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ABSTRACT

This paper presents the results of two research studies (Grant, 1990; and Perkins, 1991) which evaluated the
liquefaction hazard potential in Seattle, Washington. Seattle has experienced significant damage related to
liquefaction during historic earthquakes, and the City may be subjected to even greater damage in the future,
considering the increased development of the area and the potential occurrence of a subduction zone earthquake.
Therefore, the purpose of this paper is to discuss the methodologies of both studies and present a singular map
indicating the local liquefaction hazard potential. Delineation of the liquefaction hazard in the area will benefit land
use planning, future building development and planning for disaster response.

The liquefaction hazard evaluation was based upon existing data from over 350 boring logs. A computerized
data base was developed to facilitate storage and retrieval of the boring data for subsequent analyses. All
liquefaction evaluations were based upon Seed's empirical procedure which relates Standard Penetration Test (SPT)
N-values to threshold ground accelerations needed to initiate liquefaction. The liquefaction potential was evaluated
using two procedures. The first procedure grouped similar geologic units and assigned relative rankings to the
liquefaction potential based upon the percentage of SPT N-values that fell below a threshold N-value needed to
resist liquefaction resulting from a 0.30g ground acceleration. The second procedure assigned relative liquefaction
potential rankings based upon the computed -thicknesses of material in individual borings which would liquefy for
ground accelerations of 0.15 and 0.30g. All- major geologic units within the study area were reviewed for
liquefaction potential using both criteria and assigned one of the following hazard ratings: high, moderate, low or
very low. These hazard zones are also delineated on a map of Seattle. The study results showed that Fills and
Holocene alluvial deposits at the mouth of the Duwamish river have a high liquefaction potential. Other than at the
mouth of the Duwamish, Holocene alluvium and beach deposits were given a moderate liquefaction rating. Pleisto-
cene alluvial sediments were given a low liquefaction rating and glacially-consolidated, Pleistocene sediments were
assigned a very low potential.

INTRODUCTION

Earthquake-induced liquefaction and related ground failures have caused substantial casualties and major
property losses in various parts of the world. For example, property losses in excess of $800 million have been
attributed to liquefaction-related ground failures that occurred during the 1964 Niigata, Japan earthquake (Keefer,
1983). Also, property losses related to liquefaction induced ground failures were estimated to have exceeded $200
million in the March 27, 1964, Alaska earthquake (Keefer, 1983). During the Alaskan earthquake, soil liquefaction
induced lateral spreads that compressed or buckled more than 250 bridges disrupting railroad and vehicular traffic.
Liquefaction also generated subaqueous landslides that destroyed sections of the waterfronts of Valdez, Seward, and
Whittier.

Earthquake-induced ground failures during the 1949.and 1965 Puget Sound earthquaKes resulted in substantial
damage to buildings, bridges, highways, railroads, water distribution systems, and marine facilities. Property
damage from the 1949 and 1965 Puget Sound earthquakes totaled $25 million and $12 million, respectively, at the
time of each event. Grant (1985) estimated that 25 to 50 percent of the total damage from these earthquakes may be
attributed to earthquake-induced ground failures, such as liquefaction. While this amount of damage may seem
relatively minor when compared to other major earthquakes in the world, the damage is consistent with the relatively
low values of ground acceleration (typically less than 0.10g) that were recorded in Seattle during these events.
Should the Puget Sound experience a major subduction zone earthquake of magnitude 8.0 or greater, as postulated
by Heaton and Kanamori (1984), damage from earthquake-induced ground failures could easily be an order of
magnitude higher than the damage experienced in the past events.

This paper summarizes the results.of two research studies (Grant, 1990; and Perkins, 1991), both of which
evaluated the liquefaction hazard potential in Seattle, Washington (see figure 1). The first study (Grant, 1990)
evolved as a USGS-sponsored effort in which a computer database of existing borings in Seattle was developed and
used to evaluate liquefaction potential based on Seed's empirical procedures (Seed and Idriss, 1971; Seed and others,
1983 and 1984). Liquefaction hazard categories were differentiated on the basis of comparing SPT N-values for a
geologic unit with the N-values required to resist liquefaction during an earthquake with a 0.30g ground
acceleration. Perkins (1991) used the same database but established liquefaction hazard categories based upon the
cumulative thickness of material liquefying from either 0.15g or 0.30g ground accelerations. The results from both
of these studies were combined, resulting in single liquefaction hazard map which is contained in this report.

Identifying areas where liquefaction may potentially occur within Seattle provides a tool to aid government



agencies in land use planning, building development, and planning for disaster response. The liquefaction potential
map developed as a result of this study, may be used by engineers, city officials, and planners to assess the need for
changes in zoning ordinances or building codes to mitigate the hazard. For example, building codes could be
modified to require site-specific liquefaction assessments and appropriate foundation designs for structures located
in high risk areas. The liquefaction hazard map also could be used by engineering departments within various
governmental agencies and the insurance industry to estimate the damage potential to the existing building stock
during a future earthquake. The map also may be used to prioritize structures for seismic retrofitting. Finally, the
liquefaction hazard map could be used by emergency response planners to anticipate areas within the city that may
sustain high damage and casualties or where the infrastructure (roads, bridges, water supply lines) may be
particularly damaged, affecting emergency response efforts.

LIQUEFACTION PHENOMENON

Liquefaction is a phenomena in which saturated, cohesionless soils are temporarily transformed into a liquid
state, most commonly as a result of earthquake-induced ground shaking. Liquefaction occurs as a result of the
buildup of excess pore water pressures during the earthquake ground shaking. When the pore water pressure
exceeds the grain-to-grain (effective) contact pressure of the soil, the soil particles lose contact with each other and
the soil essentially behaves as a liquid. Pore water pressures in a liquefied soil may become so great as to result in
small geysers from which water is ejected, leaving sedimentary features commonly termed sand boils.

The development of liquefaction is controlled by a number of complex and interrelated factors. These factors,
however, can be generally related to: 1) parameters characterizing the strength of the underlying soil deposit, 2) the
location of the water table, and 3) parameters defining the severity of earthquake ground shaking. Specifically,
materials that historically have been the most susceptible to liquefaction include clean sands and silty sands. In
addition, the liquefaction resistance of any particular soil is affected by the density, fabric, prior earthquake history,
and in situ stress conditions. The second major parameter affecting liquefaction development is the presence and
depth of the water table because a soil must be saturated or located below the water table for liquefaction to occur.
Within any given soil deposit, liquefaction is more likely to occur where the water table is shallow as opposed to
conditions where the water table is depressed. Finally, development of liquefaction is dependent upon the
magnitude of the earthquake stresses induced in the soil deposit and the duration of ground shaking. The earthquake
induced stresses and duration of ground shaking are, in turn, affected by the size and location of the causative
earthquake, the travel path of the earthquake motions to the site, and any local amplification of ground motions
which may occur within the soil column.

Depending on site-specific factors, liquefied soil can cause various types of ground failures, resulting in the
adverse performance of overlying structures. Specifically, the occurrence of liquefaction may result in a loss of
bearing capacity for shallow foundations located over the liquefied soil. Other adverse performance characteristics
associated with liquefaction include flow failures, buoyant rise of buried structures, ground settlement, failure of
retaining walls due to an increase of lateral pressures, and lateral spreading.

HISTORICAL LIQUEFACTION

Historical records provide valuable information for assessing earthquake-induced liquefaction potential.
Specifically, areas that have experienced liquefaction during past earthquakes may likely liquefy during a future
event. For example, reconnaissance reports from the 1989 Loma Prieta earthquake (U.S. Geological Survey
(USGS), 1989) indicate that many of the areas that experienced liquefaction and unusually severe ground shaking
during the 1906 San Francisco earthquake also experienced similar damage patterns in the recent event. In both of
these earthquakes, locations of uncontrolled, random fills had a significant correlation with severely damaged areas.
Therefore, in our study of the liquefaction potential of the soils in Seattle, we first reviewed accounts of historic
liquefaction in the area and then correlated these accounts with historical maps that show tideland reclamation along
the shoreline areas. This information would likely identify the soil conditions having the highest relative
liquefaction hazard.

Table 1 provides citations bf accounts where liquefaction occurred in Seattle during the 1949 and 1965 Puget
Sound earthquakes. The 1949 earthquake occurred on April 13 and was located about 39 miles south-southwest of
Seattle, near Olympia. This earthquake had a magnitude (M) of 7.1 (Weaver and Baker, 1988). The magnitude

(my) 6.5 earthquake of April 29, 1965 occurred about 14 miles south of Seattle (Weaver and Baker, 1988). As
indicated in table 1, liquefaction during these earthquakes typically resulted in differential settlement of buildings,



lateral movement of bulkheads, and cracking of basement walls.

Since uncontrolled fills have been particularly susceptible to liquefaction from historic earthquakes, old
topographic maps of Seattle were reviewed to delineate fill areas. The locations of historic shorelines and the
associated fills are shown on figure 2. Additionally, figure 2 shows the locations of sites that have liquified during
the 1949 and 1965 earthquakes. As illustrated in this figure, the vast majority of reported localities of liquefaction
coincide with shoreline areas that were filled during the early development of Seattle. Experience from earthquakes
in other regions also suggests that areas of uncontrolled fill may be particularly vulnerable to liquefaction during a
future event.

A final factor which is needed to aid in the understanding of the historical accounts of liquefaction in Seattle is
knowledge of the level of ground shaking or peak ground acceleration which occurred locally during the 1949 and
1965 carthquakes. Fortunately, both events were locally recorded on strong ground motion accelerographs
(Shannon & Wilson-Agbabian Associates (SW-AA), 1980) which were located close to areas that experienced
liquefaction. The locations of these recording stations are also shown on figure 2. These accelerographs recorded
peak ground accelerations of about 0.10g during both the 1949 and 1965 earthquakes (SW-AA, 1980 and California
Institute of Technology (CIT), 1976). Based upon seismicity studies conducted by Shannon & Wilson (S&W) for
various sites within the Puget Sound region (SW, 1980), it is estimated that this level of ground acceleration may
have a 20- to 40-year recurrence interval.

GEOLOGY

Background information is presented on the geology of the Puget Sound and Seattle areas to provide a
framework for understanding the various geologic units that may be susceptible to liquefaction. In the following
discussion, primary emphasis is given to the glacial deposits in the region. Because liquefaction resistance can
generally be correlated with the age of a geologic deposit, understanding the origins and ages of the different
geologic units in the study area helps establish a framework for categorizing potentially liquefiable soils.

REGIONAL GEOLOGY

Seattle is located in the Puget Lowland, which is a slightly arcuate, convex-eastward basin lying between the
Cascade Range on the east and the Olympic Mountains (coastal range) on the west. The basin is open to the north to
the Georgia Depression and the Strait of Juan de Fuca, the latter connecting Puget Sound with the Pacific Ocean.
Beneath the Puget Lowland, non-lithified Quaternary sediments of varying thickness generally unconformably
overlie Tertiary bedrock. These sediments are both glacial and non-glacial in origin.

The incursion of Pleistocene continental ice into the basin is well documented (Willis, 1898; Bretz, 1913;
Mackin, 1941; Crandell and others, 1958, Crandell, 1965; Armstrong and others, 1965; Easterbrook and others,
1967; Mullineaux, 1970; Crandell and Miller, 1974; and Blunt and others, 1987). Ice originating in the coast and
insular mountains of western British Columbia, Canada, coalesced in the Georgia Depression and moved south
across the 49th parallel to the southern end of the Puget Lowland some 80 kilometers (50 miles) south of Seattle. At
least four major advances and several pariial advances have been identified. Although highly complex, each
advance left a sequence of lacustrine, advance outwash, glaciomarine drift, till, and recessional outwash deposits.
The non-glacial intervals generated combinations of fine-grained deposits of fluvial and lacustrine origin, and some
organic deposits, except along the basin margins where coarse fluvial deposits and mudflows predominate. The
trend of the existing ridges, valleys, and deep inlets of Puget Sound is north-south with the valleys being scoured to
great depths. The thickness of the total unconsolidated basin fill varies from trace amounts in scattered locations
throughout the lowland to over 1,100 meters (3,700 feet) in the central basin near downtown Seattle (Hall and
Othberg, 1974; and Yount and others, 1985) (figure 3).

The details of the bedrock underlying the Puget Lowland are not well-defined because of thick and pervasive
mantle of Pleistocene deposits. The sparse knowledge of the configuration of the bedrock surface has been interpret-
ed from geophysical data, a few deep borings, projection of surface exposures along the basin flanks, and from
several bedrock ridges which partly cross the basin along northwest trends. The rocks are mostly folded, faulted,
and deeply eroded Tertiary marine and estuarine sediments; volcanic materials consisting of basalt, andesite, and
volcaniclastic rocks; and terrigenous deposits such as sandstone, shale, and conglomerate, including extensive inter-
bedded coal seams which lie along the Cascade flank east and south of Seattle. Gravity and magnetic survey data
show high differentials in the bedrock elevations which are most likely related to major faulting. In fact, some of the
steepest gravity gradients in the United States have been measured in Seattle (Danes and others, 1965; and Rogers,
1970). One of these steep gravity gradients coincides with the Olympic-Wallowa lineament, a major west-northwest-



trending structural zone that cuts through the Cascade Range and Columbia Plateau to the east. South of this
lineament, bedrock is exposed in scattered outcrops in southeast Seattle, at Alki Point, and in a series of prominent
ridges to the east, collectively called the Newcastle Hills, which trend eastward to the Cascade Range.

LOCAL GEOLOGY

GENERAL

Seattle consists of several north-south-trending elongated ridges and drift uplands. The hills and uplands are
separated by large Pleistocene glacial troughs and outwash channels that are now occupied by tidal waters, large
lakes, or have been alluviated by streams that occupied the troughs about 13,500 years ago, following retreat of the
latest glaciation. Major troughs lie beneath the main body of Puget Sound, the Duwamish River valley, and Lake
Washington. The surficial geologic units in the area have been mapped by Waldron (Waldron and others, 1962).
The following discussion and symbols used to identify the geologic units correspond to those mapped by Waldron.

BEDROCK

A broad band of Tertiary sedimentary and volcanic/intrusive rocks forms the Newcastle Hills promontory
between Renton and Issaquah, east of Seattle. This west-northwest-plunging promontory crosses the southern part
of the city, with bedrock exposed or subcropping in the southern part of Beacon Hill, locally in the southern
Duwamish Valley and at Alki Point in West Seattle. These rocks are folded into northwest to west-northwest-
trending anticlines and synclines which are broken by northeast-trending, left lateral faults (Weaver, 1937; and
Mullineaux, 1970). All of these faults were last active in early to mid-Tertiary (Gower and others, 1985).

- ‘Two Tertiary bedrock units lie beneath and sporadically outcrop within the study area. Waldron and others
(1962) identify the oldest unit as middle Eocene sedimentary conglomerate, sandstone, siltstone, and shale chiefly
with volcanic clasts. This older unit outcrops along the southern edge of the study area, along the sides and below
the Duwamish River valley. The youngest bedrock unit contains Oligocene marine to estuarine sandstone and shale
with subordinate amounts of conglomerate, mostly of volcanic origin. These rocks are part of the Blakely Formation
(Weaver, 1937; Waldron, 1962; and Livingston, 1971) or Lincoln Creek Formation (Mullineaux, 1970). This unit
outcrops across the southern part of Seattle and at Alki Point.

Immediately north of this band of Tertiary rocks, the bedrock surface drops abruptly to elevations of more than
1,100 meters (3,700 feet) below sea level in a horizontal distance of less than 1.6 km (1 mile), as shown on figure 3.
Present data suggests that the bedrock surface rises from its lowest point in downtown Seattle gradually to the
northeast and is about 400 meters (1,200 feet) below sea level at the north end of Lake Washington (Hall and
Othberg, 1974; and Yount and others, 1985).

PLEISTOCENE DEPOSITS

Non-lithified, glacially overridden sediments generally lie unconformably above the Tertiary bedrock (see
figure 3). This sediment is both glacial and non-glacial in origin.

The youngest of these sediments, the lower units of Vashon Drift, were deposited as the Vashon ice lobe
advanced southward during the Vashon Stade of the Frasier Glaciation approximately 15,000 years bp (Mullineaux
and others, 1965). At its greatest extent, the lobe advanced to a position about 80 kilometers (50 miles) south of
Seattle (Booth, 1987). Covering Seattle with an estimated 900-meter- (3000 feet) thick layer of ice, the weight of
the glacier greatly over-consolidated the underlying sediment, including the lower units of the Vashon Drift. Conse-
quently, sedimentary units deposited before the advance of the Vashon ice lobe were over-consolidated to various
degrees. In the Seattle area, these very dense sediments underliec most upland areas, including major hills and ridges.

As the Vashon ice lobe retreated northward, recessional outwash (Qys and Qyg), largely consisting of mixtures
of gravel and sand, was deposited. The outwash was generally confined to the major glacial troughs, but was also
irregularly distributed on the drift uplands. Recessional deposits also include coarse-grained outwash deltas, kame
terraces and other ice-contact deposits along certain ridge flanks, local fine sand and silt deposited in ephemeral ice-
marginal lakes, and sands and gravels in local outwash channels. Locally, recessional deposits attain thicknesses of
30 meters (100 feet) or more in major outwash deltas. The younger sands (Qys) are fine- to medium-grained, and
generally less than 3 meters (10 feet) thick in the upland channels. The younger gravels (Qyg) are composed of sand
and pebble size gravel and are as thick as 30 meters (100 feet).



HOLOCENE DEPOSITS

Holocene deposits in the Scattle area include alluvium (Qa) in the Duwamish, Rainier, and Interbay valleys;
beach and adjacent marine deposits (Qb) along shorelines; colluvial and landslide deposits (Qls); and peat (Qp) and
lacustrine deposits (Qsc) in upland depressions and along the low-lying lakes. Alluvial deposits (Qa) consist of fine
sand, silty fine sand, fine sandy silt, and non-plastic silt, with local pockets or stringers of organic materials. Owing
to shifting of depositional channels, individual beds of uniform grain-size are rarely laterally continuous over large
areas, and interfingering of different soil units is common. Typically, the Holocene deposits consist of very loose to
loose granular soils within about 10 meters (30 feet) of the ground surface. Subsurface explorations for the West
Seattle Bridge indicate that the alluvium near thc mouth of the Duwamish River generally extends to a depth of
about 55 meters (180 feet) and locally extends to depths of 75 meters (250 feet).

Lacustrine deposits (Qsc) and very soft to soft peat (Qp) also occur in numerous closed depressions on the
surface of the drift uplands and along the shorelines of lakes. Lacustrine sediments are composed of silt, clay, and
fine sand, and are usually less than 3 meters (10 feet) thick. The peat ranges from fibrous to peaty silt (muck). Both
the upland and lowland peats pervasively contain a 2.5- to 5.0-centimeter (1 to 2 inch) layer of ash related to the
eruption of Mount Mazama (Crater Lake, Oregon) 6,800 years ago (Wilcox and Power, 1964; and Curran, 1965).

Colluvium is the veneer of loose to medium dense soil that drapes the sides and toes of slopes throughout the
city and environs. The deposits consist of mixtures of the materials comprising the slopes, and hence, the grain size
of the colluvial deposits can range from fine-grained clay and silt to boulder-size clasts. Processes forming
colluvium range from very slow creep (the imperceptible movement of only fractions of an inch per year) to cata-
strophic landslides. The areal extent of landslide deposits (Qls) is relatively small; these deposits lie near the base of
steep hills, ridges, and uplands. Slide material is especially common at or below the contact of the Esperance Sand
and Lawton Clay Members of the Vashon Drift (Tubbs, 1974). On steep slopes (greater than 40 degrees), the
colluvial veneer is generally very thin (1 meter or less), whereas near the toe of the hillside, where slopes angles are
10 to 20 degrees, thicknesses of colluvium generally range from 5 to 10 meters (15 to 30 feet).

o LAND MODIFICATION

Major fills (f) and drainage modifications in the city have resulted from engineering projects accomplished
during the first two decades of the 20th Century (Phelps, 1978). Areas of major tideland reclamation are shown on
figure 2. In the early 1900's, shallow tidal areas of the Duwamish River delta were filled with material which was
largely sluiced from adjacent drift uplands to improve the usability of the seaport and obtain an area for industrial
development. As a result of these operations, the mouth of the Duwamish was extended about 0.80 kilometers (0.5
miles) northwest to its present location. Also during this period, the sinuous, meandering course of the lower
Duwamish River was straightened and deepened to what is now the Duwamish Waterway. Additionally, Harbor
Island was built of hydraulic fill placed on tidelands at the river mouth when the East and West Waterways were
dredged. A tidal marsh in the Pioneer Square area was filled with soil and with organic debris from nearby lumber
mills. Glacial soils from the Jackson and Dearborn Regrades were sluiced via flumes and pipes to the Duwamish
flats south of the Pioneer Square area, where it accumulated to depths up to 12 meters (40 feet) in the period
between 1909 and 1910. The water-laden soil was washed into a series of diked ponds, so that the fine particles
could settle out of the slurry (Phelps, 1978). The tidal marsh at Smith's Cove (Interbay) was filled, as was the delta
of Longfellow Creek (Young's Cove) in West Seattle. These projects provided extensive areas for seaport facilities
and industrial expansion.

Logs of geotechnical borings show that these fills are highly variable in composition, ranging from sand, to silt,
to clay, and often containing sawdust, bricks, logs, wood fragments, cinders, and other debris. Yount (1983)
reported that later fills are generally of better quality (more compact material consisting of medium to coarse sand)
than the older fills. The fills are typically 3 to 5 meters (10 to 15 feet) thick but can be as much as 10 meters (30
feet) thick.

Regrading of the downtown Seattle hillsides was accomplished in two major phases between 1903 and 1928 to
facilitate expansion and ease of access within the central business district. This included excavating an entire hill
(Denny Hill) which resulted in an excavation which was locally in excess of 30 meters (100 feet). This excavation
covered a 62-city block area (Sale, 1976; and Morse, 1989). Glacial soils removed from Denny Hill were either
washed or dumped by barge into shallow water areas of Elliott Bay.

Between 1911 and 1916, the Lake Washington Ship Canal was constructed, linking Lake Washington to Puget
Sound. This construction resulted in lowering the surface of Lake Washington a nominal 3 meters (10 feet) to the
level of Lake Union. Additionally, the canal construction, which also includes a set of locks, resulted in raising the
water surface in Salmon Bay to the level of Lake Union. The attendant lowering of the water surface in Lake
Washington eliminated the Black River, which drained from the south end of Lake Washington to the Duwamish



River at Tukwila. Also, as part of the canal construction, the Cedar River was diverted into Lake Washington
(Chrzastowski, 1983).

The lowering of Lake Washington left a gently sloping terrace underlain by loose sediments around the lake's
periphery, part of which has been retained as parkland and part of which has been privately developed (Galster,
1989). The northern portion of Union Bay was filled subsequent to the lowering of Lake Washington. Originally,
the site was a landfill which was later capped with fill material. A peat bog to the north of N.E. 45th Street was
partially removed for peat and then filled with granular materials.

During construction of the Sand Point Naval Air Station, the site was extensively graded. Glacial soils from the
central portion of the site were excavated and used to fill a small embayment on the north side and Mud Lake.

Smaller areas of fill, as shown on figure 2, are located at the southern end and northwest corner of Green Lake,
the south and west sides of Lake Union, and a portion of Salmon Bay. Smaller fills were also placed in ox-bow
features along the Duwamish and Green Rivers.

GROUNDWATER

Most of the normally consolidated soil units in the Seattle area lie in alluvial valleys or along lakes and bays
where groundwater levels are relatively high. Static water levels recorded or estimated from borings in various
areas of the city are summarized on table 2. As shown in table 2, the average depth to groundwater generally ranges
from 0.6 to 3 meters (2 to 10 feet), except in the upland outwash gravels. Although available boring data for the
upland gravels suggest the absence of near-surface groundwater, the near-surface presence of water can not be
precluded, based on the paucity of data. High groundwater levels are likely where this gravelly unit lies adjacent to
lakes or ponds in the upland areas. Additionally, perched groundwater conditions may locally occur.

SEISMICITY

The following provides background information on the historical seismicity, earthquake source mechanisms,
and postulated levels of peak ground motion for the Seattle area. An understanding of the seismicity of the area is
essential to defining the liquefaction hazard of the area because the strength of the earthquake and the duration of the
ground shaking directly affect the development of liquefaction.

HISTORICAL SEISMICITY

Seattle is located in a moderately active tectonic province that has been subjected to earthquakes of low to
moderate strength and occasionally to strong shocks during the brief 160-year historic record in the Pacific
Northwest. The largest historic earthquakes in the region are believed to be associated with deep-seated, plate
tectonic activity (USGS, 1975). Major mapped faults within the region (55 miles of Seattle) hdve not been active in
the Holocene and, consequently, none are known to be associated with historical seismicity. The nearest faults
known to be active are small faults on the Olympic Peninsula, about 40 miles west of Seattle.

The more significant historic earthquakes (those of Modified Mercalli Intensity VI or greater) that have
occurred in the Seattle region are listed in table 3. Of the 18 events listed, 5 have intensities of VII or greater. The
largest of these were the April 13, 1949, magnitude (M) 7.1, intensity VIII shock, and the April 29, 1965,
magnitude (my,) 6.5, intensity VII-VIII event. These earthquakes, which were respectively centered 63 and 23

kilometers (39 and 14 miles) from Seattle, caused considerable property damage in the city.

Other large historic earthquakes that have affected Seattle include one in the North Cascades of Washington and
two in western British Columbia, Canada. The North Cascades earthquake of December 15, 1872, appears to have
been one of the largest in the Pacific Northwest, as it was felt over an area of approximately 1,295,000 square
kilometers (500,000 square miles). It has been estimated that this major shock had a magnitude near 7 and a
maximum intensity of VIII. Although the epicentral location of this event is uncertain, owing to the sparse popula-
tion of the area at that time, it apparently occurred somewhere in the northern Cascades.

In Canada, major earthquakes occurred on Vancouver Island on June 23, 1946, and in the Queen Charlotte
Islands on August 21, 1949 (Coffman and Von Hake, 1973). The Vancouver Island event had a magnitude of 7.3
and a maximum intensity of VIII. Although the magnitude 8.1 Queen Charlotte Islands earthquake was felt over an
area of more than 5,180,000 square kilometers (2,000,000 square miles), damage was minor owing to the sparse
population in the epicentral area.



EARTHQUAKE SOURCE MECHANISMS

Earthquake source mechanisms, which have been correlated with the observed historic seismicity, include
shallow, crustal events and deep, subcrustal events. Maximum magnitudes of about 6.0 and 7.5 have been
postulated for these two source zones, respectively (Rasmussen and others, 1974; USGS, 1975). The deeper events
are believed to be associated with faulting or release of extensional stresses in the subducted slab of the Pacific plate
beneath the Puget lowland area (Taber and Smith, 1985; Weaver and Baker, 1988). The two major earthquakes in
the region, the 1949 and 1965 events, both had focal depths in excess of 40 kilometers (25 miles) which is consistent
with the deep source mechanism hypothesis. The majority of historic events, however, occur at relatively shallow
depths of about 24 kilometers (15 miles) or less, which is consistent with the shallow earthquake mechanism
hypothesis.

A third source mechanism, which is currently being debated within the scientific community, is the possible
occurrence of a major earthquake on the Cascadia subduction zone off the coast of the Pacific Northwest (Heaton
and Kanamori, 1984). Presently, the Cascadia subduction zone is quiet, with only scattered and diffuse seismicity,
and no large subduction earthquakes have occurred in this zone during historic times (160 years). However, Atwater
(1987) has introduced geologic information that would suggest the possible occurrence of several subduction zone
events during the past 2,000 years.

POSTULATED GROUND MOTIONS

Estimates of peak ground acceleration for the Seattle area have been postulated from regional studies conducted
by the USGS and from local microzonational studies conducted by other researchers. Information on the ground
acceleration of the area is an essential parameter in conducting a liquefaction hazard evaluation.

The USGS has performed several regional studies on seismic hazards in the Pacific Northwest (Algermissen and
others, 1982; Algermissen, 1988a and 1988b). Figure 4, which is based on Algermissen and others (1982), presents
a regional, probabilistic evaluation of peak ground accelerations that could occur on rock within the Pacific
Northwest. The accelerations shown on this figure have a 10 percent probability of being exceeded in a 50-year
period, which corresponds to a 475-year return period. Figure 5, which is based on Algermissen (1988b), compares
the seismic exposure of Seattle to other cities in the United States. This figure presents ground accelerations on rock
which have a 10 percent chance of being exceeded during the indicated time intervals. Both figures 4 and S indicate
that Seattle may be subjected to a ground acceleration of 0.30g on the average of every 475 years.

While the ground motion estimates presented on figures 4 and 5 are based upon conventional earthquake source
mechanisms (shallow and deep), recent work by Algermissen (1988a) suggests that ground accelerations in Seattle
from a large subduction zone earthquake occurring off the coast of Washington would not vary appreciably from the
475-year accelerations estimated from the conventional earthquake sources. However, the duration of ground
shaking for a subduction zone earthquake may be several times greater than that associated with more conventional
earthquake source mechanisms. Increased duration of ground shaking would tend to increase the areal extent of
liquefaction.

On a more local, site specific basis, Langston and Lee (1983) and Ihnen and Hadley (1987) have performed ray
tracing studies to investigate the.local variations in grourid résponse in the Puget Sound area. Whereas Langston and
Lee (1983) specifically evaluated amplification of ground motion in the Duwamish River Valley, Ihnen and Hadley
(1987) developed a seismic hazard map for the greater Puget Sound area that included considerations for ground
motion amplification from soil type and wave focusing effects. Results from both of these studies indicated that
ground motions along the Duwamish could be 50 to 100 percent greater than adjacent elevated areas. Both studies,
however, indicated that the computed values of ground motion were highly dependent upon the focal mechanism
and location of the generating earthquake. Considering the speculative nature and high degree of sensitivity
associated with the results of the local microzonational studies, the results from these local studies have not been
widely accepted or used for seismic design within the local engineering community.



STUDY METHODOLOGY

TECHNIQUE

Methods for evaluating liquefaction potential on a regional basis range from empirical techniques relating
general liquefaction susceptibility to underlying geologic conditions (Youd and Perkins, 1978), to more elaborate,
probabilistic, analytical evaluations (Power and others, 1986). These various techniques have been applied to sites
in southern California (Lee, 1977; Youd and others, 1979; Power and others, 1982; Tinsley and others, 1985; and
Power and others, 1986), northern California (Youd and others, 1975; Blair and Spangle, 1979; Youd, 1982; Davis
and others, 1982; Kavazanjian and others, 1985; Youd and Perkins, 1987; and Power and others, 1988), and other
locations in the western United States (Anderson and Keaton, 1982 and 1986; and Moriwaki and Idriss, 1987), and
the eastern United States (Budhu and others, 1987; Hadj-hamou and Elton, 1989; and Elton and Hadj-hamou, 1990).

Our liquefaction study of Seattle used empirical relations developed by Seed and his colleagues (Seed and
Idriss, 1971; Seed and others, 1983 and 1984) to establish the liquefaction potential of the various geologic units in
the area. Seed's procedures were used because of their acceptance and wide use in engineering practice. Further-
more, the use of Seed's procedures permits a better conceptual understanding of the liquefaction phenomenon and
the interrelation.of the various parameters such as subsurface geology and SPT N- values that affect the occurrence
of liquefaction.

The application of the Seed procedure first requxred the developmem of a data base contammg groundwater
levels and SPT N-values for the various geologic units within the study area. This information was obtained from
over 350 borings in Seattle. The SPT N-values of the soils within the various geologic units were then compared
with the threshold SPT N-values needed to resist liquefaction. The relative liquefaction hazard of the particular
geologic unit was then assessed on the basis of the percentage of SPT values falling below the threshold SPT N-
values. Additionally, liquefaction hazard was also assessed on the basis of the computed cumulative thickness of
potentially liquefiable soil within the borings. Details of the data base, peak ground motions, and the evaluation
criteria are subsequently discussed.

DATABASE

Because liquefaction susceptibility is affected by the depth, relative density, and gradation of the soil; depth of
the water table; and geologic origin of the soil, a computerized data base was developed to facilitate the storage and
retrieval of subsurface data for subsequent use in the liquefaction evaluation (Grant, 1990). The data base, which
includes the logs of over 350 borings, allows sorting of the data corresponding to various parameters, including
geographic location, drilling method, geology, and individual SPT N-value. Data recorded for each boring in the
data base includes Universal Transverse Mercator (UTM) coordinates, location description, date drilled, drilling
method, surface elevation of the boring, static groundwater depth, and SPT N-values as a function of depth. Each
SPT sample in a boring was assigrnied a code corresponding to the geologic unit of material as well as a separate code
describing the composition of the materials within the sample. The data was subsequently retrieved, corresponding
to a particular geologic unit or material, to determine its liquefaction susceptibility. By creating the data base to
include individual SPT data from each boring, we were able to statistically account for variability of the SPT values
within individual borings or within an entire geologic unit. This assessment is discussed subsequently in the
evaluation criteria section.

PEAK GROUND ACCELERATION

A key parameter in the liquefaction evaluation is the selection of a peak ground acceleration value for use in the
numerical computations of the liquefaction potential. The following factors were considered in selecting the peak
ground acceleration for the lxquefacuon study:

» Scenario earthquake Or probabilistic assessment
» Criteria for probabilistic determination
¢ Uniform risk or site-specific studies

The first factor considered in the liquefaction evaluation was whether to base the evaluation upon a scenario

earthquake, such as a repeat of the 1949 or 1965 Puget Sound earthquakes, or to conduct the evaluation based upon a



probabilistic risk assessment of the study area. One advantage of selecting a scenario earthquake is that other studies
(USGS, 1975; Langston and Lee, 1983; and Thnen and Hadley, 1987) similarly have been conducted for scenario
events. Additionally, the results from a scenario earthquake evaluation may be compared with historic earthquake
damage in the area. However, the disadvantage (o a scenario earthquake study is that the earthquake sources in the
area are not constrained to well-defined, known faults with surface rupture. Hence, it is quite probable that future
earthquakes could occur at any location within the Puget Sound area and not at the epicenters of past events.
Accordingly, it was decided to conduct the liquefaction evaluation based upon a probabilistic assessment of the
earthquake hazard in the study area.

In selecting a probabilistic approach, it is next necessary to establish the criteria for defining the design
earthquake. In this regard, the design earthquake ground acceleration was selected to correspond to motions having
a 10 percent probability of being exceeded within 50 years. This approximately corresponds to a 475-year retumn
interval. This criteria was selected to be consistent with local building practice in Seattle which is based upon the
Uniform Building Code (International Congress of Building Officials (ICBO), 1991). Thus, this 475-year return
interval provides consistency between the liquefaction hazard map and nationally recognized standards for the
earthquake design of buildings.

The third factor considered in the liquefaction evaluation was whether to assume that the seismic risk or ground
shaking potential was uniform throughout the entire study area, or whether the level of peak ground acceleration
should be varied throughout the study area considering amplification from topographic effects or subsurface soil
conditions. Clearly, one would expect variations in ground accelerations throughout the study area for any given
earthquake. These variations could be attributed to differences in subsurface geology or geometric attenuation of
energy from the earthquake source. In fact, studies have been conducted to evaluate the local influence of such
effects (Langston and Lee, 1983; Ihnen and Hadley, 1987). However, one limitation of microzonational studies of
local ground motion is that the subsurface conditions throughout the study area are not perfectly known.
Furthermore, the results of local studies of ground motion effects in the Seattle area (Langston and Lee, 1983; Thnen
and Hadley, 1987) have shown that the calculated results were highly dependent upon the focal mechanism and
location of the generating earthquake. Thus, it would appear that while techniques are available for computing
ground motions on a microzonational level, these computed ground motions may be highly speculative and their
application may be limited considering the unconstrained location of future earthquakes in the Puget Sound region.

To avoid introducing additional uncertainties in the liquefaction analysis that are associated with the calculation
of site-specific earthquake ground motions, it was decided to base the liquefaction evaluation upon a singular level
of ground acceleration. This would imply a uniform seismic risk throughout the entire study area. Although, in
reality, ground motions may vary throughout the study area, there are several reasons that support selection of a
singular value of ground surface acceleration. First, the fact that the earthquakes in the Puget Sound area are not
constrained to well known structural features indicates that future earthquakes will likely occur at random in the
arca. This factor is consistent with the assumption of a uniform seismic risk. A second factor supporting the
selection of a singular value of ground acceleration throughout the study area is the fact that the study area is
predominantly underlain by similar soil conditions. Specifically, approximately 80 percent of the study area is
underlain by glacially consolidated sediments that would be categorized as "stff soils” or an "S7" soil using the
Uniform Building Code (ICBO, 1991) soil classificational scheme. The remaining 20 percent of the study area is
underlain by alluvial soils that may have a somewhat greater .potential for. ground motion amplification. These
alluvial soils, however, generally do not include thick sequences of clay that have characteristically résulted in large
ground motion amplifications that have occurred in"other areas, such as the San Francisco Bay region, during prior
earthquakes. Thus, based upon the random location of future earthquakes in the Puget Sound area and the
predominance of a singular soil type underlying the study area, it was concluded that it is reasonable to use a
singular value of ground acceleration to represent the seismic risk in the liquefaction evaluation.

Based upon the above criteria (10 percent probability of exceedance during a 50-year interval), it was elected to
use a peak ground acceleration of 0.30g for the liquefaction hazard evaluation. This ground acceleration
corresponds to the bedrock acceleration that is indicated in Figures 4 and 5. Additionally, this acceleration is
consistent with the seismic hazard map recently developed by the U.S. Geological Survey (Building Seismic Safety
Council (BSSC), 1991) for sites in the United States that are underlain by "stiff soils” or "Sy" soils as defined in the
Uniform Building Code (ICBO, 1991). Thus, this level of acceleration would likely apply to at least 80 percent of
the study area. Furthermore, it is assumed in the liquefaction analysis that this level of acceleration would
correspond to an earthquake having a magnitude of about 7.5, which is consistent with the largest earthquake
magnitude that could likely occur in the Puget Sound region (USGS, 1975). This level of acceleration was used in
the liquefaction studies of both Grant (1990) and Perkins (1991). In addition, Perkins used a peak ground
acceleration of 0.15g to evaluate the effects of liquefaction from a smaller earthquake that may have a higher
probability of occurrence.



EVALUATION CRITERIA

The final and, perhaps, the most important factor in the liquefaction study was the selection of criteria for
assigning the relative hazard ranking to the various geologic units in the study area. Selection of an appropriate
hazard ranking scheme is complicated by the fact that no one criteria has been consistently used in prior liquefaction
studies. Consequently, any liquefaction evaluation criteria used in a mapping study may appear arbitrary and require
adjustments to reconcile the predicted performance with past observations of liquefaction. For example, the
liquefaction study of San Mateo County (Youd and Perkins, 1987) includes an adjustment factor of 10 to reconcile
the study results with damage resulting from the 1906 San Francisco earthquake. Consequently, rating criteria
developed for other geographic locations may not necessarily be applicable to the Pacific Northwest.

Two criteria were selected to assess the relative hazard rankings of the local geologic units: "Threshold” criteria
and "Thickness" criteria. The threshold criteria is based upon the relative percentage of SPT N-values in a geologic
unit that would signify liquefaction during the 0.30g earthquake. The thickness criteria differentiates the
liquefaction hazard on the basis of the computed thickness of a geologic unit that may liquify during a 0.15g and a
0.30g earthquake. Both the threshold and thickness criteria were selected to provide a reasonable segregation of the
liquefaction hazard of the different geologic units in the area. Details of both criteria are discussed below.

THRESHOLD CRITERIA

The threshold liquefaction criteria (Grant, 1990) is based on evaluating the liquefaction resistance of a geologic
unit, as defined by the SPT N-values for the unit, as compared with a minimum SPT N-value needed to resist
liquefaction for a 0.30g peak acceleration. Minimum SPT N-values needed to resist liquefaction, with appropriate
adjustments for fines content, were determined from the following equation based on Seed's empirical correlations
(Seed and others, 1984):

] N <N, _065(A,,)0r, o
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where:
Nuncorr = uncorrected SPT value
N1pso = corrected SPT values adjusted for fines content (Seed and others, 1984)
CNn = correction factor for overburden pressure (Seed and others, 1984)
Amax = peak ground acceleration (0.30g)
(o = total overburden pressure
G = effective overburden pressure
4 = reduction factor for depth (Seed and others, 1984)
'm = factor for earthquake magnitude (Seed and others, 1984)
g = gravitational dcceleration

The liquefaction evaluations primarily concentrated on the materials within 13 meters (40 feet) of the ground surface
because historical accounts of substantial damage from liquefaction have been concentrated within this depth range.
The uncorrected SPT N-values characterizing a particular geologic unit were compared with the minimum SPT N-
values to resist liquefaction for each 5-foot depth interval of that unit. This incremental evaluation would account
for potential variability of the N-values with depth within the geologic unit.

10



The following rating scheme was used to differentiate the hazard potential of the soils in the study area:

THRESHOLD CRITERIA
Percent of N-Values Below the 0.30g Threshold Criteria Hazard Rating
> 50 High
25-50 Moderate
10-25 Low
<10 Very Low

The percentage cutoff levels in the above tabulation were selected in an attempt to provide reasonable
segregation of the data. While other cutoff values may be used, too stringent a criteria could result in all of the soils
falling in the high hazard rating, whereas too lax a criteria could result in all soils having a very low liquefaction
potential. Thus, it is more important to develop a rating criteria that segregates the data, than it is to use criteria from
other locations that may not adequately describe the relative local hazard.

THICKNESS CRITERIA

The liquefaction potential of the various geologic units in the area was also evaluated using the "thickness”
criteria (Perkins, 1991) which is based not only on a threshold acceleration but also a minimum thickness of
liquefiable material. The total amount (cumulative thickness) of potentially liquefiable soil in each boring was
computed using equation (1) and the peak ground accelerations of 0.15 and 0.30g. The calculations were completed
for borings that were typically less than 16 meters (50 feet) deep. Liquefaction was defined to be significant at
locations where a minimum of 3 meters (10 feet) of soil (cumulative thickness) would liquefy in the 0.30g
earthquake and a minimum of 0.3 meters (1-foot) soil would liquefy in the 0.15g earthquake. Although these
thickness values are somewhat arbitrary, when combined with the 0.30g and 0.15g acceleration levels, this criteria
provides a basis for segregating the performance of the underlying geologic units under conditions of a large
earthquake and a more common, but smaller event.

The following criteria was selected to differcntiate the hazard potential of the soils in the study area using the
"thickness" criteria:

THICKNESS CRITERIA
Percent of Borings With Computed Liquefaction® Hazard Rating
> 50 High
25-50 Moderate
<25 Low

*3 meters liquefaction - 0.30g
0.3 meters liquefaction - 0.15g

SPT BIAS

One potential concern in the liquefaction evaluation was that the drilling method may have a significant effect
on the SPT N-values obtained in the borings. While rotary techniques have been recommended as a standard
procedure in liquefaction evaluations (Seed and others, 1984) the vast majority of borings drilled in the Puget Sound
area have been advanced using hollow-stem auger drill rigs.

To evaluate the potential effect of drilling procedures upon the resulting SPT N-values, a comparative study was
made of N-values at sites at the mouth of the Duwamish where there is a high concentration of both hollow-stem
auger and rotary borings in a relatively confined area. The results from this study, which are presented in figure 6,
indicate that the N-values obtained in the hollow-stem auger borings are about 6 to 7 blows per foot less than the N-
values from the rotary borings. Additionally, the data presented in figure 6 indicate that the mean N-values from the
hollow-stem auger borings reasonably approximate the lower quartile N-values from the rotary borings.

On the basis of the above, it is concluded that whenever feasible, the rotary boring data set should be used in the
liquefaction evaluations. Additionally, it was assumed that the mean N-values from the hollow-stem auger data
would reasonably approximate the lower quartile N-values if all data were obtained using rotary techniques. This
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assumption is an integral part of our evaluation because of the lack of coverage of rotary borings within some of the
geologic units.

STUDY RESULTS

As previously indicated, two separate but parallel studies (Grant, 1990 and Perkins, 1991) were conducted to
delineate the liquefaction hazard of the soils in Scattle. Although different criteria were used in these studies, the
results of both research efforts were quite similar. Because of this similarity, a singular liquefaction hazard map
(Plate 1) has been developed representing both research efforts. This map has been developed using the previously
described methods and data base. Both studies focused upon ranking the relative liquefaction hazard of the major
geologic units in the study area because ii was assumed that units having the same general depositional characteris-
tics should also have the same liquefaction resistance providing that all other factors are equal, such as the
groundwater depth and assumed level of earthquake ground shaking. Three geologic groupings were evaluated for
liquefaction resistance: fills, Holocene deposits, and Pleistocene deposits. The three groups were primarily
differentiated by age because it was considered that the youngest deposits would likely have the highest liquefaction
potential and the oldest deposits would have the least potential. The areal extent of these geologic units and the
assigned hazard rankings are indicated on Plate 1. The following discusses the detailed evaluations of the
liquefaction potential of each of these units.

FILLS

DUWAMISH TIDEFLATS

A study was conducted to evaluate the liquefaction resistance of the fill and underlying alluvial soils in the
Duwamish tideflats area because this area represents the largest uncontrolled fill in Seattle (see figure 2). This area
is bounded on the north by Eliliott Bay, on the east by Beacon Hill, on the west by West Seattle, and the south by
Orcas Street. The ground surface within the area is about elevation 3 meters (10 feet) (City of Seattle datum), and
the groundwater table is typically present at depths ranging between 0.6 and 4 meters (2 and 11 feet) below the
ground surface. Subsurface conditions typically consist of 3 to 5 meters (10 to 15 feet) of fill materials, chiefly
sands, that are underlain by alluvial deposits that are also predominantly sands. The fill material within the tideflat
area has largely been placed by hydraulic techniques. It is estimated that the fill consists of approximately 70
percent clean sand, approximately 10 percent silty sand, and the remainder sandy silt and clayey silt. Based upon
the logs in the study area, the underlying alluvial materials are composed of approximately 50 percent clean sand
and 20 percent silty sand. The remaining materials range from sandy silt to clayey silt.

The "threshold” criteria was applied to the fills and alluvial soils in the Duwamish Tideflats area to evaluate
their liquefaction susceptibility. The minimum-SPT.N-values negded to resist liquefaction from the 0.30g threshold
carthquake are indicated together with the SPT values for the underlying soils in figure 6. Although the data in
figure 6 have been segregated into both clean sand and silty sand units, the most significant characterization of the
data is the composite plot of rotary boring data that includes not only clean and silty sands, but also SPT N-values
that have been excluded from the other plots because the SPT N-values exceeded 40 blows/foot. These high SPT N-
values were initially excluded from the data set because it was felt that any N-value of 40 or greater may be the
result of driving the sampler on a rock. However, a more detailed review of the logs indicated that very few rocks
are present in the underlying soils in the Tideflats area and that excluding N-values above 40 would bias the data set.
Thus, the composite data set represents the most accurate data set for evaluating the liquefaction resistance of the
underlying soils.

Using the threshold criteria and the composite data, figure 6 indicates that the mean (50 percentile) SPT N-
values fall below the threshold level in the zone within 10 meters (30 feet) of the ground surface. This condition
corresponds to a "high" hazard rating. Since 25 to 50 percent of the composite SPT N-values of soils below a depth
of 10 meters (30 feet) fall below the threshold level, it is concluded that the underlying soils would have a moderate
liquefaction rating. The high liquefaction potential rating given to the surficial 10 meters (30 feet) of soil in the
Duwamish tideflats is consistent with the site-specific studies for the West Seattle Freeway Bridge replacement
(Shannon & Wilson, 1980), which similarly showed depths of liquefaction in this area to be on the order of 6 to 9
meters (20 to 30 feet) for an earthquake with a ground acceleration of about 0.30g.

Data supporting the "thickness” criteria evaluation of the liquefaction susceptibility of the Duwamish Tideflats
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fill soils are presented in figure 7. The curves in figure 7 represent the percentage of borings in the Duwamish
tideflats data set that would experience liqucfaction over an interval ranging from 0 to 8 meters (0 to 25 feet) as a
result of earthquake ground shaking with peak accelerations of 0.15 and 0.30g. The cumulative thickness of
liquefaction computed for each boring does not necessarily represent a continuous zone of liquefaction. The intent
of these evaluations is to further quantify the liquefaction potential and qualitatively indicate the areal extent where
liquefaction may occur to a significant degree.

On the basis of the data presented in figure 7 and the thickness criteria previously discussed (Perkins, 1991), it
is concluded that the fill soils along the Duwamish Tideflats have a high liquefaction potential. This conclusion is
based on the observation that a cumulative thickness of 3 meters (10 feet) of liquefactior would occur in about 65
percent of the borings for the 0.30g earthquake. Similarly, it is observed that a cumulative thickness of 0.3 meters
(1-foot) of liquefaction would occur in 68 percent of the borings for the 0.15g earthquake. A high liquefaction
hazard rating would apply to the Duwamish Tideflats fill soils because the computed cumulative thickness of
potentially liquefiable soils would exceed the minimum thickness criteria in over 50 percent of the borings. Hence,
based upon the "thickness" criteria, the Duwamish Tideflats Fills have a high liquefaction rating.

We conclude that the liquefaction potential of the soils in the filled Duwamish tideflats is high, on the basis of
the criteria used in both methods of evaluation. This conclusion is in reasonable agreement both with historic
performance in the study area (see figure 2), which indicates that instances of reported liquefaction primarily
occurred in the Duwamish tideflats area. Furthermore, the high hazard rating of this area is consistent with the
findings of the site-specific liquefaction study for the West Seattle Freeway Bridge Replacement (Shannon &
Wilson, 1980). While the fill in the tideflats has been assigned a high liquefaction hazard rating (see plate 1), areas
on the tideflats within about 60 meters (200 feet) of open bodies of water would have an even higher liquefaction
hazard, on the basis of historic performance of the area and the potential for the development of lateral spreading.

INTERBAY

A liquefaction evaluation was also performed for the fill soils found in the Interbay area, which is bounded by
Salmon Bay on the north, Elliott Bay on the south, Queen Anne Hill on the east, and Magnolia on the west. This
location was also identified for special study as it contains a significant amount of uncontrolled fill that was placed
during the early 1900's. Ground surface elevations in this area typically range between 3 to 6 meters (10 and 20 feet)
(City of Seattle datum) and groundwater levels commonly are at about 3 meters (10 feet) below the ground surface.
Soils in the Interbay area can include as much as 6 to 9 meters (20 to 30 feet) of fill soils overlying alluvial deposits.
The fill soils may have a variable composition including clean sand, silty sand, garbage, and construction debris or
rubble. The underlying native soils range from clean sand to clayey silt.

Data relevant to the "threshold"” evaluation of the liquefaction hazard of the Interbay fill are presented in figure
8. Conclusions from the data set presented in figure 8 may be compromised somewhat because the data set is
relatively small and consists exclusively of hollow-stem auger borings. Nevertheless, because the mean (50
percentile) SPT N-values for the Interbay fill soils fall below the threshold criteria for liquefaction corresponding to
a 0.30g earthquake, it is concluded that the Interbay Fills have a high liquefaction hazard rating. Because the mean
SPT N-values from the hollow-stem auger data set are typically 10 to 15 blows per foot below the threshold criteria,
the conclusion on the high hazard ranking would not be changed if the hollow-stem auger data were increased by 6
to 7 blows per foot to provide equivalency with rotary borings (see figure 6).

Data supporting the "thickness” evaluation of the liquefaction susceptibility of the Interbay Fills are presented
on figure 9. As shown in this figure, approximately 65 and 68 percent of the borings were calculated to have 3 and
0.3 meters (10 and 1 feet) of sediment which may liquefy during the 0.30g and 0.15g events, respectively. Using the
thickness criteria previously discussed, the soils in the Interbay area would have high liquefaction potential.

Based on the application of both criteria, the Interbay area is judged to have a high liquefaction potential. This
liquefaction rating, however, may be somewhat conservative when compared to the high hazard rating also given to
the Duwamish Tideflats fill. This rating may be conservative because historic liquefaction has not been reported at
Interbay whereas numerous locations of liquefaction have been reported along the Duwamish Tideflats. While this
would not preclude liquefaction in the Interbay area, it does demonstrate a higher hazard potential for the Duwamish
Tideflats. Nevertheless, considering the potential variability of soil conditions in the Interbay area, the Interbay Fills
were assigned a high liquefaction hazard rating (see Plate 1).

)
OTHER FILLS

Other fills have been mapped by Waldron and others, (1962) throughout the Seattle area. Although boring
information was sparse or not available for these fills, it was judged prudent to conservatively represent these
materials as having a high potential for liquefaction, considering the variable composition and density of these
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materials. This high hazard rating is partly substantiated by the performance of the fills at the University of
Washington athletic ficlds and at the south end of Green Lake (figure 2) that experienced liquefaction during the
1965 Puget Sound carthquake. Therefore, all significant fills mapped by Waldron and others (1962) have been
designated as having a high liquefaction hazard rating (see Plate 1).

HOLOCENE DEPOSITS

ALLUVIUM

The most significant deposit of Holocene alluvium within Seattle consists of flood plain material within the
Duwamish River Valley. This area typically extends several hundred to several thousand feet on either side of the
Duwamish River. This zone is characterized by a relatively flat-lying area with ground surface elevations ranging
between 3 to 6 meters (10 and 20 feet) (City of Seattle datum) and groundwater levels typically encountered at
depths about 0.6 to 3 meters (2 to 11 feet) below the ground surface. Typically, soils within the area consist of
shallow fill overlying alluvial deposits that may contain approximately 60 percent clean to silty sand and
approximately 40 percent sandy to clayey silts. The alluvium in the upper portions of the Duwamish contains a
somewhat larger portion of silt compared with the alluvial materials underlying the Duwamish tideflats.

Data relevant to the "threéshold” evaluation of the liquefaction.hazard of the Duwamish alluvium are presented
on figure 10. The N-values in this plot have been segregated based upon drilling technique as well as the material
encountered within the sampling depth. As indicated on this figure, there is a relatively small percentage of rotary
borings comprising the data set, with most of the information obtained from hollow-stem auger drilling borings.
Additionally, the smaller set of rotary boring SPT data is somewhat suspect because the consistency that existed
between the larger data set of rotary and hollow-stem auger borings in the Duwamish Tideflats (figure 6) is absent in
the data of the Duwamish alluvium (figure 10). Furthermore, figure 10 shows the mean SPT data from the rotary
borings to be erratic whereas the mean SPT data from the hollow-stem auger borings are less variable and similar to
the data shown for the Duwamish Tideflats fill (figure 6).

Because of these inconsistencics, it was decided to evaluate the liquefaction potential of the Duwamish alluvium
based upon the hollow-stem auger data set. Sincc the SPT N-value data shown on figure 10 would suggest that
between 25 and 50 percent of the data would fall below the 0.30g threshold criteria, it was concluded that the
Duwamish alluvium has a moderate liquefaction potential. This conclusion is based on the assumption that the
mean SPT N-values from the hollow-stem auger borings correspond to the 25 percentile values of the equivalent
rotary data and that there would be a differential of about 6 blows/foot between the 25 and 50 percentile values (see
figure 6).

Data supporting the "thickness” criteria evaluation of the liquefaction susceptibility of the Duwamish alluvium
are presented in figure 11. As shown on this figure, approximately 40 percent of the borings in this area were
calculated to have at least 3 meters (10 feet) of sediment which may liquefy during the 0.30g earthquake. Also,
about 38 percent of the borings were calculated to have at least 0.3 meter (1 foot) of sediment which may liquefy
during the 0.15g event. Thus, it is concluded from the thickness criteria-evaluation that the soils in the upper
Duwamish have a moderate liquefaction rating.

This moderate liquefaction rating of the Duwamish alluvium appears to be reasonably consistent with the rating
given to the materials within the Duwamish tideflats area as the materials in the upper portions of the Duwamish
appear to have higher SPT values, on the average, compared to the materials in the tideflats area. This conclusion is
based upon reviewing the SPT N-values from hollow-stem auger borings advanced in both areas where the SPT N-
values in the upper Duwamish are approximately 7 or 8 blows/ft. higher than the values obtained at the mouth of the
Duwamish. Similarly, this liquefaction rating appears to be consistent with historical performance of the area during
the 1949 and 1965 earthquakes, which indicated relatively few instances of liquefaction were reported in the upper
Duwamish portion of the study area.

While alluvial materials are present in areas other than along the Duwamish, relatively sparse boring coverage
exists in these areas to support a significant evaluation of liquefaction resistance. Therefore, based on the Duwamish
data, all Holocene alluvial deposits in the study area were classified as having a moderate liquefaction potential
rating (see plate 1). )

BEACH DEPOSITS

Beach deposits within the Seattle area are primarily found along Puget Sound at West Point, which is west of
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Magnolia, and along the Sound by Alki Point in West Seattle. These beach deposits comprise relatively local zones
along the Sound where there may be either residential development or municipal treatment plant facilities, such as
the location at West Point. These zones typically have ground surface clevations ranging between 3 and 9 meters
(10 and 30 feet) (City of Seattle datum) where the groundwater levels are typically on the order of 3 meters (10 feet)
or greater beneath the existing ground surface. The beach deposits are predominantly composed of clean, fine sands.

Data relevant to the "threshold” evaluation of the liquefaction hazard of the Holocene Beach deposits are
presented in figure 12. While there are relatively few borings comprising the data set in figure 12, the data show that
the mean SPT N-values from the rotary borings are consistently higher than the hollow-stem auger data, similar to
the trends observed in the larger data set of thc Duwamish Tideflats area (figure 6). Furthermore, the mean SPT N-
values from both the hollow-stem and rotary data show consistency (absence of erratic N-values) at various depths
below the ground surface. Thus, it was concluded that the rotary boring data presented in figure 12 are applicable
for the liquefaction evaluation. Because the SPT N-values of the rotary borings shown on figure 12 indicated that
between 25 and 50 percent of the data fall below the 0.30g threshold criteria (mean SPT N-values are above the
threshold), it was concluded that the Holocene Beach deposits have a moderate liquefaction potential.

A similar conclusion on the hazard rating was derived using the "thickness" criteria and the data presented in
figure 13 for the Alki beach arca. As shown in this figure, approximately 35 percent of borings were found to have
at least 0.3 meter (1-foot) of sediment which may liquefy during the 0.15g event. This percentage corresponds to a
moderate liquefaction rating. However, only 13 percent of borings was calculated to have at least 3 meters (10 feet)
of potentially liquefiable soil from the 0.30g earthquake, which would correspond to a low rating. In light of this
variance, however, a moderate liquefaction hazard rating was conservatively assigned to the Holocene beach
deposits.

It is concluded that the moderate liquefaction susceptibility rating of the beach deposits is reasonable when
considering that only two instances of liquefaction were reported for locations of Beach deposits during the 1949
and 1965 Puget Sound earthquakes. These observations occurred at the same residence in the Alki area.
Liquefaction was not reported at West Point following either event. However, excavations conducted for the West
Point Treatment plant have encountered materials that would suggest ancient liquefaction (paleoliquefaction). Thus,
or the basis of these limited and scattered observations, it is concluded that the moderate liquefaction hazard rating
conservatively represents the relative hazard of the beach deposits. This moderate hazard rating is consistent when
compared to the high hazard rating given to the Duwamish Tideflats where numerous instances of liquefaction
occurred during prior historic carthquakes.

OTHER SEDIMENTS

Other Holocene sediments mapped by Waldron and others (1962), such as lacustrine sediments and peat
deposits, comprise relatively small isolated portions of the study area. Unfortunately, there is relatively little
information in the data base to characterize the liquefaction susceptibility of these units. Considering that these units
may be largely comprised of cohesive sediments, it is considered that the liquefaction potential for these soils is
relatively low. However, because the composition of these units is largely unsubstantiated by the information
contained in the data base, these materials were conservatively assigned a moderate liquefaction potential rating as
shown on plate 1.

PLEISTOCENE DEPOSITS

NORMALLY CONSOLIDATED ALLUVIUM

Normally consolidated Pleistocene alluvial deposits typically exist at higher elevations (elevations above 6
meters (20 feet)) in scattered locations throughout the study area. Significant deposits of Pleistocene alluvium exists
in West Seattle and have been described by Waldron and others, (1962) as deposits of sand or gravel. These
materials may typically include up to about 70 percent of clean to silty sand with the remaining materials consisting
of silt or gravel. Because these materials are recessional outwash deposits, they have not been glacially consolidated.
Groundwater levels within these' deposits may be quite variable, considering that perched water tables exist at higher
clevations in the Scattle area. Shallow groundwater conditions would be anticipated within these deposits in areas
adjacent to creeks or lakes.

Data relevant to the "threshold" evaluation of the liquefaction hazard of the Pleistocene alluvial deposits are
presented in figure 14. Because of the size of the data set and some of the inconsistencies noted in the rotary boring
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data (i.e., erratic N-values and SPT resistance values lower than the hollow-stem auger data) it was decided to base
the liquefaction evaluation on the hollow-stem auger data. The data in figure 14 generally show that the mean SPT
values from the hollow-stem auger installations, which are assumed to be equivalent to the lower quartile values
from rotary borings, are typically near the minimum SPT required to resist liquefaction during the 0.30g earthquake.
Thus, these high SPT values, combined with the anticipated relatively low groundwater levels within this deposit,
lead to the conclusion that these materials will be best categorized as having a low liquefaction potential rating. This
low hazard rating also is consistent with the observed historic performance of these materials during the 1949 and
1965 earthquakes, as no instances of liquefaction were reported within these materials.

GLACIALLY CONSOLIDATED SEDIMENTS

The majority of the soils within the study area are composed of glacially consolidated sediments ranging from
till to sand and gravel. These materials are found throughout the city, typically at higher elevations, with perched
groundwater tables being quite variable.

SPT data obtained from these glacially consolidated sediments is summarized in table 4. Typically, all of the
SPT data contained in table 4 were obtained using hollow-stem auger drilling techniques. The data in the table have
been differentiated on the basis of material composition including undetermined material origin, till, and
glaciolacustrine deposits. In essentially all cases, high blow counts were obtained within the glacially consolidated
sediments, and the 10 percentile values are greater than the minimum SPT values required to resist liquefaction
during the 0.30g earthquake. As such, it is concluded that these materials would have a very low liquefaction
potential rating. Furthermore, the cohesive soils within this grouping, such as glacial till, are not susceptible to
liquefaction.

DISCUSSION

The liquefaction hazard ratings that were developed for each of the generalized geologic units in the study area
was based upon the data presented in figures 6 through 14 as applied to the "threshold” and “thickness” ranking
schemes. To provide a means of evaluating the internal and external consistency of the results of the liquefaction
study, the rankings of each of the individual geologic units has been summarized on table 5 along with information
on the liquefaction performance of the deposits and the relative liquefaction ranking that would be assigned to these
materials using the liquefaction classificational system of Youd and Perkins (1978). Agreement between these rating
schemes increases the confidence of the findings of the Seatile liquefaction study.

Several trends are apparent in the liquefaction hazard rankings that are reported in table 5. First, although the
"threshold” and "thickness" criteria are not necessarily mutually inclusive, the hazard rankings developed from both
criteria are identical except for the low hazard rating that was computed for the Holocene Beach Deposits
corresponding to the 0.30g earthquake. Additionally, the assigned relative hazard rankings are in agreement with the
liquefaction performance of the site soils. Specifically, 1) areas assigned a high hazard rating frequently had
numerous instances of reported liquefaction, 2) areas assigned a moderate rating had minor, scattered occurrences of
liquefaction and 3) areas assigned a low hazard rating had no reported liquefaction. The final external consistency
check is the comparison of the assigned hazard ratings and those which would have been assigned using the ranking
scheme of Youd and Perkins (1978). As shown on table 5, the assigned liquefaction rankings are identical to those
that would be determined from the Youd and Perkins (1978) classificational scheme, with the exception of fill soils
which Youd and Perkins (1978) have ranked as having a very high hazard. On the basis of these favorable internal
and external comparisons, it is concluded that the Liquefaction Potential Map presented in plate 1 provides
reasonable and realistic seismic rankings.

SUMMARY AND CONCLUSIONS

Seattle is located in a tectonic and geologic environment that is conducive to the development of liquefaction
during relative strong earthquakes. Instances of liquefaction have been reported during the two largest historic
earthquakes in the region, the April 13, 1949 magnitude 7.1 Olympia earthquake and the April 29, 1965, magnitude
6.5 Seattle-Tacoma earthquake. Although moderate damage occurred in Seattle as a result of these earthquakes, this
damage level is consistent with the low level of acceleration recorded locally (approximately 0.10g) during these
historic events. This historical damage, however, may not accurately represent the potential hazard in Seattle as the
area may likely experience an earthquake with a ground acceleration of 0.30g (Algermissen, 1988b; ICBO, 1991).
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The liquefaction hazard potential of the arca may be even greater considering the potential occurrence of a
subduction zone earthquake because the duration of such an earthquake may be several times greater than any
historic event experienced in the Puget Sound area.

The methodology used for evaluating and mapping the local liquefaction hazard assumed that the entire study
area would be subjected to a uniform peak ground acceleration of either 0.15g or 0.30g. The 0.30g level of
acceleration has a 10 percent chance of being exceeded in 50 years (475 return period), and this acceleration is
consistent with either bedrock (Algermissen, 1988b) or stiff soi! deposits (BSSC, 1991). The 0.30g acceleration is
also consistent with local practice for the seismic design of buildings (ICBO, 1991). This level of acceleration was
coupled with the empirical liquefaction procedures of Seed (Seed and Idriss, 1971; Seed and others, 1983 and 1984)
1o determine the liquefaction resistance of the various geologic units in the area. The generalized liquefaction
hazard rating for each geologic unit was evaluated using two criteria: a threshold performance criteria and a
thickness criteria. The threshold criteria ranked the relative liquefaction potential on the basis of the percentage of
SPT N-values falling below the minimum N-value required to resist liquefaction during the 0.30g event. A high
liquefaction potential was assigned to units where the mean (50 percentile) SPT N-value fell below the threshold
value. A low liquefaction potential rating was given to materials where the lower quartile N-values fell below the
0.30g threshold level. Intermediate values were ranked as having a moderate liquefaction potential.

The second evaluation method was developed based upon the thickness or vertical extent of soils that would
potentially liquefy in a 0.15g and a 0.30g earthquake. A high hazard rating was given to geologic units in which the
thickness of the liquefied layer would be predicted to exceed 3 meters (10 feet) for a 0.30g earthquake and 0.3
meters (1-foot) for a 0.15g earthquake in at least S0 percent of the borings. A low rating was assigned to units in
which these thicknesses would develop in less than 25 percent of the borings. Intermediate values were ranked as
having a moderate liquefaction potential. Using both criteria, a singular liquefaction hazard map was developed for
the Seattle area (plate 1).

On the basis of the above methodologies and criteria, it was concluded that fill soils and underlying alluvial
deposits, particularly in the Duwamish tideflats area and the Interbay area, have a high potential for liquefaction
during the 0.30g earthquake. Deposits having a moderate liquefaction potential during this earthquake included
Holocene alluvium, beach deposits, and other sediments. The most significant Holocene alluvial deposits occur
along the Duwamish River Valley. Pleistocene alluvial deposits, which have not been glacially overconsolidated,
were given a low liquefaction potential rating. Pleistocene glacially consolidated sediments received a very low
liquefaction potential rating.

The results from these studies are intended to provide a regional assessment of liquefaction potential and should
not be considered as a substitute for site-specific studies for individual buildings or other structures. Because
conditions vary locally, site specific geotechnical investigations are required to accurately assess liquefaction
potential at any given location.
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TABLE 2. GROUNDWATER DEPTHS

Average Depth Minimum
Region to Ground water Maximum Depth Depth Standard
(feet) (feet) (feet) Deviation (feet)
Duwamish River 6.5 21.5 0.0 44
Valley (includes
both upper and
filled tideflats)
Alki Beach 10.5 25.0 6.0 3.7
Rainier Valley 8.7 26.0 0.0 8.3
Interbay 6.4 13.0 0.0 43
(includes Lake
Washington Ship
Canal Qys)
West Point 15.0 30.0 9.0 6.9
Union Bay 4.0 6.5 2.0 1.3
Shilshole Bay 1.7 4.0 0.0 1.7
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TABLE 4. SUMMARY OF SPT DATA FOR GLACIALLY OVERCONSOLIDATED DEPOSITS

Depth
Range Undetermined Till Lacustrine
(fr) n N 10 n N 10 n N 10
0-5 1 40 - - - - - - -
5-10 2 100 - 3 103 - - - -
10-15 8 100 34 5 120 82 1 68 -
15-20 15 91 50 6 170 150 2 104 -
20-25 20 71 32 6 115 33 5 109 38
25-30 16 101 38 13 118 50 13 113 36
30-35 27 92 28 7 98 42 7 91 34
35-40 26 107 39 8 133 100 5 57 31
40-45 31 135 46 3 120 39 6 102 31
45-50 32 124 39 2 125 - 4 60 32
LEGEND

n-Number of samples.
N-Average standard penetration resistance (blows/ft.).
10-10 percentile of SPT N-values.
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TABLE S. LIQUEFACTION RATING COMPARISON

Youd and
Perkins
Threshold _ o (1978)
Criteria  __Thickness Criteria = Assigned  Historical Relative
Unit (0.30g) (0.15g) (0.30g) Rating Liquefacion =~ Ranking
FILLS
Duwamish High High High High Numerous Very high
Interbay High High High High None
Other N/A N/A N/A High Occasional
HOLOCENE ALLUVIUM
Mouth of Duwamish High High High High Numerous  High
Flood Plain Moderate Moderate  Moderate  Moderate  Occasional ~ Moderate
HOLOCENE BEACH Moderate Moderate  Low Moderate  Occasional ~ Moderate
PLEISTOCENE ALLUVIUM Low N/A N/A Low None Low
PLEISTOCENE GLACIAL Verylow N/A N/A Verylow  None Very Low
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ACCELEROGRAPH STATIONS SITES OF HISTORIC LIQUEFACTION HISTORIC SHORE LINES
Location
%~ USGS Accelerograph Station 2170 (Discontinued) 4735 E. Marginal Way 1@ 1949 Earthquake e e Philps (1978)
Which Recorded the April 13, 1949 Earthquake {~47 S5N; 122.34W)
11Q 1965 Earthquake — ——- U.S.Coasl Survey (1879}
* USGS Accelerograph Station 2102 (Existing) 909 1st Ave.
Which Recorded the Aprit 29, 1965 E