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SECTION (4)--GROUND-WATER FLOW TO WELLS 

Wells are our direct means of access or "window" to the subsurface 
environment. Uses of wells include pumping water for water supply, measuring 
pressures and heads, obtaining ground-water samples for chemical analysis, 
acting as an access hole for borehole geophysical logs, and direct sampling of 
earth materials for geologic description and laboratory analysis, primarily 
during the process of drilling the wells. Hydrogeologic investigations are 
based on these potential sources of well-related information. 

Concept of Ground-Water Flow to Wells 

Assignments 

*Look up and write the definitions of the following terms relating to radial 
flow and wells in Fetter (1988), both in the glossary and in the 
index--drawdown, specific capacity of well, completely penetrating well, 
partially penetrating well, leaky confined aquifer, leaky artesian aquifer, 
semiconfined aquifer, and leaky confining bed or layer. 

*Study Note (4-l) --Concept of ground-water flow to wells. 

The general laws (Darcy's law and the principle of continuity) that 
govern ground-water flow to wells are the same as those that govern regional 
ground-water flow. The system concept is equally valid--we are still 
concerned with system geometry, both external and internal, boundary 
conditions, initial conditions, and spatial distribution of hydraulic 
parameters as outlined in table 1 of Note (3-2). However, the process of 
removing water from a vertical well imposes a particular geometry on the 
ground-water flow pattern in the vicinity of the well, which is called radial 
flow. Radial flow to a pumping well is a strongly converging flow whose 
geometry may be described by a particular family of differential equations 
that utilize cylindrical coordinates (r,z) instead of Cartesian coordinates 
(X,Y,Z) l A large number of analytical solutions to these differential 
equations with different boundary conditions describe the distribution of head 
near a pumping well. 

Note (4-l). -TConcept of Ground-Water Flow to Wells 

As has been noted previously, ground-water flow in real systems is 
three-dimensional. To obtain water from the ground-water system, wells are 
installed and pumped. Water pumped from the well lowers the water level in 
the well, thereby establishing a head gradient from the aquifer toward the 
well. As a result, water moves from the surrounding aquifer into the well. 
As pumping proceeds, a decline in head or drawdown propagates away from the 
well as water continues to move from areas of higher head to areas of lower 
head and is pumped out of the well. 
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Ground-water flow to a pumping well can be viewed as occurring through a 
series of concentric vertical cylinders with the center of the well at the 
central vertical axis (fig. 4-l). If the aquifer properties (hydraulic 
conductivity (K) and storage coefficient (S)) are symmetric around the well, 
then the hydraulic head (or change in hydraulic head) and the flow of water 
(or change in flow) also will be symmetric. This symmetry enables us to 
simplify the analysis of a general three-dimensional flow system to a two- or 
one-dimensional system using cylindrical (or radial) coordinates. 

Further consideration of figure 4-l indicates that flow to a well, or 
radial flow is a converging flow, because the areas of the concentric 
cylinders (A = Barb), which are perpendicular to the direction of ground-water 
flow, decrease continuously toward the well as the radial distance r from the 
center of the well decreases while the aquifer thickness b remains constant. 
If we apply Darcy's law conceptually to this flow system, 

hl -b 
Q = KA s-_-m 

1 

where A = 2arb, and assume that Q and K are constant (that is, the flow system 
is in steady state and the aquifer is homogeneous), we can write 

Q l-9 -h, 
- = _____ = constant A 
K 1 

We have seen that the area perpendicular to ground-water flow decreases toward 
hl -hz 

the well. Thus, for the above relation to be true, the head gradient ----- 
1 

must increase continuously toward the well. This qualitative inference from 
Darcy's law is a general and characteristic feature of flow to wells. 
Equations that define this increase in gradient toward the pumping well are 
developed in subsequent notes and exercises. 

Because pumping wells may be located in diverse hydrogeologic 
environments, quantitative analysis of the associated radial-flow systems 
requires the use of simplifying assumptions. Our conceptualization of the 
system, based on the distribution of the transmitting and storage properties 
of the aquifer and the boundary conditions of the radial section under study, 
determines how the radial flow system is simplified and formulated for 
analysis. For example, transmitting and storage properties vary depending on 
whether the aquifer in question is one homogeneous aquifer, a heterogeneous 
layered aquifer, or a complex aquifer system. Boundary conditions, such as a 
partially penetrating well that causes significant vertical movement, or an 
impermeable top and bottom of the aquifer as opposed to a "leaky" top and 
bottom, also affect the complexity of the system to be analyzed. 

All radial flow systems can be conceptualized in a variety of ways, each 
of which leads to a different simplification that is incorporated into a 
mathematical description of the system. As shown in figure 4-2(A), a well 
pumping in a multi-aquifer system could be studied in the context of the 
entire aquifer system, and the head and flow throughout the system could be 
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Figure 4-l. --Flow to a well viewed as radial flow through a continuous series 
of concentric vertical cylindrical sections with the axis of the 
well at the center. 
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Figure d-2. --Two conceptualizations of the same ground-water system. 
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simulated huantitatively by means of a numerical model. Or, the problem could 
be conceptualized by assuming that the pumping would not affect significantly 
the aquifer system above and below the extensive confining units. In this 
situation the flow system could be analyzed as a single aquifer that receives 
leakage from the overlying and underlying aquifers through the confining beds 
(fig. 4-2(B)). In case A, the entire multi-aquifer system is defined as the 
system under study, while in case B, only the aquifer being pumped is 
analyzed. 

The notes and problems that follow describe the use of mathematical 
solutions for different radial flow conceptualizations. Keep in mind the 
internal characteristics and boundary conditions of the various radial-flow 
models and solutions that are discussed; these features determine the degree 
to which the mathematical representation of the flow system corresponds to the 
real, physical flow system. 

Analysis of Flow to a Well --Introduction to Basic Analytical Solutions 

Assignments 

*Study Note (4-2)--Analytical solutions to the differential equations 
governing ground-water flow. 

*Study Fetter (1988), p. 143, 199-201; Freeze and Cherry (1979), p. 188-189, 
314-319; or Todd (1980), p. 112-113, 115-119, 123-124. 

*Study Note (4-3) --Derivation of the Thiem equation for confined radial flow. 

*Work Exercise (4-1)--Derivation of the Dupuit-Thiem equation for unconfined 
radial flow. 

*Study Fetter (1988), p. 161-169. 

*Study Note (4-4) --Additional analytical equations for well-hydraulic 
problems. 

This subsection is primarily a study section that provides an 
introduction to some of the simplest and most widely applied radial-flow 
equations. We focus on three such equations-- (1) the Thiem equation for 
steady-state confined flow, (2) the Dupuit-Thiem equation for steady-state 
unconfined flow, and (3) the Theis equation for unsteady confined flow. These 
and all other radial-flow equations relate to specific, highly idealized 
ground-water flow systems. We cannot overemphasize the importance of learning 
the key features of the individual flow systems to which each equation 
applies. These key features relate in large part to the boundary conditions 
that are assumed in the derivation of a given equation. 
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Note (4-2) .--Analytical Solutions to the Differential Equation-s $‘overning 
Ground-Water Flow 

This note reviews and extends some of the ideas discussed in a previous 
note on the information required to describe a ground-water system (Note 3-2). 

Quantitative analysis of a ground-water flow problem involves the 
definition of an approprlate boundary-value problem. Definition of a 
boundary-value problem requires the specification of the governing 
differential equation and the initial and boundary conditions applicable to 
the specific problem under study. The governing differential equation is a 
mathematical model that describes ground-water flow in the flow domain. The 
information needed to define a boundary-value problem involving ground-water 
flow is shown in table 4-l (reproduced from table 3-1, Note 3-2) in the 
context of a simple system diagram. 

Solution of a boundary-value problem involves solving the governing 
differential equation (generally a partial-differential equation in 
ground-water flow problems) for the initial and boundary conditions that apply 
to the problem. Today, complex boundary-value problems generally are solved 
by numerical methods with the assistance of a digital computer. However, many 
useful analytical solutions to boundary-value problems representing simple 
systems are available. 

An analytical solution to a ground-water problem is an exact mathematical 
solution to a specific boundary-value problem that is relevant to ground-water 
studies. We may think of an analytical solution as a "formula" amenable to 
calculation that relates the dependent variable in the differential equation 
(generally head (h) or drawdown (s) in ground-water problems) to the 
independent variable(s) in the differential equation (coordinates of position 
(x,y,z) and time (t)). Thus, an analytical solution may be represented in a 
general way as 

h = f(x,y,z,t). 

An analytical solution is an exact solution to the governing differential 
equation, and provides a formula that permits calculation of the dependent 
variable in continuous space and time. However, analytical solutions usually 
are available only for highly idealized conceptualizations of ground-water 
systems. Thus, the solution to the idealized mathematical representation 
(governing differential equation and boundary conditions) is exact, but the 
mathematical representation rarely corresponds closely to hydrogeologic 
conditions in the real system. 

Some of the typical simplifying assumptions used in the mathematical 
model to develop analytical solutions are (a) flow medium (earth material) is 
isotropic and homogeneous, (b) the aquifer is confined, (c) the aquifer is 
unbounded laterally (infinite area1 extent), and so on. Furthermore, the 
geometry of the flow system generally is simple--for example, the flow system 
is bounded by a rectangular or circular prism, the aquifer is horizontal and 
of constant thickness, the well completely penetrates the aquifer, and so on. 
Finally, boundary conditions usually are simple (constant head, no-flow, and 
constant flux are common boundary conditions). 
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Table 4-l. z- Information necessary for quantitative definition of a ground-water 
flow system in context of a general system concept l 

Input ---------------->> System -me---- ------->>Output 

Input or stress applied Factors that define the Output or response of 
to ground-water system ground-water system ground-water system 

(1) Stress to be analyzed: (1) 

- expressed as volumes 
of water added or 
withdrawn 

- defined as function (2) 
of space and time 

(3) 

(4) 

External and internal (1) Heads, drawdowns, 
geometry of system or pressures' 
(geologic framework) 

-defined as 
- defined in space function of 

space and time 
Boundary conditions 

-defined with respect 
to heads and flows as 
a function of location 
and time on boundary 
surface 

Initial conditions 

-defined in terms of.heads 
and flows as a function 
of space 

Distribution of hydraulic 
conducting and storage 
parameters 

- defined in space 

1 Flows or changes in flow within parts of the ground-water system or across 
its boundaries sometimes may also be regarded as a dependent variable. 
However, the dependent variable in the differential equations governing 
ground-water flow generally is expressed in terms of either head, drawdown, 
or pressure. Simulated flows across any reference surface can be calculated 
when the governing equations are solved for one of these variables, and 
flows in real systems can be measured directly or estimated from field 
observations. 
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Even with all their simplifications, analytical solutions can provide 
invaluable hydrologic insight into idealized but nevertheless representative 
and relevant ground-water systems. Furthermore, they often can be used 
effectively in the quantitative analysis of ground-water problems (for 
example, analysis of aquifer tests). In general, no analytical solution 
corresponds exactly to a given field situation. Thus, a proper application of 
analytical solutions to field problems requires that the hydrologist have a 
detailed understanding of the physical system represented by the analytical 
solution and the assumptions (the most important assumptions often involve 
boundary conditions) that underlie the analytical solution. 

Note (4-3). --Derivation of the Thiem Equation for Confined Radial Flow 

Darcy's law describes the flow of water through a saturated porous medium 
and can be written as follows (Fetter, 1988, p. 123, equation 5-19): 

dh 
Q = - KA __ 

dr 

where A is the cross-sectional area through which the water flows, r is 
distance along the ground-water flow path (in this case, radial distance), and 
the other terms are as previously defined. Steady flow to a well (fig. 4-3) 
in a confined aquifer bounded on top and bottom by impermeable units is 
radially convergent flow through a cylindrical area around the well. As shown 
in figure 4-3, the area (A) through which flow occurs is 

A = Zarb, 

where b is the thickness of the completely confined aquifer. Substituting 
this expression for A into Darcy's law gives: 

dh 
Q = -2lrKbr -- . 

dr 

For steady flow, Q, the constant quantity of water pumped from the well, 
is also the flow rate through any cylindrical shell around the well. 

This equation can be solved by separating variables and integrating both 
sides of the equation. Separation of variables gives: 

1 2rKb 
_ dr = _ __-- dh. 
r Q 

Integrating from r2 to rl, where the heads are h, and h,, respectively, 

dr 
I 

IT2 -- = 
rl r ,/ 

, ,' 

,’ I,, / 
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Note: h is head in aquifer above datum at radial distance r; 
Q is constant well discharge which equals constant 
radial flow in aquifer to well; r is radial distance from 
axis of well; Z is elevation head. 

FigzLre d-9. --Steady flow to a completely penetrating well in a confined 
aquifer. 
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gives 

or 

27rKb 
In r2 - In rl = - ---- (h, - h,), 

Q 

r2 2aKb 
Ln -- = - ---- (h, - h,). 

r1 Q 

Rearranging terms gives 

4 T2 
Kb = -------_--- In -- . 

2T(hg - hl 1 rl 

Because Kb equals transmissivity (T) and the pumping rate is defined as a 
positive number, the resulting equation is 

Q r2 
T= ----------- In -- , 

2a(h, - hl 1 rl 

which is the Thiem equation as given by Fetter (1988, p. 200, equation 6-56). 

Exercise (4-l) --D erivation of the Dupuit-Thiem Equation for Unconfined 
Radial Flow 

The Dupuit-Thiem equation (Fetter, 1988, p. 200, eqation 6-57) for 
unconfined radial flow is analogous hydrologically to the Thiem equation for 
confined radial flow (Note 4-3). Review Note 4-3 and derive the Dupuit-Thiem 
equation using a similar sequence of steps. The key difference between this 
derivation and the derivation of the Thiem equation lies in expressing the 
cylindrical area of flow around a pumping well in an unconfined aquifer as A = 
2nrh (fig. 4-4), as opposed to A = 2%rb for confined flow, where h is the 
saturated thickness of the unconfined aquifer at a distance r from the pumping 
well. Expressed in another way, the datum or reference elevation for h is at 
the bottom of the unconfined aquifer, which is assumed to be an impermeable \ 
boundary (fig. 4-4). 
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Note: Q is constant well discharge which equals constant 
radial flow in aquifer to well; Z is elevation head 

Figure 4-4.--Steady flow to a completely penetrating well in an unconfined 
aquifer as represented in a Dupuit-Thiem analysis. 
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Note (4-4). --Additional Analytical Equations for We 11-Hydraulic Problems 

As discussed previously, flow patterns in ground-water systems stressed 
by pumping from a well are three-dimensional. Furthermore, aquifer systems 
can have widely varying internal characteristics and boundary conditions. A 
different mathematical model and a corresponding different solution, either 
numerical or analytical, can be developed for each conceptualization of radial 
flow. We already have discussed the three simplest conceptualizations and 
their corresponding mathematical solutions. These three solutions are 

1. steady-state, confined, one-dimensional radial flow--the Thiem 
equation; 

2. steady-state, unconfined, one-dimensional radial flow--the 
Dupuit-Thiem equation; and 

3. transient-state, confined, one-dimensional radial flow--the Theis 
equation. 

However, many more complex hydrogeologic situations routinely exist in nature, 
and a number of additional analytical solutions are available for some of 
these situations. Many of these solutions are given in Lohman (1972a) and 
Fetter (1988). For instance, a solution is available for leaky, semiconfined 
aquifers, either with no storage in the leaky confining layer (Fetter, 1988, 
p. 178) or with storage in the leaky confining layer (Fetter, 1988, p. 179). 
Solutions also are available to represent the effect of partial penetration of 
wells or the response of an unconfined aquifer with vertical flow (Fetter, 
1988, p. 189-195). 

The appropriateness of any given solution depends on the degree of 
similarity between the real system under study and the mathematical model. As 
noted previously, analytical solutions usually are restricted to simplified 
hydrogeologic conditions , whereas numerical simulation allows the 
representation and solution of many different and more complex system 
conceptualizations. 
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Analysis of Flow to a Well--Applying Analytical Solutions to Specific Problems 

Assignments 

*Study Fetter (1988), p. 170-199; Freeze and Cherry (1979), p. 343-349; or 
Todd (1980), p. 125-134. 

*Work Exercise (4-2)--Comparison of drawdown near a pumping well in confined 
and unconfined aquifers using the Thiem and Dupuit-Thiem equations. 

*Work (a) the example problem in Fetter (1988), p. 165, and (b) using the 
same data as in (a), determine the radial distance at which the drawdown 
would be 0.30 meters after 1 day of pumping. 

*Work Exercise (4-3)--Analysis of a hypothetical aquifer test using the Theis 
solution. 

In this subsection we apply the analytical solutions introduced in the 
previous section to some typical problems. Additional problems, some that 
require other analytical solutions, are available in Fetter (1988) at the end 
of chapter 6. 

Exercise (4-2) --Comparison of Drawdown Near a Pumping We1 1 in Confined and 
Unconfined Aquifers Using the Thiem and Dupuit-Thiem Equations 

The purpose of this exercise is to (1) become more closely acquainted 
with the Thiem and Dupuit-Thiem equations by using them in numerical 
calculations and (2) contrast the response to stress (pumping) of a linear 
(confined) ground-water system and a nonlinear (unconfined) ground-water 
system. The concept of system linearity or nonlinearity refers to the 
relationship between system stresses, such as changes in pumping or recharge, 
and system response, as measured by changes in heads or drawdowns. For 
example, in a linear system, doubling the pumping rate of a given well in 
steady-state conditions, doubles the drawdown at every point in the 
neighborhood of that well. The response of a ground-water system to stress is 
inherently nonlinear if the geometry of the system changes in response to the 
stress. Common examples of changes in system geometry in response to stress 
are (1) changes in the elevation of the water table, (2) changes in the 
position of a freshwater-saltwater interface, and (3) changes in the length of 
a stream in hydraulic connection with the ground-water system. 

The explicit purpose of the numerical calculations below is to compare 
the steady-state drawdown at r = 100 ft (radial distance from the pumping 
well) due to pumping from a completely penetrating well at three rates 
(pumping rates and other parameters given below) in (a) a confined aquifer and 
(b) an unconfined aquifer. Make a sketch of the two cases. Plot calculated 
drawdowns (2 curves, 3 values on each curve) on the graph paper provided (fig. 
4-5). 

142 



Pumping rates: Q1 = 25,920 fta/d, Q* = 51,840 fta/d, e = 103,680 ft=/d. 

Confined Case (Thiem equation) 

K= 50 ftlday 

b (aquifer thickness) = 75 ft 

r, ("radius of influence")' = 10,000 ft (assume the head is constant at this 
distance) 

r (radial distance from pumping well at which calculations of head and 
drawdown will be made) = 100 ft 

hinitial (head in aquifer before pumping begins) = he = 200 ft 

Unconfined Case (Dupuit-Thiem equation) 

K = 50 ftlday 

re = 10,000 ft 

r = 100 ft 

h initial (saturated thickness of unconfined aquifer before pumping begins) = 
75 ft 

First, write the appropriate formula and solve algebraically for the unknown 
head before inserting numerical values. Then calculate drawdown. 

(1) Suppose that the initial head in the confined aquifer is 500 ft instead of 
200 ft. Would this change in initial head have any effect on the result of 
your calculation of drawdown? 

(2) Write a careful description of the two curves plotted in figure 4-5. 

1 The phrase "radius of influence" of a pumping well is loosely defined, but 
implies a distance from the pumping well at which the head is constant in 
all radial directions or the drawdown in response to that particular stress 
either is so small that it cannot be measured or becomes impossible to 
distinguish from "background noise" in the aquifer. In calculations with 
the Thiem and Dupult-Thiem equations, the "radius of influence" is the 
assumed or approximated distance from the pumping well at which head remains 
constant at the prepumping level. 
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Exercise (4-3)--Analysis of a Hypothetical Aquifer Test Using the 
Theis So Lution 

The purpose of this exercise is to use the Theis solution to determine 
the aquifer properties T and S by curve-matching. Drawdowns at three wells 
spaced 200, 400, and 800 ft from a well pumping at a rate of 96,000 fta/d are 
listed in table 4-2 (from Lohman, 1972). 

(1) Plot the aquifer-test data in table 4-2 on log-log paper in two ways--(a) 
drawdown (s) against time (t) using data from a single well (any one of the 
three observation wells) on figure 4-7, and (b)'drawdown (s) against t/r2 
using data from all three observation wells on figure 4-8. In general, if 
data from more than one observation well are available, alternative (b) is 
preferable. Calculate t/r2 by either taking the reciprocal of r*/t in table 
4-2 or performing the calculation directly from the data given. 

(2) Overlay the Theis type curve (fig. 4-6) onto each plot of test data and 
determine a match point. Use the values obtained from the match point and 
equations 6-3 and 6-4 in Fetter (1988, p. 164) to determine the transmissivity 
(T) and storage coefficient (S) of the aquifer. To facilitate the 
calculations, equation 6-3 can be rearranged as 

Q 
T= --- W(u) 

4lr.s 

0 and equation 6-4 as 

t 
S = 4Tu l -- . 

r* 

Concept of Superposition and Its Application to Well-Hydraulic Problems 

Assignments 

*Study Fetter (1988), p. 201-204; Freeze and Cherry (1979), p. 327-332; or 
Todd (1980), p. 139-149. 

*Study Note (4-5) --Application of superposition to well-hydraulic 
problems. 

*Work Exercise (4-4) --Superposition of drawdowns caused by a pumping well 
on the pre-existing head distribution in an area1 flow system. 

Superposition is a concept that has many applications to ground-water 
hydrology as well as to other physical systems that are described by linear 
differential equations. We use superposition when we analyze (most) aquifer 
tests, perhaps without realizing this fact, and in the theory of images and 
image wells. Superposition also has applications to the numerical simulation 
of ground-water systems, a topic that is not discussed in this course. 
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Note (4-5). --Application of Superposition to Well-Hydraulic Problems 

To simplify the analysis of ground-water flow to wells we have assumed 
until now that heads and flows around the well axis are radially symmetrical. 
However, heads and flows are not always symmetrical around the axis of a well. 
If a regional gradient exists, the head upgradient from the well is higher 
than the head downgradient from the well. However, the change in head (the 
drawdown) and the change in flow due to pumping still are symmetrical about 
the well. 

Using the theory of superposition (Reilly and others, 1987), we can 
analyze most well-hydraulic problems in terms of drawdowns and changes in 
flow. The theory of superposition states that, for linear systems, the 
solution to a problem involving multiple inputs (or stresses) is equal to the 
sum of the solutions for each individual input or stress. A more formal 
definition of superposition is that if Y, and Y, are two solutions to a linear 
differential equation with linear boundary conditions, then C,Y, + C,Y, is 
also a solution, where C, and C, are constants. 

Superposition allows us to avoid analyzing the actual heads and to 
analyze only the drawdown. The Theis solution given by Fetter (1988, p. 164, 
equation 6-3) is stated in terms of drawdown (he-h) as 

ha-h = ;z; W(u). 

This equation is a solution to the governing differential equation which is 
given in terms of head by Fetter (1988, p. 162, equation 6-1) as 

a2h 1 ah S ah 
--- + - -- = - --, 
at? r ar T at 

The principle of superposition allows this equation to be written in 
terms of the changes in head (or drawdowns) that occur in the system as 

a2 (&j-h) 1 wh,-h) s a($+) 
-e--w - -,- + - ------- = - -------9 

h-2 r ar T at 
or 

62 s 1 as s as --- + - -- = - -- 
63 r ar T at 
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0 

0 

where s is the drawdown. This formulation greatly simplifies the mathematical 
solution because the initial conditions1 are a constant zero drawdown 
everywhere at the start of pumping, and the drawdown is radially symmetrical. 

A more complete explanation of superposition and a set of problems is 
available in Reilly, Franke, and Bennett (1987). 

Exercise (4-4)--Superposition.of Drawdowns Caused by a t%.unping .WeLL on the 
Pre-Existing Head Distribution in an Area1 Flow System 

In Note 4-3, we derived the Thiem equation in terms of absolute head. In 
this form of the Thiem equation, the head at some radial distance from a 
pumping well must be the same in all directions. Through the use of 
superposition (Note 4-5), the Thiem equation can be applied to more general 
field situations in which drawdowns are radially symmetric even if absolute 
heads are not. 

The Thiem equation from Note 4-3 is 

T= --i-Q---- In (rz/rl). 
2rr(h, -h, > 

We can represent the head at points 1 and 2 by 

h, = b-sl, and 

where h,, is the original head before onset of pumping, and s is the drawdown. 
Substituting these equations into the Thiem equation gives 

T= ----Q---- In (r2/rl). 
21Tt.59 -s2 1 

Assuming that the drawdown s2 is negligible at some distance, r,, from the 
pumping well and rearranging gives: 

Sl = -Q_ In (re/rl). 
2aT 

This form of the Thiem equation gives the drawdown, sl, at any radial 
distance, rl, from the pumping well. 

1 In analyses of ground-water systems, "initial conditions" means specifying 
the head distribution throughout the system at some particular time. These 
specified heads can be considered to be reference heads; calculated changes 
in head through time are relative to these given heads, and the time 
represented by these reference heads is the reference time. For further 
discussion of initial conditions see Franke, Reilly, and Bennett (1987). 
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A uniform head (potential) distribution in a hypothetical confined 
aquifer of uniform transmissivity, T, is shpwn in figure 4-9. Determine the 
future potential distribution under steady-state conditions in response to a 
pumping well centered in the figure at the square. Assume that there is no 
drawdown at a distance, r,, of 5,000 ft, for a well pumping at 9,090 ft3/d. 
The transmissivity of the aquifer is 1,000 ftg/d. 

We will calculate drawdowns and the predicted new heads at locations 
marked with circles and labeled with letters in figure 4-9. Perform the 
calculations and contour the new head distribution using the following 
sequence of steps: 

Calculate drawdowns--Use table 4-3 to calculate the drawdowns at various 
distances from the pumping well. Note that the locations of all 30 
reference points are defined by only six radial distances, r, from the 
pumping well. 

Calculate absolute heads--Use table 4-4 to calculate the new head at each 
reference point. Determine the initial prepumping head from the contour 
lines given in figure 4-9. Determine the distance of the observation 
point from the pumping well, and transfer the appropriate drawdown from 
table 4-3. Finally, subtract the drawdown from the initial head for each 
reference point. 

Contour new potentiometric surface-- Plot the new heads on figure 4-10 and 
contour, using a 1-ft contour interval. 

As an aid in contouring the new potentiometric surface, consider the 
original potentiometric surface in figure 4-9 and draw a dashed line on figure 
4-9 that is perpendicular to the head contour lines and passes through the 
location of the pumping well. Because these initial head contour lines are 
parallel straight lines, the new potentiometric surface resulting from steady 
pumping of the well will be symmetrical about the dashed line. Draw a dashed 
line at the same position on figure 4-10 and observe that the potentiometric 
surface being contoured is symmetric about this line. This new potentiometric 
surface shows the effect of the discharging well. 

(1) Based on available head data, estimate the position of the 
ground-water divide on the dashed line in figure 4-10. Starting at this point 
on the divide, sketch two upgradient streamlines, one on each side of the 
well, making the assumption that these streamlines are perpendicular to the 
existing head contour lines. Sketch two or three additional streamlines 
between the first two streamlines and the well. What is the significance of 
the first two streamlines? What is the area upgradient from those first two 
streamlines called? 

(2) The drawdown at reference point T is 2.84 ft. Is the direction of 
flow at T toward or away from the discharging well? Explain why the water at 
this point is flowing in a direction away from the discharging well despite 
significant drawdowns at wells X, T, S, and Y. 
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Table 4-3. --Format for calculation of drawdowns at specified distances from 
the pumping we 11 

fre is distance from pumping well at which drawdown is 
negligible; r1 is distance from pumping well at which drawdown 
equals sl; fi,~ is natural logarithm; Q is pumping rate of well; 
T is transmissivity of aquifer] 

-Q 
Preliminary calculation: --- = constant = 

2nT 

250 

500 

I 
I 

707 I I 1 

1000 

1118 

I 1414 I 
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Table 4-4. --Format for calculation of absolute heads at specified 
reference points 

WELL INITIAL DISTANCE DRAWDOWN HEAD = INITIAL 
IDENTIFICATION PREPUMPING FROM WELL DUE TO HEAD-DRAWDOWN, 

LETTER HEAD (FEET) (r), IN FEET IN FEET 

A 

I3 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 
\ 

M 
1 

N 
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Aquifer Tests 

Assipnments 

+Study Fetter (1988), p. 204-209; Freeze and Cherry (1979), p. 335-343, 
349-350; or Todd (1980), p. 45-46, 70-78. 

*Study Note (4-6)--Aquifer tests. 

One of the main activities of ground-water hydrologists is to estimate 
physically reasonable values of aquifer parameters for different parts of the 
ground-water system under study. The most powerful- and direct field method 
for obtaining aquifer parameters is a carefully designed, executed, and 
analyzed aquifer test. Unfortunately, aquifer tests are labor- and 
time-intensive. Often, the most important decision in connection with an 
aquifer test is whether or not to perform one--in other words, whether the 
value of the test data equals the cost of obtaining those data. This 
generally is a difficult question to answer. 

Note (4-6). --Aquifer Tests 

An aquifer test is a controlled field experiment that is designed to 
determine the hydraulic properties of an aquifer and (or) associated confining 
beds. The most common type of aquifer test involves pumping a well at a 
constant rate to stress the aquifer, monitoring the drawdown response of the 
aquifer, and analyzing these data. The-analysis usually assumes radial 
symmetry and uses either an analytical solution to the conceptually 
appropriate mathematical model or a mathematical-numerical model solved by 
computer. 

Stallman (1971, p. l-3) discusses the philosophy and general procedure of 
aquifer tests succinctly. HQ outlines the general procedure in terms of three 
phases --test design, field observations, and data analysis. It is critically 
important that the test be designed with an initial conceptualization of the 
system and a proposed method of analysis. The conceptualization of the system 
may change as analysis proceeds; then different methods of analysis may be 
required. 

As noted previously, many analytical solutions to well-hydraulic problems 
exist. For example, Reed (1980) gives analytical solutions and type curves 
for 11,different cases of flow to wells in confined aquifers. However, 
analytical solutions tend to describe the response of simplified homogeneous 
systems. Therefore, numerical simulation sometimes is required to estimate 
the hydraulic properties of the aquifer being tested. Simulation usually is 
used in a trial-and-error manner, changing aquifer and confining bed 
coefficients in a systematic and physically reasonable way based on previous 
knowledge or simplified analyses (for example, analyses using analytical 
solutions), until an acceptable match between the observed response of the 
aquifer and the simulated response is achieved. 
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