GEOHYDROLOGY AND WATER QUALITY OF THE ROUBIDOUX AQUIFER, NORTHEASTERN OKLAHOMA

By Scott C. Christenson, David L. Parkhurst, and Roy W. Fairchild

U.S. GEOLOGICAL SURVEY

Open-File Report 90-570

Prepared in cooperation with the OKLAHOMA GEOLOGICAL SURVEY

Oklahoma City, Oklahoma 1990

U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 202 NW 66th (Bldg. 7) Oklahoma City, OK 73116 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Bldg. 810 Box 25425 Denver, CO 80225

CONTENTS

	Page
Abstract	
Purpose and scope	
Previous investigations	
Acknowledgments	. 4
Explanation of the local identifier	
Description of the study unit	. 5
Physiography and drainage	. 5
Climate	
Geology	. 8
Stratigraphy	. 8
Structure	. 13
Geohydrology	. 17
Ground-water withdrawals	
Water levels	
Specific capacity	
Aquifer test	
Digital-model analysis	
Water quality	38
Available chemical data for ground water	. 38
Maioreign charicter	. 30
Major-ion chemistry	. ა ა
Summary statistics of water-quality data	. 39
Comparison of water-quality data to drinking-water standards	. 40
Water-quality problems	
Mine-water contamination	. 45
Large sodium and chloride concentrations	
Occurrence of radium-226	
Summary	
References cited	. 54
ILLUSTRATIONS	
Plate 1. Map showing dissolved solids concentration and water- quality diagrams for water samples from selected wells that are completed in the Roubidoux aquifer in northeastern Oklahoma	
	Page
Figure 1. Map showing location of study unit	. 6
2. Graphs showing average monthly temperature and	. •
precipitation at Miami, Pryor, Tahlequah,	
and Vinita, 1941 - 1970	. 7
	. ,
3 - 8. Maps showing:	
3. Location of wells penetrating the Roubidoux	
aquifer in northeastern Oklahoma that were used	
as control points	. 10
4. Thickness of the Roubidoux Formation in	
northeastern Oklahoma	. 11

		Page
	5. Altitude of the top of the Roubidoux Formation in northeastern Oklahoma	12
	6. Thickness of Cotter and Jefferson City Dolomites in northeastern Oklahoma	
	7. Thickness of the Chattanooga Shale in northeastern	
	0klahoma 8. Altitude of the potentiometric surface in the Roubidoux aquifer, 1981, in northeastern	
9.	Oklahoma	18
	Delaware Counties, Oklahoma	20
11.	Oklahoma	21
	0klahoma	22
12 - 18.	Graphs showing: 12. Measured and computed drawdowns for the Roubidoux aquifer test at Miami in 1944	25
	13. Relation of transmissivity to mean head difference for model 1 (lateral flow only)	
	14. Relation of transmissivity to the mean of the absolute value of head difference for model 1 (lateral flow only)	
	15. Relation of transmissivity and leakance to mean head difference for model 2	
	(vertical flow only)	
	for model 2 (vertical flow only)	34
	(lateral and vertical flow)	35
40 00	model 3 (lateral and vertical flow)	36
19 - 20.	Maps showing: 19. Locations of wells where chloride concentrations	
	were measured	48
	20. Locations of wells where gross-alpha radioactivity and radium-226 were measured	50

TABLES

			Page
Table	1.	Generalized geologic nomenclature and water-yielding characteristics of rocks in northeastern Oklahoma	. 9
	2.	Selected information about wells penetrating the Roubidoux aquifer in northeastern Oklahoma that	
	3.	were used as control points	
		in the Roubidoux aquifer in northeastern Oklahoma	. 23
	4.	Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer	. 69
	5.	Concentrations of trace elements in water from wells completed in the Roubidoux aquifer	
	6.	Concentrations of radioactive constituents in water from wells completed in the Roubidoux aquifer	
	7.	Summary statistics of selected chemical constituents	
		Water-quality standards for inorganic constituents, number of wells that have been sampled, and number of wells with samples that exceeded the standard	
		of metro mion samples onat exceeded the standard	. 30

CONVERSION FACTORS

For use of readers who prefer to use metric units, conversion factors for inch-pound units used in this report are listed below:

Multiply	<u>By</u>	To obtain
foot (ft) gallon (gal)	0.3048 3.785	meter liter
inch (in) mile (mi)	25.40 1.609	millimeter kilometer
square foot per day (ft ² /d) square mile (mi ²)	0.09290 2.590	square meter per day square kilometer

Temperature in degrees Celsius ($^{\circ}$ C) can be converted to degrees Fahrenheit ($^{\circ}$ F) as follows:

$$^{\circ}F=1.8 (^{\circ}C) + 32$$

<u>Sea Level:</u> In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

GEOHYDROLOGY AND WATER QUALITY OF THE ROUBIDOUX AQUIFER,

NORTHEASTERN OKLAHOMA

by Scott C. Christenson, David L. Parkhurst,

and Roy W. Fairchild

ABSTRACT

The Roubidoux aquifer is an important source of freshwater for public supplies, commerce, industry, and rural water districts in northeastern Oklahoma. Ground-water withdrawals from the aquifer in 1981 were estimated to be 4.8 million gallons per day, of which about 90 percent was withdrawn in Ottawa County. Wells drilled at the beginning of the 20th century originally flowed at the land surface, but in 1981 water levels ranged from 22 to 471 feet below land surface. A large cone of depression has formed as a result of ground-water withdrawals near Miami. Wells completed in the Roubidoux aquifer have yields that range from about 100 to more than 1,000 gallons per minute.

An aquifer test and a digital ground-water flow model were used to estimate aquifer and confining-layer hydraulic characteristics. Using these methods, the transmissivity of the aquifer was estimated to be within a range of 400 to 700 square feet per day. The leakance of the confining layer was determined to be within a range from 0 to 0.13 per day, with a best-estimate value in a range from 4.3×10^{-8} to 7.7×10^{-8} per day.

Analyses of water samples collected as part of this study and of water-quality data from earlier work indicate that a large areal change in major-ion chemistry occurs in ground water in the Roubidoux aquifer in northeastern Oklahoma. The ground water in the easternmost part of the study unit has relatively small dissolved-solids concentrations (less than 200 milligrams per liter) with calcium, magnesium, and bicarbonate as the major ions. Ground water in the westernmost part of the study unit has relatively large dissolved-solids concentrations (greater than 800 milligrams per liter) with sodium and chloride as the major ions. A transition zone of intermediate sodium, chloride, and dissolved-solids concentrations exists between the easternmost and westernmost parts of the study unit.

Three water-quality problems are apparent in the Roubidoux aquifer in northeast Oklahoma: (1) Contamination by mine water, (2) large concentrations of sodium and chloride, and (3) large radium-226 concentrations.

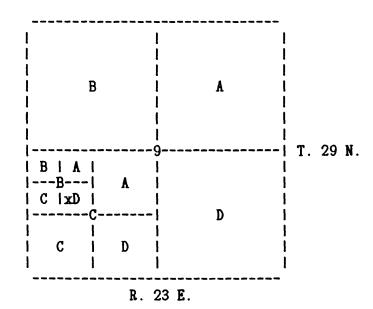
Many wells in the mining area have been affected by mine-water contamination. At present (1990), all instances of ground-water contamination by mine water can be explained by faulty seals or leaky casings in wells that pass through the zone of mine workings and down to the Roubidoux aquifer. None of the data available to date demonstrate that mine water has migrated from the Boone Formation through the pores and fractures

of the intervening geologic units to the Roubidoux aquifer.

Ground water with large concentrations of sodium and chloride occurs at some depth throughout the study unit. Large concentrations of sodium and chloride make ground water in the Roubidoux aquifer unsuitable as a water supply in the northwestern part of the study unit. In the eastern part of the study unit, chloride concentrations greater than 250 milligrams per liter are found at depths greater than approximately 1,200 to 1,500 feet. Data are too few to determine the depth to ground water with large concentrations of sodium and chloride in the southern and southwestern parts of the study unit.

Large concentrations of gross-alpha radioactivity in ground water occur near the western edge of the transition zone. Generally, ground water with large concentrations of gross-alpha radioactivity was found to exceed the maximum contaminant level for radium-226.

become widely recognized. Parkhurst (1987) published chemical analyses of water samples from the Picher mining area.


Acknowledgments

The authors are indebted to many people throughout the study unit for their cooperation and assistance in obtaining information concerning wells, ground-water withdrawals, use of water, and other pertinent data. Many individuals from municipal water departments, operators of rural water districts, well drillers, and individual well owners provided information.

The cooperation and assistance extended by members of the Oklahoma Geological Survey and the Oklahoma Water Resources Board are especially appreciated. Both agencies were helpful in supplying information and providing many helpful suggestions.

Explanation of the Local Identifier

The location of data-collection sites in this report is illustrated in the diagram below. This method of locating sites is referred to as the "local identifier." The local identifier replaces the standard legal method of locating sites by fractional section, section, township, and range. By the standard legal method, the location of the site indicated by the "x" is described as SE1/4 NW1/4 SW1/4 sec. 9, T.29 N., R.23 E. The local identifier reverses the order and indicates quarter subdivisions of the section by letters. By this method, the location of the site is given as 29N-23E-09 CBD 1. A sequence number ("1" in this example) is added to provide a unique identifier for each site.

INTRODUCTION

The Roubidoux aquifer in northeastern Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Recognizing a need for additional information, the Oklahoma Geological Survey initiated a hydrologic study of the Roubidoux aquifer in cooperation with the U.S. Geological Survey.

The term "Roubidoux aquifer" is used in this report to describe those geologic units, including the Roubidoux Formation, in northeastern Oklahoma in which deep wells are completed. The Roubidoux Formation is a distinct geologic unit recognized in the subsurface in Arkansas, Missouri, Kansas, and Oklahoma, and on the surface in Missouri. Wells that are completed in the Roubidoux Formation generally are left open to the overlying Cotter and Jefferson City Dolomites. In addition, wells that are drilled to the Roubidoux Formation are sometimes drilled into the underlying Gasconade Dolomite in order to increase the well's yield. Because the wells with the greatest yield are completed in the Roubidoux Formation, it is inferred that the Roubidoux Formation contributes most of the water.

Purpose and Scope

This report presents the results of a study of the water resources of the Roubidoux aquifer in northeastern Oklahoma. The main objective of the study was to refine and extend knowledge of the geology, hydrology, and water quality of the aquifer. The scope of work included obtaining and interpreting geophysical, geologist's, and driller's logs to define stratigraphic relations; measuring water levels to define the potentiometric surface; analysis of an aquifer test and the development and use of a digital model to determine aquifer and confining layer hydraulic characteristics; and sampling of wells for chemical analysis to determine the water quality of the aquifer.

Previous Investigations

Several investigations of all or parts of the study unit have been made in the past (The term "study unit" is used throughout this report instead of the more conventional "study area." Depth as well as areal extent must be considered in any discussion of the Roubidoux aquifer.). The focus of many of these studies has been the extensive lead and zinc mining in Ottawa County. In the early part of the twentieth century Siebenthal (1908 and 1915), in describing the mineral resources of northeastern Oklahoma, referred to some of the wells extracting water from the Roubidoux Formation and described the hydrogeology of the area. Reed, Schoff, and Branson (1955) conducted an extensive investigation of the ground-water resources of Ottawa County. Marcher and Bingham (1971) described the water resources of much of northeastern Oklahoma as part of the Hydrologic Atlas series of investigations done cooperatively by the Oklahoma Geological Survey and the U.S. Geological Survey. Playton, Davis, and McClaflin (1980) conducted a study of the water within the abandoned lead and zinc mines in the region. Recently, the water in the abandoned mines has come under intense study as the potential for contamination of the Roubidoux aquifer by this water has

DESCRIPTION OF THE STUDY UNIT

The study unit is defined by those counties in northeastern Oklahoma that have wells completed in the Roubidoux aquifer. Those counties include Adair, Cherokee, Craig, Delaware, Mayes, and Ottawa Counties (fig. 1). The surface area of the study unit is about 4,500 square miles.

Physiography and Drainage

The study unit lies along the western flanks of the Ozark uplift and is part of two physiographic provinces. The eastern part of the study unit is within the Ozark Plateaus province, and the western part of the study unit is within the Osage Plains section of the Central Lowland province (Fenneman, 1946). The Ozark Plateau is characterized by rugged topography with deep V-shaped valleys separated by narrow flat-topped ridges. The Osage Plains section of the Central Lowland province is a gently eastward-sloping plain interrupted by low east-facing escarpments and isolated buttes capped by resistant limestone and sandstone.

The highest altitude is about 1,450 feet in the southeastern part of the study unit in Adair County. The lowest altitudes are about 700 feet in the south and west parts of the study unit.

The area is drained by several large streams including the Illinois River, the Neosho River, Spavinaw Creek, and the Spring River. Streams flow westward and southwestward. The drainage is dendritic and, in places, modified trellis.

Climate

The study unit is in a humid climatic zone. Annual precipitation averages about 42 inches, with most precipitation occurring in the spring and early fall. The driest part of the year is November through February. Average annual temperature is approximately 60 degrees Fahrenheit. January is the coolest month of the year and July is the warmest. Graphs showing average monthly temperature and precipitation at Miami, Pryor, Tahlequah, and Vinita are shown in figure 2 (U.S. Department of Commerce, 1973).

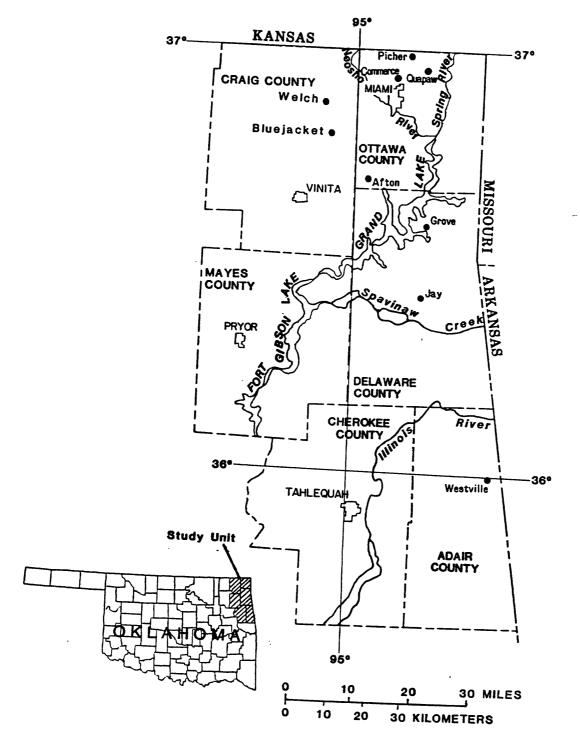


Figure 1.--Location of study unit.

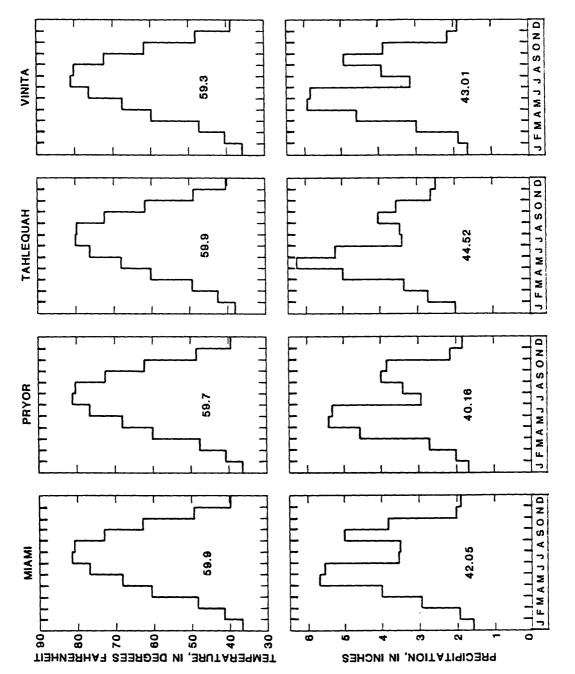


Figure 2.--Average monthly temperature and precipitation at Miami, Pryor, Tahlequah, and Vinita, 1941-70. Number in center of each graph is the average annual temperature or the precipitation at the station.

GEOLOGY

The thickness, lithology, and water-bearing characteristics of the major geologic units in the study unit are listed in table 1. The wells completed in the Roubidoux aquifer that were used as control points in this study are shown in figure 3. The stratigraphic nomenclature used in this report was compiled from both the Oklahoma Geological Survey and the U.S. Geological Survey.

Stratigraphy

The study unit is underlain by Precambrian-age igneous rocks that can be divided into two different units. The Washington volcanic group (Denison, 1981) is dominantly a rhyolite, but andesite is present in some areas. The Spavinaw Granite Group (Denison, 1981) is a granite porphyry. These two units underlie approximately equal areas within the study unit. Small outcrops of Spavinaw Granite are found in Mayes County. In southern Delaware County, granitic rocks are about 3,000 feet below the land surface. These widely ranging depths to Precambrian rocks within small lateral distances indicate that the Precambrian surface is very irregular.

Although Cambrian-age rocks are not present at the surface in the study unit, they have been identified in wells. The lowermost formation of Cambrian age is the Lamotte Sandstone. Based on data from the few wells in the study unit that penetrate the Lamotte Sandstone, it is a poorly sorted mixture of sandstone, shale, and siltstone that is from 0 to 80 feet thick. Because the Precambrian-age Spavinaw Granite Group crops out in Mayes County, the thickness of all younger geologic units in the study unit is 0 at that location. Stratigraphically above the Lamotte Sandstone is the Bonneterre Dolomite. In the study unit, the Bonneterre Dolomite ranges in thickness from 0 to 180 feet. The Bonneterre Dolomite is predominantly a dolomite, which contains chert, pyrite, oolites, glauconite, and sand. The percentage of sand decreases upward from the base of the formation. Overlying the Bonneterre Dolomite are the Eminence and Potosi Dolomites, undivided in this study. The Eminence and Potosi Dolomites are cherty dolomites, ranging in thickness from 0 to 370 feet.

Rocks of Ordovician age overlie the Cambrian rocks. The lowermost Ordovician unit is the Gasconade Dolomite. The Gasconade Dolomite consists of cherty dolomite, sandstone, and sandy dolomite. A basal sandstone, the Gunter Sandstone Member, is composed of about 20 feet of sandstone and sandy dolomite. Many wells in Missouri and Arkansas are completed with the Gunter Sandstone Member as the primary water-contributing geologic unit. The overall thickness of the Gasconade Dolomite in the study unit ranges from 0 to 350 feet and averages 230 feet.

The Roubidoux Formation overlies the Gasconade Dolomite. The Roubidoux Formation consists of cherty dolomite that ranges in thickness from 0 to 300 feet and averages about 175 feet (fig. 4). The top of the Roubidoux Formation ranges from about 100 feet above to nearly 600 feet below sea level in wells in the study unit (fig. 5), which corresponds to depths of 770 to 1,300 feet below land surface. The Roubidoux Formation contains 2 or

Table 1.—Generalized geologic nomenclature and water-yielding characteristics of rocks in northeastern Oklahoma

[gal/min, gallons per minute]

System	Geologic unit	Thickness (feet)	Lithologic description	Water-yielding characteristics
Pennsylvanian	Pennsylvanian rocks, undivided	0-230	Shale, siltstone, sandstone, lime- stone, and a few thin coal seams.	Wells yield from less than 1 to more than 50 gal/min.
	Mississippian rocks, undivided	9 –175	Limestone, shale, siltstone, and sandstone.	Wells yield from less than 1 to 20 gal/min.
Mississippian	Boone Formation	0-370	Chert and fine— to coarse—grained gray, light gray, and bluish lime—stone.	Wells yield generally less than 10 gal/min but may yield as much as 750 gal/min.
	Northview Shale	S.	Greenish-black or dull-blue shale.	Not water bearing.
	Compton Limestone	95-9	Gray, nodular, shaly limestone.	Not water bearing.
Devonian and Mississippian	Chattanooga Shale	9-80	Black, carbonaceous, fissile shale.	Not water bearing.
	Ordovician rocks, undivided	0-550	Finely crystalline dolomite, with some thin shale beds and some sand stringers; found in a few wells in the southern part of the study unit.	Water-yielding characteristics not known.
100 Maria (1000) villa (1000) v	Cotter Dolomite	9-840	Light buff to brown cherty dolomite with several sandy and argillaceous sones; Swan Creek sandstone identi-	Wells yield generally less than 10 gal/min but may yield as much as 380 gal/min.
	Swan Creek sandstone	2	sandy dolomite at the base.	
Ordovician	Jefferson City Dolomite		Light buff, gray and dark brown very cherty dolomite.	Water-yielding characteristics not known.
	Roubidoux Formation	9-300	Light-colored, cherty dolomite with 2 or 3 layers of sandstone 15 to 20 feet thick.	Principal aquifer in northeastern Oklahoma. Wells yield from 100 to over 1,000 gal/min.
	Gasconade Dolomite	0-350	Light-colored, medium to coarsely crystalline, cherty dolomite; Gunter Sandstone Member is sandstone or	Not known to yield significant amount of water from beds above Gunter Sandstone Member. Gunter
	Gunter Sandstone Mbr.		e base.	
	Eminence and Potosi Dolomites	8- 378	Dark brown and light—colored cherty dolomite.	Water-yielding characteristics not known.
Cambrian	Bonneterre Dolomite	6 –180	Dolomite with chert, pyrite, colites, and glauconite; with sand decreasing progressively upward from the base of the formation.	Water-yielding characteristics not known.
	Lamotte Sandstone	9-80	Medium— to coarse—grained sandstone, shale, and siltstone.	Not known to yield water to wells in the study unit.
Precambrian	Precambrian basement rocks, undivided	Unknown	Volcanic rocks and granite.	Not water bearing.

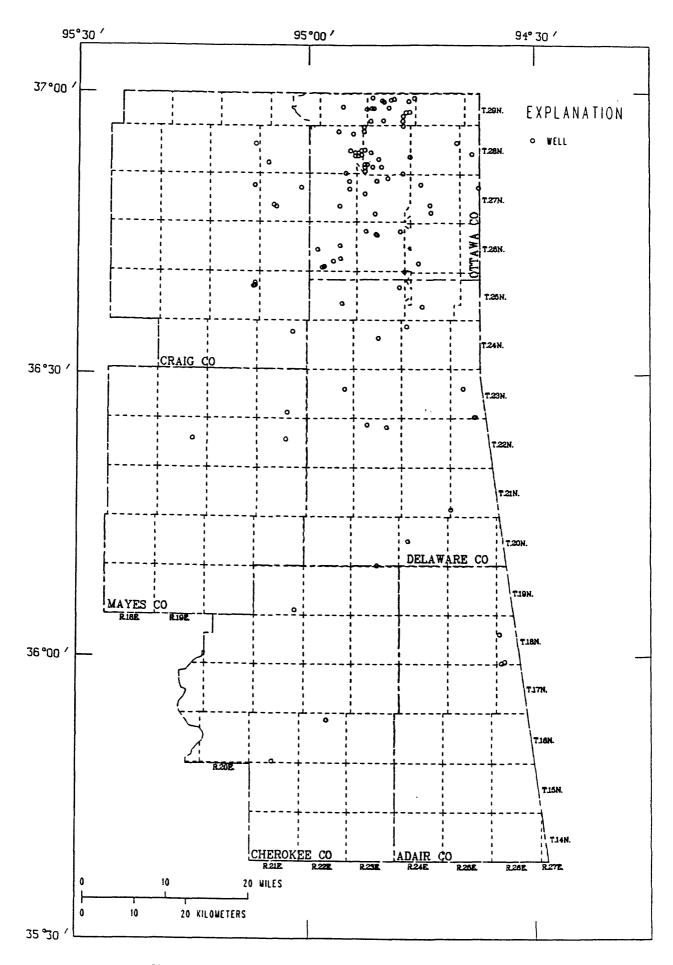


Figure 3.—Locations of wells penetrating the Roubidoux aquifer in northeastern Oklahoma that were used as control points.

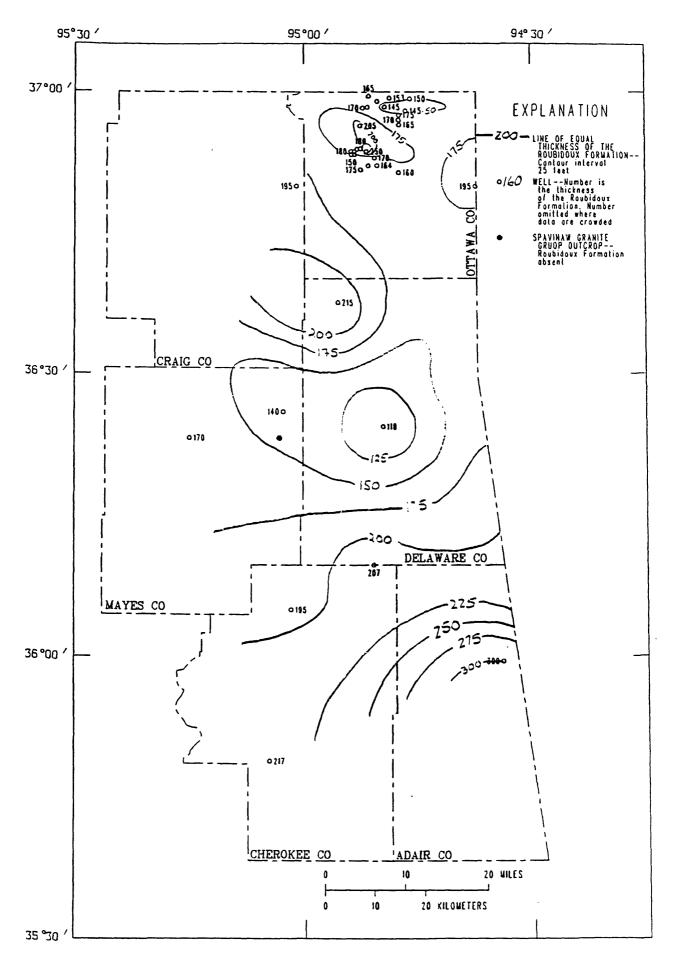


Figure 4.--Thickness of the Roubidoux Formation in northeastern Oklanoma.

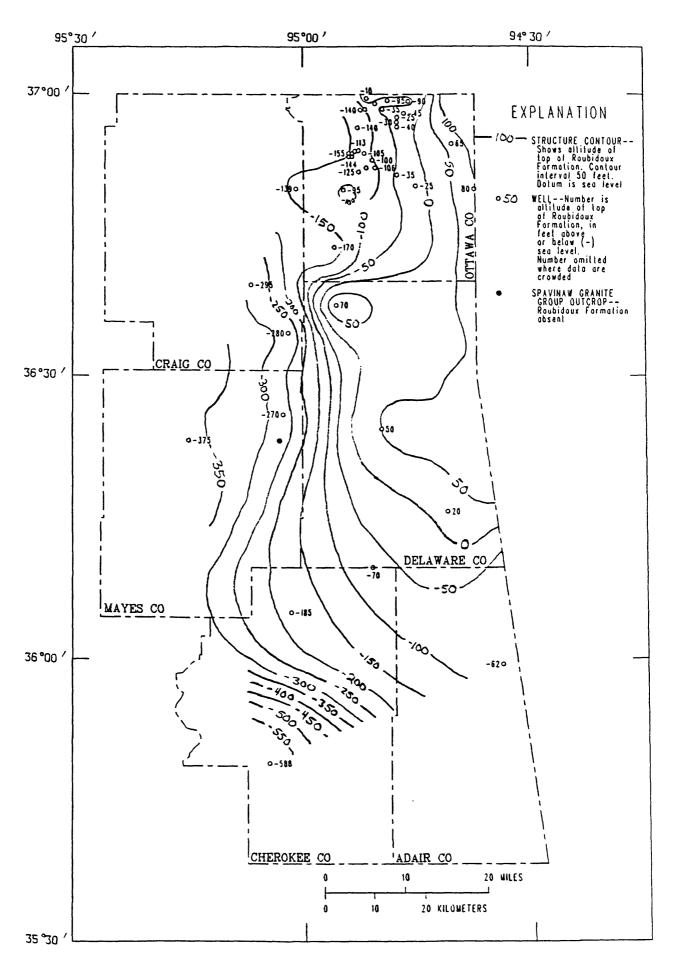


Figure 5.—Altitude of the top of the Roubidoux Formation in northeastern Oklanoma.

3 layers of sandstone, each about 15 to 20 feet thick.

The Cotter and Jefferson City Dolomites, undivided in this study, overlie the Roubidoux Formation. The Cotter and Jefferson City Dolomites are mainly cherty dolomites with sandstone lenses. The combined thickness of the two formations ranges from 0 to 840 feet (fig. 6). The Cotter Dolomite is at the surface in Mayes County but in wells in other parts of the study unit it can be as much as 670 feet below land surface. The Swan Creek sandstone is identified in some wells at the base of the Cotter Dolomite. The Swan Creek sandstone is a sandstone or sandy dolomite, as much as 30 feet thick.

Other geologic units of Ordovician age are identified in a few wells in the southern part of the study unit. These formations, stratigraphically above the Cotter Dolomite, are undivided in this report. These geologic units are identified as the Powell Dolomite, Everton Formation equivalent, Burgen Sandstone, or Tyner Formation in the few wells in which they are found. These units are predominantly a finely crystalline dolomite with some thin shale beds and some sand stringers.

The Chattanooga Shale, of Devonian and Mississippian age, overlies the Ordovician-age geologic units. It is a black carbonaceous shale, ranging in thickness from 0 to 80 feet (fig. 7).

In a few locations, the Northview Shale and the Compton Limestone of Mississippian age overlie the Chattanooga Shale. The Northview Shale is a greenish-black or dull-blue shale, and the Compton Limestone is a shaly limestone. The combined thickness of these two formations is 30 feet or less.

Overlying the Northview Shale is the Boone Formation, a sequence of cherty limestone strata of Mississippian age which crops out in the eastern half of the study unit. The Boone Formation ranges in thickness from 0 to 370 feet. The Boone Formation contains lead and zinc ores that were mined extensively in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri from about 1890 to 1960. Overlying the Boone Formation are other Mississippian formations, undivided for this study. These undivided formations consist of limestone, shale, siltstone, and fine-grained sandstone that range in thickness from 0 to 175 feet in the study unit.

Stratigraphically above the Mississippian-age formations are rocks of Pennsylvanian age, also undivided for this study. These rocks are mostly shales, siltstones, sandstones, limestones, and a few thin coal seams. These formations are less than 230 feet thick, and crop out in the western part of the study unit.

Structure

The study unit is located on the western flank of the Ozark uplift. The regional dip in the western Ozarks generally is westward and averages about 25 feet per mile. Folding and faulting cause local variations in the regional dip.

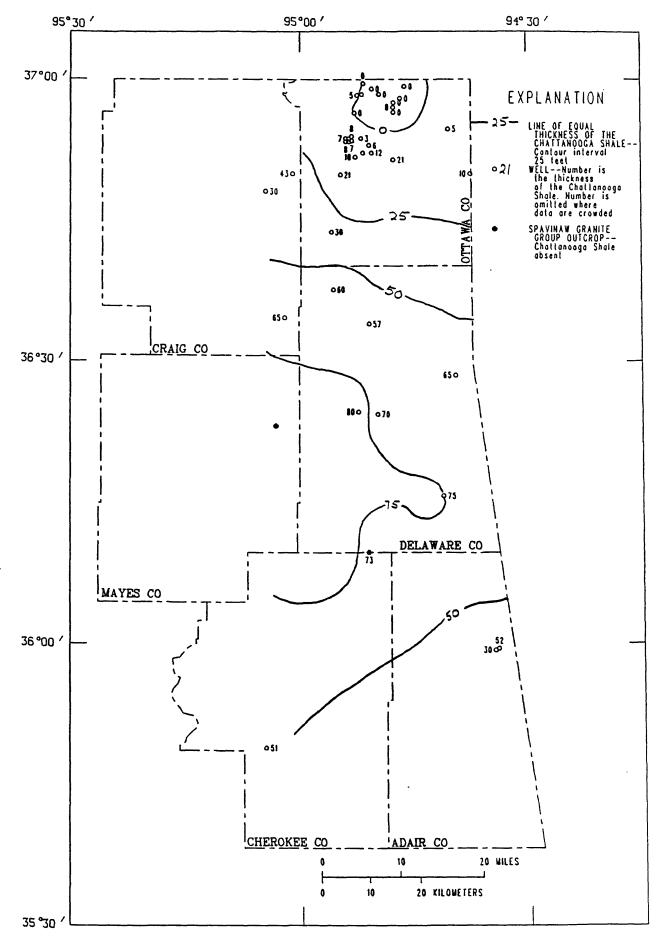


Figure 7.--Thickness of the Chattanooga Shale in northeastern Oklahoma.

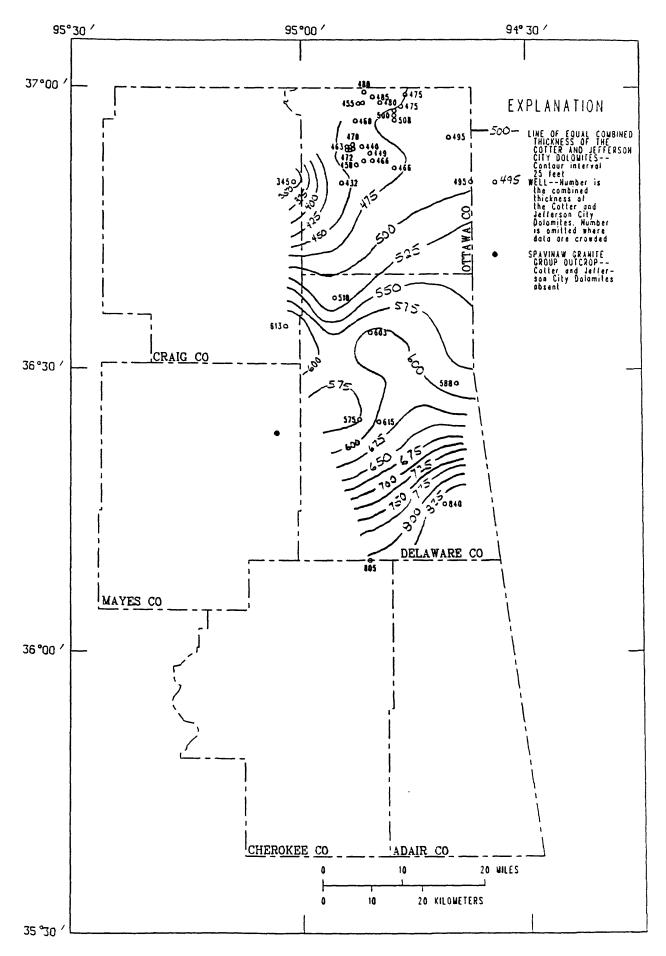


Figure 6.--Thickness of the Cotter and Jerferson City Dolomites in northeastern Oklanoma.

The Seneca graben is a major crustal discontinuity that cuts across the study unit. The Seneca graben trends northeast from the vicinity of Pryor in Mayes County, through southeastern Ottawa County, and extends into southwest Missouri (Miser, 1954). McKnight and Fischer (1970) describe the Seneca graben as a "complex feature in which bounding faults are not continuous" but are associated with several parallel faults with small displacements. The graben block is dropped a maximum of about 150 feet. In places along the Seneca graben, the sedimentary rocks apparently did not break and the bounding faults are replaced with folded sedimentary rocks.

Another crustal discontinuity in the study unit is the Miami trough. The Miami trough is a tectonic feature similar to the Seneca graben, although its surface expression is not as obvious as it does not appear on the geologic map of Oklahoma (Miser, 1954). The Miami trough trends north-northeast from Afton, passing west of Miami and Picher, and extends into Kansas. Similarly to the Seneca graben, the bounding faults are sometimes replaced by folded sedimentary rocks.

GEOHYDROLOGY

The objectives of the geohydrologic part of the Roubidoux aquifer study were to determine the potentiometric surface and the aquifer's hydraulic characteristics. These characteristics include specific yield, transmissivity, storage, and leakance of the confining layer.

Ground-Water Withdrawals

The first wells completed in the Roubidoux aquifer were drilled in northeastern Oklahoma near the beginning of the 20th century. Withdrawals of ground water from the Roubidoux aquifer steadily increased through the mid-1980's. In 1937 the State Mineral Survey (reported in Reed, Schoff, and Branson, 1955) reported the total ground-water withdrawals in Ottawa County to be about 1.75 million gallons per day. Reed, Schoff, and Branson (1955) estimated that in 1944 between 2.25 and 2.50 million gallons per day were withdrawn from the Roubidoux aquifer. They estimated withdrawals at approximately 4 million gallons per day in 1948. The 1981 estimated withdrawal from the Roubidoux aquifer in the study unit was about 4.8 million gallons per day, of which 90 percent was withdrawn in Ottawa County. In that year, approximately 75 percent of the ground water withdrawn from the Roubidoux aquifer in Ottawa County was pumped by the City of Miami and the B.F. Goodrich Company. The B.F. Goodrich Company closed its tire-manufacturing operation in Miami in early 1986, and water use in Ottawa County decreased at that time.

Water Levels

When wells were first completed in the Roubidoux aquifer near the beginning of the 20th century, the wells flowed at the land surface (Siebenthal, 1908). Since then, water levels have declined as a result of ground-water withdrawals. A cone of depression centered around the City of Miami has been created by large withdrawals of water. During 1981, water levels were measured in many of the wells completed in the Roubidoux aquifer in Oklahoma (table 2). Water levels in wells completed in the Roubidoux aquifer range from 22 to 471 feet below land surface in 1981. These water-level data were used to construct the potentiometric surface map shown in figure 8.

A water-table aquifer exists in the shallow geohydrologic units in the study unit, and potentiometric head in the water-table aquifer is much higher than the head in the Roubidoux aquifer. Thus, vertical hydraulic gradients exist between the geohydrologic units in the study unit, and probably within the Roubidoux aquifer. Many of the Roubidoux aquifer wells in which water levels were measured have large open intervals, and many are completed from the top of the Cotter Dolomite to the bottom of the well in the Roubidoux Formation or Gasconade Dolomite. Because head varies in the vertical direction and deep wells are open to large intervals, water levels measured in deep wells are an integrated measurement of a range of head. Although the potentiometric surface shown in figure 8 is considered to be a reasonable approximation of the potentiometric head in the Roubidoux aquifer, at each well shown in figure 8 there is some variation in head with

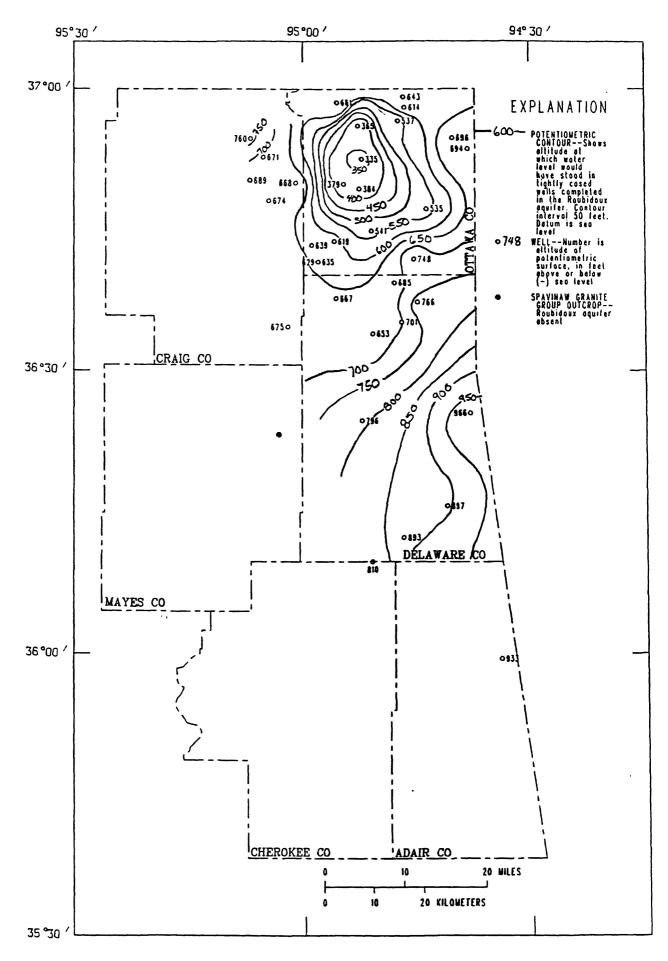


Figure 8.--Altitude of the potentiometric surface in the Roubidoux aquifer, 1981, in northeastern Oklahama.

depth.

Water levels were measured periodically in selected wells completed in the Roubidoux aquifer to determine seasonal variations and long-term trends. Hydrographs for 2 wells in Craig County and 3 wells in Delaware County are shown in figure 9, and for 5 wells in Ottawa County are shown in figure 10. The water levels in all 10 wells were relatively stable during the 2-year period they were measured. None of the wells exhibited large seasonal variations or substantial trends in water levels.

The long-term trend of the water level in a well completed in the Roubidoux aquifer located in the City of Miami (28N-23E-30 DBC 1) is shown in figure 11. The water level in this well has been monitored sporadically since 1907. The well flowed when it was drilled, and measurements discussed in Reed, Schoff, and Branson (1955) place the water level at 28 feet above land surface prior to 1907. The water level in the well was relatively stable between 1972 and 1986 at an approximate depth of 440 feet below land surface (corresponding to an altitude of 330 feet). Water levels in the well began to rise in 1986, at about the time the B.F. Goodrich Company ceased its manufacturing operation in Miami.

Specific Capacity

Specific capacity is one measure of a well's ability to yield water. Specific capacity is computed by dividing the well yield, commonly measured in gallons per minute, by the drawdown, commonly measured in feet. Specific capacity is a function of the hydraulic characteristics of the well and the geohydrologic units in which the well is completed. In general, larger diameter wells will have a greater specific capacity than smaller diameter wells completed in the same aquifer. For wells of the same diameter and constructed in a similar manner, a well with a greater specific capacity indicates a greater aquifer transmissivity than a well with a lesser specific capacity.

The specific capacity of wells completed in the Roubidoux aquifer range from 0.29 to 18.50 gallons per minute per foot of drawdown (table 3). The wells that were tested for specific capacity were pumped at rates that ranged from 102 to 1,016 gallons per minute. Many factors contribute to the large range in specific capacity:

- (1) The specific-capacity tests were not run for the same length of time. Shorter specific-capacity tests give greater specific capacities than longer tests because drawdown commonly increases with time.
- (2) The thickness of the Roubidoux aquifer varies at each well. Wells completed in thicker sections of the aquifer may intersect a greater amount of permeable aquifer, which tends to increase the specific capacity of the well.
- (3) The rocks constituting the Roubidoux aquifer are fractured. It is not known what percentage of the water moving through the aquifer moves through fractures and what percentage moves through the voids between

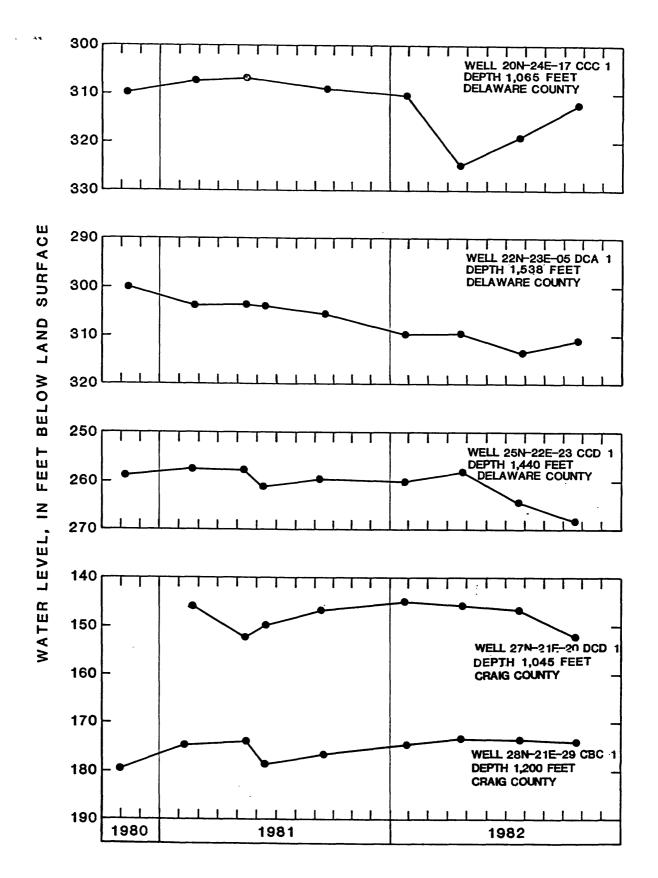


Figure 9.—Hydrographs of selected wells in Craig and Delaware Counties, Oklahoma.

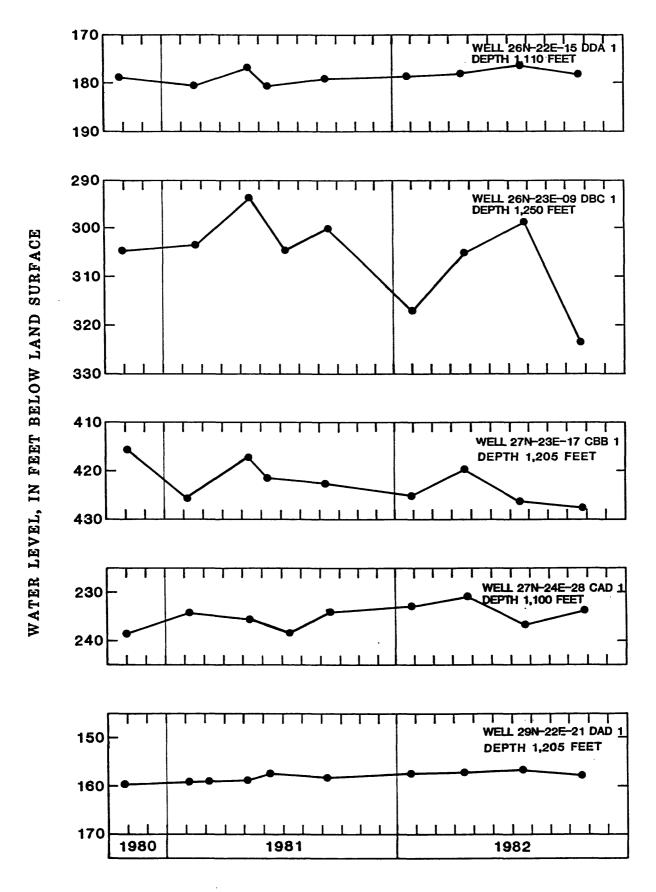


Figure 10.—Hydrographs of selected wells in Ottawa County, Oklahoma.

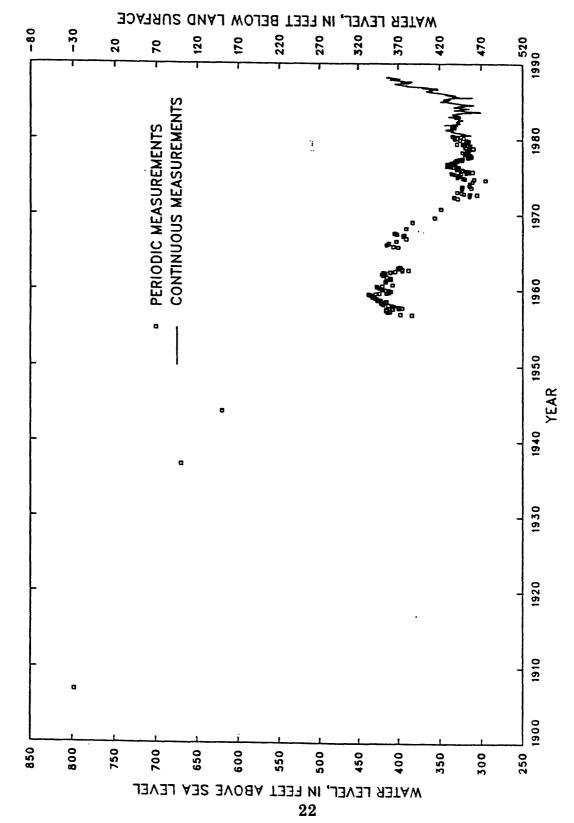


Figure 11.--Hydrograph of well 28N-23E-30 DBC 1 at Miami, Oklahoma

grains. Water moving through fractures tends to increase the effective diameter of the well, which increases the specific capacity.

(4) Well completion techniques are different for each individual well. Many of the wells were acidized and "shot," that is, nitroglycerine was detonated within the well bore to increase fracturing, which increases the effective diameter of the well.

All these factors contribute to the wide range in specific capacities.

Aquifer Test

An aquifer test to determine the transmissivity and storage coefficient of the Roubidoux aquifer was conducted on wells at the B.F. Goodrich Company plant in Miami, Oklahoma, in 1944. The test was conducted by pumping a production well and measuring the decline in water levels in another well at a distance of 2,575 feet. The aquifer test was analyzed by Reed, Schoff, and Branson (1955) using the Theis type-curve solution (Theis, 1935). However, the data did not fit the Theis curve very well. Reed, Schoff, and Branson (1955) speculated that the boundary faults associated with the Miami Trough may serve to reduce the transmissivity of the Roubidoux aquifer, and thus caused the the poor fit between the measured drawdown and the Theis curve. Another possible explanation for why the fit to the Theis type curve was poor is that water was released from storage in the confining layer, which violates an assumption of the Theis type-curve solution.

Since the work of Reed, Schoff, and Branson (1955), a type-curve solution has been developed that accounts for water released from storage in a confining layer (Hantush, 1960, as reported in Reed, 1980). Using this type-curve solution, the 1944 test was analyzed to determine the transmissivity and storage coefficient of the Roubidoux aquifer, and the product of the leakance (the ratio of vertical hydraulic conductivity to the thickness of the confining layer, K'/b') and the storage coefficient of the confining layer (S'). The results are shown below:

Transmissivity: $600 \text{ ft}^2/\text{day}$ Storage coefficient: 1.0×10^{-6}

K'S'/b': $1.3 \times 10^{-8} \text{ day}^{-1}$

Drawdowns were calculated by substituting these estimates of the aquifer's properties into the analytical solution in Reed (1980). A comparison between the measured time-drawdown data and the computed time-drawdown values for the B.F. Goodrich aquifer test is shown in figure 12.

The storage coefficient computed above is smaller than would be expected for an aquifer as thick as the Roubidoux. The storage

Table 3.--Summary of specific capacity of selected wells completed in the Roubidoux aquifer in northeastern Oklahoma

Local identifier	Well Depth (feet)	Yield (gpm)	Time (hours)	Drawdown (feet)	Specific capacity (gpm/ft)		
	A	DAIR COUNT	Y				
18N-26E-31 DAD 1	1,510	150	7.0	296	0.51		
	C	RAIG COUNT	Y				
27N-21E-12 CCB 1	1,352	305	20.0	72	4.24		
27N-21E-20 DCD 1	1,045	110	48.0	380	0.29		
DELAWARE COUNTY							
20N-24E-17 CCC 1	1,065	260	48.0	250	1.04		
21N-25E-31 BBB 1	1,350	135	48.0	200	0.68		
22N-23E-05 DCA 1	1,538	102	12.0	330	0.31		
22N-23E-11 BBB 1	1,442	200		173	1.16		
24N-23E-15 BBC 1	1,145	275	48.0	183	1.50		
25N-22E-23 CCD 1	1,440	302	12.0	129	2.34		
	ro	TAWA COUNT	Y				
26N-22E-15 DDA 1	1,110	110	50.0	325	0.34		
27N-23E-17 CBB 1	1,205	192	24.0	84	2.29		
27N-25E-09 CAC 1	1,247	407	8.0	263	1.55		
28N-23E-20 BCB 1	1,250	1,016	0.5	150	6.77		
28N-23E-33 BAB 1	1,526	934	4.0	264	3.54		
28N-23E-36 CCC 1	1,190	185	4.0	10	18.50		
28N-25E-20 CAA 1	1,418	200	2.0	35	5.71		
29N-22E-21 DAD 1	1,205	300	7.5	30	10.00		
29N-23E-13 DAC 1	1,115	150		138	1.09		

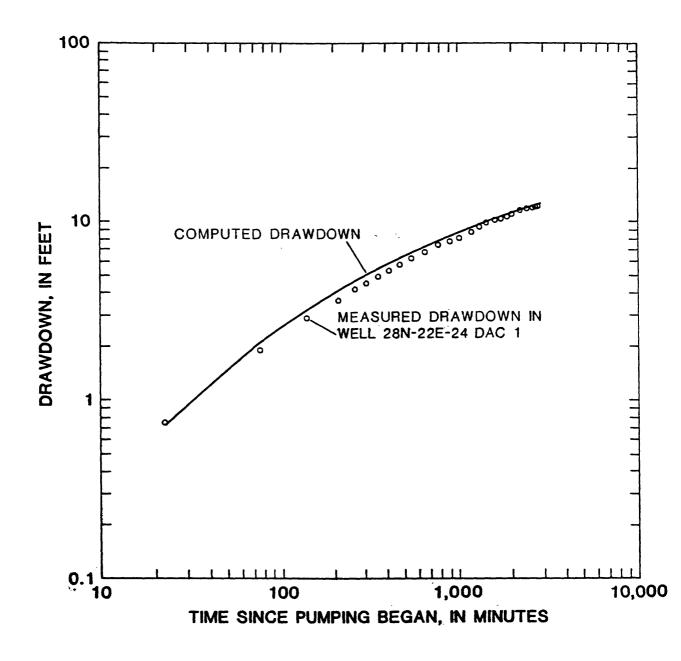


Figure 12.—Measured and computed drawdown for the Roubidoux aquifer test at Miami in 1944.

could not be determined independently. Because the pumping and observation wells are open to the Cotter and Jefferson City Dolomites, it is possible that these geologic units are acting as part of the aquifer. It is also possible that if the Cotter and Jefferson City Dolomites have only small transmissivities, they may be part of the confining layer.

Digital-Model Analysis

Digital-model simulations of the cone of depression in the potentiometric surface in the vicinity of the City of Miami were used to determine the transmissivity of the Roubidoux aquifer and the hydraulic characteristics of the overlying confining layer. Water levels within the cone of depression were relatively stable in 1981 (as indicated by the well located in 28N-23E-30 DBC 1, illustrated in figure 11), which indicates that the flow system in the vicinity of the cone was in an approximate steady-state condition at that time. This steady-state condition simplifies the modeling process by eliminating from the analysis any consideration of storage changes. The digital-model simulations were used to provide an estimate of the transmissivity of the aquifer and to provide a range for the vertical hydraulic conductivity of the confining layer.

Steady-state conditions imply that outflows of water are equal to inflows of water, with no change in the amount of water in storage. In the case of the cone of depression near Miami, outflow is the withdrawal of ground water from wells in and near Miami. The inflow of water could occur by two different processes:

- (1) The lateral flow of water through the Roubidoux aquifer to the cone of depression. In this case, water moves laterally through the aquifer from areas of higher head outside of the cone of depression toward the lower head within the cone.
- (2) The vertical flow of water into the cone of depression in the Roubidoux aquifer through confining layers from overlying geohydrologic units. Heads in the Roubidoux have been lowered by ground-water withdrawals, and heads are higher in the overlying geohydrologic units (such as the Boone Formation). Water flows downward from the higher heads in the overlying geohydrologic units through the confining layer to the Roubidoux aquifer. Such vertical flow through confining layers is generally referred to as leakage.

The volume of lateral ground-water flow through the aquifer and vertical flow as downward leakage is dependent on the transmissivity of the aquifer, the vertical hydraulic conductivity and thickness of the confining layer, and the distribution of head in the aquifer and the overlying geohydrologic units. Some volume of water probably is entering the cone of depression by both processes, but the proportions are unknown.

A digital ground-water flow model was used to evaluate the various hydraulic factors that control ground-water flow. By adjusting the digital-model parameters that correspond to the hydraulic characteristics of aquifers and confining layers, the distribution of head was simulated. The

coefficient of an aquifer can be expressed as:

$$S = (Ssw + Ssa)b \tag{1}$$

where:

S = aquifer storage coefficient (dimensionless)

Ssw = specific storage due to elasticity of water

Ssa = specific storage due to elasticity of aquifer skeleton

b = the thickness of the aquifer (ft)

This can be written:

where:

n = porosity of the aquifer (dimensionless)

Aw = the specific weight of water (lbs/ft³)

Ew = the modulus of elasticity of water (lbs/ft^2)

Ea = the modulus of elasticity of the aquifer (lbs/ft^2)

Although the modulus of elasticity of the Roubidoux aquifer is not known, the modulus of elasticity of water has been measured, and it is possible to compute a minimum storage coefficient for an aquifer based on the expansion of the water alone. The specific weight of water is 62.4 lbs/ft3 and the modulus of elasticity of water is approximately 4.6 x 10⁷ lbs/ft². If the porosity of the Roubidoux aquifer is 0.01 (a minimum likely value), the storage coefficient per foot of aquifer, or specific storage, is 1.4×10^{-8} ft⁻¹; if the porosity of the aquifer is 0.3(the maximum likely value), the specific storage is 4.1×10^{-7} ft⁻¹. The component of storage due to the compression of each foot of aquifer would be added to this number, and multiplied by the thickness of the formation. Therefore, if the Roubidoux aquifer were completely inelastic (a very unlikely possibility) and the second term in equation (2) were zero, the modulus of elasticity of water indicates that the Roubidoux aquifer is between 73.7 (n=0.01) and 2.46 (n=0.3) feet thick. Figure 4 shows the Roubidoux Formation (the principal geohydrologic unit in the Roubidoux aquifer) is over 150 feet thick at the site of the aquifer test. The source of this discrepancy is not understood.

The characteristics of the confining layer (K'S'/b') determined by the 1944 aquifer test were left as a product, because the analytical solution provides no means of determining any of these numbers individually. A range for the leakance of the confining layer (K'/b') can be calculated based on a range of plausible values for the storage coefficient of the confining layer (S'). The storage coefficient could range from 0.3 (the upper limit of porosity) to 1.0×10^{-7} (a storage coefficient based on the modulus of elasticity of water alone), thus the leakance of the confining layer could range from 4.3×10^{-8} to $0.13 \, \mathrm{day^{-1}}$. The thickness of the confining layer

combinations of digital-model parameters that produced acceptable agreement between computed and measured heads are possible descriptions of the corresponding combinations of aquifer and confining layer hydraulic properties. Realizing that there is no unique solution to the infinite number of possible combinations of aquifer and confining layer characteristics that can produce a given head distribution, the digital model was used to evaluate certain combinations of parameters. Although a digital model does not provide a unique solution, it does provide a range of hydraulic characteristics that are likely to occur in the ground-water flow system.

In some investigations, digital models undergo an extensive calibration and verification process, and the models are used to simulate many aspects of the ground-water flow system. This was not done for the digital model discussed here. No attempt was made to undertake a complete model analysis of the ground-water flow system in northeastern Oklahoma. The objective of the digital-model simulation of the cone of depression near Miami was to establish ranges for the hydraulic properties of the aquifer and confining layer.

The digital-model code used was that of the U.S. Geological Survey's modular finite-difference model (McDonald and Harbaugh, 1984). The digital-model grid was established using 40 columns, 40 rows, and 2 layers. The lower layer represented the Roubidoux aquifer and the upper layer represented the overlying Boone Formation. An intervening confining layer, representing the Chattanooga Shale and possibly including the Cotter and Jefferson City Dolomites, was represented by the leakance between the upper and lower layers, but not by an actual layer in the digital model. Because the Boone Formation receives large amounts of recharge, and discharges most of the recharge to streams, which will maintain heads at a relatively constant level, the upper layer was assigned to be constant head.

The grid spacing in the model in the x and y directions was variable, with a fine mesh in the center of the digital model, which represented the center of the cone of depression, and a grid which became gradually coarser toward the outer region of the zone of simulation. The smallest grid spacing in the center of the zone of simulation was 1 mile, and the largest grid spacing at the edge of the zone of simulation was 4.3 miles.

Various combinations of aquifer characteristics and boundary conditions were assigned to the digital model to simulate the measured head distribution. The goodness of fit between measured and computed heads in the Roubidoux aquifer was measured by the mean head difference between measured and computed heads and the mean of the absolute value of head difference between measured and computed heads at nodes in Ottawa County. Only those nodes that correspond to the area that represents Ottawa County in the flow model were used in the computations, because the density of head data is greatest in that county. Because the goodness of fit terms are awkward to refer to, they are abbreviated as MHD for the mean head difference between measured and computed heads, and MAVHD for the mean of the absolute value of head difference between measured and computed heads.

The MHD was computed by summing the difference between measured and computed head at each node and dividing by the total number of nodes. Ideally, the MHD should be reduced to zero. A zero MHD indicates that deviation between measured and computed heads is, on the average, zero, and that positive differences are balanced by negative differences. The MAVHD was computed by summing the absolute value of the difference between measured and computed heads at each node and dividing by the number of nodes. During the modeling process, the MAVHD should be minimized, indicating that the differences between measured and computed heads are small. Ideally, the MAVHD should be reduced to the estimated error of the measured heads. The estimated error for heads measured in the Roubidoux aquifer in 1981 is large, probably greater than 50 feet. Part of this error is due to the altitude of the wells being estimated from topographic maps, which could introduce an estimated error of plus or minus 10 feet (the contour interval of the map). Many of the wells in which the water levels were measured are operational water-supply wells, and were affected by pumping prior to the water-level measurements from which heads were calculated. Wells pumping close to the well in which the water-level measurements were made also affected the measured heads. An additional error was introduced by the open-borehole nature of wells in the Roubidoux. The measured head in the well were somewhere between the highest and lowest heads of the formations within the open interval in the well, which could vary by many tens of feet in an aquifer with significant vertical flow.

Another condition that ideally should be obtained during the modeling process is that the errors between computed and measured heads should be normally distributed around the mean. This is an indication that the errors are random, not systematic.

Three different conceptual models were tested with the digital-model simulations:

Model 1: Water pumped from the cone of depression is entering the cone only as lateral flow through the Roubidoux aquifer. This conceptual model was tested by setting the leakance of the confining layer equal to zero, which allowed no vertical leakage, and by setting constant-head nodes along the perimeter of the digital model, which allowed an unlimited amount of lateral flow through the Roubidoux aquifer. The transmissivity of the layer that corresponded to the Roubidoux aquifer was adjusted to produce the best fit between measured and computed head distributions.

Model 2: Water pumped from the cone of depression is entering the cone only as vertical flow through the confining layer. This conceptual model was tested by removing the constant-head nodes from the perimeter of the digital model, in effect surrounding the model with an impermeable barrier. Leakance was set to a positive value and adjusted, along with the transmissivity of the aquifer, to obtain the best fit between measured and computed head distribution.

Model 3: Water pumped from the cone of depression is entering the cone by a combination of lateral flow through the Roubidoux aquifer and vertical flow through the confining layer. Constant-head nodes were set around the perimeter of the digital model and leakance was adjusted, along with transmissivity, to obtain the best fit between measured and computed head distribution. By using both constant-head nodes and setting leakance to a positive value, both lateral flow through the Roubidoux and vertical leakage through the confining layer were simulated.

Figure 13 shows that in model 1 (no vertical leakage) an MHD of zero was achieved with the first model using a transmissivity of $700 \text{ ft}^2/\text{day}$. Figure 14 shows that a minimum MAVHD of 62.7 feet was achieved with a transmissivity of $660 \text{ ft}^2/\text{day}$. Examination of the residuals (the differences between computed and measured heads at each model node) shows that the errors are skewed. A smaller number of nodes with large positive residuals (a positive sign means that computed head is lower than measured head) are balanced by a larger number of nodes with small negative residuals. The negative residuals tend to occur in the center of the cone of depression and the positive differences occur along the periphery.

Although the minimum MAVHD of 62.7 feet is slightly larger than the estimated error in the measured heads of 50 feet, it is close enough to consider model 1 a reasonable representation of the aquifer system. That is, the conceptual model of all the water entering the cone of depression as lateral flow and not as vertical leakage is a plausible model. In addition, the best fit transmissivities from model 1 of 660 and 700 ft²/day are close to the 600 ft²/day calculated from the aquifer test at the B.F. Goodrich plant.

The results of model 2 (vertical leakage as the source of water and no lateral flow of water into the cone of depression) are shown in figures 15 and 16. These figures are more complicated than figures 13 and 14 because both the transmissivity of the Roubidoux aquifer and the leakance of the confining layer are being varied. Figure 15 shows that a best-fit MHD of zero was achieved with all values for leakance that were tried. Figure 16 shows that the minimum MAVHD of 59.9 feet was achieved with an aquifer transmissivity of 400 ft²/day and with a leakance of $7.4 \times 10^{-8} \, \text{day}^{-1}$. an aquifer transmissivity of 400 ft2/day, the best-fit mean of zero was achieved with a leakance of $7.7 \times 10^{-8} \text{ day}^{-1}$, as shown in figure 15. The residuals are less skewed for model 2 than for model 1. Model 2 is better than model 1 at reproducing the measured heads because the MAVHD is about 3 feet less for model 2 than for model 1 and because the residuals are less skewed. The best-fit transmissivity of 400 ft2/day for model 2 is close to the 600 ft²/day transmissivity calculated from the B.F. Goodrich aquifer test.

The results of model 3 are shown in figures 17 and 18. Model 3 is a combination of models 1 and 2, because in model 3 water can enter the cone of depression both as lateral flow and vertical leakage. Figure 17 shows that for all values of aquifer transmissivity and leakance a MHD of zero was achieved. Figure 18 shows that the best-fit minimum MAVHD between measured

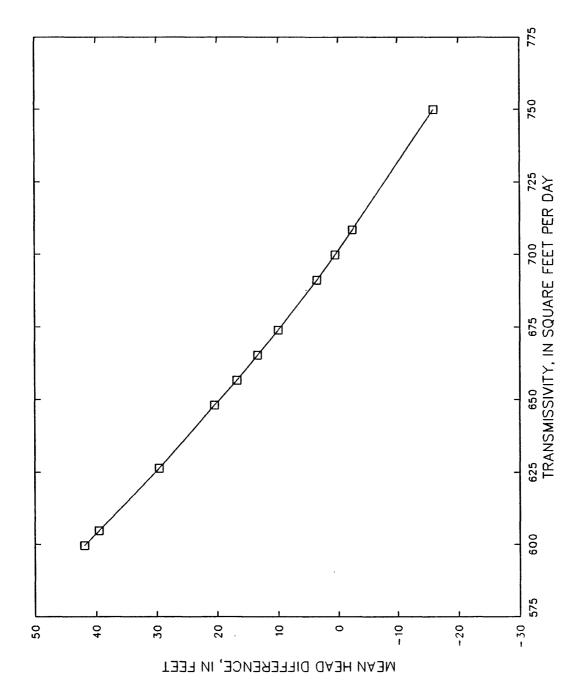


Figure 13.——Relation of transmissivity to mean head difference for model 1 (lateral flow only).

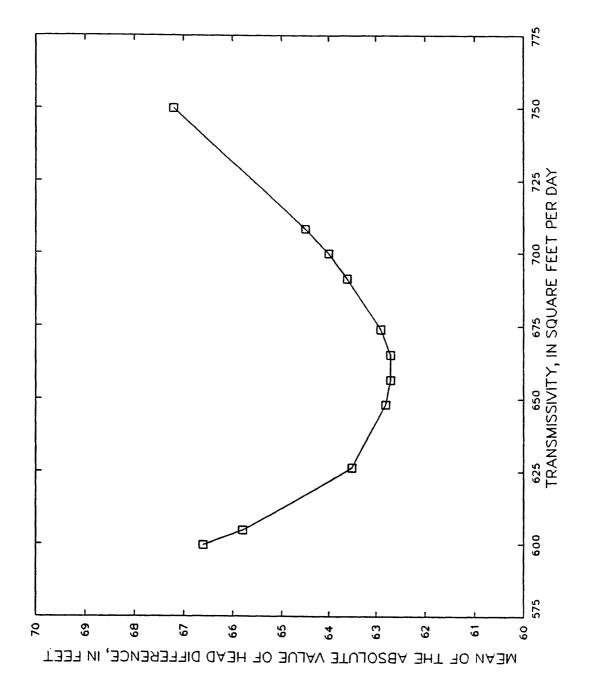


Figure 14.——Relation of transmissivity to the mean of the absolute value of head difference for model 1 (lateral flow only).

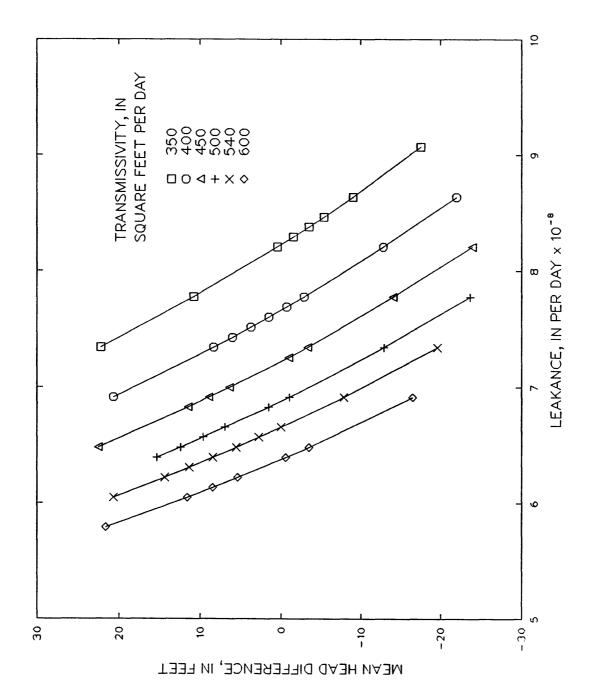


Figure 15.——Relation of transmissivity and leakance to mean head difference for model 2 (vertical flow only).

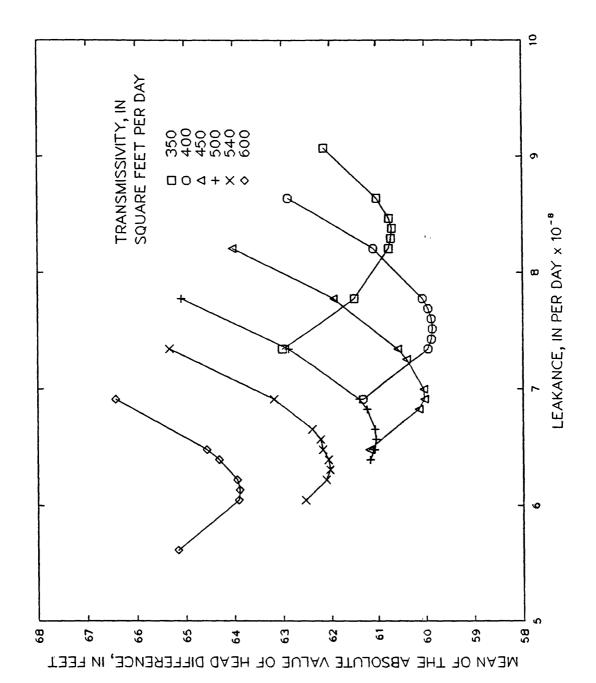


Figure 16.——Relation of transmissivity and leakance to the mean of the absolute value of head difference for model 2 (vertical flow only).

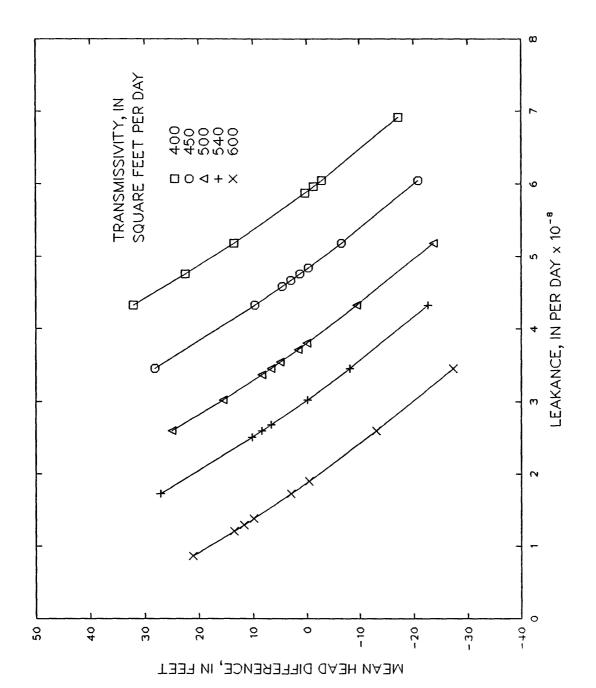


Figure 17.——Relation of transmissivity and leakance to mean head difference for model 3 (lateral and vertical flow)

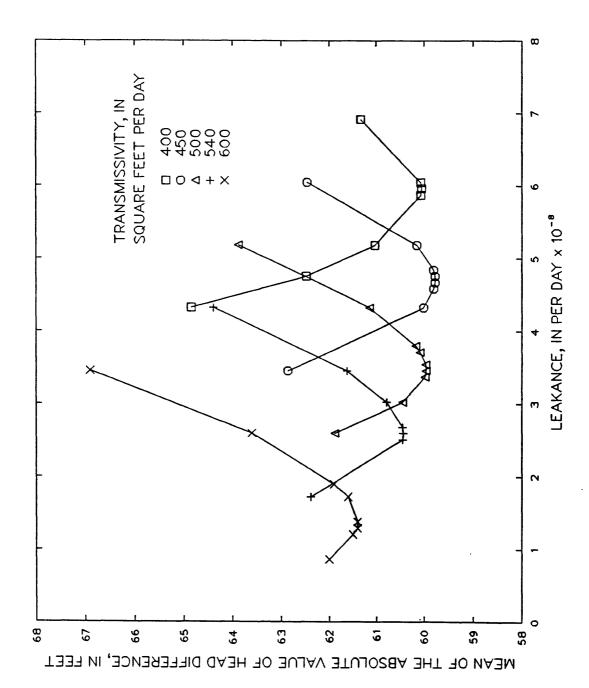


Figure 18.——Relation of transmissivity and leakance to the mean of the absolute value of head difference for model 3 (lateral and vertical flow).

and computed heads was 59.8 feet, obtained with an aquifer transmissivity of 450 ft²/day and a leakance of 4.7×10^{-8} day⁻¹. With an aquifer transmissivity of 450 ft²/day, the best-fit MHD of zero was achieved with a leakance of 4.8×10^{-8} , as shown in figure 17. Because the MAVHD is 0.1 foot less for model 3 than for model 2, and the best fits as measured by the MHD and the MAVHD occur at almost the same aquifer and confining layer properties, model 3 is a very slight improvement over model 2 in reproducing the measured heads.

The results of the three different digital-model simulations place limits on the range of aquifer transmissivity and the leakance of the confining layer. In the 3 simulations, the aquifer transmissivity ranged from 400 to 700 ft²/day, and the leakance ranged from 0 to 7.7 x 10^{-8} day $^{-1}$. This narrow range for aquifer transmissivity includes the transmissivity calculated from the B.F. Goodrich aquifer test. Because the aquifer transmissivity calculated by two independent methods was similar, it is inferred that the calculated transmissivities are a good estimate of the transmissivity of the Roubidoux aquifer in Ottawa County.

The leakance calculated from the digital-model simulations ranged from 0 to 7.7 x 10^{-8} day $^{-1}$, and the leakance calculated from the aquifer test ranged from 4.3 x 10^{-8} to 0.13 day $^{-1}$. Although the total range of leakance for the two methods is very large, the range where the values calculated by the two methods overlap is quite narrow. Only in this narrow range of leakance are the results for the flow model and the aquifer test analysis consistent with the measured data. This range, from 4.3 x 10^{-8} to 7.7 x 10^{-8} day $^{-1}$, is considered to be the best estimate for the leakance of the confining layer.

WATER QUALITY

A preliminary assessment of the chemical composition of water in the Roubidoux aquifer is presented in this section. The following topics are discussed: (1) Available chemical data for ground water, (2) major-ion chemistry of the aquifer, (3) summary statistics of water-quality data, (4) chemical data in comparison to water-quality standards, and (5) water-quality problems in the aquifer.

Available Chemical Data for Ground Water

The chemical data from samples of wells completed in the Roubidoux aquifer were obtained from three sources: (1) U.S. Geological Survey files, (2) the Oklahoma State Department of Health, and (3) the present study.

The U.S. Geological Survey files provided 37 analyses for samples collected from 1942 through 1969. Most of these data were analyses of ground-water samples from industrial and municipal wells. Generally the major ions, iron, and nitrate were analyzed to determine the suitability of the water for drinking-water supplies and industrial purposes.

Nineteen analyses were obtained from the Oklahoma State Department of Health for samples collected from 1977 through 1980. Samples from municipalities and rural water districts were analyzed for major ions and trace elements for which drinking water-regulations have been established. Six additional analyses of ground water from Quapaw's municipal wells were obtained for samples taken in 1981.

There were 208 analyses of ground-water samples collected as part of the present study. One hundred six analyses included only field measurements of pH, specific conductance, and temperature. The remaining 102 samples were analyzed for major ions, trace elements, and (or) radiochemical constituents, as well as for the field-measured parameters. Samples were generally obtained at the well head using the existing pumps. Some samples in 1982 and 1983 were obtained from wells without pumps using a down-hole sampling device. The device was opened by remote control so that samples could be collected from a specific depth within the well. Alkalinity was measured in the field and samples for other constituents were taken and preserved for subsequent laboratory analysis by the use of standard methods (Brown, Skougstad, and Fishman, 1970). The laboratory of the Oklahoma Geological Survey analyzed most of the major-ion and trace-element samples. Radioactive constituents were analyzed by the National Water Quality Laboratory of the U.S. Geological Survey in Denver, Colorado.

Tables 4, 5, and 6 present the data that were used in this report. Table 4 presents the concentrations of common constituents and physical properties of water, table 5 presents the concentrations of trace elements, and table 6 presents the concentrations of radioactive constituents.

Major-Ion Chemistry

The concentrations of major ions are shown on plate 1 along with the dissolved-solids concentrations for selected wells in the study unit. Each small diagram on plate 1 is a water-quality diagram, which displays the concentrations of all the major ions of a water sample in milliequivalents per liter (meq/L). The left side of a water-quality diagram shows, from top to bottom, the concentrations of calcium, magnesium, and sodium plus potassium. The right side shows, from top to bottom, the concentrations of bicarbonate, sulfate, and chloride.

A large change in major-ion chemistry occurs in ground water in the Roubidoux aquifer in northeast Oklahoma. In the easternmost part of the study unit, wells produce ground water with relatively small dissolved-solids concentrations, approximately 100 to 200 milligrams per liter (mg/L). The dominant ions generally are calcium, magnesium, and bicarbonate, which are derived from dissolution of dolomite and limestone in the aquifer. Concentrations of sodium, sulfate, and chloride generally are small.

In the westernmost part of the study unit, wells produce ground water with relatively large dissolved-solids concentrations, about 800 mg/L or greater. The dominant ions are sodium and chloride.

A transition zone in water composition occurs between the easternmost and westernmost parts of the study unit. Wells in the transition zone generally have intermediate chloride concentrations (25 to 250 mg/L or 0.7 to 7 meq/L) and intermediate dissolved-solids concentrations (200 to 800 mg/L). A few wells in this zone have increased sodium concentrations that are not accompanied by equally increased chloride concentrations. Ion-exchange reactions with clays probably are responsible for the increased sodium in these few wells. In the ion-exchange reaction, sodium is replaced by calcium and magnesium on ion-exchange sites in clays.

Sulfate concentrations in ground water generally are small in most of the study unit. Samples from a few wells in the vicinity of Picher and Quapaw had substantial sulfate concentrations. The sulfate concentrations are probably related to the abandoned lead and zinc mines of the Picher field. Water-quality problems related to the abandoned mines are discussed below.

Summary Statistics of Water-Quality Data

Selected statistics were determined from the available data. The most recent analysis for each constituent was used to represent each well. If analyses were available from different sampling depths from a single well, the most recent analysis for each constituent from each sampling depth of the well was included in the calculation of the statistics.

The data for many constituents include values that are reported as less than a specified minimum-reporting level. These values are called censored values. It is common to have several different minimum-reporting levels for a single chemical constituent because of differences in analytical methods. Percentiles below the largest minimum-reporting level can not be calculated accurately using standard methods. A procedure developed by Helsel and Cohn (1988) for calculating percentiles in data with one or more minimum-reporting levels was used to calculate percentiles for any constituent that had censored values. The procedure used a statistical model to calculate any percentiles that were less than the largest minimum-reporting level. In order to use the procedure, it also was necessary to eliminate any zero values. For those constituents with censored values, data that were reported as zero were set equal to the largest minimum-reporting level. If no censored data were present for a constituent, percentiles were calculated by standard methods. No percentiles were calculated if fewer than 20 analyses were available for a constituent.

The number of analyses, the largest minimum-reporting level, the minimum value, selected percentiles, and the maximum value for all of the constituents measured in the study unit are listed in table 7. The table also lists the method used to calculate the percentiles for each constituent. Because the samples are not evenly distributed areally and vertically, the statistics are only an approximate description of the overall water resource.

Many of the minimum values in table 7 are reported as less than the smallest minimum-reporting level for the constituent in the data set. Many percentiles calculated by the method of Helsel and Cohn (1988) are smaller than the smallest minimum-reporting level. The maximum values often greatly exceed the 95th percentile. Many of the maximum values are related to samples of ground water with very large sodium and chloride concentrations or ground water that is affected by the abandoned mines of the Picher mining area.

Comparison of Water-Quality Data to Drinking-Water Standards

Water-quality standards set by the primary and secondary drinking-water regulations of the U.S. Environmental Protection Agency (U.S. Environmental Protection Agency, 1986a and 1986b) are listed in table 8 for 20 inorganic and radiochemical constituents. The primary regulations set maximum contaminant levels (MCL's) to protect public health. The secondary regulations set secondary maximum contaminant levels (SMCL's) for aesthetic reasons related to public acceptance of drinking water. The regulations for MCL's and SMCL's apply only to public water systems and are not enforceable for domestic and other types of wells.

Table 8 lists the number of sites that have been sampled and the number of sites that have had at least one sample that exceeded the water-quality standard. Tabulations for two data sets are presented in table 8: (1) data set 1 included all analyses from all wells and (2) data set 2 excluded

Toble 7.—Summary statistics of selected chemical constituents

mg/L, milligrams per liter; µg/L, micrograms per liter; pCi/L, picocuries per liter. Method: 1, no censored data, ordinary percentile calculation; 2, censored data present, percentiles calculated using methods of Helsel and Cohn (1988); 3, no calculation, more than 80 percent of the data were censored; 4, no calculation, less than 20 analyses for the constituent. Largest MRL: largest minimum reporting level (percentiles less than this value were estimated using the methods of Helsel and Cohn (1988), depth of the well was included. Constituents and physical parameters: \$\mu S/cm, microsiemens per centimeter at 25 degrees Celcius; percentiles greater than this value are the same as ordinary percentile calculation); —, no censored data for this constituent. Percentiles: —, indicates no statistic was calculated; Maximum value: —, indicates all data were censored for this constituent] If analyses were available for different sampling depths from the same well, the most recent analysis for each constituent from each sampling These statistics were calculated including only the most recent analysis for each constituent for each well.

imum value

95

75

25

S

imum value

ple est Method size MRL

Constituents and properties

Sam-Largple est

Percentiles 50

Specific conductance (μ S/cm at 25 deg C)	-	96	140		369	566 1	,086	,226	125,000
	_	ا 89	5.2		7.6	7.9	8.0	80	9.3
/r as CaC	-	31	28		123	142	171	291	1,550
Calcium, dissolved (mg/L as Ca)	-	78	4		29	32	42	83	440
Magnesium, dissolved (mg/L as Mg)	-	- 8/	-:		=	4	16	26	110
Sodium, total (mg/L as Na)	4	8 10	~10		i	i	1	ı	99
Sodium, dissolved (mg/L as Na)	-				16	54	110	342	3,200
Sodium plus potassium, dissolved (mg/L as Na)	4				ı	1	ı	1	2,830
Ƴ	-				2.1	2.8	3.7		25
03)	_				129	143	159	221	594
Aikalinity, total, laboratory (mg/L as CaCO3)	-				125	135	152	220	435
4	-				13	16	22	97	2,000
Chloride, dissolved (mg/L as CI)	_				5	55	190 2	,162	65,000
Fluoride, total (mg/L as F)	4				i	ı	i	1	∞.
Fluoride, dissolved (mg/L as F)	-				₹.	۲.	4.	4	13
Silica, dissolved (mg/L as SiO2)	-				o	10	10	13	36
Dissolved solids, residue at 180 deg C (mg/L)	-				200	290	519 3	994	113,000
	4				i	ı	ı	ı	718
	-				.0	.05	?	۳.	- 0.
Nitrogen, nitrite plus nitrate, total (mg/L as N)	4				ı	ı	ı	ı	
Aluminum, dissolved (µg/L as Al)	m	89 100	69	ı	ı	ı	ı	ı	48,000
Arsenic, total (4g/L as As)	4				ı	ı	ı	i	1
Arsenic, dissolved (4g/L as As)	n				ı	ı	i	ı	*
Barium, total (µg/L as Ba)	4		•		ı	ı	ı	ı	100
Cadmium, total (µg/L as Cd)	4				i	ı	ı	i	7
Cadmium, dissolved (µg/L as Cd)	m			i	i	i	i	ı	710
Chromium, total (µg/L as Cr)	4			ı	i	ı	ı	i	50
Chromium, dissolved $(\mu g/L$ as Cr $)$	n			ı	ı	ı	ı	ı	23

Table 7.—Summary statistics of selected chemical constituents—Continued

		Sam	Larg-	Mi P		a	Percentiles	s e		Max-
Constituents and properties M.	Me thod	pie	MRL	value	2	25	50	75	95	- rmum value
Copper, total recoverable (μ_g/L as Cu)	4	6	4	^	ı	1	ı		ı	35
<u>(</u>	М	80	69	<12	1	ı	ı		1	320
Iron, total (44/L as Fe)	7	21	100	0	-	8.7	37	154	8,030	8,700
Iron, dissolved (4g/L as Fe)	7	80	20	&	2.7	30	99		9,580	260,000
Lead, total (4g/L as Pb)	4	10	20	\$	ı		i		1	25
Lead, dissolved (4g/L as Pb)	Ю	78	10	\$	ı	ı	1	ı	ı	29
Manganese, total (44/L as Mn)	4	10	20	<10	ı	ı	ı	ı	ı	70
Manganese, dissolved (4g/L as Mn)	7	80	10	7	0	٦.	1.2	10	1,910	4,400
Mercury, total recoverable (4g/L as Hg)	4	6	s.	<.5	ı		ı	i	ı	ı
as Hg)	ю	64	ς.	<.5	ı	ı	ı	i	ı	
Molybdenum, dissolved (µg/L as Mo)	4	6	7	~	ı	i	ı	i	i	
Selenium, total (4g/L as Se)	4	თ	Ŋ	⊽	ı	1	1	ı	ı	
Silver, total (#g/L as Ag)	4	6	ю	7	1	ı	ı	ı	ı	М
Zinc, total (µg/L as Zn)	4	=	7	0	ı	ı		ı		
Zinc, dissolved (µg/L as Zn)	7	8	20	<10	ī.	4.8	56	26		ω
Alpha radioactivity, dissolved (pCi/L)	7	64	23.8	<2.9	.5	œ.	2.3	6.6		
Alpha radioactivity, suspended (pCi/L)	7	30	₹.	_ل	- .	'n	4.	٩.		
Alpha radioactivity, dissolved (µg/L as U natural	7	64	32	<4.2	7.	-	3.3	9.8		
Alpha radioactivity, suspended (4g/L as U natural	m	61	4.	4 .	ı	i	1	i		
Beta radioactivity, dissolved (pCi/L as Cs-137)	7	64	13	77	_	4.2	4.2	4.7		
Beta radioactivity, suspended (pCi/L as Sr/Yt-90)	М	64	5.	4. A	ı	1	ı	1		
Beta radioactivity, suspended (pCI/L as Cs-137)	n	4	7.5	۸.۸	•	1	,	ı		
Beta radioactivity, dissolved (pCi/L as Sr/Yt-90)	8	64	12	7	-	2.3	4	7.1		
Radium-226, dissolved, planchet count (pCi/L)	4	တ	1	3.4	1	1	ı	1		
Radium-228, dissolved (pCi/L)	4	თ	ю	7	ı	1	ı	1		

Table 8.—Water-quality standards for inorganic constituents, number of wells that have been sampled, and number of wells with samples that have exceeded the standard

standards are tabulated for two data sets: Data set 1 includes all of the data; Data set 2 excludes analyses with dissolved solids greater than 5,000 milligrams per liter, analyses with specific conductance greater than 5,000 microsiemens per centimeter at 25 degrees Celcius, and analyses from wells in the Picher mining area. Water-quality standard: MCL, maximum contaminant level; SMCL, secondary maximum contaminant level; mg/L, milligrams per liter; ug/L, micrograms per liter; [Number of wells and number of wells with samples that exceeded water-quality

		Data set	set 1	Dat	Data set 2
		Number	Number of wells	Number	Number of wells
	Water		Exceeded		Exceeded
	quality	*	water-quality	*	water-quality
Constiuent	standard	Sampled	standard	Sampled	standard
pH, field (standard units)	6.5 SMCL	78	4	63	-
pH, field (standard units)		78	4	63	m
fate, d		84	м	68	0
		83	16	68	+
(mg/L as F)	4 MCL	75	4	61	4
		77	19	64	16
Nitrate (mg/L as N)		37	0	27	0
Arsenic (ug/L as As)		64	0	53	0
Barium (ug/L as Ba)	1,000 MCL	10	0	9	60
Cadmium (ug/L as Cd)		7	4	56	60
Chromium (ug/L as Cr)		70	7	26	7
Copper (ug/L as Cu)		70	0	26	0
Iron (ug/L as Fe)		75	16	99	'n
Lead (ug/L as Pb)		71	0	26	0
Manganese (ug/L as Mn)	50 SMCL	7	9	56	_
Mercury (ug/L as Hg)	2 MCL	64	0	53	0
Selenium (ug/L as Se)	10 MCL	10	0	9	0
Silver (ug/L as Ag)	50 MCL	10	0	9	0
Zinc (ug/L as Zn)	5,000 SMCL	72	7	57	0
Gross-alpha radioactivity (pCi/L)	15 MCL	64	တ	53	თ
Radium (pCi/L)	2 MCL	თ	7	თ	7

analyses with dissolved solids greater than 5,000 mg/L; analyses with specific conductance greater than 5,000 microsiemens per centimeter; and analyses from wells that are within the Picher mining area (all wells in township 29N-23E plus the wells of the City of Commerce). Data set 2 is intended to be more representative of the usable water in the Roubidoux aquifer that has not been affected by human activities.

The tabulation for data set 1 shows that no analyses of any ground-water samples have exceeded the water-quality standards for nitrate, arsenic, barium, copper, lead, mercury, selenium, or silver. The differences between data set 1 and data set 2 are related mostly to the analyses from wells in the mining area. These wells account for the increased number of analyses in data set 1 relative to data set 2 that exceeded the following standards: pH less than 6.5, sulfate, cadmium, iron, manganese, and zinc.

In data set 2, no analyses of ground-water samples exceeded the water-quality standards for sulfate, cadmium, or zinc, in addition to the constituents previously noted. Dissolved-solids and chloride concentrations exceeded the standards in 16 of 64 and 14 of 68 wells sampled, respectively. The large dissolved-solids concentrations were always caused by large concentrations of sodium and chloride. Sodium and chloride concentrations increase across the study unit to the point that water in the westernmost part is unsuitable for most uses. Few, if any, water wells are completed in the Roubidoux aquifer west of Range 20 East (plate 1).

A few analyses exceeded the SMCL's for pH, iron, and manganese (table 8, data set 2). However, the occurrences of these constituents at concentrations that exceed the SMCL's are not common. Furthermore, the SMCL's are not related to health considerations, so the occurrence of these constituents does not pose a hazard to human health.

The MCL for fluoride was exceeded in analyses of ground-water samples from four of 61 wells that were sampled (table 8, data set 2). The 4 wells with fluoride concentrations greater than 4 mg/L are in adjoining townships. Two of the wells were in the town of Bluejacket, T. 27 N., R. 21 E., and the other two were in T. 27 N., R. 22 E., and T. 27 N., R. 23 E. The MCL for chromium was exceeded in analyses of ground-water samples from 2 of 56 wells that were sampled (table 8, data set 2). The two wells with chromium concentrations greater than the MCL were in T. 26 N., R. 23 E. and T. 27 N., R. 22 E. The available data indicate that concentrations of fluoride and chromium that exceed the MCL's may occur in the Roubidoux aquifer, but occurrences are relatively rare.

Relatively large levels of gross-alpha radioactivity occur in the ground water of the Roubidoux aquifer. Gross-alpha radioactivity, including the contribution from uranium, exceeded 15 pCi/L (picocuries per liter) in 9 of 53 wells sampled (table 8, data set 2). The MCL for gross-alpha radioactivity is 15 pCi/L exclusive of the contribution from uranium. Uranium was not analyzed in any of the samples; hence, it is not possible to determine if any of the samples actually exceeded the MCL for gross-alpha radioactivity. If uranium radioactivity contributes a small part of the

gross-alpha radioactivity, it is possible that the water from these nine wells exceeded the gross-alpha radioactivity MCL. If uranium radioactivity contributes a large part of gross-alpha radioactivity, ground water that exceeds the gross-alpha radioactivity MCL would be rare.

The MCL for radium is 5 pCi/L for the sum of radium-226 and radium-228 radioactivity. Seven wells that had large gross-alpha radioactivity and two wells that had large censored values for gross-alpha radioactivity were resampled and analyzed for radium-226 (an alpha emitter) and radium-228 (a beta emitter). Concentrations of radium-228 were reported as censored values in all nine samples. However, concentrations of radium-226 exceeded the 5-pCi/L MCL in samples from all seven of the wells that had samples with large uncensored gross-alpha radioactivity.

Water-Quality Problems

Three water-quality problems are apparent in the Roubidoux aquifer in northeast Oklahoma: (1) Contamination by mine water, (2) large concentrations of sodium and chloride, and (3) large concentrations of radium-226. In this section, the spatial occurrence of these problems is discussed.

Mine-Water Contamination

Lead and zinc sulfides were mined from the Boone Formation in the northeast part of the study unit from about 1900 until about 1970. The mines were dewatered during mining operations by extensive pumping, but later filled with water when pumping ceased. The compositions of the mine waters in the Boone Formation are detailed in Playton, Davis, and McClaflin (1980) and in Parkhurst (1987). Sulfate is the dominant anion in the mine waters, and calcium, magnesium, iron, and zinc are the dominant cations. Large concentrations of cadmium, copper, fluoride, lead, manganese, and nickel have been analyzed in some mine water.

Because the hydraulic head in the Boone Formation is higher than the head in the Roubidoux aquifer, water will tend to move from the mine workings in the Boone Formation downward through pores and fractures in the rock units, toward the Roubidoux aquifer. The Chattanooga Shale and the Northview Shale are stratigraphically below the Boone Formation, and have very small vertical hydraulic conductivity. Although they are not impervious, they could slow the downward movement of water. However, the two shale formations are absent in a large part of the the mining area.

Besides flow through the pores and fractures of the rock units, mine water could reach the Roubidoux aquifer through leaky well casings. According to Reed, Schoff, and Branson (1955), about 100 wells were drilled into the Roubidoux aquifer in the mining area to supply water for milling operations. Leaks in the casings at the level of the mine workings would allow movement of mine water down into the Roubidoux aquifer. Movement of this type was demonstrated in two abandoned wells in the mining area, 29N-23E-16 DDD 1 and 29N-23E-32 AAC 1. These wells were logged with a down-hole flowmeter and the data show downward water flow in both wells.

The flow rate in each well was estimated to be less than 2 gallons per minute. The U.S. Environmental Protection Agency has funded work to locate and plug any abandoned wells in the mining area that penetrate the Roubidoux aquifer. Both wells described here were plugged in 1984.

Several municipalities in the mining area have experienced water-quality problems related to the mines. In two of the public-supply wells for the City of Commerce, concentrations of sulfate, iron, zinc, and dissolved solids increased between July 1981 and October 1982. Repairs were made in the casings of these wells and the water quality returned to acceptable limits for public supply. The problems were apparently due to mine water entering the wells through leaks in the casings or through the grout seals of the wells.

Another municipality that has experienced water-quality problems related to the mines is Quapaw. When a water-supply well, 29N-23E-25 BDB 1, was completed in November 1977, the iron concentration in water from the well was about 100 ug/L (micrograms per liter) and the pH was 7.8. By July 1981, the pH was 7.0 and the iron concentrations was 20,000 ug/L. The well was abandoned and plugged. The large iron concentrations and lowered pH indicate mine-water contamination.

The background concentrations of sulfate in the Roubidoux aquifer are relatively low. Three samples from the Picher water-supply wells, which were taken between 1942 and 1951, had sulfate concentrations ranging from 11 to 18 mg/L. These concentrations are similar to the median concentration of 16 mg/L for all of the available data (table 7). Mine-water concentrations of sulfate are large, approximately 3,000 mg/L (Playton, Davis and McClaflin, 1980). If sulfate migrates into the Roubidoux aquifer, it is expected to be conservative (unreactive). Therefore, increasing sulfate concentration is an indicator of mine-water contamination. Samples taken during this study (1981 and 1982) from the Picher water-supply wells had sulfate concentrations ranging from 47 to 92 mg/L. The increase in sulfate concentrations between the early samples and the samples of this study indicate mine-water contamination. Iron concentrations in the samples of this study were slightly greater than the median, but no other trace elements showed increased concentrations. In 1985, one of Picher's three water-supply wells began producing water with large concentrations of sulfate, iron, and dissolved solids. This well was subsequently abandoned and a new well was drilled in a new location.

At present (1990), all instances of ground-water contamination by mine water can be explained by faulty seals or leaky casings in wells that pass through the zone of mine workings and down to the Roubidoux aquifer. All of the wells that have had problems with mine-water contamination are within the perimeter of the mining area. None of the data available to date indicate that mine water has migrated from the Boone Formation through the pores and fractures of the intervening geologic units to the Roubidoux aquifer.

Large Sodium and Chloride Concentrations

In the western part of the study unit, the large concentrations of sodium and chloride in ground water from the Roubidoux aquifer make the water unsuitable for most purposes. Farther west, in central Oklahoma, sodium and chloride concentrations approach the level of halite saturation (approximately 300,000 mg/L dissolved solids) in geologic units equivalent to the geologic units comprising the Roubidoux aquifer. Thus, the increase in dissolved-solids concentration, which was noted earlier in relation to water-quality standards, continues beyond the study unit into central Oklahoma.

In this report the part of the aquifer in which chloride increases from 25 mg/L to 250 mg/L is defined to be the transition zone. The position of this transition zone varies horizontally and vertically within the Roubidoux aquifer. Figure 19 shows a simplified map view of the areas where chloride is less than 25 mg/L or greater than 250 mg/L. The choice of threshold levels is arbitrary, but 250 mg/L was chosen because it is the SMCL for chloride and 25 mg/L was chosen because it is one-tenth of the SMCL.

Figure 19 does not describe the vertical component of the transition Throughout the study unit, a well drilled to sufficient depth will encounter ground water with large concentrations of sodium and chloride. Well 28N-23E-20 BCD 1 in Miami was drilled in 1976 to a depth of 1,511 feet. In 1978, water from the well had a chloride concentration of 711 mg/L. bottom 300 feet of the well were plugged, and the chloride concentration in the water decreased to 8 mg/L. An observation well in Miami, 28N-23E-30 DBC 1, was sampled with the down-hole sampler. The chloride concentration from the sample at 1,480 feet was 5,600 mg/L and from the sample at 800 feet was 65 mg/L. Data from the down-hole sampler are not completely reliable because it is not known whether the water standing in the well is representative of the formation at the same depth. Well 18N-26E-31 DAD 1 in Westville was drilled to a depth of 1,500 feet. The chloride concentration in water at a depth of 1,500 feet was 250 mg/L; chloride concentration in water at 1,175 feet was 5 mg/L (table 4). Based on the limited information from these three wells, the depth to the bottom of the transition zone is approximately 1,200 to 1,500 feet below land surface in the eastern part of the study unit.

In the northwestern part of the study unit in Craig County, most wells completed in the Roubidoux aquifer have chloride concentrations greater than 250 mg/L. Thus, the transition zone in the Roubidoux aquifer must occur east of these wells. In the northern part of the study unit, it is inferred that the position of the bottom of the transition zone must slope from above the top of the Roubidoux aquifer in eastern Craig County and western Ottawa County to below the base of the Roubidoux aquifer in central Ottawa County.

In the central and southern part of the study unit, there are very few analyses. One analysis of water from a well in Pryor that was completed in the undivided Arbuckle Group had a chloride concentration of 3,925 mg/L (Smith, 1942). The formations comprising the Roubidoux aquifer are stratigraphically equivalent to the upper part of the Arbuckle Group; thus,

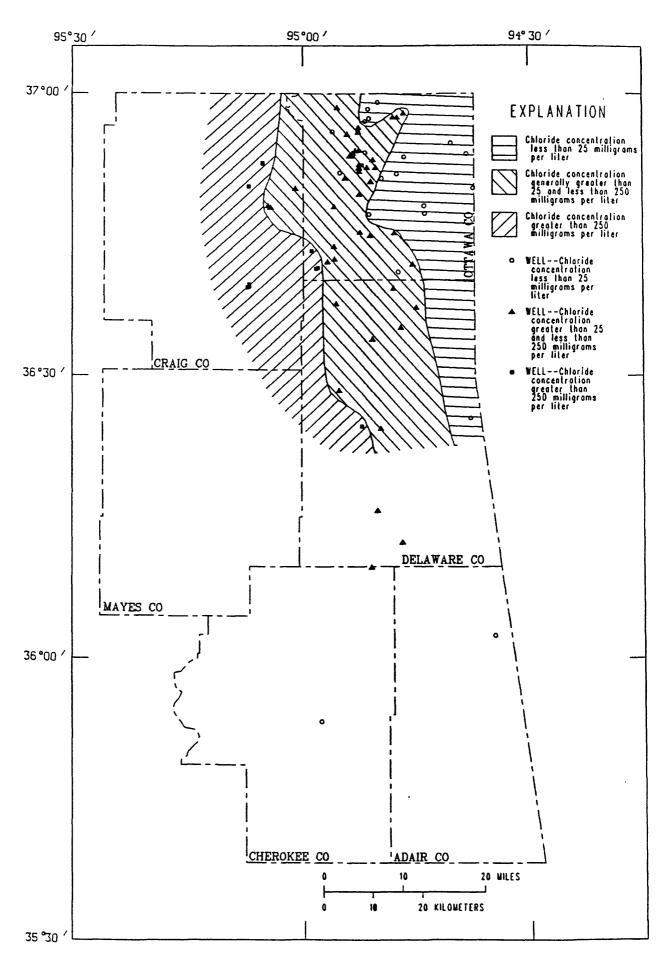


Figure 19.—Locations of wells where chloride concentrations were measured.

chloride concentrations are large in the Roubidoux equivalent in Mayes County. However, there are too few analyses to locate the transition zone in the south-central or south-west part of the study unit.

Occurrence of Radium-226

Water samples from 64 wells in the study unit were analyzed for gross-alpha radioactivity (including uranium). Many measurements are reported as censored (less than the reporting level) values. The wells that had samples that had greater than 15 pCi/L and were not censored generally were located near the western edge of the transition zone (fig. 20). Gross-alpha radioactivity was correlated with chloride concentration, but the data are limited because most of the gross-alpha-radioactivity data were censored.

Spiker (1977) studied public water supplies in Cherokee and Crawford Counties, Kansas, which are adjacent to the study unit. Of the 28 public water supplies Spiker sampled, the radium-226 concentration in 7 exceeded the 5-pCi/L MCL. In Spiker's study, there was a strong correlation between radium-226 concentrations and chloride concentrations in ground water. Keefer and Fenyves (1980) studied radium-226 concentrations in 11 water-supply systems in Ottawa and Craig Counties. All ground-water samples from Afton and some samples from Welch had radium-226 concentrations greater than 5 pCi/L. The data for Afton indicated a correlation between dissolved solids and radium-226 concentrations.

In the present study, samples from nine wells were analyzed for radium-226 and radium-228. All samples had concentrations of radium-226 that were greater than 3.3 pCi/L, and all measurements of radium-228 were reported as censored values. Generally, wells that had large concentrations of gross-alpha radioactivity were found to have concentrations of radium-226 greater than the MCL. Thus, radium-226 is correlated with gross-alpha radioactivity and as previously stated, gross-alpha radioactivity is correlated with chloride and dissolved-solids concentrations. The data of this study are consistent with studies of Spiker (1977) and Keefer and Fenyves (1980) that show that radium-226 is correlated with chloride or dissolved solids.

Radium-226 was measured at seven wells that had samples with gross-alpha radioactivity greater than 15 pCi/L and two wells that had censored values greater than 15 pCi/L. No wells were sampled that had uncensored gross-alpha radioactivity concentrations in the range of 5 to 15 pCi/L. In this concentration range, it is possible that radium-226 exceeds the 5-pCi/L MCL. Thus, inferences made from figure 20 may underestimate the areal extent of ground water that exceeds the radium MCL.

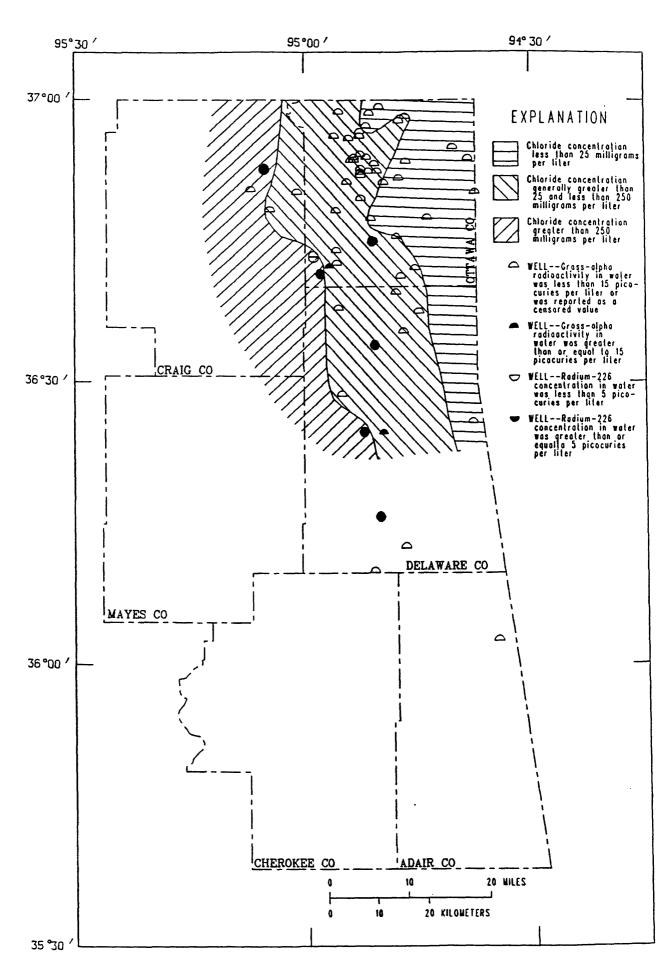


Figure 20.—Locations of wells where gross—alpho radioactivity ond radium—226 were measured.

SUMMARY

The Roubidoux aquifer is an important source of freshwater for public supplies, commerce, industry, and rural water districts in northeastern Oklahoma. The Roubidoux aquifer consists of the Roubidoux Formation, the overlying Cotter and Jefferson City Dolomites, and the underlying Gasconade Dolomite. Deep wells in northeastern Oklahoma generally are completed in the Roubidoux Formation and the wells are left open to the overlying Cotter and Jefferson City Dolomites. Some wells are drilled deeper and left open to the underlying Gasconade Dolomite. Because the wells with the greatest yield are completed in the Roubidoux Formation, it is inferred that the Roubidoux Formation contributes most of the water. The top of the Roubidoux Formation in wells in the study unit was at depths of 770 to 1,300 feet below land surface in the study unit.

The Roubidoux Formation consists of a sequence of cherty dolomite and sandstone that ranges in thickness from 0 to 300 feet, and averages about 175 feet. The Cotter and Jefferson City Dolomites are cherty dolomites, with lenses of sandstone, from 0 to 840 feet thick. The Gasconade Dolomite is also a cherty dolomite with sandstone layers, ranging in thickness from 0 to 350 feet thick.

Ground-water withdrawals from the Roubidoux aquifer in 1981 were estimated to be 4.8 million gallons per day, of which about 90 percent was withdrawn in Ottawa County. Wells drilled at the beginning of the 20th century originally flowed at the land surface, but in 1981 water levels ranged from 22 to 471 feet below land surface. A major cone of depression has resulted from ground-water withdrawals near the City of Miami. Wells completed in the Roubidoux aquifer have yields that range from about 100 to more than 1,000 gallons per minute.

An aquifer test and a digital ground-water flow model were used to estimate aquifer and confining-layer hydraulic characteristics. Using these methods, the transmissivity of the aquifer was estimated to be within a range of 400 to 700 feet²/day. The leakance of the confining layer was determined to be within a range from 0 to 0.13 day⁻¹, with a best-estimate value in a range from 4.3 x 10^{-8} to 7.7 x 10^{-8} day⁻¹.

As part of the present study, water samples from wells completed in the Roubidoux aquifer were collected and analyzed for major ions, trace elements, and radiochemical constituents. Additional chemical data for ground water were compiled from previous work of the U.S. Geological Survey and from the Oklahoma State Department of Health.

A large change in major-ion chemistry occurs in ground water in the Roubidoux aquifer in northeastern Oklahoma. The ground water in the easternmost part of the study unit has relatively small dissolved-solids concentrations (less than 200 milligrams per liter) with calcium, magnesium, and bicarbonate as the major ions. Ground water in the westernmost part of the study unit has relatively large dissolved-solids concentrations (greater than 800 milligrams per liter) with sodium and chloride as the major ions. A transition zone of intermediate sodium, chloride, and dissolved-solids

concentrations exists between the easternmost and westernmost parts of the study unit.

Descriptive statistics were calculated for each chemical constituent, including percentiles, minimum, and maximum values. Drinking-water standards were compared to the chemical data in two data sets. Data set 1 included chemical data from all wells; data set 2 excluded: (1) Samples with dissolved-solids concentration greater than 5,000 milligrams per liter, (2) ground-water samples that had specific conductance greater than 5,000 microsiemens per centimeter at 25 degrees Celsius, and (3) samples from wells that were within the mining area. Data set 2 is more representative of the usable, uncontaminated ground-water resource.

The water samples from wells in the mining area that were included in data set 1 accounted for most of the analyses that exceeded the standards for pH less than 6.5, sulfate, cadmium, iron, manganese, and zinc. In data set 2, sulfate, nitrate, arsenic, barium, cadmium, copper, lead, mercury, selenium, silver, and zinc concentrations did not exceed the maximum contaminant levels or secondary maximum contaminant levels for any samples. Dissolved-solids and chloride concentrations exceeded standards in 16 of 64 and 14 of 68 wells sampled, respectively (data set 2). Gross-alpha radioactivity exceeded 15 picocuries per liter in 9 of 53 wells sampled (data set 2), but because uranium was not measured, it was not possible to determine if the gross-alpha radioactivity maximum contaminant level was exceeded. Concentrations of radium-226 exceeded the maximum contaminant level for radium in seven of nine wells sampled. The available data indicate that concentrations of fluoride and chromium rarely exceed the maximum contaminant levels in the Roubidoux aquifer.

Three water-quality problems are apparent in the Roubidoux aquifer in northeast Oklahoma: (1) Contamination by mine water, (2) large concentrations of sodium and chloride, and (3) large concentrations of radium-226.

Many wells in the mining area have been affected by mine-water contamination. At present (1990), all instances of ground-water contamination by mine water can be explained by faulty seals or leaky casings in wells that pass through the zone of mine workings and down to the Roubidoux aquifer. None of the available data indicate that mine water has migrated from the Boone Formation through the pores and fractures of the intervening geologic units to the Roubidoux aquifer. Sulfate is an indicator of mine-water contamination.

The transition zone is defined to be where the chloride concentrations in ground water range from 25 milligrams per liter to 250 milligrams per liter. In the northern part of the study unit, it is inferred that the position of the bottom of the transition zone slopes from above the top of the Roubidoux aquifer in eastern Craig County and western Ottawa County to below the base of the Roubidoux aquifer in central Ottawa County. Based on limited information from three wells, the depth to the bottom of the transition zone is approximately 1,200 to 1,500 feet below land surface in the eastern part of the study unit. The data are too few to define the

position of the transition zone in the southern part of the study unit.

Large concentrations of gross-alpha radioactivity in ground water occur near the western edge of the transition zone. Generally, wells that had samples with large concentrations of gross-alpha radioactivity had large concentrations of radium-226. Both gross-alpha radioactivity and radium-226 concentrations appear to be correlated with chloride concentrations.

REFERENCES CITED

- Brown, Eugene, Skougstad, M.W., and Fishman, M.J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter A1, 160 p.
- Denison, R.E., 1981, Basement rocks in northeastern Oklahoma: Oklahoma Geological Survey Circular 84, 84 p.
- Fenneman, N.M., 1946, Physical divisions of the United States: U.S. Geological Survey, 1 map.
- Hantush, M.S., 1960, Modification of the theory of leaky aquifers: Jour. Geophys. Research, v. 65, no. 11, p. 3713-3725.
- Helsel, D.R., and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research, v. 24, no. 12, p. 1997-2004.
- Keefer, D.H., and Fenyves, E.J., 1980, Radiation exposure from radium-226 ingestion, in Natural Radiation Environment, Volume III, Technical Information Center, U.S. Department of Energy.
- Marcher, M.V., and Bingham, R.H., 1971, Reconnaissance of the water resources of the Tulsa quadrangle, northeastern Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 2, scale 1:250,000, 4 sheets.
- McDonald, M.G., and Harbaugh, A.W., 1984, A modular three-dimensional finite-difference ground-water flow model, U.S. Geological Survey Open-File Report 83-875, 528 p.
- McKnight, E.T., and Fischer, R.P., 1970, Geology and ore deposits of the Picher field, Oklahoma and Kansas: U.S. Geological Survey Professional Paper 588, 165 p.
- Miser, H.D., 1954, Geologic map of Oklahoma: Oklahoma Geological Survey, 1:500,000, 1 sheet.
- Parkhurst, D.L., 1987, Chemical analyses of water samples from the Picher mining area, northeast Oklahoma and southeast Kansas: U.S. Geological Survey Open-File Report 87-453, 43 p.
- Playton, S.J., Davis, R.E., and McClaflin, R.G., 1980, Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas: Oklahoma Geological Survey Circular 82, 49 p.
- Reed, E.W., Schoff, S. L., and Branson, C.C., 1955, Ground-water resources of Ottawa County, Oklahoma: Oklahoma Geological Survey Bulletin 72, 203 p.

- Reed, J.E., 1980, Type curves for selected problems of flow to wells in confined aquifers: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Chapter B3, 106 p.
- Siebenthal, C.E., 1908, Mineral resources of northeastern Oklahoma: U.S. Geological Survey Bulletin 340-C, 43 p.
- _____1915, Origin of the zinc and lead deposits of the Joplin region,
 Missouri, Kansas, and Oklahoma: U.S. Geological Survey Bulletin 606,
 283 p.
- Smith, O.M., 1942, Chemical analyses of the waters of Oklahoma: Engineering Experiment Station Publication 52, Oklahoma Agricultural and Mechanical College, Stillwater, Oklahoma, 474 p.
- Spiker, H.L., 1977, A study of radium-226 in ground water in Cherokee and Crawford Counties, Kansas: Kansas State Department of Health and Environment, Bureau of Radiation Control, unpublished masters thesis.
- Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., v. 16, p. 519-524.
- U.S. Department of Commerce, 1973, Monthly normals of temperature, precipitation, and heating and cooling days 1941-70, Oklahoma:
 U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, Climatography of the United States, no. 81.
- U.S. Environmental Protection Agency, 1986a, Maximum contaminant levels (subpart B of part 141, National interim primary drinking-water regulations): U.S. Code of Federal Regulations, Title 40, Parts 100-149, revised as of July 1, 1986, p. 374.
- _____, 1986b, Secondary maximum contaminant levels (section 143.3 of part 143, National secondary drinking-water regulations): U.S. Code of Federal Regulations, Title 40, Parts 100-149, revised as of July 1, 1986, p. 374.

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points

[Primary use of water: C, commercial; H, domestic; I, irrigation; N, industrial; P, public supply; R, recreation; S, stock; T, institutional; U, unused.]

Water- level date		08-07-81 00-00-47		1 1 1		09-08-81 03-01-50 05-01-50	01-01-60 10-28-80 02-04-81 05-12-81 06-08-81	01-25-82 04-19-82 08-14-80 02-04-81 05-12-81	09-10-81 01-26-82 04-20-82 07-21-82 10-20-82
Water level (feet below land surface)		190.40		111		115.1	219.50 212.50 211.03 217.07 215.10	207.69 208.80 217 208.03 208.63	207.97 2011.39 207.63 210.32
Primary use of water		z		ادا		اعممم	ω ω	۵	
Weil depth (feet)		1,360 1,510 1,100		2,093 1,450 1,935		1,948 1,139 1,139 1,240	688 1,090	1,352	
Altitude of land surface (feet above sea level)	OUNTY	1,110	COUNTY	716 834 806	OUNTY	796 725	996 8	876	
Site identifier	ADAIR COUNTY	360225094344001 355931094340001 355930094341001	CHEROKEE COUNTY	354856095644501 355319094574001 360502095915201	CRAIG COUNTY	363439995829991 363958095878281 36393895871584 36393595878583 36393595878582	365013095070501 365016095070501	36500095010101	
Well		HUDSON FM INC WESTVILLE OK WESTVILLE, CITY OF		PINE W. H BRACKEN OIL CO M&F OIL CO		LEWIS, F. E.OKLA.HOSP. E.STATE HOSP. E.STATE HOSP. E.STATE HOSP.	NEILL C E	RWD-3	
Local		18N-26E-18 BDC 1 18N-26E-31 DAD 1 18N-26E-31 DCC 1		16N-21E-33 DCA 1 16N-22E-03 CCB 1 19N-21E-35 AD 1		24N-21E-11 BDB 1 25N-20E-12 BDD 1 25N-20E-12 C 4 25N-20E-12 CAC 3 25N-20E-12 CAC 3	27N-20E-12 BDD 1 27N-20E-12 BDD 2	27N-21E-12 CCB 1	

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local identifier	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
27N-21E-20 DCD 1	BLUEJACKET OK	364808095043501	820	1,045	۵	147.32 145.85 152.21 149.88 146.92	06-09-77 02-18-81 05-11-81 06-09-81
27N-21E-28 BBB 1	BLUEJACKET, OK	364759895841401	785	4,4	1	145.21 145.85 146.45 152.28	01-25-82 04-19-82 07-19-82 10-19-82
28N-20E-13 ACC 1 28N-21E-29 CBC 1	SHORTER JIM WELCH OK	365440095065701 365242095051701	868 845	1,501	> a.	89.59 99.73 178.74	11-24-80 03-16-81 06-07-77
							02-04-81 05-12-81 06-06-81 09-09-81 01-25-82 04-19-82
28N-21E-29 CBD 1	WELCH, OK	365240095051501	l	1,250	۵		07-20-82 10-21-82 10-29-80 02-64-81
20N-23E-34 CCA 1	OAKS, OK	DELAWARE COUNTY 360946094504901 1	7,090	1,375	۵		11-01-70
20N-24E-17 CCC 1	KANSAS OK	361221094463901	1,200	1,065	۵	280.26 310 307.34 307.27	06-10-81 11-07-80 02-19-81 05-13-81
						369.29 316.12 325.16 319.26 312.48	09-17-81 01-29-82 04-23-82 07-23-82 10-22-82
21N-25E-31 BBB 1	COLCORD OK	361544094410101	1,205	1,350	۵	307.58	05-07-81

Table 2.—Selected information about wells penetrating the Rowbidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local identifier	Well	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
22N-23E-05 DCA 1	RWD-1	362442094520801	1,100	1,538	۵	302.90 324.88 306.42 335 321.43 288 300 303.54	09-15-81 01-28-82 04-23-82 07-22-82 10-22-82 06-18-79 11-06-80 02-19-81
22N-23E-11 BBB 1 23N-22E-14 ADC 1 23N-25E-17 BDB 1 23N-25E-33 DDC 1	JAY, OK LAKEMONT SHORES COMMERCIAL OIL CO CURRY, A.	362427094493001 362829094550901 362832094392201 362532094375501	1,076 946 1,045	1,442 1,003 1,023	مداه	363.72 365.62 369.82 369.36 313.52 310.90 249	06-10-81 09-15-81 01-29-82 04-23-82 07-22-82 07-27-82
24N-23E-15 BBC 1 24N-24E-06 DCA 1	CURRY SHANGRI-LA RESORT GROVE OK	362532094374501 363357094503701 363510094464501	8 89 8 85 85	1,160	ام م	86 174.02 152.14 149	0370 09-04-80 06-11-81 03-11-81
25N-22E-23 CCD 1	BERNICE OK	363740094553101	925	1,440	Q.	154.83 259.10 257.82 257.87	06-11-81 03-08-79 11-06-80 02-19-81 05-12-81
							06-10-81 09-10-81 01-28-82 04-22-82 07-21-82
25N-23E-13 AAB 1 25N-24E-28 BBB 1	HICKORY MEADOWS DEV PRATHER	363921094474301 363718094444501	775 805	1,080	Q.I	268.15 90.38 15	10-21-82 06-11-81 02-01-68

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Conlinued

26H-23E-89 DBC 1 FAIRLAND OK 364454094504401 845 1,259 P 26H-23E-12 BAD 1 OCEECHEE FARMS 364516094473501 835 1,253 I 26H-24E-32 ABA 1 KORNIG R J 364515094451601 770 850 H 27H-22E-12 CCC 1 COOR FARM 36490164545161 770 950 P 27H-22E-27 AB 1 KORNESON SHORES 365109094491701 770 950 P 27H-23E-17 CB 1 RMC-6	Local identifier	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level) date
Second Color		FAIRLAND OK	364454094504401	845	1,250	۵	304.68	10-30-80
ABD 1 CCEECHEE FARMS 364516994473591 835 1,253 1 ABA 1 CCEECHEE FARMS 36415694451091 770 8559 1 CCC 1 CO.POOR FARM 36491094542691 879 1,065 P CCC 1 CO.POOR FARM 36491094542691 770 960 P BCC 1 LAKEWOOD SHORES 365929945491701 770 960 P CCB 1 CAKEWOOD SHORES 365929945491701 770 960 P CCB 1 CAKEWOOD SHORES 365929945491701 770 960 P CCB 1 CAKEWOOD SHORES 365929945491701 810 1,090 U CCB 1 NEWTON, F. 364712994519191 810 1,090 U CCC 1 NEWTON, F. 364717094433701 860 1,040 P CAD 1 RWD-1 RWD-1 RWD-1 770 1,100 P								,
ABD 1 OCEECHEE FARMS 364516994473501 835 1,253 1 ABD 1 COCEICHE FARMS 36451699451901 770 859 H CCC 1 RWD-2 CCC 1 RWD-2 CCC 1 CO.POOR FARM 364951994541501 790 1,865 P AAB 1 WCPHERSON 3649199454601 — 850 — 850 CC 1 LAKEWOOD SHORES 3651099454191 770 990 P CCC 1 DE MIER, F. 36542109452201 810 1,205 P CCC 1 NEWTOW, F. 364712994510101 810 1,000 U CCC 1 NEWTOW, F. 364712994510101 810 1,000 U CCC 1 RWD-1 RW							202.22	10-01-70
### METON, F. ### CEC 1 COECHEE FARMS \$64516894473581 \$36415894451801 \$770 \$1,253 \$1 \$588 11,253 \$1 \$588 115894451801 \$265138945451801 \$265138945451801 \$265138945451801 \$265188945451801 \$2651889451801 \$2651889451801 \$2651889451801 \$26518889451801 \$26518896894453781 \$264712894518010 \$266188994537801 \$26618899453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$266188999453781 \$2661889999453781 \$2661889999453781 \$2661889999453781 \$2661889999999999999999999999999999999999							07.067	00-1-1-0
AAB 1 OCEECHEE FARMS							704.97	0/-00-01
ABA 1 KOEECHEE FARMS 364516094473501 835 1.253 I ABA 1 KOENIG R J 364155094451001 770 850 H 850 I 605 H 850 H 850 I 605 H 850							317.56	01-27-82
BAD 1 OCEECHEE FARMS								
ABD 1 OCEECHEE FARMS							305.25	04-22-82
AB 1 KCELHEE FARMS 36455094451001 770 835 1.253 1							298.56	07-22-82
CCC RWD-2 36415694415001 770 1,250 1	CAL. 27E. 12 DAN 1	SABAS SABAS	164516004477501	31.0	1 26 4	-	323.56	18-21-82
CCC 1 RWD-2 CCC 1 CO.POOR FARM	6N-24E-32 ABA 1	KOENIG R J	364155094451001	776	858	- I	22.38	07-30-81
CCC 1 CO. POOR FARM 36481542601 850 1,065 P AAB 1 MCPHERSON 36481094554601 770 900 P BCC 1 LAKEWOOD SHORES 365100094491701 770 900 P BCC 1 DE MIER, F. 36542094504701 770 900 P 364921094522201 810 1,205 P B 1 KENNY S I	7NL-22E-81 CCC 1	8.01-2 	365103004541501	967	1	۵	1	1
AB 1 WCPHERSON 364801994554601 — 950 — 950 — 951 — 952 — 952 — 952 — 952 — 952 — 952 — 953	7N-22F-12 CCC 1	CO POOR FARM	364951094542601	0 00	1 065	۵ ـ	150	91-01-16
AAB 1 MCPHERSON 364801094554601 — 950 — BEC 1 LAKEWOOD SHORES 365100094491701 770 900 P DCC 1 DE MIER, F. 564921094522201 810 1,205 P CBB 1 RWD-6 CD 1 NEWTON, F. 564712094510101 810 1,000 U 365018094453701 850 1,030 — 564717094433101 770 1,100 P	7 77 77 17		00710100	9		L	471.12	07-16-81
BCC 1 LAKEWOOD SHORES 365108094491701 770 900 P DCC 1 DE MIER, F. 365042094504701 790 1,033 H CBS 1 RWD-6 1,205 P CDC 1 NEWTON, F. 364712094510101 810 1,000 U CDC 1 NEWTON, F. 364712094510101 850 1,000 U CDC 1 SENECA IND.SCH. 364806094433701 880 1,040 P CAD 1 RWD-1 RWD-1 364717094433101 770 1,100 P	7N-22E-27 AAB 1	MCPHERSON	364801094554601	ļ	950	i	!	5 2 5
DCC 1 DE MIER, F. 364921094522201 790 1,033 H 1,205 P 1,000 U 1,205 P 1,205 P 1,000 U 1,000 D 1,000 D 1,000 D 1,000 D 1,000 P	7N-23E-03 BCC 1	LAKEWOOD SHORES	365100094491701	770	996	۵	1	l
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 3650180945510101 850 1,030 — 364717094451101 800 1,040 P CAD 1 RWD—1 364717094433101 770 1,100 P	7N-23E-04 DCC 1		365042094504701	790	1.033	1	i	I
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 36501809455101 850 1,030 — 364806094453701 800 1,040 P CAD 1 RWD—1 364717094433101 770 1,100 P	7N-23E-17 CBB 1		364921094522201	810	1,205	۵.	430	04-10-79
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 364806094433701 800 1,040 P CAD 1 RWD-1 770 1,100 P							415.60	11-05-80
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 — CD 1 SENECA IND.SCH. 364717094433101 770 1,100 P							425.83	02-05-81
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 364806094433701 800 1,040 P CAD 1 RWD-1 770 1,100 P 1,100 P							417.52	05-12-81
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 364806094433701 800 1,040 P CAD 1 RWD-1 770 1,100 P							421.60	06-09-81
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 — 364806094433701 800 1,040 P 364717094433101 770 1,100 P							422.53	09-10-81
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 3650180944551101 850 1,030 — CD 1 SENECA IND.SCH. 364717094433101 770 1,100 P							425.70	01-26-82
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 — 364806094433701 800 1,040 P CAD 1 RWD—1 364717094433101 770 1,100 P							419 71	04-20-82
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 365018094451101 850 1,030 — 364806094433701 800 1,040 P CAD 1 RWD—1 364717094433101 770 1,100 P							426.37	07-21-82
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 355018094451101 850 1,030 — 364806094433701 800 1,040 P CAD 1 RWD—1 364717094433101 770 1,100 P								
CDC 1 NEWTON, F. 364712094510101 810 1,000 U 35501809451101 850 1,030 — 364806094433701 800 1,040 P CAD 1 RWD—1 364717094433101 770 1,100 P							427.89	10-20-82
B 1 KENNY S I 365018094451101 850 1,030 — 364806094433701 800 1,040 P CAD 1 RWD—1 1,100 P 364717094433101 770 1,100 P	7N-23E-28 CDC 1	NEWTON, F.	364712094510101	810	1,000	>	256	07-01-46
CAD 1 SENECA IND.SCH. 364806094433701 800 1,040 P	7N-24E-08 B 1	_	365018094451101	850	1,030	1	1	1
364717094433101 770 1,100 P	7N-24E-21 CD 1	N IND	364806094433701	800	1,040	₽	100	07-01-46
	7N-24E-28 CAD 1	RWD-1	364717094433101	770	1,100	۵	235.45	06-26-80
							31 970	00 70
							236.43	001400
							275 77	9511781
							770.77	2000
							270.40	10-00-10

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local identifier	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
						39.05	07-09-81
		MAYES COUNTY	SOUNTY				
22N-19E-14 BDC 1 22N-21E-15 CAC 2 23N-21E-34 ACA 1	RENFRO — DAVIS	362314095150801 362310095030001 362600095025001	76 6 — 676	1,415	ادا	111	111
		OTTAWA COUNTY	SOUNTY				
25N-23E-01 AAA 1 26N-22E-15 DDA 1	GRAYS RANCH NE OK VOC SCHOOL	364103094470401 364349094554501	760 800	850 1,110	اہ	178.98 180.76 176.93	
						179.70 178.93 178.15 176.60	09-09-81 01-26-82 04-21-82 07-22-82
26N-22E-20 BCC 1	HELMICK D	364323094585101	790	1,145	I	151.35	03-02-81
26N-22E-27 ADD 1 26N-22E-27 CBC 1 26N-22E-32 ACD 1	ALBRO ALEEN GRND VALLEY FM AFTON, OK	364227094554301 364211094564101 364136094575801	805 800 786	986	ပက္		67-61-68
						159.20 150.62 160.40 144.90 158.26	10-31-80 02-17-81 05-12-81 09-16-81 01-26-82
26N-22E-32 ACD 2	AFTON, OK	364137094575902	784	996	۵.	158.38 6 143.23 1 168 6	04-21-82 10-21-82 07-01-68
26N-22E-32 ADC 1	AFTON WELL 1	364135094580001	1	991	1		06-11-81
26N-22E-32 ADC 2 26N-22E-32 DBB 1 26N-23E-08 BBC 1 26N-23E-09 CA 1	AFTON WELL 2 AFTON, OK SHELL OIL CO. FAIRLAND, OK.	364135094580002 364130094581501 364520094521501 364501094505301	785 835	900 1,066 1,100 1,253	اممم	1111	1111

Table 2.—Selected information about wells penetrating the Rowbidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Water- level date	01-27-82 04-21-82 07-20-82 10-20-82 08-31-50	07-28-82 05-01-44	0244 08-01-44 	05-13-80 08-01-42 07-07-81	03-01-54	00-00-07 37 44 10-02-56	01-30-57 02-21-57 03-26-57 04-25-57 05-31-57	06-23-57 07-09-57
Water level (feet below land surface)	232.73 231.04 236.59 233.88	90.50 219 —	249 254 200 308	486 200 443.67	367	-28 160 150 385.5 372	356.6 359.5 358.8 354.8 355.2	355 362
Primary use of water	z	IDZZH	ZZDIZ	.	ZŒIŒI	ɔ		
Well depth (feet)	1,247	1,150 826 1,235 1,200 1,465	1,055 1,200 1,046 1,130	1,440 1,250 1,050 1,115	1,145 1,250 1,035 1,535	1,490		
Altitude of land surface (feet above sea level)	858	770 788 765 792	798 786 — 845	88 88 89 89 89 89 89 89 89 89 89 89 89 8	777 795 800 790	770		
Site identifier	364957094371501	365543094535801 365357094541901 365358094525001 365344094534701 365342094531301	365324094531301 365323094534001 365330094524901 365133094545901 365633094471001	365627094522201 365627094522101 365600094523001 365557094522701	365402094522201 365344094513301 365316094461601 365301094502901 365229094522101	365229094520201		
Well owner	MILNOT CO	ROBINSON, J. DALRYMPLE J GOODRICH RUBBER CO. WELL 4 GOODRICH RUBBER CO. WELL 2 GOODRICH RUBBER CO. WELL 5	GOODRICH RUBBER CO. WELL 3 GOODRICH RUBBER CO. WELL 1 WCCOY NURSERY ROBINSON, J. QUAPAW, CITY OF, WELL 4	COMMERCE, CITY OF, WELL 3 COMMERCE, CITY OF, WELL 4 COMMERCE, CITY OF, WELL 1 COMMERCE, CITY OF, WELL 2	GOODRICH RUBBER CO. WELL 6 MIAMI, CITY OF, WELL 8 SPRINGRIVER RWD MIAMI, CITY OF, WELL 7 MIAMI, CITY OF, WELL 1	MIAMI, CITY OF, ICE PLANT WELL		
Local identifier	27N-25E-09 CAC 1	28N-22E-11 ABB 1 28N-22E-23 BAA 1 28N-22E-24 AAB 1 28N-22E-24 BCB 1 28N-22E-24 BDA 1	28N-22E-24 CAD 1 28N-22E-24 CBC 1 28N-22E-24 DAB 1 28N-22E-35 DCC 1 28N-23E-01 BBB 1	28N-23E-06 BAC 1 28N-23E-06 BAC 2 28N-23E-06 CBB 1 28N-23E-06 CBD 2	28N-23E-18 CDC 1 28N-23E-20 BCB 1 28N-23E-24 DDA 1 28N-23E-28 BBB 1 28N-23E-30 CAC 1	28N-23E-30 DBC 1		

Toble 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

<u>J</u>	ø	ø	0	ø	-		•	-						- c	10	2 2	c	4 64	2	2	7	8	2	7	2	2	z.	2	9	9	9	9	7	_	
Water- level date	05-22-60	06-22-60	07 -19-6	09-21-60	01-11-61	02-23-61	04-18-61	06-06-61	07-19-61	08-22-61	09-20-61	11-22-E	12-18-61	0101010 0117716	82-21-6	04-05-62	9 01 70	05-22-62	06-19-6	07-18-6	08-21-6	09-19-6	10-23-6	11-21-62	12-19-6	08-26-65	10-04-6	12-22-6	02-02-66	03-18-66	06-2 2-66	10-14-66	01-23-67	03-06-67	04-06-67 05-20-67
Water level (feet below land surface)	343	343	350	362.5	354.5	354.0	355.0	360.5	360.5	355.7	355.5	351.5	2. 1.7k			354.0		360.2						369.5		369.5	364				367.5	379	376		377 368
Primary use of water	n																																		
Well depth (feet)	1,490																																		
Altitude of land surface (feet above sea level)	977																																		
Site identifier	365229094520201																																		
	MIAMI, CITY OF, ICE PLANT WELL																																		
Well	MIAMI, CITY OF																																		
Local identifier	28N-23E-30 DBC 1																																		

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Water- level date	07-06-67 03-06-68 12-18-68 08-08-69 10-01-70	02-29-72 04-04-72 05-01-72 06-05-72	08-08-72 09-18-72 10-05-72 11-16-72 12-21-72	06-23-73 07-19-73 09-07-73 11-07-73 02-12-74	05-20-74 07-23-74 09-04-74 10-04-74 11-08-74	12-28-74 01-29-75 02-28-75 03-31-75 05-01-75	05-30-75 06-16-75 06-30-75 07-16-75 07-30-75	08-18-75 08-29-75
Water level (feet below land surface)	365.5 379 387.0 414.0 421.5	441.6 437.5 437.4 455.73 455.8	464.8 456.45 448.91 446.15	446.8 457.9 447.1 455.65	459.35 475 475 461.1 450.0 448.10	441.27 443.5 444.0 442.8 438.25	436.45 434.1 445.55 451.85 452.35	455.15 459.45
Primary use of water	Ð							
Well depth (feet)	1,490							
Altitude of land surface (feet above sea level)	770							
Site identifier	365229094520201							
	ICE PLANT WELL							
Well owner	MIAMI, CITY OF, ICE							
Local	28N-23E-30 DBC 1							

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Water- level date	09-16-75 09-30-75 10-16-75	10-31-75 11-17-75 12-02-75 12-17-75 12-30-75	01-15-76 02-02-76 02-17-76 03-17-76 04-05-76	04-30-76 05-05-76 05-18-76 06-07-76	07-15-76 08-12-76 09-07-76 09-16-76 10-08-76	11-02-76 11-16-76 12-02-76 12-15-76 01-07-77	01-27-77 02-17-77 03-15-77 03-22-77	04-29-77 05-25-77 06-09-77 07-27-77
Water level (feet below land surface)	455.2 454.50 451.90	446.35 446.42 447.57 443.95 440.42	442.45 441.65 443	437.65 436.06 431.52 429.1 433.52	433.38 426.37 422.83 432.85 65	436.21 433.88 436.32 439.10 438.28	441.34 439.12 442.95 446.70 440.53	443.15 445.55 447.40 654.05
Primary use of water	ם							
Well depth (feet)	1,490							
Altitude of land surface (feet above sea level)	770							
Site	365229094520201							
	Y OF, ICE PLANT WELL							
Well owner	MIAMI, CITY OF, IC							
Local	28N-23E-30 DBC 1							

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local identifier	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
28N-23E-30 DBC 1	MIAMI, CITY OF, ICE PLANT WELL	365229094520201	770	1,490	ח	363 370.4 374	07-10-57 07-23-57 08-21-57
						370 364 362 357.5	09-25-57 11-06-57 12-01-57 01-04-58
							03-07-58 03-21-58 04-20-58 05-21-58 06-20-58
						ιο	07-19-58 08-02-58 08-20-58 09-26-58 10-21-58
							11-38-58 01-87-59 02-86-59 02-28-59 03-26-59
						335 333 341.5 346.5 355.5	05-02-59 06-01-59 06-22-59 07-22-59 08-05-59
						8388 8388 838.8 83.8 8.8 8.9	08-18-59 09-19-59 10-20-59 11-25-59 12-21-59
						350.5 348.5 344.5	01-19-60 02-19-60 03-19-60 04-20-60

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
28N-23E-30 DBC 1	MIAMI, CITY OF, ICE PLANT WELL	365229094520201	770	1,490	ລ	434.97 433.69 417.98 406.20 406.94	090781 06-20-85 02-2686 050786 06-1886
						430.32 407.93 402.52 389.18 377.40	06-24-86 10-09-86 11-05-86 12-16-86 01-27-87
						370.25 367.59 380.38 368.21 361.10	03-23-87 05-06-87 06-30-87 10-28-87 12-17-87
						350.70 361 366 353.70 346.10	03-16-88 07-12-88 08-22-88 11-16-88 01-04-89
							05-10-89 07-27-89 10-25-89 10-31-89 11-13-89
							01-11-90 02-07-90 02-08-90 03-30-90
28N-23E-31 BAB 1 28N-23E-31 BAC 1	MIAMI, CITY OF, WELL 2 MIAMI, CITY OF, WELL 3	365210094522101 365206094522201	780 780	1,247	Zα	341.29 357 480	65-11-96 66-14-96 67-26-96
28N-23E-31 CBA 1 28N-23E-32 BAB 1	MIAMI, CITY OF, WELL 4 MIAMI, CITY OF, WELL 5	365146094522201 365212094511901	77 <i>0</i> 78 0	1,250	۵۵	366	01-01-41

Table 2.—Selected information about wells penetrating the Roubidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local identifier	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
28N-23E-33 BAB 1 28N-23E-36 CCC 1 28N-24E-13 ABD 1	MIAMI, CITY OF, WELL 6 RWD-4 W-2 RWD-3	365213094500701 365128094471301 365445094400701	800 915 965	1,526 1,190 1,165	IQQ	366 530 269.07	05-01-55 09-25-80 07-14-81
28N-25E-20 CAA 1	RWD-5	365335094380701	1,050	4,4	۵	350 356.50 355.51 354.53 354.75	05-11-78 03-17-81 05-08-81 06-09-81
29N-22E-21 DAD 1	RWD-7	365833894551981	820	1,205	۵	360.26 353.52 355.39 351.30	01-25-82 04-21-82 07-20-82 10-19-82
						159.61 159.01 158.81 158.32 157.51	10-29-80 02-04-81 03-06-81 05-12-81 06-09-81
						158.03 157.36 157.01 156.58 157.80	09-10-81 01-26-82 04-20-82 07-20-82 10-20-82
29N-22E-25 AAA 1 29N-23E-13 DAC 1 29N-23E-15 CDB 1 29N-23E-16 DDD 1 29N-23E-18 DBC 1	COMMERCE WER CO SEMPLE C Y BECK MINING CONSOLIDATED 2, WELL 2 GORDON MINE	365820094520401 365916094454201 365920094482501 365917094484701 365934094511401	828 846 825 1	1,229 1,115 1,073 1,061	lsz	212 44.83	09-01-38 02-16-81
29N-23E-19 DCC 1 29N-23E-19 DDC 1 29N-23E-20 AAA 1 29N-23E-21 BBC 1 29N-23E-21 BBC 2	EAGLE—PICHER CARDIN, OK NETTA MINE PICHER, OK. PICHER, OK.	365824094512401 365823694510701 365901094500501 365905094494601 365905094494601	820 830 822 822	1,772 1,150 1,365 1,077	20200	285 388 388	01-01-38 08-01-42 08-01-42
29N-23E-21 BBC 3 29N-23E-21 DCA 1 29N-23E-24 BBA 1 29N-23E-25 AAA 1	PICHER, OK. UNITED ZINC ONTARIO SMELTER EAGLE-PICHER CO	365965094494663 365825094490501 365908094462501 365757094464601	838 838 858 835	1,125 1,040 1,050 1,229	QZD Z	104 206.64 236	
29N-23E-25 BDC 1 29N-23E-26 CDD 1 29N-23E-31 BDD 1 29N-23E-32 ADD 1 29N-23E-35 BDD 1	QUAPAW WELL 3 QUAPAW WELL 2 EAGLE—PICHER CONSOLIDATED QUAPAW WELL 1	365800094461701 365734094471001 365704094513101 365722094500401 365734094471101	845 846 834 820 850	1,350 1,200 1,175 985 1,325	zlzon	230.55 325 325 258	07-07-81 11-01-41 07-01-42

Table 2.—Selected information about wells penetrating the Rowbidoux aquifer in northeastern OKlahoma that were used as control points—Continued

Local	Well owner	Site identifier	Altitude of land surface (feet above sea level)	Well depth (feet)	Primary use of water	Water level (feet below land surface)	Water- level date
28N-23E-30 DBC 1	MIAMI, CITY OF, ICE PLANT WELL	365229094520201	770	1,490	n	455.38	08-16-77
							09-01-77
							09-15-77
							16-63-77
						454.82 456.25	10-21-77 11-28-77
							:
							12-30-77
							01-23-78
						450.21	03-10-78
							03-21-78
							04-18-78
							05-12-78
							06-07-78
						455.20	07-07-78 08-24-78
							0 / 14-00
						455.60	09-14-78
							11-21-78
							12-19-78
							02-14-79
							03-05-79
						449.95	04-02-79
							05-10-79
						441.6 450.0	05-23-79 06-11-79
							07-23-79
							08-17-79
						454.6	09-27-79
							10-30-79
							12-10-79
						438.40	01-24-80
						441.71	02-27-80
							03-03-00 04-0-1-80
						436.07	06-04-80

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer

[Agency analyzing sample: 1028, U.S. Geological Survey (specific laboratory not identified); 80020, National Water Quality
Laboratory of the U.S. Geological Survey; 84041, Oklahoma Geological Survey; 84042, Oklahoma State Department of Health;
#S/cm, microsiemens per centimeter at 25 degrees Celcius; mg/L, milligrams per liter; deg. C, degrees Celsius;
FET, fixed-endpoint titration; —, indicates no data are available; <, indicates concentration is less than the specified value.]

Date	F E E	Site identification number	Agency ana- lyzing sample	Sam- pling depth (feet)	Specific conduct—ance (#S/cm)	pH (stondard units)	Temper- ature (deg. C)	Hardness total (mg/L as CaCO3)	Acidity (mg/L as CaCO3)	Alkalinity, whole water total, FET, (mg/L as CaCO3)
				ADAIR COUNTY	COUNTY					
10-28-81 08-20-81	1300	360225094344001 355931094340001	80020 1028	11	459 1,650	2.7	18.5	230	9 1	200
				CHEROKEE COUNTY	COUNTY					
12-28-82	1330	355319094574001	84041	l	500	6.1	13.5	ı	ļ	1
				CRAIG COUNTY	COUNTY					
03-23-83 03-23-83 03-23-83 03-10-50 09-05-51	1338	36343995828981 36343985828981 36343985828981 3639588838383838383838383838388888888888	84041 84041 1028 1028	120 700 1,700 —	140 1,120 125,000 2,210 2,350	2.7.6 8.8.6 9.7.7	18.0	196	11111	1 1 1 2 2 5
05-29-50 04-12-47 04-12-47 01-14-69 10-28-80	111190	363930095071504 363935095070503 363935095070202 365013095070501 365016095070501	1028 1028 1028 1028	11111	2,750 5,390 2,030 1,620	7.3 8.2 7.8	21.5 20.0	300 300 1120	11111	146 173 162
02-04-81 05-12-81 06-08-81 01-25-82 05-12-81	1300 1300 1400 1230 1100	365916095070591 365016095070591 365016095070501 365016095070501 365000095010101	1028 1028 80020 1028	11111	1,540 1,540 1,500 1,550 580	8 8 7 8 8 9 2 8 9 9	17.0 23.0 28.0 19.5 21.5	941	0.1.7.11	1 1 62 1 1
07-09-81 01-26-82 04-20-82 07-21-82 10-20-82	1030 1215 830 900 1330	365000095010101 365000095010101 36500005010101 36500095010101 36500095010101	80020 1028 1028 1028 1028	11111	542 600 644 634 618	2.88 9.88 9.89 9.89	22 23 25 55 55 55 55 55 55 55 55 55 55 55 55	128	21111	88
02-61-81 02-04-81 02-18-81 05-11-81 06-09-81	1430 1430 1130 1100	364808095043501 364808095043501 364808095043501 364808095043501 364808095043501	1028 1028 1028 1028 80020	11111	892 869 856 832	88 88 88 1 + 2 + 1 + 2 + 1 + 2 + 1 + 1 + 1 + 1 +	19.5 23.6 25.5 25.5	17 18	1 2 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 7 2

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Rowbidoux aquifer—Continued

Local identifier	Date	-: -:-	Alka- linity, lab (mg/L as	Solids, residue at 180 deg. C. dissolved	Solids, residue at 105 deg. C, dissolved	Calcium, dissolved (mg/L as Ca)	Magnesium dissolved (mg/L as Mg)	Sodium, total recoverable (mg/L as Na)	Sodium, dissolved (mg/L as Na)	Sodium+ potasium, dissolved (mg/L as Na)	Potasium, dissolved (mg/L as K)
					d A	ADAIR COUNTY					
18N-26E-18 BDC 1 18N-26E-31 DAD 1	10-28-81 08-20-81	1300	200	268	11	88	6.1	11	7.7	11	0.1
					CHER	CHEROKEE COUNTY					
16N-22E-03 CCB 1	12-28-82	1330	}	286	1	migram	!	1	5.2	-	1
					S	CRAIG COUNTY					
24N-21E-11 BDB 1 24N-21E-11 BDB 1 24N-21E-11 BDB 1 25N-20E-12 BDD 1 25N-20E-12 BDD 1	03-23-83 03-23-83 03-23-83 03-10-50 09-05-51	1338	11111	88 668 113,000 1,210 1,290	11111	88.88	22	11111	376	11111	127
25N-29E-12 C 4 25N-29E-12 CAC 3 25N-29E-12 CAD 2 27N-29E-12 BDD 1 27N-29E-12 BDD 2	05-29-50 04-12-47 04-12-47 01-14-69 10-28-80	1786	11111	1,578	11111	88	<u>بي</u>	11111	450	2,800	53
27N-29E-12 BDD 2 27N-29E-12 BDD 2 27N-29E-12 BDD 2 27N-20E-12 BDD 2 27N-20E-12 BDD 2 27N-21E-12 CCB 1	02-04-81 05-12-81 06-08-81 01-25-82 05-12-81	1300 1300 1400 1230 1100	152	878 826	11111	£ £	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111	276	11111	6. 7 6. 9
27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1	07-09-81 01-26-82 04-20-82 07-21-82 10-20-82	1636 1215 836 988 1338	25 1111	788		 38	5	11111	8 	11111	4 1
27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1	02-01-81 02-04-81 02-18-81 05-11-81 06-09-81	1438 1438 11388 1388 1108	1 56 1 1 1 56 1 1 1 1 1 1 1 1 1 1 1 1 1	448 1 84	11111	8 6 	7.67		158	11111	9.4 4.

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

ν ς φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ										
Nitrogen, nitrate+ nitrite dissolved (mg/L as N				1		11111	11111	11111	11111	11111
Nitrogen, nitrate dissolved (mg/L as N)		11		1		1.00	6.616 6.116 6.236 6.186	11111	11111	11111
luoride, Silica issolved dissolved (mg/L (mg/L as F) as SiO2)		91		1		12 2.6	5	=	6 	1111
πρ		9.19		0.10		0.2 0.4 0.2 3.2 3.5	2, 1111	م ا ه ا ا ب ب	÷	14 4
Fluoride, total (mg/L as F)		1.1		l		11111	11111	11111	11111	11111
Sulfate Chloride dis- solved solved (mg/L (mg/L as SO4) as CI)	ADAIR COUNTY	6 	CHEROKEE COUNTY	5.8	CRAIG COUNTY	2.7 269 65,000 620 620	780 1,800 550 400	398	87	169
Sulfate dis- solved (mg/L as SO4)	ΨĐ	15 -	CHER	10	CR	3.8 18 698 28 21	28 26 3.2	8 4 8 1	±	18.7
Carbonate whole water total, FET, (mg/L as CaCO3)		ø		1		0 0	0 0	0	@	«
Bicarbonate, whole water total, FET, (mg/L as caco3)		270		l		120	180 180 200 1	11811	671	7
T i ∌e		1300		1330		1338 1345 1458 —	1700	1300 1300 1400 1230 1100	1030 1215 830 900 1330	1430 1430 1130 1300
Date		1 10-28-81 1 08-20-81		1 12-28-82		1 03-23-83 1 03-23-83 1 03-23-83 1 03-10-50 1 09-05-51	3 04-12-47 2 04-12-47 2 04-12-47 1 01-14-69 2 10-28-80	2 02-04-81 2 05-12-81 2 06-08-81 2 01-25-82 1 05-12-81	07-09-81 01-26-82 04-20-82 07-21-82 1 07-20-82	02-01-81 02-04-81 02-18-81 05-11-81 06-09-81
Local		18N-26E-18 BDC 18N-26E-31 DAD		16N-22E-03 CCB		24N-21E-11 BDB 24N-21E-11 BDB 24N-21E-11 BDB 25N-20E-12 BDD 25N-20E-12 BDD	25N-29E-12 C 25N-29E-12 CAC 35N-29E-12 CAD 25N-29E-12 BDD 127N-29E-12 BDD 27N-29E-12 BDD 2	27N-20E-12 BDD 27N-20E-12 BDD 27N-20E-12 BDD 27N-20E-12 BDD 27N-20E-12 BDD 27N-21E-12 CCB 1	27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1 27N-21E-12 CCB 1	27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	11111	176	162	1112	11	257	1111 1851
Acidity v (mg/L as t CaCO3)	1111	11111	8 6	11121	11	ž ,	
Hardness total (mg/L as CaCO3)	11111	78	210		11	96 011	
Temper- ature (deg. C)	22.5 21.5 24.5 22.5 5	18.0 18.0 16.5 16.5	11.8 23.8 27.5 26.8 21.8	2222 22452 22555 2055 2055	23.5 23.6	2.00 19.00 19.00 2.1.00 2.1.00	18 18 20 20 20 20 20 20 20 20 20 20 20 20 20
pH (standard units)	88 8. 8.8 9.7 7. 9.5 9.7 9.5	9.2 9.3 8.9 8.3	88.2 7.77 7.9 9.9	7.7.7.7.0 8.7.7.0 8.0 9.0	7.8	0.00 0.00 0.00 0.00 0.00	လာလာပထားတာ တာထားဆ စစ်သွဲ့စေတဲ့ သစ်တွင်
Specific conduct— ance (µS/cm)	846 838 871 878 943	938 9,838 9,128 27,888 1,828	1,826 1,746 1,686 1,716 1,826	1,836 1,850 1,820 1,720 1,990	1,820 1,730 COUNTY	561 484 486 527 477	503 469 479 472 487 357 353 353
Sam- pling depth (feet)	11111	1,469	11111	11111	DELAWARE COUNTY	11111	11111 111
Agency ana- lyzing sample	1028 1028 1028 1028 1028	1028 1028 84041 84041 1028	1028 1028 80020 1028	1028 80020 1028 80020 80020	1028 1028	80020 1028 1028 1028 80020	1628 1628 1628 1628 1628 1628 1628
Site Time identification number	1100 364808095043501 1130 364808095043501 1200 364808095043501 1400 364808095043501 1409 364808095043501	— 364759095041401 — 365440095065701 1700 365440095065701 1730 365440095065701 900 365242095051701	1100 365242095051701 1200 365242095051701 900 365242095051701 1400 365242095051701 1330 365242095051701	1400 365242095051701 1425 365242095051701 1400 365242095051701 930 365240095051501 1430 365240095051501	1400 365240095051501 1400 365240095051501	930 369946894584981 830 361221894463981 845 361221894463981 845 361221894463981 800 361221894463981	835 361221094463901 845 361221094463901 830 361221094463901 845 361221094463901 830 361221094463901 1400 361544094410101 1645 361544094410101
Date	1 09-09-81 1 01-25-82 1 04-19-82 1 07-19-82 1 10-19-82	1 04-12-47 1 03-16-81 1 03-23-83 1 03-23-83 1 10-29-80	1 02-04-81 1 05-12-81 1 06-09-81 1 09-09-81 1 01-25-82	1 04-19-82 1 06-15-82 1 07-20-82 1 06-09-81 1 06-15-82	1 67-26-82 1 16-21-82	1 06-10-81 1 11-07-80 1 02-19-81 1 05-13-81 1 06-10-81	09-18-81 01-29-82 04-23-82 07-23-82 10-22-82 11-06-80 06-10-81
Local	27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1	27N-21E-28 BBB 1 28N-20E-13 ACC 1 28N-20E-13 ACC 1 28N-20E-13 ACC 1 28N-21E-29 CBC 1	28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1	28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBD 1 28N-21E-29 CBD 1	28N-21E-29 CBD 1 28N-21E-29 CBD 1	20N-23E-34 CCA 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1	20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 21N-25E-31 BBB 1 21N-25E-31 BBB 1 21N-25E-31 BBB 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidous aquifer—Continued

Potasium, dissolved (mg/L as K)	11111	11111	8 7 6 1	*	11	E	11111	
Sodium+ potasium, dissolved (mg/L as Na)	11111	186	11111	11111	11	11111	11111	111
Sodium, dissolved (mg/L as Na)	11111		276296	300	11	100	11111	1 64
Sodium, total recoverable (mg/L as Na)	11111		11111	11111	11		11111	111
Magnesium dissolved r (mg/L as Mg)	11111	8. 8.	22	33	11	6 ±	11111	80 80
Calcium, dissolved (mg/L as Ca)	11111	85	6 6 1 11	% 	— — — — DELAWARE COUNTY	21 26		20
Solids, residue at 105 deg. C, dissolved	11111		11111	11111	11 8	11111	11111	111
Solids, residue at 180 deg. C, dissolved	11111	5,300	956	986	11	324		181
Alka- linity, lab (mg/L as CaCO3)	11111		152	150	11	222	11111	1 1
F E •	1100 1130 1200 1400	1786 1736 986	1166 1266 966 1466 1336	1400 1400 1400 930 1430	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98888888888888888888888888888888888888	88 83 83 83 83 83 83 83 83 83 83 83	1400 1045 1500
Date	1 09-69-81 1 01-25-82 1 04-19-82 1 07-19-82 1 10-19-82	1 04-12-47 1 03-16-81 1 03-23-83 1 03-23-83	1 02-04-81 1 05-12-81 1 06-09-81 1 09-09-81 1 01-25-82	1 04-19-82 1 05-15-82 1 07-20-82 1 06-09-81 06-15-82	1 07-20-82 1 10-21-82	1 06-10-81 1 11-07-80 1 02-19-81 1 05-13-81 1 06-10-81	1 09-18-81 1 01-29-82 1 04-23-82 1 07-23-82 1 10-22-82	1 11-06-80 1 06-10-81 1 09-15-81
Local	27N-21E-20 DCD 27N-21E-20 DCD 27N-21E-20 DCD 27N-21E-20 DCD 27N-21E-20 DCD	27N-21E-28 BBB 28N-20E-13 ACC 28N-20E-13 ACC 28N-20E-13 ACC 28N-21E-29 CBC	28N-21E-29 CBC 28N-21E-29 CBC 28N-21E-29 CBC 28N-21E-29 CBC 28N-21E-29 CBC	28N-21E-29 CBC 28N-21E-29 CBC 28N-21E-29 CBC 28N-21E-29 CBD 28N-21E-29 CBD	28N-21E-29 CBD 28N-21E-29 CBD	20N-23E-34 CCA 20N-24E-17 CCC 20N-24E-17 CCC 20N-24E-17 CCC 20N-24E-17 CCC	20N-24E-17 CCC 20N-24E-17 CCC 20N-24E-17 CCC 20N-24E-17 CCC 20N-24E-17 CCC	21N-25E-31 BBB 21N-25E-31 BBB 21N-25E-31 BBB

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Local	Date	⊢ :- •	Bicarbonate, whole water total, FET, (mg/L as caCO3)	Carbonate whole water total, FET, (mg/L as CaCO3)	Sulfate dis- solved (mg/L as SO4)	Sulfate Chloride dis- dis- solved solved (mg/L (mg/L as 504) as Cl)	Fluoride, total (mg/L as F)	Fluoride, dissolved (mg/L as F)	Fluoride, Silica dissolved dissolved (mg/L (mg/L as F) as SiO2)	Nitrogen, nitrate dissolved (mg/L as N)	Nitrogen, nitrate+ nitrite dissolved (mg/L as N)
27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1 27N-21E-20 DCD 1	1 09-09-81 1 01-25-82 1 04-19-82 1 07-19-82 1 10-19-82	1100 1130 1200 1400 1409		11111	11111	11111	11111	11111	11111	11111	11111
27N-21E-28 BBB 1 28N-20E-13 ACC 1 28N-20E-13 ACC 1 28N-20E-13 ACC 1 28N-21E-29 CBC 1	04-12-47 03-16-81 03-23-83 03-23-83 103-23-83	1766	210	©	15 100 20	196 3,186 18,888	11111	4.4 9.30 9.80	1111	66. 6	11111
28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1	02-04-81 05-12-81 06-09-81 09-09-81	1100 1200 900 1400 1330	200		19	459	11111	3 2.5	12	11111	11111
28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 CBC 1 28N-21E-29 C6D 1 28N-21E-29 CBD 1 28N-21E-29 CBD 1 28N-21E-29 CBD 1	04-19-82 06-15-82 07-20-82 06-09-81 06-15-82 07-20-82	1400 1400 1400 1430 1400 1400	90	0	23	880	11111 11	1112	111 1 11	11111 11	11111 11
\$ 88888		9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	310	0 0	22	DELAWARE COUNTY 30	11111	. 6 9. 1 9.	9.6	11111	11111
20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 20N-24E-17 CCC 1 21N-25E-31 BBB 1 21N-25E-31 BBB 1 21N-25E-31 BBB 1	09-18-81 01-29-82 04-23-82 07-23-82 10-22-82 11-06-80 06-10-81	833 833 833 833 834 838 838 1400 1500 1500				72	11111 111		11111 1	11111 111	11111 111

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	11	1		159 144 	<u> </u>		149
Al Acidity wh (mg/L as to CaCO3) m	11	2,1	2.5	3.2.1	\$111 \$ 11		6. 1.
Hardness total (mg/L as CaCO3)	11	6	88	168	% %	\$4.5	136
Temper- ature (deg. C)	22.0 21.5	25.0 20.5 21.0 18.5 20.0	21.5 22.5 16.5 20.0	20.5 23.0 23.0 16.0	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.0 22.5 24.0 24.0 22.5	21.5 18.5 20.5 22.0
pH (standard units)	8 6.0	88888 6226	7.88 4.00.88 6.00.89	7.9 7.6 8.8 8.8 2.2	லைவுவைவை வவை ∸ெல்∸ல∸ எல்	ဆေးပုပ ဆေးပပ္ပ စြေသွားလဲ့ စက်ဆေးပ	V 88 88 V 9. ± 57 90
Specific conduct— ance (\$\omega\$/cm)	346 379	410 361 1,210 1,140	1,200 1,210 475 415 366	311 317 951 967 853	784 524 527 487 578 578	593 824 590 570 577 668	
Sam- pling depth (feet)	11	11111	11111	11111	11111 11	111 1111	OTTAWA COUNTY
Agency ana- lyzing sample	1028 80020	1028 1028 1028 1028 80020	80020 1028 1028 1028 84041 80020	1028 80020 80020 80020 1028	80020 1028 1028 1028 80020 1028	1028 1028 1028 1028 1028 1028 80020	80020 1028 1028 80020
Site Time identification number	1530 361544094410101 1330 361544094410101	1000 361544094410101 1500 361544094410101 1300 362442094520801 1130 362442094520801 1200 362442094520801	950 362442094520801 1200 362442094520801 362427094493001 1445 362427094493001 1245 362829094550901	- 362532094374501 1445 362532094374501 930 363357094503701 1000 363357094503701 363510094464501		1400 363740094553101 1200 363740094553101 1115 363740094553101 1300 363921094474301 — 363718094444501 1200 363718094444501	
Date	01-28-82 06-16-82	07-22-82 10-22-82 11-06-80 05-13-81 06-10-81	06-18-82 07-22-82 07-27-82 03-21-83 06-10-81	12-18-68 07-09-81 06-11-81 06-17-82 03-18-81	06-11-81 11-06-80 02-19-81 05-12-81 06-10-81 09-10-81	04-22-82 07-21-82 08-17-82 10-21-82 06-11-81 12-15-68 07-09-81	
Local	21N-25E-31 BBB 1 21N-25E-31 BBB 1	21N-25E-31 BBB 1 21N-25E-31 BBB 1 22N-23E-05 DCA 1 22N-23E-05 DCA 1 22N-23E-05 DCA 1	22N-23E-05 DCA 1 22N-23E-05 DCA 1 22N-23E-11 BBB 1 22N-23E-11 BBB 1 23N-22E-14 ADC 1	23N-25E-33 DDC 1 23N-25E-33 DDC 1 24N-23E-15 BBC 1 24N-23E-15 BBC 1 24N-24E-06 DCA 1	24N-24E-96 DCA 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1	25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-13 AAB 1 25N-24E-28 BBB 1 25N-24E-28 BBB 1	5N-23E-01 6N-22E-15 6N-22E-15 6N-22E-15

Toble 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Local ident i fier	Date	T: me	Alka- linity, lab (mg/L as	Solids, residue at 180 deg. C. dissolved	Solids, residue at 105 deg. C, dissolved	Calcium, dissolved (mg/L as Ca)	Magnesium dissolved (mg/L as Mg)	Sodium, total recoverable (mg/L as Na)	Sodium, dissolved (mg/L as Na)	Sodium+ potasium, dissolved (mg/L as Na)	Potasium, dissolved (mg/L as K)
21N-25E-31 BBB 1 21N-25E-31 BBB 1	01-28-82 06-16-82	1530 1338	11	11	11	11	11	11	11	ll	11
21N-25E-31 BBB 1 22N-25E-31 BBB 1 22N-23E-05 DCA 1 22N-23E-05 DCA 1 22N-23E-05 DCA 1	07-22-82 10-22-82 11-06-80 05-13-81 06-10-81	1900 1500 1300 1130	129	619	11111	22	9		1 1 1 1 961	11111	
22N-23E-05 DCA 1 22N-23E-05 DCA 1 22N-23E-11 BBB 1 22N-23E-11 BBB 1 23N-22E-14 ADC 1	06-18-82 07-22-82 07-27-82 03-21-83 06-10-81	950 1200 1245	133	23.4 1.08	11111	20 16	6.86.	11111	59 52	11111	25.
23N-25E-33 DDC 1 23N-25E-33 DDC 1 24N-23E-15 BBC 1 24N-23E-15 BBC 1 24N-24E-06 DCA 1	12-18-68 67-69-81 66-11-81 66-17-82 63-18-81	1445 936 1000	135	167 176 518 —	11111	66 27	1-= 11		2.9	, , , ,	0.4 6.0
24N-24E-06 DCA 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1	06-11-81 11-06-80 02-19-81 05-12-81 06-10-81	1230 1400 1300 1700 1500	64 128 111	432 	11111	23	6 1.7	11111	13078	11111	й й й
25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1	09-10-81 01-28-82 04-22-82 07-21-82	1400 1430 1400 1200 1115	11111	299	11111	11111	11111	11111	11111	11111	11111
25N-22E-23 CCD 1 25N-23E-13 AAB 1 25N-24E-28 BBB 1 25N-24E-28 BBB 1	10-21-82 06-11-81 12-15-68 07-09-81	1330	162	322 358 358		64 44	1-1-	1111	74	82	3.7
25N-23E-01 AAA 1 26N-22E-15 DDA 1 26N-22E-15 DDA 1 26N-22E-15 DDA 1	67-15-81 16-31-86 62-19-81 66-12-81	1700 1000 1530 1000	140	308 480	۱۱۱۱ م	OTTAWA COUNTY	£ 5	1111	69 130	1111	6. 4 9 1 v

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

			Bicarbonate,	Carbonate	Sulfate	Chloride		:		Nitrogen,	Nitrogen,
Local identifier	Date	Time	whole water total, FET, (mg/L as CaCO3)	whole water total, FET, (mg/L as CaCO3)	ais- solved (mg/L as SO4)	solved (mg/L as CI)	rluoride, tota! (mg/L as F)	dissolved (mg/L as F)	dissolved (mg/L as Si02)	dissolved (mg/L as N)	nitrate+ nitrite dissolved (mg/L as N)
21N-25E-31 BBB 1 21N-25E-31 BBB 1	1 01-28-82 1 06-16-82	1530 1330	11	11		11		11	11	11	
21N-25E-31 BBB 1 21N-25E-31 BBB 1 22N-23E-05 DCA 1 22N-23E-05 DCA 1 22N-23E-05 DCA 1	1 07-22-82 1 10-22-82 1 11-06-80 1 05-13-81 1 06-10-81	1666 1566 1366 1136	11 5		6	788	11111	2.0	1	11111	11111
22N-23E-05 DCA 1 22N-23E-05 DCA 1 22N-23E-11 BBB 1 22N-23E-11 BBB 1 23N-22E-14 ADC 1	06-18-82 07-22-82 07-27-82 03-21-83 06-10-81	950 1200 1445 1245	11118		11 17.6	49 	11111	11127	12	11111	11111
23N-25E-33 DDC 1 23N-25E-33 DDC 1 24N-23E-15 BBC 1 24N-23E-15 BBC 1 24N-24E-06 DCA 1	1 12-18-68 1 07-09-81 1 06-11-81 1 06-17-82 1 03-18-81	1445 938 1686	196 186 1	888	6.38 3.9 10	1.6 1.7 220 —	11111	9.16	8 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.458 	11111
24N-24E-96 DCA 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1	06-11-81 11-06-80 02-19-81 05-12-81 06-10-81	1230 1400 1300 1700 1500	186 	0 0	8. 111	89 89 	11111	4:108.9	61 61	11111	11111
25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1 25N-22E-23 CCD 1	09-10-81 01-28-82 04-22-82 07-21-82	1400 1430 1400 1200	11111	11111	=		11111	11111	11111	11111	11111
25N-22E-23 CCD 1 25N-23E-13 AAB 1 25N-24E-28 BBB 1 25N-24E-28 BBB 1	10-21-82 06-11-81 12-15-68 07-09-81	1300	200 220 220 250	1000	12 7.9 9.3	 & & & & & &	1111	1-1-	9. 61	0.020 	1111
25N-23E-01 AAA 1 26N-22E-15 DDA 1 26N-22E-15 DDA 1 26N-22E-15 DDA 1	07-15-81 16-31-80 02-19-81 06-12-81	1700 1000 1530 1000	180	0 0	13 - 14 - 14	OTTAWA COUNTY 24	1111	5 1 6	91 1 91	1111	1111

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidous aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	i		1	ļ				149	1	143	171	771	149		•	ł	1	1 1	ן צי	<u> </u>	ļ			1)	ı	138	991	135	136	142	•	112	221	1	1	1	1	141	1	ı	1
Acidity (mg/L as CaCO3)	1		1	١		}	1	3.2	1	2.4	7.4	: 1	4.2		١	}	1	1	ď	7.6	1			1	}	1	1	1	1	1	1		1	9	1	1	1	1	4.2	1	1	1
Hardness total (mg/L as CaCO3)	l		1	İ		l	i	160	į	160	140	47.6	190		1	į	ı		100	98	ı				1	1	198	180	150	140	140		140	198	1	1	1	1	140	İ	1	I
Temper- ature (deg. C)	18.5		20.0	21.0		ָה היי	ر. / L	22.0	19.5	22.5	23.5		24.0		21.5	20.5	25.00	2.5. 2.5.	. 40	7.4.0	20.00	20.00	0. 60 0. 60	0.00	0.12	27.5	1	1	20.0	:	1		I	21.5	21.5	20.5	19.5	20.0	23.0	20.5	20.0	21.0
pH (standard units)	8.3		8.5	4		9.0	8.2	8.1	7.9	7.9	7.8	4	7.7		7.6	7.6	α τ	` «		.	α	: œ		. r		œ œ	8.2	1	4	•	· œ	;	7.3	7.5	7.4	7.6	7.8	8.0	7.8	8 0.	6.7	7.8
Specific conduct— ance (\$\mu S/cm\$)	869		913	913		0 0	•	1,090	1,140	928	694	1 428	1,410	•	1,560	1,430	1 440	100	200.1	990.	1380	1 280	901	000.	900.	910,1	1	663	1	613	? 1		1	504	819	469	592	543	269	544	209	22/
Sam- pling depth (feet)	1		1	l		1		1	١	1	1	1	1		1	1	1	: 1			1	1			1	1	1	1	1	1	1		1	ì	1	1	1	1	1	1	1	1
Agency and- lyzing sample	1028		1028	1028	9 6	0701	1028	80020	89020	80020	80020	1028	89929		80020	1028	1028	16.28	8000	07000	1828	10.28	10.20	070	97999	9791	1028	1028	1028	1028	84042	!	84042	80020	80020	1028	1028	1028	80020	1028	1628	1828
Site Time identification number	1400 364349094554501		1100 364349094554501	1100 364349094554501		100 100 100 100 100 100 100 100 100 100		900 364323094585101		830 364227094554301			1500 364135094580001		1005 364135094580001	1339 364135894588882		1530 354135004580002			1300 364135094580002	1330 364135004580002					- 364130094581501	364520094521501	- 364501094505301	364501094505301			364501094505301	945 364501094505301		900 364454094504401	930 364454094504401	1000 364454094504401			1030 304434034304401	1030 304434084304401
Date	1 01-26-82		1 04-21-82	1 A7-22-R2	70 00	70-07-01	1 03-02-81	1 06-12-81	1 06-16-82	1 07-08-81	1 06-11-81	1 09-06-51	1 06-11-81			2 10-31-80		2 95-12-81				0 01-27-R2		2 04-16-82	70-01-00 7		1 07-29-44	1 07-25-46	1 07-29-44	1 09-06-51	1 05-03-78		1 03-19-80	1 07-08-81	1 06-18-82	1 10-30-80	02-18-81	05-14-81	18-89-61	1 89-15-81	70-17-10	70-77-40
Local identifier	26N-22E-15 DDA	,	26N-22E-15 DDA	26N-22F-15 DDA	700 01 177 107			26N-22E-20 BCC		26N-22E-27 ADD		26N-22F-32 ADC	26N-22E-32 ADC			ADC	ADC		200	3	ADC	26N-22F-32 ADC	4	26N-22E-32 ADC 2		Į	26N-22E-32 DBB							26N-23E-09 CA 1			26N-23E-09 DBC 1	26N-23E-09 DBC 1	26N-23E-09 DBC	26N-23E-09 DBC 1	Sen 23E-09 UBC 1	20N-23E-09 DBC

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoax aquifer—Continued

	,							
Potasium, dissolved (mg/L as K)	I		24.4.0 7.6.0.0	1 2	11111	111-1	15111	o
Sodium+ potasium, dissolved (mg/L as Na)	1	11111	11111	11111		220 86 66 71	11111	11111
Sodium, dissolved (mg/L as Na)	1	671	130 — 98 220 220	250	11111	11111	<u>\$</u>	8
Sodium, total recoverable (mg/L as No)		11111	11111	11111	11111	1111	99	11111
Magnesium dissolved r (mg/L as Mg)	I	17	17 18 18 20	20	11111	20 1 1 1 1 0 0 1 1 1 1 1 0 0	22	₹
Calcium, dissolved (mg/L as Ca)	ı	35	888 898 1	4		443 32 32	82	25
Solids, residue at 105 deg. C, dissolved	1	11111	11111	11111		31	389	11111
Solids, residue at 180 deg. C, dissolved	l		520 370 758 782	824		374	278	306
Alka- linity, lab (mg/L as CaCO3)	1	140	135	138		11111	204	<u>5</u>
 ∃. ∋e	1400	1100	996 836 1666 1566	1636 1536 1536 1536 1366	1300 1330 1300 1000 1030	11111	945 998 939 939	1999 939 1999 1939
Date	1 01-26-82	04-21-82 1 07-22-82 1 10-20-82 1 03-02-81 1 06-12-81	1 06-16-82 1 07-08-81 1 06-11-81 1 09-06-51 1 06-11-81	1 06-16-82 2 10-31-80 2 02-17-81 2 05-12-81 2 06-11-81	2 09-16-81 2 01-27-82 2 04-21-82 2 06-16-82 2 07-21-82	07-29-44 07-25-46 07-29-44 09-06-51 05-03-78	03-19-80 07-08-81 06-18-82 10-30-80	05-14-81 07-08-81 09-15-81 01-27-82 04-22-82
Local	26N-22E-15 DDA	26N-22E-15 DDA 1 26N-22E-15 DDA 1 26N-22E-15 DDA 1 26N-22E-20 BCC 1 26N-22E-20 BCC 1	26N-22E-20 BCC 1 26N-22E-27 ADD 1 26N-22E-27 CBC 1 26N-22E-32 ADC 1 26N-22E-32 ADC 1	26N-22E-32 ADC 1 26N-22E-32 ADC 2 26N-22E-32 ADC 2 26N-22E-32 ADC 2 26N-22E-32 ADC 2	26N-22E-32 ADC 2 26N-22E-32 ADC 2 26N-22E-32 ADC 2 26N-22E-32 ADC 2 26N-22E-32 ADC 2	26N-22E-32 DBB 1 26N-23E-09 BBC 1 26N-23E-09 CA 1 26N-23E-09 CA 1 26N-23E-09 CA 1	26N-23E-09 CA 1 26N-23E-09 CA 1 26N-23E-09 CA 1 26N-23E-09 DBC 1 26N-23E-09 DBC 1	26N-23E-09 DBC 1 26N-23E-09 DBC 1 26N-23E-09 DBC 1 26N-23E-09 DBC 1 26N-23E-09 DBC 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Nitrogen, nitrate+ nitrite dissolved (mg/L as N)	1	11111	11111	11111	11111	\ 00 100	% .500	11111
Nitrogen, nitrate dissolved (mg/L as N)	1		0.2 00	11111		0.00 0.00 0.00 0.00 0.00 0.00	11111	11111
Silica d dissolved (mg/L as SiO2)	1	6	92 9.00 0.00	01	11111	9,	e	6 ₁
Fluoride dissolve (mg/L as F)	-	11112	2.5.6.6.	11112	11111	9.76	; +	0.60
Fluoride, total (mg/L as F)	1	11111	11111	11111	11111	0.6 7.6	7:0	11111
Chloride dis- solved (mg/L as Cl)	1	270	228 118 358 368	390	11111	360 136 100 110	991 51	¥
Sulfate dis- solved (mg/L as SO4)	-		16 18 18 18 1	, ž	11111	91 71 131	36 36 	ة
Carbonate whole water total, FET, (mg/L as CaCO3)	ı		10000		11111	= 0	0	0
Bicarbonate, whole water total, FET, (mg/L as CaCO3)	l		176 216 176 186		11111	170 180 170	270	167
T in e	1400	996	900 830 1600 1500	1885 1338 1638 1538 1388	1386 1386 1386 1686	11111	945 866 966 936	1000 930 1000 1030 1030
Date	1 01-26-82	1 04-21-82 1 07-22-82 1 10-20-82 1 03-02-81 1 06-12-81	1 06-16-82 1 07-08-81 1 06-11-81 1 09-06-51 1 06-11-81	1 06-16-82 2 16-31-80 2 02-17-81 2 05-12-81 2 06-11-81	2 09-16-81 2 01-27-82 2 04-21-82 2 06-16-82 2 07-21-82	1 07-29-44 1 07-25-46 1 07-29-44 1 09-06-51 1 05-03-78	1 03-19-80 1 07-08-81 1 06-18-82 1 10-30-80 1 02-18-81	05-14-81 07-08-81 09-15-81 01-27-82 04-22-82
Local identifier	26N-22E-15 DDA	26N-22E-15 DDA 26N-22E-15 DDA 26N-22E-15 DDA 26N-22E-20 BCC 26N-22E-20 BCC	26N-22E-20 BCC 26N-22E-27 ADD 26N-22E-27 CBC 26N-22E-32 ADC 26N-22E-32 ADC	26N-22E-32 ADC 26N-22E-32 ADC 26N-22E-32 ADC 26N-22E-32 ADC 26N-22E-32 ADC	26N-22E-32 ADC 26N-22E-32 ADC 26N-22E-32 ADC 26N-22E-32 ADC 26N-22E-32 ADC	26N-22E-32 DBB 26N-23E-08 BBC 26N-23E-09 CA 26N-23E-09 CA 26N-23E-09 CA	26N-23E-09 CA 26N-23E-09 CA 26N-23E-09 CA 26N-23E-09 DBC 26N-23E-09 DBC	26N-23E-09 DBC 26N-23E-09 DBC 26N-23E-09 DBC 26N-23E-09 DBC 26N-23E-09 DBC

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	133 180 137	133 594 149 121	11½11	1 1 8 4 7 2 1	£ 1 1 1	ã1111	128 135 167	124
Acidity (mg/L as CaCO3)	115-	28.8 2.7.1	9 9	111 2	6	9,1111	0 N N	2.0
Hardness total (mg/L as CaCO3)	146 226 148	158 58 130 140	136	86 94	130	5	130	150 140
Temper- ature (deg. C)	22.0 19.0 22.5 18.0	22.0 20.0 21.0 18.5	16.0 17.5 19.0 19.0	20.0 20.0 20.0 1.0	1 1 2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.5 20.5 19.6 23.6	19.5 21.0 17.0 26.0 16.5	20.0 27.5
pH (standard units)	8.0 8.7 8.7 4.8	7.7 7.9 7.5 	88.7 7.9 8.9 1.9	7 8.7 8.8 1	80 7 80 80 80 4 40 60 70 60	ကလေးလက္လ တတ္တိတ္တိ	2	4.8 7.9
Specific conduct— ance (µS/cm)	593 588 514 511	721 1,270 351 541 445	504 444 143 153 153	476 458 471 897 276	297 326 381	316 306 317 323 332	319 261 298 454 750	117
Sam- pling depth (feet)	11111	11111	11111	11111	11111	11111	11111	11
Agency ana- lyzing sample	1028 1028 80020 80020 84042	80020 80020 80020 1028	80020 1028 80020 1028 1028	1028 1028 1028 80020 1028	84042 84042 1028 1028 1028	80020 1028 1028 1028 1028	1028 80020 1028 80020 1028	1028 80020
Site Time identification number	1000 364454094504401 830 364454094504401 1040 364516094473501 1400 364155094451001 — 365103094541501	800 365103094541501 900 364801094554601 1630 365100094491701 — 365042094504701 900 364921094522201	830 364921094522201 945 364921094522201 1545 364921094522201 1030 364921094522201 1030 364921094522201	1000 364921094522201 900 364921094522201 1000 364921094522201 1130 364712094510101 — 364806094433701	— 364717094433101 1435 364717094433101 1430 364717094433101 1230 364717094433101 1445 364717094433101	1500 364717094433101 1430 364717094433101 1505 364717094433101 1500 364717094433101 1500 364717094433101	1500 364717094433101 1030 364957094371501 365543094535801 830 365543094535801 365357094541901	365358094525001 1330 365342094531301
Date	1 07-22-82 1 10-21-82 1 07-08-81 1 07-30-81 1 05-01-78	1 07-16-81 1 07-09-81 1 07-08-81 1 05-01-48 1 11-05-80	02-05-81 05-12-81 06-09-81 09-10-81	04-20-82 07-21-82 10-20-82 07-08-81 07-24-46	05-03-78 03-10-80 11-04-80 02-05-81 05-13-81	07-08-81 09-14-81 01-27-82 04-21-82 07-20-82	10-20-82 07-14-81 07-25-46 07-10-81 07-28-82	08-03-44 07-16-81
Local identifier	26N-23E-09 DBC 26N-23E-09 DBC 26N-23E-12 BAD 26N-24E-32 ABA 27N-22E-01 CCC	27N-22E-01 CCC 1 27N-22E-27 AAB 1 27N-23E-03 BCC 1 27N-23E-04 DCC 1 27N-23E-17 CBB 1	27N-23E-17 CBB 1 27N-23E-17 CBB 1 27N-23E-17 CBB 1 27N-23E-17 CBB 1 27N-23E-17 CBB 1	27N-23E-17 CBB 1 27N-23E-17 CBB 1 27N-23E-17 CBB 1 27N-23E-28 CDC 1 27N-24E-21 CD 1	27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1	27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1	27N-24E-28 CAD 1 27N-25E-09 CAC 1 28N-22E-11 ABB 1 28N-22E-11 ABB 1 28N-22E-11 ABB 1	28N-22E-24 AAB 1 28N-22E-24 BDA 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

, ed ,		1)						
Potasium, dissolved (mg/L as K)	1 82	8.8.4 9.4.9	2.8	11101	11161	6	2 5	3.0
Sodium+ potasium, dissolved (mg/L as Na)	11111	11121	11111	11116	11111	11111	7,00	11
Sodium, dissolved (mg/L as Na)	57 22 80	32 6 21	94 44	1 96	5	<u>5</u>	6. 82	16 31
Sodium, Magnesium totai dissolved recoverable (mg/L (mg/L as Mg) as No)	11111	11111			55111	11111	11111	11
Magnesium dissolved 1 (mg/L as Mg)	4 t s s s s s s s s s s s s s s s s s s	2. 2. 2. 5. 8. 1	£ 4 	64	±	‡ 	451	5 4
Calcium, dissolved (mg/L as Ca)	31 83 	3 + 4 + 3 + 4 + 3 + 4 + 4 + 4 + 4 + 4 +	30 30	22 32	, 55 	g 	788 788 788	32 32
Solids, residue at 105 deg. C, dissolved	11111	11111	11111		171	11111		11
Solids, residue ot 180 deg. C. dissolved		402 792 188 287	180	536	1 126	94	140 183 226	201
Alka- linity, lab (mg/L as CaCO3)	126 173	127 342 139	124	435	124	克 	125	117
_ 	1000 830 1040 1400	866 966 1636	836 945 1545 1636 1638	1000 900 1000 1130	1436 1436 1236 1445	1588 1438 1585 1588 1588	1500 1630	1330
Date	1 07-22-82 1 10-21-82 1 07-08-81 1 07-30-81 1 05-01-78	1 07-16-81 1 07-09-81 1 07-08-81 1 05-01-48 1 11-05-80	1 02-05-81 1 05-12-81 1 06-09-81 1 09-10-81 01-26-82	1 04-20-82 1 07-21-82 1 10-20-82 1 07-08-81 1 07-24-46	05-03-78 03-10-80 1 11-04-80 1 02-05-81 05-13-81	1 07-08-81 1 09-14-81 1 01-27-82 1 04-21-82 1 07-20-82	1 10-20-82 1 07-14-81 1 07-25-46 1 07-10-81 1 07-28-82	1 08-03-44 1 07-16-81
Local	26N-23E-09 DBC 26N-23E-09 DBC 26N-23E-12 BAD 26N-24E-32 ABA 27N-22E-01 CCC	27N-22E-01 CCC 27N-22E-27 AAB 27N-23E-03 BCC 27N-23E-04 DCC 27N-23E-17 CBB	27N-23E-17 CBB 27N-23E-17 CBB 27N-23E-17 CBB 27N-23E-17 CBB 27N-23E-17 CBB	27N-23E-17 CBB 27N-23E-17 CBB 27N-23E-17 CBB 27N-23E-28 CDC 27N-24E-21 CD	27N-24E-28 CAD 27N-24E-28 CAD 27N-24E-28 CAD 27N-24E-28 CAD 27N-24E-28 CAD	27N-24E-28 CAD 27N-24E-28 CAD 27N-24E-28 CAD 27N-24E-28 CAD 27N-24E-28 CAD	27N-24E-28 CAD 1 27N-25E-99 CAC 1 28N-22E-11 ABB 1 28N-22E-11 ABB 1 28N-22E-13 BAA 1	28N-22E-24 AAB 28N-22E-24 BDA

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Nitrogen, nitrate+ nitrite dissolved (mg/L as N)	. 1 1 68	11111 11111	60. 60. 60. 60. 60. 60. 60. 60. 60. 60.	11111 11
Nitrogen, nitrate dissolved (mg/L as N)	 	6.0 6.0	11111 11111	6.056 0.056 0.056
Silica dissolved (mg/L as SiO2)	# 2	o o		8 6 ===
Fluoride, Silica dissolved dissolved (mg/L (mg/L as F) as SiO2)	6.56 6.56 7.58 6.90 8.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	6 6 8 8 5 1 1 6	9 6	2.00
Fluoride, total (mg/L as F)			9.00 4.15.	11111 11
Chloride dis- solved (mg/L as Cl)	74 40 120 150 89 13 13	55 55 10 10 10 10 10 10 10 10 10 10 10 10 10	17 17 61	32 38 48 48
Sulfate dis- solved (mg/L as SO4)	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28 4 27 17 17 17 17 17 17 17 17 17 17 17 17 17	1	12 22 13 15 13
Carbonate whole water total, FET, (mg/L as CaCO3)			0	000 0
Bicarbonate, whole water total, FET, (mg/L as CaCO3)	160 220 220 160 720 180	85 84		160 150 200 200 150 150
Time	1000 830 1040 1400 1400 900 900	838 945 1545 1038 1038 1088 1138	1435 1435 1435 1445 1500 1500 1500	1500 1030 1030 830 1330
Date	07-22-82 107-28-81 07-08-81 07-30-81 05-01-78 07-16-81 07-16-81 07-08-81 05-01-48	02-05-81 05-12-81 06-09-81 09-10-81 01-26-82 07-21-82 107-21-82 107-28-81	05-03-78 03-10-80 11-04-80 102-05-81 05-13-81 05-13-81 09-14-81 01-27-82 04-21-82	1 10-20-82 07-14-81 07-25-46 07-10-81 07-28-82 07-28-82
Local	26N-23E-09 DBC 26N-23E-09 DBC 26N-23E-12 BAD 26N-24E-32 ABA 27N-22E-01 CCC 27N-22E-01 CCC 27N-22E-04 DCC 27N-23E-04 DCC 27N-23E-04 DCC 27N-23E-04 DCC 27N-23E-04 DCC 27N-23E-04 DCC 27N-23E-04 DCC		27N-24E-28 CAD 1 27N-24E-28 CAD 1	27N-24E-28 CAD 1 27N-25E-09 CAC 1 28N-22E-11 ABB 1 28N-22E-11 ABB 1 28N-22E-23 BAA 1 28N-22E-24 ABB 1 28N-22E-24 BDA 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	131 126 129	\$	120 120 120 139	130 121 122 122	133 123 123 1	121 138	125 130 125 125 118	128
Acidity (mg/L as CaCO3)	0. T 0. L	2 2	11112	0.0.		11111	0. 0.	1 .6.1
Hardness total (mg/L as CaCO3)	130 140 130	170	150 120 120 120 120	140 130 130	941 967 971 971	146	00000 00000	150 79 140
Temperature ature (deg. C)	22.5 24.0 17.0	23.0 18.5 16.0 0.0 0.0	20.0	27.6 27.5 17.5	26.0 23.5 14.5	21.6 21.0 11.0	22.5 22.6	18.5 16.5 22.0
pH (standard units)	7.9	C. C. C. C. C. C. C. C. C. C. C. C. C. C	7.6	7.8888 9.96.89	0.88 0.77 8.77 8.75	4.00.C.C.	7.8	88.0 7.9 7.8
Specific conduct— ance (µS/cm)	376 428 303	499 307 890 290 452	335 277 313 285	519 290 	342 747 747 536 1,400	485 16,800 592 308 316	300 705 331 416	475 604 572 625
Sam- pling depth (feet)	111	988 1,958 758 1,188	11111	11111	11111	1,480	11111	1111
Agency ana- lyzing sample	80020 80020 1028	80020 84041 84041 84041 84041	84041 1028 1028 84041 80020	80020 80020 84042 84042	80020 80020 1028 80020 84041	84041 84041 1028 1028	1028 80020 1028 80020 1028	1028 1028 80020 1028
Site Time identification number	1430 365324094531301 1315 365323094534001 — 365133094545901	900 365627094522201 1800 365627094522201 1830 365627094522201 1830 365627094522101 1900 365627094522101	920 365627094522101 365600094523001 365600094523001 900 365600094523001 830 365557094	1340 365402094522201 1030 365344094513301 — 365316094461601 1130 365316094461601 1145 365316094461601	1400 365316094461601 1700 365301094502901 — 365229094522101 900 365229094522101 1330 365229094520201	1300 365229094520201 1400 365229094520201 — 365210094522101 1200 365210094522101 1201 365210094522101		1000 365212094511901 1445 365212094511901 1130 365212094511901 — 365213094500701
Date	1 07-16-81 1 07-16-81 1 07-26-46	1 07-07-81 1 10-21-82 1 10-21-82 2 10-20-82 2 10-20-82	2 03-22-83 1 09-03-42 1 09-06-51 1 03-22-83 2 07-07-81	07-16-81 07-15-81 05-02-78 03-12-80 10-30-80	07-15-81 07-14-81 03-30-59 07-15-81	1 12-08-82 1 12-08-82 1 05-20-52 1 03-30-59 1 03-30-59	03-30-59 07-15-81 09-03-42 07-15-81 03-30-59	12-29-80 02-05-81 07-15-81 03-30-59
Local identifier	28N-22E-24 CAD 28N-22E-24 CBC 28N-22E-35 DCC	28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 BAC	28N-23E-06 BAC 28N-23E-06 CBB 28N-23E-06 CBB 28N-23E-06 CBB 28N-23E-06 CBB	28N-23E-18 CDC 28N-23E-20 BCB 28N-23E-24 DDA 28N-23E-24 DDA 28N-23E-24 DDA	28N-23E-24 DDA 128N-23E-28 BBB 28N-23E-30 CAC 128N-23E-30 CAC 28N-23E-30 DBC 28N-	28N-23E-30 DBC 1 28N-23E-30 DBC 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1	28N-23E-31 BAC 1 28N-23E-31 BAC 1 28N-23E-31 CBA 1 28N-23E-31 CBA 1 28N-23E-32 BAB 1	28N-23E-32 BAB 1 28N-23E-32 BAB 1 28N-23E-32 BAB 1 28N-23E-33 BAB 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Potasium, dissolved (mg/L as K)	2.5	2 8.	2 2 2 2 2 3 2 3 2 5 5 5 5 5 5 5 5 5 5 5	2.1	9859	1 0 0 0	8.5. 2.2 4	2.28 2.29
Sodium+ potasium, dissolved (mg/L as Na)	- 71	11111	1 + 6 8 + 6	11111	11111	25 19 19	1 2 1 1	89
Sodium, dissolved (mg/L as Na)	25 38	36	201715	12 E	14 87 82 54	3,200	15 86 16 74	28 S 1 1
Sodium, Magnesium total dissolved recoverable (mg/L (mg/L as Mg) as Na)	111		11111		11111	11111	11111	1111
Magnesium dissolved 1 (mg/L as Mg)	51 4 4 4	17	5 55 5 5	ຄ. []]	ស ស ស 	11 21 17	21 21 21 21 21 21	15.2
Calcium, dissolved (mg/L as Ca)	3 6 32 38	1	2222 42822	28 111	33 33 14 14 14 14 14	32 31 31	33 33 31 31	33 ± 35
Solids, residue at 105 deg. C, dissolved	111	11111		163	11111	1111		1111
Solids, residue at 180 deg. C, dissolved	208	270 178 530 162 255	266 149 156	29 6 142 	174 380 441 290 686	228 9,410 320 191	187 369 166 242	278 294 351
Alka- linity, lab (mg/L as CaCO3)	126 121	125	124	21 8 6 1 1 1	125		122	117
Time	1430	900 1800 1830 1900	920	1346 1636 1136 1145	1400 1700 	1300 1400 1200 1201	1166	1445
Date	1 07-16-81 1 07-16-81 1 07-26-46	1 07-07-81 1 10-21-82 1 10-21-82 2 10-20-82 2 10-20-82	2 03-22-83 1 09-03-42 1 09-06-51 1 03-22-83 2 07-07-81	1 07-16-81 1 07-15-81 1 05-02-78 1 03-12-80 1 10-30-80	07-15-81 07-14-81 03-30-59 1 07-15-81 10-08-82	1 12-08-82 1 12-08-82 1 05-20-52 1 03-30-59 1 03-30-59	03-30-59 07-15-81 09-03-42 07-15-81 03-30-59	1 12-29-80 1 02-05-81 1 07-15-81 1 03-30-59
Local	28N-22E-24 CAD 28N-22E-24 CBC 28N-22E-35 DCC	28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 BAC	28N-23E-06 BAC 28N-23E-06 CBB 28N-23E-06 CBB 28N-23E-06 CBB 28N-23E-06 CBB	28N-23E-18 CDC 28N-23E-29 BCB 28N-23E-24 DDA 28N-23E-24 DDA 28N-23E-24 DDA	28N-23E-24 DDA 28N-23E-28 BBB 28N-23E-39 CAC 28N-23E-39 CAC 28N-23E-39 DBC	28N-23E-30 DBC 1 28N-23E-30 DBC 28N-23E-31 BAB 28N-23E-31 BAB 28N-23E-31 BAB 1	28N-23E-31 BAC 1 28N-23E-31 BAC 1 28N-23E-31 CBA 1 28N-23E-31 CBA 1 28N-23E-31 CBA 1	28N-23E-32 BAB 1 28N-23E-32 BAB 1 28N-23E-32 BAB 1 28N-23E-33 BAB 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Local	Date	Time	Bicarbonate, whole water total, FET, (mg/L as CaCO3)	Carbonate whole water total, FET, (mg/L as CaCO3)	Sulfate dis- solved (mg/L as SO4)	Chloride dis- solved (mg/L as Cl)	Fluoride, total (mg/L as F)	Fluoride, dissolved (mg/L as F)	Silica dissolved (mg/L as SiO2)	Nitrogen, nitrate dissolved (mg/L as N)	Nitrogen, nitrate+ nitrite dissolved (mg/L as N)
28N-22E-24 CAD 128N-22E-24 CBC 128N-22E-35 DCC 1	1 07-16-81 1 07-16-81 1 07-26-46	1430	160 150 140	0 00	14 16	30 52 17	111	.6 8.11	12 16	0.050	111
28N-23E-96 BAC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 2	1 67-67-81 1 16-21-82 1 16-21-82 2 16-26-82 2 16-26-82	966 1896 1836 1966	89	0	38 22 63 18 16	55 5.5 160 4.6	11111	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 	11111	11111
28N-23E-06 BAC 28N-23E-06 CBB 1 28N-23E-06 CBB 1 28N-23E-06 CBB 1 28N-23E-06 CBD 2	2 03-22-83 1 09-03-42 1 09-06-51 1 03-22-83 2 07-07-81	928 988 838	158 158 178	11010	26 12 16 20	28 7.0 3.5 3.8	11111	04.0 0.00 0.00 0.00 0.00 0.00	8 9 9 9 5	0.500 0.050	11111
28N-23E-18 CDC 1 28N-23E-20 BCB 1 28N-23E-24 DDA 1 28N-23E-24 DDA 1 28N-23E-24 DDA 1	1 07-16-81 1 07-15-81 1 05-02-78 1 03-12-80 1 10-30-80	1340 1030 1130 1145	991 921 1	00	5411 <u>5</u>	81.8 8.6 6.9	11221	69.6 9.50 1	162 162	11111	<pre><0 > 0 < 0</pre>
28N-23E-24 DDA 1 28N-23E-28 BBB 1 28N-23E-39 CAC 1 28N-23E-39 CAC 1 28N-23E-39 DBC 1	07-15-81 07-14-81 03-30-59 07-15-81 10-08-82	1466 1766 966 1336	88 82 82 83 1	ଚ ଚ ଚଚ	44450	22 150 150 83 330	11111	6.36 6.56 6.56 6.56	9 5 5 5 6 9 9 9 9 1	0.020	11111
28N-23E-30 DBC 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1	12-08-82 12-08-82 05-20-52 03-30-59	1300 1400 1200 1201	1 1 8 9 9 9 9 9	© © ©	4 E 8 4 8	5,600 1,000 12 14	11111	0.90 2.1 0.70 1.2	67 8.8.9.	0.00 0.020 0.020	11111
28N-23E-31 BAC 1 28N-23E-31 CBA 1 28N-23E-31 CBA 1 28N-23E-31 CBA 1 28N-23E-32 BAB 1	03-30-59 07-15-81 09-03-42 07-15-81 03-30-59	1100	150 150 150 140	00 00	5 9 5 4 4	12 130 78 21 50	11111	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0 9.0 9.0 9.0	0.050 0.590 0.00	11111
28N-23E-32 BAB 1 28N-23E-32 BAB 1 28N-23E-32 BAB 1 28N-23E-33 BAB 1	12-29-80 02-05-81 07-15-81 03-30-59	1445	1 1 8 8 2 1 2 8 2 1 2 8 2 1	00	9.9	921	1111	60.50 60.50 60.50	6 6 1	9.89	1111

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	123	130	120	146	148	137		139	l	l	1	144	l	1	ļ	۱ ا	ł		Į	l	Į	151	1	Į	ļ	l	l	1	134	127	126	121	1	130	120	121	121	126
Acidity (mg/L as CaCO3)	<1.0	2.0	١	l	2.0	l		•	I	l	1	1.5	Į	1	ı		ł		2.0	l	1	<1.0	1	1	l	I	l	1	I	ļ	2.0	1	!	3.1	1	9.1	1	6.1
Hardness total (mg/L as CaCO3)	150	140	160	140	140	150		150	1	1	l	140	1	1	ļ	1	ł		140	1	1	150	į	١	1	1	1	1	130	130	140	150	130	190	180	170	140	180
Temper- ature (deg. C)	23.5	25.5	1	1	22.0	1			20.2	19.5	18.5	24.0	21.0	17.5	. α	9.6	16.5) • •	16.0	17.5	18.0	23.5	21.5	17.0	19.0	22.0	20.0	1	1	1	23.0	20.0	1	22.5	19.0	22.0	1	24.0
pH (standard units)	8.0	7.9	7.9	8 0.	89.09	7.9		7.9	8.0	8.0	7.8	8.1	7.9	00	2 0) c	9.00) ;)	8.3	8.3	8.3	8.2	7.7	8.3	7.9	8.0	8.0	5.9	8.3	7.9	7.9	1	8.1	7.8	7.9	7.3	1	7.8
Specific conduct— ance (µS/cm)	573	336	1	1	287	1		1	294	357	286	283	296	305	313	797	775		866	869	877	841	957	948	955	1,010	983	4,100	1	1	292	1	300	410	425	429	303	389
Sam- pling depth (feet)	1	1	1	I	1	1		1	}	1	1	1	1	1	1	1	1		1	1	1	1	1	١	1	1		300	1	1	1	1	l	١	1	1	l	l
Agency ond- lyzing sample	80020	80020	1028	84042	80020	84042	!	84042	1028	1028	1028	80020	1028	1028	1928	1028	1028	1	1028	.1028	1028	80020	1028	1028	1028	1028	1028	84041	84042	84042	80020	1028	1028	80020	1028	84041	1028	80020
Site Time identification number	1615 365213094500701	1300 365128094471301		1150 365445094400701								1330 365335094380701	1630 365335094380701	1430 365335094380701						900 365833094551901			1130 365833094551901				900 365833094551901	1500 365917094484701	- 365823094510701	365823094510701	830 365823094510701	365905094494601	365905094494601			830 365905094494601		1420 365905094494602
Date	1 07-14-81	1 07-15-81	1 10-16-68	1 03-12-80	1 07-14-81	1 05-24-79		1 03-12-80	1 02-18-81	1 03-17-81	1 05-08-81	1 06-09-81	1 09-09-81	01-25-82	04-21-82	07-20-82	1 10-29-80		02-04-81	03-06-81	05-12-81	06-69-81	1 09-10-81	01-26-82	04-20-82	07-20-82	10-20-82	12-26-82	1 05-02-78	03-11-80	07-14-81	09-03-42	09-06-51		07-23-81	09-02-82		18-/9-/9 7
Local identifier	28N-23E-33 BAB		28N-24E-13 ABD	ABD	ABD	28N-25E-20 CAA			28N-25E-20 CAA	28N-25E-20 CAA	28N-25E-20 CAA	28N-25E-20 CAA	28N-25E-20 CAA	28N-25E-20 CAA	28N-25F-29 CAA	28N-25E-20 CAA	29N-22E-21 DAD 1				29N-22E-21 DAD	29N-22E-21 DAD					29N-22E-21 DAD			29N-23E-19 DDC 1			29N-23E-21 BBC 1	29N-23E-21 BBC 1			288	28

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Potasium, dissolved (mg/L as K)	2.6	0.4.1-1	11118	11111	4 5 8	11111	8 6	2.7
Sodium+ potasium, dissolved (mg/L as Na)	I		11111	11111	11111	11111	1115.1	
Sodium, dissolved (mg/L as Na)	61	4 = 3 1 = 1	4	11111	110		1 8 5 2	12 12 13
Sodium, total ecoverable (mg/L as Na)	1	<u>6</u>	<u>ő</u>	11111	11111	11111	6.6 6.9	11111
Sodium, Magnesium total dissolved recoverable (mg/L (mg/L as Mg) as Na)	15	5 4 9 9	<u>5</u>	11111	ž	11111	21 1 5 5 4 1	687
Calcium, dissolved (mg/L as Ca)	34	33 38	32	11111	32 12	11111	32 34 29	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Solids, residue at 105 deg. C, dissolved	1	170	<u> 2</u>	11111	11111	11111	166 163 1 1 1	11111
Solids, residue at 180 deg. C, dissolved	300	166	111185	11111	378 	11111	156	222 235 238 178 226
Alka- linity, lab (mg/L as CaCO3)	117	124	135	11111	146	11111	121	122 130
Time	1615	1150	1245 1600 1600 1500 1330	1638 1438 918 1688 1188	1615 900 900 1700 1130	900 900 830 900 1500	836	1415 1100 830 1420
Date	1 07-14-81	07-15-81 10-16-68 03-12-80 07-14-81 05-24-79	1 03-12-80 1 02-18-81 1 03-17-81 1 05-08-81 1 06-09-81	1 09-09-81 1 01-25-82 1 04-21-82 1 07-20-82 1 10-29-80	02-04-81 03-06-81 05-12-81 06-09-81	01-26-82 1 04-20-82 1 07-20-82 1 10-20-82 1 12-26-82	1 05-02-78 1 03-11-80 1 07-14-81 1 09-03-42 1 09-06-51	1 07-07-81 1 07-23-81 1 09-02-82 2 04-28-48 2 07-07-81
Local	28N-23E-33 BAB 1	28N-23E-36 CCC 1 28N-24E-13 ABD 1 28N-24E-13 ABD 1 28N-24E-13 ABD 1 28N-25E-20 CAA 1	28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1	28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 29N-22E-21 DAD 1	29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1	29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1	29N-23E-19 DDC 1 29N-23E-19 DDC 1 29N-23E-19 DDC 1 29N-23E-21 BBC 1 29N-23E-21 BBC 1	29N-23E-21 BBC 1 29N-23E-21 BBC 1 29N-23E-21 BBC 29N-23E-21 BBC 2 29N-23E-21 BBC 2

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidous aquifer—Continued

Í							
Nitrogen, nitrate+ nitrite dissolved (mg/L as N)	- 0.588	69 · 58 · 69 · 1 · 1 · 1 · 1	11111	11111	11111	60.10060.50010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.10010.100<l< td=""><td>11111</td></l<>	11111
Nitrogen, nitrate dissolved (mg/L as N)	0.00		11111	11111		0.380 0.050	00.00
Silica dissolved (mg/L as SiO2)	16 19 9.0	9	1111	1110;	11111	6 6 9.8	ණ ස වෙස ව වෙස ව
Fluoride, Silica dissolved dissolved (mg/L (mg/L as F) as SiO2)	6.36 6.38 6.38 6.18	95.50	11111	6.76	11111	94.69 9.39	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluoride, tota! (mg/L as F)		7	11111	11111	11111	600 4.4.	11111
Chloride dis- solved (mg/L as Cl)	99 12 12 5.6	, 6	11111	861 961 1 1	11111	7.0 2.0 8.4 16	9.0 10.0 11.0 11.0 11.0 11.0 11.0 11.0 1
Sulfate dis- solved (mg/L as SO4)	£ 41 8 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2	11111	8 8 2 8 7 8 1 8 1 8 1 8 1	11111	1189119	68 74 58 63
Carbonate whole water total, FET, (mg/L as CaCO3)	စ စဂ ေစ	<i> </i>	11111	%	11111	11010	0 00
Bicarbonate, whole water total, FET, (mg/L as CaCO3)	150 160 140 180	8	11111	8	11111	150	150 150 150
_ = = •	1615 1300 1150 1230	1245 1600 1600 1500	1638 1438 918 11688	1615 900 900 1700 1130	900 900 830 900 1500	830	1415 1100 830 1420
Date	1 07-14-81 1 07-15-81 1 10-16-68 1 03-12-80 1 07-14-81	03-12-80 1 03-12-80 1 02-18-81 1 03-17-81 1 05-08-81	1 09-09-81 1 01-25-82 1 04-21-82 1 07-20-82 1 10-29-80	02-04-81 03-06-81 05-12-81 06-09-81 09-10-81	1 01-26-82 1 04-20-82 1 07-20-82 1 10-20-82 1 12-26-82	05-02-78 03-11-80 07-14-81 09-03-42 09-06-51	07-07-81 07-23-81 09-02-82 04-28-48
Local	BAB CCC ABD ABD ABD	28N-25E-29 CAA 28N-25E-29 CAA 28N-25E-29 CAA 28N-25E-29 CAA 28N-25E-29 CAA 28N-25E-29 CAA	28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 29N-22E-21 DAD 1	29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1	29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-22E-21 DAD 1 29N-23E-16 DDD 1	9N-23E-19 9N-23E-19 9N-23E-19 9N-23E-21 9N-23E-21	29N-23E-21 BBC 1 29N-23E-21 BBC 1 29N-23E-21 BBC 1 29N-23E-21 BBC 2 29N-23E-21 BBC 2

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

Alkalinity, whole water total, FET, mg/L as CaCO3)	121 133 128 132 123	126 124 149	197 216 128 137 144	851 185 8 1 1 88	119
Acidity (mg/L as CaCO3)	2.8 1.8 1.0	11111	59 4.9 4.3	15111	I
Hardness total (mg/L as CaCO3)	160 220 210 180 170	160 150 290	740 730 150 190 250	130 140 220 1,600	138
Temper- ature (deg. C)	22.0 24.0 22.0 21.0	11111	21.0	21.0 22.0 17.0 16.0	1
pH (standord units)	7.3	8.8 4. E.	6.0.4 0.0.4 0.0.7	5.73	8.0
Specific conduct— ance (\$\mu S/cm)	425 488 549 918	11115	1,430	3,640	262
Sam- pling depth (feet)	11111	11111	11111	216 300	ı
Agency ana- lyzing somple	84041 80020 84041 1028 84042	84042 84042 84042 84042 84042	80020 80020 84042 84042 80020	1628 86626 84641 84641 1628	1028
Site Time identification number	831 365995994494692 1439 36599599494603 832 36599599494603 — 365757994464601 890 365890994461701	1200 365800094461701 1600 365800094461701 — 365800094461701 1515 365800094461701 800 365800094461701	1100 365800994461701 1230 365800094461701 — 365734094471001 1435 365734094471001 1045 365734094471001	— 365784894513181 938 365784894513181 1738 365722894588481 1758 365722894588481 — 365734894471181	365734094471101
Date	2 09-02-82 3 07-07-81 3 09-02-82 1 04-15-47 1 10-19-77	16-19-77 16-19-77 16-10-79 16-01-79 16-09-81	07-07-81 07-07-81 05-02-78 03-11-80 07-07-81	09-12-42 07-10-81 04-20-82 04-20-82 03-11-42	09-06-51
Local identifier	29N-23E-21 BBC 2 29N-23E-21 BBC 3 29N-23E-21 BBC 3 29N-23E-25 AAA 1 29N-23E-25 BDC 1	29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1	29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-26 CDD 1 29N-23E-26 CDD 1 29N-23E-26 CDD 1	29N-23E-31 BDD 1 29N-23E-31 BDD 1 29N-23E-32 ADD 1 29N-23E-32 ADD 1 29N-23E-35 BDD 1	29N-23E-35 BDD 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Roubidoux aquifer—Continued

sium. olved //L K)	4-80	11111	3.7	0.0.0. 0.0.0.	₩.
Potasium, dissolved (mg/L as K)	4-8.7		พ.พ	ท่÷ท่	-
Sodium+ potasium, dissolved (mg/L as Na)	120	11111		12	ı
Sodium, dissolved (mg/L as Na)	12 20 18	11111	58 50 15	4.12	4.4
Sodium, total recoverable (mg/L as Na)	11111		1 5.25	11111	1
Magnesium dissolved 1 (mg/L as Mg)	16 22 21 20 20		76 75 26 —	4 + 1 4 + 4 + 6 4 + 6 6 + 6	7
Calcium, dissolved (mg/L as Ca)	36 58 49 40		170	29 33 80 440 110	28
Solids, residue at 105 deg. C, dissolved	210	210 210 441 718	191 260	11111	1
Solids, residue at 180 deg. C, dissolved	222 280 308	11111	1,170	214	142
Alka- linity, lab (mg/L as CaCO3)	125	11111	165 171 — — — — — — — — — — — — — — — — — — —	126	I
Time	831 1430 832 —	1200 1600 1515 800	1198 1238 1435 1945	930 1730 1750	i
Date	2 09-02-82 3 07-07-81 3 09-02-82 1 04-15-47 1 10-19-77	1 10-19-77 1 10-19-77 1 10-01-79 1 03-11-80 1 04-09-81	1 07-07-81 1 07-07-81 1 05-02-78 1 03-11-80 1 07-07-81	1 09-12-42 1 07-10-81 1 04-20-82 1 04-20-82 1 03-11-42	1 09-06-51
Local identifier	29N-23E-21 BBC 29N-23E-21 BBC 29N-23E-21 BBC 29N-23E-25 AAA 29N-23E-25 BDC	29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-25 BDC	29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-26 CDD 29N-23E-26 CDD 29N-23E-26 CDD	29N-23E-31 BDD 29N-23E-31 BDD 29N-23E-32 ADD 29N-23E-35 ADD 29N-23E-35 BDD	29N-23E-35 BDD 1

Table 4.—Concentrations of common constituents and physical properties of water from wells completed in the Rowbidows aquifer—Continued

_					
Nitrogen, nitrate+ nitrite dissolved (mg/L as N)	- No. 166 - - - - - - - - - - - - -	<pre><0.100 <0.100 <0.500 <0.500 </pre>	<pre></pre>	11111	1
Nitrogen, nitrate dissolved (mg/L as N)	0.00		11111	6.368 6.588	00.0
Silica dissolved (mg/L as SiO2)	8. 8. 6. 9. 2. 1	11111	24 1	16 7.4 36 .4	9.7
Fluoride, Fluoride, Silica total dissolved dissolved (mg/L (mg/L as F) as SiO2)	9.0 9.0 9.0 9.0 9.0 9.0 1	11111	9.20 0.20 6.20	9.40 9.30	0.30
Fluoride, total (mg/L as F)	6.	8.8 8.3 1.5 1.5	6.6	11111	I
Chloride dis- solved (mg/L as Cl)	11 24 19 11	4 11 10 10 10 10 10 10 10 10 10 10 10 10	78 87 7.0 25 7.0	16 22 <1.0 7.6	4.0
Sulfate dis- solved (mg/L as SO4)	47 86 92 19 38	34 33 160 2,600	568 538 28 83	13 46 86 2,000 120	2
Carbonate whole water total, FET, (mg/L as CaCO3)	o o		00 0		0
Bicarbonate, whole water total, FET, (mg/L as CaCO3)	168 168 168	11111	240 260 — 180	146	140
Time	831 1430 832 800	1500 1500 1515 800	1100 1230 1435 1645	936 1736 1756	1
Date	2 69-62-82 3 67-67-81 3 69-62-82 1 64-15-47 1 10-19-77	1 16-19-77 1 16-19-77 1 16-01-79 1 03-11-80 1 04-09-81	1 07-07-81 1 07-07-81 1 05-02-78 1 03-11-80 1 07-07-81	1 09-12-42 1 07-10-81 1 04-20-82 1 04-20-82 1 03-11-42	1 09-06-51
Local	29N-23E-21 BBC 29N-23E-21 BBC 29N-23E-21 BBC 29N-23E-25 AAA 29N-23E-25 BDC	29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-25 BDC	29N-23E-25 BDC 29N-23E-25 BDC 29N-23E-26 CDD 29N-23E-26 CDD 29N-23E-26 CDD	29N-23E-31 BDD 29N-23E-31 BDD 29N-23E-32 ADD 29N-23E-32 ADD 29N-23E-35 BDD	29N-23E-35 BDD 1 09-06-51

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer

Local identifier	Dot.	T : Be	Site identification number	Agency and l- yzing samp le	Sam- pling depth (feet)	Aluminum, dissolved $(\mu g)^L$ as d	Arsenic, total (µg/L as As)	Arsenic, dissolved (µg/L as As)	Barium, total recoverable (µg/L as Ba)	Cadmium, total recoverable (µg/L as Cd)
					ADAIR	ADAIR COUNTY				
18N-26E-18 BDC	1 10-28-81	1300	360225094344001	80020	I	09>	1	<18	1	i
					CHEROKEE COUNTY	COUNTY				
16N-22E-03 CCB	1 12-28-82	1330	355319094574001	84041	1	<100		1	1	l
					CRAIG	CRAIG COUNTY				
4N-21F-11 BDB	1 03-23-83	1330	16343995828981	84041	120	7100	1	1	1	١
24N-21E-11 BDB	1 03-23-83	1345	363439095020901	84041	760	<100				ı
4N-21E-11 BDB	1 03-23-83	1450	363439095020901	84041	1,700	440	1	1	I	I
5N-20E-12 BDD	1 03-10-50	ĺ	363950095070201	1028	1	1	1	1	l	l
5N-20E-12 BDD	1 09-05-51	1	363950095070201	1028	1	1	1	1	1	l
C		1	163938895871584	1028		ł	ł	ı	1	ı
80	2 02-04-81	1300	365016095070501	1028	1	1	1	<10		1
8		1400	365016095070501	80020	1	69	1	<10	ı	-
	1 07-09-81	1030	365000095010101	80020	1	69 >	1	<10		I
ဋ		1430	364808095043501	1028	1	1	1	<10	1	I
7N-21E-20 DCD	1 06-69-81		364808095043501	80020	1	V	ŀ	×10	I	1
8N-20E-13 ACC	1 03-23-83		365440095065701	84041	170	<100	1	1	I	1
BN-20E-13 ACC	1 03-23-83		365440095065701	84041	1,460	<100	1	l	1	ł
28N-21E-29 CBC	1 02-04-81	1100	365242095051701	1028	1	13	1	×10	I	
ON-215-23 CDC	10-69-09		10/100007+700	97999	1	90>	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1
28N-21E-29 CBD	1 06-09-81	930	365240095051501	80020	ı	09>	1	<10	l	1
					DELAWARE COUNTY	COUNTY				
20N-23E-34 CCA	1 06-10-81		360946094504901	80020	1	09>	l	<10	J	1
	1 85-18-81			80020	l	99>	1	×10	l	
IN-23E-31 BBB	1 00-10-81	040	361344694416161	88828	1	99×	1	9 V	1	1
22N-23E-11 BBB .	1 03-21-83		362427894328881	84041		99°	1 1	2 4	1	1
		· ·				2	}	2	l	
23N-22E-14 ADC	1 06-10-81	245	362829094550901	80020		<60	1	<10	1	1
3N-25E-33 DDC	1 07-09-81	1445	362532094374501	80020		69 >	1	<10	l	1
4N-23E-13 BBC	1 06-11-81	930	363357094503701	80020	l	99>	1	<18 	ł	1
38	1 00-1-00	1230	553516694464561	80020	ļ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5		

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

İ																													
Lead, lissolved (µg/L as Pb)		\$		\$		\$	< 5		1	1	\$	\$ \$	& &	;	\$ ₹	0 1	9	\$	\$		\$	₩,	9 4	0 v	ļ	€ •	\ 8 8	9 %	\$
Lead. total ecoverable d (µg/L as Pb)		1		l		1	1		1	İ		ı	11			1 1	1	١	1		1	1	1	11		1 1		1	t
Iron, dissolved r (µg/L as Fe)		<20		130		<10	20	900'8	l		200	180	200 80	3	100	<u> </u>	200	120	69		290	88	4 0	200	,	166	94	280	40
Iron, total recoverable (µg/L as Fe)		İ		1		l	1	1 80	20	ď	۱ ۹	ì	11		1	! !	1	1	ł		i	I	l					1	1
Copper, dissolved re (µg/L as Cu)		669		<12		<12	4 2	<u> </u>	i		<100	99>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) ;	09>	7.5	<100	6 9>	69 >		99>	09>	904	<00 <15 <15	Ģ	99 V	99>	09>	V
Copper, total recoverable ((\mu 9/L as Cu)	ADAIR COUNTY	l	CHEROKEE COUNTY	l	CRAIG COUNTY	I	1		1	1		1	1 1		()	} }	1	•	i	DELAWARE COUNTY	i	}	1	1 1		1 1	1	1	i
Chromium, dissolved re (µg/L ds Cr)	ADA	⊽	CHERO	<16	CRA	<10	^ \ \ .	<u> </u>	1	İ		8	⊽l		Σ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, 1	•	⊽	DELAW	⊽	Σ;	7.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	;	V 7	7 ▽	⊽'	⊽
Chromium, ctotal crecoverable c (\mu g/L as Cr)		1		١		1	1		1	i		1	1 1		1		1	1	1		l	1		1 1		1 1		1	1
Cadmium, dissolved re (µg/L as Cd)		^ 6.		89.		<4.0	<4.0 .1.0	2	l	İ	<2.5	<1.0 6.1.0	6. 5 5. 5) !		0 00	\$ 5.5 8.5	1.0	<1.0		4.0	<u>~</u> ~ ~	9. 9		;		, , ,	0.1 0.0	۸. 6.
F.		1300		1330		1330	1345	2	1	1	1300	1400	1636 1436	}	1100	1730	1100	996	930		930	800	200	1445	410	1445	930	1230	1500
Date		16-28-81		1 12-28-82			03-23-83	97-19-59	09-05-51	4 45-20-50		06-08-81	02-04-81		06-09-81				06-09-81			96-10-81 96-19-81	10-01-00	03-21-83	10 01	07-09-81			
Local identifier		18N-26E-18 BDC 1 10-28-81		16N-22E-03 CCB 1			24N-21E-11 BDB 1	25N-28F-12 BDD 1	25N-20E-12 BDD 1		27N-20E-12 BDD 2	80	27N-21E-12 CCB 1 27N-21E-29 DCD 1		27N-21E-20 DCD 1	28N-28E-13 ACC 1	28N-21E-29 CBC 1		28N-21E-29 CBD 1			20N-24E-17 CCC 1	22NL23E-31 BBB 1	22N-23E-11 BBB 1		23N-25F-33 DDC 1			25N-22E-23 CCD 1

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

1																															
Zinc, dissolved (µg/L os Zn)		1,300		550		37	<10	110	1	1	I	24	26	7 67)	<28	2 2	28	<20	<20		32	<20	<28	<20	43	<20	720	<20	<20	<20
Zinc, total recoverable (µg/L as Zn)		1		1		I	1	1	1			1	I					1	1	ļ		ı	1	1	1	-	١	١	l	1	l
Silver, total recoverable (µg/L as Ag)		1		ı		1	l	1					1	11			1 !	l	l	i		I	1	l	l	-	l	1	Į	l	l
		١		1		1	1	١	1	1	1	1	1	1 1		1		Ì	1			1		1	1	ŀ	1	1	1	ł	1
Selenium, Molybdenum, total dissolved recoverable (\mu g/L (\mu g/L as Mo) as Se)		1	_	1		I	l	1	!	l	I	⊽	1	۱ ۷	;			⊽	1	I		l		1	1		!	1	1	!	1
Mercury, I dissolved (µg/L as Hg)	ADAIR COUNTY	<0.5	CHEROKEE COUNTY	ł	CRAIG COUNTY	1	1		ļ	1	l	<0.5	<0.5	0 vg V V) ;	<0.5		<0.5	<0.5	<0.5	DELAWARE COUNTY	<0.5	<0.5	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	69 .5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Mercury, totai recoverable (µg/L as Hg)	· Y	I	CHER	1	S	!	l	l	Į	l	Į	ł	l	11				ļ			DELA	1	1		1	1	1	1		ļ	
Manganese, dissolved r (µg/L as Mn)		<10		40		50	30	2,100	l		ı	10	0 V	9 9 V	}	0 0 0	2.000	30	<10	× 10		30	<10	01V	\ \ 10	10 0	<10	<1 0	<10 10	×10	^ 10
Manganese, tota! recoverable (µg/L as Mn)		1		l		l	l	l	1	1	1	1	l	!		1 1		1	1	1		1	1		1		i	I	1	1	1
		1300		1330		1330	1345	1450			1	1300	1400	1430	}	1100	1730	1100	906	930		930	800	1645	1200	1445	1245	1445	930	1230	1500
Date.		1 10-28-81		1 12-28-82		1 03-23-83	1 03-23-83	1 03-23-83		1 69-69-51	4 05-29-50		2 06-08-81	1 62-64-81		1 06-09-81	1 03-23-83	1 02-04-81	1 06-09-81	1 06-09-81		1 06-10-81	1 06-10-81	1 86-16-81		1 03-21-83	1 06-10-81	1 07-09-81	1 06-11-81	1 06-11-81	1 06-10-81
Local		18N-26E-18 BDC 1 10-28-81		16N-22E-03 CCB		808	24N-21E-11 BDB	24N-21E-11 BDB		25N-20E-12 BDD	ပ	B	200	27N-21E-12 CCB		27N-21E-20 DCD	28N-20E-13 ACC	28N-21E-29 CBC	28N-21E-29 CBC	28N-21E-29 CBD				21N-25E-31 BBB		888	23N-22E-14 ADC				25N-22E-23 CCD

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

1				•		
Cadmium, total recoverable (µg/L as Cd)	111	11111	11128	11112 11		11111 11111
Barium, total recoverable (μg/L as Ba)	111	11111	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6		11111 11111
Arsenic, dissolved (μg/L as As)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		 		\$\frac{1}{2} \frac{1}{2}	
Arsenic, tota! (μg/L as As)	111	11111	2 %		<u> </u>	11111 11111
Aluminum, dissolved (µg/L as Al)		9 9 9 9 9 9 9 9 9 9 9 9	9 9	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<u>\$</u> <u>\$</u> \$ \$	66 66 66 66 66 66 66 66 66 66 66 66 66
Sam- pling depth (feet)		11111		11111 11	111 11111	986 1.858
Agency and- lyzing sample	1028 80020 80020	80020 80020 80020 80020 80020	1028 80020 80020 84042 84042	80020 80020 80020 80020 84042 84042 80020	80020 80020 80020 80020 1028 80020 80020	80020 80020 10028 80020 80020 80020 84041 84041
Site number	115 363740094553101 330 363921094474301 200 363718094444501	700 364103094470401 000 364349094554501 900 364323094585101 830 364227094554301 600 364211094564101	— 364135094580001 500 364135094580001 300 364135094580002 — 364501094505301 — 364501094505301	36450109 36445409 36445409 36415509 36510309 36510309		36 364957694371561 36 365543694535801 36 365342694531361 36 365342694531361 37 365324694531361 38 365324694531361 38 365627694522261 38 365627694522261 38 365627694522261
Date Time	1 08-17-82 11: 1 06-11-81 13: 1 07-09-81 126	67-15-81 1706 66-12-81 1006 66-12-81 906 67-08-81 830 1 06-11-81 1606	09-06-51 06-11-81 06-11-81 05-03-78 03-19-80		07-08-81 1630 02-05-81 830 06-09-81 1545 07-08-81 1130 05-03-78 03-10-80 1435 02-05-81 1230 07-08-81 1500	07-14-81 16 08-03-14 19 09-16-81 19 07-16-81 19 07-16-81 19 07-07-81 19 19-21-82 18 19-21-82 18 19-21-82 18
Local	25N-22E-23 CCD 1 25N-23E-13 AAB 1 25N-24E-28 BBB 1	25N-23E-01 AAA 1 26I+22E-15 DDA 1 26I+22E-20 BCC 1 26I+22E-27 ADD 1 26I+22E-27 CBC 1	26N-22E-32 ADC 1 26N-22E-32 ADC 1 26N-22E-32 ADC 2 26N-23E-09 CA 1 26N-23E-09 CA 1	26N-23E-09 CA 26N-23E-09 DBC 1 26N-23E-12 BAD 1 26N-24E-32 ABA 1 27N-22E-01 CCC 1 27N-22E-01 CCC 1	27N-23E-93 BCC 1 27N-23E-17 CBB 1 27N-23E-28 CDC 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1	27N-25E-09 CAC 1 28N-22E-11 AAB 1 28N-22E-24 AAB 1 28N-22E-24 BDA 1 28N-22E-24 CBC 1 28N-22E-24 CBC 1 28N-23E-06 BAC 1 28N-23E-06 BAC 1 28N-23E-06 BAC 1 28N-23E-06 BAC 1 28N-23E-06 BAC 1 28N-23E-06 BAC 1

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

Lead, dissolved (µg/L as Pb)	1 & &	\$\$\$\$\$	18811	88881	∾ ∾ ∾ ∾	81188	&&1&&	\$ 58 8 \$
Lead, total coverable (µg/L as Pb)	111	11111	7 52	11118	11111	\$5°	11111	11111
Iron, dissolved re (µg/L as Fe)	8 40 170	68 38 38 58 58	1 8 8 8 1 1	810 810 80 80 110	56 4 4 6 7 6 8 8 8	126	66 288 4 7	4 8 8 8 4 4 8 8 8 9 4 4 8 8 9 9 9 9 9 9
Iron, total recoverable (µg/L as Fe)	111	11111	926	2,000	11111	1,200	%	11111
Copper, dissolved r (µg/L as Cu)	89	8 8 8 8 8 9 9 9 9 9 9 9 9	188811	99999 9999 9999 9999	^	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	99 99	668 668 712 712
Copper, total recoverable (µg/L as Cu)		11111	11124	11112	11111	1,211	11111	11111
Chromium, dissolved r (µg/L as Cr)	1 A A TO	~~~~	12211	~~~I	555 5	VIIIV	22122	26 26 26 26
Chromium, total recoverable (µg/L as Cr)	111	11111	1 189	%	11111	1611		11111
Cadmium, dissolved r (µg/L as Cd)	^ <u>^ ^ </u>		<u>^</u>	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	2. 6. 1.2. 6. 1.0.	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
⊢ = =	1115 1330 1200	1700 1000 900 830 1600	1300	945 936 1646 1466	800 900 1630 830 1545	1130 1435 1230 1500	1636 836 1336 1436	1315 900 1800 1830 1830
Date	1 08-17-82 1 06-11-81 1 07-09-81	07-15-81 06-12-81 06-12-81 07-08-81	09-06-51 06-11-81 06-11-81 05-03-78 03-19-80	07-08-81 07-08-81 07-08-81 07-30-81 05-01-78	07-16-81 07-09-81 07-08-81 02-05-81 06-09-81	07-08-81 05-03-78 03-10-80 02-05-81 07-08-81	07-14-81 07-10-81 08-03-44 07-16-81	07-16-81 07-07-81 10-21-82 10-21-82 10-20-82
Local	25N-22E-23 CCD 1 25N-23E-13 AAB 1 25N-24E-28 BBB 1	25N-23E-01 AAA 1 26N-22E-15 DDA 1 26N-22E-20 BCC 1 26N-22E-27 ADD 1 26N-22E-27 CBC 1	26N-22E-32 ADC 1 26N-22E-32 ADC 1 26N-22E-32 ADC 2 26N-23E-09 CA 1 26N-23E-09 CA 1	26N-23E-09 CA 1 26N-23E-09 DBC 1 26N-23E-12 BAD 1 26N-24E-32 ABA 1 27N-22E-01 CCC 1	27N-22E-01 CCC 1 27N-22E-27 AAB 1 27N-23E-03 BCC 1 27N-23E-17 CBB 1 27N-23E-17 CBB 1	27N-23E-28 CDC 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1	27N-25E-09 CAC 1 28N-22E-11 ABB 1 28N-22E-24 AAB 1 28N-22E-24 BDA 1 28N-22E-24 CAD 1	28N-22E-24 CBC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 2

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

Zinc, dissolved (µg/L as Zn)	7 6 6 7	220 220 34 20 20 20	1 558	720 26 34 1,400	220 30 38 28 28 20 20	28 69 89 89	25 28 26 32 8	32 <20 3,200 4,700 40
Zinc, total ecoverable (µg/L as Zn)	111	11111	7 5 5 1 1 1	04	11111	400	11111	11111
Silver, total ecoverable r (µg/L as Ag)	111	11111	11125	11112	11111	19211	11111	11111
Selenium, total ecoverable re (µg/L as Se)	111	11111	11124	11112	11111	12811	11111	11111
Molybdenum, dissolved re (μg/L as Mo)	111	11111	11111	11111	11121	11121	11111	
Mercury, dissolved (µg/L as Hg)	- < 0.5 < 0.5 < 0.5 < 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	\$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$	8 8. 8 8. 1 1 2 2 3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mercury. e, total d recoverable (μg/L) as Hg)	111 6	11111	6.50	% .88	11111	00 00 00 00 00 00 00 00 00 00 00 00 00	11111	11111
Manganese, dissolved r (µg/L as Mn)	4.2 4.10 4.10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 	~~~~~	<u>^</u>	<u>^</u> 1155	~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	017 000 04 04 02 02 02
Manganese, total recoverable (µg/L as Mn)	111	11111	 2 8	5		1 % 7		11111
Time r	1115 1330 1200	1766 1666 966 836 1666	1500	945 936 1046 1400	800 900 1630 830 1545	1130 1435 1236 1500	1636 836 1336 1436	1315 900 1800 1830 1830
Date	1 08-17-82 1 06-11-81 1 07-09-81	07-15-81 06-12-81 06-12-81 07-08-81	1 09-06-51 1 06-11-81 2 06-11-81 1 05-03-78 1 03-19-80	1 07-08-81 1 07-08-81 1 07-08-81 1 07-30-81 1 05-01-78	07-16-81 07-09-81 07-08-81 02-05-81 06-09-81	07-08-81 05-03-78 03-10-80 02-05-81 07-08-81	07-14-81 07-10-81 08-03-44 1 07-16-81 07-16-81	1 07-16-81 1 07-07-81 1 10-21-82 1 10-21-82 2 10-20-82
Local	25N-22E-23 CCD 1 25N-23E-13 AAB 1 25N-24E-28 BBB 1	25N-23E-01 AAA 1 26N-22E-15 DDA 1 26N-22E-20 BCC 1 26N-22E-27 ADD 1 26N-22E-27 CBC 1	26N-22E-32 ADC 1 26N-22E-32 ADC 1 26N-22E-32 ADC 2 26N-23E-09 CA 1 26N-23E-09 CA 1	26N-23E-09 CA 26N-23E-09 DBC 1 26N-23E-12 BAD 1 26N-24E-32 ABA 1 27N-22E-01 CCC 1	27N-22E-01 CCC 1 27N-22E-27 AAB 1 27N-23E-03 BCC 1 27N-23E-17 CBB 1 27N-23E-17 CBB 1	27N-23E-28 CDC 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1 27N-24E-28 CAD 1	27N-25E-09 CAC 1 28N-22E-11 ABB 1 28N-22E-24 AAB 1 28N-22E-24 BDA 1 28N-22E-24 CAD 1	28N-22E-24 CBC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 1 28N-23E-96 BAC 1

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

Cadmium, total recoverable (µg/L as Cd)	11111	11122	11111	11111	11111	11111	21221	11128 1
Barium, total recoverable (μg/L as Ba)	11111	<u>^</u> ^ <u>^</u> 80 0	11111	11111	1111	11111	2 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	1 1000
Arsenic, dissolved (µg/L as As)	16116	<u> </u>	2.2. 5.2. 2.	11111	2 2 2	2 2 0 8 8 0 1 0	15115	<u>^</u>
Arsenic, tota! (μg/L as As)	11111		11111	11111	11111	11111	^ ^ ^	2%
Aluminum, dissolved (µg/L as Al)	2.0 9.0 1.0 1.0 1.0 1.0 1.0	9999	888 88	2 × × × × × × × × × × × × × × × × × × ×	89 89	89 89 89	8 8	766 1 216 66 66 66 66 66
Sam- pling depth (feet)	1,100	1111	11111	800 1,480	11111	11111	11111	300
Agency ana- lyzing sample	84041 84041 1028 1028 84041	80020 80020 80020 84042 84042	80020 80020 1028 80020 84041	84041 84041 1028 1028	80020 1028 80020 1028	80020 1028 80020 80020 1028	84042 80020 84042 84042 80020	1028 80020 84041 84042 84042 80020
Site Time identification number	1900 365627094522101 920 365627094522101 — 365600094523001 — 365600094523001 900 365600094523001	839 365557094522701 1340 365402094522201 1030 365344094513301 — 365316094461601 1130 365316094461601	1400 365316094461601 1700 365301094502901 — 365229094522101 900 365229094522101 1330 365229094520201	1300 365229094520201 1400 365229094520201 — 365210094522101 1200 365210094522101 1201 365210094522101	1100 365206094522201 365146094522201 930 365146094522201 365212094511901 1445 365212094511901	1130 365212094511901 — 365213094500701 1615 365213094500701 1300 365128094471301 — 365445094400701	1150 365445094400701 1230 365445094400701 — 365335094380701 1245 365335094380701 1330 365335094380701	1615 365833094551901 1700 365833094551901 1500 365917094484701 — 365823094510701 — 365823094510701 830 365823094510701
Date	2 10-20-82 2 03-22-83 1 09-03-42 1 09-06-51 1 03-22-83	2 07-07-81 1 07-16-81 1 07-15-81 1 05-02-78 1 03-12-80	1 07-15-81 1 07-14-81 1 03-30-59 1 07-15-81 1 10-08-82	1 12-08-82 1 12-08-82 1 05-20-52 1 03-30-59 1 03-30-59	1 07-15-81 1 09-03-42 1 07-15-81 1 03-30-59 1 02-05-81	1 07-15-81 1 03-30-59 1 07-14-81 1 07-15-81 1 10-16-68	1 03-12-80 1 07-14-81 1 05-24-79 1 03-12-80 1 06-09-81	1 02-04-81 1 06-09-81 1 12-26-82 1 05-02-78 1 03-11-80
Local identifier	28N-23E-06 BAC 28N-23E-06 BAC 28N-23E-06 CBB 28N-23E-06 CBB 28N-23E-06 CBB	28N-23E-06 CBD 28N-23E-18 CDC 28N-23E-20 BCB 28N-23E-24 DDA 28N-23E-24 DDA	28N-23E-24 DDA 28N-23E-28 BBB 28N-23E-30 CAC 28N-23E-30 CAC 28N-23E-30 DBC	28N-23E-30 DBC 28N-23E-30 DBC 28N-23E-31 BAB 28N-23E-31 BAB 28N-23E-31 BAB	28N-23E-31 BAC 28N-23E-31 CBA 28N-23E-31 CBA 28N-23E-32 BAB 28N-23E-32 BAB	28N-23E-32 BAB 28N-23E-33 BAB 28N-23E-33 BAB 28N-23E-36 CC 28N-24E-13 ABD	28N-24E-13 ABD 28N-24E-13 ABD 28N-25E-20 CAA 28N-25E-20 CAA 28N-25E-20 CAA	29N-22E-21 DAD 29N-22E-21 DAD 29N-23E-16 DDD 29N-23E-19 DDC 29N-23E-19 DDC 29N-23E-19 DDC

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

Lead, ssolved (µg/L as Pb)	58118	44411	\$\$ \$\$	88111	61616	81881	18118	880118
Lead, total coverable di (µg/L as Pb)	11111	111.28	11111	11111	11111	11111	81181	\\ 20
Iron, dissolved re. (µg/L as Fe)	2,200 20 20 — 50	98 4 4 8 1 1	20 30 70 10	017 730	8 2 4 8 8 4	94 88 8 8 8	70	100 390 260,000 —
Iron, total total $(\mu g/L)$ as Fe)	0 0	746 100	-	0 0 0 t	6 5	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,360
Copper, dissolved r (μ g/L as Cu)	25115	888	66 66 66 66 66 66 66 66	\$\$111	66 66 66 66 66	8 8 8	8 8	4.168 6.68 7.12 6.68 6.69 6.
Copper, total ecoverable (µg/L as Cu)	11111	4 ∞	11111	11111	11111		4 ∞	54
Chromium, dissolved r (μ_9/L) as Cr)	<u> </u>	<u> </u>	∆∆ ∆ <u>°</u>	<u>^ ^ 0 </u>	<u> </u>	V VV	7 7	\(\frac{1}{2} \)
Chromium, total recoverable (\mu_9/L as Cr)	11111	1 42 2		11111	11111	11111	<u>^</u> %	°%
Cadmium, dissolved (µg/L as Cd)	4 .2	^ ^ ^ ø ø ø i	2. 2. 2. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	6.4° 181	2 2 2 e e 8	^ ^^ ø øø	<u>^</u>	2,2,2,4, 2,0,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
_ ∃ ∃	1986 928	836 1346 1636 1136	1466 1766 966 1336	1300 1400 1200 1201	930	1138	1150 1230 1245 1330	1615 1766 1566 ————————————————————————————————
Date	2 10-20-82 2 03-22-83 1 09-03-42 1 09-06-51 1 03-22-83	2 07-07-81 1 07-16-81 1 07-15-81 1 05-02-78 1 03-12-80	07-15-81 07-14-81 03-30-59 07-15-81	12-08-82 12-08-82 05-20-52 03-30-59 03-30-59	07-15-81 09-03-42 07-15-81 03-30-59 02-05-81	07-15-81 03-30-59 07-14-81 07-15-81	03-12-80 07-14-81 05-24-79 03-12-80 06-09-81	02-04-81 06-09-81 12-26-82 05-02-78 03-11-80
Local	28N-23E-06 BAC 2 28N-23E-06 BAC 2 28N-23E-06 CBB 1 28N-23E-06 CBB 1 28N-23E-06 CBB 1	28N-23E-96 CBD 2 28N-23E-18 CDC 1 28N-23E-29 BCB 1 28N-23E-24 DDA 1 28N-23E-24 DDA 1	28N-23E-24 DDA 1 28N-23E-28 BBB 1 28N-23E-39 CAC 1 28N-23E-39 DBC 1	28N-23E-30 DBC 1 28N-23E-30 DBC 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1 28N-23E-31 BAB 1	28N-23E-31 BAC 1 28N-23E-31 CBA 1 28N-23E-31 CBA 1 28N-23E-32 BAB 1 28N-23E-32 BAB 1	28N-23E-32 BAB 1 28N-23E-33 BAB 1 28N-23E-33 BAB 1 28N-23E-36 CCC 1 28N-24E-13 ABD 1	28N-24E-13 ABD 1 28N-24E-13 ABD 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1 28N-25E-20 CAA 1	29N-22E-21 DAD 1 29N-23E-21 DAD 1 29N-23E-16 DDD 1 29N-23E-19 DDC 1 29N-23E-19 DDC 1

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

	Date	 ⊕ €	Manganese, total recoverable (µg/L as Mn)	Manganese, dissolved r (µg/L as Mn)	Mercury, total recoverable (µg/L as Hg)	Mercury, dissolved (μ_g/L) as Hg)	Molybdenum, dissolved re- $(\mu_g/L$ as Mo)	Selenium, total coverable $(\mu g/L$ as Se)	Silver, total recoverable (µg/L as Ag)	Zinc, total recoverable (µg/L as Zn)	Zinc, dissolved (µg/L as Zn)
N-23E-06 BAC		1900		40					1		100
N-23E-06 BAC	2 03-22-83		1	<10 0	1	<0.5	1	1	1	1	15
N-23E-06 CBB										1	
28N-23E-06 CBB	1 03-22-83	O		<10	.	<0.5		1	1		<u>+</u>
4-23E-06 CBD		830	1	×18	ļ	<0.5	1	١	1	l	<20
4-23E-18 CDC	1 07-16-81	1340	-	<10	1	<0.5	1	1		}	, K
H-23E-20 BCB		1030	1	<10	-	<0.5	******	1	1	l	<20
28N-23E-24 DDA 28N-23E-24 DDA	1 05-02-78 1 03-12-80	1130	<10 20	11	<0.50 <0.50	11	11	∴ ₆	00	30 10	
H-23E-24 DDA	1 07-15-81	1400	1	<10	1	<0.5	1	1			51
H23E-28 BBB	1 07-14-81	1700	1	<10	l	<0.5 0.5	1	1	1	I	32
H-23E-30 CAC	1 03-30-59	ı	l	1	l		ļ	İ	and the second	1	1
28N-23E-30 CAC 28N-23E-30 DBC	1 07-15-81 1 10-08-82	900 1330	11	0 10 0 0	11	00.5 	1 1	11	11	11	26 26
-23E-30 DBC	1 12-08-82	1300	l	6	l	l	l	١	١	I	ď
H-23E-30 DBC	1 12-08-82	1400	1	290	l	1	1	١	1	I	99
-23E-31 BAB	1 05-20-52	١	١	1	1	1	1	1	1		
28N-23E-31 BAB	1 03-30-59	1200						1 1	1 1	1 1	1 9
											2
28N-23E-31 BAC	1 07-15-81	1100	1	<10	1	<0.5	1	1	ı	•	36
-235-31 CBA	1 87-15-81	1 0		1 5]	1 4		1	l	l	8
H-23E-32 BAB		3		2	1	. j		1 1		0	7 1
H-23E-32 BAB	1 02-05-81	1445	l	10	1	<0.5	⊽	i	i	۱ ا	32
H-23E-32 BAB	1 07-15-81	1130	1	<10	l	<0.5	l	1	1	1	26
-23E-33 BAB	1 03-30-59	1		1	1	1	1	1	1	1	100
-23E-33 BAB	1 07-14-81	1615	1	×10	1	<0.5		١			30
28N-24E-13 ABD	1 10-15-68	986	10	<u></u>	1 1	8 3 1	11	1 1	11	11	1 56
-24E-13 ABD	1 03-12-80	1150	20	1	<0.50	I	l	S S	ŋ	80	l
-24E-13 ABD	1 07-14-81	1230	1	<10	1	<0.5	1	: 	: 1	: 1	32
-25E-20 CAA	1 05-24-79	I	l	1	1		1	~	i	I	;
28N-25E-20 CAA	1 03-12-80	1245	20	1:	<0.50	1	1	; \$	ζ,	40	l
-25E-20 CAA	1 66-69-81	1338	1	<18	1	<0.5	1		1	1	<20
-22E-21 DAD	1 02-04-81	1615	1	46	I	<0.5	⊽	i	1	1	<20
F22E-21 DAD	1 85-88-81	99/1		46	l	<0.5	1	1		1	<20
H23E-16 DDD	1 12-26-82	1500	1 ;	4,400	1 :	I	1	1	I	1	84,000
29N-23E-19 DDC	1 63-11-86		9 0 70 70 70 70	11	<0.50 <0.50		1 1	₽ \$	93	140 68	11
		1									
29N-23E-19 DDC	1 07-14-81	830	1	×10	1	<0.5	1		1	1	93

Table 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

-	• •	 	Site	Agency	Sam	Aluminum,	Arsenic,	Arsenic,	Barium, total	Cadmium, total
Local		D E - -	number	lyzing sample	depth (feet)	(#9/F (#9/L as AI)	(μg/L αs As)	0 (π6/Γ (π6/Γ ας Ας)	recoverable (μg/L as Ba)	recoverable (/49/L as Cd)
29N-23E-21 BBC	1 09-03-42	Î	365905094494601	1028		1			1	1
	1 09-06-51	1	365905094494601	1028	1	1	1	1	İ	ı
	1 07-07-81	1415	365905094494601	80020	1	69 >	1	<10	ı	1
29N-23E-21 BBC	1 07-23-81	1166	365905094494601	1028	1	1	l	0	1	1
29N-23E-21 BBC	1 09-02-82	830	365905094494601	84041	1	<100	1	×10	1	I
BBC	2 07-07-81	1420	365905094494602	80020	1	69		<10	1	1
BBC	2 09-02-82	831	365905094494602	84041	1	<100	ł	<10	1	1
BBC			365905094494603	80020	Ì	69	ı	<10	i	1
29N-23E-21 BBC	3 09-02-82	832 3	3659 05 094494603	84641	1	<100	i	<10	1	ı
29N-23E-25 BDC	1 10-19-77	800	365800094461701	84042	ı	1	I	1	1	1
29N-23E-25 BDC	1 10-19-77		365800094461701	84042	١	İ	ļ	1	İ	ı
29N-23E-25 BDC	1 10-19-77		365800094461701	84042	١	}	1	1	1	1
29N-23E-25 BDC	1 10-01-79		365800094461701	84042	l	İ	1	1	1	i
29N-23E-25 BDC	1 03-11-80	1515 3	365800094461701	84042	1	1	<10	l	<100	\$
29N-23F-25 BDC	1 02-23-81	1	365800004461701	84942	l	i	1	1	1	α
29N-23F-25 BDC	1 04-09-81	800	365898994461781	84042	1		97			o (
29N-23E-25 BDC	1 07-07-81		55588884461781	80020		V 689	<u>}</u>	718	li	۷
29N-23E-25 BDC	1 07-07-81		365800094461701	80020	1	899	1	7 -	1	
29N-23E-26 CDD	1 05-02-78		365734094471001	84042	I	1	⊽	:	<100	5
29N-23E-26 CDD	1 03-11-80	1435 3	365734094471001	84042	I	I	<10	l	<188	Ç
	1 02-19-81		365734094471001	84042	i	1	: 1	I	1	i ro
	1 04-13-81		365734094471001	84042	i	1	1	1	I	. 74
	1 07-07-81	1045 3	365734094471001	80020	ł	69 >	i	<10	ı	1
29N-23E-31 BDD	1 09-12-42		365704094513101	1028	l	ł	ł	1	1	1
29N-23E-31 BDD	1 07-10-81	930 3	365704094513101	80020	I	69	I	V 10	1	ł
29N-23E-32 ADD	1 04-20-82	1730 3	365722094500401	84041	210	<100	1	1	1	1
	1 04-20-82		365722094500401	84041	300	48,000	1	١	ı	İ
	1 03-11-42	1	365734094471101	1028	1		I	1	١	ł
29N-23E-35 BDD	1 09-06-51		365734094471101	1028	1	ł	1	1	1	ı
29N-23F-35 BDD	1 92-19-81	١	166714804471181	84942						۷
29N-23E-35 BDD -	19-11-00		36373468447-161	04042		}	ł	l	ł	ې م
	10-21-40		101/140040/00	24042	1	ı	ł			\$

Local	Date	⊣ ∷ æ	Codmium, dissolved (µg/L as Cd)	Chromium, total recoverable (µg/L as Cr)	Chromium, dissolved (µg/L as Cr)	Copper, total recoverable (μ_g/L as Cu)	Copper, dissolved (µg/L as Cu)	Iron, total recoverable (μ g/L as Fe)	Iron, dissolved (µg/L as Fe)	Lead, total recoverable (µg/L as Pb)	Lead, dissolved (µg/L as Pb)
•	09-03-42	1.1		11			11	38		11	
29N-23E-21 BBC 1 29N-23E-21 BBC 1	07-07-81	1415	4.0 3.0	11	. ∞	11	0 9>	11	130 330	11	Λ, Φ
29N-23E-21 BBC 1	09-02-82	838	0. t < 0. s	1	0 · /	1	<12	1	230	1	ωų
88		831	9. O	1	V V		<12 <12	1 1	38	11) က (
29N-23E-21 BBC 3 29N-23E-21 BBC 3	6 07-07-81 6 09-02-82	1430 832	^ ^ 2.	11		11	<60 <12	11	150 60	11	ς, C
	10-19-77	800	1	ì	1	1	l	<100	!	1	1
29N-23E-25 BDC 1	10-19-77	1200	1 1	1	1	1	1	150	1	l	1
	10-01-79 03-11-80	1515	11	1 01	11	35		310		<20	111
29N-23E-25 BDC 1	02-23-81	18	1	1	1	1	1	3,000	1	<28 20 20 20 20 20 20 20 20 20 20 20 20 20	1
29N-23E-25 BDC 1	07-07-81	1100	. 6.	11	l ⊽:	1 1	1 99	99 / 99	26,000	97	1 ∜'
29N-23E-25 BDC 1 29N-23E-26 CDD 1	05-02-78	1236	≥.	١٥	VΙ	15	8 8	1,700	19,666	l n	♥ I
29N-23E-26 CDD 1	03-11-80	1435	1	<10	1	ω	1	<199	1	<20	I
	04-13-81		11	11	1 1	11		55 6 120	11	8 750 750 750 750 750 750 750 750 750 750	1 1
29N-23E-26 CDD 1 29N-23E-31 BDD 1	07-07-81 09-12-42	1045	<u>^</u> <u>6</u>	11	VΙ	11	89 I	10	70	11	∜ 1
	07-10-81	930	<1.0	1	₹	l	69 >	1	50	I	\$
29N-23E-32 ADD 1	04-20-82	1730	<4.0 718	11	<10 28	1 1	<12 438	1 1	8 < 8	11	ςς ς
	03-11-42 09-06-51		11	11			311	4,600	3	11	2
29N-23E-35 BDD 1 29N-23E-35 BDD 1	02-19-81 04-13-81	11	11	11	11	11	11	320 280	11	<28	11

Toble 5.—Concentrations of trace elements in water from wells completed in the Roubidoux aquifer—Continued

Zinc, dissolved (µg/L as Zn)	. 1 . 29 . 38	72 26 24 20 21	11111	3,300	25	20,000 20,000	11
Zinc, total recoverable (µg/L as Zn)	1111	11111	296	1,700	130	11111	2 0 30
Silver, total recoverable r (\$\mu g/L as \$4)	1111	11111	11113	11118	\$1111	11111	11
Selenium, total drecoverable r $(\mu g/L)$	1111	11111	11115	IIIIV	81111	11111	
Mercury, Molybdenum, issolved dissolved re (µg/L (µg/L as Hg) as Mo)	1111		11111		11111	10011	1 1
Mercury, dissolved (µg/L as Hg)	0 8.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11111	00 00 00 00 00 00 00 00) %	6, 5.	1 1
Mercury, total frecoverable di (\(\mu g / L \) as Hg)	1111	11111	< 0.50	<0.50 	09.50 		11
Manganese, dissolved r (µg/L as Mn)	1100	- <u>^ ^ ^ ^ </u>	11111	210	-	3,388	11
Manganese, total recoverable (µg/L as Mn)	1111	11111	100	20 20	750 750 1 0	11111	40 30
Time r	1415	830 1420 831 1430 832	800 1200 1600 1515	800 1100 1230	1435	936 1736 1758	
Date	09-03-42 09-06-51 07-07-81 07-23-81	09-02-82 07-07-81 09-02-82 07-07-81	10-19-77 10-19-77 10-19-77 10-01-79 03-11-80	02-23-81 04-09-81 07-07-81 07-07-81 05-02-78	03-11-80 02-19-81 04-13-81 07-07-81 09-12-42	07-10-81 04-20-82 04-20-82 03-11-42 09-06-51	02-19-81 04-13-81
Local identifier	29N-23E-21 BBC 1 29N-23E-21 BBC 1 29N-23E-21 BBC 1 29N-23E-21 BBC 1	29N-23E-21 BBC 1 29N-23E-21 BBC 2 29N-23E-21 BBC 2 29N-23E-21 BBC 3 29N-23E-21 BBC 3	29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1	29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-26 CDD 1	29N-23E-26 CDD 1 29N-23E-26 CDD 1 29N-23E-26 CDD 1 29N-23E-26 CDD 1 29N-23E-31 BDD 1	29N-23E-31 BDD 1 29N-23E-32 ADD 1 29N-23E-32 ADD 1 29N-23E-35 BDD 1 29N-23E-35 BDD 1	29N-23E-35 BDD 1 29N-23E-35 BDD 1

Table 6.—Concentrations of radioactive constituents in water from wells completed in the Roubidows aquifer

[pCi/L, picocuries per liter; µg/L, micrograms per liter; U-nat, uranium natural; Cs-137, cesium 137, Ra-226, radium 226; Ra-228, radium-228; Sr/Yt-90, strontium 90/yttrium 90; —, indicates no data are available; <, indicates concentration is less than the specified value. All samples analyzed by the National Water Quality Laboratory of the U.S. Geological Survey.] 7/6*†*) suspended alpha, J-nat) total 0 0 0 0 0 7 4 4 4 00 4.0> 4.6 2.5 8 8 8 8 4 4 4 4 Gross 4.0 4.4.4 00 00 00 4 4 4 4 dissolved 5. 4. 4. 6. 7. 7. 7. 8. <7.9
 9.2
 25 \$4.3 35.3 alpha, Gross Frat) η/6π) αs ١ 2 % £ 34 84 suspended total (pci/L 2.00.1 0.3 3.2 0.3 1.7 alpha, U-nat) 1 1 2 1 2 12.51 ١ Gross 03 DELAWARE COUNTY ADAIR COUNTY CRAIG COUNTY dissolved (pCi/L U-nat) 4.8 6.3 17 24.6 24.6 24.6 **5.** 4. 6.7.5 6.7.5 6.7.5 alpha, ١ ١ ١ ١ Gross SD 27 21 identification 363921094474301 363921094474301 363718094444501 360225094344001 365016095070501 365000095010101 365242095051701 365240095051501 365240095051501 361221094463901 362427094493001 362829094550901 362532094374501 364808095043501 361544094410101 361544094410101 362442094520801 363357094503701 363510094464501 36524209505170 56094609450490 36244209452080 363357094503701 number Time 1300 1400 1030 1100 900 1425 936 880 1645 1336 1266 1245 1445 930 445 1236 1588 1338 1338 06-09-81 06-15-82 06-17-82 06-11-81 06-10-81 06-16-82 06-09-81 06-15-82 10-28-81 06-10-81 06-10-81 03-21-83 96-19-81 96-11-81 07-09-81 07-09-81 06-11-81 06-09-81 8-80-90 8-60-20 36-16-81 96-10-81 Date 18N-26E-18 BDC 1 88 00A 888 20N-23E-34 (21N-25E-31 1 25N-22E-23 C 25N-23E-13 A 25N-24E-28 E identifier 24N-23E-15 24N-24E-06 27N-20E-12 27N-21E-20 28N-21E-29 28N-21E-29 28N-21E-29 28N-21E-29 22N-23E-05 24N-23E-15 27N-21E-12 22N-23E-11 23N-25E-33 21N-25E-31 23N-22E-14 Local

Table 6.—Concentrations of radioactive constituents in water from wells completed in the Roubidoux aquifer—Continued

Local ident if ier	Date	⊢ E: •	Gross beta, dissolved (pCi/L as Cs-137)	Gross beta, suspended total (pci/L as as Cs-137)	Gross beta, dissolved (pCi/L as Sr/ Yt-90)	Gross beta, suspended tota! (pCi/L as Sr/ Yt-90)	Radium-226 dissolved planchet count (pCi/L)	Radium-228 dissolved (pci/L as Ra-228)
				ADAIR COUNTY	JUNTY			
18N-26E-18 BDC 1	10-28-81	1300	<3.2	4.0>	<3.0	4.0>	1	I
				CRAIG COUNTY	UNTY			
	06-08-81	1400	4-	4.0>	4-	4.0>	ì	I
833	070981	1030	5.3	8.69	5.1	8.8	ì	I
27N-21E-20 DCD 1	06-09-81	1100	65.6	4.6	4.55	4.65	ì	l
28N-21E-29 CBC 1	96-15-81	966 1425	ا م	4.9	4	4. 9 4. 1	1 ,	e
	70-01-00	77	•			1	† .	9.75
28N-21E-29 CBD 1	06-09-81	930	17	4.0>	16	4.0>	ì	
OBO	96-15-82	1430	1	İ	i	ı	4.9	<3.0
				DELAWARE COUNTY	OUNTY			
	06-10-81	930	<3.5	<1.5	<3.3	<1.5	1	I
20N-24E-17 CCC 1	06-10-81	866		6 .4	4.0	60.	1	i
	06-16-82	1330	?: *	* ·	° 1	4. 1	1 %	1 6
_	06-10-81	1200	21	9.6	20	9.6	<u>;</u>	; l
	06-18-82	950	1	1	I	i	6. 8	<3.0
	03-21-83	1445	10	4.0>	6.6	4.0>	ı	l
	96-16-81	1245	3.5	4.0>	3.4	4.0>	ı	1
23N-25E-33 DDC 1	67-69-81	1445	42.6	0 4.6	4.5;	4.6	1	I
	0-11-00	90	<u>.</u>	4.9>	4	4.0>	l	1
	06-17-82	1000	1	i	ı	ı	7.5	<3.0
	06-11-81	1230	<5.2	4 .0>	6.5 %	4.0>	1	1
	96-10-81	1500	3.9	4 .0>	3.7	4.0>	1	1
	06-11-81	1330	< 4 .5	4 .0>	<4.5	4.0>	ı	1
25N-24E-28 BBB 1	67-69-81	1200	<6.1	4 .0>	6.5	4.0>	į	1

Table 6.—Concentrations of radioactive constituents in water from wells completed in the Roubidoux aquifer—Continued

Local	Date	_ E: •	Site identification number	Gross alpha, dissolved (pCi/L as U-nat)	Gross alpha, suspended total (pCi/L as U-nat)	Gross alpha, dissolved (µg/L as U-nat)	Gross alpha, suspended total (µg/L as U-nat)
				OTTAWA COUNTY			
25N-23E-01 AAA 1	07-15-81	1700	364103094470401	<6.3	ı	<9.3	40,4
_	06-12-81	1000	364349094554501	4	0.3	21	4.0>
	06-12-81	906	364323094585101	<16	6.3	<23	4.0>
26N-22E-20 BCC 1	06-16-82	996	364323094585101	ı	1	1	1
	07-08-81	830	364227094554301	4	0.5	20	0.7
26N-22E-27 CBC 1	06-11-81	1600	364211094564101	24	6. G	35	4.6>
	06-11-81	1500	364135094580001	4 2	0.0	62	4.0>
PBC	06-16-82	1005	364135094580001	I	1	1	1
26N-22E-32 ADC 2	06-11-81	1300	364135094580002	28	0.3	41	4 .0>
Ş	79-91-99	999	364135094560062	l	!	l	l
26N-23E-09 CA 1	07-08-81	945	364501094505301	25	0.3	36	4.0
26N-23E-09 CA 1	96-18-82	800	364501094505301	l	1	1	1
26N-23E-09 DBC 1	07-08-81	930	364454094504401	<6.7	1	8 .6>	4.0 >
26N-23E-12 BAD 1	07-08-81	1040	364516094473501	<7.5		£	40.4
26N-24E-32 ABA 1	07-30-81	1400	364155094451001	<7.5	l	÷	4.0 >
27N-22E-01 CCC 1	07-16-81	800	365103094541501	<10	I	<15	6 0.4
27N-22E-27 AAB 1	07-09-81	906	364801094554601	~14	l	<20	4.0>
27N-23E-03 BCC 1	67-68-81	1630	365100094491701	<3.7	4.0 >	4 .65. 4	4 .0>
27N-23E-17 CBB 1	06-09-81	1545	364921094522201	12	6.3	17	4.6
	07-08-81	1130	364712094510101	<12	l	<17	4.0>
27N-24E-28 CAD 1	67-68-81	1500	364717094433101	<3.6	l	<5.3	4.0>
	07-14-81	1030	364957094371501	€3.3	0.5	<4.8	8.8
	07-10-81	838	365543094535801	5 5.8	4.0	68.5	9.6
28N-22E-24 BDA 1 28N-22E-24 CAD 1	07-16-81 07-16-81	1330	365342094531301 365324094531301	\$ \$5.8 6 1.9	11	4.7.	4.0° 4.4.
						ļ	
	07-16-81	1315	365323094534001	<7.5	1	<u></u>	4.0
S G	07-07-81	800	365627094522201		ı	4 .85	4.6
2 6	62-22-85	97.6	36562/894522181	2.0	1	27	4.00
28N-23E-05 CBB 1	03-22-63	9 6	36366694323661	7.0	1	ه . د	9 4. 4
3	101/01/0	900	10/776460/66606	7.47	l	7.0>	4 .0>
	07-16-81	1340	365402094522201	7.5	ı	=	4.0>
	07-15-81	1030	365344094513301	\$.	I	64.6	4.0>
28N-23E-24 DDA 1	07-15-81	1400	365316094461601	6.3	1	6 9.5	60.
28N-23E-28 BBB 1	07-14-81	1788	365301094502901	80 ¢	1	<13	4.0>
ZON-ZOE-JO UAU I	19-01-/0	0 0 0	365229094522101	<6.3	l	<9.3	4 .00>

Table 6.—Concentrations of radioactive constituents in water from wells completed in the Roubidoux aquifer—Continued

	7: == ==	Gross beta, dissolved (pci/L as Cs-137)	beta, suspended total (pCi/L as Cs-137)	Gross beta, dissolved (pCi/L as Sr/ Yt-90)	beta, suspended tota! (pCi/L as Sr/ Yt-90)	Radium-226 dissolved planchet count (pCi/L)	Radium—228 dissolved (pCi/L as Ra—228)
			OTTAWA COUNTY	VINTY			
	,	•	•	•	•		
19-11-70	1/66	9.0	4.0	on (4 .0>	ì	1
06-12-81	1666	9.6	4.0>	9.5	4 .0>	ì	1
96-12-81	996	<9.1	4 .0>	<8.7	4 .0	1	1
06-16-82 07-08-81	9 8 3 8 3 8	7.7	1 5.	7.4	1 7.	λ. 1	<3.8
;		,	•	;	•		
96-11-81	1600	.	40>	12	4 0 4	1	ı
96-11-81	1500	22	* .0>	24	4 .0>	1	1
96-16-82	1005	1	1	1	1	14	<3.0
36-11-81	1366	6	4.0>	8	4 .0>	"	ا ء
70-01-00	999	l	1	i	ļ	c. /	9.0
7-08-81	945	22	6.1	21	6	1	ı
16-18-82	800	1	: 1	1	1	6.5	<2.0
17-08-81	930	5.0	4.0>	4 .8	40.4	1	1
7-08-81	1040	<4·5	40.4	<4.3	40. 4	l	1
17-30-81	1400	<5.7	4 0>	42.4	4.0 >	1	1
17-16-81	o o	a u	7 6/	u	,		
7-89-R1	9 6	, 4	4.00	. 6	. 6		1
7-08-81	1630	4.5	4.6>	\$2.3	6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	l
6-69-81	1545	4.9	4.0>	6.1	4.6	I	1
7-08-81	1130	8.4	4.0>	8.0	40.4	1	1
7-08-81	1500	53.53	7 6>	5	4 62	ı	i
7-14-81	1030	, w	6.5	0	. 60	ı	1
7-10-81	830	4.4	2.7	4.4	2.8	ļ	1
7-16-81	1330	<2.8	4.0>	<2.7	4.0>	1	1
7-16-81	1430	4.6	4 .0>	4.4	4.0>	1	1
07-16-81	1315	6.4>	4.0>	<4.7	4.0>	1	1
7-67-81	996	<4.0	40 4	<3.9	4.0>	1	1
3-22-83	926	4.6	4.0>	5.2	4.6>	1	1
3-22-83	996	4.0	4.0>	. rc	4.62	Į	ı
7-67-81	830	3.9	4.0>	8.8	4.0>	l	ı
7-16-81	1340	7 4/	4	4	4		
7-15-01	9 5 6 5) r		† c	+ • •		1
7-15-01	4486	3.4	4. 6	7.7	4.00	l	l
10-01-7	4 4 6 6	4.4.	4. 6	9. 4 9. 4	4.00	1	I
0 4 7	900	? ¥	4.00		4.00	Į	į
10 0 1	9	0.03	+ · 0 >	† . ?	4 .0>	l	
	06-12-81 06-11-81 06-11-81 06-11-81 06-11-81 06-11-81 06-16-82 06-11-81 07-08-81 07-08-81 07-08-81 07-08-81 07-08-81 07-08-81 07-16-81		1566 1566	996 996 836 158	900 830 130 150	900 900 900 900 150 150 150 150 150 150 150 1	990

Toble 6.—Concentrations of radioactive constituents in water from wells completed in the Roubidoux aquifer—Continued

Site Time identification
1100 365206094522201
1130 365212094511901
1300 365128094471301
1230 36544509440070
1330 36533509438070
830 36582309451070
1415 365905094494601
1420 365905094494602
1430 365905094494603
1645 36573409447160
930 36570409451310

Table 6.—Concentrations of radioactive constituents in water from wells completed in the Roubidows aquifer—Continued

Radium-228 dissolved (pci/L as Ra-228)	11111	11111	
Radium-226 dissolved planchet count (pCi/L)	11111	11111	11111 1
Gross beta, suspended tota! (pCi/L as Sr/ Yt-90)	0 > > > > > > > > > > > > > > > > > > >	00000 4.4.4.4.4	0 > > > + + + + + + + + + + + + + + + +
Gross beta, dissolved (pCi/L as Sr/ Yt-90)	4.6 2.1 7.2 4.1 4.1	ည်လ စ. ဗ. ဌ. Է. ည စ. ဗ. ဌ. է. ည	 (3.9 (15.5 (12.7 (4.1 (2.8
Gross beta, suspended tota! (pci/L cs-137)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gross beta, dissolved (pCi/L as Cs-137)	4 7.42.7.4.4 7.62.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	407 K W W 8 8 W W 4	4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 	1166 936 1136 1615	1230 1330 1700 830 1415	1420 1430 1100 1230 1045
Date	07-15-81 07-15-81 07-15-81 07-14-81	07-14-81 06-09-81 06-09-81 07-14-81	07-07-81 07-07-81 07-07-81 07-07-81 07-07-81
Local	28N-23E-31 BAC 1 28N-23E-31 CBA 1 28N-23E-32 BAB 1 28N-23E-33 BAB 1 28N-23E-36 CCC 1	28N-24E-13 ABD 1 28N-25E-20 CAA 1 29N-22E-21 DAD 1 29N-23E-19 DDC 1 29N-23E-21 BBC 1	29N-23E-21 BBC 2 29N-23E-21 BBC 3 29N-23E-25 BDC 1 29N-23E-25 BDC 1 29N-23E-26 CDD 1 29N-23E-31 BDD 1