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PREFACE

The instructional materials in this report were developed from 

those used in the course "Ground-Water Concepts," which has been 

given since the 1970's at the U.S. Geological Survey's National 

Training Center in Denver, Colorado. The materials were generated 

by a melding of the ideas and work of many individuals, especially 

those who have served as instructors of the course at the National 

Training Center over the years. To these instructors we wish to 

express our appreciation for their efforts. The authors wish to 

acknowledge particularly Edwin P. Weeks for his involvement with 

and contributions to the development of the course materials. 

Eugene P. Patten, Jr. also was involved in the early development 

of the course, and later as the Chief of the Office of Ground, 

Water Resources Division (WRD), directed the development of the 

self-paced version of "Ground-Water Concepts." Lastly, recognition 

is due the many hydrologists in the U.S. Geological Survey who 

have served over the past eight years as advisors to participants 

taking the self-paced version of the course. The success of the 

self-paced version of the course is in large part due to the 

efforts of these hydrologists.

The purposes of this course are (1) to review selected fundamental 

aspects of ground-water flow mechanics, (2) to introduce the basic 

differential equations of ground-water flow and the techniques for 

their numerical solution, and (3) to discuss and illustrate basic 

concepts and techniques that are essential for the successful
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implementation of ground-water investigations at any level of 

inquiry including, particularly, concepts and techniques related 

to modeling ground-water systems. In addition, the course 

provides a sound technical background for more advanced courses in 

modeling and the study of other aspects of the ground-water 

discipline.

Quantitative concepts of ground-water mechanics that are 

particularly relevant to modeling groundf-water systems are 

emphasized in this course. Many ground-Water projects today are 

designed to (1) provide the necessary data for a future modeling 

effort, (2) include a modeling component in their initial design, 

or (3) focus on the development of a ground-water model as an

integral part of the project, either to 

existing hydrologic system or to predict 

hydrologic system to stress. In the con

Detter understand the

emphasize the importance of computer simulation (modeling), not

only as a predictive tool, but also as a

the response of the 

cepts course, we seek to

valuable tool for better

understanding the operation of ground-water flow systems. 

Although the relevance of the concepts presented in this course to 

modeling will be apparent, these same concepts and approaches are 

basic to the conceptualization and analysis of any ground-water 

problem, whether or not computer simulation will be used or 

applied to the solutions of the problem.
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In organizing this course and these study materials, we tried to 

take a small, constructive step towards encouraging the individual 

study of ground-water hydrology.
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CHAPTER 1 COURSE GUIDE 

INTRODUCTION

During the 1970's, most formal technical training within the 

U.S. Geological Survey (USGS) Water Resources Division (WRD) was 

given at the WRD National Training Center in Denver. In the early 

1980's, concerns about increasing costs for conducting courses at 

the National Training Center led to the recognition of a need for 

a more flexible approach to technical training within the 

Division. A multi-tier approach to technical training has 

expanded and evolved within the past few years. The various 

levels and types of training courses include (1) a continued 

offering of courses at the National Training Center; (2) "short" 

courses, workshops, and seminars offered at Regional or District 

Offices; and (3) individual self-paced study programs. It is with 

the latter that we are concerned primarily in this study guide.

A two-week course of Ground-Water Concepts has been offered for a 

number of years at the National Training Center. The course 

materials in this report were developed and expanded from those 

that were used in the 2-week course.

Purpose of the Concepts Course

The purpose of the concepts course is (1) to review selected 

fundamental aspects of ground-water flow mechanics, (2) to 

introduce the basic differential equations of ground-water flow
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and techniques for their numerical solution, and (3) to discuss 

and illustrate basic concepts and techniques that are essential 

for the successful implementation of ground-water investigations 

at any level of inquiry including, particularly, concepts and

techniques related to modeling ground-wa :er systems.

Since its inception several years ago, the concepts course 

has been the most basic training course in the ground-water 

discipline that has been offered at the National Training Center. 

However, the course design assumes that the participants have some 

initial familiarity with ground-water mechanics. The technical 

background required for successful partipipation in and completion 

of this course will be discussed further in a later paragraph.

An important goal of the concepts dourse, in addition to the 

overall purpose stated above, is to provide a sound technical

background for more advanced courses in 

of the ground-water discipline. Ideally, 

hydrologist should complete the concepts

modeling and other aspects 

a ground-water 

course before taking

other ground-water courses. However, our experience indicates 

that taking the concepts course after other courses also proves to 

be beneficial to most hydrologists.

Quantitative concepts of ground-water mechanics that are 

particularly relevant to modeling ground-water systems are 

emphasized in this course. Many ground^water projects today 

either include a modeling component in their initial design; focus 

on the development of a ground-water mo4el as an integral part of
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the project, either to better understand the hydrologic system or 

to predict the response of the hydrologic system to stress; or are 

designed to provide the data necessary for a future modeling 

effort. In the concepts course, we seek to emphasize the 

importance of modeling, not only as a predictive tool, but also as 

a valuable tool for better understanding the operation of ground- 

water flow systems. Continuation of this idea suggests that 

ground-water projects aimed primarily at understanding the ground- 

water flow system through a standard field investigation usually 

will benefit from inclusion of a modeling component in the project 

plan. Although the relevance of the concepts presented in this 

course to modeling will be apparent, these same concepts and 

approaches are basic for the conceptualization and analysis of any 

ground-water problem, whether or not the problem solution involves 

modeling.

In summary, because of its emphasis on those aspects of 

ground-water mechanics most relevant to modeling ground-water 

systems and the obvious and ever-growing importance of modeling in 

ground-water studies, we believe that a mastery of the content of 

the concepts course is essential for the successful practice of 

the ground-water discipline by professional hydrologists, 

including those not directly involved in modeling projects.

Purpose of This Course Guide

The primary purpose of this course guide is to function as a 

"road map" for study by individuals. However, this guide should
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also be useful in providing topics, references, and problems for

use in short courses in ground-water dis sipline.

Technical Backcrround for Ccnceots Course

In addition to some formal training 

experience in ground-water hydrology, th

and/or practical 

3 most important formal

prerequisites for successful participation in the concepts course 

are completion of (1) a standard two-semester course in basic 

college physics, and (2) a two-semester college course in calculus 

(both differential and integral). All professional personnel who 

have not had these courses should try to acquire them at local 

schools, not only to participate in this course, but also to 

enhance their overall professional development. Additional 

courses that would provide a useful background for this course, as 

well as having significant value for professional hydrologists, 

are (1) additional courses in mathematics, particularly one in 

differential equations; (2) some background in geology, 

particularly courses in structure and stratigraphy; and (3) any 

courses related directly to hydrology such as fluid mechanics, 

meteorology.

Technical background and degree of motivation vary widely 

among individuals. Lacking one or more of the background courses 

listed above, a potential participant may administer a rather 

simple self-evaluation. This evaluatiori consists of studying 

carefully the first three chapters of the self-paced text 

"Introduction to ground-water hydraulics" (Bennett, 1976). If
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this material can be thoroughly understood after diligent study, a 

person should feel some confidence about proceeding with the 

concepts course. If, on the other hand, understanding this 

material proves difficult, we recommend further background study 

before proceeding with the concepts course. Specific study 

materials might include some or all of the following references:

(1) "Groundwater," by Freeze and Cherry (1979). Concentrate on 

chapter 2 which contains a great deal of information on ground- 

water hydraulics; it may be advisable to skip the section on 

unsaturated flow until the sections on saturated flow are well 

understood. Also, work the problems at the end of the chapter.

(2) "Groundwater hydrology," by Todd (1980). Concentrate on 

chapters 2, 3, and 4.

(3) "Applied hydrogeology," by Fetter (1988). Concentrate on 

chapters 4, 5, 6, and 7.

(4) "Introduction to ground-water hydrology," by Heath and Trainer 

(1968). Concentrate on the first three parts; the basic concepts 

are well presented. This reference is probably best used in 

conjunction with other references.

(5) "Definitions of selected ground-water terms," by Lohman and 

others (1972). All the definitions in this reference should be 

mastered by a practicing ground-water hydrologist; one should 

check the definitions in this reference often as one studies the 

other references.

1.1-5



List of Manor TOPICS in Course

The following list of major topics 

of the course content. Many subheadings 

included. To better indicate the depth 

topics within the framework of this course 

appropriate to preface most listings by

provides a brief overview 

and minor topics are not 

of coverage of these

, it would be 

"introduction to".

1. Systems and models in ground-water studies (the system

concept, information necessary to ^escribe a ground-water 

system, and steps in modeling a grdund-water system.

2. Review of fundamental principles, Ijaws, and definitions 

(principle of continuity, head, gradient, velocity, 

streamlines and potential lines, Dajrcy's law, hydraulic 

conductivity, concept of storage, ajnd storage parameters) .

3. Basic differential equations of confined ground-water flow

4. Boundaries of ground-water systems

models.

and their simulation in

5. Discretization of continuous systemls (definition of hydraulic 

conductance).

6. Techniques for numerical solution of differential equations.

7. Flow nets.

i
8. The source of water to a discharging well.
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9. The principle of superposition and its application in ground- 

water modeling.

10. Ground-water/surface-water interactions and the simulation of 

streams in ground-water models.

11. Definition of initial conditions.

12. Radial flow and its simulation in ground-water models.

13. Problems involving a free surface boundary (Dupuit 

assumptions).

14. Evapotranspiration in the hydrologic system and its 

simulation in ground-water models.

15. Physical principles in solute transport.

16. Application of dimensional analysis to ground-water studies.

17. Workshop in developing models of ground-water systems.

General Comments on the Course and Instructions 
on Using the Course Guide

You will note in the following outline that no single "text" 

is listed for this course. The multiplicity of references is by 

design. We wish to encourage the idea of examining more than one 

reference in order to study a technical problem.

The course outline in the next section consists of a detailed 

list of topics that constitutes the curriculum of the course.
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These topics are not of equal importance. For ease in 

organization, it is sometimes convenient to list a less important 

topic separately. Exhaustive study of s;ome of these topics would 

be a life's work. In this course, we S >ek to impart an initial 

working knowledge of these topics.

Our contribution to an individual study version of the 

concepts course is to provide (1) a list: of references and 

selected readings, (2) specially prepared notes on selected 

topics, and (3) specially prepared problems. In organizing these 

study materials, we believe that we have taken a small, 

constructive step in encouraging the individual study of ground- 

water hydrology. However, the most important component of any 

individual study program is the self-discipline and preservance of 

the student. No matter how complete th^ notes and problem 

explanations are, questions will inevit4bly arise, and unanswered 

questions cause frustration. To overcome some of these potential 

difficulties, the course, as designed for use within the 

U.S. Geological Survey, includes an advisor who is assigned to 

each participant. The advisors are experienced hydrologists who 

help the participants when they have difficulty with the course 

materials and examine and discuss the results of the problem sets 

as they are completed. In addition, the participants are 

encouraged to discuss their questions about the course with their 

more experienced colleagues, especially if all contacts with the 

advisor are by telephone.
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A rationale exists for the order of topics in the course 

outline. The advisability of "skipping around" and your success 

in doing so probably will depend upon your previous technical 

background. However, the study of some topics near the end of the 

outline does not depend upon previous topics.

Mastery of some of the unfamiliar concepts in this course 

will require considerable mental effort. The importance of luck 

in winning at poker can be compared with the importance of 

persistence in acquiring new knowledge. There is no substitute 

for either. Some of the notes and references will not be easy to 

understand and will require several readings. The important 

element for learning is to maintain an aggressive attitude toward 

the material; that is, keep thinking, asking questions, and 

building slowly upon your present level of technical expertise.
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DETAILED OUTLINE OF COURSE WITH READING 
ASSIGNMENTS, PROBLEMS, AND COMMENTS

A detailed outline of the individual study version of the 

concepts course follows. In general, associated with each topic, 

there are one or more reading assignments. In addition, a problem 

assignment and/or some brief comments on the specific topic may be 

included. Usually, the comments will not be detailed enough to 

serve as an explanation for any given aspect of the topic under 

discussion, but are designed to put the topic in some perspective- 

-for example, its purpose, importance, and relation to other 

topics in the course; provide information in abbreviated form for 

thought and study; and sometimes to provoke questions.

The sequence of study suggested for each topic is as follows: 

(1) read the brief comments, (2) study carefully the reading 

assignments, (3) complete the assigned problems, and (4) read the 

brief comments again, if they contain technical information, as a 

review. In the absence of specific instructions to the contrary, 

the various assignments should be completed in the order listed.

Systems and Models in Ground-Water Studies

The purpose of this section is to provide an initial overview 

and perspective on the concept of a ground-water system and its 

relation to the development of a ground-water model.

What is a System, a Model, and Related Definitions 

Study assignments
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* Read Domenico (1972), "Concepts ajnd models in groundwater 

hydrology," pages 1-38.

* Read note 1 (section 2.1), "Some 

definitions related to systems and 

studies."

general concepts and 

models in ground-water

The following diagram, which is givten in the reading 

material, has great conceptual usefulness, simple though it is

Input or Stress | | Output or Response 
           > | System |        >

What are the inputs or stresses to ground-water systems, both 

natural or man-induced? How do we usually measure the response of 

the ground-water system to stress? Are there other possibilities 

for measuring the effects of stress?

The word "model" is used in many ways and in many contexts in 

science and ground-water hydrology. Make a list of the different 

uses and meanings of this word as you proceed with the course.

Hydrogeologic Information Necessary t0 Describe a Ground-Water 

System and to Develop a Ground-Water Model
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Study assignment

* Read Bear (1979), "Hydraulics of groundwater," pages 94-95 

and 116-117.

Boundary-value problems are commonly encountered in 

quantitative analysis in ground-water hydrology. A boundary-value 

problem is a mathematical problem type that has been extensively 

studied and used to solve problems in many areas of science and 

technology. Quantitative results from a numerical model of a 

ground-water system represent a specific solution to a specific 

boundary-value problem. The information needed to quantitatively 

describe a ground-water system that is listed in Bear (1979) is 

the same information needed to define a mathematical boundary- 

value problem that represents the system.

The types of information necessary to describe an unstressed 

ground-water system include (1) the external and internal geometry 

of the system (the geologic framework), (2) the character and 

physical extent of the boundaries of the system, and (3) the 

material and fluid parameters of the system which include the 

transmitting parameters (transmissivity or hydraulic conductivity) 

and the storage parameters (storage coefficient or specific 

storage). The question of defining initial conditions will be 

discussed in a later section of this outline. Memorize the very 

important list of the types of information necessary to describe a 

ground-water system even though you may not understand the exact 

meaning and importance of the various items at this time. At the
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completion of this course, your questions and uncertainties in 

this regard should be dispelled.

Steps in Developing a Model of a

Study assignment

Ground-Water System

* Read Mercer and Faust (1982), "Ground-water modeling," 

pages 1-8.

The discussion in this reference provides an overview on how 

to proceed in logical sequence to develop a model of a ground- 

water system from start to finish. In this course, we emphasize 

only a part of this sequence namely, how to conceptualize and 

describe a ground-water system and translate this concept of how

the system works into the framework of a

model.

Review of Fundamental Principles,,

As you work through this section, s

numerical ground-water

jaws, and Definitions

budy carefully, in Lohman
i

and others (1972) , "Definitions of selected ground-water terms  

revisions and conceptual refinements, " tltie definitions of all the 

terms relating to ground water that you encounter.
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Principle of Continuity The Hydrologic Equation 

Study assignment

* Read Domenico (1972), "Concepts and models in groundwater 

hydrology," pages 145-147 (all the texts will have some 

discussion of this topic).

The so-called "hydrologic equation"

Inflow = Outflow ± Change in Storage,

is really a very simple statement of the principle of continuity. 

We use this equation when we prepare a water budget of a 

hydrologic system. Most commonly, we prepare an average water 

budget for a period of years during which the system was at 

equilibrium (heads and flows in the system oscillate about a mean 

condition) without considering changes in storage. In this case, 

the hydrologic equation is simply

Inflow = Outflow.

The units of the hydrologic equation generally express rates 

of water flow, for example, millions of gallons per day (Mgal/d) 

or cubic feet per second (ft 3 /s) . If volume units are used, a time 

period is usually implied.

In using the equation of continuity for any purpose, it is 

important to specify carefully the volume of earth material for

which the budget is being prepared. In budgets of river basins, 

one speaks of the area drained by a stream above a certain point
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on the channel. In many river basins, the ground-water component 

of the budget is negligible, and the area of the basin is the most 

important measure of its extent. Howeveir, if the ground-water 

component in the budget is considered seriously, it is necessary 

to define not only the areal extent of the basin (the top of the

reference volume) but also the sides and 

volume within the ground-water reservoir

bottom of the reference

The principle of continuity is applied at many different 

scales and in many different contexts. (Later in this course this 

principle will be applied to a reference block of aquifer material 

in the process of deriving the basic ground-water flow equations.

Head and Related Concepts 

Study assignments

I

* Work through Bennett (1976), "Introduction to ground-water 

hydraulics as programmed text for self-JLnstruction, " Part I, 

starting on page 3. (A note on the use of Bennett's self- 

programed text Read page 1, "Instructions to the Reader," before 

starting the study assignment. Most of the text is not meant to 

be read continuously like other textbooks. Instead, discussions 

of parts of topics or concepts are interrupted by multiple-choice 

questions of varying degrees of difficulty. The value of the text 

as a learning tool is decreased if the student attempts to read 

the text in a continuous manner without 4nswerin9 the questions.)
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* Read Freeze and Cherry (1979), "Groundwater, " pages 18-36. 

Work problems 1, 2, and 3, pages 77-78 in Freeze and Cherry.

The hydrostatic pressure at a point in a fluid below a free 

surface that is in contact with the atmosphere (such as a 

stationary or slowly moving body of surface water) is defined by 

the equation

p = T(J[=

where p is the pressure at the point, y is the weight density of the 

fluid, p is the mass density of the fluid, g is the acceleration 

due to gravity, and £ is the vertical distance of the point below 

the free surface. Make a sketch illustrating the application of 

this formula.

A piezometer is a pressure measuring device consisting of a 

tube, one end of which taps the fluid system, and the other end 

open to the atmosphere. In ground-water hydraulics, a tightly 

cased well that is open or screened to one interval of an aquifer 

can be considered a piezometer. Remember that a pressure 

measurement (also head measurement) in a well represents 

conditions in the aquifer at the location of the well screen or 

well opening. If the well screen or well opening is several feet 

long, the midpoint of the screen or opening is used as the 

measuring point . However, the measurement represents a weighted 

average of conditions along the well opening. Assuming that a 

well can be used as a piezometer, make a sketch that indicates
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clearly to you that the measurement of the water-level elevation 

in the well defines the total head at the measuring point.

Velocity, Stream Lines, and Potential Lines 

Study assignments

* Read Milne-Thomson (1955), "Theoretical hydrodynamics," 

pages 1-9.

* Read Freeze and Cherry (1979), "Groundwater," pages 69-71.

Velocity is a vector; that is, it has both direction and 

magnitude. We can define velocity at a point or an average 

velocity for a specified area. In ground-water hydrology, the 

definition of average velocity is best understood by considering 

the flow of a liquid through a completely full pipe. We will

define the average velocity (in feet per

the pipe by

 > Vaverage

where Q is the fluid discharge (in ftVsl 

cross section of the pipe and A (in ft2 )

second) of the fluid in

= Q/A

across any reference 

is the area of the

reference cross section. Note that A, the area of the reference 

cross section, is defined as being perpendicular to the average 

direction of fluid flow and that the specific discharge, Q/A, of 

the pipe and the average fluid velocity kre the same. Note also 

that the velocities at different points in the flow cross section 

will, in general, not be equal. One of -:he simplifications
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commonly used in hydraulics is to work with average velocities in 

order to avoid the complication of considering the velocit 

distribution in a given cross section.

Freeze and Cherry (1972), pages 69-71, discuss the different 

velocities that we define in ground-water hydraulics. For a 

porous medium, such as aquifer material, it is very important to 

distinguish between the specific discharge (or Darcy velocity) 

which is defined directly from Darcy's law and the average linear 

velocity (sometimes termed the "actual" velocity), which includes 

the porosity in its definition and is always larger than the Darcy 

velocity. The reading assignment in Freeze and Cherry may be more 

meaningful after the completion of the following section on 

Darcy's law.

In ground-water hydraulics, potential lines (potential 

surfaces in three dimensions) represent the locus of points at 

which the ground-water head is a specified constant. Contour 

lines on potentiometric-surface maps represent the investigator's 

best estimate of the location of potential lines (actually 

projections of potential surfaces) in the natural ground-water 

system based on head measurements in wells.

Under steady-state conditions (flows that do not vary with 

time), stream lines trace out the approximate paths along which 

the water particles move. If one injects dye at a specific point 

in a laboratory sand model of a steady-state ground-water flow 

system, the moving dye will trace out the average stream line
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passing through the injection point. Thus, streamlines in ground- 

water systems have a physical reality.

We will encounter the concepts introduced here many times in

e, in connection withlater sections of the course for exampl 

boundary conditions and flow nets.

Darcy's Law, Hydraulic Conductivity, and Transmissivity

Study assignments

* Work through Bennett (1976), "Introduction to ground-water 

hydraulics," Part II, starting on page 14.

* Read Freeze and Cherry (1979), "Gjroundwater," pages 15-18.

Darcy's law is the basic rule that we use to describe the

macroscopic flow of ground water. The law is deceptively simple 

in its expression, so simple, in fact, tiiat we sometimes overlook 

some of its physical implications. Darcy's law expresses a linear

relationship between Q, the volumetric flow across a reference 

cross section, and the hydraulic gradient (h2-h1 )/L.

For a pipe packed with sand, Darcy's law may be written

Q =
-KA (h2 - h x

where Q is the volumetric flow across a 

normal to its length that is, the quant:

cross section of the pipe 

ty of water passing the
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cross section in a unit time, A is the area of the cross section, 

L is the length of the pipe, K is the hydraulic conductivity of 

the sand, and hi and h.2 are the heads near the ends of the pipe. 

Make a sketch and designate all the factors in the Darcy equation.

The formula above describes one-dimensional flow (all the 

velocity vectors are equal and parallel in any given cross section 

of the flow) in a sand-filled pipe or prism of uniform cross- 

sectional area. It is important to remember that the area A in 

Darcy's law is perpendicular to the direction of flow. (We will 

refer to this fact later when we define hydraulic conductance.) 

The head measurements h2 and h^ must be made on the same

streamline, and the length L is the distance along the streamline 

between points 1 and 2 where head is measured. These observations 

are particularly important when studying parts of flow systems in 

which velocity vectors have discernible vertical components. 

Vertical flow components are commonly encountered near recharge 

areas and discharge areas in natural flow systems.

It is possible for ground water to flow from areas of lower 

pressure to areas of higher pressure. Can you sketch a 

hypothetical situation in which this would be the case? Of 

course, the head must decrease in the direction of flow.

Study carefully the discussion in Freeze and Cherry (1979, 

pages 15-18) in that hydraulic conductivity is shown to be a 

composite parameter that represents both the properties of the 

porous medium and the properties of the flowing fluid.
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Concept of Storage and Definition of Storage Parameters

Study assignments

* Work through Bennett (1976), "Introduction to ground-water 

hydraulics," Part IV, starting on page 53.

* Read Todd (1980), "Groundwater hydrology," pages 26-37 and 

42-46.

Because Darcy's law describes the steady flow of a fluid 

though a sand prism of uniform cross-sectional area, neither time 

nor storage factors are included in the expression (equation) of 

the law. However, in any type of system that undergoes transient 

flow (a flow whose properties for example, velocity distribution- 

-change with time) a storage element and a time factor must be 

considered. Distinguish carefully between unconfined storage and 

confined storage. When changes in unconfined storage take place, 

water displaces air or air displaces water in the pore spaces

between the sand grains. For example, a decrease in unconfined

ground-water storage means that air replaces water that drains 

under the influence of gravity. When changes in confined storage 

take place, the aquifer material remains saturated ancl the water 

and aquifer material are compressed.
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Estimation of Transmissivity and Storage Coefficient Values for 

Application in Ground-Water Models

Study assignment

* Read Lohman (1972), "Ground-water hydraulics," pages 52-54 

Optional references

* McClymonds and Franke (1972), "Water-transmitting

properties of aquifers on Long Island, New York," pages 6- 

14.

* Olmstead, and others (1973), "Geohydrology of the Yuma 

area, Arizona and California," pages 72-82.

For the purpose of this course, you need to study the first 

reference only. The optional references may be of some value if 

you are actually engaged in trying to estimate transmissivity 

values from available well information.

Darcy's Law as a Differential Equation and its Application to

a Field Problem

Study assignment

* Work through Bennett (1976), "Introduction to ground-water 

hydraulics," Part III, starting on page 34.
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Up to this point in the course, we have studied two major 

topics in the course outline. The first topic dealt with the 

concept of a system, particularly as thi£ concept relates to 

ground-water systems. We also introduced the specific types of 

information necessary to describe a ground-water system, 

recognizing that a great deal more work :.s required before these

concepts will be sufficiently understood so that you can apply

them to specific problems with confidenc^. At this time, the 

conclusion from the first section is that- the system concept 

applies very well to a certain physical Reality in nature in which 

we are interested namely, natural ground-water systems, and any 

ground-water problem can and should be formulated in terms of the 

system concept, even though the areal or volumetric scope of the

problem does not include an entire nature

The second major topic introduces (or reviews) those

essential physical concepts and laws that 

ground-water mechanics. The present subs 

bridge between the introductory material

1 ground-water system.

form the basis of

ection forms a kind of

presented thus far and 

the immediately succeeding topics, which are an introduction to 

the differential equations of ground-water flow and boundary 

conditions.

In Part III of Bennett (1976), Darcy's law is expressed as a 

simple differential equation that is, the differential form of 

the head gradient at a point, dh/dx, is substituted for the 

average head gradient between two points, (h1-h2 )/L. This

differential equation is used to solve a pimple field problem.
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You may note that the aquifer in the field problem is really a 

field scale Darcy prism. Solution of the field problem posed in 

Part III requires solving a simple boundary value problem. This 

process raises important questions such as (a) What constitutes a 

solution to a differential equation? (b) What are the boundary 

conditions of this problem? and (c) What boundary information must 

be incorporated in order to obtain a unique solution to the posed 

problem? These questions will be studied in considerably more 

detail in the following two sections of the course.

Basic Differential Equations of Confined Ground Water Flow 

Study assignments

* Work through Bennett (1976) f "Introduction to ground-water 

hydraulics, Part Vf starting on page 69.

* Read Mercer and Faust (1982) f "Ground-water mode1ing," 

pages 9-24.

Optional references

* Freeze and Cherry (1979) , "Groundwater, " pages 63-67.

* Todd (1980), "Groundwater hydrology," pages 99-101.

All of these readings cover approximately the same topic. 

Start with the first two references. If you feel that further 

repetition of the material will be useful to you, continue to the
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last two references, which also will include the derivation of the 

basic flow equations if you wish to study this topic further.

An idea of fundamental importance in understanding the 

derivation of the basic flow equations is that they are formed by

combining two basic "components," namely (1) the principle of

continuity and (2) Darcy's law, a specific rule that describes the 

flow of ground water. You will note that the principle of 

continuity,

Inflow = Outflow ± Change^ in Storage,

is applied to a reference block of aquifer material in deriving 

the equations.

Boundaries of Ground Water Systems and Their Simulation in Models

Study assignment

* Read the section "Boundary conditions" in Franke and others 

(1987), "Definition of boundary and initial conditions in 

the analysis of saturated ground-water flow systems an 

introduction," pages 1-10.

* Read Franke and Reilly (1987), "The effects of boundary 

conditions on the steady-state response of three 

hypothetical ground-water systems Results and implications 

of numerical experiments."
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Problem assignment

* Work the exercises at the end of the first section on 

"Boundary Conditions" in the reference above. These 

exercises are specifically listed in the table of contents.

* Bear (1979), "Hydraulics of groundwater," pages 94-102 and 

116-123.

The study and understanding of boundary conditions is 

probably the single most important topic in this course, if not in 

the entire field of ground-water hydrology. Selection of improper 

boundary conditions is the principal cause of failure in modeling 

studies.

Study the first and second references with the greatest care. 

The basic types of boundary conditions and their characteristics, 

which are listed and discussed in these references, should be 

stored in the memory bank of all ground-water hydrologists for 

instantaneous recall. Most of the information in Bear (1979) is 

contained in the first reference. In general, Bear expresses the 

concepts related to boundary conditions in more abstract, 

mathematical form than does the first reference.

Acquiring expertise in the proper application of boundary 

conditions requires practice and experience in many types of 

problems. Make a habit of defining the boundary conditions in any 

figures you see that depict various kinds of ground-water problems 

or systems. The first step in thinking about any ground-water
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problem is to try to decide what boundary conditions would 

describe most suitably the hydraulic situation in the natural flow 

system.

condit.ionsLeave the section on initial 

reference until later in the course, at 

studied carefully and understand the

in the first 

least until you have 

iple of superpositionprinci

Discretization of Continuous Systems ajnd the Electrical Analogy 

Study assignments

* Read note 2 (section 2.2), "The electrical analog,

simulation, and discretization" alnd section 2.3 (note 3), 

"Hydraulic storage capacity."

* Read Karplus (1958), "Analog simulation," pages 78-88, 171- 

184, and 204-209

* Read Prickett and Lonnquist (1971), "Selected digital 

computer techniques for groundwater resource evaluation," 

subsection "Mathematical derivation of finite-difference 

equations," pages 3 to 5, and subsection "Models with 

variable grid spacing," pages 17 to 19.

* Work problem 1, "Calculation of lumped hydraulic

conductances and storage capacities in rectangular grids."

1.2-18



Optional reference

* Walton (1970), "Groundwater resource evaluation," pages 

518-533.

Concentrate on notes 2 and 3 and on Karplus (1958), and 

consult Walton (1970) only if you are particularly interested in 

the electrical analogy.

Use of the electrical analogy and electric-analog models can 

have great conceptual value in solving ground-water problems if 

one is readily able to translate back and forth between electrical 

terminology and hydraulic terminology. Because of their value as 

teaching tools, electric-analog models are used in the course to 

solve several problems and to illustrate several important 

concepts in ground-water hydrology. We have included an 

electrical-analog problem set in section 3.5.

We must emphasize that we do not recommend the construction 

of electric-analog models for operational use. The advanced 

technological development and easy accessibility of computers 

makes the construction of large-scale electric-analog models 

impractical in the United States. However, the electrical analogy 

still has great conceptual value within the curriculum of this 

course. It can be particularly useful in understanding the 

process of discretization and the definition of hydraulic 

conductance.
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Concepts associated with electrical networks are very useful 

in understanding discretization of contiguous aquifer systems for 

the purpose of developing models. The discussion of 

discretization by Karplus (1958) is thorough. However, a general

familiarity with the electrical analogy 

the equations in electrical notation (in

is necessary to translate 

Karplus) to corresponding

hydraulic equations. It is important to recognize at the outset 

that the equations in the two notations represent exactly the same 

concepts. The translation from one notation to the other is not 

at all difficult.

The first step in discretization is to develop a suitable 

network of nodes and branches. A known voltage is applied across 

the network and voltage is measured at the nodes. Head is 

calculated from the voltage measurements through appropriate 

conversion factors. Flow in the discretized system can occur only 

along branches between nodes. Pay particular attention to the 

concepts of vector area and vector volume in Karplus. These 

concepts define the block of aquifer material that is associated 

with each branch. The geometry of the block and the transmission 

characteristics (for example, hydraulic conductivity) of the block 

materials determine the transmitting capability of a given branch 

between two nodes. The branch conductance is the coefficient that 

defines quantitatively this transmitting capability.

In Karplus, you will encounter equations for current flow in 

branches between nodes of the form
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= -   (V -
"branch R 2

where I is the current flowing through the branch in amperes, R is 

the branch resistance in ohms, and V2 and Vx are the voltage values

at the two ends (network nodes) of the branch resistance. This 

equation is a form of Ohm's law. For our purposes, it is 

convenient to substitute Ce for 1/R , where Ce is the electrical

conductance of the branch in mhos. Thus, the formula for branch 

current above can be written

branch = -Ce <^2 ~ ^ .

(The minus sign indicates that current flows in the direction of 

decreasing voltage.)

Darcy's law may be written

-KA (h - h) 
Q =   

L 

and we will define the hydraulic conductance, Ch, as

Ch is expressed in units such as gallons per day per foot. Thus, 

we may express the water flow in a branch of a network 

representing a discretized aquifer system as

^h < h2 ~ V '

Compare this expression, which is merely a simplified method of 

writing Darcy's law, with the formula for a branch current above.
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We may regard a branch in a discretized aquifer system as 

transmitting the flow through a Darcy prism located between the 

nodes at the ends of the branch. The hydraulic conductance of the 

branch is a coefficient that defines quantitatively the 

transmitting capability of this Darcy prism.

Remember that the area A in Darcy's

in the definition of hydraulic conductance, refers to the cross

sectional area of the flow perpendicular

law, and, therefore, also

to the average flow

direction. Thus, because flow occurs parallel to/or along 

branches in discretized systems, the area A in the hydraulic 

conductance is the area of the hypothetical Darcy prism 

perpendicular to the branch.

In transient simulations of discretized systems, areas and 

volumes of the aquifer must be specified to define the storage 

properties of the system. These "storagje areas" and "storage 

volumes" are associated with the nodes c|f the discretization 

network, not the branches, as is the case for hydraulic 

conductance coefficients. Determine the^ general rule for defining 

storage areas associated with nodes from Karplus (1758, p. 204- 

209) and study figure 3 in Prickett and Lonnquist (1971) and 

section 2.3 (note 3), "Hydraulic Storage Capacity." 1 The figures 

in Prickett and Lonnquist depict the same concepts regarding 

discretization as the discussion in Karplus. However, hydraulic 

terminology is used in Prickett and Lonnquist. As you read

1 Please note that hydraulic storage capacity, Sc , is a mathematically defined 
quantity that differs in its definition from other fairly common usages of 
this term.
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Karplus, write the translation of all the formulas that you 

encounter from electrical notation into hydraulic notation.

Techniques or Numerical Solution of Differential Equations 

Finite Differences Steady-State Flow

Study assignments

* Work through Bennett (1976), "Introduction to ground-water 

hydraulics," Part VII, pages 119-135.

* Read Mercer and Faust (1982), "Ground-water modeling," 

pages 25-39.

* Read Wang and Anderson (1982), "Introduction to groundwater 

modeling," chapters 2 and 3, pages 19-66.

* Work problem 2 (section 3.2), "Numerical analysis, steady 

state."

Finite Differences Transient Flow 

Study assignments

* Read Bennett (1976), "Introduction to ground-water 

hydraulics," Part VII, pages 136-140.

* Read note 4 (section 2.4), "Discretization of time methods 

of formulating nonequilibrium finite-difference equations."
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* Read Wang and Anderson (1982), "Introduction to groundwater 

modeling," chapter 5, pages 67-88.

* Work problem 3, "Numerical analysis, transient state."

The purpose of this section is to i 

the numerical solution of differential 

we are primarily interested in the 

ground-water flow equations, which, in g 

partial differential equations.

equat

numerical

introduce techniques for

ions. In this course,

solution of the 

eneral, are second-order

The key concept in this section is this: a set of

simultaneous linear algebraic equations can be substituted for the 

differential equations of ground-water flow to solve the dependent 

variable (head) at points (nodes) in discretized space. The 

differential equation describes the variation of the dependent

variable in continuous space. An algebraic equation must be

solved for every node in discretized space at which head is not

specified. Thus, the problem of solving

equations numerically becomes the problem of solving a large

number of simultaneous linear algebraic

the ground-water flow

equations. There are two

principal approaches, each of which includes a number of 

individual techniques for solving such equation sets (1) direct 

methods and (2) iteration techniques. Substitution of unknowns 

from one equation to another until only one unknown remains, as 

you learned in high school algebra, is an example of a direct 

method of solution. Solutions using iteration techniques involve 

solving the set of equations by successively approximating the
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unknown values, using a specific numerical scheme (algorithm) 

until a solution is obtained.

The problem assignment involves the numerical solution by 

hand calculator of a simple steady-state problem by both a direct 

method and an iteration technique, and the numerical solution of a 

nonequilibrium problem by hand. If you are becoming seriously 

involved in digital modeling, we highly recommend that you also 

take a course in numerical analysis techniques.

Flow Nets 

Study assignments

* Read Freeze and Cherry (1979), "Groundwater," pages 168- 

189.

* Read Todd (1980), "Groundwater hydrology," pages 83-93.

* Read and work problem 4, "Impermeable wall problem."

Although flow nets can be prepared in transient problems for 

any "instant" of time, they are most commonly used in the solution 

of steady-state problems. A carefully prepared flow net provides 

a very valuable pictorial representation of a flow system. 

Commonly, an accurate flow net yields a solution of a ground-water 

problem because the information of interest in the problem, for 

example, head values at specific locations, can be obtained from 

it. If hydraulic conductivity is known or can be estimated,
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volumes of flow can be estimated using a flow net for the entire 

ground-water system or any part of it.

illustratesThe impermeable-wall problem i 

applications of flow nets to solving 

One of the most important parts of the 

you is the calculation of stream 

in some detail in the problem explanation

functions

the preparation and 

different kinds of problems, 

problem that may be new to 

This topic is covered

The impermeable-wall problem is an example of an intensively 

studied class of problems involving seepage beneath and/or through 

engineering structures. An important characteristic of these two- 

dimensional problems is that they represent the ground-water flow 

field in vertical cross section. The geometric scale of these 

problems is orders of magnitude smaller than the regional scale of 

many ground-water studies. Because of tihe large areal extent of 

many ground-water systems, the models of these systems often tend 

to emphasize simulation in map view as opposed to simulation in 

cross section. However, in thick layered systems in which there 

are large contrasts in hydraulic conductivity between adjacent 

layers, proper understanding and simulation of the vertical 

dimension of flow may be essential in determining how the system 

operates. In such situations, vertical cross-section studies may 

be highly advisable, if not essential. Unfortunately, vertical 

cross-section studies are a sadly neglectted aspect of many ground- 

water investigations that involve modeling. To be most fruitful,
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such studies in vertical cross section should be undertaken 

concurrently, with areal-model simulations.

The Source of Water to a Pumped Well 

Study assignments

* Read Theis (1940) , "The source of water derived from 

wells essential factor controlling the response of an 

aquifer to development," pages 277-280.

* Read note 5 (section 2.5), "Theis 1 concepts response of an 

aquifer to development."

This paper by Theis is one of the classic papers in ground- 

water hydrology. We are specifically interested in the first part 

of the paper. With reference to the hydrologic equation 

Inflow = Outflow ± Change in Storage,

there are three possible sources of water to a pumped well. 

Expressed in rather abstract terms, these include (1) removal of 

ground water from storage in the system, (2) increased inflow to 

the ground-water system due to the removal of water by the pumped 

well, and (3) decreased outflow from the ground-water system due 

to the removal of water.

Consider a shallow well pumping near a gaining stream. 

Initially, the water removed from the well is obtained from 

ground-water storage. As pumping progresses, ground water that
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formally would have discharged into the stream is diverted to the 

pumping well (decreased outflow of water from the ground-water 

system) . Depending on the discharge of [the well and the distance 

between the well and the stream, a situation may be reached in 

which a ground-water gradient from the stream to the pumping well 

is established. If this occurs, flow from the stream to the

aquifer takes place (increased inflow to the ground-water system)

As you read Theis, list all the possibilities that occur to 

you of increasing inflow to and decreasing outflow from ground- 

water systems.

Principle of Superposition and j.ts Application in 

Ground-Water Modeling

Study assignment

Read Reilly, Franke, and Bennett (1987), "The principle of 

superposition and its application in ground-water 

hydraulics." Work all problems.

Optional reference

* Bear (1979), "Hydraulics of groundwater," pages 152-159.

The principle of superposition has wide application in 

ground-water hydraulics. We employ superposition, perhaps without 

realizing it, whenever we analyze an aquifer test in a confined
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aquifer. The method of images is based on superposition. 

Employing superposition is an important option in modeling ground- 

water systems.

The first reference contains most of the information that you 

should know about superposition. The application of superposition 

to modeling ground-water systems is emphasized. Several simple 

problems illustrating superposition are included. These should be 

completed as you proceed through the reading assignment. In the 

optional reference, the same basic ideas are couched in a somewhat 

more mathematical language.

Hydrologists encountering the principle of superposition for 

the first time often experience considerable difficulty with the 

concept. It takes considerable practice to learn to think in 

terms of superposition. The key word in understanding the 

principle is changes for example, changes in head and changes in 

flow, which can be illustrated by analysis of data from an aquifer 

test. Absolute head measurements are converted to drawdowns, which 

represent changes in head superimposed on the ground-water system 

in response to pumping. This is done because the analytical 

solutions to linear well-hydraulics problems are expressed in 

terms of head changes; that is, the solutions use superposition.

The principle of superposition is one of the key concepts in 

ground-water hydrology. It is virtually mandatory that all 

ground-water hydrologists make the necessary effort to become 

comfortable with this concept.
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Steady-State Ground-Water/Surface-Water Relations and the 

Simulation of Streams in Ground Water Models

Study assignments

* Read Harbaugh and Getzen (1977), 

analog model of ground-water sys 

York."

"Stream simulation in 

lem of Long Island, New

* Read Prickett and Lonnquist (1971), "Selected digital 

computer techniques for groundwater resource evaluation," 

pages 33-35.

* Read note 6 (section 2.6), "Stream-aquifer interaction."

* Review Franke and Reilly (1987), "The effects of boundary 

conditions on the steady-state response of three 

hypothetical ground-water systems results and implications 

of numerical experiments."

* Work problem 5 (section 3.5), "Electrical analog problem 

set. "

* Work problem 6 (section 3.6), "Digital stream-aquifer 

interaction problem set."

Additional references that will be helpful in answering 

question 20 of problem 6 concerning the correction of drawdown at
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a pumping node in a model to approximate the drawdown in a real 

well located at the node are:

Prickett and Lonnquist (1971) , "Selected digital computer 

techniques for groundwater resource evaluation," page 61.

Note 7 (section 2.7), "Well drawdown correction at a pumping 

node."

Because the interaction between streams and shallow aquifers 

in natural systems is important in understanding ground-water 

flow, the simulation of these relations in models is of 

corresponding importance. The purpose of the first three readings 

in this section is to become acquainted with the several different 

possible relations between streams and aquifers and how these 

different relations are treated in ground-water models. Commonly, 

the type of relations between the stream and the aquifer changes 

during the course of a problem. Usually, streams are treated as 

specified head, head-dependent flux, or specified-flux boundaries. 

The characteristics and effects of using specific types of 

boundaries should be reviewed in Franke, Reilly, and Bennett 

(1987) and Franke and Reilly (1987). The different physical 

situations in the natural system that these different boundary 

conditions seek to represent should be clearly differentiated.

The report by Franke and Reilly (1987) provides a 

comprehensive review of boundary conditions and superposition. 

More importantly, however, the effects of different boundary 

conditions on the response of three otherwise similar ground-water
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systems to a pumping stress are illustrated in a series of 

numerical examples, and the pitfalls in assigning boundary 

conditions to stressed ground-water systems are discussed. Try to 

relate the concepts discussed in this pciper to the problem sets in 

this section.

The two longest and most important problems in the concepts

course, the "Electrical-analog model problem," (problem 5) and the 

"Digital stream-aquifer problem," (problem 6) are placed here in 

the course outline because to work through these problems requires 

the application of many of the concepts studied previously  

specifically, boundary conditions, hydraulic conductance, flow 

nets, the source of water to a pumping vfell, superposition, and 

ground-water/surface-water interactions. Try to think very

specifically in terms of these concepts as you work these

problems. Working through these problems should provide a 

valuable learning experience, perhaps thje most valuable in the 

entire course.

i

Definition of Initial Conditions in Modeling Ground Water Sytems 

Study assignments

* Read the section, "Initial conditions" in Franke, Reilly, 

and Bennett (1987), "Definition of boundary and initial 

conditions in the analysis of saturated ground-water flow 

systems an introduction."
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* Read Rushton and Redshaw (1979), "Seepage and groundwater 

flow," pages 153-156 and 182-184.

The second part of the first reference discusses the 

definition of initial conditions in ground-water models. You 

should undertake the study of initial conditions only after you 

have studied carefully the two sections on boundary conditions and 

superposition. The readings in the second reference are short and 

provide a good review of the discussion of initial conditions in 

the first reference.

Radial Flow and its Simulation in Ground Water Models 

Study assignments

* Work through Bennett (1976), "Introduction to ground-water 

hydraulics," Part VI, starting on page 88.

* Read Freeze and Cherry (1979), "Groundwater," pages 314- 

319, 343-347, 349-350.

* Read Todd (1980), "Ground water hydrology," pages 115-119.

* Read Lohman (1972), "Ground-water hydraulics," pages 11-15.

* Work problems 2, 7, and 12 on page 379 in Freeze and Cherry 

(1979), "Groundwater."

Because of the importance of wells in ground-water hydrology, 

radial flow is an important topic. Many analytical solutions to
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different problems related to wells are available. Numerical 

simulation of radial flow problems has become a valuable tool in 

recent years and permits the approximate solution of problems 

which are too difficult to be solved aneilytically.

In the classroom version of the concepts course, we prepare a 

flow net for a radial-flow problem as we; did for the impermeable- 

wall problem. This problem is now available for self-study 

(Bennett and others, 1990) and is an optional exercise if you are 

particularly interested in radial flow.

The final task in this section is tyo become very familiar 

with three solutions to radial flow to 4 well: 

(1) the Theis nonequilibrium equation

(2)

(3)

s = Q
47CT

f e'udu 
J u ''

steady flow to a completely penetrs.ting well in a confined 

aquifer,

Q =
27tKm (h2 - 

In r /
and

steady flow to a completely penetrating well in an 

unconfined aquifer,

Q =
KK (h* - h*)

ln r / r
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Check the different texts for the boundary conditions assumed in 

each solution and how to use the solutions to obtain numerical 

results in field problems.

Problems Involving a Free Surface 

Study assignments

* Read Lohman and others (1972), "Definitions of selected 

ground-water terms," review the following definitions  

ground-water, unconfined; potentiometric surface; specific 

retention; specific yield; and water table.

* Read Franke, Reilly, and Bennett (1987), "Definition of 

boundary and initial conditions in the analysis of 

saturated ground-water flow sytems," review the following 

boundary conditions streamline, free surface, seepage 

face; and section on water table as a boundary.

* Read Freeze and Cherry (1979), "Groundwater," pages 48, 61, 

186-189, 324-32 and 375-377.

* Read Todd (1980), "Groundwater hydrology," pages 111-123 

and 494-516.

* Read Jacob (1950), "Flow of ground water," pages 378-385.

* Read Bennett and Giusti (1971), "Coastal ground-water flow 

near Ponce, Puerto Rico," pages 206-211.
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Although the list of study assignments shown here is longer than 

previous lists, the individual readings are short and in some 

measure repetitive.

The most common free-surface boundary is the water table. In 

general, free-surface problems are difficult to solve because they 

are governed by nonlinear differential equations. An additional 

complication in the solution of these problems is that the 

transmissivity of the aquifer is a function of the position of the 

free surface and must be redetermined for each iteration of the 

problem solution.

Our goals in this section are actually quite modest and 

include getting acquainted with the general problem of free

surfaces, understanding the free surface as a boundary condition,

familiarity with the Dupuit assumptions and the two or three most 

common solutions based on these assumptions, and an elementary 

beginning in the study of freshwater/saltwater relations.

In the classroom version of the con septs course, one of the

laboratory exercises is a paper-cutting experiment utilizing the 

electrical analogy in which a freshwater^saltwater interface (free 

surface) is determined for the simulated isotropic and homogeneous 

aquifer. In this experiment, obtaining a solution (the position 

of this interface) involves "cutting away" part of the aquifer in 

a series of steps that represent successive approximations to the 

solution each "cut" being closer to the solution than the 

previous cut. This concept of cutting avjray part of the aquifer to
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achieve a solution to a free surface problem is important. In 

digital modeling the exact counterpart to this cutting process in 

digital modeling might be termed "block chopping." In principle, 

the two processes are exactly the same. A note of warning is 

necessary here. Block chopping in a digital model is fairly easy 

to do in a cross section for a single aquifer. However, 

difficulties arise with this procedure in two-dimensional cross- 

section problems in which aquifers and confining layers alternate 

in vertical section. In three-dimensional problems, block 

chopping may prove to be exceedingly difficult.

The purpose of the final reference (Bennett and Giusti, 1971) 

is to acquaint you with an investigation in which interface 

determinations in paper models were used to gain insight into a 

ground-water problem in a coastal aquifer. Pay particular 

attention to the boundary conditions of the paper models and the 

exact procedure for cutting them to form the freshwater/saltwater 

interfaces.

Evapotranspiration in the Hydrologic System and its Simulation in

Ground-Water Models

Study assignments

* Read Veihmeyer (1964), "Evapotranspiration," pages 11-1 to 

11-33 in Chow, "Handbook of hydrology."
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* Read Prickett and Lonnquist (1971), "Selected digital 

computer techniques for groundwater resource evaluation," 

pages 37-38.

The purpose of the first reading is 

perspective on evapotranspiration in the 

of the details are not essential to the 

concepts course.

to attain some 

hydrologic system, 

main thrust of the

Many

In some areas, particularily where the depth to the water 

table is a few feet or less, evapotranspiration can involve 

significant quantities of ground water. In such areas, salvaging 

ground-water outflow by pumping may be an important water- 

management alternative. Changes in evapotranspiration in an area 

due to land-use changes or major construction projects such as a 

new reservoir may significantly alter the local hydrologic 

regimen. The preceding examples are instances in which it may be 

necessary to include the effects of evapotranspiration in a model 

of the ground-water system.

Usually, as discussed in the second reference (Prickett and 

Lonnquist), areas of shallow water table in which ground-water 

evapotranspiration is significant are treated as a linear head- 

dependent flux boundary in ground-water models. The main purpose 

of this section is to make you aware of the need to consider 

evapotranspiration in models in some area.s and this highly 

simplified treatment of it in models.
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Physical Principles in Solute Transport 

Study assignments

* Read Freeze and Cherry (1979), "Groundwater," pages 69-73, 

75-76, 103-104, and 388-401.

* Read Ogata (1970), "Theory of dispersion in a granular 

medium," pages 1-6.

Movement of contaminants in ground-water systems is a topic 

of considerable societal interest at this time. Quantitative 

analysis of contaminant transport in ground-water systems is a 

major technical challenge. The primary purpose of this section is 

to introduce the physical processes involved in transport and, in 

addition, begin study of the simplest equations that are used to 

describe contaminant transport. New concepts involve new 

terminology. Perhaps the most valuable approach at this stage is 

to learn the transport vocabulary for example, dispersion, 

diffusion, advection, coefficient of diffusion, coefficient of 

hydrodynamic dispersion, and Fick's first and second laws. Make a 

list and write a careful definition of all the transport 

terminology that you encounter in the readings.

Application of Dimensional Analysis to Ground Water Studies 

Study assignment

* Read Shames (1962), "Mechanics of fluids," pages 188-194.
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Optional references

* Read Bridgman (1931), "Dimensional 

(read first page of preface before

analysis," pages 1-55 

starting text).

Most engineering handbooks have a section on dimensions, dimension 

systems, and dimensional analysis. Dimensional analysis is a 

valuable tool in planning a physical experiment or a numerical 

investigation and in classifying types cff problems. More 

specifically, the advantages of dimensional analysis are:

1. Dimensional analysis provides tine smallest possible 

number of independent problem parameter^. Thus, the number of 

experiments or calculations necessary to! investigate a given range 

of parameter values may be reduced to a minimum.

2. The use of dimensionless parameters permits the results 

of any type of investigation to be expressed in their most general 

form, independent of unit systems.

With reference to (2) , note that dimensionless parameters are 

used to express all the type curves that we employ in the analysis 

of aquifer tests. To utilize the type curves, we must calculate 

values of the dimensionless parameters using consistent units for 

the individual variables contained in the dimensionless 

parameters.
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Several forms of the basic ground-water equations contain 

parameter combinations for recharge (W), and transmissivity (T), 

and storage coefficient (S) in the form of W/T and S/T. These are 

not dimensionless parameter combinations. The following 

discussion is related in concept to (1) above. Assume we are 

calibrating a steady-state model for transmissivity. In addition, 

some uncertainty exists in the proper value of steady-state 

recharge that should be used in the model. It might seem logical 

to investigate numerically in the model a series of cases in which 

both W and T values are varied in some consistent way, perhaps by 

varying all W and T values by certain percentages of an initial 

base value. However, this procedure would be highly inefficient. 

The mathematical equation that describes this system is really a 

function of the ratio W/T, and not either W or T alone. In making 

this numerical investigation, one should investigate a series of 

ratios of W/T, making sure that this series of ratios includes the 

entire range of interest and possible range for values for the 

parameters W and T. Using this procedure, the same (or greater) 

return of information is obtained with fewer tests, which 

expresses the potential value, in general, of using dimensional 

analysis to obtain the minimum number of independent, 

dimensionless parameters that define a problem.

The application of dimensional analysis to a specific problem 

is not always simple. The purpose of this section is to make you 

aware of this powerful and useful tool. If you see that this
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approach is applicable, you can obtain assistance in applying 

dimensional analysis to your specific problem.

Workshop in Developing Models of ground-Water Systems

In the classroom version of the concepts course, the

participants are divided into groups of three to five people.

Each group is given a descriptive hydrologic report of an area 

that does not include a model investigation and a hypothetical 

problem in that area, and is asked to prepare a presentation on 

how to solve the problem by developing a model of the ground-water 

system.

The focus of the presentations is (1) the conceptualization 

of the natural flow system and (2) a discussion on how to develop 

an appropriate model of the system that yill solve the problem 

posed. A key element in the presentation is the careful 

identification of the boundary conditions in both the natural 

system and the model.

The format described above can be uted in any training 

session in which several people are involved. However, an 

individual will also benefit from studying a hydrologic report for 

the purpose of developing a conceptual model for that system.

The following outline can be used in preparing workshop 

presentations:

1. Location of study area and geography.
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2. Geologic framework pertinent features but not lengthy 

stratigraphic details.

3. Natural hydrologic system how the system operates; locations 

and quantity of recharge; areas of discharge; water levels for 

pertinent surfaces; careful designation of boundaries of the 

natural hydrologic system: and interesting details, data 

available, and methods to estimate distribution of 

transmissibility and storage parameters.

4. Effects of the man on hydrologic system brief historical 

survey.

5. Definition of problem to be solved by the model.

6. Description of the model areal extent; areal discretization 

scheme (mesh spacing, equal or unequal mesh); number of model 

layers; careful designation of model boundaries; compare with 

boundaries in (3) and justify any differences, definition of 

initial conditions, time discretization scheme if unsteady 

model; superposition versus absolute heads; listing of 

preliminary model runs and what one would hope to learn from 

these runs; calibration procedures; and subjective evaluation 

of the reliability of final model results to solve the problem 

that was posed.
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REFERENCES

Most of the references in the following list are referred to 

specifically in connection with some topic in the course outline. 

The list consists primarily of standard textbooks in ground-water 

hydrology, U.S. Geological Survey publications, and references 

outside of hydrology that deal with specialized topics.

These references (and many more) should be readily available 

to every ground-water hydrologist, and many, particularly the 

standard textbooks, should be in every hydrologist's personal 

library. As our knowledge of ground-water hydrology and the 

number of technical "tools" available to study and apply to the 

solution of ground-water problems continue to expand, it becomes 

virtually mandatory that we continually consult all levels and 

types of technical literature.

As noted previously, by design, no specific textbook has been 

chosen as the "text" for this course. Rather, we wish to 

encourage the habit of consulting several sources. Many of the 

topics in this course are discussed in several of the references 

listed below. In the course outline, we have, rather arbitrarily, 

selected one or two references so that the reader is not over­ 

whelmed by a lengthy reading list. However, it is a good 

principle to always consult several references, if possible, on 

topics of particular importance or interest.

The initial set of references for this course is:
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CHAPTER 2 NOTES ON GROUND-WATER RELATED DEFINITIONS AND CONCEPTS

NOTE 1, SOME GENERAL CONCEPTS AND DEFINITIONS RELATED TO SYSTEMS
AND MODELS IN GROUND-WATER STUDIES

Svstems

The word system occurs frequently in ground-water literature 

in combinations such as hydrolog-ic system and ground-water system. 

The following introduction to the system concept, much of which is 

based on a discussion by Domenico (1972, pages 1-38), and a 

distillation of those aspects of the concept relevant to a 

definition of a ground-water system, is important in establishing 

a general framework for ground-water resource evaluation.

A general dictionary definition of a system is "an orderly 

combination or arrangement of parts or elements into a whole, 

especially such combination according to some rational principle 

giving it unity and completeness." In thermodynamics, a system is 

a portion of the universe defined by a closed mathematical 

surface. The rest of the universe is referred to as the 

surroundings or the environment of the system. To be useful, this 

definition must be supplemented by additional information 

describing the physical properties of the enclosing surface (the 

walls or boundaries of the system) such as to whether these 

boundaries are impermeable, permeable, or selectively permeable to 

the flow of matter and/or energy across them. These additional 

considerations lead to the following definitions:
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Open system a system that constantly exchanges both matter 

and energy with its environment and is maintained by this 

exchange.

Relatively closed system a system that constantly exchanges 

energy but not matter with its environment.

Absolutely closed (isolated) system a system that exchanges 

neither energy nor matter with its environment.

In general, ground-water systems ar 5 open systems because

they exchange both matter (water) and he&t energy obtained from 

the sun or the interior of the earth with their surrounding

environment. A simple, but very useful,

of a system with its accompanying input and output is shown in 

figure 2.1.1.

Various definitions of natural ground-water flow systems are 

possible, depending on one's objectives and point of view. In 

this discussion, the term flow system refers to the part of the 

ground-water regime that has been isolated for study, and implies 

the following:

schematic representation

1. a three-dimensional body of earth material saturated with 

flowing water;

2. the moving water is bounded by £ closed surface the 

boundary surface of the flow system.

2.1-2



Flow of matter 
and/or energy 

and/or information

I I
Input     > | System |     > Output 

(or stress) |__________| (or response)

Figure 2.1.1 Schematic representation of a system
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3. under natural conditions, heads and flows associated with 

specific locations or parts of the system show some variation 

with time, normally oscillating around a mean condition;

4. for the flow system to operate continuously through time,

water input (continuous or intermittent) to the system and 

water output (continuous) from the system must occur through 

at least part of the boundary surface.

Systems may be further classified 4s being either the 

distributed parameter or lumped parameter type. A distributed 

parameter system is a system in which spatial dimensions comprise 

an integral part of the formulation and solution of the problem 

(Karplus, 1958). A distributed parameter problem is the same as a 

mathematical field problem. In such problems, the space

coordinates (x, y, and z) and time (t) are independent variables. 

Most modeling problems in ground-water hydrology are distributed 

parameter or field problems because we Wish to determine ground- 

water heads, drawdowns, or other system responses (the dependent 

variables) as a function of location andi time (the independent 

variables). In a lumped parameter system, time is the only

independent variable. A water budget of a hydrologic system is a 

lumped representation of that system. The entire system is 

treated as a single entity. Problems involving a lumped system do 

not require a space coordinate system for their formulation or 

solution
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Models

A general definition of model is a representation of some or 

all of the properties of a device, system, or object; the more 

properties represented by the model, the more complex the model 

becomes. Ground-water system models are always much simpler than 

the natural ground-water system, and, are therefore, only a 

partial representation of the natural system. When discussing 

various kinds of models, it is often convenient to refer to the 

natural system (the original on which a model is based) as the 

prototype.

The general purposes of models are (1) to predict the 

response of the prototype system to a specified stress and (2) to 

provide information and insight into how the prototype system 

functions. The word "model" with an appropriate modifier is used 

in a number of different ways in science and, more specifically, 

in ground-water hydrology.

A physical model usually employs the same physical system as 

the prototype but at a different scale. Laboratory-scale sand 

models of a well problem or of ground-water flow beneath an 

engineering structure are typical examples. In these examples, 

the mechanics of flow are exactly the same in both the model and 

prototype. To insure that the flow pattern in the model and 

prototype are the same, it is necessary only that they be 

geometrically similar. To perform flow calculations for the 

prototype on the basis of model results, a scaling factor for time
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is also required. Thus, the relation between model and prototype 

is simple and easily defined. In hydraulic modeling, an area that 

has been quite highly developed, the criteria for insuring 

similarity between model and prototype are much more complicated.

Here, more extensive study of the theory of models and dimensional

analysis is required.

A mathematical model represents the prototype by utilizing 

mathematical equations and procedures (algorithms). The models 

most commonly used today in ground-water hydrology can be called 

mathematical numerical models. A differential equation that 

approximately ("adequately") describes a physical process is a

mathematical model of that process. The various differential

equations that describe ground-water flow, which will be discussed 

in a later section, are examples. The solution to these 

differential equations in a specific problem usually requires 

numerical procedures (algorithms).

Before the advent of powerful computers, which are used for 

developing mathematical-numerical models[ it was often convenient 

to study a problem in one kind of physical system by means of a 

model utilizing a different physical system. Such models are 

called analog models. For many years, electric-analog models 

provided the only feasible means of simulating complex ground- 

water systems. Through proper connection of resistors,

capacitors, other electrical components,

voltages and currents, the same differential equations are solved 

in electric analog models as are solved tn numerical models.

and measurement of
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A Conceptual model of the ground-water system should be 

developed in the early stages of a ground-water investigation, 

particularly in studies involving mathematical-numerical modeling. 

In this context, a conceptual model is a clear, qualitative mental 

picture of how the prototype system operates. This mental picture 

includes the external configuration of the system, location and 

amount of recharge and discharge, location and hydraulic 

characteristics of natural boundaries of the system (for example, 

an almost impermeable surface or fresh/salt-water interface), and 

the approximate pattern of ground-water flow through the system. 

Although a first approximation of the ground-water flow pattern 

may be inferred from the spatial dimensions of the system and the 

location and hydraulic characteristics of the system's natural 

boundaries, the spatial distribution and physical characteristics 

of aquifers and confining units may influence the flow pattern 

significantly. Field-measured head distributions in aquifers in 

the form of potentiometric-surface maps provide the best 

indication of the detailed flow pattern in ground-water systems.
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NOTE 2, THE ELECTRIC ANALOG, SIMULATION, AND DISCRETIZATION

Int roduct ion

The following notes introduce some concepts that are useful 

in understanding the problems presented in this course. These 

concepts include (1) the analogy between flow of electric current 

in a conductor and flow of water through a porous medium;

(2) approximate solution of a partial differential equation by 

simulation, using a set of algebraic finite-difference equations;

(3) spatial discretization, the process of dividing a continuous 

medium into discrete blocks in order to carry out a finite- 

difference simulation; and (4) hydraulic conductance, a parameter 

which is defined to clarify the discretization process and to 

assist in implementing the electrical analogy.

Some of the problems you will be asked to solve depend on all 

of these concepts, whereas, others involve only one or two. The 

concepts are introduced here in a single discussion in order to 

illustrate their interdependence and to present a unified 

explanation.

Electrical Analogy and Hydraulic Conductance

The movement of water through a porous medium is governed by 

Darcy's law. For flow through the pipe segment packed with sand 

shown in figure 2.2.1A, Darcy's law may be written

h   h 
Q . -KA-^j   

(1)
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O.^»

Figure 2.2.1. Flow of water throuh a sand-filled pipe and 
flow of electrical current in a conductor.
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where Q is the volumetric flow across a cross section of the pipe 

segment normal to its length, that is, the quantity of water 

passing the cross section in a unit time, A is the area of cross 

section, L is the length of pipe segment, K is the hydraulic 

conductivity of the sand, and hx and h2 are the heads or the

hydraulic potentials at the ends of the pipe segment at p x and P2- 1 

The flow of electric current through a conductor is governed by 

Ohm's law, which for the electrical circuit of figure 2.2.IB may 

be written

V - v 
I.-O^-ij  1

LC (2)

where I is the current or quantity of electrical charge (coulombs) 

passing a cross section normal to the length of the conductor in a 

unit time, Ac is the cross sectional area of the conductor, Lc is 

the length of the conductor, a is the electrical conductivity of 

the material of which the conductor is made, and Vx and V2 are the

voltages, or electrical potentials, at the ends of the conductor. 

The terms (h2 - hx )/L and (V2 - Vx ) /Lc are actually expressions for

the gradients of hydraulic head and electrical potential, 

respectively, in these two examples.

Equations (1) and (2) illustrate the analogy between current 

flow in a conductor and flow of a fluid through a porous medium. 

The electrical current, I, which is measured in coulombs per

1 The difference in head is arbitrarily defined as h2 - hi, rather than 
hi - h2- When hi > l\2, Q is positive and flow is from pi to P2. When 
n l < h-2i Q is negative and flow is from P2 to pi.
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second, or amperes, is analogous to the volumetric flow of water, 

Q; electrical potential, or voltage, V, is analogous to hydraulic 

head; electrical conductivity,C, which is measured in coulombs per

second per volt per meter, or mhos per meter, is analogous to 

hydraulic conductivity, K.

In electrical circuit analyses, it is common to use the 

electrical conductance, CAC/LC , thus bringing the conductivity and

the dimensions of the conductor into a ^ingle constant. Using the 

symbol Ce for electrical conductance, equation (2) can be written

I = -Ce (V - V )21 (3)

Ce has the units of amperes per volt, oif mhos. 2 We can define a 

similar parameter, hydraulic conductance, Ch, (not to be confused 

with hydraulic conductivity, K) for the hydraulic element of 

figure 2.2.1A, as

C =   
h L ' (4)

which will permit us to write Darcy's law for flow through the 

element as

Q = ~ - V-
(5)

Hydraulic conductance is expressed in units such as gallons per 

day per foot or feet-squared per day.

2 Electrical circuits are usually described in 
than conductance. Electrical resistance is 
conductance, i.e., R = l/Ce where resistance i 
or ohms.

13

terms of resistance, R, rather 
simply the inverse of

measured in volts per ampere,
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In using the electrical analogy, it is convenient to define 

"scale factors" relating the analogous quantities in the two 

systems. For example, if we wished to let 1 milliampere (1/1000 

ampere) represent a flow of 1 million gallons per day, we would 

use a current scale factor, kj, of 10 9 gallons per day per ampere; 

if we intended to let a voltage difference of 1 volt represent a 

head difference of 100 feet, we would use a voltage scale factor, 

kv , of 100 feet per volt; and if we wished to let an electrical 

conductance of 10~3 mhos represent a hydraulic conductance of 10 4 

gallons per day per foot, we would need a conductance scale 

factor, kc , of 10 7 gallons per day per foot per mho.

Finite Difference Simulation, Discretization, and Analog Models

Simulation and Discretization

Steady-state horizontal flow in an aquifer is governed by a 

differential equation,

3 3h. 3 3h _ n 
3x X3x 3y y3y

where h is the hydraulic head and x and y are the coordinates at 

which h is defined. The head distribution in the aquifer is given 

by a solution to this differential equation that is, by an 

algebraic expression giving head as a function of x and y, such 

that when the derivatives of the function are substituted into 

equation (6), the equation is satisfied. An infinite number of 

functions will do this, and the particular solution for a given 

problem is one that will also satisfy the conditions prescribed on
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the boundaries of the problem. Because it is usually difficult to 

determine the functions that will satisfy a differential equation, 

approximate methods of solution are frequently applied. In these 

methods, the continuous ground-water system is conceptually

divided into discrete segments that is,

algebraic equations are formulated for each segment. These

algebraic equations are then solved as a

it is discretized and

simultaneous system, and

the head values determined in this procedure are assumed to 

approximate those that would be given by the function satisfying 

the differential equation. The system o£ algebraic equations 

actually is used to simulate the differential equation, and the 

entire process is referred to as simulation. The particular kind 

of simulation we will consider here is finite-difference 

simulation; it is described in the following paragraphs.

Many methods of solving the system of algebraic equations 

associated with the simulation of a differential equation could be

employed; in these notes we will discuss two the use of a

hydraulic model and the use of an electric analog model, based on 

the theory given in the preceding sectiori.

Finite-Difference Simulation

Five points, or nodes, are indicated on figure 2.2.2A: a 

central point; designated 0; and four surrounding points two 

along the x axis, designated 1 and 3, and spaced a distance Ax

from the central point, and two along the: y axis, designated 2 and
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Figure 2.2.2. Discretization of a continuous aquifer of
thickness b into square blocks for simulation 
of two-dimensional flow.
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4, and spaced a distance Ay from the central point. Figure 2.2.2B 

also shows the outline of a block of aquifer material lying along

the x axis between point 1 and point 0, 

this block in detail. Flow takes place

and figure 2.2.2C shows 

through the block from

nodes 1 to 0. The block extends laterally outward halfway to 

points 2 and 4 along the y axis, and thus has a width Ay. The

flow in the x direction through this block, from the face at 1 to 

the face at 0, is given approximately by Darcy's law as

h   h, 

i-° xi-o Ax (7)

where Kx _ is the hydraulic conductivityi of the material in the x 

direction between 1 and 0, b is the aquifer thickness, and h0 and

h-L are the heads at points 0 and 1 respe 

Kx _ bAy/Ax is the hydraulic conductance

x direction, which we designate Cx _ . Equation 7 can thus be 

written

ctively. The term 

of the block in the

(8)

The flow away from the central point through a similarly 

designated block between 0 and 3 is

h ~ h
Qn = -K0-3 Ax

= -Cx (h. - hj .
xn-3 3 0 (9)

Flow from 2 to 0 through a block ofl width Ax oriented along 

the y axis would be

L 0 = -K bAx-^r  - = -C. 
2-0 Y2_o Ay 5 - h2 >

(10)
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while flow from 0 to 4 through a similarly designated block would 

be

h. - h
= -C (h - h ) .

(11)

Q0 4 = -Ky bAx--r    - = -Cy (h - h ) .
0-4 Y0 _ 4 A Y0-4 40

Equations (8) through (11) give approximate expressions for 

flow toward and away from the vicinity of the central point, 0. 

Steady-state conditions are assumed in this problem, and the 

equation of continuity therefore states that if no fluid sources 

are present, inflow to the region of point 0 must equal outflow 

from that region   that is, inflow minus outflow must be zero. 

Thus we may write

Ql H- Q2 - Q3 - Q4 - 0 (12>

or

h - h h - h h - h h - h
-Kx bAy-2-:    L -Kv bAx-2-:    - +KX bAy-^-r    - +KV bAx  ̂-r    - =0 (13) 

xi-o Ax Y2-o Ay xo-3 Ax Yo-4 Ay

and in terms of hydraulic conductances

-Cx (h. - h.) -Cy (h - h ) +CX (h - h ) +Cy (h - h ) =0. (14)
xl-0 0 1 Y2-0 0 2 0-3 3 0 Y0-4 4 °

Equations (13) and (14) are algebraic-difference equations in 

contrast to the differential equation (6) . That is, equations 

(13) and (14) involve head differences rather than derivatives, 

and their solution consists of a set of specific numerical values 

for h0 , hlf h2 , etc., rather than an algebraic expression for head

as a function of x and y. Equations (13) and (14) are, in fact, 

finite-difference approximations to the differential equation (6)
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in the sense that we can expect numerical values determined for 

the heads h0 , hlf h2 , etc., to approximate values that would be

given by the solution to (6) at the corresponding points.

Obviously, for a full representation of the system, we would have

to designate nodes throughout the aquifer and write an equation of

the form of (13) or (14) for each node.

of algebraic equations which would be solved simultaneously for 

the heads at the various nodes. To clarify this process, we 

utilize the concept of a hydraulic network model.

The result would be a set

i

Hydraulic Network Modeling

Figure 2.2.3A shows a network made

the type shown in figure 2.2.1A; piezometers have been placed at

ap of sand-packed pipes of

each junction, or node, of the network. Flow through an

individual pipe of the network is given by

Q = -Cp (h2 -
(15)

where Cp is the hydraulic conductance of the sand-filled pipe, and 

hx and h2 are the heads at the ends of the pipe.

Our aim is to use the pipe network cj>f 2.2.3A as a model of 

the continuous aquifer of 2.2.2B. Intuitively, we would expect 

heads at the various nodes to approximate: those at corresponding
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Figure 2.2.3 Sand-filled pipe network representing two- 
dimensional horizontal flow in a continuous 
aquifer.
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points in the aquifer if (1) the conductances of the various pipe 

segments in the mesh are made equal to the conductances of 

corresponding blocks of porous material in the aquifer, (2) the 

mesh is made sufficiently fine, and (3) boundary conditions in the 

aquifer are reproduced on the mesh. In fact, as we shall see, 

heads in the mesh are governed by a set of finite-difference 

equations, analogous to equations (13) or (14) above; and our pipe 

network model actually simulates the differential equation (6) 

using this set of finite-difference equations.

Figure 2.2.3B shows a segment of thle pipe network consisting 

of four pipes and five junctions. To obtain an equation for the 

head at the central junction or node, designated 0, we proceed as 

in the development of equations (13) and (14). That is, we first 

write expressions for the flows between the central node and the 

four surrounding nodes. The flow toward the central node in the x 

direction that is, from node 1 to node 0 is given by

I-O = -Ci-o<ho - h i
(16)

where C l_ 0 is the hydraulic conductance of the pipe between 1 and 

0, and h0 and hx are the heads at the respective junctions. The 

flow away from the center in the x direction, toward node 3, is 

similarly given by

Q,0-3 - V '

Similarly, for flow toward the center in

(17)

the y direction, we have
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* M * (18)

while for flow away from the central junction in the y direction, 

we have

- V-

(19)

Again, we are dealing with a steady-state system as the 

elements in the pipe network are purely transmissive they have no 

appreciable capacity to store water. Thus inflows to the central 

junction must equal outflows from it i.e., inflow minus outflow 

must be zero. We therefore have

^2-0 ^0-3 ^0-4 ~

or

-Cl-0<hO - V -C2-0< hO - V +C0-3< h3 - V +C0-4<h4 ~ V = ° < 20 >

If the conductances of the pipes CI_Q, ^2-Qr CQ-S, and  0-4 are 

made equal to the conductances Cx , Cv , Cx , and Cv of
1~0  Jf^~0 0~o Jf 0"~4

equation (14), equations (14) and (20) are identical.

Now suppose the pipe network of figure 2.2.3 is extended so 

as to represent the full aquifer, with conductance in each pipe 

segment equal to the conductance of the corresponding aquifer 

block and with each junction of the network corresponding to a 

node in the aquifer. Figure 2.2.4 shows a portion of the pipe 

network and the corresponding portion of the aquifer, and
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Figure 2.2.4. Junctions in part of a pipe network and 
nodes in the corresponding part of a 
discretized aquifer.
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illustrates the correspondence between aquifer nodes and pipe 

network junctions. If we use an i,j subscripting system to 

designate the junctions of the pipe network or the nodes of the 

aquifer, either equation (14) or equation (20) can be rewritten 

for a general junction or node, i, j as

where Cx . . is the hydraulic conductance of the aquifer block or
!/ D~l

pipe segment extending in the x direction between i,j-l and i,j; 

Cx . . is that for the interval between i,j and i,j+l; and so on.

Note that the subscripting convention we are using here is 

the reverse of that used in Part VII of Bennett ' s (1976) Programed 

Text (fig. 2.2.5) . That is, we are using i as the row number and 

j as the column number where rows extend parallel to the x axis 

and columns extend parallel to the y axis. Thus, if we move 

parallel to the x direction (along a row) so that y remains 

constant and x increases, i will remain constant while j will 

increase by 1 at each node. If we move parallel to the y 

direction (along a column) so that x remains constant and y 

increases, j will remain the same while i will increase by 1 at

each node. As we move outward parallel to the x axis, successive 

values of Cx are designated CY ; Cv ; Cv ; etc. As we move
^ xi, j-1 xi,j xi,j+l

outward parallel to the y axis, subscripts will follow the pattern 

i-l,j; i,j; i+l,j; etc. (fig. 2.2.4). Note that the origin for 

numbering the nodes is different also. In this course, we have

2.2-15



numbering the nodes is different also. In this course, we have 

used the grid and subscripting convention that is shown in figure 

2.2.5B because it is the one that is uscid in ground-water flow 

models currently in use by the U.S. Geological Survey.

For the pipe network, if the number of junctions in the mesh 

is n, we have a system of n simultaneous^ algebraic equations of 

the form of (21); and, of course, we haye n unknowns the head 

values at the n junctions. Suppose we ijad hydraulic equipment 

with which we could duplicate boundary fllows, pumpages, and other 

features of the aquifer system. By imposing hydraulic boundary 

conditions on the pipe network, and then) measuring the head in 

each piezometer, we could obtain an experimental solution to our 

set of finite-difference equations. This, in turn, would serve as 

an approximation to the solution of our [partial-differential 

equation of flow in the aquifer, equatio|n (6) .

Electric Analog Modeling

The disadvantage of a hydraulic modlel constructed of pipes, 

sand and water is that it would be cumbersome, time-consuming, and 

difficult to operate. However, an alternative experimental 

approach can be devised using the electrical analogy. We have 

seen that the flow of water through the sand-packed pipe of figure 

2.2.1A, as described by equations (1) or (5), is analogous to the 

flow of electric charge through the conductor of figure 2.2.IB as 

described by equations (2) or (3). Thus in place of the network
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Figure 2.2.5. Two examples of grids and subscripting conventions

2.2-17



of sandpacked pipes of figure 2.2.3A, we could construct a network 

of electrical conductors, or resistors, as shown in figure 2.2.6A.

We would want to choose the resistors so that the electrical
i

conductance of each was proportional to the hydraulic conductance 

of the corresponding sand-packed pipe in the hydraulic model.

Then we would need electrical equipment through which we could

control voltage along specified model boundaries, input or 

withdraw current in specified amounts, and measure both current 

and voltage. According to the characteristics of this equipment 

and of the hydrologic problem to be solved, we would decide on the 

required scale factors that is, the fee|t of head to be 

represented by each volt and the gallons per minute of flow to be 

represented by each ampere of current, fae could then arrange our

equipment to maintain specified voltages at those junctions of the

network corresponding to specified-head boundaries in the aquifer, 

and to withdraw or add current at junctions where withdrawal or 

inflow of water occurs in the aquifer. We could then measure 

voltages at each junction of the network; and using our voltage- 

head scale factor, convert these measured voltages to head values 

to obtain a solution to the set of equations (21). The solution 

is again an experimental one; however, because electrical 

equipment is less cumbersome than hydraulic equipment, and 

electrical measurement far more convenient than hydraulic 

measurement, the solution is obtained much more easily than it 

could have been with a physical hydraulic model.
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Figure 2.2.6. Resistor (conductor) network corresponding to pipe 
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To clarify this procedure still further, we will develop the 

electrical counterpart to equation (21). Equations (20) and (21) 

were developed by considering the five-junction pipe array of 

figure 2.2.3B; we will consider the corresponding five-junction 

segment of the electrical network as shown in figures 2.2.6B and 

2.2.6C.

The flow of current in the x direction, from junction 1 to 

junction 0 is given by

^ Vo ~ Vi'
(22)

Ri-o

where Ce _ is the electrical conductance and R1_ 0 is the electrical

resistance of the resistor between junction 1 and junction 0, V0 is 

the voltage at the central junction, and V-L is the voltage at 

junction 1 (fig. 2.2.6B). The flow of current from junction 0 to 

junction 3 is similarly given by

I. - = -CL (V, - VJ = ^- (V'0-3
6 °-3 R0-3 X " 3

- v-
(23)

In the y direction, the flow toward the Renter from junction 2 is 

given by

   (V0 - V '

2-0 (24)
"2-0 = -Cft (VA - VJ ='2-0 R

Similarly, the current from 0 to 4 in the y direction is

'0-4 = -C
'0-4

- vj =    (v
0' R

0-4

- v-
(25)
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There is no mechanism by which electrical charge can be 

accumulated at the central junction; thus the quantity of charge 

entering the junction in a given time must equal that leaving the 

junction that is, the sum of the currents entering the junction 

must equal the sum of the currents leaving the junction. This 

relation is known as Kirchoff's junction rule; expressed as an 

equation, for the central junction of figure 2.2.6B and 2.2.6C, it 

takes the form

Inflow - outflow = 0

1-0 2-0 0-3 0-4 ~~ (26)

Substituting the expressions for the individual currents from 

equations (22), (23), (24), and (25) into equation (26) gives

-Ce (V - V ) -Ce (V - V ) +Ce (V - V ) +Ce (V - V ) =0. (27)
1-0 ° 1 2-0 ° 2 0-3 3 ° 0-4 4 °

Using the i,j convention of equation (21), (fig. 2.2.6C), equation 

(27) becomes

-c6x (v^. - v^.^) -ce (v^. - v^^.) +c6x (v^ j+1 - v_)

+S/V^^ ' V^ = °'
(28)

where Ce is the electrical conductance of the resistor between 

junction i,j-1 and junction i,j; Ce is the conductance of the

resistor between i,j and i,j+l; and so on.

In terms of resistances (fig. 2.2.6C), equation (28) becomes
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(V* - V
R

(VV i, - v.
-1, j

Vi

Equations (28) and (29) are analogous to equation (21), with

the terms Ce or 1/R taking the place of

RX

(29)

the hydraulic conductance

term, C, and voltage taking the place of the hydraulic head, h. 

As with the hydraulic pipe system, we can write an equation of the 

form of (28) for every junction in the electrical network; if 

there are n junctions, there are exactly n unknown values of 

voltage, and we are actually dealing with a system of n

simultaneous algebraic equations of the form of (28). Rather than

attempting to solve this system algebraically, we seek an 

experimental solution by actually building the electrical network, 

imposing current sources or sinks and voltage as required to 

represent boundary conditions for the problem, and measuring the 

voltage at the individual junctions. The solution to the set of 

electrical equations can then be converged to a solution to the 

corresponding set of hydraulic equations of the form of (21) by 

applying the scale factors; and this solution to the set of 

hydraulic equations can be taken as an Approximation to the 

solution of the hydraulic differential equation, (6).

Additional Notes on Discretization

In following this procedure of experimental solution, it is 

important to visualize clearly the segments or blocks of the
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aquifer that are represented by each resistor of the network. 

Figure 2.2.7 shows a segment of the aquifer and its array of nodes 

and discretized blocks for flow in the x and y directions. The 

figure also shows the corresponding segment of the pipe network 

and the corresponding segment of the electrical network. To this 

point in the discussion of discretization, we have used grids with 

uniform spacing, that is, the spacing in the x- and y-directions 

(Ax and Ay) are equal and uniform throughout the grid.

Circumstances will arise in modeling ground-water flow in which 

more detail is required in part of the area being simulated, such 

as near a well field. In these situations the spacing between 

nodes may be much closer than elsewhere in the modeled area. In 

this section we will determine how to calculate conductances in a 

grid that has non-uniform spacing between nodes. A smaller 

segment of the aquifer and of each network is shown in 

figure 2.2.8. The upper 2 sketches in figure 2.2.8 show only two 

conducting elements of each network, one extending in the x 

direction from junction i,j to junction i,j+1 and one extending in 

the y direction from junction i,j to junction i+l,j. The block on

figure 2.2.8 corresponds to block 1 on figure 2.2.7 and shows the 

segment of aquifer represented by the pipe Cx . . and the resistor

Rx . .. This segment extends along the x-axis from node i,j to node

i,j+l, and extends transverse to the x axis a distance halfway to 

the adjacent row of nodes in the y direction. We let Ay.^

represent the distance along the y axis between the row of nodes 

at i-1 and the row at i; and let &y± represent the distance along

the y axis between the row of nodes at i and that at i+1; and we
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Figure 2.2.7. A nodal array and discretized blocks of an 
aquifer and the corresponding junctions and 
branches in a pipe: network and nodes and 
resistors in an electrical network.
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Figure 2.2.8. Small segment of the discretized aquifer (block 1 
fig. 2.2.7), the corresponding segments of the 
pipe network, and electrical network.
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let b represent aquifer thickness (fig. 2.2.8). The block extends 

a distance Ayi_ 1 /2 toward the i-1 row and a distance Ay^^/2 toward

the i+1 row. Thus the cross-sectional atrea of flow, for movement

parallel to the x axis through the block 

If the same spacing, Ay, is used between

is b(Ayi_ 1 /2 + Ay±/2) . 

all rows of the mesh, the

term (Ayi_ 1 /2 + Ay^^/2) is equal to Ay, anjd the cross sectional area 

of flow is simply bAy. Similarly, if wq let AXJ represent the

distance along the x axis between node i, j and node i,j+l, the 

distance of flow through the block parallel to the x axis is AXJ. 

If a uniform spacing, Ax, is used between all columns of nodes in

the mesh, the subscripts are no longer necessary, and the distance 

of flow is simply Ax.

Finally, we let Kx . . represent hydraulic conductivity in the x
!» D

direction in the block, that is, in the interval between i,j and

i,j+1 (note that we are defining Kx . . in terms of this internode

region, and not for a block of aquifer surrounding node i,j). The 

hydraulic conductance of the block, for this general case, is 

given by

"i.j 1 2 2 J
U v   r 7 ^^~
X, , A __ '

(30)

where for conductance as well as conductivity, the subscripts i,j 

are used here to refer to the interval t|etween node i,j and node 

i,j+1. For the case in which hydraulic conductivity is the same 

throughout the aquifer and the row spacijng (Ay) and column spacing
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(Ax) are uniform, subscripts are not needed and the hydraulic 

conductance of the block is simply

c = KxbAy 
x Ax ' (31)

In using the electrical network to simulate flow in the

aquifer, we require that the electrical conductance of the 

resistor Rx . . (fig. 2.2.8) be proportional to the hydraulic

conductance. Cx . . (equation 30). Following the same procedures as

for the flow in the x direction, we can show that the hydraulic 

conductance, for this general case, for flow in the y direction 

between i,j and i+l,j (corresponding to block 2 on figure 2.2.7) 

is given by

**.., b AVl

L 2

Ax.* 2',
y, (32)

where Ky . . is the hydraulic conductivity for flow in the y

direction between i,j and i+l,j; Axj_ x is the spacing between the 

column of nodes at j-1 and those at j; AXJ is the spacing between

the column of nodes at j and those at j+1; and b is the thickness 

of the aquifer. If Ky has the same value throughout the aquifer 

and if a uniform column spacing Ax and a uniform row spacing Ay

are used in the mesh, the general expression for hydraulic 

conductance (equation 32) simplifies to

KvbAx 
Cy = -^  

Y (33)
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Again, the electrical conductance of the resistor Ry . . must be 

proportional to the hydraulic conductance, Cy , ., in order to use

the electrical network to simulate flow in the aquifer.

Figure 2.2.9A is a top view of a 

showing the nodal array, and illustrating 

designating rows and columns; figure 2.2 

corresponding segment of the electrical

section of the aquifer 

the i,j system of 

. 9B shows the 

network.

In using an electrical analog, we c[hoose our nodes to 

correspond to junctions of the network, and define hydraulic 

conductance, represented by the individual resistors, for the 

internode regions; this leads to nodes Ijocated on the boundaries 

of the mesh as shown in figure 2.2.9A. Four aquifer blocks are 

indicated on figure 2.2.9B; two of these: are in the interior of 

the array, and two are located along boundaries of the array. 

Block A is represented by the resistor t(etween nodes 2,1 and 2,2. 

The hydraulic conductance of block A is calculated in the same 

manner as was that for block 1 in figure! 2.2.7. Block B is 

represented by the resistor between nodeis 1,2 and 2,2; its 

hydraulic conductance is calculated as was that for block 2 of 

figure 2.2.7. Block C is represented by the resistor between 

nodes 3,1 and 3,2 and extends along a bdundary of the array; the 

block represents conductance in the x-direction parallel to the 

boundary. Unlike block A, block C does not extend an equal

distance to either side of its row of nodes. The nodes coincide 

with the boundary itself. Thus, for uniform spacings Ax along the 

x axis and Ay along the y axis, the distance of flow remains Ax
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Figure 2.2.9. A part of a nodal array for a discretized 
aquifer and the corresponding part of the 
electrical network.
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but the cross-sectional area of flow is reduced to bAy/2 so that 

conductance is reduced to half that of block A. Similarly, block 

D extends along a boundary in the y direction; the length of flow

remains Ay, but the cross-sectional area 

conductance is only half that of block B.

of flow is bAx/2 so that

In working through the problems of tihis course, you will have 

an occasion to calculate aquifer hydrauld|c conductances in the 

horizontal directions and in the vertical, both in the interior of 

flow systems and along the boundaries. You also will calculate 

vertical hydraulic conductance between an aquifer and the bottom 

of an overlying stream.

Equivalent Conductances Hydraulic Conductances in
Series and Para

alic C( 
lllel

Ground water can move through aquif ir material of different

hydraulic conductances in series so that flow is directed through

one and then the next; or it can move in parallel so that the same 

head difference exists across each segmerit of aquifer material and 

an incoming flow is divided between parallel conductors. In the 

process of discretization, it is often useful to view a segment of 

the continuous aquifer system as made up of hydraulic conductances 

arranged either in series or in parallel, and to calculate an 

equivalent hydraulic conductance for this! series or parallel 

arrangement. As shown in figure 2.2.10B, the equivalent 

conductance for conductances linked in ps.rallel is simply the sum 

of the individual conductances. (Remembeir, conductance is the
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inverse of resistance.) For conductances in series, on the other 

hand, the inverse of the equivalent conductance is equal to the 

sum of the inverses of the individual conductances. This is 

demonstrated in figure 2.2.10C. Application of these rules can 

greatly simplify the calculation of conductances for individual 

blocks of a model, particularly where the model blocks represent 

combinations of different geologic materials or units.

A Note on Discretization in Computer Based 
Finite Difference Simulation

Before leaving this discussion, we should note that there are 

two basic types of finite-difference discretizations. We have 

been dealing with the "point-centered" (or "face-centered") finite 

difference discretization. In the point-centered scheme, the 

points are placed in a grid and we calculate the conductances 

between nodes. This is the method used in electric analogs and 

many numerical computer programs. The other method of 

discretization is the "block-centered" method in which the aquifer 

is divided into blocks of uniform hydraulic conductivity and 

transmissivity and a node is assigned to the center of each block 

(fig. 2.2.11). This method is used in many of the U.S. Geological 

Survey programs at the present time.

Some subtle numerical differences exist between the two 

methods, which will not be discussed here. The most important 

aspect is that regardless of the form of discretization used, a 

conductance value must be calculated between nodes to be used in
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Figure 2.2.10. Conductances in parallel and in series
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formulating a set of simultaneous algebraic equations. In "block- 

centered" schemes this is done, in effect, by applying the formula 

for conductances in series to the two "half-blocks" making up the 

interval between the adjacent nodes.

The point-centered scheme is used in this set of notes for 

three reasons:

1) convenience,

2) to keep the analogy with the electric analog more exact, 

and

3) to illustrate the calculation of coefficients and solution 

of the simultaneous equations more clearly.

Thus, the student should be aware of the type of discretization 

being used in these notes and in any simulation computer program.

Additional Notes on the Electrical Analogy

"Two systems are said to be analogs if there is a one-to-one 

correspondence between each element in the two systems as well as 

between the excitation and response functions of these elements 

and the system as a whole .... The analogy between systems is 

frequently derived or demonstrated by noting the similarities 

between the characteristic equations of the two systems." 

(Karplus, 1958, page 8).
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Figure 2.2.11. Block-centered
analysis.

formulation for finite-difference
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The Laplace equation, which combines the concept of 

continuity and a specific rule relating flow and a gradient, is 

applicable to other physical systems in addition to steady ground- 

water flow, (e.g., electrical current and heat flow). The Laplace 

equation is written for these three types of flows as follows:

Ground water Electricity Heat

o o -v2 -v2 -\2 -\23 h 3 h _ d V d V _ d Temp d Temp _
3y'

Three types of electrical media are: 

1. Conductive liquids

continuous
X

2. Conductive sheets

3. Resistor networks - lumped or discrete

The similarity of the equations for the ground-water and 

electrical systems, however, is not the reason for the 

exploitation of the analogy between these two types of flow. The 

analogy is utilized because an electrical system analogous to a 

specific ground-water system can commonly be constructed, 

analogous electrical stresses applied to the electrical system, 

and the system response easily measured by readily available 

instruments. A comparison of ground-water systems and electrical 

systems is shown in figure 2.2.12.

The intrinsic structure of a resistor network lends itself to 

reproducing the finite-difference approximation of the ground-
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BASIC LAWS:

Ground water Electricity

FLOW: Darcy's law

Q = C h (h0 - hl ) 

r KAch=T"

Ohm's law

= C,(Vn - v )

CONTINUITY:
Conservation of flow 
volume

Conservation of charge(q). 
Kirchoff's first law: the 
Sum of the currents at a 
junction or node is zero

2l = 0Qin ~ Qout = 0

EQ = o

Corresponding or Analogous Parameters

Ground-Water System

Q - volumetric flow rate [L3T~ 1 ] 
Ch - hydraulic conductance [L2T~ 1 ]

Electrical System

I - current [amperes]
Ce - electrical conductance

[siemans = ohms' 1 ] 
Ce = 1/R, R is resistance

[ohms]
V - voltage [volts], 

measured as a 
voltage drop between
two points (AV)

<|j- electrical conductivity
[siemans L'1 ] 

A - cross-sectional area of flow [L2 ] A - cross-sectional area of
resistor [L2 ]

L - length of ground-water flow t - length of resistor [L] 
path [L]

h - hydraulic head [L]

K - hydraulic conductivity [LT" 1 ]

Figure 2.2.12 Ground-water systems and electrical systems.
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water flow equation simulating flow in a discretized aquifer 

system. A comparison of finite-difference networks of resistors 

and Darcy cylinders in figure 2.2.13 illustrates this concept. A 

comparison of the formulation of basic laws of electricity for 

voltage versus the finite-difference formulation for head at a 

junction (node) is shown in table 2.2.1.

Three principal boundary types in a ground-water system have 

counterparts in the electrical system; these are:

Ground-water system

1. constant head

2. constant flow

3. streamline (no flow)

Electrical system 

constant voltage 

constant current

no current source (or 
sink)

Anisotropy in ground-water flow systems has an analog in 

electrical systems. In the resistor network, each resistor 

represents the resistance to flow in a block of aquifer in a 

specific direction (vector volume). The intrinsic nature of this 

network allows representation of homogeneous and anisotropic 

systems and certain nonhomogeneous (locally homogeneous) systems 

(see Bennett, 1976, p. 31-33). A simple representation of this 

concept is shows in figure 2.2.14.

The use of capacitors at junctions (nodes) with electrical 

systems enables transient problems to be investigated. The 

current through a capacitor is proportional to the time rate-of- 

change of voltage just as the time rate-of-change of storage
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Finite-difference 
network of resistors

Finite-difference 
network of Darcy 
cylinders

^ ^- i       r;-   ;       r!i'    
1 i i 

f " ' i I
1 _ .

X
1
1 
t

Figure 2.2.13 Finite-difference networks of resistors 
and Darcy cylinders
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Table 2.2.1 Formulation of basic laws of electricity for
voltage versus the finite-difference formulation 
for head at a junction (node.)

Formulation of Basic Laws of Electricity for Voltage at a Junction 
(Node):

I = lj- and Zl = 0

i<vi - Vo> - i"<vo - V3> + i~< V4 - vo> - it<vo -

v - 4VQ = 0

Vo -
Vl + V2 + V3 + V4

Finite-Difference Formulation for the Head at a Node

Q = CAh and > Q = 0 

C(h : - h0 ) - C(h0 - h3 )

hl + h2 + h3 + h 4 + 4hO

C(h 4 - h0 ) - C(h0 - h2 ) = 0

ho -
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GROUND-WATER 
SYSTEM

ELECTRICAL 
SYSTEM

= 10R

Figure 2.2.14 Electrical analogy of anisotropy 
in a ground-wat^r flow system.
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(volume of water) in an aquifer is proportional to the rate of 

change of head.

Ground water

ax2 at

Electricity

a2v = ay
ax2 at
In this equation, C is 
capacitance in farads
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NOTE 3, HYDRAULIC STORAGE CAPACITY

In extending the discretization process to nonequilibrium 

situations, we must consider the property of ground-water storage 

in the flow medium. In discretizing the steady-state flow 

process, we introduced the concept of hydraulic conductance, which 

combined a property of the porous medium, hydraulic conductivity, 

with the geometry of the represented block of aquifer material to 

yield a ratio of flow through the block to head difference across 

it. Following a similar pattern, we wish to obtain a relation 

between the volume of water, Av, released from storage (or taken 

into storage) in a block of aquifer and the change in head, Ah,

accompanying that release (or gain). We define this expression as 

the storage capacity,, Sc , of a block of aquifer material, and it 

represents the volume of water available from storage per unit 

change in head in the block.

First we consider a block of a confined aquifer extending 

completely through the aquifer from top to bottom, and having a 

base (map) area A and thickness b (fig. 2.3.1A). The storage 

coefficient, S, is the volume of water an aquifer releases from or 

takes into storage per unit surface area of the aquifer per unit 

change in head. In a confined water body, the water derived from 

storage with a decline in head comes mostly from the expansion of 

the water and compression of the aquifer; dewatering by gravity 

drainage from the pores does not occur as long as the head is 

above the top of the aquifer. The storage equation tells us that 

Av = SAAh. Thus, the ratio Av/Ah for the block of aquifer is
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Figure 2.3.1. Concept of storage capacity in confined and 
unconfined aquifers.
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S-A   the storage coefficient multiplied by the base area. Storage 

coefficient is itself the product of specific storage f S s , and 

aquifer thickness b. The specific storage, S s , is the volume of 

water released from or taken into storage per unit volume of the 

porous medium per unit change in head. Thus, the storage 

capacity, Sc , of a confined aquifer can be expressed as

Sc = AY. = bA>
Ah s (1)

We note that, like hydraulic conductance, storage capacity 

incorporates both a property of the medium, S3r and a geometric 

factor describing the block b«A. If we were to consider a small 

block in the interior of the aquifer rather than a prism extending 

vertically through it, we could still define the storage capacity 

of that interior block as the ratio of the volume of water 

released from storage in the block to the accompanying head change 

within it. The volume of the block is AxAyAz; thus again

Sc = j- = S sAxAyAz

For unconfined aquifers, we consider a block of the aquifer 

extending from the water table to the bottom of the aquifer 

(figure 2. 3. IB) . The volume of water derived from an unconfined 

aquifer by drainage of pore spaces under the influence of gravity 

per unit area of the porous media per unit change in head is 

defined as the specific yield, Sy . The amount of water derived 

from expansion of the water and compression of the aquifer is very
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small and usually is ignored. Thus, the storage capacity for an 

unconfined aquifer is

Av _
Ah (2)

In discussing discretization of the flow process, we utilized 

the concept of a hydraulic network modei built of sand-filled 

pipes. We can utilize a similar concept: to clarify the 

discretization of storage. Figure 2.3.2 shows a similar network of 

sand-filled pipes except that now a storage element consisting of 

a tank has been connected to each junction of the network. Again, 

the junctions of the network correspond to nodes in the 

discretized representation of an aquifer. Assuming the network 

represents a confined aquifer, each of the tanks is characterized 

by a storage capacity, Av/Ah, which is, in fact, just equal to the

base area, A, times the storage coefficient of the tank in 

question. The model is designed so that the storage capacity of 

the tank connected to each junction is equal to that of a block of 

the aquifer surrounding the corresponding node and extending 

halfway to the adjacent node in each direction, as shown in figure 

2.3.3.

Thus, whereas discretization of the flow process involved the 

delineation of aquifer blocks extending between nodes, 

discretization of storage involves division of the aquifer into 

blocks surrounding each node. When this process of division is 

completed, the volume of the block surrojunding each node is 

multiplied by the specific storage in thb vicinity of the node to
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Figure 2.3.2. Network of sand-filled pipes with storage tanks at 
each node representing an aquifer with a storage 
component.
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Figure 2.3.3. Map view of storage tank 
a discretized aquifer.

associated with a node of
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calculate the required storage capacity. In the hydraulic model 

postulated above, a tank would then be selected having the 

required storage capacity. In practice, of course, a hydraulic 

model of this sort would be cumbersome to use, and we are 

concerned instead with specifying storage capacities in a 

numerical model.

Figure 2.3.4 shows four views of the array of nodes 

associated with an aquifer model. Figure 2.3.4A shows the aquifer 

block whose properties must be designated to specify hydraulic

conductance in the x direction Cv . Figure 2.3.4B shows the blockXi,D

whose properties must be designated to specify hydraulic 

conductance in the y direction, Cy . .. Figure 2.3.4C shows the 

block whose properties must be designated to specify storage 

capacity Sc . .. Three blocks are superimposed in figure 2.3.4D.

Note that geometry enters the storage capacity calculation in a 

different way than it enters a hydraulic-conductance calculation. 

For hydraulic conductance, we multiply hydraulic conductivity by a 

ratio of flow area to flow length. For storage capacity, we 

multiply specific storage by block volume for a confined aquifer 

and specific yield by block base area for an unconfined aquifer.

We continue to use the point-centered (or face-centered) 

system which leads to nodes along the boundaries of the model. 

For boundary nodes not located at a corner, the map area of the 

block used to define storage capacity turns out to be half that
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Figure 2.3.4. Aquifer blocks associated with hydraulic
conductance and storage capacity in a nodel 
array.
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for an internal node; for a node located at a corner of the mesh, 

the map area turns out to be one quarter of that for an internal 

node. These reductions in map area generate corresponding 

reductions in storage capacity.

Most computer programs for ground-water flow simulation by 

numerical methods require either the storage coefficient or the 

specific yield associated with each node as input data. The 

program itself in effect, if not explicitly, calculates storage 

capacities in the process of solving the equations. In some of 

the problems that you will work in this course, you are asked to 

calculate storage capacities as a step in model design. The 

purpose of this exercise, like that of hydraulic conductance 

calculations, is to create a better appreciation for the 

discretization process and to bring the model design process a 

step closer to the equations actually formulated by the computer 

program.

In three-dimensional or cross-sectional simulation, storage 

varies in the vertical direction as well as in the map view, and 

the concept of a prism extending through an aquifer from top to 

bottom is no longer adequate. We must consider instead the 

storage capacities of individual blocks within the ground-water 

system. If we are dealing with a confined system, the storage 

process is dominated by compressive effects, and the storage 

capacity of each block is simply the representative specific 

storage of the aquifer material multiplied by the volume of the 

block. When we deal with an unconfined system, however, the
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storage capacity of an individual block depends upon whether or

not the free surface that is, the water table passes

through that block. If it does, the process of storage release

within the block is dominated by drainage 

of water from storage due to movement of 

the storage capacity of the block is the

 that is, by the release 

the free surface. Thus, 

specific yield of the

material multiplied by the map area of the block. On the other 

hand, if the block is beneath the free surface in the interior of 

the system, compressive storage effects are generally still 

observed even though the aquifer, as a whole, is not confined. 

That is, at a point below the water table, a decrease in pressure 

must cause a slight expansion of the water and may cause a slight 

compression of the porous skeleton. The volume of water that is 

released from storage as a result of these processes is, of 

course, small compared with that released at the water table due 

to the lowering of the free surface (watejr table) . In an areal 

simulation, where we are concerned with tjie total release from 

storage in a prism extending from the water table to the base of 

the aquifer, water derived from the compressive component is 

generally such a small fraction of the total amount of water 

removed from the prism that it is neglected. In a cross-sectional 

or three-dimensional approach; however, w^ are interested in 

representing the storage process in each individual block of the 

system. Thus, for blocks below the water table, we calculate 

storage capacity as we would in a confined system, multiplying the 

compressive specific storage of the material by the volume of the 

block.
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In some three-dimensional or cross-sectional simulations, the 

water table may rise or fall enough so that it moves from the 

block in which it started to the adjacent block above or below. 

In these cases, a routine can be incorporated in the simulation 

that checks each block after each calculation, and changes the 

storage capacity if the free surface has moved into or out of the 

block.
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NOTE 4, DISCRETIZATION OF TIME METHODS OF FORMULATING 
NONEQUILIBRIUM FINITE-DIFFERENCE EQUATIONS

In nonequilibrium simulations by numerical methods, time as 

well as space must be discretized. This is done by dividing the 

time axis into discrete intervals that begin and end at specific 

times, t lf t 2r t 3 , t 4 , . . . tn , as shown in figure 2.4.1, and 

by considering heads only at those times that is, hlf h2 , h3 , 

h4 , . . . hn . A ratio of finite differences, Ah/At or for example, 

(h3 - h2 )/(t 3 - t 2 ) , is then used to approximate the time 

derivative, oh/at. AS shown in figure 2.4.1, this is equivalent to 

approximating the slope of a hydrograph at a point using the 

average slope taken between t 2 and t 3 . This approximation to

the time derivative is then multiplied by storage capacity

to obtain an approximation for rate of change in storage

9v/9t = (9v/9h) (9h/9t) = Sc (9h/9t). This expression is, in turn,

equated to a finite-difference approximation for inflow minus 

outflow similar to that utilized in our earlier work with steady- 

state problems to obtain an approximation for the complete 

nonequilibrium flow equations.

Because we are now considering heads only at the specific 

times, t lf t 2 , . . . t n , the expressions describing inflow minus

outflow must be approximated using heads at these specific times  

that is, we must formulate our expressions for the spatial 

derivatives and thus our expressions for inflow minus outflow at 

specific times, such as t 2 or t 3 . On the other hand, we must

formulate our expression for the time derivatives and, thus, for
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Figure 2.4.1. Discretization of t|me on a hydrograph
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release of water from storage over intervals of time such as t 3 - 

t 2 . We can envision several ways of combining these

discretizations of space and time. We could, for example, (1) 

express inflow minus outflow at t 2 , the beginning of the interval

over which we approximate the time derivative; (2) express inflow 

minus outflow at t 3 , the end of that interval; or (3) change the 

interval over which we simulate the time derivative to t 4 - t 2 , and 

express inflow minus outflow at the intermediate time, t 3 .

We will confine our comments here to the first two 

possibilities. Look first at the representation of inflow minus 

outflow at the beginning of the interval that we use in 

approximating 3h/3t. Using the time derivative simulated over an 

interval At and the expression for inflow minus outflow

approximated in terms of heads at the beginning of that interval 

is termed the forward-difference method. Figure 2.4.2 shows a

graphical representation, sometimes termed the "finite-difference 

stencil" for this method. The time axis in figure 2.4.1 extends 

along the vertical. The array of five heads shown at time tn is

utilized in the approximation of inflow minus outflow; the time 

interval extending forward in time from tn to tn+l is utilized in

approximating the storage term. The finite-difference equation 

using the forward-difference method and written in terms of
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conductance and storage capacities is

-Cx < hi j n ~ hi j-l n> +Cx (hi j+i ~ hi j n> 

~Cy (hi j n ~ hi-l j n ) +Cy + (hi+l j n ~ hi j n )

*i j n+1 ~ hi ' n

n + l " J (1)
-Q, 4 - = S r

where Cv is the hydraulic conductance of a block of aquifer
xi,j-l/2  * ^

between node i,j-1 and node i,j; Cy . . is the hydraulic

conductance of a block of aquifer between node i-l,j and node i,j; 

and so on (see fig. 2.4.2). Sc . . is the storage capacity of a

block of aquifer surrounding node i,j; and Qi f j /n is a source/sink 

term that represents net additions to or withdrawals from the same 

block of aquifer surrounding node i,j, due to wells or other 

externally specified stresses, at time tn . If no externally caused 

additions or withdrawals exist, Qi,j, n ^ s z ^ro and would not appear 

in the equation.

If we were using these equations in a simulation, we would be 

interested in calculating heads at the advanced time tn+1 , on the

basis of heads at the earlier time, tn , which would either have 

been calculated already or would represent known initial head 

values. Thus our equation would contain only one unknown term, 

^i,j,n+l ancl could easily be solved for this term. Similar 

equations could be written and solved at every other node in the 

mesh. Thus, the method appears at first glance to be straight­ 

forward and simple. However, if the time increment is taken too
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large, any error that appears for any reason at any time step is 

guaranteed to grow in successive time steps until the finite- 

difference solution is eventually dominated by error and bears no 

relation at all to the analytical, or e^cact, solution of the 

differential equations of flow. This condition is termed

numerical instability; because of it f forward difference

techniques are generally not used.

Figure 2.4.3 shows a finite-difference stencil for the second 

method in which the expression for infl<bw minus outflow is 

evaluated at the end of the time interval over which the storage 

term is approximated. This procedure i£ referred to as the 

"backward-difference" method. We will igain say that the 

expression representing inflow minus outflow is evaluated using 

the five head array at time tn ; however, in this case, the storage 

term is evaluated over an interval extending backward in time from 

tn to tn_i.

The resulting form of the finite-difference equation is

-C (h. . - h. . .
i,j-l/2 i»D»n i,;)-l, n

+C (hi . . - h. . )
a-, D+l,n i,:j,n'

-C (h. - h. n . ) +C
i-l, D,n'

(h. - h.

h. . - h. , .
i, j,n i,p/n-1

n n-|L

Qi,j, n is the net withdrawal from the same block of aquifer 

surrounding node i,j at time tn .

(2)
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As noted, nonequilibrium simulation, using the backward- 

difference formulation, involves the calculation of heads at an 

advanced time (tn ) on the basis of heads calculated (or otherwise 

known) for the preceding time (t n, r ) . In using equations for this

purpose, an immediate problem that was not present in the forward- 

difference formulation is evident. Equation 2 contains five 

values of head associated with the advanced time, tn - All of these 

values are presumably unknown at the beginning of our calculation; 

only one known value of head, hi,j /n-i/ appears in the equation.

Thus, whereas the forward-difference equation (1) contains only 

one unknown head, hi>;^ n , and can be solved for this unknown at

once, there is no way to solve equation (2), considered

independently, for the five unknown headfi that it contains. 

However, an equation can be written for the unknown head, hi,j /n for

time tn for each internal node in the finite-difference mesh. The

resulting set of equations can be solved simultaneously. By

letting C x = Cy = C (distances between nodes are equal), equation 

(2) solved for hif j /n is

S Ci (h.. . n _ : ) Qi .
h. + h. h. + h. .

ttn ^n-r
(3)

4 +

Equations can also be developed for each node along the 

boundaries, utilizing the boundary conditions that apply to the

problem. If the mesh consists of p node s, there are p unknown

values of head to be determined, and there are exactly p
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equations. Thus, we have a simultaneous set of p equations in p 

unknowns, and a solution can theoretically be obtained using 

standard algebraic techniques. In practice, the work involved in 

a direct algebraic approach is often too great, and we fall back 

instead on numerical (iterative) methods. But, however it is 

obtained, the solution to the set of simultaneous algebraic 

equations gives the head distribution throughout the mesh at the 

end of the time step. Knowing the heads at the end of this time 

step, we can then reformulate our equations for the succeeding 

time step and again solve for heads at the end of the time step. 

The heads that we calculated for tn now become the known heads used 

to calculate the Ah/At term, while the heads at t n+1 make up the

unknowns in each equation of the set.

The process of iterative solution has been considered earlier 

in chapter VII of Bennett's (1976) programed text and in the 

problems involving steady-state simulation by hand calculation. 

In an iterative method, a first estimate is made and assigned for 

each unknown head. A procedure is then initiated that 

recalculates these unknown heads and alters the first estimates 

producing a set of interim values closer to satisfying the 

equations. The procedure is repeated successively, each stage 

referred to as an iteration, producing a new set of interim heads 

that more nearly satisfies the system of equations. Ultimately, 

as the interim heads approach values which would exactly satisfy 

the equations, the changes produced by succeeding iterations 

become very small. In practice, the changes in head produced at

2.4-9



each iteration are compared with some arbitrarily established 

quantity, usually termed the closure criterion. When the changes 

at all points in the mesh are less than this criterion, the 

interim head values are taken as sufficiently close to the exact 

solution of the system of equations and the iterative procedure is 

terminated.

Thus, during the iteration procedure for an individual time 

step, arrays of interim head values are recalculated in 

succession, each array containing one interim head value for each 

node in the mesh. In figure 2.4.4, the$e arrays are represented 

as iteration "planes" or levels, and a superscript (0,l,2,...m) is 

used to indicate the level of iteration, The figure shows an

array h. . _ containing final values of head for the preceding

time, tn-1 . These values are the initial conditions from which

o 
heads change in the current time step (t n ) . Another array, h. .

represents the first estimate chosen for the head at node i,j, at 

time tn ; h± . represents the interim valLue after one iteration,

and so on to the final iteration h. Since the closure

criterion has been satisfied, the values h. . are accepted as thei,D,n *

solution of the system of equations for time tn .

The iterative procedure involves tie 

of equation 2 (e.g., backward-difference 

of iteration. Each time this is done during

application of some form 

equation) at each level 

the calculations for
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time tn , the values of h. . , (the final heads obtained for the endn i,],n-l x

of the preceding time step) are utilized in the storage term. 

These head terms for the preceding time appear in the equation as 

constants or known terms; thus they retdin the same values from 

one iteration to the next and are not modified in the iterative 

process. When the process is complete for time tn , calculations 

for the next time step begin; head values at time tn become the 

initial conditions and iterative calculations proceed to solve for 

head values at time tn+i«

As the preceding discussion indicates, the iterative 

procedure yields only an approximation to the solution of the 

system of finite-difference equations for each time step; the 

accuracy of this approximation depends upon the closure criterion 

which is employed. However, it is important to note that even if 

an exact solution to the set of finite-difference equations were

obtained at each time step, these exact 

be only an approximation to the solutior

solutions would themselves

of the differential

equation of flow. The discrepancy between the head hif j >n given by

the solution to the system of difference equations for a given 

node and time, and the head h(xi ,yj,tn ), which would be given by

the formal solution of the differential equation for the 

corresponding point and time, is termed !the truncation error. In 

general, the truncation error becomes greater as the mesh spacing 

and time-step length are increased. Finally, it must be 

recognized that even if a formal solution of the differential 

equation could be obtained, it would normally be only an
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approximation to conditions in the field in that hydraulic 

conductivity and specific storage are seldom known with great 

accuracy, and uncertainties with regard to representing the actual 

geometry or the natural hydrologic boundaries are generally 

present.

In any iterative method, one begins with an assumed 

distribution for the heads that one is trying to calculate and 

progressively modifies that distribution until agreement with the 

equations is achieved. In applying iterative methods to solve 

nonequilibrium problems, this is done at each time step; that is, 

at each time step, we make a first estimate of the head 

distribution and adjust that assumed distribution progressively 

until we obtain a distribution that satisfies our equation set. A 

question that arises immediately is how to make our first estimate 

of the head distribution in each successive time step. Clearly, 

if a good choice is made that is, if the first estimate is close 

to the correct head distribution for the end of the step the 

iterative procedure will go very quickly. If a poor choice is 

made if the first estimate differs radically from the correct or 

acceptable solution, the iterative procedure will require many 

computational steps (iterations). A common practice is to take 

the head distribution calculated for the preceding time step as 

the first estimate for the current step. Referring to the diagram

o 
of figure 2.4.4, this is equivalent to setting h. . equal to

2.4-13



hA . . This practice usually provides reasonable first estimates

for the head distribution at tn+1 , but sometimes (particularly in

problems involving iteration by hand calculation) can cause 

confusion in understanding exactly how the heads from t n enter the

calculation. A review of equation 2 shows that the head for the 

end of the preceding time step, h.j_ j /n_i appears in the equation

only once in the term approximating the rate of withdrawal from

storage. As such, it is treated as a constant in the iterative 

process it is not changed continually as are the values of h^j^. 

We must be careful to note that if we use the value of hi ^j^ n_ 1 as 

the basis for our first estimate of hj^j n , this is not in any sense 

a reintroduction of hi f j, n_i into the equation; hi ^j^ n_ 1 still appears

only once in the equation in the storage term, and after a 

solution is achieved, hj_ j n is simply equal to the head at the end

of the time step.

Finally, we should note that our first estimate of head at 

time tn need not necessarily be taken ecfrual to the values of t n_ l .

There are many other ways of choosing a first estimate. Some 

programs employ a head predictor, which extrapolates trends in 

head over preceding time steps to obtain an estimate for the end 

of the current step; this extrapolated Estimate is then used as 

the first estimate.
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NOTE 5, THEIS CONCEPTS: RESPONSE OF AN AQUIFER TO
WITHDRAWAL OF WATER

The points made by C.V. Theis (1940) in his paper, "The 

source of water derived from wells essential factors controlling 

the response of an aquifer to development," may be summarized and 

extended as follows. Consideration of the hydrologic equation 

Inflow = Outflow ± Astorage suggests that, in principle, there are

three possible sources of water to a pumping well a decrease in 

ground-water storage, an increase in inflow to the ground-water 

system, or a decrease in outflow from the ground-water system. 

This abstract statement of principle can be clarified by 

application to a concrete example.

Consider a simple hydrologic system under predevelopment 

conditions in a state of dynamic equilibrium for which inflow = 

outflow (fig. 2.5.1A). When a well is added to the system and 

pumping starts at a rate C^, initially water is withdrawn only from

storage near the well. As water levels continue to fall and 

hydraulic gradients are reduced in areas of natural discharge, 

natural discharge is reduced (fig. 2.5.IB). These processes 

reduce the amount of water that must come from storage--in effect, 

flow is rerouted from the original discharge area, the stream, to 

the pumped well. As the rate of storage depletion decreases, the 

rate of water-level decline slows and the system approaches a new 

equilibrium (fig. 2.5.1C).
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 Unconfined-ogu'ifer.'-*-  -    ' ~

Discharge (D) = Recharge (R)
DIRECTION OF GROUND- 

WATER FLOW

Withdrawal (Q.,) = Reduction in storage (AS) - - Reduction in discharge (AD)

D

Withdrawal = Reduction in discharge (AD)

Withdrawal (Q,,) = Reduction in discharge (AD)  »  Increase in recharge (AR)

Figure 2.5.1.--Ground-water flow patternb in a hypothetical system 
under natural conditions (A) and in response to 
different levels of stress resulting from local 
pumping of ground water (B, C, and D). (Modified 
from Heath, 1983, p. 33).
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At a later time the equilibrium condition depicted in figure 

2.5.1C is further disturbed by a higher rate of pumping, Q2 , in

figure 2.5.ID. After an initial removal of ground water from 

storage accompanied by a further decline in water levels, the new 

equilibrium condition exhibits no divide; that is, a hydraulic 

gradient between the stream and the pumped well has been 

established (fig 2.5.ID). Contrast this to the situation depicted 

in figure 2.5.1C in which a water-table divide exists between the 

well and the stream. The condition in figure 2.5.ID) induces more 

water from the stream into the aquifer. Thus, the stream, which 

formerly was a gaining stream under natural conditions and a 

lesser rate of pumping Ql (fig. 2.5.1C), is now locally a losing

stream (fig. 2.5.ID) near the well.

In summary, the source of water to the well at the initial 

rate of pumping, Qlf after a new equilibrium condition had been

achieved, was reduced outflow of ground water to the stream. 

However, in contrast, the source of water to the well at the 

higher rate of pumping, Q2 , includes both reduced outflow to the

stream and induced inflow from the stream to the aquifer.

In some cases, the pumping rate may exceed the increase in 

recharge and decrease in natural discharge that can be induced. 

In these cases, removal of water from storage continues until 

falling water levels or exhaustion of the supply forces a 

reduction in the pumping rate. A new equilibrium is then attained 

in which the reduced pumping rate equals the increases in recharge 

and decreases in discharge that have been achieved. If pumping
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rate is not held constant, but rather is increased from year to 

year, new periods of withdrawal from storage accompany each 

increase.

In the analog problem (Section 3.5), the hydrologic system is 

assumed to be at equilibrium, that is, tthe prepumping system is 

assumed to be at a natural steady state 4 When pumping is 

introduced, the assumption is made that we are viewing the system 

after the period of withdrawal from storage has passed that is, 

after we have already reached a new equilibrium. Thus, for the 

analog problem, we will not be concerned with the period of 

storage release or with the changes in head with time. In Section 

3.6 we will consider a nonequilibrium problem utilizing simulation 

by numerical finite-difference methods. In this problem the 

period of storage release and the changes in head and flow with 

time will be considered.
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NOTE 6, STREAM-AQUIFER INTERACTION 

Int roduct ion

An understanding of stream-aquifer interaction is a key 

element in the formulation of an accurate conceptual model of 

ground-water systems. Streams in direct contact with or near a 

ground-water system can have a significant impact on steady-state 

ground-water levels and a complex effect on transient changes in 

ground-water levels.

The details of potentiometric contours on water-level surface 

maps near streams help demonstrate our concept of the ground-water 

flow system as related to streams. Consider three hypothetical 

cases of simple stream-aquifer interaction (1) a gaining stream, 

(2) a losing stream, and (3) a stream that is simultaneously 

gaining and losing water. In an aquifer system that contains a 

gaining stream (fig. 2.6.1A), ground water seeps from the aquifer 

into the stream channel. The stream channel intersects the water 

table, and the elevation of the stream surface is lower than the 

surrounding water table. (NOTE: The elevation of the stream 

surface represents the ground-water head on the streambed which is 

a boundary of the ground-water system.) In an aquifer system that 

contains a losing stream (fig. 2.6.IB), ground water seeps from 

the stream channel into the aquifer. The elevation of the stream 

surface is higher than the local water table. If the stream is 

hydraulically connected to the aquifer, the elevation of the
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flow path

B. Losing stream
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regional ground water
Y-

fl ow path N v
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Figure 2.6.1. Three classes of str
interaction with ground

earns based on stream 
water.

2.6-2



stream surface represents the maximum head in the local ground- 

water system. In an aquifer system with a stream that both gains 

and loses water from a stream (fig. 2.6.1C), the regional ground- 

water flow path crosses the stream. Ground-water levels are 

higher than the stream-surface elevation on one side of the stream 

and lower on the other, resulting in ground-water flow both into 

and out of the stream channel in the same channel reach. The 

water leaving the stream continues to move in the general 

direction of the regional ground-water flow.

Simulating Large Streams With a Relatively Unlimited Supply of 
Water in Hydraulic Connection with the Aquifer

Many streams can be simulated relatively simply if we can 

assume that the quantities of water seeping (one way or the other) 

between the stream channel and the ground-water system are small 

compared to the stream discharge and that this seepage does not 

significantly affect the stream stage. Streams of this type can 

be simulated using a constant-head or specified-head boundary 

condition. However, utilization of this boundary condition 

implies that (1) the stream stage will remain constant (or will 

change in a pre-defined manner), and (2) the stream will act as an 

unlimited source or sink for any and all exchanges of water 

between the stream and the aquifer. The validity of these 

assumptions should be evaluated closely in each case. Two types 

of streams that will be considered under this unlimited supply of 

water classification are: fully penetrating streams, and 

partially penetrating streams.
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Fully Penetrating Streams

Figure 2.6.2 shows two types of fully penetrating streams. 

In figure 2.6.2A the fully penetrating stream completely 

intersects the saturated aquifer material. Such a stream

effectively isolates hydrologic response 

from the other (assuming constant stream

on one side of the stream

stage). However, a

stream may behave as a fully penetrating stream even if it does 

not completely intersect the saturated aquifer material as in 

figure 2.6.2B. For this condition to exist, the aquifer material 

below the stream must be in good hydraulic connection with the 

stream, causing the head in the aquifer material underlying the 

stream to remain approximately equal to the stream stage. Under 

such conditions (again assuming constant stream stage), pumping a 

well on one side of the stream will have no effect on ground-water 

levels on the other side of the stream.

A fully penetrating stream can be simulated using a constant- 

head boundary condition for numerical firiite-difference and analog 

simulations (fig. 2.6.3). Adjustment for the conductance of a 

streambed can be made in the conductance branch in a finite- 

difference grid or in the resistance in Connecting resistors in an 

analog grid.
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A. Stream completely
penetrates aquifer.

B. Stream incompletely 
penetrates aquifer, 
but hydrologically 
has similar effect 
as completely 
penetrating stream.

Figure 2.6.2. Fully penetrating streams.
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A. Numerical Finite-Difference Simulation

Constant head node

/ / / 7 / / / 7 ///////

Simulated flow 
components

I- » r C i_ "K C <* 0 V 

O !"£ U  'I <J - u_» «X f-

B. Analog Simulation

Constant voltage applied at node

/dn J ^a r f u

Figure 2.6.3. Simulation of a fully 
numerical finite-dif 
analog simulations.
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Partially Penetrating Streams

A partially penetrating stream intersects only part of the 

saturated aquifer material. The stream channel is hydraulically 

connected to the saturated aquifer material. However, the head in 

the aquifer directly beneath the stream may be greater (fig. 

2.6.4A) or less (fig. 2.6.4B) than the stream stage. The head in 

the aquifer beneath the stream is part of the solution and can 

change in a simulation. Water can move from the aquifer on one 

side of the stream to the aquifer on the other side of the stream 

under the streambed. Therefore, the effects of a stress on one 

side of the stream can be observed on the other side of the 

stream.

In an aquifer with a penetrating stream, vertical flow 

components exist near the stream. This vertical flow can be 

simulated using a "leaky" conceptualization of the effect of the 

stream. This type of representation is shown in figure 2.6.5 for 

a numerical finite-difference and an analog simulation. This type 

of simulation approximates the effect of the stream as a "lumped" 

net leakage between the stream and the aquifer. In situations 

where the stream is gaining on one side and losing on the other 

(fig. 2.6.4C), the flow simulated is the net flow between the 

stream and the aquifer. In the simulated system (fig. 2.6.5), 

effects of stress in the aquifer on one side of the stream can 

extend to the other side because horizontal flow beneath the 

stream is simulated, and the partial penetrating stream affects 

the quantity of water removed or added vertically.
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/ / / / / I I I

B Losing Stream
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C Stream Simultaneously Gaining and Losing Water
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Figure 2.6.4.   Three general classes 
streams .

partially penetrating
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a. Numerical finite-difference simulation

Vertical hydraulic conductance block 
representing "leaky" stream condition

Constant stream stage head (h e )

//////// // / / / /
Simulated head in the aquifer (h.

B. Analog simulation

Vertical electrical conductor representing 
"leaky" strear condition

Potential (voltage) fixed at stream stage (h

/ / / / /

Figure 2.6.5. Simulation of a partially penetrating stream in
numerical finite-difference simulations and 
analog simulations.
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The predicted quantity of seepage is dependent upon the 

stream surface elevation, hs , the simulated head in the aquifer, 

ha , and an expression for the vertical conductance branch, Cs 

connecting the stream and aquifer.

The seepage Qs is then determined by the equation: 

Qs = (ha - hs )Cs .

This equation is graphed in figure 2.6.6. If the stream surface 

elevation, hs , is assumed to be a constant then, seepage from the

aquifer to the stream is represented in quadrant 1, whereas, 

seepage from the stream to the aquifer is represented in quadrant 

3. The slope of the line in figure 2.6.6 is equal to 1/CS .

The vertical conductance between the stream and the aquifer 

is a lumped parameter, which takes into Recount the stream and 

aquifer geometry and the vertical hydraulic conductivity of the 

streambed and aquifer material. It is also important to note that 

in this type of simulation, the conductance, CSr remains constant

and does not change with the water level in aquifer.

Simulating Streams That Are Not Always In Hydraulic Connection 
v With The Aquifer

The quantity of water, Qs , that seeps to or from partially 

penetrating streams has been approximate^ by the linear equation:

Qs = (ha - hs )Cs
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Figure 2.6.6. Flow between a partially penetrating 
stream and an aquifer.
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where ha = head in the aquifer beneath the stream,

hs = altitude (head) of the stream surface, and

Cs = conductance of the aquifer beneath the stream.

In a field situation, however, many factors can cause Qs to behave

as a nonlinear function of head. Some of these factors are (1)

changes in the length of stream with changing ground-water levels, 

(2) changes in stream channel cross sectional geometry with 

changing ground-water levels, and (3) a tjreak in the hydraulic 

connection between the streambed and the saturated aquifer below. 

In particular, some streams that are not fully penetrating change 

ground-water seepage characteristics accdrding to the relative 

head in the aquifer. These streams can t)e modeled using a 

nonlinear seepage relation. Three situations situation are shown

in figure 2.6.7 where ground-water levels decline from level I,

where ha > h s and ground water seeps to the stream; through level 

II, where ha < hs and seepage flows from the stream to the aquifer; 

to level III, where ha < hs and the stream is no longer 

hydraulically connected with the aquifer, and water seeps from the 

stream at a constant rate.

Another example of a nonlinear ground-water seepage 

relationship can be seen in streams on Long Island, New York 

(Harbaugh and Getzen, 1977). The streams are strictly gaining and 

dry up as the water table drops below the! streambed. In figure 

2.6.8, line segment A describes the linear seepage relation when

the stream and aquifer are connected and

2.6-12

seepage flows to the



F
IE

LD
 

C
O

N
D

ITIO
N

G
R

APH
IC

AL 
R

EPR
ESEN

TATIO
N

G
O

VER
N

IN
G

 
EQ

U
ATIO

N

= 
c

s 
(h

a 
- 

h
s)

h
a 

> 
h

s

II. 
q
, 

= 
C

, 
(h

, 
- 

h
s

)

h
a 

< 
h

s

III. 
Q

s 
= 

c
o
n
s
ta

n
t

a
q

u
ife

r 
is

 
u
n
s
a
tu

ra
te

d
 

b
e

n
e

a
th

 
stre

a
m

F
ig

u
re

 
2
.6

.7
. L

in
e
a
r 

an
d

 
n

o
n

-lin
e
a
r 

re
la

tio
n
 

b
etw

een
 

a
q

u
ife

r 
h
ead

 
an

d
 

stre
a
m

 
se

e
p
a
g

e
.



FIELD CONDITION

B

GRAPHICAL REPRESENTATION

Figure 2.6.8. Linear and non-linear ground-water seepage
relations for streams on Long Island, New York 
(Harbaugh and Getzen^ 1977).
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stream, and line segment B defines the constant rate of zero (no) 

seepage after the stream has dried up.

Areal Discretization of a Stream Using a Finite Difference
Representation

In a finite-difference model, that is made up of many 

interconnected discrete model blocks, it is virtually impossible 

to have all model nodes positioned on the exact location of the 

actual river course (fig. 2.6.9). The nearest node usually is 

assigned as a stream node, and the most appropriate simplified 

governing equations are used to describe the interaction between 

the stream and the aquifer. In calculating the vertical stream 

conductances to represent the river, the actual reach of the river 

to be simulated by each model block should be taken into account. 

The effect (or error) associated with the inaccurate areal 

placement of the river is problem dependent and can be minimized 

during the model design phase of the project.
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Stream course 
on map

Mocicl

Figure 2.6.9. Approximated areal location of stream 
channel as represented in a finite- 
difference simulation.
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Summary and Conclusions

The purpose of simulating streams as presented is to 

reproduce the effect of the stream on the aquifer as realistically 

as possible. The simulation of the stream itself does not have to 

be very sophisticated, but the effect of the stream must be 

accurately represented. It is important to remember that all 

actual ground-water flow systems are three-dimensional in nature. 

The actual ground-water/surface-water interaction virtually is 

always three-dimensional (figure 2.6.10). Thus, all the 

simplifications that went into the simplified models presented 

must always be kept in mind and continually reassessed during a 

study.
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Figure 2.6.10. Shallow ground-water flow systems associated
with two streams and 
flow system (Prince,

a regional ground-water 
1980).
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NOTE l f WELL-DRAWDOWN CORRECTION AT A PUMPING NODE

The drawdown calculated by the model for a pumping node is an 

average for the area represented by the node; it does not include 

the drawdown in the "cone of depression" immediately around the 

pumped well. Situations may arise in which we want to know 

approximately what the actual drawdown would be in a real well at 

the node. Prickett and Lonnquist (1971, p. 61) and Trescott, 

Pinder, and Larson (1976, p. 8-10) give a formula for estimating 

the additional drawdown occurring in the cone around the well. 

The derivation of the formula follows.

The drawdown calculated at the model node can be envisioned 

as representative of a very large well of radius, ra , positioned in

the center of the model block (fig. 2.7.1A). If we can determine 

the radius, ra , of this hypothetical large-diameter well, then the

Thiem equation enables us to calculate the additional drawdown 

between the hypothetical large radius. ra , and the actual well

radius, rw , under steady-state conditions. This additional 

drawdown can then be added to the node drawdown to obtain the 

actual drawdown in the pumping well (fig. 2.7.IB) .

The well-known Thiem equation that describes steady-state 

radial flow to a fully-penetrating well in a confined aquifer is:

where

r l and r2 are the radial distances at point one and two

respectively,
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Pumping node

A

6

c

Figure 2.7.1.--Relations for determining drawdown in a real 
well from drawdown determined at a model node.

A. Hypothetical large-diameter well of radius 
ra that accounts for drawdown at model node

B. Relation of hypothetical large-diameter 
well of radius r4 to real well of radius 
rw at model node.

C. Flow of water thtough one side of model 
block.
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h1 and h2 are the hydraulic heads at point one and two 
respectively,

T is the aquifer transmissivity, and 

Q is the well discharge.

If the node spacing is a, we can think of the flow toward this 

large hypothetical well as a steady radial discharge between an 

outer radius, a, and an inner radius, ra (fig. 2.7.1C). The head

at radius a is taken as that for the node adjacent to the pumping 

node, while the head at ra is taken as that for the pumping node.

Applying the Thiem equation gives

_ 2.3Q a 
n-i n "" 271T °g ra ' (2)

or

log 7- =
2.3Q

In the model configuration, the discharge into the pumping 

node can be thought of as entering through the four sides of a 

rectangular area around the node (fig. 2.7.1C). The flow through 

one side would be given by Darcy's law as:

= Ta -

from which

_ Q 4'
(5)
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Substituting (5) into (3) gives

so that

log "

 2- = 4.81, or r
 ^ a

= 0.68,
(6)

a 4.81 (7)

That is, a well whose radius is 1/4.81 times the node spacing 

will have a drawdown or water level equal to that calculated by 

the model for the pumping node.

The additional drawdown in a real well of radius rw , is

determined by calculating the head loss ffor steady-state radial 

flow between ra and rw (fig. 2.7.IB), again using the Thiem

equation. The additional drawdown(s) is thus equal to:

s = 2.3Q 
2 TIT

log -=r-
^ T.T

2.3Q 
2 TIT

log
4. 81 (rw ) '

(8)

The total drawdown in the actual well is then equal to the 

drawdown at the node plus the additional drawdown calculated by 

equation 8.

This derivation assumes that (1) fl<t>w is within a square 

model block and can be described by a steady-state equation, (2) 

one fully-penetrating well is located in the center of the model 

block, (3) the aquifer is isotropic and Ijiomogeneous in the model 

block, (4) well losses are negligible, aifid (5) the aquifer is 

confined. Trescott and others (1976, p. 10) also give a form of 

the equation for unconfined aquifers.
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CHAPTER 3 PROBLEMS

PROBLEM 1, CALCULATION OF LUMPED HYDRAULIC CONDUCTANCES AND 
STORAGE CAPACITIES IN RECTANGULAR GRIDS

Review of Concepts Related to Discretization

Before considering the details of calculating hydraulic 

conductance and storage capacities, we will review some of the 

important concepts related to discretization.

1. What is discretization?

Discretization is the dividing of a continuous system into a 

system made of lumped "discrete" elements. A map of a space 

discretized system consists of a network of lines (branches) which 

intersect at points (junctions or nodes)(figs. 3.1.1 and 3.1.2).

2. Why discretize?

Discretization (in our case, the finite-difference method of 

discretization) allows us to use a system of algebraic equations 

to represent the continuous differential equation governing the 

problem. For each node in our discretized system, there is one 

algebraic equation that expresses the principle of continuity in 

the vicinity of that node. For a system with n nodes, there are n 

simultaneous linear equations.

3. How is a system discretized?
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Figure 3.1.1. Plan view of finite-difference grid over map of 
aquifer system (from Prickett and Lonnquist, 
1971, figure 7). !
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Figure 3.1.2. Finite-difference grid using variable spacing 
(from Prickett and Lonnquist, 1971, figure 24)
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a. A system can be discretized in space for the finite- 

difference method using either uniform g^rid spacing (network 

branches form squares, fig. 3.1.1) or variable grid spacing 

(network branches form rectangles, fig. £.1.2).

b. Factors, which may be interrelated, that should be taken 

into account when determining the overall size and spacing of the 

finite-difference grid are as follows:

1) Scale and location of stresses to be applied to the 

model point stresses, nonpoint stresses^ and areal distribution 

of stresses. For example, if we know onJLy total regional 

withdrawals from the system, a mesh size fine enough to allow 

simulation of individual wells may not be warranted.

2) Boundaries system boundaries versus model boundaries. 

The model grid should extend to "natural!" system boundaries if 

possible. If "artificial" model boundaries are used, they should 

be far enough away from the area or points of stress to have a 

negligible effect on model response.

3) Accuracy of input data describing system parameters in 

area of interest (regional estimates of system response versus 

site-specific estimates). For example, if we know only an average 

T value in an area, a fine mesh size requiring detailed mapping of 

T may not be warranted.
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4) Information required from model (site specific versus 

regional). For example, are we interested in the drawdown in the 

vicinity of the well or is knowledge of the regional effects of 

the pumping sufficient?

5) Consideration of numerical error the model solves a 

system of algebraic-difference equations that simulates the 

partial-differential equation of ground-water flow. The finite- 

difference approximations to the various derivatives contain 

"truncation" errors which, in general, are of the same order as 

the mesh spacing, the square of the mesh spacing, or the length of 

the time step. As the mesh is made more coarse or the time step 

is extended, these truncation errors increase, and the solution of 

the set of difference equations may deviate increasingly from the 

desired solution of the partial-differential equation.

6) Computer capabilities size of core storage and 

computation time for a given problem size (the problem size is 

defined, in general, by the number of nodes in the discretized 

system), which in turn determines cost and operational feasibility 

of solving a problem.

Calculation of Areas and Volumes Associated with Branches in 

Rectangular Finite Difference Grids

Our first goal in this problem assignment is to calculate 

hydraulic conductances for branches in rectangular finite-
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difference networks. The first step is to determine the top or map 

area (vector area of Karplus, 1958) associated with each branch, 

which along with the "thickness", defines the block of aquifer 

material (vector volume of Karplus, 195JJJ) associated with each 

branch. As we will see later, this area associated with the 

branch is not the area needed to calculcite hydraulic conductance.

Square networks (network branches form squares (figure 3.1.3) 

are a special case of rectangular networks (network branches form 

rectangles (figure 3.1.4). The following general procedure for 

determining the top or map area associated with branches in 

rectangular networks is applicable to bcj)th.

1. Starting at one (either) end of the branch (at a node) 

under consideration, draw a line that i^ perpendicular to the 

branch under consideration halfway to the next node.

2. From this point, draw a line ecfjual in length and parallel 

to the branch under consideration.

3. Return to the starting node an<ii repeat steps 1 and 2 in 

the opposite direction. (See examples in figures 3.1.3 and 3.1.4)

The resulting rectangle (or square) (figs. 3.1.3 and 3.1.4) 

represents the vector area associated with the branch. The vector 

volume of earth material associated wita the branch is obtained by 

multiplying this area by the (in this c^se) aquifer thickness.
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Figure 3.1.3. Hydraulic conductance in a square finite-difference 
grid.
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Calculations of the areas and volumes associated with 

branches for the examples shown in figures 3.1.3 and 3.1.4 are 

given in table 3.1.1.

Definition of Hydraulic Conductance

The blocks of earth material whose volumes were calculated in 

table 3.1.1 can be thought of as Darcy prisms (represented by 

branches in a map of a finite-difference network) between 

junctions (nodes in network map) where head is measured. Darcy 's 

law can be written

where Ah is the difference in head at the two ends of the prism 

(fig. 3.1.5A. The cylinders shown in fig. 3.1.5 are 

hydrologically equivalent to vector volumes associated with a 

nodal network) . Rearranging the formula above, we will define the 

hydraulic conductance as

KA QC =
L Ah'

We see that the hydraulic conductance is a lumped coefficient, 

obtained directly from Darcy's law, that represents the 

transmitting capability of a block of earth material. This block 

of earth material is represented by a branch on a map of a 

discretized aquifer system.
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Table 3.1.1. Areas and volumes associated with network branches 
for examples in figures 3.1.3 and 3.1.4

Branch
Area associated
with branch (square feet)

Volume associated
with branch ( cubic feet)

Examples in Figure 3.1.3

AB 

CD 

EF

(750 + 750) (1,500) =2,250,000 (1,500) (1,500) (35) =78,750,000

(750 + 750) (1,500) = 2,250,000 (1,500) (1,500) (35) = 78,750,000

(750) (1,500) =1,125,000 (750) (1,500) (35) =39,375,000

Examples in Figure ^3.1.4

AB 

CD

EF

(75 + 100) (250) = 43,750 

(150 + 175) (200) = 65,000 

(175) (100) = 17,500

GH (150 + 175)(250) = 81,250 

IJ (125 + 125)(250) = 62,500

(175) (250) (85) = 3,718,750

(^25) (200) (85) =5,525,000

(175) (100) (85) = 1,487,500

(325) (250) (85) = 6,906,250

(250) (250) (85) = 5,312,500
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Calculation of Hydraulic Conductance

The calculation of hydraulic conductances for homogeneous 

blocks or prisms of earth material requires only the application 

of the above formula defining hydraulic conductance. A 

complication arises, however, when the hjlocks are not homogeneous. 

The general procedure is to break the large block into smaller 

blocks, calculate the conductances for the smaller blocks, and 

then combine these conductances into one lumped conductance for 

the large block. The rules for combining conductances, which may 

be connected either in series or parallel, are summarized in 

figure 3.1.5. These rules should be carefully studied and 

memorized.

The structure of the formulas in figure 3.1.5 may recall the 

rules for combining resistances in series and parallel that one 

encounters in first-year physics. Remember that resistance and 

conductance, both electric and hydraulicL are reciprocals of one 

another. Thus, "opposite" rules apply ih combining resistances 

and conductances. Resistances in series are combined by addition. 

Resistances in parallel are combined to an equivalent resistance 

by applying the reciprocal rule. Compar^ these rules for 

combining resistances with the rules for combining conductances in 

figure 3.1.5.

Calculations of hydraulic conductances for the selected 

network branches shown in figures 3.1.3 and 3.1.4 are given in

3.1-12



table 3.1.2. The key to calculating hydraulic conductance is to 

have a clear picture of how the Darcy prisms are oriented 

relative to the finite-difference network. Conceptually, flow can 

occur only along branches, which can be regarded as an abbreviated 

graphical representation of a Darcy prism oriented parallel to the 

branch.

The area (A) in the hydraulic conductance equation is the cross- 

sectional area of the Darcy prism. Because the network branch is 

parallel to the axis of the Darcy prism, the cross-sectional area 

(A) of the Darcy prism is oriented perpendicular to the network 

branch.

Calculate the hydraulic conductances for the branches of the 

rectangular grid shown in the table on worksheet 3.1.1.

Calculation of Storage Areas Associated with Nodes in Rectangular
Finite-Difference Grids

Our second goal in this problem assignment is the calculation 

of storage capacities in rectangular finite-difference grids. The 

first step in this process is the calculation of storage areas 

associated with nodes (area of field represented by a capacitor in 

Karplus, 1958). Because square finite-difference grids are a 

special case of rectangular finite-difference grids, the following 

procedure for determining storage areas is valid for both 

rectangular and square grids.
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Table 3.1.2. Calculations of hydraulic conductances for selected 
network branches in figures 3.1.3 and 3.1.4

Branch Formula used
Hydraulic conductance 
(feet squared per day)

AB

CD

EF

Single 

Single 

Single

Examples in Figure 3.1.3

60[35(750 + 750)
1,500

4Q[35(750+750) 
1,500

60[35(750)

= 2,100

= 1,400

1,500
= 1,050

Examples in Figure 3.1.4

AB

CE

EF

GH

Single 

Single 

Single

Series

75[85(75+100)] 
250

75[85(150+175)3 
200

75[85(175)
100

= 11

1

4,462 

= 10,359 

,156

1 75[85(150 + 3.75) ] 50 [85 (150 + 175) ]
'eq 100 150

1 +
20,719 9,208'

= 6,378

IJ Parallel
75[85(125+]100) ] 50 [85 (25) ]+    r-z-i    = 6,162

250 250
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Four branches meet at each of the interior nodes, three 

branches meet at the "edge" nodes, and two to four branches meet 

at "corner" nodes depending on whether it is an inside or outside 

corner (fig. 3.1.6) (there may be many rjiore than four "corner" 

nodes). Construct perpendicular bisectdrs for all branches 

intersecting at a given node and extend these lines until they 

intersect one another. The rectangular (or square) figure within 

the network boundaries formed by these intersecting perpendicular 

bisectors outlines the storage area for the node under 

consideration. Examples of storage areas are shown in figures 

3.1.6 and 3.1.7, and numerical calculations of these same storage 

areas are given in table 3.1.3.

Definition of Storage Capacity

The definition of storage capacity is given here only to 

permit numerical solution of the following problem. The relation

of storage capacity to the basic ground-water flow equations will

be discussed elsewhere.

For unconfined flow, the storage capacity (S c ) may be defined 

as

Sc = SyA,

where Sy is the specific yield and A is the storage area as

determined in the previous section. For confined flow, the 

storage capacity, Sc , may be defined as

Sc = SA = S sbA
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Table 3.1.3. Calculations of storage areas for selected nodes in 
figures 3.1.6 and 3.1.7.

Node______________Storage area (feet squared) 

In Figure 3.1.6

A 4(750)(750) = 2,250,000

B 1(750) (750) = 562,500

C 3(750) (750) = 1,687,500

D 1(750) (750) = 562,500

E 2 (750) (750) = 1,125,000

In Figure 3.1.7

A (125 + 150)(100 + 125) = 61,875

B (50 + 75)(125 + 125) = 31,250

C 175(100 + 125) = 39,375
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where S is the storage coefficient, Ss is the specific storage 

(ft"1 ), and b is the aquifer thickness.

thatWe see from the definitions above 

capacity values involves multiplying the 

(presumably) known or assumed aquifer parameters

calculation of storage 

storage area by

Calculation of Storage (papacities

Calculate the storage capacities for the nodes of the 

rectangular grid that are listed on worksheet 3.1.2.
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PROBLEM 2, NUMERICAL ANALYSIS STEADY STATE 

Int roduct ion

The purpose of these notes and the associated problems is to 

(1) introduce the concept of representing the continuous partial- 

differential equation of ground-water flow by a set of 

simultaneous algebraic equations, the method of finite 

differences; and (2) use two methods to solve the set of 

simultaneous algebraic equations, an example of a direct method 

and an example of an iterative method.

Ground-water flow is described mathematically by partial- 

differential equations. These mathematical expressions 

(mathematical models) are based on the conservation of mass and 

energy and mathematically represent the cause and effect relation 

that are necessary to describe the physical process of flow 

through porous media. The specification of boundary conditions 

completes the mathematical description of a ground-water flow 

system. After the specific flow system under study has been 

defined mathematically, the general differential equations that 

describe ground-water flow can be solved for the specific system.

An analytical solution of these mathematical models 

(differential equations plus boundary conditions) specifies the 

dependent variable continuously in space and time. Usually, the 

dependent variable in the ground-water flow equations is hydraulic 

head, but sometimes it is fluid pressure.
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Frequently, mathematical models can be simplified by making 

certain assumptions regarding the flow System. These assumptions 

entail a simplification in the representation of the physical 

system that translates into a less complex mathematical equation. 

Many such simplified mathematical equations have general, 

functional, or algebraic solutions (analytical solutions) that 

describe the dependent variable through space and time. In some 

instances however, the physical system does not lend itself to 

such simplification, and the mathematical models cannot be solved 

analytically. In these cases, some methjod of numerical simulation 

is used to solve the mathematical model and, in turn, to describe 

the physical processes.

The finite-difference method is one technique of numerical 

simulation. The finite-difference method involves representing 

continuous space and time by means of discrete blocks or elements

in space and discrete increments of time Thus, the flow system

is represented in space by a set of discrete elements that allows 

it to be defined mathematically by algebfraic equations, which 

approximate the continuous differential Equations.

In the finite-difference method, th^ continuous partial 

derivative 3u/3x is approximated by an algebraic equation. The

formal definition of the finite-difference method uses a trucated 

Taylor series expansion. A Taylor series for u(x+Ax) can be

written as:
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r) 1 2 r)
u(x+Ax) = u(x) + Ax 3- [u(x)] +    < Ax > ~T~ [

3x 2! 3x (la)

Rearranging, we can solve for the derivative of the functions 

u(x + Ax) - u(x) l
A o i AAx 2! Ax X (lb)

and truncating gives

9[u(x) ] u(x + Ax) - u(x)
3x Ax ' (2)

which is an approximation of the derivative in terms of two 

specific values of the function. The error between the exact 

value of the derivative evaluated at x and the discrete 

approximation (equation 2) is defined by the magnitude of the 

truncated terms and is referred to as truncation error (see also 

chapter 2, section 2.4.

A more intuitive approach is to consider the curve described

d[u(x) ]
by the function u(x) and    5     , the slope of the curve at point

X. We can approximate this slope by the slope of a straight line 

segment connecting two points on the curve [u (x) and u(x+Ax)] that 

are separated by a discrete distance (Ax) .

This approximation is given as

3u u ( x + Ax ) - u ( x ) _ u (x + Ax) - u (x)
Bx (x + Ax) - x Ax ' (3\

The discrete system of blocks and the algebraic 

representation of the derivative between the blocks generate a
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system of simultaneous algebraic equations (one equation for each 

node) which can be solved to give the value of the dependent 

variable at points (nodes) in the system^. Solving the set of 

simultaneous algebraic equations represents an approximate 

solution to the original continuous differential equation. For 

further discussion, see Bennett (1976, p. 136-152).

Definition of the Pitroblem

The problem is to determine the steady-state head 

distribution within the aquifer shown in figure 3.2.1. The 

aquifer is surrounded by large surface-water bodies that impose 

constant-head boundaries on the aquifer system. The hydraulic 

head acting on the aquifer boundaries due to the depth of these 

surface-water bodies is known, and we wijLl assume that the aquifer 

can be represented in two dimensions witp. uniform transmissivity 

and no recharge from above or below. Although the aquifer is 

unconfined, we will assume that the saturated thickness is 

constant. This allows us to use the governing two-dimensional 

steady-state ground-water flow equation ifror confined (or constant 

thickness) aquifers which is:

 r + TV ^ = o.2 y 2
(4)

Assuming the aquifer system to be isotropic (Tx = Ty ) , the 

equation can be simplified to

ax2 ay:
(5)
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Discretizing the Aquifer System

The continuous aquifer will be discretized (divided into 

blocks) into a 4 x 4 finite-difference 4rid using equal spacing 

between nodes (fig. 3.2.2) . The values of constant head at the 

boundary nodes due to the surface-water bodies surrounding the 

aquifer system (the large lake, river, alnd canal) are also given 

in figure 3.2.2.

As noted previously, the purpose o discretization is to 

allow the system to be represented by a set of simultaneous 

algebraic equations. The general algebraic equation (the finite- 

difference equation) to be solved at each node (Bennett, 1976, p 

132) is

h. . =  (h. . + h. , . + h. . ,i,j 4 v i+1,j i-1,j i,j+1

The Set of Simultaneous Algebraic Equations

(6)

Applying the general equation (6) to each node in the model 

area, we can write the set of four simultaneous algebraic 

equations to be used to solve for the head at each node.

h2;2 = (1/4) (h3/2 + h 1/2 + h2f3 + h2fl ); (7a)

h2/3 = (1/4) (h3/3 + h 1/3 + h2y4 + h2f2 ); (7b)

h3,2 = (1/4) (h4 , 2 + h2/2 + h 3/3 + h3/1 ); (7c)

h3/3 = (1/4) (h4;3 + h2 , 3 + h3>4 + h3f2 ) . (7d)

Because the aquifer is completely surrounded by known 

constant-head boundaries (which are represented by nodes of known
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constant head), the only unknown head values are located at the 

four interior nodes.

Substituting the known values of 

nodes as shown in figure 3.2.2 in (7), 

becomes

h2f2 = (1/4) (h3/2 + h2/3 )

constant head at boundaries 

the set of equations

2,3

3,2

3,3

2/2 2)

< h2,2 + h3,3 + 2 >

d/4) (h2 3 + h3/2 + 9)

<8a) 

(8b) 

(8c) 

(8d)

Thus, we have a set of four equations and four unknowns. In 

order to obtain the values for these four unknown heads, the set 

of simultaneous equations must be solved.

Two Methods of Solving the Set of Simultaneous Algebraic Equations 

Methods of solving simultaneous algebraic equations can be

classified into three very broad groups (1) direct numerical

methods, (2) iterative numerical methods^, and (3) methods 

involving physical analogies (the electric analog computer, for 

example) . There are many specific methcids under each group. The 

two methods that follow are very simple examples of a direct 

solution technique and an iterative solution technique. These 

particular methods are conceptually simple, but are not the most 

efficient methods for solving ground-water flow problems and are 

being used for illustrative purposes only.
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Direct Method

The conceptually most simple direct method of solving 

simultaneous equations is the elimination of variables by 

substitution.

Exercise:

Step 1: Subtract equation 8c from equation 8b.

This gives us h2 3 = h3 2 .

Step 2: Because h2f3 = h3>2 substitute h2/3 for h3>2 in equations 8a 

and 8d. This then gives us the following set of three 

equations and three unknowns:

, , 3 ) (9a)

h3 , 3 = (9b)

h2/3 = (1/4) (h3/3 + h2/2 + 2.) (9c)

Fill in the rest of equation (9b) for h3 3 . The three 

unknown value of head are now h2 2 , h3 3 , and h 2 3 .

Step 3: Substitute the right hand side of equations 9a and 9b 

into equation 9c for h2 ^ 2 and h3 ^ 3 .
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This gives us an equation all ir 

Step 4: Solve this equation for h2>3 .

L terms of h2,3

Step 5: Substitute the value of h2 ^ 3 intcp equation 9a and solve 

for h.

Step 6: Substitute the value of h2/3 into equation 9b and solve 

for h3/3 .

Step 7: The values of the four unknown heads are

12,3

h3,2

L2,2

h3,3
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We have just solved the set of four simultaneous linear 

equations by a direct method the elimination of variables by 

substitution.

We can represent the algebraic set of equations (8a, b, c, 

and d) using matrices, as in equation 10.

r 
L

1 -1/4 -1/4 0

-1/4 1 0 -1/4

-1/4 0 1 -1/4

0 -1/4 -1/4 1

1 2,2

2,3

3,2

0

1/2 

1/2

(10)

To multiply the matrix and the vector, first multiply each element 

of the first row of the matrix by the corresponding element in the 

vector. Sum the four products. This, then is set equal to the 

first element of the vector on the right hand side, and gives 

equation 8a. Continuing for each row of the matrix, we get the 

three remaining algebraic equations. For a more detailed 

explanation of matrix multiplication see Wang and Andersen (1982, 

p. 94-95).

Many computer algorithms have been developed to directly 

solve sets of algebraic equations set up in matrix form. The 

procedure we have followed demonstrates one such algorithm. 

However, this method is very cumbersome for large numbers of 

simultaneous equations.
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Iterative Method

Iterative methods can be thought of as a means of solving the 

set of simultaneous equations by successively approximating the 

unknown heads, using a specific numerical scheme (algorithm) , 

until a solution is obtained; that is, Until the approximations of 

head no longer change with additional "iterations." There are 

many iterative methods for the solution of the problem presented. 

One of these methods is the Gauss-Siede} Method (also called the 

Liebmann Method) . For our problem and assumptions the Gauss- 

Siedel formula is:

m+1 m+1 m m m+1

(jjfh. , . + h. , . + h. . , + h. . 1
i,j = [4 "' >'

(11)

where:

m = iteration level 

i = row 

j = column

Our basic procedure is to move through the grid in a set 

pattern and use equation 11 to estimate the head at every node at 

which head is unknown. We continue to trjaverse the grid until our 

estimates of the heads at each node no longer change or the change 

is small enough that we can consider any further changes as 

insignificant.

Exercise:
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Note: Make all calculations on worksheet 3.2.1 to three places to 

the right of the decimal point.

Step 1: Starting at node 2,2, calculate a first approximation h1 2/2

by summing the heads at the four surrounding nodes and 

dividing by 4 :

hl2,2 = d/ 4 ) (0 + h°3,2 + h°2,3 + °)  

An estimate must be made for the initial values h°3 2 

h°2>3 . For this problem, we will arbitrarily set the 

initial values (the zero iteration level) of all unknown 

heads at zero. This yields

hi2f2 = 0.

This value should be entered on worksheet 3.2.1.

Step 2: Moving along the same row, calculate h 1 2 ^ 3 .

h 1 , , = (1/4) (0 + h°, , + 2 + h1 , y )
£- i 3 O f J c. i <£.

Note that 2 is the value of the constant head at node 

(2,4) and that we now use the value obtained by our 

initial value at node (2,2) which in our case did not 

change from our initial value. Thus,

hi 2f3 = 0.50.

Step 3: Moving to the next row, calculate h l 3 2 and then hx 3 3 and 

enter the results on work sheet 3.2.1.
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Step 4: Start iteration number 2 by calculating h2 2 ^ 2 .

Step 5: Continue traversing through the grid until the unknown

head values do not change in the hundreths place (this is 

our criterion for convergence). Seven or eight traverses 

should be sufficient.
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FINAL EXAM

Multiple Choice Question

What Did We Do?

We simulated a partial-differentia^ equation of ground-water 

flow using a set of simultaneous algebraic equations. We solved 

the set of simultaneous algebraic equations using (check 

appropriate box or boxes):

|_| Electric-Analog Solution Technique

|_| Direct-Algebraic Solution Technique

I | Iterative-Numerical Solution Technique
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PROBLEM 3, NUMERICAL ANALYSIS, TRANSIENT STATE

Algorithms for the Numerical Solution of the Nonequilibrium

Ground-Water Flow Equation

Our next two problems involve the numerical simulation of 

unsteady flow that is, we wish to calculate head for all nodes at 

which head is unknown for specified successive increments of time. 

The two-dimensional nonequilibrium ground-water flow equation, 

without a source/sink term (Q), is:

32h

y2ay2 * (i)

To obtain an approximate numerical solution to this equation, 

we will use a forward-difference formulation and a variation of 

the backward-difference formulation as described in Bennett 

(1976), Part VII, p. 137-140. The iterative technique used in 

this exercise will be the Gauss-Siedel method that was also used 

in part 1 (steady-state problem).

Forward Difference Formulation

The equation for forward-difference formulation (Bennett,

1976, p. 137) is:

h. . +h . . +h. . . +h. . . -4h. . S(h. . -h. . )
i-l, ],n i+l,3,n i,]-l,n i,] + l,n ifU/n 1,3,11+1 i,],n

TAt ' (2)

where

a = constant grid spacing
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S = storage coefficient 

T = transmissivity (note:

At = time step duration 

n = time step number

- Ty )

Equation 2 can be rearranged and solved (for hif j n+1

r ' / ,
TAt h.
f., 2 I -l,,n

I fc-1 ***  A \  . I

n + feF- 4 hi,3,n '
(3)

Using our definitions for storage capacity

c   a o

and hydraulic conductance

KA
L

and rearranging terms, the forward-diffetence equation is

CAt
r
h.. n . . n .i-l, ],n i+l, ],n

( S 1 1 

n + fe - 4 J ^4
(4)
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Backward Difference Formulation

The backward difference formulation of the finite difference 

equation using the Gauss-Siedel formulation (Bennett, 1976, p. 

139) is: 

m+1

h. .
'

V

4
a2

m+1 m m+1 m 
r

1 | i-l,j,n i+l,j,n i,j-l,n i,j+l,n S

S ,2 TAt ''LLn-l
' TAt| J (5)

where m = iteration number.

Again, using our definition for storage capacity and 

hydraulic conductance and rearranging terms the Gauss-Siedel 

formulation of the backward-difference equation becomes:

m+1 m+1 m m+1 m

r ( q ^ 11 ^ -L* -L* j.>, J_r£_L ih. . . +h,., . +h. . , +h. . , + _ AJ_ h.
i-l,j,n i+l,j,n i,j-l,n i,j + l,n ^ CAt J i,j,n-l| i-l,3,n i+i,3,n 1,3-1,11 i,3 + i,n i (^L\L.J i,3,n-i i

V wtj (6)

Definition of a Nonequilibrium Problem

We wish to examine the effects of opening the locks in the 

canal on heads in the aquifer (See section 3.2, problem 2, fig. 

3.2.1). We will assume that the water level in the lock drops 

quickly to zero. Thus at time t = 0, the head values for nodes in 

the canal will be zero instead of 2 and 4, as previously shown. 

We are interested in defining the head distribution after one day. 

Additionally, we will assume that the transmissivity is constant 

and that effects of any changes in saturated thickness are

3.3-3



negligable.

We will calculate the solution to this problem using three

methods. The first two methods simulate the heads at one day by

using only one time step, At = 1 day, orie using the forward- 

difference and one using the backward difference equation. The

third method simulates the heads at one day by two equal time 

steps (At = 1/2 day) using only the backward-difference equation.

The dimensions of the aquifer are 3,000 feet by 3,000 feet 

(a = 1,000 feet for the 4x4 grid). The aquifer parameters are 

S = .2 and 

T = 2 x 10 5 feet2 /day.

Solution of the Nonequilitj>rium Problem

Calculate the coefficients (the parts of equations containing Sc , 

C, and At) for the forward- and backward|-difference equations 4

, model time step, and 

write the forward-

and 6 using the given aquifer parameters 

node spacing. With these coefficients,

difference equation for time-step duration = 1 day. Similarly, 

write the backward-difference equation for time-step duration = 1 

day:

Method 1 Forward Difference and time-step duration = 1 Day

Calculate the heads for the four central nodes at the end of 

one day using the forward-difference equation above. Use the 

values obtained at the end of the steady^state problem (section

3.3-4



3.2, problem 2, worksheet 3.2.1) for initial conditions, ni,j,n 

except along the canal where the heads will be zero. Values of

at t^ie encl of one day are:

= '' h2,3,n+i = f ^3,2,n+i f n3,3,n+i =

Method 2   Backward Difference and time-step duration = 1 Day

Using worksheet 3.3.1 and the backward-difference equation 

determined above, iterate through the finite-difference grid until 

a solution for t = 1 day is attained for each of the four central 

nodes. Remember that h^^n^ is the head at the previous time step

and remains constant for all iterations in the same time step. 

The initial conditions (hi/;^ 0 on work sheet 3.3.1) for the four

central nodes are the values that were obtained from the steady- 

state problem (section 3.2, problem 2, worksheet 3.2.1) .

Arbitrarily set the initial value of head, h. . , used in the first

iteration to one half the steady state head. Because water levels 

are expected to decline considerably, this should reduce the 

number of iterations needed to arrive at the solution. This will 

also avoid confusion between the initial conditions before the 

canal locks are opened, hi/:j /0 , and the initial value of heads for

the first iteration, h . , (return to discussions of the backward- 

difference method, section 2.4, note 4, if this is not clear) .

Method 3 - Backward Difference and time-step duration = 1/2 Day 

Before employing method 3 we must recalculate the
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coefficients for the backward-difference equation (equation 6). 

Using these coefficients write equation 6 for time-step duration = 

1/2 day:

To obtain a solution for the four central nodes at one day we 

must use two half-day time steps. Again the initial condition, 

hi>;^ 0 , is the solution to the steady state problem (section 3.2,

problem 2, worksheet 3.2.1). Use worksheet 3.3.2 to obtain a 

solution at t = 1/2 day. Then, using these results as the initial 

conditions, h^j^, for a second half-day time step, use worksheet

3.3.3 to obtain a solution at t = 1 day. As was done for the 

first 1/2-day time step, arbitrarily set the initial value of

head, h. . ,, used in the first iteration to one half of the
i, D,l

initial-condition heads, h^j^.

On worksheet 3.3.4, draw hydrographs of head at node h2 ^ 3 for

both simulations. What does this graph indicate? Figure 3.3.1 

shows hydrographs of head for node h2 ^ 3 resulting from four and

eight time steps. How do the hydrographs differ as the time step 

At becomes smaller and smaller? What conclusions can be drawn

from figure 3.3.1?
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Worksheet 3.3.2: Transient state, backward difference, 
time-step duration = 1/2 day (first time step; t = 1/2 day)
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Worksheet 3.3.3: Transient state, backward difference, 
time-step duration = 1/2 day (second time step; t = 1 day)
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Worksheet 3.3.4 Transient state, head vs. time.
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Figure 3.3.1. Heads for node h2;3 resulting from four 
simulations using different time steps
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PROBLEM 4, IMPERMEABLE WALL PROBLEM 

Ground-Water Flow System

A cross section of a ground-water flow system near a 

partially penetrating impermeable wall is shown in figure 3.4.1. 

This section depicts a two-dimension flow field. Flow is assumed 

to be only in the plane of the figure; that is, no flow is 

perpendicular to the plane of the figure. The flow field has unit 

thickness that is, the thickness of the flow system perpendicular 

to the page is 1 foot. The wall is impermeable, as are the bottom 

and lateral boundaries. The "top" of the ground-water flow system 

to the left of the impermeable wall lies 5 feet beneath a standing 

body of water whose surface elevation remains constant at 55 feet 

above the impermeable bottom boundary (datum). To the right of 

the impermeable wall the surface of the aquifer material is at an 

elevation of 25 feet above datum; ground water discharges at this 

surface to nearby surface drains and by evaporation. The earth 

material near the impermeable wall is fine sand, which is assumed 

to be isotropic and homogeneous.

The head distribution in this cross section, obtained by 

numerical simulation, is shown on figure 3.4.2 and worksheet 

3.4.1. The "node" at which each head value applies is located at 

the decimal point of the head value. All head values are in feet 

above datum. The nodes form a square discretization grid with an 

equal 5-foot spacing between nodes.

3.4-1



5 FEET

/ I'///////////////////////,
DATUM I*        _________10

^25 FEET

V/7///7////////////////// U
FEET               -!

EXPLANATION

S, T, U, V, W, X, Y. 2 PCIINTS ON BOUNDARY OF FLOW 
DOMAIN

2-0 ELEVATION HEAD, W FEET

     2      SIJRFACE OF STATIC WATER
UNDER ATMOSPHERIC PRESSURE

Wf'ERMEABLE EARTH MATERIALY///////7///7/.

Figure 3.4.1. Cross section of 
system near a part 
impermeable wall.
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The head values on figure 3.4.2 and worksheet 3.4.1 represent 

the "standard output" for a digital simulation of this problem. 

Commonly, or perhaps usually, these headidata can be contoured to 

provide insight into the flow pattern. In this problem set, we

will use these head data as the starting point for calculating

additional potentially useful information for example, position 

of streamlines, contours of constant pressure, and approximate 

times of travel or residence times withirl the flow system.

The first step in analyzing any ground-water problem is to 

develop a simple (compared to the complexity of the real system) 

conceptual "picture" or model of the operation of the ground-water 

system. To attain a reasonable conceptual! model of the flow 

system, the minimum required information is (1) the shape, or 

geometry, of the flow system and (2) the boundary conditions. The 

geometry of the flow system has already tjeen defined in figure 

3.4.1. The next step is to define the boundary conditions of the 

problem.

Using colored pencils, delineate carjefully the extent and 

type of the boundaries in the impermeable wall problem on figure 

3.4.1. You will find four boundaries and two different boundary 

conditions. Remember that your designatibns of the boundaries by 

means of colored pencils must result in a loop or closed curve 

without gaps in color. A "gap" without color would represent a

portion of the boundary surface for which 

governing boundary condition.

3.4-4
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Where does ground water enter the system? Where does ground 

water discharge from the system? Sketch the approximate pattern 

of several flowlines and potential lines on figure 3.4.1. Does 

your conceptual model of the flow system "make sense"?

Make a table of elevation head, z, pressure head, p/Y, and

hydraulic head, h, values for the upper left-hand and upper right- 

hand horizontal boundaries. What is the total head drop (Ah) for

the ground-water system? Is this information consistent with your 

concept of the flow system?

Flow Net

Our first goal is to construct a fairly accurate flow net 

from the head data on worksheet 3.4.1. You may wish to make 

copies of this worksheet before you begin in case you make errors. 

Contour the head data using a contour interval of 2.5 feet that 

is, draw contours for 52.5, 50, 47.5, 45, . . .27.5 feet. The 

contour lines should be smooth curves that intersect streamline 

boundaries at right angles. Draw all contours in pencil so that 

corrections and improvements can be made easily. Draw these 

contours carefully because later work depends on their position.

The next step is to determine the position of several 

interior streamlines in the flow system. These streamlines 

intersect the head contours at right angles, and are generally
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constructed such that the flows between adjacent streamlines are 

equal. (Two adjacent streamlines define a flow tube.)

To begin, identify the two bounding streamlines in the 

system. We have decided arbitrarily to draw four interior 

streamlines, so that the system is divided into five flow tubes. 

Thus, the internal streamlines must be positioned such that one- 

fifth of the total flow Q beneath the impermeable wall is 

transmitted by each flow tube.

To assist in locating the four internal streamlines, we will 

calculate stream functions along selected traverses across the 

flow field. However, before considering the procedure for 

calculating stream functions, we will discuss what the stream 

function represents.

For the moment, let us assume that our flow system is the 

original continuous system composed of fine sand that is, we have 

not yet discretized the system for the purpose of obtaining a 

numerical solution for head values at nodes. Also assume that we 

know the total flow through the system. Now, make an arbitrary 

traverse from one bounding streamline to the other bounding 

streamline. To do this, designate a point on one bounding 

streamline as the starting point of the traverse. All traverses 

across the system must begin on the same bounding streamline. For 

example, let the traverse start at point A on the outside bounding 

streamline and end at point B on the other bounding streamline as

3.4-7



shown in figure 3.4.2. Even though the direction of ground-water 

flow may not be perpendicular to the traverse line at any given 

point, we must, nevertheless, intersect tphe total flow through the 

system along the traverse from A to B.

Let us assume further that we measure each increment of flow 

as we proceed along the traverse and thu$, knowing the total flow, 

we can assign to any point on the traverse the proportion of the 

total flow that we have encountered to that point. This 

proportion is equal to the stream function \|/. For example, at

point C, assuming that we started at point A, we have encountered 

0.23Q, where Q is the total flow that is, 0.23Q is behind us on 

the traverse and 0.77Q still remains in front of us on the 

traverse. At A we have intersected non£ of the flow and the 

stream function \|/= 0. At B, we have intersected the total or 100 

percent of the flow and \|/= l.O. 1

The stream function is constant aloftg a streamline. Consider 

a number of closely spaced traverses through the flow field 

similar to AB and assume that we know the value of the stream 

function at every point on the traversesu By connecting points of 

equal stream function for example, \|/i = 0.40 and \|/2 = 0.60, we 

are drawing a flow tube bounded by the streamlines \|/i = 0.40 and 

\|/2 = 0.60 such that 20 percent (0.2Q) of the total flow occurs

1 The stream function actually is the total flow traversed to a given point on
a traverse line such as point C on traverse AB
a dimensionless, proportion-of-total-flow function, which is the stream

(fig. 3.4.2). We have defined

function divided by a constant, the total flow 
convenience, we will refer to this ratio simply

3.4-1
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within this flow tube (\|/2 - \|/i = 0.60 - 0.40 = 0.20) . The stream 

function is a scalar2 function of position just as head is a scalar 

function of position. A unique value of the stream function may 

be defined for every point in a continuous flow field. We could 

write the ground-water flow equations in terms of stream functions 

as the dependent variable instead of head, although for various 

reasons this is seldom done.

Next, we will develop a procedure for calculating stream 

functions in the discretized impermeable wall problem (fig. 3.4.2) 

along three traverses DE (near the upper left-hand constant head 

boundary), FG (beneath the impermeable wall), and HI (near the 

upper right-hand constant head boundary). The calculation of 

stream functions is facilitated by using the format in table 

3.4.1. We begin with traverse DE (fig. 3.4.2). Note that blocks 

1 and 11 are "half" blocks. Calculate the conductance of the 

blocks on the traverse using the familiar formula C = KA/L. 

Determine the flow through each block using the head differences 

across the blocks. Next, calculate the cumulative flow for the 

blocks along the traverse from D to E (See format in table 3.4.1). 

Divide the cumulative flow at the right-hand edge of each block by 

the total flow. This calculated value is the stream function at 

the right-hand edge of that particular block, that is, the percent 

of the total flow across line DE that is traversed between D and 

that particular block edge. Note that the plotting positions of

2 A scalar quantity can be identified by a single number, and it has no 
implied direction; a scalar may be contrasted to a vector quantity,which has 
direction and requires more than one number for its description.
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the stream functions are at the right-hand edges of the blocks. 

For example, the stream function along traverse DE for block 1 is 

plotted at "PI" (fig. 3.4.2); the stream function for block 2 is

plotted at "P2" and so on across to block 11 where the stream 

function \|T = 1.0 is plotted at "Pll", thfe boundary of the flow

system.

This choice of plotting positions permits a unique value of 

the stream function to be plotted on the discretized grid no 

matter how we make a traverse across the flow field. Compare the 

two plotting positions of the stream functions at two edges of a 

typical vertical conductance block and the two plotting positions 

at two edges of an overlapping horizontal conductance block near J 

in figure 3.4.2. One plotting position is shared by both blocks.

By extension of this pattern, the stream function plotting

positions form a square array of points throughout the flow domain 

that is offset from the square array of points that constitutes 

the head nodes. Complete the stream function calculations for 

traverses FG and HI in table 3.4.1.

The procedure for completing the f]Jow net is the following. 

Plot the individual stream function values on worksheet 3.4.1 at 

the appropriate points. By interpolation, mark on each traverse 

line the position of the stream functions \J/= 0.20, \}/= 0.40, \\f= 

0.60, and \j/= 0.80. Having completed thijs, you have established 

three points on the four streamlines that you wish to draw. Next, 

sketch the four streamlines on worksheet] 3.4.1, being careful to

3.4-10



Table 3.4.1.   Format for calculation of stream functions in 
impermeable wall problem

[For locations of numbered blocks, traverse DE, and plotting 
positions for stream functions pi, p2,  .., see figure 3. 4*. **j
Cvi cv ^s hydraulic conductance of discretized block which 
equals KA/L, where K = hydraulic conductivity of earth 
'material in block, A * cross-sectional area of block 
perpendicular to direction of ground-water flow, and L » 
length of block; ht and h^ are head values at nodes located at 
ends of block; Ah « hr - h^ ; ^^Q,.^ * flow through a single 
block; EqviQcir * flow in a numbered block plus the flows 
through all lower numbered blocks (cumulative sum of block 
flows in traverse) ; Qtota]_ * total flow through the ground-_
water system beneath the impermeable wall;~ f  &r*.^

TRAVERSE D E

BLOCK 
NUMBER

1

2

3

4

5

6

7

8

9

10

11

C block 
KA/L

(ft2/d)

22.5

(ft)

55.00

(ft)

54.25

block 

(ft)

.75

q block~ 

CAh 

(ft 3/d)

16.88

qblock 

(ft3/d)

15.88

q block

Q total

1.00

CO

O
B
u.

<̂
LU
C
CO

cc 
o
UL

z 
o
H; 
CO

£
a
K 
o
QJ
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Table 3.4.1. Format for calculation of stream functions in 
impermeable wall problem (cont.).

BLOCK 
NUMBER

C block 
KA/L

(Tt2/d)

h 1 

(tt)

h2 

(Tt)

*"b 

(H

ock 

)

qblock 
CAh 

(ft3/d)

qblock 

(Tt3/d)

^ = 

qblock

QtotaJ
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draw the streamlines perpendicular to the already existing 

potential lines. Starting on the left-hand end of the upper-left 

horizontal boundary (worksheet 3.4.1) label the streamlines "a" 

through "f" ("a" and "f" are the designations for the two bounding 

streamlines). The result should be an acceptable flow net. Of 

course, you can improve the flow net by calculating additional 

values of stream functions along additional traverses through the 

flow system and refining, thereby, the positions of the four 

internal streamlines.

Water Pressure

Our next goal is to construct a map showing contours of equal 

water pressure for the ground-water system near the impermeable 

wall. Calculate the water pressure at every second node using the 

formula and following the example calculation shown in figure 

3.4.3. Plot calculated pressures at the corresponding nodes on 

worksheet 3.4.2. Because of large changes in head near the 

impermeable wall, you should calculate pressure at several 

additional nodes in this region. Use yw = 62.4 pounds per cubic

foot (lbs/ft 3 ) and calculate pressure in pounds per square foot 

(lbs/ft 2 ) . To facilitate the calculation write the (constant) 

value of z for each row of head values on worksheet 3.4.2 before 

beginning the calculations.

2. Contour the point values of water pressure using a 

contour interval of 500 lbs/ft 2 . At what point in the system is

3.4-13
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the water pressure a maximum? Note the pattern of pressure 

contours when your map is completed. No obvious relation exists 

between the contours of equal pressure and the other two sets of 

lines we have drawn thus far, namely, the potential lines and flow 

lines of the flow net on worksheet 3.4.1

Next, we make a short digression to consider a problem that 

sometimes arises in practical engineering work namely, 

calculation of the total uplift force acting on the bottom of an 

impermeable structure. A graph of the uplift pressure acting on 

the bottom of the impermeable wall is shown in figure 3.4.4. We 

have calculated already the water pressure at the two bottom edges 

of the impermeable wall (1,920 and 1,496 lbs/ft 2 ) (see worksheet 

3.4.2). On the graph we assume a linear change in pressure along 

the bottom of the wall between the two edges.

We wish to calculate the total uplift force acting on a 

1-foot section of the wall perpendicular to the plane of the 

graph. Thus, we are considering the uplift force on a 5 ft x 1 ft 

= 5 ft 2 area of wall bottom.

Calculate the total uplift force due to water pressure acting 

on the section of wall defined above. This calculation requires 

graphical integration of the uplift pressure (fig. 3.4.4), which 

is simple in this case. Our principal concern is that you have a 

clear picture of what you are summing and the units involved. 

What are the units of the answer you are seeking?
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Next, calculate the weight of the wall acting on the same 

5-square-foot section of wall bottom and compare with the value 

for total uplift force calculated above. Assume that the wall 

extends vertically for 50 feet, the wall is made of concrete, and 

the weight density of the concrete is 1^5 lbs/ft 3 .

The same procedures that we employed in this simple problem 

to calculate uplift force can also be applied to more complicated 

problems.

Time of Trave].

Our goal, after making an important assumption, is to graph 

on worksheet 3.4.3 the progress in time of "tracer water" through 

the impermeable-wall flow system. Assurte that at some instant of 

time (t=0, or reference time in this prpblem), water of different 

quality enters the flow field at the upjjer left-hand inflow 

boundary and moves through the system. We assume that the "new" 

water moves by piston flow or plugflow. This means that the "new" 

water completely displaces the "old" water. Thus, we assume that 

no mixing of the two waters occurs (the processes of dispersion 

and diffusion are not acting), that is, a sharp boundary or 

"front" exists between the two fluids as the "new" water advances 

through the system.
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From Darcy's law, the specific discharge, or Darcy velocity q, is 

given by

KAh q =    '

where L is the distance between two points on the same streamline 

at which head values hi and h2 are known and h2 - h^ = Ah. The 

"actual" or average linear velocity v is given by 

S. =
n nL '

where n is the porosity of the fine sand. Recalling that distance 

of travel (L) = velocity x time or L = vt, then v = L/t. 

Substituting for v, and rearranging, we obtain

L nL2
KAh KAh'
nL

This is the basic formula for calculating the time of travel 

between two points on a streamline that are L distance apart.

Given that K = 45 ft/day and n = 0.30, the formula for time 

of travel between two points on a streamline in the impermeable 

wall problem becomes

= 6.67 X 10~V
Ah 

where t is in days.
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Using the format in table 3.4.2, calculate times of 

travel from node to node along the two bounding streamlines 

(streamlines "a" and "f" on worksheet 3.4.1) of the flow system. 

For these two streamlines, because we are calculating travel times 

between nodes, L is constant and equals 5 feet. Thus, for these 

two streamlines only, 

.167t = Ah '

Our main interest in this problem is not the travel times 

between points on the streamlines, but the total time of travel 

from the upper left-hand boundary to the point in question. The 

value of Zt in table 3.4.2 represents this total calculated travel

time along the given streamline from the inflow boundary to the 

given point on the streamline. Plot the values of Zt at the

appropriate points on worksheet 3.4.3

Trace two internal streamlines (streamlines "b" and "d") from 

the flow net on worksheet 3.4.1 onto worksheet 3.4.3 and mark on 

these streamlines the points of intersection with potential lines. 

Next, calculate travel times along the two internal streamlines 

between points of intersection of potential lines. Note that in 

this case Ah is constant and L varies. Calculate and plot values 

of Zt at appropriate points on worksheet 3.4.3 as before.

Contour Zt values for Zt equal to 0.25, 0.50, 0.75, 1.00, 

1.50, 2.00, 5.0, and 10.0 days. The contour lines represent
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Table 3.4.2 Format for calculation of time of travel along 
selected flow lines in impermeable wall problem

[h is head at a node or other point in flow system; L is distance 

between two points on a flowline at which head is known; Ah is 

difference in head between two points on a flowline; t is time of 

travel between two points on a flowline; It is time of travel from 

inflow boundary to point on flowlijie]

h

(feet)

L

(feet)

Ah

(feet)

t (days) « 

6.67 x 10-* L2

Ah

It

(days)
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Table 3.4.2. Format for calculation of time of travel along 
selected flow lines in impermeable wall problem 
(cont.)

h

(feet)

L

(feet)

Ah

(feet)

t (days) - 

6.67 x 10-* L*

Ah

Zt

(days)

'
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Table 3.4.2. Format for calculation of time of travel along 
selected flow lines in impermeable wall problem 
(cont.)

h 

(feet)

L 

(feet)

Ah 

(feet)

t (days) » 

,67 x 10-* L*
»^^«»«M^«»^«M«»«M^ ̂

Ah

Et

(days)
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calculated positions of the sharp front between "new" and "old" 

water at successive times after introduction of the "new" water at 

the inflow boundary.

What time is required for "new" water to first reach the 

discharge boundary? What time is required for "new" water to 

completely fill the flow system? At the end of this analysis, 

remember that we assumed piston flow in our time calculations. 

Our calculations are only approximate, even for this assumption. 

However, this approach is useful for giving order of magnitude 

estimates of travel times in ground-water flow systems.

At the end of this problem set, take time to review what you 

have done and the specific procedures that you used. All the 

procedures in this problem set involve basic concepts in ground- 

water hydraulics that you need to understand completely.
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PROBLEM 5, ELECTRICAL ANALOG PROBLEM 

Power Supply and Digital Multimeter

The electrical-analog unit consists of 3 parts a resistor- 

grid board, a power supply, and a multimeter. The power supply 

has two switches, three leads, and two potentiometers. The switch 

on the top left side of the power supply controls the power to 

both the power supply and multimeter. The multimeter has a 

separate on-off switch. The "voltage" potentiometer controls the 

voltage between the ground (black) and positive (red) leads of the 

power supply. The third lead (green) is a current lead; the 

"current" potentiometer controls the current that is withdrawn 

from the resistor-grid board through this lead. The "current" on- 

off switch should always be in the "on" position when the current 

lead is used. The power switch should be switched off when the 

unit is not in use. If a unit does not work, first check that the 

unit is plugged in and the power switch and the current switch are 

turned on.

The analog unit is equipped with either a Data Precision1 

multimeter or a Keithley multimeter (any multimeter that will 

measure and display voltage and millamperes to hundredths can be 

used). A sketch of the front panel of the Data Precision 

multimeter is shown in figure 3.5.1. The positions of the 

controls, digital readout, and jacks on the Keithley multimeter

1 The use of product or firm names in the report is for identification 
purposes only and does not constitute endorsement by the U.S. Geological 
Survey
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Figure 3.5.1 Front panel of Data precision multimeter
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are similar to those on the Data Precision multimeter. The 

multimeter is equipped with red and black measuring probes that 

should be plugged into the two corresponding colored jacks on the 

right side of the front panel of the meter. Check to insure that 

the probes are plugged into the proper jacks. To measure voltage 

with the Data Precision multimeter, push the power button in and 

push the left-most button under "V" that is marked "      " on the 

left side of the panel (same control on the Keithley meter is 

marked "v"). The symbol "   " is for direct current measurements; 

the symbol "~" is for alternating current measurements. On the 

Keithley multimeter, direct-current measurements are made with the 

AC-DC button (left side) in the out position and a "V" will appear 

in the upper right-hand corner of the digital readout. Only 

direct current is used in the electrical analog problem. Next, 

select the proper range for the measurements. On the Data 

Precision multimeter, measurements of voltage should be made in 

the 0- to 100-volt range. Push the button marked "100", under the 

"mA-V-kQ" bar. On the Keithley multimeter, voltage should be

measured with the third button from the right (under 200) pushed 

in.

To measure current on the Data Precision multimeter, push the

button marked "      " under "A" on the left-most group of buttons on 

the front panel; push the button marked "100" under the "mA-V-kQ"

bar in the right-most group of buttons (this is the same range 

that is used for voltage measurements). The multimeter will now
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read in milliamperes. On the Keithley multimeter, push in the 

button under "A" (fourth button from thef left under the digital 

readout) and the button under 200 (thirq from the right). A "mA" 

symbol will appear on the right side of the digital readout when 

the button under "A" is pushed in.

When using the multimeter as a voltjmeter, it is connected in 

parallel with (across) resistance (s) (fig. 3.5.2) . When using the 

multimeter as an ammeter, it should be connected in series with 

(through) resistance(s) (fig. 3.5.3). For those with little 

familiarity with the use of voltmeters ajnd ammeters, figures 3.5.2 

and 3.5.3 should be studied carefully before proceeding with this 

section. Karplus (1958, p. 19-22) describes voltage as an 

"across" variable and current as a "through" variable. This

concept may aid in understanding how to connect the multimeter

when measuring voltage and current in the analog model problems.

The functions of the electrical equipment perhaps can be 

understood best by considering an analogous hydraulic model in 

which water is supplied through pipes measured by flow meters. 

Each of the wires leading into or out of the model are analogous 

to pipes supplying water to the hydraulib model. The bus wires 

along the east and west sides of the electrical model are 

analogous to manifolds which might be usbd to distribute inflow or 

collect outflow uniformly along the sides of a hydraulic model. 

The ammeter is analogous to a flow meter and measures the quantity
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of electrical charge moving per unit time just as a flow meter 

measures quantity of water moving per unit time. Just as a flow 

meter must be inserted in a pipe section to measure the flow 

through that pipe, so the ammeter must be inserted in a section of 

wire to measure the current through the wire.

In a hydraulic model, we might measure pressure (or head) 

differences between two points in the model by attaching one side 

of a pressure gage (or head gage) to one of those points and the 

other side to the other point. If one of these points were on the 

pressure (or head) datum, our reading would give the pressure 

above datum. The voltmeter can be considered analogous to such a 

gage. To measure voltage above datum, we connect one side of the 

voltmeter to a point on the electrical datum (ground) and one side 

to the test point.

Electrical Analog Model Design

A. Confined Aquifer Bounded by Impermeable Bedrock Hills and 
Fully Penetrating Stream and Reservoir

Figure 3.5.4 shows a cross section and map of a confined sand 

aquifer 10,000 feet on each side, bounded on the north and south 

by impermeable bedrock hills, on the west by a fully penetrating 

reservoir, and on the east by a fully penetrating stream. The 

reservoir surface is 200 feet above datum while the stream surface 

is at the datum. The hydraulic conductivity of the sand is 100 

gallons per day per square foot and its thickness is 100 feet. In
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this exercise, we will deal only with steady-state flow so that we 

need not specify a storage coefficient for the sand aquifer.

We wish to design a resistance network analog to simulate 

this ground-water system. We assume that we have a supply of 

1,000 ohm resistors together with a limited supply of 2,000 ohm 

resistors, and that it would be convenient, using the laboratory 

equipment at our disposal, to represent the 200-foot head 

difference across the aquifer by a potential difference of 2 

volts. We will use a uniform mesh spacing of 500 feet in each 

direction.

1. Describe all the boundaries of the hydrologic system. 

What is the electrical conductance, in Siemens, of a 1,000 ohm 

resistor? Of a 2,000 ohm resistor?

2. Sketch the block of aquifer represented by a single 

internal resistor of the network and by a resistor along one of 

the impermeable boundaries of the network; show all dimensions.

3. Calculate the hydraulic conductance of each of these 

blocks.

4. Suppose we use 1,000 ohm resistors in the interior of the 

network, and 2,000 ohm resistors along the impermeable boundaries. 

What is the ratio, in either case, of the hydraulic conductance of
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the block to the electrical conductance Qf the resistor simulating 

the block? We designate this ratio as kA. What are its units?

5. What is the ratio of head difference in the aquifer to 

the voltage difference simulating that head difference? We 

designate this ratio as kv . What are its units?

We have defined ratios between hydraulic conductance of a 

block of aquifer and electrical conductance of a model element 

(resistor) and between head difference in! the aquifer and voltage 

difference in the model. It remains to establish a ratio between 

flow in the aquifer and current or rate of flow of electrical 

charge in the model. Recall the analogy between Darcy's law and 

Ohm's law, as outlined in the course notes, and recall the 

definitions of hydraulic and electrical conductance. One Siemen 

of electrical conductance is one ampere of current per volt of 

potential difference.

6. What will be the ratio of flow in the aquifer, in gallons 

per day, to current in the model? We designate this ratio as k± .

What are its units?

7. Of the three ratios which we havie defined, kc , kv , and kif 

how many are necessary to describe the analog which we are using?
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8. The grid on worksheet 3.5.1 represents the resistance 

network of our model. Show the location of the two constant-head 

boundaries on this network. Sketch, and indicate how these 

boundaries will be simulated electrically. Assume that we have a 

power supply that has a zero voltage (ground) lead, and a lead for 

which we can adjust the voltage. It is convenient to set the 

voltage at zero (ground) on the boundary having the lower head. 

Indicate in your sketch how the power supply should be connected 

to the network. What voltage must be applied along the boundary 

representing the reservoir? A voltmeter will measure the voltage 

difference between any two points. Indicate in your sketch how 

this meter should be connected to the resistance net in order to 

measure voltages. Give the relation by which these voltages can 

be converted into heads. Indicate in your sketch how an ammeter 

should be connected in order to measure the current entering the 

model through the boundary representing the reservoir. Give the 

relation by which the current measurement is converted to a flow 

value. What does this flow represent? Is it greater than, equal 

to, or less than the discharge from the aquifer to the stream at 

the eastern edge of the model? Explain your answer.

9. Suppose we wish to simulate pumping from a well at a rate 

of 2 million gallons per day. What current withdrawal from the 

electrical nodes would we use to represent this pumping rate?
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Worksheet 3.5.1. Worksheet of electric-analog model grid 
for showing boundaries and method for 
connecting power suppfLy, ammeter, and 
voltmeter..
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B. Partially Penetrating Stream

Suppose we wish to simulate a stream that does not fully 

penetrate the aquifer but rather is separated from it by a 

vertical interval, b 1 , of the confining unit as shown in figure 

3.5.5A. A junction, or node, of the network is associated with a 

block of aquifer extending half way to the adjacent nodes in all 

directions as shown in figure 3.5.5B. Referring to figure 3.5.5, 

b 1 represents the thickness of confining unit between the top of 

the aquifer and the bottom of the stream, w is the width of the 

streambed; the length of stream channel within the block 

represented by the node is a, the node spacing. Flow between the 

stream and the aquifer is assumed to be vertical, and restricted 

to the block ab'w located vertically below the streambed. We wish 

to simulate flow through this block by adding a vertical resistor 

to the net as shown in figure 3.5.5B. The mesh spacing of our 

analog is 500 feet. We will assume the thickness b' --is 10 feet; 

w, the stream width, is 40 feet; and the vertical hydraulic 

conductivity of the confining unit, k 1 , is 0.98 gallon per day per 

square foot.

1. Calculate the vertical hydraulic conductance of the block 

ab'w between the streambed and the aquifer.

2. Using the value of k computed previously, calculate the
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A. Hydrogeologic cross section

B. Simulation of one block of streambed

Figure 3.5.5. Simulation of non|>enetrating stream,
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electrical conductance required to simulate this hydraulic 

conductance. What is the resistance corresponding to this 

conductance?

3. Why is it necessary to use the value of kc obtained for 

the lateral network in calculating the vertical resistance?

4. A voltage must be applied to the system model in order to 

simulate the head, or stream-surface elevation, of the partially 

penetrating stream. Where should this voltage be applied?

Electrical Analog Experimental Procedures

These exercises refer to the aquifer described in the section 

"Electrical Analog Model Design." The individual exercises 

studied with the electrical model are designated by a title and 

capital letters A, B, C, etc. Individual questions are numbered 

under each heading.

A. Confined Aquifer Bounded by Impermeable Bedrock Hills and 
Fully Penetrating Stream and Reservoir

NOTE: Before proceeding with this problem, go through the check­ 

out procedures for the analog unit, if not already 

completed.
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Initially, we consider the flow system shown in figure 3.5.4 

of the section, Electrical Analog Model Design, Part A: an 

aquifer bounded by a fully penetrating reservoir and a fully 

penetrating stream with no pumping in progress. To simulate 

constant heads in the reservoir and stream, connect the positive 

(red) lead of the power supply to the boundary representing the 

reservoir (bus wire on left side of analog board) and the negative 

ground (black) lead to the boundary representing the stream (bus 

wire on right side of analog board) (fig. 3.S.6) 2 . To measure 

voltage at junctions of the resistor network, plug the red and 

black leads into the red and black jacks on the front of the 

multimeter. On the Data Precision multimeter, push in the 

leftmost button under "V" that is marked "   " on the left side of 

the meter panel and push in the button marked "100" under the "mA- 

V-kQ" bar. To measure voltage on the Keithley multimeter, push in

the button under "V" on the left side of the front panel and push

in the button under "200" on the right side of the front panel 

(third button from the right). Connect the negative ground 

(black) lead of the multimeter to the stream boundary and the 

positive (red) lead to the reservoir boundary. Turn on the power 

supply and multimeter and adjust the voltage potentiometer on the 

power supply (knob marked "voltage adjust") until the meter reads 

+2. 00 volts. Make certain that the wires from the power unit do

2 Note that the wiring sketches for this problem are not to scale, that is,
the the number of rows and columns shown on the sketches are not an even
multiple of those on the resistor grid of the analog unit. In the following 
parts of the problem set, carefully check the distances from the edge of the 
board when attaching the pumping well, the fulljy penetrating stream, and the 
nonpenetrating stream.
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Figure 3.5.6 Connections to measure voltage at nodes for 
Problem A-l.
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not brush against the knob of the voltage potentiometer. The 

voltage potentiometer is very sensitive to small movements of the 

shaft.

1. Measure voltage at every other node in the model by 

moving the red lead of the voltmeter from node to node. Recheck 

the voltage at the reservoir from time to time to make certain 

that it has remained at 2.00 volts. Make sure good contact is 

made between the probe and node. Solder flux can collect on the 

surface of the node, which creates resistance and causes a lower 

voltage reading. Convert these voltages to heads and record the 

results on worksheet 3.5.2. Keep in mind the natural symmetry of 

the system; therefore, it is not necessary to measure all nodes in 

the model.

2. Calculate the total ground-wate:: discharge into the 

stream using the head gradient toward the stream, the 

transmissivity of the aquifer, and the length of the stream.

3. Set the multimeter for current measurements and measure 

the current through the stream boundary li>y placing the meter in 

series between the stream boundary (bus wire on right side of 

analog board) and the negative ground le^d (black) of the power 

supply (fig. 3.5.7). By connecting the ground lead of the power 

supply to the ground lead of the meter (black to black) and the 

positive lead (red) of the meter to the bus wire on the right side
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Worksheet 3.5.2. Worksheet for plotting initial head
distribution.
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lead to measure current to dtream boundary.

3.5-20



of the board the current meter will always read positive. The 

direction of current flow is arbitrarily defined as from positive 

to negative (ground). Current will be displayed in milliamps 

(thousandths of an ampere). Convert this current to flow in 

gallons per day, and compare it to the flow calculated from the 

head gradient and aquifer transmissivity.

B. Confined Aquifer with Discharging Well

We now wish to simulate the effect of a well that is located 

midway between the bedrock hills and 3,500 feet east of the 

reservoir and is being pumped at a rate of 2 million gallons per 

day. During this simulation we will maintain the boundary 

voltages exactly as in Part A.

1. Determine which node should represent the well (note that 

the sketches used in this problem are not to scale). Connect the 

green current lead of the power supply to this node through the 

ammeter; that is, place the multimeter, set to measure current, in 

series between the current lead of the power supply and the node 

representing the well (see fig. 3.5.8). Adjust the current 

potentiometer on the power supply until the multimeter indicates 

that the current from the node is +2 milliamperes. Check the sign 

of the display to be sure that the current is away from, rather 

than toward, the network. By connecting the black lead of the 

ammeter (ground) to the green lead (current) of the power supply, 

the meter will always read a positive current. The direction of

3.5-21



Figure 3.5.8. Simulation of the discharging well. The ammeter is 
in series with the current lead to measure the well 
current.
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current flow is from the positive lead (red) to the ground lead 

(black) through the meter. In this configuration the current is 

flowing out of the network and into the power unit. This can be 

verified by setting the meter for voltage measurement and checking 

voltages at the well and at surrounding nodes; voltages must be 

higher at the surrounding nodes than at the well for the current 

to be toward the well, and thus away from the net. After 

adjusting the current, remove the ammeter from the circuit and 

connect the green current lead of the power supply directly to the 

node representing the well.

2. Set the meter for voltage measurements and reconnect the 

black lead of the multimeter to the stream and the red lead to the 

reservoir. Recheck the voltage at the reservoir because it may 

have dropped slightly when the current lead was attached to the 

well node. Readjust the meter to 2.00 volts to maintain the 200 

feet of head at the reservoir. Measure voltages in the model (see 

fig. 3.5.9), convert the voltages to heads, and plot the values on 

worksheet 3.5.3. Contour the heads and sketch the limiting 

flowlines separating flow to the well from flow to the stream. 

Compare the voltage readings with those obtained in A. How far 

does the "influence" of the well extend?

3. Construct an east-west profile of head values along a 

line extending from the reservoir to the stream through the well.
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Worksheet 3.5.3. Worksheet for plotting and contouring head
values that reflect the influence of a 
discharging well.
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4. Measure the flows entering the model at the reservoir 

boundary and leaving at the stream (figs. 3.5.10 and 3.5.11).

5. What is the total flow into th0 model and the total flow 

from the model? What must be the relation between these two 

quantities?

6. The results of this experiment provide a new equilibrium 

involving the well, the aquifer, and the stream in contrast to 

that in Part A involving only the reservoir and the stream. 

Discuss the relation between these two equilibria in terms of the 

principles outlined by Theis (1940) in Ground-Water Note 34 "The 

source of water derived from wells."

7. In a field situation, the two equilibria would be 

separated by a period during which a gradually diminishing 

fraction of the well discharge is supplied by withdrawal from 

aquifer storage. Do the results we have obtained here give any 

information at all about this nonequilibjrium period?

C. Confined Aquifer with Discharging Well in Superposition

We now wish to illustrate the principle of superposition 

which states that two solutions corresponding to two separate flow 

conditions (but the same boundary conditions) can be added 

algebraically to obtain a third solution that applies when the two 

flow conditions are combined in the aquifer. Connect both the
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Figure 3.5.10. Connection of ammeter in series with positive lead
of power supply and reservoir boundary to measure 
current entering the reservoir boundary.
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Figure 3.5.11. Connections for measurement of current leaving 
aquifer from the stream boundary.
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reservoir boundary and the stream boundary to the ground lead 

(black) of the power supply so that both are at zero potential 

(see fig. 3.5.12). With the well disconnected, check the

potential at various points in the net. What is the potential

distribution under these conditions? Reconnect the well and

readjust the current to 2 milliamperes.

1. Measure voltages in the model, convert the voltages to 

drawdowns, plot values on worksheet 3.5.4, and contour.

2. Measure the two boundary currents in the model and 

convert to flows (see figs. 3.5.13 and 3.5.14).

3. Add the drawdowns measured in this experiment 

algebraically to the heads measured in part A (worksheet 3.5.2), 

plot the resultant values on worksheet 3.5.5 and contour. Compare 

the resulting head-change map with the heads measured in part B 

(worksheet 3.5.3).

4. Explain how this result illustrates the principle of 

superposition.

5. What does the measured inflow along the reservoir 

boundary in this experiment actually represent?

6. What does the measured inflow along the stream boundary 

actually represent?
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figure 3.5.12. Connections for measurement of voltages when well
is discharging and potentials on both boundaries 
equal zero.
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Worksheet 3.5.4 Worksheet for plotting and contouring drawdowns
when well is discharging and potentials at
reservoir and stream boundaries equal zero.
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Figure 3.5.13. Connections for measuremertt of current leaving the
reservoir boundary when well is discharging and 
boundary potentials equal zero.
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Figure 3.5.14. Connections for measurement of current leaving 
stream boundary when well is discharging and 
boundary potential equals zero.
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Worksheet 3.5.5. Worksheet for plotting and contouring heads that
equal the algebraic sum of drawdowns measured in 
C-l and heads measured in A-l.
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D. Nonpenetrating stream

We now wish to add a new stream to the system that crosses 

the aquifer from north to south, parallel to the existing 

reservoir and stream boundaries, and 7,000 feet east of the 

reservoir boundary (note again that the sketches used in this 

problem are not to scale). This stream does not penetrate the 

aquifer; rather, it is separated from it by an interval of the 

confining unit as shown in figure 3.5.5 in the section, Electrical 

Analog Model Design, Part B. As in the model design problem, we 

take b 1 = 10 feet, w = 40 feet, the length of channel in each node 

as the mesh spacing, 500 feet, and k' =0.98 gpd/ft 2 . Using these 

values and a value of 10 7 for kc , the resistance required to

represent the block ab'w of figure 3.5.5 is calculated as 5,100 

ohms. Connect the 5,100-ohm resistor rack to the row of nodes 

representing the course of the "nonpenetrating 11 stream (fig. 

3.5.15). Make certain that solid contact is made between each 

alligator clip and a resistor wire at each node. The surface of 

this stream is assumed to be at the same elevation, 0 feet, as the 

surface of the fully penetrating stream at the the eastern edge of 

the aquifer. The bus wire along the upper ends of the resistor 

rack must, therefore, be held at zero voltage. This is 

accomplished by connecting both it and the bus wire representing 

the eastern boundary to the ground lead of the power supply. We 

wish first to simulate the prepumping condition with the new 

stream in the system so the lead representing the well is
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Figure 3.5-15. Connections for measurement of voltages without 
discharging well but witft. addition of 
nonpenetrating stream witth same potential as the 
stream boundary.
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disconnected. The voltage on the reservoir boundary is again set 

to 2 volts.

1. With the model set up in this way, measure voltages at 

enough points to determine the new pattern; convert these voltages 

to heads, and plot and contour the values on worksheet 3.5.6.

2. Construct a head profile across the model from the 

reservoir to the fully penetrating stream.

3. Measure the currents entering or leaving through the 

reservoir boundary, the nonpenetrating stream, and the fully 

penetrating stream at the eastern boundary; convert these currents 

to flows. What relations exist among these flow values? (figs. 

3.5.16, 3.5.17, 3.5.18) .

E. Confined aquifer with nonpenetrating stream and discharging
well

Add the well, as in part B, to the configuration of part D; 

adjust the current through the model to 2 milliamperes and 

readjust the reservoir potential to 2 volts. (fig. 3.5.19) . 

Describe the boundaries of the hydrologic system.

1. Measure voltages, convert to heads, and plot and contour 

the values on worksheet 3.5.7.
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Worksheet 3.5.6. Worksheet for plotting and contouring heads when
the simulation includes a nonpenetrating stream 
(no discharging well).
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Figure 3.5.16. Connections for measurement of current into the
reservoir boundary when the simulation includes 
a nonpenetrating stream.
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Figure 3.5.17. Connections for measurement of current leaving the
stream boundary when the 
nonpenetrating stream.

simulation includes a
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Figure 3.5.18. Connections for measurement of current leaving the
nonpenetrating stream boundary.
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figure 3.5.19. Connections for measurement of voltages within the
system when the simulatioji includes a 
nonpenetrating stream and a discharging well.
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Worksheet 3.5.7. Worksheet for plotting and contouring heads when
simulation includes nonpenetrating stream and a 
discharging well.
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2. Measure current and convert to flow for the reservoir 

boundary, the nonpenetrating streams, and the fully penetrating 

stream boundary (see figs. 3.5.20, 3.5.21, 3.5.22).

3. Construct a profile of heads alcf>ng an east-west line from 

the reservoir through the well to the fuljly penetrating stream 

boundary.

4. Does any effect of the pumping extend to the opposite 

side of the nonpenetrating stream from the well?

5. The discharge of the well must be supplied by (a) 

increased inflow along the reservoir boundary; (b) decreased 

outflow (and possibly induced inflow) alohg the nonpenetrating 

stream; and (c) decreased outflow (and pobsibly induced inflow) 

along the fully penetrating stream boundary. Determine what 

percentage of the 2 million gallons per day (Mgal/d) of well 

discharge is accounted for by each of these three changes in the 

original flow distribution.

6. Does induced inflow actually occur from either of the two 

streams, or is the effect simply one of reduced seepage into the 

stream? Explain how you arrived at your answer.

7. Suppose we measure the discharge in the two streams at 

some point downstream from the aquifer both before adding the well
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Figure 3.5.20. Connections for measurement of current into the
reservoir boundary when simulation includes a 
nonpenetrating stream and a discharging well.
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Figure 3.5.21. Connections for measurement 
through the nonpenetrat.Lng 
simulation includes a

of current leaving 
stream boundary when 

discharging well.
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Figure 3.5.22. Connections for measurement of current leaving the 
stream boundary when simulation includes a 
nonpenetrating stream and a discharging well.
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and after the equilibrium response to the well had been attained, 

and note the reduction in streamflow caused by the pumping. Could 

we tell, from these measurements alone, whether the reduction 

represented only reduced seepage into this stream or a combination 

of reduced seepage and direct flow from jthe stream into the 

aquifer?

8. Can you give an example of a problem in which it would be 

important to know whether or not direct flow from the stream into 

the aquifer was taking place?

9. Can you give an example of a problem in which this 

information would not be required?

10. With the method that we have used to simulate the

nonpenetrating stream, there is theoreti cally no limit to the

current we can move through the resistor]; the lower we cause the 

potential in the network to be, the greater will be the current 

through the vertical resistors. Is this! a valid simulation of 

field conditions or would there be a prabtical limit to the actual 

flow that could be induced from the stream? Can you give an 

estimate for such a limit? (Assume the top of the aquifer to be at 

an elevation of 100 feet below datum.)
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F. Confined Aquifer with Nonpenetrating Stream and Discharging
Well in Superposition

We now wish to rerun the simulation in part E, but using 

superposition as in part C. To do this, we connect all of the 

boundaries the reservoir, the nonpenetrating stream, and the 

fully penetrating stream at the eastern boundary to the ground 

lead of the power supply, and we again set the well current to 

2mA.

1. Measure the current entering or leaving through the three 

boundaries; convert these to flow values (see fig. 3.5.23).

2. What percentage of the well discharge is represented by 

each of these boundary flows? Compare these percentages with the 

values obtained in part E for the percentages of the well 

discharge accounted for by the changes in the three boundary 

flows.

3. Measure the drawdowns at representative points in the 

network according to the setup shown in figure 3.5.24, and plot 

the data on worksheet 3.5.8.

4. Is it possible to determine, from the results of this 

exercise (F) alone, whether the effect on the streams consists 

only of a reduction in outflow or includes induced inflow as well? 

If not, is it possible to make this determination using the
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measurementFigure 3.5.23. Connections for
boundary with zero 
nonpenetrating stream,

of current for each 
potentials at the reservoir, 

and stream boundaries.
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Figure 3.5.24. Connections to measure voltages throughout 
the analog system with a discharging well 
and zero potentials at the reservoir, 
nonpenetrating stream and stream 
boundaries.
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Worksheet 3.5.8. Worksheet for plotting and contouring drawdowns
in response to a discharging well with zero 
potentials at the reservoir, nonpenetrating 
stream and stream boundaries.
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results of part F combined with those from part D? How would you 

go about doing this?

G. Confined Aquifer as in Part F with Discharging Well 500 Feet
Closer to Nonpenetrating Stream

With the boundaries connected to ground as in part F, move 

the well 500 feet closer to the nonpenetrating stream.

1. Again, measure three boundary currents and convert to 

flow values.

2. Measure the drawdown at the well node. What does this 

drawdown actually represent?

3. Repeat this procedure for several other well locations 

along an east-west axis through the original well position and 

record the data in table 3.5.1; at each well location, check to 

make sure that the well current is still 2 milliamperes; include 

well locations both east and west of the nonpenetrating stream. 

On a single graph sheet, with distance of the well from the 

reservoir boundary on the horizontal axis, plot (a) drawdown at 

the discharging well node; (b) percentage of the well discharge 

derived from the reservoir; (c) percentage of the well discharge 

derived from the nonpenetrating stream; and (d) percentage of the 

well discharge derived from the fully penetrating stream.
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Table 3.5.1. Format for recording boundary flows and drawdowns at 
the discharging-well node for specified well 
locations in the simulation experiment in part G

[flows in millions of gallons per day; drawdown in 
feet] ;

Nodal 
location of 
pumping 
well
Flow to or 
from 
reservoir 
boundary
Flow to or 
from non- 
penetrating 
stream 
boundary
Flow to or 
from stream 
boundary .
Drawdown at 
well node

(11,2) (11,3) (11,4) (11,5) (11,6) (11,7) (11,8) (11,9) (11,10) (11,11)

Nodal 
location of 
pumping 
well
Flow to or 
from 
reservoir 
boundary
Flow to or 
from non- 
penetrating 
stream 
boundary
Flow to or 
from stream 
boundary
Drawdown at 
well node

(11,12) (11,13) (11,14) (11,15) (1146) (11,17) (11,18) (11,19) (11,20)
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Indicate the position of the nonpenetrating and fully penetrating 

streams on the horizontal axis.

4. What well location gives minimum drawdown? At what 

location does the well cause the greatest change in flow in the 

aquifer from the nonpenetrating stream? At what location does a 

well cause the least change in flow in the aquifer from the 

stream?

H. Confined Aquifer as in Part G with Fully Penetrating Stream in
Place of Nonpenetrating Stream

Replace the nonpenetrating stream with a fully penetrating 

stream by connecting the bus wire with alligator clips in place of 

the resistor rack. The bus wire and alligator clips can be a 

little difficult to attach. Be certain that each clip is in solid 

contact with a resistor wire at each node. Return the well to its 

original position and rerun the simulation as in part F, with all 

boundaries connected to ground.

1. Measure all boundary flows.

2. What percentage of the well discharge is now derived from 

the "interior" stream boundary?

3. Measure voltages in the network, convert to drawdowns, 

and plot on worksheet 3.5.9.
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Worksheet 3.5.9. Worksheet for plotting and contouring drawdowns
in response to a disqharging well with an 
interior fully penetrating stream and the 
reservoir at zero potential.
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4. Suppose we had no information on the vertical hydraulic 

conductivity of the confining unit and, therefore, could not 

calculate the vertical resistances to use in simulating a 

nonpenetrating stream. Would a simulation using a fully 

penetrating stream have any value? Could it be used to provide an 

upper limit for the percentage of the well discharge derived from 

the stream?

I. Additional Discussion on Simulation of Streams

In these exercises, we have used vertical resistors to 

represent a nonpenetrating stream of the type shown in figure 

3.5.5 of Electrical-Analog Model Design, Part B, and we have seen 

that a direct connection or bus wire, is used to represent a fully 

penetrating stream.

1. What could we do to simulate a stream that partially 

penetrates an aquifer?

2. Could we simulate the hydraulic conductance of a low 

permeability streambed deposit in such a case?
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PROBLEM 6, DIGITAL STREAM-AQUIFER INTERACTION PROBLEM 

Simulation of a Fully Penetrating Stream

Figure 3.6.1 shows a cross section and map of a sand aquifer 

that is overlain by a semipermeable confining unit and underlain 

by impermeable bedrock; the aquifer is bounded by impermeable 

bedrock hills on the north, south, and west, and by a fully 

penetrating stream on the east. The dimensions of the aquifer are 

50,000 feet from north to south, 50,000 feet from east to west, 

and 100 feet in thickness. Recharge through the confining unit 

occurs at a uniform rate of 0.0002 gallons per day per square 

foot. The hydraulic conductivity of the sand is 100 gallons per 

day per square foot and its specific storage is 2.67 x 10~ 7 per 

foot. The stream surface altitude is 100 feet above sea level, 

and the altitude of the top of the aquifer is 10 feet above sea 

level. Before a digital model can be designed, the boundary 

conditions of the flow system must be designated. On figure 3.6.1 

indicate the boundary conditions for the system.

System Under Natural Conditions

Design a digital model for this aquifer using a mesh spacing 

of 5,000 feet. In this problem set, gallons will be used as one 

of the primary units of measure. Thus, some quantities such as 

storage capacity will require conversion of cubic feet (ft 3 ) to 

gallons (1 ft 3= 7.48 gals).
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(1) Worksheets 3.6.1, 3.6.2, and 3.6.3 show the array of 

nodes 1 for the model with the i value indicated for each row and j 

value for each column. On worksheet 3.6.1 indicate the x distance 

associated with each column (taking x = 0 at the western edge) and

the y distance for each row (taking y = 0 along the northern

edge). In rows 1, 2, and 11 on worksheet 3.6.1, outline the 

blocks between nodes for which hydraulic conductance in the x 

direction must be specified. Calculate the required x-direction 

hydraulic conductance for a block in each of these rows.

In columns 1, 2, and 11 on worksheet 3.6.2, outline the 

blocks for which hydraulic conductance in the y direction must be 

specified. Calculate the required y-direction hydraulic

conductance for a block in each of these columns. On worksheet

3.6.3, sketch the blocks for which storage capacity must be 

specified around each of the following nodes: 1,1; 10,1 (For node 

10,1, i=10, j=l); 11,1; 7,3; 7,7; 1,5; 10,5; and 11,5. Calculate 

the required storage capacity for each of these blocks (the units 

of ft 2 should be converted to gals/ft).

For the same set of nodes, calculate the recharge to the 

aquifer through the confining unit within each node block. 

(Multiply the recharge rate by the planar area associated with the 

node.)

1 A point-centered finite-difference grid is us^d in this digital model. The 
nodes are located at the intersection of the lihes in the grid shown in 
worksheet 3.6.1. Thus, conductances and storag^ capacities in this problem 
set are defined as described in notes 2 and 3.
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Worksheet 3.6.1. Array of model nodes for showing x values, y
values, and blocks for defining hydraulic 
conductance in the x direction.
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Worksheet 3.6.2. Array of model nodes for showing blocks for
defining hydraulic conductance in the y 
direction.
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Worksheet 3.6.3. Array of model nodes for showing blocks for
defining storage capacity and for calculating 
recharge.
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(2) Write the specific backward-difference formulation of the 

finite-difference equation that the model must solve at a typical 

interior node using the general equation (see note 4 equation 2). 

Allow for storage, flow between nodes, and a net withdrawal rate, 

Q from the node; assume that recharge will be handled through this 

net withdrawal term that is, as a negative withdrawal from each 

node so that a term for recharge need not be specified separately 

in the equation.

The stream is fully penetrating, and we assume that its level 

is unaffected by what happens in the aquifer. Thus it can be 

considered a constant-head boundary. The edge of the stream 

follows column 11 of the model, and we require some method of 

keeping the head along this column at a constant level throughout 

the simulation. To accomplish this, we set the initial head in 

these nodes at the stream level, 100 feet, and assign a very high 

value of storage capacity,say, 10 40 , to each node in the column. 

This is one method of maintaining a node at constant head in a 

digital model. (Another method is to flag the constant-head nodes 

and treat them as known values.) (3) Using the definition of 

storage capacity, Sc (Sectiuon 2.3, Note 3), explain how this

causes the head along column 11 to remain constant during the 

simulation.

Table 3.6.1 shows a steady-state head distribution obtained 

using a model of the design that you just developed. The result
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was obtained by using an iterative technique to solve the set of 

simultaneous algebraic equations that represent this system.

(4) Using the data in table 3.6.1, plot a profile of heads 

along row 6, from the western edge of the aquifer to the stream. 

How would you describe this profile? What is the direction of 

flow? Why does the hydraulic gradient become steeper as the 

stream is approached? (5) Using head differences from table 3.6.1 

and hydraulic conductance values, calculate the total ground-water 

flow within the aquifer perpendicular to north-south lines at the 

following distances from the stream: 50,000 feet, 42,500 feet, 

and 27,500 feet. Use the table on worksheet 3.6.4 for all 

calculations. Calculate the recharge to the aquifer to the west of 

each of these lines for which ground-water flow was calculated; 

compare the recharge in each case to the ground-water flow value. 

Calculate the total flow from the aquifer to the stream and 

compare it to the total recharge to the aquifer. (6) How would 

you describe this flow system?

Response of System to Pumping

A well is located at a distance of 25,000 feet from the 

stream and 25,000 feet from the northern edge of the aquifer (fig. 

3.6.1). This well is pumped at a rate of 2 million gallons per 

day. We wish to determine the head distribution after 

(approximately) 5, 13, and 155 days of pumping, assuming that 

prior to pumping, the aquifer is in the equilibrium condition 

given on table 3.6.1. The recharge is assumed to continue
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throughout the period of pumping. Our model is set up in such a 

way that we can specify only one net input or output at any given 

node in any time step.

When we operate this model in the transient mode, we can 

assign the lengths of the time steps in a number of different 

ways. (7) Suppose we have reason to think that changes in head 

with time in the aquifer will follow a logarithmic trend. Then 

for two successive (unequal) time intervals, t l to t 2 and t 2 to t 3 , 

the change in head between t2 and t 3 will be approximately equal 

to that between t l and t 2 if we set (log t 3 - log t 2 ) = (log t 2 - 

log t x ). Would it then be efficient to use a time step of constant 

duration in our simulation? If not, how should the time step 

durations be varied during the simulation? Explain your answers.

The head distribution after pumping (approximately) 5, 13, 

and 155 days was solved for in a transient simulation. Its 

initial condition was the steady-state solution shown in Table 

3.6.1. The simulation was run through 25 time steps. The 

duration of the first time step was taken as 1 day; the duration 

of the second was 1.2 times that of the first; the duration of the 

third was 1.2 times that of the second, and so on. The 19th time 

step falls after 155 days. The 25th time step falls after 472 

days. (8) By the end of the 25 time steps, successive output 

sheets were showing identical head distributions. Explain the 

significance of this result.
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(9) To simulate the system in terms of absolute heads, what 

should we use for initial heads in this simulation? (10) Suppose 

we use an initial time-step length of on£ day and take the length 

of each successive time step as 1.2 times that of the preceding 

step. What time-step number corresponds to a cumulative time of 

pumping of approximately 5 days? (11) At what node should the 

well be located? If recharge and discharge occur in the same 

block, the quantity of recharge to and discharge from that block 

is accounted for in the variable Q, which represents the net value 

of recharge vs. discharge. (12) What should be the net value of 

the input or withdrawal function, Q, for the block surrounding the 

node representing the well? (13) Should it vary from one time 

step to the next or should it remain constant?

Tables 3.6.2, 3.6.3, and 3.6.4 show the head distributions 

after 5, 13, and 155 days of pumping, respectively. (14) Using 

these head distributions and the hydraulic conductance values, 

calculate the total net inflow to or outflow from the stream and 

the change in this total flow from its value prior to pumping for 

each of these times (for purposes of this problem, use the 

original ground-water flow to the stream as calculated from the 

gradient in (5) i.e., 480,000 gpd rather than the actual flow of 

500,000 gpd). Use the table on worksheet 3.6.5 for all 

calculations. Then plot this change as aj function of time of 

pumping. (15) Direct flow from the streajm is the quantity of 

water flowing from the stream into the aqpifer. Calculate the
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rate at which water is being supplied by direct flow from the 

stream to the well at each time. Diversion of flow that would 

otherwise reach the stream from the aquifer is defined as the 

decrease in ground-water flow from the aquifer to the stream. 

Calculate the rate at which water is being supplied by diversion 

of the original flow toward the stream at the end of each pumping 

period. How much is being supplied by withdrawal from aquifer 

storage at each of these times of pumping? (16) On the same graph 

sheet on which the change in flow to the stream is plotted, plot 

the rate of withdrawal of water from storage as a function of time 

of pumping. (17) What will the rate of withdrawal of water from 

storage be when a new equilibrium is attained? (18) What will be 

the total change in the flow of the stream at a point D (fig. 

3.6.1) downstream from the aquifer, when a new equilibrium is 

attained?

(19) Construct new plots of head vs. distance from the 

stream, along an axis through the well (row 6), for each of the 

above times of pumping (tables 3.6.2, 3.6.3, and 3.6.4). Use the 

same graph sheet as in question 4 for the plot of head vs. 

distance of the steady-state head distribution.

(20) Estimate the total drawdown and actual water level 

(head) within the pumping well after 155 days of pumping, assuming 

the well radius to be 0.5 foot and neglecting well entrance losses 

(see note 7).
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(21) What would be the effect on the plots of change in flow 

to the stream vs. time, and on the head profiles, if storage 

coefficient were increased?

Simulation of a Fully Penetrating Streaifa by Means of Superposition

Consider the same aquifer described previously with the 

discharging well again as described. Ncjw, however, we wish to 

model the system in terms of drawdown utilizing the principle of 

superposition; that is, we wish to model only the disturbance 

created by the well, leaving out any representation of the 

original steady state. (22) What should we use for the initial 

head distribution, prior to pumping, in this case? (23) What 

should we use as the net input into each node representing the 

recharge? (24) What should the net withdrawal be from the node 

block containing the well?

Table 3.6.5 shows the head distribution after 155 days of 

pumping using this mode of simulation. (25) Using the data in 

Table 3.6.5, construct a plot of head vs. distance from the stream 

for this time along an axis running through the well (row 6). 

Compare these head values with the diffe;rences between "heads 

after 155 days of pumping" and "heads prior to pumping" on the 

profiles constructed in question 4 and question 19. (26) 

Calculate the total flow from the stream to the aquifer after 155 

days of pumping. Compare this with the total change in flow to the 

stream determined for the same time of pumping in question 14.
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(27) On the basis of these results, are there any problems for 

which useful answers could be obtained without knowing either the 

original recharge rate or the stream elevation? Are there any 

problems for which this approach would not be adequate? (28) If we 

make a model computation in this way, obtaining drawdowns and flow 

changes, can we then calculate actual head values and values of

flow after a specified time of pumping? If so, explain how this

can be done and what additional information is required to do it. 

Simulation of a Non Penetrating Stream

Consider the aquifer shown in figure 3.6.2, which has the same 

dimensions and properties as that described in the previous 

exercise, but is bounded on four sides by impermeable barriers   

that is, the eastern boundary is no longer a fully penetrating 

stream, but rather an impervious valley wall. In this case, 

however, a stream crosses the area from horth to south at a 

distance of 20,000 feet from the western edge of the aquifer. 

This stream does not penetrate the aquifer but rather is separated 

from it by an 80-foot thickness of a confining unit consisting of 

semipermeable material as shown in the cross section. The 

vertical hydraulic conductivity of the semipermeable material in 

the confining unit is 10 gpd/ft 2 , the width of the stream is 80 ft, 

the altitude of the stream surface is lip ft above sea level, and 

the altitude of the top of the aquifer ijs 10 ft above sea level. 

It is assumed that flow QZ(i,j) to or frbm the river through the 

confining unit is entirely vertical and bccurs only within the
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Figure 3.6.2. Cross section and map of sand aquifer used in 
simulation of a nonpenetrating stream.
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80-foot strip beneath the river itself. The top of this vertical- 

flow interval is the streambed; the head at this point is simply 

the stream elevation. The bottom of this vertical-flow interval 

is the top of the aquifer; the head at tf.his point is the water 

level in the aquifer directly below the stream unless this water 

level has fallen below the top of the acjuifer. If this has 

happened, the upper part of the aquifer is dewatered, and we 

assume that a saturated column exists beneath the stream through 

the confining unit and that the head at the base of this column is 

the altitude of the top of the aquifer.

System Under Natural Conditions

Consider a model node located aloncj the stream. (29) Sketch 

the block of semiconfining material "abcj>ve" this node through 

which flow between the stream and the aquifer occurs according to 

the assumptions outlined above. Show all dimensions. What is the

hydraulic conductance of this block of s;emiconfining material in

the vertical direction? (30) Write two equations which describe, 

according to the above assumptions, the flow between the stream 

and the aquifer through this block of confining unit (that is, 

write one equation for the condition wh<4re the head is above the 

top of the aquifer and one for the condition where the upper part 

of the aquifer is dewatered). (31) Outline the steps to determine 

which of the equations should be used fdr the calculation of flow 

between the stream and aquifer in the mcfdel. (32) Sketch a graph 

of flow between the stream and the aquifer, as calculated by these
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the stream. Plot flow on the ordinate and head on the abscissa; 

take the flow as positive when it is directed from the stream to 

the aquifer and include both positive and negative flow ranges on 

your sketch. Indicate the value of head at which the graph 

crosses the zero-flow axis and at which the change from one 

equation to the other takes place.

(33) Describe the changes that would have to be made in the 

model which you designed in the section "Simulation of a fully 

penetrating stream" in order to represent the aquifer shown in 

figure 3.6.2. Indicate the nodes at which any changes must be 

made, the new input terms which must be specified at nodes along 

the stream, and the new form of the finite-difference equation 

which the model must solve at nodes along the stream for both 

specified conditions (head above the top of the aquifer or head 

below the top of the aquifer). Under these conditions, if the 

aquifer becomes unconfined the horizontal hydraulic conductances 

and storage capacities would change. For the sake of this 

problem, assume that these changes are negligible and do not have 

to be considered.

Table 3.6.6 shows a steady-state head distribution for the 

aquifer of figure 3.6.2, obtained using the model with the 

modifications developed in the preceding question. (34) Using the 

data on table 3.6.6, plot a profile of heads across the aquifer in 

an west-east direction at a distance of 25,000 feet from the
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northern edge of the aquifer. Indicate the water level of the 

stream on this plot. (35) Compare each half of this plot with the 

western half of the head profile obtained in question 4. Explain 

the similarities or differences that you note. (36) Calculate the 

total discharge from the aquifer to the stream and compare this to 

the total recharge to the aquifer.

Response of System to Pumping

A well located 25,000 feet from the northern edge of the 

aquifer and 5,000 feet east of the stream is pumped at a rate of 2 

million gallons per day. We wish to simulate both this pumping 

rate and the recharge (0.0002 gallons per day per square foot) 

considered previously. (37) At which node of the model should the 

pumping be represented? (38) What should be the net withdrawal 

from this node? (39) What should be used as the initial head 

distribution?

Table 3.6.7 shows the head distribution in the aquifer after 

155 days of pumping. (40) Using the data in table 3.6.7, plot a 

profile of heads in the same direction as in question (34). Is 

there any effect of pumping on the opposite side of the stream 

from the well? Could this occur if the stream were fully 

penetrating and its level not affected by the pumping? (41) 

Calculate the flow between the aquifer and each reach (node) of 

the stream. (42) What is the total net flow and the change in 

flow between the aquifer and the stream? (43) What is the change 

in stream flow from its value prior to pumping, at a point D
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(fig 3.6.2) downstream from the aquifer? (44) Does this indicate 

that a new equilibrium has been reached? Explain your answer.

Effect of Stream-Bed Conductance

Consider the same problem of a non-penetrating stream with 

pumpage with the vertical hydraulic conductivity of the material 

between the aquifer and the stream now changed to 1,000 gpd/ft 2 . 

(45) What is the vertical hydraulic conductance of the block of 

confining unit which you sketched in question 29 using this value 

of conductivity? Table 3.6.8 shows the head distribution after 155 

days of pumping using this conductivity. Plot a head profile in 

the same direction as was done in questions (34) and (40). (46) 

Does the effect of pumping extend to the opposite side of the 

stream in this case? (47) Would it be permissible to consider the 

stream a fully penetrating constant-head boundary in simulating 

this problem? Explain your answer.

Simulation of a Non-Penetrating Stream by Means of Superposition

Suppose we were to redo the simulation of the non-penetrating 

stream in terms of drawdown rather than head using the principles 

of superposition (see the section in the Course Guide on 

"Principle of superposition and its application in ground-wter 

modeling"). (48) What would we use as the initial head 

distribution? (49) What would we use as the net withdrawal from 

the node at which the well is simulated? (50) What would we use as
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the net input, representing recharge, at the remaining nodes? 

Table 3.6.9 shows the results of a simulation carried out in this 

fashion, in terms of drawdown, for 155 days of pumping. (51) 

Compare the drawdown values obtained in this run to the 

differences between the absolute heads prior to pumping and after 

155 days of pumping obtained previously. Calculate the total 

seepage from the stream and compare it to the total change in 

seepage caused by the pumping in question 42. (52) Again, having 

obtained drawdowns and flow changes, how would you calculate 

actual head values and values of flow after a specified time of

pumping?
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CHAPTER 4 ANSWERS TO PROBLEMS

ANSWERS TO PROBLEM 1, CALCULATION OF LUMPED HYDRAULIC CONDUCTANCES 
AND STORAGE CAPACITIES IN RECTANGULAR GRIDS.

Worksheet 4.1.1 Answers to worksheet 3.1.1, calculation of
hydraulic conductances.

AM in

It  /  

HYDRAULIC CONDUCTANCES FOR THE BRANCHES LISTED BELOW:

BRANCH

1,1-1,2

1,2-2,2

1,3-1,4

2,3-3,3

3,1-4,1

3,2-3,3

FORMULA USED (series, parallel, or, single)

KA
L

KA
L
1

Ceq

Ceq

KA
L

KA
L

200 (100) (25)
100 -INGLE

200 (100) (75+50) o Tvrr'T 17
  en bINGJ-ib

11 1 1
C, + C, 200(25)100 ' 100(25)100 oERIE^

50 150
200(100) (75+50) 100(100)50

"""" \* * \* "*   * JT f^JC\*^ \. f J^J *_f 4 Ji 2 150 150
200 (100)50

100 o INGLE

200 (100) (75+50)
150 o INGLE

["feet squared
CL Day J

5,000

50,000

1,428.6

20,000

10,000

16, 666.7

Single 

C =   

Series Parallel

'eq
l 2
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Worksheet 4.1.2 Answers for worksheet 3.1.2, calculation of
storage capabilities.

/oo

IQO

STORAGE CAPACITIES FOR EACH NODE

Node

1/1
1/2
1,3
1/4
2,1
2,2
2,3
2,4

Storage 
Area
1,250
3,125
4,375
2,500
5,000

12,500
17,500
10,000

sc

1.25
3.125
4.375
2.50
5.00

12.5
17.5
10.0

Node

3,1
3,2
3,3
3,4
4,1
4,2
4,3
4,4

Storage 
Area
6,250

15,625
21,875
12,500
2,500
6,250
8,750
5,000

sc

6.25
15.625
21.875
12.50
2.50
6.25
8.75
5.0
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ANSWERS TO PROBLEM 2, NUMERICAL ANALYSIS, STEADY STATE

Exercise: [values of head are in feet]

Step 1: Subtract equation 8c from equation 8b .

h2,3 = !/ 4 < h3,3 + h2,2 + 2 )

-{h3 ,2 = !/4(h3f3 + h2/2 + 2) } 

h2 3   h3 2 = 0 

This gives us that h2f3 = h3 ^ 2 .

Step 2: Because h2/3 = h3 ^ 2 , substitute h2 ^ 3 for h3>2 in equations 

8a and 8d. This then gives us the following set of 

three equations and three unknowns :

h2>2 = l/4(2h2/3 ) (9a)

h3f3 = !/4(2h2f3 + 9) (9b)

h2,3 = !/4(h3r3 + h2f2 + 2) (9c)

Fill in the rest of equation (9b) for h3>3 . The three 

unknown values are now h2 2 , h3 ^ 3 , and h2 3 .

Step 3: Substitute the right hand side of equations 9a and 9b 

into equation 9c for h2 ^ 2 and h3f3 .

= l/4(l/4(2h2>3 + 9) + l/4(2h2 ^ 3 ) + 2)

h2,3

This gives us an equation all in terms of h2 3 .
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Step 4: Solve this equation for

17

- h = - 
4 2,3 16

h2f3 = 1.417

Step 5: Substitute the value of h2 3 into equation 9a and solve 

for h2 2 .

h2/2 = .708

Step 6: Substitute the value of h2 ^ 3 into equation 9b and solve 

for h3/3 .

h3f3 = 1/4[2(1.417) +9) 

n3,3 = x / 4 (11-834) 

h3/3 = 2.958

Setp 7: The values of the four unknown heads are:

h2f3 = 1.417 

n3 , 2 = 1-417 

h2/2 = .708 

h3/3 = 2.958
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Worksheet 4.2.1.   Answers for worksheet 3.2.1   Iterative method,
steady state

[values of head are in feet]

0.

, m+l . m+1 , m , m m
h. . = (1/4) (h. . . + h. . . + h. . , + h. . .)1,1 i-i,D i+i,: 1,3+1 1,3-1

o 0.

0. h;.,.=o.
h',., =<> /./ee

i,

ô
*

0VJ*
h°   =0
"3.J

h! . =0.
3 ' 3«

4.

0. 2. . 4.2-3
5. 6.



ANSWERS TO PROBLEM 3, NUMERICAL ANALYSIS, TRANSIENT STATE

[values of head are in feet] 

Solution of the Nonequilibrinm Problem

Forward-Difference Equation Using Time-Step Duration = 1 Day 

h. . n = (1) [h. n . + h. n , + h. . , + h. . , - 3h. . ]i,j,n+l i-l,j,n i+l,],n i,j-l,n i,j+l,n i,j,n j

Backward-Difference Equation Using Time-Step Duration = 1 Day

Solution Using Method 1   Forward Difference and Time-Step
Duration = 1 Day

Values of hi,j, n+i at the end of 1 day are:

h2,2,n+i = 0.71;
h2,3,n+ i = -0.58;
h3 ,2,n+ i = 1-42;
h3 ,3,n+ i = -1-04

The negative values for water levels shown above are not 

reasonable. Recall the discussion in Note 4, page 2.4-5 and 2.4-6 

where it is stated, "Thus, the method (forward-difference method) 

appears at first glance to be straight-forward and simple. 

However, if the time increment is taken too large, any error that 

appears for any reason at any time step is guaranteed to grow in 

successive time steps until the finite-difference solution is 

eventually dominated by error and bears no relation at all to the 

analytical, or exact, solution of the differential equations of 

flow. "This condition is termed numerical instability; because of 

it, forward-difference techniques are generally not used."
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Bennett (1976, p. 137) cautions that unless the ratio At/a2 in the 

forward-difference equation is kept sufficiently small, errors 

that grow in magnitude with each step of the calculation may 

appear in the final result. Unless the ratio is sufficiently 

small, this error will increase in magnitude at each succeeding 

time step of calculation until eventually the error completely 

dominates the solution. The term "errorf1 as used here, refers to 

any differences between the computed head at a node i,j and time 

nAt, and the actual value of head that is, the value that would

be given by the exact solution to the differential equation at 

that point and time (Bennett, 1976, p. 137-138). Neither the 

discussion in Note 4 nor that in Bennett (1976) define how small 

the ratio At/a2 would have to be to make the forward-difference

calculation stable, thus preventing the error from growing in 

magnitude at each succeeding time step. Because we are applying 

the forward-difference method to the flow equation, this stability 

criterion also involves the hydrologic parameters.

Mathematically, it can be proven for a 2-^dimensional flow equation 

that if (AtT/a2S)<l/4 the forward-difference calculation will be

stable (Remson, and others, 1971, p. 71-77; Wang and Anderson, 

1983, p. 70; Rushton and Redshaw, 1979, p. 166-168).

In the example in problem 3, 

a=l,000 ft, 

T=2X105 ft 2/day, and 

S=0.2
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then, if At=l day, (AtT/a2S)=(1) (2X105 )/(0.2)(1000) 2=1, which

violates the stability creterion. Therefore the results obtained 

by At=l day is not near the true solution. To achieve the 

stability creterion, At must be smaller than

(1000) 2 (0.2)/4(2X10 5 )=l/4 day. The following are head-calculations 

for At=l day by using At=l/4 day and At=l/8 day. The following 

are the calculated heads using At=l/4 day.

* .709 * 1.417
.709 .917
.584 .667
.459 .605
.428 .542

* 1.417 * 2.958
1.417 1.959
1.167 1.834
1.105 1.709
1.042 1.678

The following are the calculated heads using At-1/8 day.

* .709 * 1.417
.709 1.167
.678 .979
.631 .846
.582 .753
.538 .686
.501 .638
.472 .603
.449 .577

* 1.417 * 2.958
1.417 2.458
1.354 2.177
1.284 2.005
1.222 1.894
1.171 1.819
1.130 1.769
1.099 1.731
1.075 1.706

As shown, there are no negative water levels.
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Solution Using Method 2 Backward-Difference and Time-Step 
Duration = I Day (See Worksheet 4.3.1)

Solution Using Method 3 Backward-Difference and Time-Step
Duration = 1/2 Day

m+l
h, . =
i, D,n

[h,
m

+ h.
m+l m

+ h. . , + h. + (2)h, ,   J

For first half-day, see worksheet 4.3.2. 
For second half-day, see worksheet 4.3.3.
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Worksheet 4.3.1 Answers for worksheet 3.3.1, transient state,
backward difference, time-step duration = 1 day

 
O ,a.» « -70

O

The values of hifj/n are circled.
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Worksheet 4.3.2. Answers for worksheet 3.3.2, transient state,
backward difference, time step duration = 
1/2 day (first time step; t = 1/2 day)

 
0

**«, a,/ = ,3£f 

hi, a, i   ><W

KV^." 5"'7

* , ,« / «-??
  »  >  

5-

The values of hi, j, n are circled.
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Worksheet 4.3.3. Answers for Worksheet 3.3.3, transient state,
backward difference, time-step duration = 1/2 day

(second time step; t = 1 day).

L°
h*. a,/ s ,3o* 

hi, a, I   -SIS'

A * * *» *j
* ,4-4X

l^i, a,oV, a?o

^s.a.i s ^35^ 
*i,i,i-/'**3

I.I
/.. r 73

The values of hi/j/n are circled

5-
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Answers Related to Worksheet 3.3.4 and Figure 3.3.1

The simulated head at the end of one day is slightly 

different for each of the four curves. tThe reason for this is 

that as the time step gets smaller the ejrror in the finite- 

difference approximation of the time derivative gets smaller. 

Figure 3.3.1 shows that as the time step is decreased the 

simulated head at the end of one day is changing less as the error 

in the time derivative becomes smaller. If a good approximation 

of the head in the aquifer were required at day one or information 

on the response of the aquifer at shorter times were required, 

then the selection of the time step would have to be thought out 

and perhaps sensitivity analysis undertaken to insure that the 

simulation is an accurate representation of the real system.
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ANSWERS TO PROBLEM 4, IMPERMEABLE WALL PROBLEM 

Ground-Water Flow System

In this problem set we assume that flow is two dimensional, 

that is, the flow pattern is replicated exactly in planes parallel 

to the plane of the figures illustrating the impermeable wall 

ground-water system (section 3.4, fig. 3.4.1). It is convenient 

to consider the plane of the figures in this problem set as the x- 

z plane. The external geometry of the flow system is defined by 

the external boundary of the fine sand in figure 3.4.1. Because 

the flow medium is isotropic and homogeneous, no layering or 

internal geometry exists in this sytem, and no differences in 

hydraulic conductivity occur in different parts of the system.

Some course participants designate the upper right-hand horizontal 

boundary, the discharge boundary, as a constant-flux boundary. In 

principle, this boundary could be designated as a constant-flux 

boundary if the flow through the system is known. Generally, 

however, this flow is not known, and one reason for performing a 

quantitative analysis of the system is to determine this flow. 

Furthermore, if some depth of standing water, however small, were 

present above this boundary, most hydrologists would conceptualize 

this boundary as a constant-head boundary because, if the system 

were stressed (not an issue in this problem set), the response of 

the system with a constant-head boundary would differ markedly 

from its response with a constant-flux boundary.
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Water enters the system along the upper left-hand, constant-head 

boundary and discharges from the system along the upper right- 

hand, constant-head boundary. Two bounding streamlines connect 

the inflow and outflow boundaries. The purpose of requesting 

participants to sketch several internal streamlines and potential 

lines is to emphasize that, given the external geometry and 

boundary conditions, we can conceptualiz^ the approximate flow 

pattern within the ground-water system without detailed data or 

analysis.

The foregoing comments relate to the simplified ground-water 

system depicted in figure 3.4.1 of problem set 4. However, a 

comparison of the system depicted in figikre 3.4.1 with similar 

real ground-water systems indicates that the position and possibly 

the type of boundaries on ST and VU are arbitrary. In nature, the 

flow system may extend, perhaps for a considerable distance, 

beyond these two boundaries as depicted :.n figure 3.4.1. The 

purpose of simulation in this type of problem is to achieve 

realistic heads and flows, compared with the real system, in the 

neighborhood of the structure. A logical approach to simulation 

of this problem type is to perform a "sensitivity analysis" on the 

position of boundaries ST and VU, that i$, execute a series of 

simulations in which the distance of the$e two vertical boundaries 

from the impermeable wall increases continuously until two 

successive simulations exhibit negligible differences in heads and 

flows near the wall.
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The question of assigning boundary conditions to these two 

vertical boundaries still remains. Possibilities include (a) 

constant head, (b) constant flux, and (c) streamline. Our concept 

of the flow pattern in this system envisions streamlines starting 

at the upper left-hand constant head boundary and flowing beneath 

the wall. Because head is dissipated along streamlines, a 

vertical constant-head boundary close to the wall is not 

appropriate. Wherever we establish the position of the vertical 

boundary ST, we may be neglecting a small quantity of lateral 

ground-water inflow. Thus, a lateral constant-flux boundary along 

ST is physically reasonable. However, a realistic estimate of 

this flux would require a simulation in which this lateral 

boundary was positioned considerably further from the impermeable 

wall than the proposed constant-flux boundary. For this reason, 

the simplest and usual approach in this type of problem is to 

treat these lateral boundaries as streamlines. Their position is 

such that heads and flows near the impermeable wall are 

insensitive to a further increase in the distance of these 

boundaries from the wall.

The previous considerations did not play a role in 

positioning the lateral boundaries ST and VU in this problem set. 

These boundaries would be placed further from the wall in an 

actual quantitative analysis of this ground-water system.
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Information requested on heads in connection with figure 3.4.1.

Location

Upper left-hand 
const ant -head 
boundary

Upper right- 
hand constant- 
head boundary

Elevation head 
(z) , in feet

50

25

Press 
(p/r)

ure head 
in feet

5

0

Hydraulic head 
(h) , in feet

55

25

(head at upper left-hand boundary) - (head at upper right-hand 

boundary) = 55 - 25 = 30 feet.

In this system, water flows from a higher-head, constant-head 

boundary (h equals 55 feet at upper left^-hand boundary) to a 

lower-head, constant-head boundary (h equals 25 feet at upper 

right-hand boundary).
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Flow Net

The three calculated values of total flow through the 

impermeable wall ground-water system vary slightly (see answers to 

table 3.4.1, p. 4.4-8). The difference between the maximum and 

minimum calculated values is about 1% of the total flow. This 

variation in calculated flow may be attributed to (a) round-off 

error and (b) discretization error. In theory, if the head values 

at nodes are expressed with three or four significant figures 

after the decimal point instead of two, and if the discretization 

interval between nodes is reduced to less than 5 feet, then the 

variation in calculated values of total flow along different 

traverses through the ground-water system would decrease.

According to Darcy's law, head is dissipated along flowlines. 

In this system 30 feet of head is dissipated between the two ends 

of all flowlines. The lengths of flowlines in this system vary 

continuously from a maximum for the outer bounding streamline to a 

minimum for the streamline along the sides and bottom of the 

impermeable wall. Thus, the average distance between intersection 

points of potential lines and flowlines in the flow net on 

worksheet 3.4.1 decreases toward the impermeable wall.

The actual distance between intersection points of potential 

lines on any flowline in the flow net varies widely. Head 

dissipation is concentrated near the bottom of the wall where the 

potential lines are closely spaced. If the impermeable wall were
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deeper, the potential lines would be spaced even more closely in 

this region, and the opposite is true if the wall were less deep. 

Sometimes, it is simpler to think in terms of "resistance to flow" 

instead of "relative ease of flow" in a ground-water system. The 

greatest "resistance to flow" occurs beneath the impermeable wall 

because the minimum cross-sectional area of flow is located there.

The spacing flowlines that bound flt>w tubes containing equal 

proportions of the total flow is related to the pattern of head 

dissipation. The widths of the five flow tubes along the upper 

left-hand constant-head boundary decrease slightly, but 

continuously from left to right toward the impermeable wall. All 

the heads in the row of heads immediately below the upper left- 

hand constant head boundary must be equal in order for the width 

of flow tubes along this boundary to be equal. In fact, heads in 

this row immediately below the constant head boundary decrease 

from left to right toward the impermeabl^ wall. On the right, or 

discharge, side of the impermeable wall, the widths of flow tubes 

along the upper right-hand constant-head boundary decrease 

markedly from right to left toward the impermeable wall, 

corresponding to a sharply increasing vertical gradient from right 

to left along this boundary. In general, in flow nets for systems 

with isotropic and homogeneous media, the spacing between 

potential lines and flowlines varies in a continuous and orderly 

manner.
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Table 4.4.1 Answers, table 3.4.1, format for calculations of 
stream functions in impermeable-wall problem 
[ft 2 /d, feet squared per day; ft, feet; 
ft 3 /d, cubic feet per day]

I Form: 
!..... .--J

_X-  

i$/e M/3//y2>ro^/fem7 TJZ1I

37oEf /7

: in

- iw< 
M GAA-

ua <=i_
Jr*

</: 5:5.0.0 ZEE?
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..lt!._ 3Jt

122

-JJ

3- 5, /
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Table 4.4.1. Answers, table 3.4.1, format for calculations of 
stream functions in impermeable-wall problem 
(cont.)

I rorm-at. for n

/od
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221^" 71/ ! 7 SLCL2*.LjL ^00;

I i i

1 i 1
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Water-Pressure

Our expectation, which is borne out by the pattern of equal- 

water-pressure contours on worksheet 3.4.2, is that pressure will 

vary smoothly and continuously in an isotropic and homogeneous 

flow medium (worksheet 4.4.2). However, further inspection of the 

contours on worksheet 3.4.2 and additional calculations indicate 

that the variation of water pressure with depth along a vertical 

section (1) is not equal to a hydrostatic pressure distribution at 

any location and (2) is not exactly a linear relation at any 

location. (A linear relation between pressure and depth would 

necessitate equally spaced pressure contours on a vertical 

section.) Furthermore, the rates of change of pressure with depth 

vary dramatically near the bottom of the impermeable wall. 

Finally, a comparison of the pressure contours on worksheet 3.4.2 

and the streamlines and potential lines on worksheet 3.4.1 

indicates three completely different patterns of lines, in keeping 

with their differing physical definitions.

For discussions of answers to the calculation of uplift force on 

the impermeable wall, refer to figure 3.4.4. Integration of the 

uplift pressure along the bottom of the impermeable wall is simple 

in this case because we assumed a linear change in pressure 

beneath the wall between the two edges.
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Uplift force acting
at base of 1-foot = average pressure times the area
wall section

[ pounds ^ , v1708   -   -   (5 square feet)
square footj v '

= 8,540 pounds

(2) Downward force at weight of 1-foot 
base of 1-foot wall = wall section 
section

_ [weight per | [volume of 1-foot| 
= ^unit volumej ^ section J

. f165 P°unf } (50 feet) (5 feet) ^ cubic footj

= 41,250 pounds

Comparison of results in (1) and (2) shows that the downward force 

(weight) acting at the base of the structure is about 5 times 

greater than the uplift force.
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Time of Travel

With reference to the plotted time-of-travel values and 

related equal-time contours on worksheet 3.4.3, the total time of 

travel from the inflow boundary to the discharge boundary along 

the longest bounding streamline is about twenty time greater than 

the total travel times along the shortest bounding streamline 

around the impermeable wall. The time of travel for increments of 

the longest streamline vary widely. The longest travel times per 

unit length of streamline occur in the lower left-hand corner, 

lower right-hand corner, and right-hand vertical boundary. This 

observation is predictable from the low head gradients in these 

regions. The shortest times of travel per unit length of 

streamline occur beneath the impermeable wall, where head 

gradients are largest in this system.

Hydrologists generally are not accustomed to calculating the 

positions of time-of-travel contours and visualizing their general 

pattern in ground-water systems. The pattern of these contours 

does not bear a simple relationship to the more familiar potential 

lines and streamlines in flow nets; compare, for example, the line 

patterns in worksheet 3.4.3 and worksheet 3.4.1. Because of our 

present-day concern with contamination problems and the advent of 

particle-tracking algorithms in association with digital flow 

models, we can expect ever-increasing applications of equal-time- 

of-travel contours and "surfaces" in ground-water studies.
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Table 4.4.2 Answers, table 3.4.2 Calculations of time of travel 
along selected flow lines in impermeable wall 
problem
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Table 4.4.2 Answers, table 3.4.2, calculations of time of travel 
along selected flow lines in impermeable wall 
problem (cont.)
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Table 4.4.2 Answers, table 3.4.2, calculations of time of travel 
along selected flow lines in impermeable-wall 
problem (cont.)
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ANSWERS TO PROBELM 5, ELECTRICAL ANALOG PROBLEM

Electrical Analog Model Design

A. Confined aquifer bounded by impermeable bedrock Hills and 
fully penetrating stream and reservoir

A-l. Ce = 1/1,000 = 10~ 3 Siemen for 1,000 ohm resistor.

Ce = 1/2,000 = 5 x 10~ 4 Siemen for 2,000 ohm resistor

A-2. (See figure 4.5.1.)

A-3 . C h = Q/Ah = KA/L

For internal blocks 

(500) (100)] (gal) (ft) (ft) 4 gal
n = 100 = 10

500 J (day) (ft 2 ) (ft) (day) (ft)

[(250) (100)1 f 3 ] gal = 10 ° L   500   ] = |5 X 10     

For impermeable boundary blocks

f 3 ] gal 
I5 * 10 J (day) (ft)

A-4 . For internal blocks 

C 10 4 7 galh K =     = -   = 10
c Ce 1Q -3 (day) (ft) (Siemen)

For impermeable boundary blocks

J5 X 10 3 J 7 ______ gal ______ 
1 ~ 10 ( daY) ( ft ) (Siemen)
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A-2

1 
1

4    /^o  
^«^t

J^^->pr-

t
IOO ** .*

Jr

H*
<v«w/ «x**t

(A)
Column

Figure 4.5.1.  Answers to question A-2 sketch of blocks of aquifer 
represented by (A) a single internal resistor of 
the network and (B) a single resistor along one of 
the impermeable boundaries.
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A 5 . K,,   A 
v Av

200 ft 
2 volt

= lOOft/volt

Q gal Ch h 9 gal 
A-6. K, = ^ . , r .  r = -A- = KJC, = 10

I (day) (amp) CeAv c v (day) (amp)

Q CeAh
"I if _ Jfc ^ _ T^ TV-7   K. - - KCKV

If any two of Kif Kc , and Kv are known, the third can be 

calculated; two are sufficient to describe the model.

A-8. See worksheet 4.5.1 for answers to worksheet 3.5.1. 

KV = 100 ft/volt

Ah = 100 ft

A 200 0Av =    = 2 volts

Voltage to head conversion: multiply the measured voltage by Kv , 

100 ft/volt.

Current to flow conversion: multiply the measured current by Kif 

10 9 gal/day/amp.

The flow represents inflow to the aquifer from the reservoir. 

The flow is equal to the discharge to the stream; because we have
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A-8. Worksheet 4.5.1  Answers for worksheet 3.5.1, electric
analog model grid for showing 
boundaries and method of connecting 
power supply, ammeter, and voltmeter.
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steady-state conditions inflow to the aquifer must equal outflow 

from it.

9 gal
A-9. From (6), K. = 101 (day) (amp)

_ Q 2 X 10 6 o v m"3 o_ 1 = IT =    q  = 2 X 10 amp 
Ki 10

or 1 = 2 mA.

B. Partially Penetrating Stream 

B-l. Cz = vertical hydraulic conductance of the confining bed

Q = K'A = K'aw 
z Ah b b

(0.98) (40) (500) (gal) (ft) (ft)

10 (day) (ft 2 ) (ft)

= 1,960 gal/day ft

i gal 
= 10 (day) (ft) (Siemen) <Prevlously calculated)

K -
c ~ Ĉ

Ce =   - = f = 1.96 X 10" 4 Siemen
Kc 10

R = ~~ = " = 5 ' 10 °
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B-3. The simulation of the nonpenetrating stream is an extension 

of the aquifer simulation. Voltages and currents in the 

simulation of the nonpenerating stream must mean the same thing,

in terms of heads and flows, as in the simulation of the aquifer 

and its original boundaries; therefore, Kv and K± must be the same 

so that according to the relation Kc = K^/K^, Kc must also be the 

same.

B-4. At the upper end of each vertical resistance (i.e., at the 

end not connected to the network). In our case, because we will 

assume that the water-surface elevation is the same along the 

entire stream channel, this can be accomplished by connecting the 

upper ends of the vertical resistances to a bus wire and holding 

the voltage on the bus wire at a value corresponding to the stream 

elevation.
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Electrical Analog Experimental Procedures

A. Confined Aquifer Bounded by Impermeable Bedrock Hills and 
Fully Penetrating Stream and Reservoir

A-l. See Worksheet 4.5.2 for answers to worksheet 3.5.2

A-2. Total discharge into the stream is calculated using Darcy's 
Law, Q = KIA. The hydraulic conductivity, K, is 
100(gal/d)/ft2 ; the gradient, I, is 200 ft/10,000 ft or 0.02; 
and the area is the length of the stream between the 
impermeable bedrock hills multiplied by the thickness of the 
aquifer, 10,000 (100) or 10 6 ft. Thus, Q = (100) (0.02) (10 6 )

2 Mgal/d.

A-3. Total ground-water discharge to stream by current 
measurement.

I s = 1.98 mA 

Q = Kil

Ki = 10 9 gal/d/ampere = 1 Mgal/mA 

Q = 1.98 Mgal 

Compare this result to that calculated in A-2.

B. Confined Aquifer with a Discharging Well 

B-l. Pumping well is represented by the node (11, 8)
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A-l.

Worksheet 4.5.2 Answers for worksheet 3.5.2, initial head
distribution

cr

JT .

//

/.r P.oo

3,00

3.00

3.00

/ to

A

/ fo

Afo

Aft

/.

/.to

Mo

/.to

/,£*

h'lo

/- to

3

// /jr /r" ^7 /7

a

fa

60

__... i

o

/3
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B-2

Worksheet 4.5.3 Answers for worksheet 3.5.3, head distribution
that reflects the influence of a discharging 
well.

Multiply recorded values of voltage by 10 2 to obtain drawdown in
feet. -j-

.; / 3 £* t 9 ..//.. /& . /r '?

.   /., 3 4" 7 f // .   /3
The influence of the well (measureable drawdowns) extends 
throughout the aquifer; flow is diverted to the well within the 
limiting streamlines.
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B-3

Figure 4.5.2 Answer to question B-3, east 
along a line extending from 
the well to the stream.

-west profile of head 
the reservoir through
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B-4. Flow from reservoir, 3.31 Mgal/d 

Flow into stream, 1.30 Mgal/d

B-5. Total flow in: 3.31 Mgal/d at resevoir

Total flow out: 1.30 Mgal/d at stream
+ 2.QQ Mgal/d from well

3.30 Mgal/d

Except for experimental error, total inflow = total outflow.

B-6. When a new equilibrium has been achieved, the well discharge 

is balanced by increases in inflow to the aquifer plus decreases 

in natural outflow.

New Inflow Previous Inflow Change 

Increase in inflow: 3.31 2.0 = 1.31

Previous Outflow New Outflow Change 

Decrease in outflow: 2.0 1.30 = 0.70

The sum of these, 1.31 + 0.70 = 2.01 Mgal/d, is equal to the well 

discharge within experimental error.

B-7. If the storage coefficient of the aquifer is known, the 

drawdown distribution can be used to calculate the total volume of 

water taken from storage during the nonequilibrium period. No 

other information is provided on the nonequilibrium period by this 

analysis.

C. Confined Aquifer with Discharging Well in Superposition
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C-l
Worksheet 4.5.4 Answers for worksheet 3.5.4, drawdown

distribution when well is discharging 
and potentials at reservoir and stream 
boundaries equal zero.

3 S' 9 9 // /*  AT '7 '?

C-2, Measured inflow from reservoir 1.29 Mgal/d 
Measured inflow from stream = . tl Mgal/d

Multiply recorded values of voltage by 10 2 to obtain drawdown in 
feet.
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C-3

Worksheet 4.5.5   Answers for worksheet 3.5.5, algebraic sum of
drawdowns measured in C-l and heads measured in 
A-l.
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C-4. The heads recorded in question A-l (answers to worksheet 

3.5.2, p. 4.5-8) show the effect of the reservoir and stream 

boundaries alone; the values recorded in question C-l (answers to 

worksheet 3.5.4, p. 4.5-13) show the effect of the pumping well 

alone. The algebraic sum, as recorded in question C-3 (answers to 

worksheet 3.5.5, p. 4.5.-14) gives heads that are equal to those 

recorded in question B-2 (answers to worksheet 3.5.3, p. 4.5-10) 

in which both the boundaries and the well were represented.

C-5 and C-6. The measured inflow along the reservoir in Part C 

actually represents the increase in flow from the reservoir to the 

aquifer in response to the pumpage. The measured inflow along the 

stream represents the decrease in outflow from the aquifer to the 

stream as a result of the pumpage. Thus each flow actually 

represents the algebraic change in flow induced by the pumpage.

D. Nonpenetrating Stream
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D-l

Worksheet 4.5.6 Answers for worksheet 3.5.6, head distribution
when simulation includes a nonpenetrating 
stream (no discharging well).

/

//
i,

V.
y'0

/r

«*/

3.0

£.0

3,0

3,0

/. rt

-it

Mf,

./.

/rs.

,.*£&-. a*

,3

/ 6

0/6

0,10

\4*rt-<

/

JT

(Multiply values by 10 2 to get heads)
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D-2

The hydraulic gradient 
changes because of 
discharge to the 
nonpenetrating stream.

Figure 4.5.3 Answer to question D-2, eapt-west head profile when 
simulation includes a nonpenetrating stream.
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D-3. Flow from reservoir 2.36 Mgal/d

Flow into nonpenetrating stream 1.28 Mgal/d

Flow into fully penetrating stream 1.08 Mgal/d

Total inflow (reservoir) = total outflow (2 streams)
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E. Confined Aquifer with Nonpenetrating Stream and Discharging 
Well

E-l

Worksheet 4.5.7 Answers for worksheet 3.5.7, head distribution
when simulation includes a nonpenetrating 
stream and a discharging well.

9 ~ //../*. /T '? '9

E-2, Inflow from reservoir = 3.56 Mgal/d
Outflow to nonpenetrating stream = .84 Mgal/d 
Outflow to fully penetrating stream = .68 Mgal/d
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E-3

k 
Uj 
Uj

<Q 
t 
UJ

Disr/i-/wce

Figure 4.5.4 Answers to question E-3, east-west head profile 
through pumping well when simulation includes a 
nonpenetrating stream.
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E-4. Yes, there is an effect on the opposite side of the 

nonpenetrating stream.

E-5. Increase in flow from reservoir, 3.56 - 2.36 = 1.20 Mgal/d 

Decrease in flow to nonpenetrating stream, 1.28 - 0.84 =

0.44 Mgal/d 

Decrease in flow to fully penetrating stream, 1.08 - 0.68 =

0.40 Mgal/d

1 20 Percent from reservoir = ' (100) = 60%

0 44 Percent from nonpenetrating stream = ' (100) = 22%

Percent from fully penetrating stream = ' (100) = 20%

2% error

E-6. Only reduced inflow; we know this because potentials in the 

aquifer are above zero everywhere beneath the nonpenetrating 

stream and everywhere adjacent to the penetrating stream; thus 

flow everywhere is from the aquifer into these streams.

E-7. The gaging results alone would not indicate this.

E-8 and E-9. If we were concerned about the effects of seepage 

from the stream on the quality of water in the aquifer e.g., if 

polluted stream water might be infiltrating, we would have to
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know whether or not seepage from the stream was occurring. On the 

other hand, if only hydraulic effects such as drawdowns, or the 

reduction in streamflow downstream from the aquifer were of 

interest we would not have to distinguish between reduced outflow 

to the stream and direct inflow from it.

E-10. In a field situation, if the head beneath the stream fell 

below the top of the aquifer, an unsaturated zone would develop at 

the top of the aquifer. Presumably, the confining material would 

remain saturated. The head at the base of the confining material- 

-i.e., just at the top of the aquifer would equal the elevation 

since pressure in an unsaturated zone is essentially zero. 

Further decrease in head in the aquifer cannot change this. Thus 

once an unsaturated zone develops at the top of the aquifer, the 

head difference across the confining zone would remain constant, 

i.e.:

The difference between the elevation of base of the confining 

unit, and stream head is 100 ft and the discharge per unit area of 

streambed associated with this head difference would also remain 

constant, i.e.:

Q hs ~ ne 100ft gal/d- k ' --1 - °- 98
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Because w = 40 ft, this is equivalent to about 390 gal/d per foot 

of channel, assuming vertical flow, beneath the stream only.

F. Confined Aquifer with Nonpenetrating Stream and Discharging
Well in Superposition

F-l. Flow from reservoir

Flow from nonpenetrating stream 

Flow from fully penetrating stream

Total inflow

F-2. Reservoir percent

Nonpenetrating stream percent 

Fully penetrating stream percent

1.15
2

0.45
2

0.40

1.15 Mgal/d 

0.45 Mgal/d 

Q.4Q Mgal/d

2.0 Mgal/d

(100) = 57.5%

(100) = 22.5%

(100) = 20%

Percentages are equal to those obtained in E, within limit of 

experimental error.

F-3. See answers to worksheet 3.5.8 on next page.

F-4. No; this determination cannot be made on the basis of F 

alone. It can be made by adding, algebraically, the heads 

measured in D to those measured in F (superposition) and noting 

the net direction of the head difference^ along the streams.
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F-3

Worksheet 4.5.8 Answers for worksheet 3.5.8, drawdown in response
to a discharging well and zero potentials at the 
reservoir, nonpenetrating stream and stream 
boundaries.
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Multiply voltages by 100 to obtain drawdown in feet
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G. Confined Aquifer as in Part F with Discharging Well 500 Feet
Closer to Nonpenetrating Stream

G-l. Flow from reservoir 1.03 Mgal/d

Flow from nonpenetrating stream .52 Mgal/d

Flow from fully penetrating stream 0.45 Mgal/d

G-2. Drawdown at well node is -131 ft. This actually represents 

only drawdown or head change due to the pumping because we are 

using superposition.

G-3. See answers to table 3.5.1 on next page and profiles in 
figures 4.5.5, 4.5.6, 4.5.7, 4.5.8.

G-4 . A discharging well at the reservoijr or fully penetrating 

stream boundary gives the minimum drawdown. The greatest flow 

from the nonpenetrating stream occurs when the discharging well is 

located at node (11,15). The least amount of flow from the 

nonpenetrating stream occurs when the discharging well is located 

at node (11,2) near the reservoir.
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G-3(a)

3

o

40

£000 £060 AOOO

Minimum drawdown is at nodes 2 and 20 (excluding boundaries) .

Figure 4.5.5   Answer to question G-3 (a) , drawdown in discharging 
well as the well is moved along an east-west 
profile through the original well location.
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G-3(b)

loo

o

Figure 4.5.6 Answer to question G-3(b), percentage of the well 
discharge derived from the reservoir as the well 
location is moved along an east-west profile 
through the originial well location.
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G-3 (c)

I
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I jy"^ CL
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Figure 4.5.7 Answer to question G-3(c 
discharge derived from 
as the well location is 
profile through the ori

percentage of the well 
the nonpenetrating stream 
moved along an east-west 

iginal well location.
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G-3(d)

,1s
V)

s

C£i

Figure 4.5.8 Answer to question G3(d), percentage of the well 
discharge derived from the fully penetrating 
stream as well location is moved along an east- 
west profile through the original well location.
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H. Confined Aquifer as in Part G with Fully Penetrating Stream in
Place of Nonpenetrating Stream

H-l. Flow from reservoir 99 Mgal/d

Flow from the new (interior) 96 Mgal/d 
fully penetrating stream

Total inflow 195 Mgal/d

error  > 5 Mgal/d

Flow through the original fully penetrating stream boundary 

should theoretically be zero; if any inflow is measured at this 

boundary, it is probably caused by a less-than-perfect connection 

of the new fully penetrating stream to the network.

H-2. Approximately 50 percent.

H-3. See answers to worksheet 3.5.9.

H-4. The simulation would have value in that it would indicate the 

maximum possible contribution of the stream to the well's 

discharge; that is, it would give us an! upper limit for this 

contribution.

I. Additional Discussion on Simulation of Streams

1-1. (1) The head value given by our network voltage represents 

an average over the vertical thickness of the aquifer, or, 

approximately, the value which we wouldi expect to measure at or 

near the vertical midpoint (mid-depth) of the aquifer. If the 

partially penetrating stream extends inlto the aquifer for, say, 10
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percent of the aquifer thickness, we could use a vertical resistor 

to represent the 40 percent of the aquifer thickness between the 

stream bottom and the aquifer midpoint. The permeability which we 

would use in calculating the required resistance value would then 

be the vertical permeability of the aquifer material itself.

(2) A low permeability stream layer would constitute a 

conductance in series with the vertical segment of the aquifer 

itself described in (1). To account for such a layer, we would 

calculate the equivalent conductance of the two elements in 

series, and choose a vertical resistance corresponding to this 

equivalent conductance.
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H-3

Worksheet 4.5.9 Answers for worksheet 3.5.9, drawdown
distribution in response to a discharging 
well with an interior fully penetrating 
stream and the reservoir at zero potential.
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1. (cont.)

Worksheet 4.6.2 Answers for worksheet 3.6.2, blocks for
defining hydraulic conductance in the y 
direction.
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1. (cont.)

Worksheet 4.6.3 Answers for worksheet 3.6.3, blocks for
defining storage capacity and for 
calculating recharge.

V 3 

4-

3
o

H

3 <?  5 fr 19

4:
0 
O 
O

So, ooo

4.6-3



1. (cont.) Hydraulic conductance between nodes in x direction

Rows 1 and 11:

C = C
KA £ OOf>

ICO

(100 (gal/d)/ft ) (100 ft) (2^500 ft)C x=

Row 2 (and all other interior rows):

t 
^O

=5,000<gal/d)/ft

^ (100 (gal/d)/ft ) (100 ft) (5,000 ft) ^ o/> ^ , , /jx _ Cx=      -        T-^K               =10,000 (gal/d)/ft
5,000

Hydraulic conductance between nodes in v direction

Columns 1 and 11:

KyA

L

(100 (gal/d)/ft ) (100 ft) (2,500 ft) 
5,000 ft

nnn t =5,000(gal/d)/ft
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Column 2 (and all other interior columns)

  (100 (gal/d)/ft ) (100 ft) (5,000 ft) nn Cy=              5.000 ft              -10, , _,..,.,. <gal/d)/ft

Storage capacity (S,) and recharge

Corner nodes (1,1 and 11,1) =

J06*

cP

S c = S sbA

S c=(7.48(gal/d)/ft) (2.67 x ft /ft
X. w

(iQQft)

(2,500ft) (2,500ft)=l,250gal/ft 

R=(0.0002 (gal/d)/ft 2 ) (2,500 ft) (2,500 ft)=1,250gal/d

Side nodes (10,1; 1,5; and 11,5):

Sc=(7.48 gal/ft 3 ) (2.67 X 10"? ) ft f//£t (100 ft) 

(2,500 ft) (5,000 ft)=2,500 gal/ft

R=0.0002 (gal/d)/ft) (2,500 ft) (5,000 ft)=2,500 gal/d
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Interior nodes (7,3; 7,7; and 10,5):

Sc=(7.48 gal/ft) (2.67 x ft)

(5,000 ft) (5,000 ft)=5,000 gals/ft 

R=(0.0002 (gal/d)/ft 2 ) (5,000 ft) (5,000 ft)=5,000 gal/d

2. -Cx (hi/j/n - hi,j-i, n ) +cx( hi,j+i,n " hi,j,n)

3.

  h.

Ah =

Av 
Ah

Av

If Sc = 10 40 , Ah will be very small no matter how big Av 

becomes within practical limits. Since Ah stays approximately 

zero, h must remain constant.

4. The head profile is a parabola (see graph, figure 4.6.1). The 

direction of flow is toward the stream. The gradient becomes 

steeper as we approach the stream because the discharge carried by 

the aquifer increases in this direction, as a result of 

progressive accretion to the flow through recharge.
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7 8 9 '°

Figure 4.6.1 Answers to questions 4 and 19 Head profiles along 
row 6 of aquifer in figure 3.6.1 for steady-state 
conditions and after 5, 13, and 155 days of 
pumping.
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The parabolic form of the head profile observed here can be 

predicted by developing the differential equation of flow for this 

problem and obtaining the solution for the boundary conditions in 

effect. This is done on the following pages.

We imagine a prism extending through the aquifer as shown in 

the figure

-i_

The height of the prism is the aquifer thickness, b; the 

width in the direction of flow is the distance Ax, while the other 

horizontal dimension, normal to the flow, is Ay.

The inflow through the left face o£ the prism, q1 , is by 

Darcy's law the product of hydraulic conductivity, flow area and 

head gradient, i.e.,

H

 where ! dxj refers to the head gradient at the left face of the 

prism. The flow through the right face is similarly given by
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q9 = -KbAy

where "Jx" ^ s the neac* gradient at the right face.

The vertical recharge over the surface of the prism, qr , is 

given by

qr = wAxAy 

where w is the recharge rate per unit area.

Because this is an equilibrium condition, the equation of 

continuity states that inflow minus outflow must be zero, i.e.,

Substituting the expressions for qr , q1 , and q2 gives

= 0wAxAy - Kb Ay l-- + Kb Ay --

or

fi
wAxAy + KbAy ^

x
f ̂  _ I -^- U =

[^ J2 x
= 0
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f dhl f dhl 
The difference in the iiead gradient MX ~ dx can

as a product of a finite-difference approximation to the second 

derivative and the spacing, Ax, between the two faces as follows

( \fdh] .
dx dx2

Substitution into the previous equation gives

,2
wAxAy + Kb-g-yAxAy = 0. 

dx

Dividing by AxAy and rearranging, we obtain as the 

differential equation of flow

2
d h _ _ w 
dx2 ~ Kb'

Direct integration of this equation yields the general 

solution

h =      v2 4- r v 4- r 
2Kb i 2'

where C-L and C2 are constants that have to be determined from the 

boundary conditions. To prove that this is, in fact, a solution, 

we need only differentiate it twice; that is,

dh _ _ w
dx Kb X + L i'

and

2
d h w
dx2 Kb'
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The second differentiation takes us back to the original 

differential equation, indicating that our equation for head 

versus x is, in fact, a solution to this differential equation. 

If we look at equation (a) above, we can see that Cx must be the

j "V%

value of the head gradient,    at x = 0; that is, at the western
dx

boundary of the aquifer. At this point, as indicated by the head 

profile which you plotted, the gradient is zero. There is no 

flow, because there is no area of aquifer to the west over which 

recharge can accumulate; and zero flow, by Darcy's law, requires a 

zero gradient. Thus we have established that the constant Cx of

our solution must be zero, and the solution therefore takes the 

form

h = -    v2 4- r 
n 2Kb X 2'

This tells us that the constant C2 must actually be the head

at x = 0 (i.e., at the western boundary of the aquifer). If we 

designate this boundary head h0 , the solution can be written

i_ i_ W 2

or

These equations indicate that a plot of h vs x must have a 

parabolic form as, in fact, your head profile should indicate.

w The term is given for this problem by
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-4 . , .. 2

- = 10"° per foot
2Kb / f\ \ /i r\r\ ~~^-] / f-t-

w 2 x 10 gpd/ft_____ -a

(2) (100 gpd/ft ) (100 ft) 

so that we have

h0 - h = 10- 8 x2 

at x = 50,000 ft, we have

h0 - h = (10- 8 ) (50,000) 2= 25 feet.

This agrees with the head difference across the aquifer as given 

in the digital model solution (table 3.6.1). You may verify that 

the solution is satisfied at other points across the aquifer.

5. See completed worksheet 4.6.4

The discrepancies between calculated ground-water flows and 

calculated recharges are due to truncation errors and roundoff 

errors which affect both the heads on tajble 3.6.1 and our 

calculations of flow as discussed in the following paragraphs.

In calculating ground-water flows, we used the average head

gradient, -r  (where Ah is the head difference between successive 
Ax

columns and Ax is the node spacing, 5,OdO ft) to approximate the 

hydraulic gradient at a particular point between the columns. In 

effect, we assumed that the average head gradient between the 

nodes was equal to the slope of a tangent to the head parabola at 

this particular point (point m) as shown! in the sketch:
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For the calculations at 27,500 and 42,500 feet from the 

stream, we assumed that the point m, for which we were 

approximating the hydraulic gradient, was actually the midpoint of 

the interval between the two nodes. Fot the calculation at 27,500 

feet from the stream, this was apparently not a bad assumption 

because our calculation of total ground4water flow past this point 

was relatively close to the total recharige applied to the aquifer 

to the west of this point. For the calculation at 42,500 feet, 

the error was similar in magnitude but represented a much larger 

fraction of the total ground-water flow at that point.

For the calculation of total ground-water flow into the

stream, we assumed that the average gradient -T   represented the

slope of a tangent to the head parabola at the edge of the stream, 

that is, at one edge of the interval Ax as shown in the diagram

below,

and we compared our ground-water flow calculation to the total 

recharge to the aquifer including that applied in Column 11. 

Obviously, the approximation here was not as good. Had we taken 

the point of calculation as the midpoint of the interval Ax and

compared the flow just to the recharge wfest of that point (i.e.,
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excluding the recharge on Column 11), our calculated flow would 

have come much closer to matching the recharge figure.

The errors discussed above fall into the category of 

truncation error. These are inherent in the representation of a 

derivative by a finite-difference approximation. The heads shown 

on table 3.6.1 were themselves calculated using a finite- 

difference approximation to the differential equation of flow; 

thus they contain truncation errors themselves. That is, they 

differ from the heads which would be given by the analytical 

solution to the differential equation at the same points. This 

further contributes to the differences between our calculated 

ground-water flows and calculated recharges.

In addition to these truncation errors, our results are 

affected by roundoff errors. These are errors which arise because 

we cannot handle the finite-difference calculations exactly  

rather, we must carry our arithmetic to some number of significant 

figures, and then give up. Like the truncation errors, roundoff 

errors are present both in the calculated heads on table 3.6.1 and 

in our own calculations of ground-water flow. The heads on table 

3.6.1, in particular, contain significant roundoff errors because 

they were printed out only to the nearest tenth of a foot 

(although calculated to greater accuracy in the program). 

Particularly for the heads at 40,000 and 45,000 feet from the 

stream (used in the flow calculation for 42,500 feet from the 

stream) the error involved in roundoff to the nearest tenth was a
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significant fraction of the total head difference involved in the 

calculation.

6. This is a steady-state flow system in which the total 

inflow from vertical recharge is equal to the total outflow to the 

stream. Recharge causes a uniform accretion to the ground-water 

system along the path of flow leading to a progressive steepening 

of the hydraulic gradient along the path of flow.

Response of System to Pumping

7. No; the time-step length should progressively increase. 

With a uniform step length, we would be calculating very small 

head changes as time increased, and thus wasting a lot of computer 

time.

8. The system had reached equilibrium; inflow and outflow 

were equal.

9. The steady-state head distribution of table 3.6.1 is 

taken as the initial head distribution.

10. At the end of the fourth time step, approximately 5.37 

days of pumping have elapsed.

11. The well should be located at node 6,6 (that is, at the 

node for which i = 6 and j = 6).
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12. 2,000,000 gpd withdrawal minus 5,000 gal/d recharge =

I,995,000 gal/d net withdrawal.

13. The withdrawal rate should remain the same through 

successive time steps.

14. See table on worksheet 4.6.5, and graph on figure 4.6.2.

15-17. After 5 days of pumping The direct flow from the 

stream to the aquifer takes place through rows 4, 5, 6, 7, and 8. 

The total direct flow from the stream to the aquifer through these 

rows, as calculated in the answer to question 14, is 80,000 gal/d.

The original flow toward the stream (from question 5, 

worksheet 4.6.4) was calculated as: 48,000 gal/d through each of 

the rows from 2 through 10; 24,000 gpd through row 1; and 24,000 

gpd through row 11. We consider first rows 1, 2, 3, 9, 10, and

II. For these rows, the direction of flow was still from the 

aquifer to the stream after 5 days pumping. The diversion of the 

original flow, in each row, is simply the difference between the 

prepumping (steady-state) flow to the stream (from question 5) and 

the flow after 5 days (from question 14). The results are 

tabulated below:
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Original flow Flow to stream after Diversion of 
to stream (gpd) 5 days pumping (gpd) original flow 

Row (from question (from question 14) (gal/d) 
5)

1
2
3
9
10
11

24,000
48,000
48,000
48,000
48,000
24,000

- 5,500
- 9,000
- 2,000
- 2,000
- 9,000
- 5,500

18,500
39,000
46,000
46,000
39,000
18.500

Total 207,000

Now consider rows 4, 5, 6, 1, and 8 in which the pumpage has 

produced reversal of the flow after 5 days. Before pumping, 

48,000 gal/d was entering the stream through each of these rows. 

In each row, this seepage toward the stream must be reduced to 

zero before seepage from the stream can begin. Thus for these 

five rows, the diversion of original flow is 5 x 48,000, or 

240,000 gal/d. The total diversion of original flow after 5 days 

pumping, from all 11 nodes, is thus 207,000 + 240,000, or 447,000 

gal/d.

The total contribution of the strearft to the well after 5 days 

pumping is thus 527,000 gal/d 80,000 gal/d in direct flow plus 

447,000 gal/d in diversion of original flow toward the stream. 

The balance, or 1,473,000 gal/d, is the rate of withdrawal from 

ground-water storage after 5 days of pumping.
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After 13 days of pumping Direct flow from the stream to the 

aquifer occurs through all rows and (from question 14) totals 

532,000 gal/d. Again, before any seepage from the stream to the 

aquifer can occur in a given row, the original seepage toward the 

stream through that row must be totally diverted. Thus all of the 

original ground-water flow to the stream, which we calculated in 

question 5 as 480,000 gal/d, has been diverted to the well after 

13 days pumping. The total contribution of the stream to the well 

is therefore 532,000 + 480,000, or 1,012,000 gal/d, after 13 days 

pumping. The rate of withdrawal from storage after this interval 

of pumping is 2,000,000 - 1,012,000 = 988,000 gal/d.

After 155 days of pumping The direct flow from the stream to 

the aquifer (from the calculation of question 14) is 1,521,000 

gal/d. Again the entire original flow to the stream, which was 

calculated in question 5 as 480,000 gal/d, has been diverted to 

the well. The total contribution of the stream to the well is, 

therefore, approximately 2 million gallons per day. This is equal 

to the pumpage and indicates that no water is being supplied by 

withdrawal from storage after 155 days of pumping. This, in turn, 

means that the system has reached a new equilibrium.

In terms of the principles outlined by Theis (1940), water 

pumped from a well must be accounted for by withdrawal of water 

from storage, decrease in natural outflow, or increase in 

recharge. In this problem, the decrease in original flow to the 

stream represents the decrease in natural outflow while the direct
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seepage from the stream to the aquifer represents an increase in 

recharge. Note that at the new equilibrium there are two types of 

recharge in the system areal infiltration of precipitation, which 

remains constant throughout the pumping jperiod, and direct flow 

from the stream, which increases until t|he new equilibrium is 

attained. In the final equilibrium, all of the infiltrating 

precipitation actually flows to the well; however, this 

infiltration of precipitation was never Considered explicitly in 

our calculation because its contribution to the pumpage is fully 

accounted for as the decrease in natural discharge to the stream.

If we were looking at the system in a broader context that 

is, if we were considering the entire stream basin, and all 

ground-water bodies in connection with the stream, rather than the 

isolated aquifer of our problem we might view the direct flow 

from the stream to our local aquifer as a reduction in natural 

outflow from the entire stream basin rather than as an increase in 

recharge. For example, let's suppose th<£ flow of the stream, 

upstream from our aquifer, to be 4 Mgal/d; and let's suppose that 

all of this flow is derived from the discharge of other aquifers 

to the stream. The original flow from the aquifer of our problem 

to the stream is about 0.5 Mgal/d so that}, prior to pumping, the 

total streamflow at the down stream end 6f our problem area is 4.5 

Mgal/d. The effect of the pumping is to reduce the net ground- 

water flow into the stream by 2 Mgal/d. In this case, considering 

the stream basin as a whole, we might consider the entire 2 Mgal/d 

reduction in natural ground-water discharge to the stream.
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(Upstream from the aquifer of our problem, the ground-water flow 

to the stream would still be 4 Mgal/d while in our aquifer it is 

minus 1.5 Mgal/d. Thus the net flow from the ground-water system 

to the stream is 2.5 Mgal/d, which represents a decrease of 2 

Mgal/d from the original value.

This illustrates the point that when considering the total 

ground-water contribution to stream flow, reduction in discharge 

to a stream and increase in seepage from a stream are basically 

the same thing. Each represents a change in the flow between the 

ground-water system and the stream; the only real difference is in 

direction, and thus sign.

18. No matter how the system is viewed, the reduction in 

streamflow at point D at the new equilibrium is equal to the 

pumpage, 2 Mgal/d.

19. (See graph of plots of head versus distance, 

question 4.)

20. From the note "Well drawdown correction at a pumping 

node," the additional drawdown, s, in a real well at node 6,6 is:

o -S ~
271T

a 5,000 = 1 '
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2.3Q 1,039 (2.3) (2 x 10 )3 = ~2^r log o 5 =     4  (3 - 32)
ZnT U ' b 6.28 x 10 

= 243 ft

From table 3.6.1 and table 3.6.4, tptal drawdown from digital 

model = 118.8 - (-47.5) = 166.3 ft (at n<[)de 6,6). Estimated total 

drawdown in well = 166.3 + 243 = 409.3 ft. (Obviously, this 

drawdown could not be attained in the fi^ld for the system we have 

described without violating some of our assumptions.)

21. At any given time prior to equilibrium, both drawdown 

and change in flow to the stream would b$ reduced. Drawdowns and 

reductions in streamflow at equilibrium would be the same as with 

the lower storage coefficient; however, the time required to reach 

the new equilibrium will be longer if the storage coefficient is 

increased. Furthermore, when the new equilibrium is attained, the 

total volume of water obtained from storage with the larger 

storage coefficient is greater than with the lower storage 

coefficient. The ratios of the two volumes from storage must 

equal the ratios of the storage coefficients because the volume of 

the cone of depression is the same in both cases.

Simulation of a Fully Penetrating Stream by Means of Superposition

22. Zero everywhere.

23. Zero everywhere.
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2 4. Two mgd.

25. (See figure 4.6.3)

26. The flow from the stream to the aquifer after 155 days 

of pumping is 2 Mgal/d which is equal to the algebraic change in 

flow to the stream calculated for the same time of pumping in 

question 14 .

27. If only hydraulic changes are required, we can calculate 

head differences and flow changes caused by the pumping without 

knowing the original condition. However, if the resultant water 

levels and flow values in the aquifer are required (as in a 

problem involving contaminant movement from a stream to a well), 

this method of calculation would not be sufficient.

28. Yes, by algebraic addition of drawdowns to the steady- 

state head distribution prior to pumping and algebraic addition of 

flow changes to the original flow values that is, by 

superposition. The additional information required is the 

original distribution of head and flow.

Simulation of a Non penetrating Stream 

System Under Natural Conditions

29.
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KA = (10) (80) (5,000) 
L 80

=50,000 (gal/d)/ft (25,000 (gal/d)ft
for each of the two 
end blocks rows 1 
and 11)
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O 
Q

II

COLUMN NUMBER

Figure 4.6.3 Answer to question 25 Head profile along row 6
showing the effects of only the pumping well after 
155 days of pumping.
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30. QZ i . = C z (110 - h .)  For hifj above top of aquifer

QZ. . = C (100)  For h. . below top of aquifer
1/3 that I's1 , for h± . < 10.0 feet,

31. QZ. . = C_ (110.0 - h. .)  If h. >
!/ D 1 / D 1 » J

10

.^ . = C z (100)  If h± . < 10

32. (See figure 4.6.4)

33. The statements given in (31) would have to be 

implemented at each node along column 5 (that is, at each node 

along the stream) in this case, because we know that the stream 

head is always 100 feet and the elevation of the top of the 

aquifer is always 10 feet, the only new input information that we 

would need would be the value of Cz , 50,000 (gal/d)/ft. In an

actual problem, we would have to specify the stream elevation, the 

aquifer top elevation, and the value of C z at each node along the

stream.

The finite-difference equation for hodes along the stream 

would take the form

-Cx (hi . n - h± n ) + Cx (hi n ~ hi j n )

~cy (hi   n ~ hi-i   n j + cy (hi+i   n ~ h ^' ' * -*

h. . - h. .
i,j,n i,j,n-l

J' n c t   tn n-1
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where

QZ. . = C 7 (110 - h. . ), when h. . > 10
. i, j,n z i,D,n' ' i, :,n

QZ. . = C 7 (100), when h. . < 10.
i, :,n z ' i, :,n

34. (See figure 4.6.5)

35. Both the differences and the similarities between the 

head profile of this problem and that for the fully penetrating 

stream problem can be explained through the analytical solution to 

the flow equation which we obtained previously.

Following the answer to question 4, a development of the 

equation for unidirectional flow with uniform recharge was given. 

In the final form of this equation

h - h - w Y2 h° h - 2Kb X

ho is the head at x = 0, which is the beginning of the flow path or 

the point where the cumulative ground-water flow is zero; w is the 

recharge rate per unit area; K is hydraulic conductivity; and b is 

aquifer thickness. We can apply this equation to the western part 

(columns 1-5) of the nonpenetrating stream problem taking x = 0 

along the western edge of the aquifer and letting x increase to

4.6-29



Q z = 100(C Z )
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Head at point directly\below stream (ft)

Figure 4.6.4 Answer to question 32, flow (QZ) between the stream 
and aquifer.
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' i I » I

Steady state (Table 3.6.6)

\
After pumping 155 days 
(Table 3.6.8) 
Kz = 1,000 gal/d/ft2

After pumping 155 days 
(Table 3.6.7) 
Kz = 10 gal/d/ft 2

£
COLUMN NUMBER

Figure 4.6.5 Answers to questions 34, 40, and 45 Head profiles 
along row 6 for the aquifer shown in figure 3.6.2 
for steady state and after after pumping 155 days 
with vertical hydraulic conductivity of material 
between the aquifer and the stream equal to 10 
gpd/ft 2 and 1,000 gpd/ft 2 .
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the east; and we can apply it to the eastern part (columns 6-11) 

taking x = 0 along the eastern edge of the aquifer and letting x 

increase to the west. The heads in coluimn 5 on table 3.6.6 

represent those in the aquifer directly beneath the river. If we 

calculate the head difference, h0 - hlf between each edge of the

aquifer and a point directly beneath the river we obtain, for the 

western part,

-4 
_ W 2 _ (2 X 10 ) 4 2

ho ~ h = ~2Kb X = 2(100) (100) (2 X 10 } 

= 10" 8 (4 x 10 8 ) = 4 ft

and for the eastern part

, , 2 X 10~4 , 42

o (2) (100) (100)

= 10" 8 (9 x 10 8 ) = 9 ft.

These results agree closely with thje head differences between 

the nodes along the stream (column 5) and the boundaries on the 

west (column 1) and east (column 11) (table 3.6.6) . In the 

nonpenetrating stream problem, the elevation of water in the 

stream controls the water level in the aquifer immediately below 

the stream, in the sense that the head i|n the aquifer must exceed 

that in the stream by exactly the amount needed to move the 

cumulative ground-water flow (i.e., the [total recharge) through

the vertical conductance separating the 

In our case, this vertical head differen

stream from the aquifer, 

ce is exactly 1 foot; the

stream-surface elevation is 110 feet and the elevation of water
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level in the aquifer, immediately below, is 111 feet. Thus, 111 

feet is the boundary head for this problem the head at x = 0. 

Head differences, as described by the equation above, are added to 

111 feet to give absolute values of heacjl.

For the nonpenetrating stream probjLem, each segment of the 

head profile is a parabola, as required by our solution; thus each 

is similar to the initial portion of the profile for a fully 

penetrating stream (although directions are reversed for the 

eastern half of the nonpenetrating stream profile). However, the 

actual magnitudes of head buildup diffef because our boundary 

head, 111 feet, differs from that in th£ fully penetrating stream 

problem and because distances from the boundary, x, are now 

different.

36. The total flow into the stream is 500,000 gal/d which is 

equal to the total recharge on the aquifer. Note that our 

calculation of flow into the stream is made across the vertical 

conductance between the stream and the aquifer, and is thus 

external to our two-dimensional flow simulation. For this reason,

the error that we encountered in (4), r 

the aquifer at which our calculation of 

affect the total flow calculation here.

slating to the point within 

flow applied, does not
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Response of System to Pumping

37-38. The well should be at node (6,6); the withdrawal rate 

is 2,000,000 gal/d - 5,000 gal/d = 1,995,000 gal/d.

39. The initial head distribution is the steady-state 

distribution on table 3.6.6.

40. An effect does occur on the opposite side of the stream; 

this could not happen if the stream were fully penetrating and its 

level unaffected by the pumping.

41.

Row_____Ah(Cz ) _______________Flow______________
1 0.6 (25,000) = 15,000 gal/d, stream to aquifer
2 0.8 (50,000) = 40,000 gal/d, stream to aquifer
3 1.3 (50,000) = 65,000 gal/d, stream to aquifer
4 2.4 (50,000) = 120,000 gal/d, stream to aquifer
5 5.1 (50,000) = 255,000 gal/d, stream to aquifer
6 10.2 (50,000) = 510,000 gal/d, stream to aquifer
7 5.1 (50,000) = 255,000 gal/d, stream to aquifer
8 2.4 (50,000) = 120,000 gal/d, stream to aquifer
9 1.3 (50,000) = 65,000 gal/d, stream to aquifer
10 0.8 (50,000) = 40,000 gal/d, stream to aquifer
11 0.6 (25,000) = 15,000 gal/d, stream to aquifer

1,500,000 gal/d, stream to aquifer

42. The total net flow is 1.5 Mgal/d from the stream to the 

aquifer. Prior to pumping, the flow was 0.5 Mgal/d from the 

aquifer to the stream. The total change in flow between the 

stream and the aquifer is thus 2 Mgal/d.

43. At point D, the change in streamflow from its value 

before pumping will be 2 Mgal/d.
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44. Two Mgal/d represents the sum of a decrease in natural 

discharge (0.5 Mgal/d) and an increase in recharge (1.5 Mgal/d). 

Because it equals the pumpage, there is nothing being taken from 

storage. Thus water levels are no longer declining, and a new 

equilibrium has been reached.

Effect of Stream-Bed Conductance

45. (5 x 10 6 ) gpd/ft.

46. There is a slight effect; heads directly beneath the 

stream (column 5) have been lowered by the pumping. This has 

changed the "boundary condition" for the flow field to the west of 

the stream so that heads throughout the area west of the stream 

are lower. However, there is no clearly defined "cone of 

depression" west of the stream. In fact, heads in this area 

exhibit a parabolic decline with increasing x, as in the 

prepumping condition.

47. As an approximation, we could treat the stream as fully 

penetrating. The results would show no drawdown at all west of 

the stream (or along the stream) but might be a close enough 

approximation for some purposes. In general, the higher the 

permeability of the stream-aquifer connection, the more acceptable 

the fully penetrating stream assumption becomes; and in any case, 

it can always be used to provide an upper limit for the stream-
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aquifer interaction that is, to indicate the maximum possible 

flow between stream and aquifer.

Simulation of a Non-penetrating Stream by Means of Superposition

48. Zero head everywhere.

49. Two Mgal/d.

50. Zero everywhere.

51. (See figure 4.6.6.) Total seepage from stream = 2 mgd 

(same as change in seepage from (42)).

52. Superposition add the head changes and flow changes 

algebraically to the corresponding origirial values of head and 

flow.
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