

Open-File Report 90-190

WATER-QUALITY, WELL-CONSTRUCTION, AND GROUND-WATER LEVEL DATA FOR AN INVESTIGATION OF RADIONUCLIDES IN GROUND WATER, HICKMAN AND MAURY COUNTIES, TENNESSEE

Prepared by the U.S. GEOLOGICAL SURVEY

in cooperation with the TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT, DIVISION OF GROUND-WATER PROTECTION and the U.S. ENVIRONMENTAL PROTECTION AGENCY, GROUND-WATER PROTECTION BRANCH WATER-QUALITY, WELL-CONSTRUCTION, AND GROUND-WATER LEVEL DATA FOR AN INVESTIGATION OF RADIONUCLIDES IN GROUND WATER, HICKMAN AND MAURY COUNTIES, TENNESSEE By Gregg E. Hileman

U.S. GEOLOGICAL SURVEY

Open-File Report 90-190

Prepared in cooperation with the

TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT,

DIVISION OF GROUND-WATER PROTECTION and the

U.S. ENVIRONMENTAL PROTECTION AGENCY

GROUND-WATER PROTECTION BRANCH

Nashville, Tennessee

1990

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey A-413 Federal Building U.S. Courthouse Nashville, Tennessee 37203 Copies of this report can be purchased from:

.

U.S. Geological Survey Book and Open-File Reports Section Federal Center, Bldg. 810 Box 25425 Denver, Colorado 80225

л.

CONTENTS

Abstract	•		•	• •	•	•	•	•	1
Introduction	•		•		•		•		1
Purpose and scope	•	• •	•		•	•	•	•	1
Acknowledgments	•	• •	•		•	•	•	•	4
Methods of data collection	•		•	• •	•	•	•	•	4
Data Presentation	•		٠	• •	•	•	•	•	12
Selected references	•	• •	•	• •	•	•	•	•	13

ILLUSTRATIONS

Figure	1.	Map showing location of wells and springs sampled
		in Hickman County, Tennessee
	2.	Map showing location of wells sampled in Maury County,
		Tennessee

TABLES

.

Table	1.	Site-number, well-construction and water-level data for wells and springs sampled in Hickman and Maury
	2.	Counties
		in Hickman and Maury Counties

-

....

CONVERSION FACTORS

Multiply inch-pound unit	By	<u>To obtain metric units</u>
foot (ft)	0.3048	meter (m)
gallon (gal)	0.00379	cubic meter (m ³)
picocurie (pCi)	0.037	becquerel (Bq)

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

<u>Site-numbering systems</u>: The U.S. Geological Survey assigns each site in this report a local Tennessee well number and a station identification number. The local well number is used as a concise label for a site. The station identification number is used as an identifier for site data stored in the national computer data base of the U.S. Geological Survey.

The local well number in Tennessee consists of three parts: (1) an abbreviation of the name of the county in which the well is located; (2) a letter designating the 7 1/2-minute topographic quadrangle on which the well is plotted; and (3) a number generally indicating the numerical order in which the well was inventoried. The symbol Hi:G-023, for example, indicates that the well is located in Hickman County on the "G" quadrangle and is identified as well 23 in the numerical sequence. Quadrangles are lettered from left to right, beginning in the southwest corner of the county.

The station identification number is a unique number for each site based on a latitude and longitude grid system. The number consists of 15 digits. The first 6 digits denotes the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a 1-second grid.

Use of trade or product names in this report is for identification purposes only, and does not constitute endorsement by the U.S. Geological survey.

WATER-QUALITY, WELL-CONSTRUCTION, AND GROUND-WATER LEVEL DATA FOR AN INVESTIGATION OF RADIONUCLIDES IN GROUND WATER, HICKMAN AND MAURY COUNTIES, TENNESSEE

by Gregg E. Hileman

ABSTRACT

Water-quality, well-construction, and ground-water level data were collected for an investigation of radionuclides in ground water in Maury and Hickman Counties, Tennessee. Seventeen wells and 3 springs were sampled in Hickman County, and 20 wells were sampled in Maury County. Data are presented in tables. Maps of each county show the location of the data-collection sites. Samples from each site were analyzed for radionuclides, common and trace inorganic ions, indicators of redox conditions, selected nutrients, total organic carbon, and selected physical characteristics. Well-construction data were obtained to help determine the source of the water. Where possible, ground-water level measurements were made for each well sampled. Samples were collected from May 1989 through mid-August 1989.

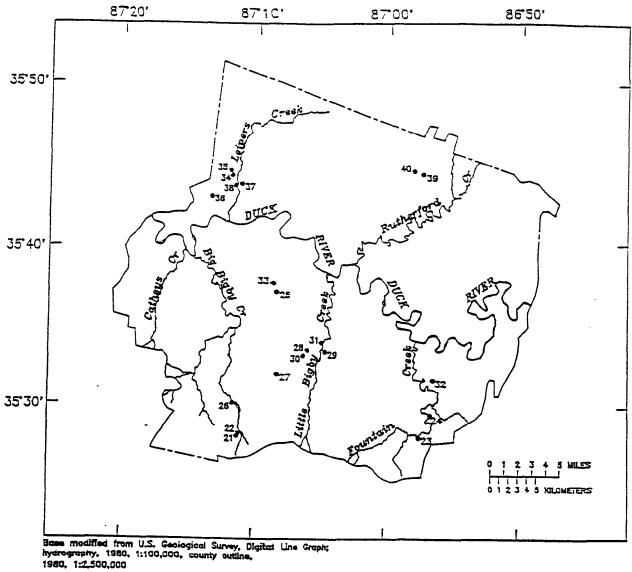
INTRODUCTION

Radionuclides, including uranium, radium, and radon, occur in ground water associated with geologic formations such as black shales and phosphatic limestones. In Middle Tennessee, little is known of the distribution and concentrations of naturally-occurring radionuclides in water associated with these lithologies. During spring and summer of 1989, the U.S. Geological Survey (USGS) conducted a study, in cooperation with the Tennessee Department of Health and Environment, Division of Ground Water Protection, and the U.S. Environmental Protection Agency, Ground-Water Protection Branch, to determine the concentrations and distribution of radionuclides in ground water and the geochemical environment in which they occur. Hickman and Maury Counties, in Middle Tennessee were selected as representative of areas that contain black shale or phosphatic limestone. Seventeen wells and 3 springs were sampled in Hickman County (fig. 1), and 20 wells were sampled in Maury County (fig. 2).

Purpose and Scope

This report presents data collected during the course of the investigation in Hickman and Maury Counties. Included are analyses of water samples for major ions, trace metals, total organic carbon, uranium-234, uranium-238, radium-226, radium-228, radon-222, lead-210, polonium-210, gross alpha and gross beta activity, and physical characteristics. Well-construction data and water-level measurements are also included of wells for which this information was obtainable.

Base modified from U.S. Geological Survey, Digital Line Graph; hydrography, 1980, 1:100,000, county outline, 1980, 1:2,300,000


EXPLANATION

•+ WELL LOCATION AND NUMBER

510 SPRING LOCATION AND NUMBER

Figure 1.-Location of wells and springs sampled in Hickman County, Tennessee.

_---

. .

EXPLANATION

Acknowledgments

The author expresses his appreciation to Jeff Abston and Don Rima, Tennessee Department of Health and Environment, Division of Ground Water Protection, for assistance during sample collection; and to Gene Coker, U.S. Environmental Protection Agency, Ground-Water Protection Branch, for helpful discussions of radionuclide hydrology.

METHODS OF DATA COLLECTION

Hydrologic data were collected at domestic-supply wells and springs using procedures established and documented by the USGS. Field measurements of dissolved oxygen, total iron, ferrous iron, and hydrogen sulfide were made using commercially available methodology. Ground-water sampling protocol adhered to the procedures identified by Claassen (1982). The wells were purged using existing pumps (table 1). Prior to sample collection, wells were pumped for at least 45 minutes at a rate of approximately 2 to 30 gallons per minute in order to obtain a sample representative of water from the aquifer. During pumping, temperature and specific conductivity were monitored. Samples were collected after values for these monitored parameters stabilized for at least 30 minutes, and generally were collected after 3 volumes of casing water were evacuated. The yield from one well (fig. 1, number 2) was too low to allow optimum purging. Samples from this well were collected after slightly more than one casing volume of water was evacuated as the water level reached the pump intake. Springs were sampled from perforated collector pipes inserted into the aquifer or from domestic supply lines tapped into small stilling wells.

Samples were prepared using established procedures whenever possible (Pritt and Jones, 1989). Water temperature, specific conductance, pH, and alkalinity were measured in accordance with the methods of Wood (1976) and Fishman and Friedman (1989). Field meters were calibrated on site, and generally at the same temperature as the water sample. Samples for dissolved analyses were filtered using an acetate membrane filter with a mean pore size of 0.45 micron.

Commercial colorimetry methods were used in the field to determine concentrations of dissolved oxygen, hydrogen sulfide, total iron, and ferrous iron. Dissolved oxygen was analyzed using indigo carmine methodology, by which the color of self-filling CHEMETRICS ampoules were compared to color standards. If the dissolved oxygen concentration was less than 4 milligrams per liter, the concentrations of hydrogen sulfide and iron in 25 milliliter samples were determined using a HACH spectrophotometer. If the dissolved oxygen concentration was 4 milligrams per liter or greater, hydrogen sulfide and iron concentrations were not measured. Hydrogen sulfide concentrations were determined using methylene blue methodology; iron concentrations using phenathroline reagents.

Radon activity was determined using a Lucas cell technique (Reimer, G.M., U.S. Geological Survey, written commun., 1989). Water samples were drawn into evacuated samplers which stripped the water of radon gas and diverted it into calibrated Lucas cells. Radon-222 concentrations were measured by alpha spectrometry using commercially available equipment (Lee and Hollyday, 1987). Counting events were repeated and were of sufficient duration to achieve an analytical error of less than 3 percent for all samples. Two samples were collected at each site (table 2). At most sites, the first sample was collected

es; tions saw tes that	Pump type	ממממטמטמט ו א ממממט א א א א א א א א א א א א א א א א
minute n Limestones; lermitage ieys Formatio WRSW, Warsaw -, indicates th indicates th	evel. and datum Date	
<pre>GS) 7 1/2-minute and Cannon Limestones m; HRMG, Hermitage Thman-Catheys Pormation To Group; WRSW, Warsation ersible; -, indicates lable; *, indicates the ell.]</pre>	Water level below land surface dat Depth, Da	
(USGS) 7 by and Ca tion; HRA rs-Tnman- Wayne Gro Wayne Gro ubmersible; vailable; d well.]	Primary aquifer	NSVL BGBC FRPN FRPN FRPN FRPN FRPN FRPN NSVL FRPN FRPN FRPN FRPN FRPN FRPN FRPN FRPN
gical Survey (USGS) 7 1/2-minute ss: BGBC, Bigby and Cannon Limestones; rt Payne Formation; HRMG, Hermitage s; LPIC, Leipers-Thman-Catheys Pormations Group; WYNE, Wayne Group; WRSW, Warsaw J, Jet; S, submersible; -, indicates ces data not available; *, indicates that cates screened well.]	Altitude of land surface above sea level, in feet	600 630 630 630 630 550 550 630 550 625 625 550 550 525 550 525
from U.S. Geological Survey (USGS) 7 Primary aquifers: BGBC, Bigby and Ca stone; FRPN, Fort Payne Formation; IIRM ebanon Limestone; LPTC, Leipers-Tnman- NSVL, Nashville Group; WYNE, Wayne Gro YPe: C, suction; J, Jet; S, submersibl sed;, indicates data not available; ng; and **, indicates screened well.]	I Screened or open interval, in feet	39-226 51-55 51-55 20-100 166-300 62-190 64-146 64-146
U.S ary Nar Nar nd	Depth of well below land surface, in feet	340 226 100 190 146 190 146 190 146 190 146 190
des determined ographic maps. 3, Carters Lime. Aation; LBNN, La Aation; La Aation; LBNN, La Aation; LBNN, La Aation; LBNN, La Aation;	USGS station identification number	354438087322701 354253087303801 354217087302601 353941087350501 354020087241701 354200087291801 3542444087282301 354444087282301 354444087282301 355143087415301 355143087324401 355119087314401 355119087314401 355119087314401 355119087314401 355119087314401 35512087283101
[Altitu topo CRR5 Forn Forn Forn that	USGS local Tennessee well number	H1: E-013 H1: E-014 H1: E-015 H1: F-016 H1: F-006 H1: F-006 H1: J-006 H1: K-008 H1: K-008 H1: K-009 H1: N-003 H1: N-003 H1: Q-007
	Map number	5466664654677 111111

Table 1.--Site-number, well-construction, and water-level data for wells and springs sampled in Hickman and Maury Counties

	Pump type	-	ר גו גו	າ ແ	2	, ci	1 (J	, L	ŗ	S	IJ	S	. ນ	. თ	در 1	, vi	. ບ	S	0	. 03	1 03	. vi	ر ا	, ha	. 53	i a
level land e datum	Date		4 / 8) - - -		1./8	7/11/89		7/12/89		ł	7/18/89	7/20/89	8/21/89	8/21/89		8/23/89		7/14/89		1	7/17/89		7/26/89	11/	8/11/89
Water l below surface	Depth, in feet	1	164.8	46.0		56.5	19.6	1	68.9	1	1	4.0	•	113.0	36.9	1	6.8	1	5,9		1	50.6		13,1	2	
	Primary aquifer	RPN	FRPN	FRPN	WRSW	FRPN	IIRMG	NSVL	LBNN	LBNN	HRMG	BGBC	HRMG	CRRS	IIRMG	HRMG	HRMG	LBNN	HRMG	HRMG	BGBC	FRPN	HRMG	HRMG	IIRMG	HRMG
Altitude of land surface above	sea level, in feet	635	с G	845	880	920	800	845	720	725	670	695	740	790	700	940	640	705	670	600	650	880	630	580	710	690
ened	or open interval, in feet	1	180-200**	1	1	63-120	!	 	20-275	1	1	8	1	28-456	35-125	1	1 1			1	}	1	I	1	42- 60	1
Depth of well below	Jand surface, in feet	65	200	1.80	107	120	125	I I	275	62	85	85	150	456	125	365		190	39	85	1	225	ß	38	60	60
	identification number	553000872	556520872		554360871	555110871	528060871	528150871	528050865	529280865	537030870	530090873	531590870	533280870	533230870	533080870	533570870	531410865	537340870	544100871	44270871	542510871	543380871	543330871	354420086573001	544320865
	well number					H1:S-005	My:B-005	MY: B-006	MY:D-002	му: D-003	Е00-4: Хм	MY:F-004			MY:G-014				**		**			My:L-010	060-N;YM	
	Map number																								39	

•

	Sodium, dis- solved (mg/L as Na)	38 38 3.2 3.2 3.8	411118 113578 411118 1135718 411118 1135718	5.6 1.4 2,3 2,3
a Liter a	Magne- Bium, dig- Bolved (mg/L an Mg)	3.7 43 1.1 3.8 20	2.5 2.1 2.1 3.2 1.9 1.9 1.5 1.5 1.5 1.5	
cocuries s per ncentration not ind he ata not	Calcium, dis- solved (mg/L as Ca)	24 100 11 32 32	26 81 24 15 16 16 220 35.7 35.7 67	50 45 86 25
liter; pCi/L, picocurie /cm, microsiemens per ates that the concentra hod used and does not i indicates that the , indicates data not	Solids, residue at 180 deg C dis- solved (mg/L)	85 725 26 104 518	88 287 56 56 56 108 113 222	176 149 154 253 101
/L, milligrams per liter; ug/L , micrograms per liter; pCl/L , picocuries per literMM, hours:minutes; deg C, degrees Celsius; uS/cm , microsiemens per centimeter. Value given as < (less than) indicates that the concentration was below the detection level of the analytical method used and does not indicate the presence or absence of the constituent; >, indicates that the analyticate available.]	Alkalinity, water, whole, total, incre- mental titra- tion field, mg/L am CaCO3	63 120 32 93 170	70 200 56 130 130 200 233 200	150 140 130 68 68
Wer lifer; ug/L , micrograms per tes; deg C, degrees Celsius; uS ue given as < (less than) indic ion level of the analytical met absence of the constituent; >, s greater than the value shown;	Oxygen, dis- solved (mg/L)	44 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ເນັ້ນ ເບັ້ນ
$r_{1} ug/L, r_{2} c, degreen constraints (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, $	pH (stand- ard units)	7.55 7.55 7.33 7.55 7.55 7.55 7.55 7.55	0000 0000 0000 0000 0000 0000 0000 0000 0000	4.000 4.000 2.000 2.000
/L, milligrams per liter; ug/L , H:MM, hours:minutes; deg C, deg centimeter. Value given as < (below the detection level of th the presence or absence of the concentration was greater than available.	Spe- cific con- duct- ance (uS/cm)	135 980 62 165 580	150 144 144 144 197 197 197 390 390	327 275 260 450 150
/L, milligrams H:MM, hours:min centimeter. Va below the detec the presence or concentration w available.]	Temper- ature water (deg C)	15.5 17.5 16.5 16.5	17 16 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15	15.5 15.5 15.1 15
<pre>[mg/L, milligrams H:MM, hours:mi centimeter. v below the dete the presence o concentration available.]</pre>	Date Bampled	05-09-89 06-23-89 05-19-89 06-15-89 05-24-89	06-13-89 06-21-89 05-15-89 05-15-89 05-17-89 05-17-89 05-17-89 05-17-89 05-17-89 05-11-89	06-07-89 06-14-89 06-09-89 06-14-89 06-14-89 06-01-89
	Map number		54921 00830 54931 00830	16 17 19 20

.

Table 2.--Water-quality data for water from wells and springs sampled in Hickman and Maury Counties

Table 2.--Water-quality data for water from wells and springs sampled in Hickman and Maury Countles--Continued

.

n, 8 /(I. (a)	2.7		4.4	6	5.2	ה ת ה ת	6.6	8,1	0		, <u>c</u>	4.3	v 0	- u - c	л с ч с		5.0
Sodium, dis- l solved (mg/L ag Na)				Г					14	,	10	•					-
Magne- Bium, 2 dls- Bolved (mg/L aB Mg)	17 9	7.7	2.9	5.4	41	67 7 1	18	Ф	18	61	74	22	6 4		11	- - -	31. 1E
calcium, dia- solved (mg/L ag Ca)	52 87	110	EL	78	94	120	51	88	32	41	130	70	65	95	96		250
Solids, residue at 180 Calcium, - deg C dis- dis- solve solved (mg/L (mg/L) as Ca)	224 286	232	230	300	429	238	221	266	522	150	1160	299	242	248	162	252	961
Alkalinity, water, whole, total, incre- mental titra- tions field mg/L as CaCO3		300 300	160	180	330	250	150	210	220	170	320	210	160	240	260	180	290
ww. ww. to Oxygen, to dis- dis- solved (mg/L)	3 1.3	 	1.6	4	.19	1.6	1.9	ę	• •	.14	.28	.14	1.6	1.7	2.3		2
pH (stand- ard units)	7.4	7.2 6.8	6.8	7.1	7.3 6,9	6.9	6.8	6.4	7.9	7.6	7.2	7.3	7.2	7.3	7.2	6.9	6.8
Spe- clfic con- duct- ance (uS/cm)	530 480	650 585	390	500	695 485	660	390	420	006	340	1500	500	410	510	505	420	1610
Temper- ature water (deg C)	17.5 17.5	16	20	19	17	16	17	18	16.5	.	ف	œ.			4.	15.5	
Date Bampled	07-11-89 07-11-89	07-20-89	07-13-89	07-18-89	08-21-89	08-21-89	08-22-89	08-23-89	07-12-89	07-14-89	07-17-89	07-18-89	07-17-89	07-26-89	07-26-89	08-11-89	08-11-89
Map number	21	24	25	26 27	28	29	05	31	22		5 1 1 1	с г	36	37	38	39	40

8

.

•

Potes: Cho- state Future state Cho- state Future state Future state	Chlo- ride, dis- solved (mg/L as Cl)	•								
itim, ride, Sulfare, ride, dis. monit, N0, N0, rith, organic dis. monit, N0, N0, rith, organic dis. allowed salved alls. alls. <td< th=""><th>ride, dis- solved (mg/L as Cl) 2.2</th><th></th><th>FILO-</th><th>Silica</th><th>CeD</th><th></th><th></th><th></th><th></th><th></th></td<>	ride, dis- solved (mg/L as Cl) 2.2		FILO-	Silica	CeD					
Ids- dis- dis- <thdis-< th=""> dis- dis- <th< td=""><td>dis- solved (mg/L as Cl) 2.2</td><td>Sulfate.</td><td>ride.</td><td>dis-</td><td>Ammonie</td><td>UD_e HID.</td><td>phorous</td><td>-</td><td></td><td></td></th<></thdis-<>	dis- solved (mg/L as Cl) 2.2	Sulfate.	ride.	dis-	Ammonie	UD _e HID.	phorous	-		
Bolved Solved	solved (mg/L as Cl) 2.2	dis-	die.	e o l ved		NU2*NU3,	ortho,	Carbon,	Barium,	Boron,
	(mg/L as C() 2.2 11	solved	solved		eolized	dis-	d18-	organic	dis-	dis-
Re K) Re Cl. as Si()	as Cl) 2.2 11	(mg/l	(ing/1	1/Billy		SULVED	solved	total	solved	sol ved
	2.2	as S()_)	as f)	(cols	UN SB	ug/L	(mg/L	(ing/L	(ug/I.	1/6n)
	2.2	-						as C)	as Ba)	as B)
	11	6	0.1	7.9	0.02	07.0	0.00	1 0	470	
<pre>¿</pre>	-	390	M	11	72		, 10 ¹			10
		5	-			2		.	1/	220
	2.7	, 1			38	Ŋ,	.02	-	5	<u>6</u> 10
		710			20.		• .01	 `	16	10
	<u>.</u>	2 *	4	2	-04	.13	< 0. ×	s.	19	50
		n i	-	8°0	.02	.21	.03	÷.	25	<10
	<u>.</u>	8 5	n,	9.5	-02	 .10 	.10	r.	22	20
	<u>-</u>	- (-	8.8	.02	.65	-04	-	56	<10
	7.7	. .		8.7	E0.	.89	10.	-	31	<10 <10
	7	-		8.7	.02	.18	.02	M	52	<10 1
4.1.9 4.1.9 <td< td=""><td>4.8</td><td>530</td><td>۲.</td><td>8.1</td><td>.15</td><td>< .10</td><td>10.</td><td></td><td>a c</td><td></td></td<>	4.8	530	۲.	8.1	.15	< .10	10.		a c	
	1.2	B	-,	8.6	-02	36	60	: ^	17	
	-	м	• .1	8.8	10. >	• .10	6	+	2 2	0 F
5.5 5	1.4	m	-	8.6	i	:			20	
4 4 4 4 4 4 5 5 5	5,5	10	-	8.7	10.	1.80	-02	v		07
3. 2. <td< td=""><td>4.1</td><td>10</td><td>-</td><td>7.9</td><td></td><td></td><td></td><td></td><td>27</td><td></td></td<>	4.1	10	-	7.9					27	
1 1	1.8	2	-	8.1	-02	.28	.03	~	: :	×10
7 5 7 5	1.6	7	.	8.3	;	;			:=	, 1
25 25 26 25 27 26 26 27 27 28 26 27	9. J	in (. .	9.1	.03	1.70	10, >	-	26	10
1 1	- •	-;	-	9.2	-01	2.50	S		13	<10
0.4.1 0.4.1 <td< td=""><td>- *</td><td>25</td><td>م،</td><td>8.9</td><td>-02</td><td>-5-</td><td>.16</td><td>۰.</td><td>23</td><td>30</td></td<>	- *	25	م،	8.9	-02	-5 -	.16	۰.	23	30
1 1		2	Ņ,		.03	69.	.23	;	0	20
3.5 2.6 2	0 - 1	22		6°4	-02	21.	< .01	-	1	20
3.1 3	•••	<u>.</u>	- '	ŝ	6	.92	·0	1.4	33	20
1.0 2.1 2	2.2	200	ni c		5.5	1.10	.40	m.	0	20
1 2	, «	4 4	ų .		53	0 <u>6</u> ,	.15	<u>0</u>	10	20
1 5.5 91 5.5 92 94 93 94 95 94 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 95 96 <t< td=""><td>2.4</td><td>24</td><td>r M</td><td>: =</td><td>55</td><td></td><td>7 T</td><td></td><td>56</td><td>80</td></t<>	2.4	24	r M	: =	55		7 T		56	80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.6	91	5	8.2		2 8	5	••	\$ (\$	0,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8	49	0	9.1	15	. 2	i s	• •	3;	3
4.5 99 95 4 94 10 10 15 14 5.7 1.4 12 1.1 8.7 02 4.10 05 4.1 13 5.2 29 550 1.8 8.2 29 1.70 4.01 3.4 1.7 4 55 1.8 8.2 29 1.70 4.01 3.4 1.4 12 7 2 8.2 4.00 5.10 5.01 5.1 3.5 1.4 12 7 2 8.2 4.00 5.10 5.1 3.5 1.4 1.2 7 2 8.2 4.01 7.80 4.01 5.3 3.4 1.7 4.9 2.8 3 7.7 0.02 4.10 1.5 3.4 5 6.4 4.70 5 0.1 4.10 1.6 4.13 1.3 3.4 5.6 6.4 4.70 5 7.9 0.12 7.10 5 4 1.3 3.4 5.6 6.4 <td>2.4</td> <td>8</td> <td></td> <td>5</td> <td>5</td> <td>00 0</td> <td>70, 7 7</td> <td>. .</td> <td>2</td> <td>140</td>	2.4	8		5	5	00 0	70, 7 7	. .	2	140
.7 1.4 12 1.1 8.7 .02 \$.10 \$.01 \$.35 5.2 29 550 1.8 8.2 .29 1.70 \$.01 \$.3 1.7 4 55 1.8 8.2 .29 1.70 \$.01 \$.3 1.7 4 55 .8 9.2 .09 \$.10 .01 \$.3 1.4 12 7 .2 8.2 \$.01 7.80 \$.01 \$.5 3.4 1.4 12 7 2.8 .3 6.9 .02 \$.10 .01 \$.5 3.4 1.7 2.8 .3 6.9 .02 \$.10 .01 \$.5 3.4 .7 1.7 2.8 .3 6.9 .02 \$.10 .10 1.6 1.3 3.5 .7 1.1 2.8 .2 1.90 .14 1.3 3.5 .7 .1 .10 .10 .16 .16 .17 3.4 .7 .1 .7 .01	66	95	, 4 , 4	9.6	8	, 10 10	í.	, , ,	2 5	1 0
5.2 29 550 1.8 8.2 29 1.70 1.17 3 9 1.7 4 55 .8 9.2 .09 <.10	1.4	12	1.1	8.7	20	10	55	•		
1.7 4 55 .8 9.2 .09 <.10	29	550	1.8	8.2	5	1.70	5	- 1 - 1 -	ç 0	N 10
1.4 12 7 .2 8.2 <.01	4	55	.8	9.2	60.	< .10	10	l vr	• •	e e e e e e e e e e e e e e e e e e e
1 4.9 28 .3 6.9 .02 <.10 .09 1.3 14 13 13 13 13 14 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 13 14 13 14 13 15 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 13 14 13 14 13 14 13 14 14 13 14 14 13 14 14 <	12	7	~	8.2	• .01	7.80	• •		75	8 2
.7 1.7 28 .3 7.7 .01 < 10 .16 .4 13 .5 6.4 28 .2 8.6 .03 1.90 .44 .3 4 3.4 6.4 470 .5 7.9 .12 .78 .12 5 31	4.9	28	۳.	6.9	.02	< .10	60	*		2 9
.5 6.4 28 .2 8.6 .03 1.90 .4 .3 4 3.4 6.4 470 .5 7.9 .12 .78 12 5 31	1.7	28	~	7.7	10,	<. 10 . 10	1	7	2 =	80
3.4 6.4 470 .5 7.9 .12 .78 .12 5 31	6.4	28	.2	8.6	50	1 00	77		2 \	5 2
	6.4	470	ŝ	7.9	: 1	82.	12	Ĵ vî	• 5	00

Table 2.--Warer-quality data for water from wells and springs sampled in Hickman and Maury Counties--Continued

9

.

. '

is sampled	
ality data for water from wells and springs samp Vickman and Maury CountiesContinued	
Table 2Nater-quality data for water from wel in Hickman and Maury CountiesCo	

	Stron- tium	Alum- inter	1 4 4 5		Manga-	lron,	Iron,	Hydro-	Gross alpha,	Gross beta,	
			LI thum,	Iron,	nese,	total	ferrous	gen	dis-	dis-	Ilranium
	parties	coluce	-sip	dis-	dis-	recov-	dis-	sul fide,	solved	solved	Datural
Man	1101	201704	BOLVED	beviced	solved	erable	solved	total	(1/6n)	(001/1	dis-
	1/601		1/6m)	(1/Gn)	1/6n)	(ug/L	1/6n)	(ma/t	95	30	
		46 AL)	BU [.])	as fe)	as Mn)	as fe)	as fe)	as II ₂ S)	U-nat)	cs-137)	(pci/t)
-	98	<10	44	11	11						
2	7700	410	100	10	<u>t</u> <	; ;	:	;	0.9	1.7	0.31+.03
	202		n n1	0 I	0	60	60	>0.50	9.6	10	161 0
		2	*	~	7	;	;	:	R	-	
a r 1.	0 5 5	¢10	44	~	2	;	:	:	 		
. .	880	4 10	19	41	4	2100	20	01		•,	-04-07-07-07-07-07-07-07-07-07-07-07-07-07-
•0	62	6 10	47	4	•~~			D .	4 (, ,	.124.02
~	350	<10	4	Ň	' '		1		۰. ۲	1.6	. 194.03
	120	<10		, c	, -		1	10.	-	2.1	.124.02
	18		53	• 1	- 5	;	;	:		4. ~	.094.02
	2 u u		4 ·	- 1	Q	:	;	:	3.8	1.4	1.44+.06
	<u>,</u>		2	m	⊽	:	;	:	đ	-	DE DE
	6.3	012	22	1000	16	:	:	5			
	43	¢10	72	71	-	;		5.	n	^ , ^	.821.06
~	26	<10	44	1	- 14		:	:	5	-	.124.03
	68		1	; ~	• •		:	:	4. ×	۲.	.02+.01
	110		ŗ ~	• •		;	;	;	4. ×	8.	.044.01
	130			Ņ	- 1	:	!	1	ŝ	1.1	.164.02
			3 -	? '	2 ر	:	;	:	2.9	5.7	244.05
	0.4		4 ·	. ,	<u>ک</u>	:	:	:	1.1	6.	14 + 02
			4.	ۍ د ۲	⊽	;	;	:	4	3.8	0.44
	021		44	ŝ	2	:	ł	:	4. >		5410
_	071	0 1 2	54 <	4	⊽	;	;	;	7	•	
	00%5	<10	~	10	10	1	1	:	-		
	290	1 0	45	Q	ŗ	;	;	:		, c	
_	280	1 0	ŝ	ů	5	<10	<10	× 01			
	180	¢10	\$	8	2	540	9 B	5		10	.101.02
	130	¢10	44	•		07	39	6 6 7			in inc
_	180	<10 <			י ן ד		1		4 · v	* *	
	2700	¢10	ţ.	1	י ב	22	: ;	1	v	3.8	.144.02
	9400	10	1	ŗ a			2		ų	2.6	. 15±.02
	950	<10 <	: 5	ט ג	: •		: :		:	;	-274.03
_	1200		2	Ĵ.	- ,	B]	N 2	•	;	:	.14+.02
	150		= `	n 1	5.	100	<10	• • •	:	:	.234.03
			0	n :	2	¢10	:	< .01	:	;	-06+.02
	0000		430	110	-	180	120	.12	1.3	3.6	<pre>- 01+ </pre>
_			4	18	m	50	ŝ	.06	4. >	'n	< .014
	0040		240	200	33	!	180	× .50	4.1	9.2	.037.01
-	0041		2:	<u>م</u>	0	20	:	.01	9 .	2	024.01
			-	24	51	<10	;	• • • • •	1.6	2.3	.064.02
	200	¢10	ø	-	-	100	60	• .01	.	4.7	224.02
_	410	<u>~10</u>	8	ŝ	<u>~</u>	120	60	< 01	0	7 0	101
-	130	410 1	9	50	Ŷ	20	10		: :		
_	2700	<10	20	140	• •	076	150	5		•	10.100

	dissolved	Dadium		Lead	Polonium		10000 M		
	isotope	228.	226 226	210 115405	210				Total
	ratio	dis-	dis-	water	Water	•		lime	discharge
Map	(1)-234/	solved	sol ved	total	MIOLE,	F1rst	Second	between	between
Tanoer .	(1-238)	(pc1/L)	(pci/L)	(pc1/L)	(pci/L)	sampre (pci/L)	sample (pCi/t)	samptes (II:MM)	samples (pattons)
-	1.424.13	0.03+.01	0.064.01						
2	2.674.42	17+ 01	2 571 10	:	:	347	1190	0:16	130
M	1 334 34	031 01		: :	:	337	422	1:32	130
4	87 17F C		20-11-	0.08	0.17	754	857	1:46	1200
·u		20.10.	111-04	:	:	554	295	21.	
۲ ۲	YC. 77. 1	10+-ct.	.34±.10	:	1	157			nc
4 0		.05±.02	.224.09	:	;	272	207	: :	: ;
- 0	1.424.17	;	.021.14	:	;	100	510	201	510
	B/1-10	;	:	:	1			07:2	280
~ ;	1.764.08	.081.02	.73+.17	;	:	1000	200	7:12	870
2	$3.95_{\pm}.98$.034.01	.064.01	:	1		4 <u>6</u>	4C:1	400
=	5.814.54	.381.02	50 + 70	4	1	100	686	1:10	110
12	3.214.75	20 02	20 121	1	:	201	;	:	:
5	1.274.38	01 120	20 770	: :	1	246	640	:59	80
7	3.34+.83	084 01		N .	.09	680	200	:18	:
2	1.504.21		20-141.	1	:	286	327	2:21	:
9	12 +79 1	20.100	- 1/1- 	;	:	104	62		ł
~	07 +70 2		20.112.	;	1	562	510	1:54	340
8	2.11+.61	011 01		:	;	237	333	2:09	840
6	1.764.22	0.1	10-110-	;	:	258	254	1:45	630
0	1.764.51	0 +90		:	;	225	425	1:54	100
Ξ	2.464.64	054 01		:	;	310	331	1:57	240
2				:	:	230	437	1:55	230
1	2.06+.43	50 100		1	;	437	498	2:19	280
4	1 64+ 16	141 DE	CO - 120.	:	;	281	305	1:34	380
			- 1/1- 	: !	;	902	696	1:29	220
9	1 784 27	20. LO.	40°-120°	70.	.38	1470	1490	1:39	250
	7 414 72	054 02		:	1	714	567	1:16	2000
80	4 22+ 5	20 100	-0-170-	;	:	109	113	1:32	640
0	1.714.32		00.1C2.	:	:	68	80	2:09	190
c	2 184 3		- nr - nc	:	:	161	451	3:08	1200
	2 411 73	10.290		:	!	194	206	2:26	UVE
- 0	5. • T n • 5		10' 2	:	:	1130	1090	2:22	220
1 14	: :	10.400	10.+cu.	:	:	254	236	1:58	
4	X 604 77	20.100	- no no	:	;	63	63	2:58	630
	2 714 47		00.14.	:	;	87	94 9	2:27	400
	07 70 0		50102.	;	;	264	240	1:20	120
	1 221 15	<u>-</u>		:	:	318	317	1:09	20
- 4		(n-1+n)	50°	;	:	351	407	2:04	150
	1.2/1.1/	10.120.	.041.02	. 14	.13	916	711	07.1	
2	1.981.45	.024.01	.034.02	:		057			000
	•								

Teble 2.--Nater-quality data for water from wells and springs sampled in Hickman and Maury Counties--Continued

•

after discharging approximately one casing volume of water; the second sample was usually collected after three casing volumes had been evacuated.

Three laboratories conducted the non-field analyses. The USGS National Water Quality Laboratory in Arvada, Colorado, conducted most of the laboratory analyses and used analytical procedures described by Pritt and Jones (1989). Analytical reruns were conducted for questionable values. The USGS National Research Program Laboratory in Reston, Virginia analyzed water samples for the radioisotopes: uranium-234, uranium-238, radium-226, and radium-228. Uranium analyses by alpha spectrometry techniques followed precipitation-extraction procedures (Kraemer, 1981). Radium-226 was determined by radon emanation techniques (Shink and others, 1970). Radium-228 was determined by gamma spectrometry to establish radium-228 to radium-226 ratios from large volume samples (Michel and others, 1981) and multiplying that ratio by the radium-226 value found by emanation. The U.S. Environmental Protection Agency Eastern Environmental Radiation Facility in Montgomery, Alabama analyzed water samples for lead-210 and polonium-210 using established methodologies of that laboratory (U.S. Environmental Protection Agency, 1984).

DATA PRESENTATION

Data collected for this study are presented in two tables and the sites sampled are shown on two maps. Site numbers and physical characteristics of the sites including well-construction and water-level data are presented in table 1. Water-quality data including radioisotope data are presented in table 2. The study area and site locations are shown in figures 1 (Hickman County) and 2 (Maury County).

All analytical results are stored in the USGS National Water Information System data base. The data are also stored in the STORET national data base maintained by the U.S. Environmental Protection Agency.

SELECTED REFERENCES

- Claassen, H.C., 1982, Guidlines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer: U.S. Geological Survey Open-File Report 82-1024, 49 p.
- Fishman, M.J. and Friedman, L.C., 1989, editors, Methods for determination of inorganic substances in water and fluvial sediments: Techniques of waterresourses investigations of the U.S. Geological Survey, Book 5, Chapter Al, 545 p.
- Kraemer, T.F., 1981, ²³⁴U and ²³⁸U concentrations in brine from geopressured aquifers of the northern Gulf of Mexico basin: Earth and Planetary Science Letters, v. 56 p. 210-216.
- Lee, R.W., and Hollyday, E.F., 1987, Radon measurements in streams to determine location and magnitude of ground-water seepage: Radon, Radium and other Radioactivity in Ground Water, Hydrogeologic Impact and Application to Indoor Airborne Contamination, Somerset, New Jersey, April 7-9, 1987, Proceedings, p. 241-249.
- Michel, J., Moore, W.S., and King, P.T., 1981, Gamma-ray spectrometry for determination of Ra-228 and Ra-226 in natural waters: Analytical Chemistry, v. 53, p. 1885-1889.
- Pritt, Jeffrey and Jones, B.E., 1989, editors, 1990 National Water Quality Laboratory services catalog: U.S. Geological Survey Open-File Report 89-386, 119 p.
- Shink, D.R., Guinassa Jr., N., Charnell, R. and Sigalove, J., 1970, Radon profiles in the sea: a measure of air-sea exchange: Institute of Electrical and Electronic Engineers Transactions in Nuclear Science, NS-17, p. 184-193.
- U.S. Environmental Protection Agency, 1984, Eastern Environmental Radiation Facility, Radiochemistry procedures manual: U.S. Environmental Protection Agency, 520/5-84-006.
- Wood, W.W., 1976, Guidelines for collection and field analysis of ground-water samples for selected unstable constituents: Techniques of water-resourses investigations of the U.S. Geological Survey, Book 1, Chapter D2, 24 p.