .64~ .69 26 20
Lysimeter 81 Hulick Till Member .05~ ,20 2.4 --
Hulick Till Member .51- .76 1.0 -
Hulick Till Member 1.22-1.37 .4 2.3
Lysimeter 82 Hulick Till Member .30- .56 21 -—
Hulick Till Member 1= .97 12 -
Hulick Till Member 1.34-1.50 7.7 31
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Table 19.--Tritium concentrations in pore water from soil cores--Continued

Distance Initial
Location from tritium
of tunnel Tritium concentration
soil Geologic liner concentration in lysimeters

_cores material (m) (nCi/L) (nCi/L)

Lysimeter 83 Hulick Till Member 0.05-0,20 5.0 -
Hulick Till Member .64- .79 8.3 10

Piezometer 27! Toulon Member .20- .28 26 -

Toulon Member .28- .36 33 -—

Toulon Member .36- .43 29 -

Toulon Member .43- .51 24 -

Toulon Member .51- .58 22 -

Toulon Member .66- .74 42 -

Toulon Member 1.45-1.52 53 -

Toulon Member 1.52-1.60 64 -

Toulon Member 1.60-1.68 83 -

Toulon Member 1.68-1.75 97 -

Toulon Member 1.75-1.83 99 -

Toulon Member 2.90-2.97 110 -

Toulon Member 2.97-3.05 140 -

Toulon Member 3.05-3.12 140 -

Toulon Member 3.12-3.20 140 --

Toulon Member 3.20-3.28 170 -—

Weathered shale 3.43-3.84 53 -—

liocation shown in figure 6; the few number of water samples obtained from
the instrument location precluded its additional use in the study.

260f the Glasford Formation.
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