
UNITED STATED DEPARTMENT OF THE INTERIOR

U. S. GEOLOGICAL SURVEY

JKPLOT VERSION 2.00: A device-independent plotting
system written in QuickBasic for an IBM PC

by

John O. Kork

Open-File Report
91-450A

Program Disks
91-450B

************************** DISCLAIMERS ***************************
Although these programs have been used by the U. S. Geological
Survey, no warranty, expressed or implied, is made by the USGS as
to the accuracy and functioning of the programs and related
material, nor shall the fact of distribution constitute any such
warranty, and no responsibility is assumed by the USGS in
connection therewith.

Any use of trade names is for descriptive purposes only and does
not imply endorsement by the U. S. Geological Survey. This report
is preliminary and has not been reviewed for conformity with the U.
S. Geological Survey editorial standards.

Denver, Colorado

July, 1991

CONTENTS

I. Introduction 1
A. Development System 1
B. JKPLOT General Design Considerations 1
C. Instructions for Executing the Example Programs 2

II. Overviews
A. General Graphics Software Considerations 4

1. Types of Graphics Software 4
2. Device Independence 4
3. Graphics Metafiles 5

B. Overview of the Software 6
1. Overview of the JKPLOT Device-Independent Code

Modules and Possible Configurations 6
2. Overview of the JKPLOT Device-Dependent Code

Modules and Possible Configurations 7
C. Overview of the Documentation 8

III. 2D-BASIC - The Basic 2 dimensional Plotting Routines 9
A. The Basic Plotting System 9
B. The Elementary JKPLOT Instructions 9

1. PLOTS 9
2. PLOT 10
3. SYMBOL 10
4. CSYMBOL 11
5. NUMBER 11
6. POLYLINE 11
7. NEWPEN 12
8. FACTOR 13
9. COMMENT 13
10. SETFNAM 13

C. Expanded Font Tables and Environmental Variables 13
D. Default Scaling 14
E. Structure and Use of the JKPLOT Device Drivers 14

1. Direct vs. Metafile Mode : 14
2. Code Modules for Direct Mode Plotting . 15
3. Metafile Mode " 17
4. Configuration Files 19

F. Examples Using the Elementary Plot System 19
1. Example 1 20
2. Modification of an Intermediate Plot File 21
3. Example 2 22

G. Windows, Viewports, and Clipping 22
1. Normalized Device Coordinates (NDC) 22
2. 2-Dimensional World Coordinates 23
3. General Window to Viewport Mappings 24
4. Clipping 26
5. 2-Dimensional Transformations 26
6. World Coordinate and Work Station Pipes 27

H. Using the Special JKPLOT System Switches 28

I. Constructing JKPLOT System Libraries 29
1. Stand Alone Libraries 29
2. Quick Libraries 29

J. Capabilities and Use of the File-reading Plot
Driver, QF1.BAS 30

IV. 2D-AXES - 2 Dimensional Axes and Scaled Plotting 33
A. Introduction 33
B. Axis Types 33
C. The Axis Parameters 34
D. Drawing Axes 34
E. Setting Axis Parameters 37
F. Scaled Plotting 39
G. Axis Example Program 39
H. Intermediate Plot Files with Axis Commands 40

V. Basic 3D Plotting 41
A. Introduction 41
B. The 3d Workbox 41
C. Specifying the 3d Viewpoint 42
D. Initializing a 3d Plot 42
E. 3d Drawing Commands 45
F. Drawing 2d Plots in 3 dimensions 46
G. More General 3d Setup Commands 47
H. Windows, Viewports, Transformations, and Clipping

Windows in 3d Plotting 48
I. Metafile Mode for 3d Plotting 49

VI. 3D-AXES - 3d Axes and Scaled Plotting 51
A. Introduction 51
B. Drawing Axes 51
C. 3d Axis Example Programs 52
D. Intermediate Plot Files with the 3d Axis Commands 53

VII. Conclusion 55
VIII. References 55

Appendices

A. TABLES .
B. FIGURES
C. EXAMPLE PROGRAMS
D. EXAMPLE PLOT FILES
E. COMPLETE LIST OF FUNCTIONS AND SUBROUTINES ORGANIZED BY

MODULE
F. COMPLETE LIST OF FUNCTIONS AND SUBROUTINES ORGANIZED

ALPHABETICALLY
G. JKPLOT SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM

ORGANIZED BY MODULE
H. JKPLOT SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM

ORGANIZED ALPHABETICALLY
I. GETTING STARTED
J. CHANGING OR ADDING FONTS OR CHARACTERS

11

APPENDIX A - TABLES

Appendix A - Page

Table 1 - Four configurations and code size totals of
the device-independent code modules in the
JKPLOT system.................................... 1

Table 2. Numerical codes and defined constants for
JKPLOT output devices 1

Table 3. Defined constant and symbolic values for use with
the NEWPEN command 2

Table 4. Summary of standard calling sequences 3-4

Table 5. Device specific code for plot drivers 4

Table 6. Examples of intermediate plot file output for
JKPLOT subroutine calls 5-6

Table 7. Structured variable for storing axis information
common to both vertical and horizontal axes. 6

Table 8. Structured variable type for defining axes....... 7

Table 9. Axis routines which cause drawing to occur....... 8

Table 10. Axis parameter-setting routines.................. 8

Table 11. Scaled plotting subroutines...................... 9

111

APPENDIX B - FIGURES

Appendix B - page

Figure 1. JKPLOT character fonts for standard SYMBOL call .. 1

Figure 2. Symbols for centered CSYMBOL call 5

Figure 3. Examples of type of line drawn for selected
values of the parameters LINTYP% and INC% 5

Figure 4. An elementary example showing the use of the
JKPLOT system (size reduced) 6

Figure 5. An example showing the result of modifying the
intermediate plot file for Figure 4
(size reduced) 6

Figure 6. An example showing the use of most of the
elementary commands available in the JKPLOT
system (size reduced) 7

Figure 7. Sequence of images showing a duck in world
coordinates, normalized device coordinates,
and screen coordinates under default plot
system settings 8

Figure 8. Sequence of images of a duck in world
coordinates, normalized device coordinates,
and screen coordinates with a world coordinate
window, work station window, and work station
viewport selected 8

Figure 9. Sequence of images of a duck in world
coordinates, normalized device coordinates,
and screen coordinates with a world coordinate^
viewport half as high as the world coordinate
window 9

Figure 10. Sequence of images of a duck showing the order
of operations to complete a transformation.... 10

Figure 11. The complete 2-dimensional JKPLOT pipeline 10

Figure 12. Images of an octagon as it is passed
through the JKPLOT pipeline under
cumulatively more complex operations 11

Figure 13. Effect of JKPLOT system switches 12

Figure 14. Menu for plot modification selections available
using QF1.BAS 12

iv

Figure 15. Axis plot using all default parameters
(size reduced) 13

Figure 16. Suppression function effects on a single
horizontal axis. A) no suppression,
B) sub nolab, C) sub nunum, D) sub nofrst,
E) sub nolast, F) sub noend 13

Figure 17. Axis and scaled plotting example 14

Figure 18. Location of the hypothetical "viewer" as
specified by use of the subroutine
call "vuabs(-5,-5,5) H 15

Figure 19. Location of the hypothetical "viewer" as
specified by use of the subroutine call
»vuang(45 / 35 / 8.66)" 15

Figure 20. Figure of a stadium-like object plotted within
the default unit 3d workbox as viewed from
the default 3d viewpoint 16

Figure 21. Four figures of a stadium-like object plotted
within specified workboxes. The workbox
dimensions as specified by the Setwkbox
subroutine are A) 1,1,1 B) 2,2,2 C) 1,2,1
and D) 1,1,2 17

Figure 22. 3D spiral drawn using absolute 3d coordinates 18

Figure 23. Defining the orientation of a plane in 3
dimensions for the Strgrafiti subroutine 19

Figure 24. A simple plot using the grafiti commands 19

Figure 25. Reproduction of five figures from Foley and \ f
Van Dam [2]. A) Figure 8.46, page 307,
B) Figure 8.47, page 307. C) Figure 8.47,
using code on page 308. D) Figure 8.49,
page 309 E) Figure 8.41, page 303 20

Figure 26. 3D spiral plotted using 3d axis commands
and 3d scaled plotting 20

Figure 27. Graph using 3d axis and scaled plotting commands . 21

APPENDIX C - EXAMPLE PROGRAMS

	Appendix C - Page

EXAMPLEl.BAS ... 1

EXAMPLE2.BAS ... 2

EXAMPLES.BAS ... 5

EXAMPLE4.BAS ... 8

EXAMPLES.BAS ... 10

EXAMPLE6.BAS ... 12

EXAMPLE?.BAS ... 14

EXAMPLES.BAS ... 16

EXAMPLE9.BAS ... 18

EXAMPL10.BAS ... 21

EXAMPL11.BAS ... 23

APPENDIX D - EXAMPLE PLOT FILES

Appendix D - Page

EXAMPLEl.PLT ... ;., 1

EXAMPLE2.PLT ... 2

EXAMPLE4.PLT ... 4

APPENDIX E

COMPLETE LIST OF FUNCTIONS AND SUBROUTINES
ORGANIZED BY MODULE

(3 pages)

VI

APPENDIX F

COMPLETE LIST OF FUNCTIONS AND SUBROUTINES
ORGANIZED ALPHABETICALLY

(2 pages)

APPENDIX G

JKPLOT SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED BY MODULE

(7 pages)

APPENDIX H

JKPLOT SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

(6 pages)

APPENDIX I

GETTING STARTED
Appendix I - Page

1) FIRST STEP Hill 1
2) DESTINATION (HARD) DISK AND DIRECTORY STRUCTURE ASSUMED.:,1
3) DESTINATION DIRECTORIES FOR THE JKPLOT SYSTEM.......... 1
4) COPYING THE JKPLOT FILES FROM YOUR FLOPPY DISK DRIVE

	TO YOUR HARD DRIVE................................... 3
5) MAKING LIBRARIES IN THE \JKPLOT\LIB DIRECTORY.......... 3
6) USING THE LIBRARIES JKPLTSCR.QLB AND JKPLOT.LIB........ 4
7) BATCH FILES SHOWING THE USE OF THE JKPLOT SYSTEM....... 4
8) SOME ANTICIPATED PROBLEMS.............................. 5
9) IF ALL ELSE FAILS...................................... 6

APPENDIX J

CHANGING OR ADDING FONTS OR CHARACTERS

(5 pages)

vii

SECTION I - INTRODUCTION

A - Development System

The advent of inexpensive personal microcomputers has made
sophisticated computation facilities available to individual
geologists in their offices, and many mathematical and
statistical programs are now available on these computers.
Graphics programs that can produce the types of data-display
plots that geologists can use for investigating their data have
not been made so readily available.

This paper presents version 2.0 of JKPLOT, a simple, device-
independent plotting system that can provide a base for building
plotting facilities tailored to the needs of geologists. The
programs were written in Microsoft QuickBasic for use on
equipment compatible with an IBM personal computer.

The JKPLOT system was first developed on an Intertec Superbrain
in response to a need by project geologists to be able to control
plotting devices without the expense of using a mainframe
computer. When more sophisticated microcomputers became
available the system was transferred to an IBM-PC compatible
computer and enhanced to its present state. The computer used
for development of the present system is a Compaq Deskpro 386/20
with 4 megabytes of RAM, a 60 megabyte hard disk, a VGA graphic
card and monitor, 2 serial ports, and 1 parallel port. The
operating system is Microsoft MS-DOS Version 4.00; the compiler
is Microsoft Quickbasic Compiler, Version 4.00b; and the linker
is Microsoft Overlay Linker, Version 3.65. The graphics output
devices used are an Epson LX-800 printer, a Zeta sprint pen
plotter, and a Hewlett-Packard LaserJet III printer.

B - JKPLOT General Design Considerations

In order that the JKPLOT system be useful to users who are not-
sophisticated graphics programmers, design criteria for the
plotting system were selected on the basis of simplicity, program
transportability, and ease of incorporating program segments into
new application programs. File compactness and processing speed
were at times sacrificed so that the programming logic would
adhere to a straightforward concept of the process of drawing
pictures.

The main design criteria are:

i) The programs should be self-contained and require the
the incorporation of no commercial software packages.

. «:,..

%i ii) As much code as possible should be in a high level
programming language rather than assembly language,
even at the expense of processing speed.

iii) All source code should be in the public domain.

iv) The basic level of software should be device
independent in the sense that the same instructions can
be used for all plotters.

v) Modifications of the actual device drivers for
different devices should require a minimum of
programming knowledge.

vi) The capacity for generating device-independent plot
files should be provided.

C - Instructions for Executing the Example Programs

The documentation for the JKPLOT system contains eleven example
programs showing the plotting capabilities. In addition all
twenty-seven figures appearing in this paper were made using the
JKPLOT system, and the programs used to create these figures are
included. These programs can be executed from within the
QuickBasic environment or can be compiled to yield a file
containing executable code. Instructions for executing the
programs are included here so that they need not be repeated with
the explanation of each example. It is assumed that the user is
familiar with QuickBasic and has set the necessary search path
and environmental variables as described in the QuickBasic
documentation. It is also assumed that all the JKPLOT files
necessary to execute the program (*.BAS, *.INC, JKFONT.*, and
JKCFONT.*) are present in the current working directory.

Every example consists of a main program and a number of code
modules from the JKPLOT system. For example, to send the output
from example 1 to the PC screen, the main program is
EXAMPLE1.BAS, and the required JKPLOT modules are JK2DPLT.BAS,
DEVS.BAS, and QBSCR.BAS.

In order to execute EXAMPLE1.BAS from within the QuickBasic
environment the user must first activate QuickBasic by executing
the command

qb /ah/1

The /ah option allows dynamic arrays larger than 64K each, and
the /I option loads the QuickBasic library. The inclusion of the
two "/" options is mandatory.

Next the main program, EXAMPLE1.BAS, must be opened and the
JKPLOT system modules JK2DPLT.BAS, DEVS.BAS, and QBSCR.BAS must
be loaded. Execution of the program is initiated by exercising
the RUN option. The PC screen will clear, and the picture will
be drawn on the screen. When the picture is complete the
computer will sound a short "beep" indicating the completion.

To execute the program EXAMPLE1.BAS from the command line rather
than from within the QuickBasic environment the user can enter
the following batch file using a text editor such as EDLIN.

be EXAMPLE1.BAS /ah/x/o;
be JK2DPLT.BAS /ah/x/o;
be DEVS.BAS /ah/x/o;
be QBSCR.BAS /ah/x/o;
link EXAMPLE1+JK2DPLT+DEVS+QBSCR,,,qb.lib;

The result of running the batch file will be a file named
EXAMPLE1.EXE containing executable code which can be run by just
entering "EXAMPLEl" via the keyboard. The picture will be drawn
on the screen, and a short "beep" will be sounded indicating
completion of the picture.

To remove the picture from the screen, the user must press the
<ESCAPE> key. The reason for the requirement for pressing the
<ESCAPE> key without any screen prompt is that any prompt would
necesarily be placed over and obscure part of the plot.

For the examples discussed in the text the code modules necessary
will be just be listed in a sentence. For example 1 the sentence
is "The modules neccesary for example 1 are EXAMPLEl.BAS,
JK2DPLT.BAS, DEVS.BAS, and QBSCR.BAS.". The first module listed
is the "open" module, and the rest are the "load" modules. The
modules necessary for executing the programs that create the
twenty-seven figures appearing in the paper can be determined by
inspecting the list of "include" metacommands at the beginning of
the program.

SECTION II - OVERVIEWS

A - General Graphics Software Considerations

1 - Types of Graphics Software

Computer graphics software can be classified into three general
categories: applications programs, functional software, and basic
software. The highest level of software is the application
program. A user need only supply data and select among program
options to obtain graphics output; no programming is required on
the user's part. A typical application program would accept a
file of Cartesian (x,y) coordinates of a set of points and make
an X-Y plot of the data with axes and titles.

Functional software is an intermediate level of software that
relieves the user of the task of programming commonly used
graphics functions. Functional subroutines are often provided in
graphics utility libraries. An example of functional software
would be a subroutine that draws a set of axes at a certain
location within a plot.

The lowest level of graphics software is called basic software.
Basic software accepts only the most primitive plotting commands
for controlling a plotter. At this level of programming the type
of plotting device being used becomes a factor in the programs
because different plotters perform different functions within the
plotter hardware itself. Typical basic software provides the
capability for drawing a line between two locations and for
plotting a symbol at a specified location.

2 - Device Independence

Device independence for computer graphics software means that the
programs are applicable on a variety of graphics output devices -
pen plotters, ink-jet plotters, storage tube displays, raster CRT
displays, dot-matrix printers, etc. Unfortunately the different
makes and models of plotting devices do not respond to the same
instruction protocols, and even when equivalent instructions
(e.g. draw a line) are sent to different devices, the resulting
images may be quite different. A line on a low resolution raster
CRT is just not the same as a fine line drawn by a pen plotter,
and a filled polygon on a color CRT is not the same as a cross-
hatched polygon drawn with a pen. The goal of producing exactly
the same image on all devices is thus unattainable and can only
be approximated.

One approach to the problem of device-independence is to define a
graphics processing language with which images can be defined
abstractly in terms of a set of well-defined primitives. These
abstract images can then be approximated as closely as possible
by interpreters which generate display processor code to control
the individual devices.

Efforts to design standards for graphics processing have produced
two quite sophisticated systems, CORE [1] and GKS [3]. These
standards define graphics languages, data structures, and device
characteristics for very general purposes. Other earlier
languages, usually associated with a particular manufacturer
(e.g. CalComp, Tektronix, Hewlett-Packard), had to suffice for
the applications programmer while the comprehensive standards
were being developed. The JKPLOT system follows the general
direction of the most primitive parts of the CalComp system with
added commands for defining windows and viewports.

3 - Graphics Metafiles

The most elementary way to control a plotting device is for a
program to include graphics language statements that cause a
primitive (line, symbol, etc.) to be drawn by the plotter
immediately upon execution of that statement. Device
independence can be obtained by locating the code for
interpreting the graphics statements and producing the particular
device protocol (display processor code) in a distinct section of
the program or in a separate library linked to the program. To
change devices the programmer merely replaces the graphics
interpreter code (or device driver) for one device with that for
another. This method can be called the direct mode of plotter
control.

Another method of plotter control is to translate the graphics
image into a representation in an intermediate language and store
this representation in a file, called an intermediate plot file
or graphics metafile. An intermediate language interpreter is
then used to read this file, translate the intermediate language
into display processor code for a particular device, and display
the picture. One of the advantages of this method is that a
small part of a picture can be changed without the need for
regenerating the whole plot. This method can be called the
metafile mode of plotter control.

The JKPLOT system can be used in either the direct or metafile
mode. A JKPLOT metafile device driver, instead of sending
instructions to a plotter, stores the intermediate language
instructions in a disk file. Other programs can then read these
graphics metafiles, manipulate the images, and send the
instructions to the plotter.

Another method for saving plot instructions for later display is
implemented for devices that respond to Hewlett-Packard Graphics
Language (HPGL) instructions. The JKPLOT system can write HPGL
instructions to an ASCII file for later use with an HP pen
plotter or laser printer. The file can then be sent to the
output device via the communications port using, for example, the
DOS command TYPE [filename] > COM1 or TYPE [filename] > PRN.

B - Overview of the Software

The JKPLOT system can provide a variety of plotting capabilities
with output to a number of different graphics output devices.
Not all the capabilities will be required for every application
program using this graphics system, and so the system has been
segmented into a number of modules to allow a programmer to load
only those capabilities necessary. This segmentation, however,
makes the resulting list of code modules quite extensive and
possibly intimidating to a first-time user. In order that the
beginning user not be overwhelmed by the mass of documentation
for the JKPLOT plotting programs, a brief overview of the system
is provided.

There are two major parts to any plotting system that addresses a
variety of graphics output devices: that portion that is
independent of the device addressed, and a portion that contains
code very specifically tailored to the capabilities of the
device. This overview of the JKPLOT system discusses these two
parts separately.

1 - Overview of the JKPLOT Device-Independent Code Modules
and Possible Configurations

The device-independent portion of the JKPLOT system consists of
five modules which can be configured to provide the minimum level
of sophistication necessary for an application programmer's
purposes. The names of the modules and a short statement of
their functions follows.

JK2DPLT.BAS - This module provides the elementary 2-dimensional
plotting instructions for initiating plots and drawing lines and
symbols.

2DAX.BAS - Additional capabilities for drawing axes in 2
dimensions and for using scaled plotting instructions are in this
module.

JK3DPLT.BAS - Elementary 3-dimensional plotting capabilities and
the capability for orienting a plane in 3 dimensions and plotting
a 2-dimensional plot on that plane are provided in this module.

3DAX.BAS - Using this module a programmer can specify and draw
3-dimensional Cartesian axes and use scaled plotting commands to
draw points and lines.

The four code modules are not independent, but a programmer can
select a configuration containing only those modules necessary
for the programming task at hand. The size of the code necessary
to include all the system capabilities is quite large, so that

the size of an application program loading all four modules is
limited. If, however, only the simple 2-dimensional plotting
capabilities are required, the application program can be quite
large. Table 1 shows four useful configurations of the code
modules and the total size (using the size of the disk file
storing the module in ASCII form as a measure of size) of each
configuration.

REFER TO TABLE 1 - Four configurations and code size totals of
the device-independent code modules in the JKPLOT system

Appendix A, Page 1

The plotting functions and subroutines available in each of the
five modules are listed in Appendices D to E along with text page
references to the detailed description of the commands. The text
descriptions explain the meanings of the function and subroutine
parameters and demonstrate the use of the commands through
detailed examples.

2 - Overview of the JKPLOT Device Dependent Code Modules
and Possible Configurations

Each type of output device addressed by the JKPLOT system has its
own code module that translates general plot instructions into
instructions to cause the device to produce the output desired.
These modules are independent, and only those modules necessary
for a particular application need be loaded with an application
program. The list of modules and devices addressed follows.

QBSCR.BAS - This module provides output for the computer
screen.

QBEP.BAS - Output to printers that recognize Epson printer
instructions is provided by this module. . >*

QBHP.BAS - Plotters that recognize Hewlett-Packard graphics
language (HPGL) instructions can be controlled using this module.

QBLAS.BAS - This module is a minor modification of QBHP.BAS
allowing plot instructions to be sent directly a Hewlett-Packard
laser printer or saved in an ASCII file for later use.

QBHPF.BAS - Output to an intermediate plot file in HPGL
instruction format is provided by this module.

QBJKF.BAS - Plotting instructions in JKPLOT intermediate plot
file format are stored to a disk file by this module.

In order that not all the device dependent modules be loaded with
an application program that needs only one or two, a code module

that functions as a "traffic-controller" must be constructed and
loaded with the applications program. A simple traffic
controller, DEVS.BAS, that addresses only the PC screen is
included with the plot system, and a program, DEVMAK.BAS, that
will construct a controller that addresses only those devices
desired by eliminating unwanted lines from the comprehensive
"traffic-controller", DEVALL.BAS, is included. Instructions for
constructing a specific "traffic-controller" are in section III-
JL< 2 .

For applications that will utilize only the JKPLOT intermediate
plot file output mode there is a special device driver module,
JKFSEP.BAS. Use of this module is explained in Section III-E-3.

C - Overview of the Documentation

The documentation for the JKPLOT system of programs is quite
voluminous and includes many tables, figures, program listings,
intermediate plot file listings, command summary tables, and
example session logs. Including all of the figures, tables, and
listings in the body of the documentation would detract from the
continuity of the text, and thus an extensive set of appendices
was constructed. References to tables, figures, and listings in
the text are by appendix letter and page number and are printed
in upper case letters at the appropriate place in the text. The
reader is advised to locate the referenced material in the
appendices when it is first mentioned and have it available while
continuing to read the text. All of the figures presented in
this report were produced on an Epson printer using the JKPLOT
system.

Each of the four device-independent code modules is documented in
a separate section of the documentation. In order that the
reader be able to construct and execute application programs and
examples as soon as possible, the device-dependent code is
documented in the section describing the 2D-BASIC plotting
routines. This section also explains certain basic graphics ': -
concepts necessary for the utilization of the more sophisticated
capabilities of the JKPLOT system.

Documentation for the diskettes accompanying this report is
compiled separately. A complete list of the directories and
files on the diskettes is included in the file README on the
disk, and instructions for setting up and using the system on a
hard disk (essentially required) is in appendix H.

Certain more sophisticated graphics concepts such as windows,
viewports, and 3-dimensional view specifications are described
only briefly in the text. The reader is advised to refer to
Foley and VanDam [2] for further details.

SECTION III - 2D-BASIC - THE BASIC 2 DIMENSIONAL
PLOTTING ROUTINES

A - The Basic Plotting System

The unit of measurement for use with the basic plotting system
was chosen to be inches. This means that pen position (or pseudo
pen position in the case of a CRT) is specified in terms of
inches of displacement from a fixed position called the plot
origin and that character height is specified in inches. If the
user wants to plot a large plot on a CRT screen, the plot can be
scaled to fit onto the screen.

The plotting functions included in the basic system were designed
to be compatible with a subset of the elementary plotting
commands provided with the CalComp Host Computer Basic Software
[4], a software package which is supplied with CalComp pen
plotters. Names of variables in the programs were chosen to
match as closely as possible those used in the CalComp
documentation. The names of the standard subroutines, which are
described in detail in the following section, are PLOTS, PLOT,
NUMBER, SYMBOL, CSYMBOL, POLYLINE, FACTOR, and NEWPEN. An
additional command, COMMENT, is included to allow a programmer to
include information in an intermediate plot file.

B - The Elementary JKPLOT Instructions

The functions performed by the basic software are described in
terms of subroutine calls with arguments.

1. CALL PLOTS(XPAGE, YPAGE, DEVNO%, TKERR%). This routine
initializes a plot and is called only once (before a call to any
other graphics subroutine). Execution of this command opens the
plot output device through the computer's operating system,
performs scaling calculations, and sets the clipping window.
Values of X (the horizontal coordinate) will be clipped at 0 and
XPAGE, and values of Y (the vertical coordinate) will be clipped
at 0 and YPAGE. The variable, DEVNO%, specifies the output
device, and TKERR% returns a FALSE (0) value if no error has
occurred while executing the PLOTS command and a TRUE (-1) value
if an error has occurred. Table 2 shows shows the numerical
codes for the devices addressed by the JKPLOT system in the form
of "defined constants" that can be used in a program. The
constants are defined in the include file, "JK2DCOM.INC".

REFER TO TABLE 2 - Numerical codes and defined constants for
JKPLOT output.

Appendix A, Page 1

2. CALL PLOT(X, Y, P%). This is the basic pen movement command.
X and Y are coordinates, in inches, from the current reference
point (origin), of the position to which the pen is to be moved,
and P% is a signed integer which controls the pen status (up or
down) and origin definition.

If P% = 2 the pen is down during movement, thus drawing a visible
line. If P% = 3 the pen is up during the move.

If P% = -2 or -3, a new origin is established at the terminal
position after movement is completed as if P% were positive. In
this case the logical X,Y coordinates of the new pen position are
set equal to zero, and this position is the reference point for
succeeding movements. If P% = 999 the effects are the same as if
P% were -3 except that the plot is terminated and the output
device is closed. The values of X, Y, and P% are not changed by
this subroutine call. Values of P% other than those described
default to P% = +3.

3. CALL SYMBOL(X, Y, HT, TXT$, ANGLE). This is the standard
routine for plotting text character(s) as specified by the
variable TXT$. The pen is first moved to the position specified
by X and Y. This is the location of the lower left corner of the
first character to be plotted. The size of the character(s) in
inches is specified by HT, and ANGLE specifies the angle, in
degrees from the positive horizontal axis, at which the text is
to be plotted. If ANGLE = 0 the text will be plotted right side
up and parallel to the horizontal axis. The text in the
character variable TXT$ may consist of any of the characters
listed in Figure 1. If a character not in the acceptable
character set is included in TXT$ a blank is plotted in its
place. The length of the text in plot inches can be calculated
by using the fact that each letter is exactly as wide as it is
high. Hence a string of ten characters plotted with a height of
1/4 inches would be 2.5 inches long.

The JKPLOT system gives the user a choice of eight character '-
fonts for use with the SYMBOL subroutine. The definitions of the
fonts are in eight separate files named JKFONT.X, where the X
stands for a digit between 0 and 7 inclusive. Any font used must
be present in the working directory. The ASCII code for each of
the characters in the fonts, the font numbers, and the font names
are shown in Figure 1.

REFER TO FIGURE 1. - JKPLOT character fonts for standard SYMBOL
call

Appendix B, Page 1

The default font is font number 0, which is reinitialized any
time the PLOTS subroutine is called. If the user wants to change
fonts the subroutine NEWFONT(fontnumber%) can be used. The font

10

number must be an integer between 0 and 7. For example, to set
the font to number 3, TRIPLEX, the user can issue the command

CALL NEWFONT(3).

4. CALL CSYMBOL(X, Y, HT, Q%, ANGLE, PENUP%). This is the
centered symbol routine and is used to draw special centered
symbols such as boxes, octagons, rectangles, etc., for plotting
data points. The pen is first moved to the position specified by
X and Y. This is the location of the center of the symbol to be
drawn. If the variable PENUP% contains the value -1 the pen is
up during the move, and if the value of PENUP% is 0 the pen is
down during the move. The height of the symbol in inches is
specified by the variable HT, and the rotation in degrees of the
symbol about its center is specified by the variable ANGLE. The
symbol to be plotted is specified by the value of Q%, which must
take a value between 0 and 13. The symbols corresponding to the
values of Q% are listed in Figure 2.

REFER TO FIGURE 2. - Symbols for centered CSYMBOL call
Appendix B, Page 5

The centered symbol font definitions are in a file named
JKCFONT.O, which must be present in the working directory. In
the present version of the JKPLOT system there is only one file
for centered character fonts. However, in order to allow a user
to expand the file of centered fonts or to use a different set of
fonts the subroutine NEWCFONT(cfontnumber%) has been included.
At present the only acceptable number for the parameter
cfontnumber% is 0.

5. CALL NUMBER(X, Y, HT, FPN, ANGLE, NDEC%). This routine
causes the floating point number in the variable, FPN, to be
plotted in decimal format. The meanings of the arguments X, Y,
HT, and ANGLE are the same as those described for the subroutine
SYMBOL. The integer value in NDEC% specifies the format and
precision of the number to be plotted. If NDEC% is greater than
0 it specifies the number of digits to the right of the decimal
point that are to be converted and plotted after appropriate
rounding. For example if the value in FPN is 12.3456 and NDEC%
is +2, the number plotted would be 12.35. If NDEC% = 0 only the
number's integer portion and a decimal point are plotted after
rounding. If NDEC% = -1, only the number's integer portion is
plotted, after rounding, and if NDEC% is less than -1, -NDEC%-1
digits are truncated from the integer portion after rounding. If
FPN= 143.2 and NDEC%= -2 then the number 14 would be plotted.

6. CALL POLYLINE(XARY(), YARY(), NPTS%, INC%, LINTYP%, Q%, HT).
The POLYLINE subroutine produces a line plot of the pairs of data
values in the arrays XARY() and YARY() with centered symbols
plotted at some of the data points as specified by the parameters

11

LINTYP% and INC%. The symbol to be drawn is specified by the
value of Q% (with the same meaning as in the CSYMBOL call), and
the size of the symbol is specified by HT.

The pen is first moved to the position specified by XARY(l) and
YARY(l) in the up position. The value of the integer variable,
LINTYP%, indicates the type of line to draw through the data
points. If LINTYP% = 0 the points are connected by straight
lines, but no symbols are drawn. If LINTYP% is negative, no line
segments are drawn; only the symbols are plotted, and if LINTYP%
is positive, both the line and the symbols are drawn. The
magnitude of LINTYP% specifies the frequency of plotted symbols.
For example if LINTYP% = 4 a symbol is plotted at every fourth
data point. The value of INC% specifies the number of points to
use for defining the line. For example if INC% = 4 every fourth
point is used as a line segment endpoint; the three intermediate
points are ignored. Examples of type of line drawn for selected
values of the parameters LINTYP% and INC% are shown in Figure 3.

REFER TO FIGURE 3. - Examples of type of line drawn for selected
values of the parameter LINTYP% and INC%

Appendix B, Page 5

7. CALL NEWPEN(PN%). If the plotter being used has the
capability of using more than one pen, this call will specify
which pen is to be used in subsequent plotting system calls. The
value of PN% is initialized to 1 by the initial call to PLOTS.

The JKPLOT system sets a special color palette for the PC EGA and
VGA screens. Symbolic constants are defined in the include file,
JK2DCOM.INC, and are listed in Table 3.

REFER TO TABLE 3 - Defined constant and symbolic values for use
with the NEWPEN command ' -

Appendix A, Page 2

The Hewlett-Packard laser printer can plot in only one color, but
there is the capability for varying line widths. In order to
take advantage of this capability the number of pens defined for
the laser printer in the device dependent code module,
QBLASER.BAS, is nine. The default pen, number 1, is set for a
line width of .2 millimeters, and the pen thicknesses for pens
numbered two through nine can be calculated in millimeters using
the formula

line thickness = .05 * (pen number).

12

8. CALL FACTOR(FACT). The factor subroutine causes all
subsequent pen movements to be enlarged or reduced by a factor,
FACT. If FACT =2.0 the plotting movements will all be twice
normal size, and if FACT = 0.5 the movements will be half normal
size. FACT is initialized to 1.0 by the initialization call to
PLOTS.

9. CALL COMMENT(CMT$). This routine causes no plotting. It is
included so that comments can be sent to the plotting system.
Some possible uses of this command are to send information about
the progress of a plot to the PC screen when the output device is
a printer to include information about the function being
performed in an intermediate plot file being generated.

10. CALL SetFnam(DEVNO%, FILNAM$). This routine specifies the
file name for intermediate plot file output and must be called
before the initialization call to PLOTS. DEVNO% is the device
number and can be either JKFIL, HPFIL, or LSFIL. FILNAM$ is the
name of the intermediate plot file to be generated.

REFER TO TABLE 4 - Summary of standard calling sequences
Appendix A, Page 3

C - Expanded Font Tables and Environmental Variables

The sequences of pen strokes defining each character in the fonts
are stored in disk files with names JKFONT.O - JKFONT.7 for the
standard symbol call and JKCFONT.O for the centered symbol call.
These files have a complex structure for defining the sequence of
characters, but a knowledgeable user can append additional
symbols to existing fonts or define completely new fonts. An
explanation of the font file structure and an example of adding a
new symbol to the centered symbol font set are in Appendix I.

When the JKPLOT system is initialized (e.g. with use of the PLOTS
subroutine) or when a request to change fonts is received (via
the NEWFONT or NEWCFONT subroutines) the program by default
attempts to locate and read the desired font file in the current
working directory. The font files must thus be available at
execution time, and if work is being done in a number of
different directories the font files must be reproduced in each
of these directories. The need for these multiple copies of the
font files can be avoided by using an environmental variable,
JKPLT.

If a user has a number of regularly used programs utilizing the
JKPLOT system, a reasonable way to be able to access all of them
from any working directory without having to make multiple copies
is to keep them in a single graphics directory. The operating
system can then be informed of their location through the use of

13

the PATH command. For example if the DOS system programs are
kept in a directory named C:\DOS and the graphics programs are
stored in a directory named C:\JKPLOT\EXEC, the user can execute
the DOS command

PATH=C:\DOS;C:\JKPLOT\EXEC

to tell the operating system where to find the graphics programs.
This command alone will not tell the system where to find the
font-definition files, and copies of these files will have to be
in the current working directory.

The user can, however, use the DOS command

SET JKPLT=C:\JKPLOT\EXEC\

to define an environmental variable, JKPLT. The JKPLOT programs
will then use the directory thus specified to locate the font
files, eliminating the need for multiple copies of these files.

D - Default Scaling

There are two procedures used in default mode for scaling a
picture. Because the actual size of a picture produced on the PC
screen depends on the size of the monitor, the term "plot inches"
is not meaningful for these devices. Default calculation for
this driver scales the plot to produce the largest aspect-
preserving image that can be drawn on the CRT screen. The aspect
ratio of a rectangle is the ratio of the width to the height.
Without aspect-preservation a square might be drawn as a tall,
thin rectangle. For "inch-type" plotters, i.e. devices for which
the term "plot inches" is meaningful (HP plotters and Epson
printers), the plot produced is the size specified by the
parameters XPAGE and YPAGE unless the plot scaled this way would
be too big for the plotter. In this case a warning flag is set
in the plotting system, and the plot is scaled to a size that-,
will fit on the plotter.

E - Structure and Use of the JKPLOT Device Drivers

1 - Direct vs. Metafile Mode

There are two elementary ways to use the plot drivers described
in this paper. The most direct way is to write a program in
QuickBasic, calling the plotting routines described in Section I.
The plot system configured for the specific plotting devices used
by the program can then be linked with this program, and when the
program is executed, the plot will be drawn on the output device.
Another way is to write the same QuickBasic program but link the
a special version of the plot system configured to generate
intermediate plot files. This procedure will produce an
intermediate plot file of Calcomp-like commands. The

14

intermediate plot file is an ASCII file containing on each line
the name of the plot subroutine to be called along with the
parameter values to be set before transfer to the plot
subroutines.

Each method of using the plotting system has advantages. The
method that sends the output directly to the plotting device has
the advantage of immediacy; the product of the program is
immediately available for viewing when the program is run. On
the other hand, the method that uses the intermediate plot file
allows the user to make a number of plots with the same page size
and then send them all to the plotter at the same time - a system
for overlaying individual plots. The knowledgeable user can also
use a standard ASCII file editor to change aspects of a plot by
editing the intermediate plot file. Examples of both of these
methods will be given in the following sections.

2 - Code Modules for Direct Mode Plotting

The bulk of the basic plotting system code is independent of
which output device is to be addressed. This code is in a module
named JK2DPLT.BAS. This module does all of the 2-dimensional
scaling and transformation calculations and contains the
character generator, which calculates the individual pen strokes
necessary to draw a character. Except for device opening and
closing and pen change instructions, the JK2DPLT.BAS module
routes all plotting instructions through a subroutine that tells
a device to draw a straight line from one point to another.

The instruction to draw a line from one point to another is sent
to a "traffic director" module which directs the instruction to
the device-specific code for whichever device is being addressed.
The device-specific code for each device is contained in a
separate module which directly controls the device, and "traffic
director" module allows for the presence of more than one device
-specific module in a program. The devices and corresponding
module names are listed in Table 5. Note that the JKPLOT ~'>,.
intermediate plot file output obtained when using the device-
specific module QBJKF.BAS is not the most efficient way to store
a plot because all symbols and numbers to be plotted are stored
in the file as sequences of line segments. A more efficient
method for generating and storing plots in an intermediate plot
file is described in Section III-E-3.

REFER TO TABLE 5 - Device specific code for plot drivers
Appendix A, Page 4

Because of the way the the linker functions, different versions
of the "traffic director" module must be constructed for each
combination of device drivers to be loaded. If all devices are
to be available to the applications program, the complete

15

"traffic director" module, DEVALL.BAS, can be used. Use of
DEVALL.BAS causes the linker to load all of the device-specific
modules listed in Table 5. However loading all the drivers when
only one is needed by a program uses valuable program code space
in the computer memory, and so it is worthwhile to be able to
construct smaller versions of the "traffic director" module which
address a specific subset of the devices.

The JKPLOT system includes a program, DEVMAK.BAS, which will
construct the needed smaller versions of DEVALL.BAS by removing
all program lines that are concerned with devices to be omitted.
This program instructs the user to input a sequence of six
numbers, each 0 or 1 and separated by commas, via the keyboard.
The six numbers indicate to the program which device-specific
code modules to include, a 1 indicating inclusion and a 0
indicating exclusion. The devices corresponding to the six
positions in order are the PC screen, HPGL pen plotter, Epson
printer, HPGL file output, JKPLOT intermediate plot file output,
and laser printer output. For example the sequence 1,0,1,0,0,0
indicates that the PC screen and the Epson printer device modules
are to be included.

The name of the output program file constructed by the DEVMAK.BAS
program depends upon the devices included. The base of the file
name for all possibilities is DEVxxxxx.BAS, where the x's
represent single letters or blanks indicating which devices are
included. The single letters are "S" for the PC screen, "H" for
the HPGL plotter, "E" for the Epson printer, "P" for an HPGL plot
file, "K" for a JKPLOT intermediate plot file, and "L" for laser
printer output. For example the name of the file produced in
response to tfie input sequence 1,0,1,0,0,0 would be DEVSE.BAS.
If the sequence 1,1,1,1,1,1 is inserted the program informs the
user that the module "DEVALL.BAS" is available for addressing all
the devices.

The device "traffic director" includes two routines which may be
accessed by the user directly for use in application programs-but
which are not actually part of the standard plot system. The
first is a subroutine, DEVLST(ndev%, lst%(), lst$(), echr%()), to
return a list of the devices loaded (as determined by the version
of DEVALL.BAS used) in a particular program. The parameters
returned by the subroutine are

ndev% the number of devices available
lst%() an integer array containing a list of the JKPLOT

coded device numbers (see table 2)
lst$() a character array containing abbreviated names

of the available devices (for possible use with
a menu system)

echr%() an integer array containing the index of a
character in the corresponding entry of the lst$()
array so that a menu system can recognize the
entry using a single character.

16

The second extra routine is the function, VideoHardware%(), which
interrogates the operating system to find out what graphics
board/monitor combination is present. This routine can identify,
for example, the presence of an EGA graphics board being used
with a monochrome monitor. The function returns the JKPLOT
system coded device number (see table 2), through the use of the
INTERRUPT instruction. Programs that use the INTERRUPT
instruction require that the QuickBasic interpreter be
initialized using the /I option (specifying the use of the Quick
library distributed with QuickBasic), and that compiled programs
be linked using the QuickBasic library (QB.LIB).

A complete program would consist of the application program, the
device independent code in JK2DPLT.BAS, a version of the
"traffic-controller" DEVxxxxx.BAS, and the device-specific code
modules for each of the devices addressed by DEVxxxxx.BAS. If
the application program name is APP.BAS, a batch file for
compiling and linking this program with the plot system to use
the PC screen and the Epson plotter would contain the
instructions

BC APP.BAS /AH/X/O;
BC JK2DPLT.BAS /AH/X/O;
BC DEVSE.BAS /AH/X/O;
BC QBSCR.BAS /AH/X/O;
BC QBEP.BAS /AH/X/O;
LINK APP+JK2DPLT+DEVSE+QBSCR+QBEP,,,qb.lib;

Execution of this batch file produces an execution module named
APP.EXE. To execute the program the user must enter APP via the
keyboard.

To run the program from within the QuickBasic environment a user
would first open the file APP.BAS and then load the remaining
four programs shown in the example batch file. The program could
then be run using the QuickBasic "RUN" option.

The device independent code module JK2DPLT.BAS and all of the
device specific drivers listed in Table 5 can be put into a plot
system library, and by accessing this library the commands
necessary to compile and link an application program can be
greatly simplified. Construction and use of the plot system
libraries is discussed in section III-I.

3 - Metafile Mode

To use the plot system in metafile mode, the user can link a
special version of the plotting system, in a module called
JKFSEP.BAS, with the applications program. The resulting program
can then be executed through the interpreter or compiled. The
result of executing this code is a disk file containing the
intermediate language instructions for drawing the plot. The

17

special version of the plot system produces a much more compact
intermediate plot file than the integrated file-producing module
QBJKF.BAS. JKFSEP.BAS just writes the name of the called
subroutine along with the relevant parameters to the output file.
In addition the code required for file output is much less than
the code needed for the complete plotting system, and much larger
applications programs can thus be implemented. The metafile
driver, JKFSEP.BAS, contains entry points for all the JKPLOT
functions and subroutines, but only the CalComp-like instructions
will be discussed in detail because these instructions can easily
be modified in the intermediate plot file. The more
sophisticated routines do not lend themselves to plot file
modification. Table 6 lists the basic plot system calls and the
corresponding lines written to the intermediate plot file with an
example for each command. Lines labeled C: are the subroutine
calls and lines labeled F: are the corresponding lines written to
the plot file. A complete list of all the JKPLOT system
functions and subroutines with the corresponding form for
intermediate plot file output is in appendices F and G.

REFER TO TABLE 6 - Examples of intermediate plot file output
for JKPLOT subroutine calls

Appendix A, Page 5

A batch file for compiling and linking an application program,
APP.BAS (APP.BAS is a hypothetical program name, not a program
supplied with the JKPLOT system), with JKFSEP.BAS is

BC APP.BAS /AH/X/0;
BC JKFSEP.BAS /AH/X/O;
LINK APP+JKFSEP;

Note that there is no need to specify the QuickBasic library,
QB.LIB, in this link command because no version of the "traffic
director" module, DEVALL.BAS, is used. This batch file will ^
produce an execution module named APP.EXE which can then be
executed by entering APP via the keyboard.

To run the program from within the QuickBasic environment a user
would first open the file APP.BAS and then load JKFSEP.BAS. The
program could then be run using the QuickBasic "RUN" option.

In order to send the stored plot to a particular device, a
program that reads the plot metafile and sends the proper device
protocol to the device must be constructed by merging a file-
reading application program with the appropriate device driver
described above. A file-reading application program, QF1.BAS, is
supplied with the JKPLOT system. With this program a user can
read up to ten plot files with the same page size, select a
viewing window, select a viewport, rotate the plot, and then send
the resulting image to a particular device.

18

4 - Configuration Files

The device-specific code modules for the Epson printer, the HPGL
pen plotter, and the Hewlett-Packard laser printer require the
presence of configuration files named CONFIG.LPT, CONFIG.HP, and
CONFIG.LAS to be present in the working directory in order to set
proper communications between the computer and the plotting
device. The files contain a single line of text enclosed in
quotes. For the HPGL plotter configuration file the text line
specifies the asynchronous transmission port that the device is
attached to, the transmission speed (baud), and other parameters
that apply to communication between a hardware device and the
computer. The user is referred to the OPEN COM .. statement in
the IBM Basic manual for explanation of these parameters. The
file CONFIG.HP included on the JKPLOT diskette contains the line
(including the quotation marks)

"COM1:2400,N,8,1,RS,CS65535,DS,CD"

The configuration files for the Epson printer and Hewlett-Packard
laser printer are used to allow the user to specify either LPT1
or LPT2 as the output device. The files CONFIG.LPT and
CONFIG.LAS included with the JKPLOT diskette contain the line
(including the quotation marks)

"LPT1:"

The configuration files can be stored in a directory other than
the working directory if the user sets the an environmental
variable, JKPLT, as described in section III-C.

F. - Examples Using the Elementary Plot System

For the following examples it will be assumed that the user has
constructed a PC VGA screen driver module, DEVS.BAS, by executing
the program DEVMAK.BAS and responding to the input query with the
sequence 1,0,0,0,0,0. The DEVS.BAS program can be compiled, \,
resulting in the object module DEVS.OBJ, by executing the command
line "be DEVS.BAS /ah/x/o; 11 . Both the source and object module
should be available in the working directory so that the example
can be either compiled or executed from within the QuickBasic
programming environment. It will also be assumed that the source
and object modules, JKFSEP.BAS and JKFSEP.OBJ, and the include
files, JK2DPLT.INC, JKPLTTYP.INC, JK2DCOM.INC, and JK2DINT.INC,
are available in the working directory. These include files
contain, among other things, the defined numerical constants for
the output devices and the function and subroutine declaration
statements for the plot system. The application program must
have the "include" metacommand

' $INCLUDE: 'JK2DPLT.INC'

at the beginning of the program.

19

1 - Example 1

The first example plot is very simple one. The plot consists of
a 5 inch by 5 inch square box with the message, EXAMPLE 1, in .25
inch letters centered in the box. The program EXAMPLEl.BAS,
which will produce this plot and draw the figure on the PC screen
is in appendix C. Comments within the program explain what is
being accomplished by the code.

REFER TO EXAMPLEl.BAS - Program to produce figure 4.
Appendix C, Page 1

The program modules used for example 1 are EXAMPLEl.BAS,
JK2DPLT.BAS, DEVS.BAS, and QBSCR.BAS. The result of running this
program is shown in Figure 4.

REFER TO FIGURE 4 - An elementary example showing the use of the
JKPLOT system. (size reduced)

Appendix B, Page 6

In the program, EXAMPLEl.BAS, the output device is specified by a
program variable, devno%, which is set using the VideoHardware%()
function discussed in Section III-E-2. The program line

devno% = VideoHardware%

accomplishes this definition. By changing this program line to

devno% = EPSHR

the output can be directed to the Epson printer in high
resolution mode. The program modules necessary to execute the^
program then become EXAMPLEl.BAS, JK2DPLT.BAS, DEVE.BAS, and
QBEP.BAS.

Another way to generate the picture on the PC screen is create a
JKPLOT intermediate plot file and then use the file-reading plot
driver, QF1.EXE, to send the plot to the screen. In order to use
this method the source code in the program EXAMPLEl.BAS must be
slightly modified by replacing the code line

devno% = VideoHardware%

with the two lines of code

devno% = JKFIL
CALL SetFnam(devno%,"EXAMPLEl.PLT")

20

Note that the output intermediate plot file name, EXAMPLEl.PLT,
must be specified before the initialization call to PLOTS. The
user can make the program modification after entering the
QuickBasic programming environment using the QuickBasic editing
commands. The program modules necessary to create example 1 in
this mode are EXAMPLE1.BAS and JKFSEP.BAS. When the program is
run the result will be the intermediate plot file, EXAMPLE1.PLT,
listed in Appendix D and containing a list of CalComp-like
commands. This intermediate plot file can then be sent to the PC
screen or another output device by executing the program QF1.

REFER TO EXAMPLE1.PLT - Intermediate plot file for figure 4.
Appendix D, Page 1

A third way to generate the above plot is to use a file editor
such as EDLIN to create the intermediate ASCII plot file,
EXAMPLE1.PLT, directly. The user can then execute the program
QF1, and the image will appear the screen. If the user
understands the construction of the intermediate plot file, many
plot modification possibilities are available.

2 - Modification of an Intermediate Plot File

An intermediate ASCII plot file is just a sequence of CalComp-
like instructions that can be read by a program like QF1. Hence
the user can insert plot commands or move images by proper
modification of the file. This capability is very valuable if
the user has constructed a large, complicated plot and just wants
to make a few changes or to add extra documentation without
regenerating the whole file.

For example, addition of the line

SYMBOL, 0,1.5,1,.25,0,MODIFIED

immediately after the SYMBOL call in the intermediate plot file
for Example 1 causes the text, "MODIFIED", to appear below the
original text in the figure, producing the plot shown in
Figure 5.

REFER TO FIGURE 5 - An example showing the result of modifying
the intermediate plot file for Figure 4. (size reduced)

Appendix B, Page 6

21

3. - Example 2

The program, EXAMPLE2.BAS, demonstrates the use of most of the
elementary commands available in the basic plotting software.
The program modules necessary for example 2 are EXAMPLE2.BAS,
JK2DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLE2.BAS - Program to produce figure 6.
Appendix C, Page 2

An intermediate plot file can be produced by running the program
in metafile mode.

REFER TO EXAMPLE2.PLT - Intermediate plot file for figure 6.
Appendix D, Page 2

Figure 6 shows the resulting plot.

REFER TO FIGURE 6 - An example showing the use of most of the
elementary commands available in the JKPLOT system (size
reduced).

Appendix B, Page 7

G - Windows, Viewports, and Clipping

Such graphics concepts as windows, viewports, aspect ratios,
clipping, and pipelines are defined only superficially in this
paper. The reader is referred to Foley and VanDam [2] for a more
definitive discussion.

1 - Normalized Device Coordinates (NDC) >.

In order that the JKPLOT system be able to produce graphics on a
variety of different output devices using the same plotting
commands it is necessary to define a logical coordinate system
that represents the plotting surface in a device independent
manner. This coordinate system can be thought of as a virtual or
normalized device on which the graphics output is initially
drawn, and the coordinates are called normalized device
coordinates (NDC). The normalized device coordinates defining
the graphics image (NDC image) are then transformed to device
coordinates, which differ significantly from one device to
another. For example the PC VGA screen has horizontal coordinate
limits of 0 through 639 and vertical coordinate limits of 0
through 359 while the Epson high resolution printer with an eight
inch carriage has horizontal limits 0 through 959 and vertical
limits of 0 through 2159. The normalized coordinate system

22

chosen for the JKPLOT system is defined in plot inches to
correspond to the elementary Calcomp-like commands.

The default size of the plotting surface on the conceptual
normalized device is specified (in units of inches) by the
parameters XPAGE and YPAGE in the initialization call using the
PLOTS subroutine. Note that this definition of normalized device
coordinates is different from that used by Foley and Van Dam [2]
and by the GKS [1] system, both of which define the normalized
device coordinate limits to be from 0 to 1 in both the horizontal
and vertical directions.

The device plotting surface limits, which may be called work
station limits, are determined by the parameter DEVNO% in the
PLOTS call. Execution of the PLOTS subroutine causes the plot
system to set the plotting surface limits and to calculate the
transformation relating the normalized device (inch) coordinates
to those of the output device. The rectangular region in
normalized coordinate space, with default definition specified by
XPAGE and YPAGE, is called the work station window, and the
rectangular surface defined on the output device, which by
default is the whole device surface, is called the workstation
viewport. The transformation relating NDC coordinates to device
coordinates is called the work station map and is part of a more
complex transformation structure call the work station pipeline,
which will be defined later.

2-2 Dimensional World Coordinates

A user may be interested in plotting an image or graph that does
not use inches as the elementary coordinate measure. For
instance a geologist might want a plot of percent gold against
percent silver in a set of samples, or a mining engineer might
want to plot profit in dollars against extraction block size for
an open pit mine. These application or user-oriented coordinates
are naturally called user coordinates or world coordinates. In
order to accommodate such applications another conceptual ^
plotting surface, along with a corresponding coordinate system,
is defined within the JKPLOT system. This plotting surface is
called the world coordinate surface, and the transformation
relating world coordinates to normalized device coordinates is
called the world coordinate map. The world coordinate map is
part of a more complex structure called the world coordinate
pipeline. The default definition of the world coordinate
plotting surface (the default world coordinate window) is exactly
the same as the default normalized device coordinate surface, and
the default world coordinate map is just the identity map. The
rectangular region in normalized device coordinate space onto
which the world coordinates are mapped is called the world
coordinate viewport. Figure 7 shows the default sequence of
figures for a duck drawn in world coordinates, normalized device
coordinates, and screen coordinates.

23

REFER TO FIGURE 7 - Sequence of images showing a duck in world
coordinates, normalized device coordinates, and screen
coordinates under default plot system settings.

Appendix B, Page 8

3 - General Window to Viewport Mappings

In world coordinate space a rectangular region containing the
information the programmer wants displayed is called the world
coordinate window, and the rectangular region in plot inches
(NDC) onto which this information is to be mapped is call the
world coordinate viewport. The plotting system calculates the
world coordinate map which transforms the world coordinates into
plot inches. Another rectangular region, different from the
world coordinate viewport, in NDC space can be selected for
display on the output device. This region is called the work
station window, and the rectangular region selected on the output
device plotting surface for display of the information in the
work station window is called the work station viewport. The
mapping relating plot inches to device coordinates is called the
work station map. Figure 8 shows a sequence of images of a duck
in world coordinates, normalized device coordinates, and screen
coordinates with a world coordinate window, work station window,
and work station viewport selected.

REFER TO FIGURE 8. - Sequence of images of a duck in world
coordinates, normalized device coordinates, and screen
coordinates with a world coordinate window, work station window,
and work station viewport selected.

Appendix B, Page 8

The two maps, world coordinate and work station, are not
calculated in exactly the same manner. The work station map --
calculates the coordinate mapping between plot inches and device
coordinates in such a way that the aspect ratio of the work
station window is preserved. The aspect ratio of a rectangle is
the ratio of the vertical extent of a the rectangle to the
horizontal extent of the rectangle. An aspect preserving mapping
would, for example, map a square window into a square image. For
non-plot inch type displays such as the PC screen the work
station map is calculated, in default mode, to display the
largest aspect-preserving image that will fit in the work station
viewport, with the lower left corner of the window mapped into
the lower left corner of the viewport. There are plot system
switches that allow the programmer to specify that the image be
centered in the viewport or rotated within the viewport. For
plot inch type devices such as the Epson printer or an HPGL
plotter the work station map locates the image in the lower left
corner of the viewport and plots the image to proper scale. If

24

the plot is larger than the specified viewport the scaling
proceeds as if the device were a non-plot inch device.

The world coordinate map is not defined to be aspect preserving.
This means that if a tall, thin rectangular region in world
coordinate space is specified as the world coordinate window and
a short, wide rectangle is specified as the world coordinate
viewport, the shape of the world coordinate image will be made
shorter and wider to fill the world coordinate viewport. In
order for the world coordinate map to be aspect-preserving the
aspect ratios of the world coordinate window and the world
coordinate viewport must be the same. Figure 9 shows a sequence
of images of a duck in world coordinates, normalized device
coordinates, and screen coordinates with a world coordinate
viewport half as high as the world coordinate window.

REFER TO FIGURE 9. - Sequence of images of a duck in world
coordinates, normalized device coordinates, and screen
coordinates with a world coordinate viewport half as high as the
world coordinate window.

Appendix B, Page 9

The programmer can specify the windows and viewports with the
following functions defined in the JKPLOT system.

FUNCTION SetWcWin%(l, r, b, t) 'world coordinate window
FUNCTION SetWcVp%(l, r, b, t) 'world coordinate viewport
FUNCTION SetWsWin%(l, r, b, t) 'work station window
FUNCTION SetWsVp%(l, r, b, t) 'work station viewport

The arguments 1, r, b, and t of these functions are the left,
right, base, and top coordinates respectively of the rectangle
being defined. For the function SetWcWin% the arguments are in
world coordinates. For the functions SetWcVp% and SetWsWin% the
arguments are in plot inches, and for SetWsVp% the arguments are
in device coordinates. A programming example showing the use of
these functions is in Section III-G-6.

In summary, in order to specify the coordinate mapping between
world coordinates and plot inches the user specifies a world
coordinate window and a world coordinate viewport. The default
rectangles for the world coordinate window and the world
coordinate viewport are the rectangle with horizontal limits 0
and XPAGE and vertical limits 0 and YPAGE. In order to specify
the coordinate mapping between plot inches and device coordinates
the user specifies a work station window and a work station
viewport. The default work station window is the rectangle with
horizontal limits 0 and XPAGE and vertical limits 0 and YPAGE.
The default work station viewport is the whole output device
plotting surface.

25

4 - Clipping

The window/viewport combination defines a mapping of coordinates
from one coordinate space to another. The graphics image to be
transferred may, however, extend beyond the boundaries of the
window. By default any portion of the image that does not lie
within the window is clipped before being mapped to the viewport.
If coordinates outside the window are not clipped the image
displayed might vary from device to device because different
devices respond differently to coordinate specifications outside
their normal range.

The user can specify a clipping rectangle other than the default
using the function SetClip%(wch$, 1, r, b, t). The argument,
wch$, specifies which pipe the clipping rectangle is to be
associated with. Wch$ can take on the values "WS" or "WC",
specifying work station or world coordinate respectively. If
wch$ = "WS" then the rectangle specified by left, right, base,
and top values of 1, r, b, and t respectively will be used for
the work station clipping rectangle instead of the work station
window. If the value of wch$ is "WC" then the specified
rectangle replaces the world coordinate window as the clipping
rectangle.

Clipping in either the world coordinate or the work station pipe
can be turned off with the function ResetClip%(wch$). The
parameter wch$ can take on either of the values "WS" or "WC". A
programming example showing the use of the clipping functions is
in Section III-G-6.

5-2 Dimensional Transformations

Some graphics applications may require a sequence of views of the
same object to be drawn or may require that an object easily
defined in one location be displayed in another. These goals can
be accomplished in the JKPLOT system using the following 2 :
dimensional transformation subroutines: '-

SUB Eval2dTran(fx, fy, tx, ty, rot, sx, sy, mat())
SUB SetTrn2(wch$, mat())
SUB AcmTrn2(wch$, mat()).

The subroutine Eval2dTran calculates a transformation matrix
which can then be used to set a transformation with SetTrn2 or
accumulate a transformation with AcmTrn2 in either the world
coordinate or work station pipes. Fx and Fy are the fixed point;
tx and ty are the translation or shift vector; rot is the angle
of rotation in degrees; and sx and sy are the scale factors. The
transformation matrix is returned in the 4x4 matrix mat(). This
matrix can then be used to set or accumulate the transformation
in world coordinates or normalized device coordinates depending
upon whether the parameters wch$ is set to "WC" or "WS".

26

The transformation is computed so that the order of
transformation operations is scale, rotate translate. Figure 10
illustrates this sequence applied to a duck using the following
program statements to set the transformation in world
coordinates:

Call Eval2dTran(3,8.8,10,-5,45,.5,. 5,mat())
call SetTrn2("WC",mat()).

REFER TO FIGURE 10. Sequence of images of a duck showing the
order of operations to complete a transformation.

Appendix B, Page 10

6 - World Coordinate and Work Station Pipes

Each of the coordinate calculations, from world coordinates to
plot inches and from plot inches to device coordinates, is
accomplished by the same sort of structure. This structure,
which may be call a pipeline step, consists of a 2 dimensional
transformation, a clipping rectangle, and a 2 dimensional
mapping. The JKPLOT system has two pipeline steps, the world
coordinate pipe and the work station pipe. The complete pipeline
sequence is shown in Figure 11.

REFER TO FIGURE 11. The complete 2-dimensional JKPLOT pipeline
Appendix B, Page 10

Figure 12 shows the cumulative effect of transformations,
clipping rectangles, windows, and viewports as an image of an
octagon is passed through the JKPLOT pipeline. Each pipeline
shown in the figure represent the sequence of images in the
pipeline under the cumulatively more complex manipulations
specified for the pipeline. '--

REFER TO FIGURE 12. Images of an octagon as it is passed through
the JKPLOT pipeline under cumulatively more complex operations.

Appendix B, Page 11

The program, EXAMPLES.BAS, will generate the final image of the
octagon shown in Figure 12 for each of the seven steps. The
program modules necessary for example 3 are EXAMPLES.BAS,
JK2DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLE 3.BAS - Pipeline demonstration program.
Appendix C, Page 5

27

H - Using Special JKPLOT System Switches

One of the variables defined and placed in COMMON in the include
file JK2DCOM.INC is a structured variable describing the present
state of the plotting program. This variable, with base name ST,
can be used by a knowledgeable programmer to interact directly
with the plot system. The three most useful switch variables are
ST.NOEQASP, ST.CLPCEN, and ST.PICROT. Each of these variables is
normally in the off (FALSE OR 0) state but when set to TRUE OR -1
by a programmer causes slightly different calculations to be done
in the plot system.

If ST.NOEQASP is set to TRUE the work station map calculation
stretches the image of the work station window to fill the work
station viewport in both the horizontal and vertical directions.
The work station map by default is aspect-preserving, which means
that if the aspect ratio of the window and viewport are not the
same, some of the viewport will not be used. The default
calculation places the image of the window in the lower left
corner of the viewport in this case.

If ST.CLPCEN is set to TRUE the work station map calculation
locates the image of the work station window in the center of the
work station viewport rather than in the lower left corner.

If ST.PICROT is set to TRUE the whole plot is rotated on the
output device by reversing the horizontal and vertical axes of
the plot. This switch is useful when a user wants to send a
tall, thin plot to a device that has a short, wide plotting
surface.

To set the switches the user must first complete the plotting
system initialization using a call to the PLOTS subroutine. The
PLOTS subroutine sets the switches to default status (off or
FALSE). The user can then execute the following example code
segment (using ST.PICROT for the example) to give a switch a TRUE
value and cause the plotting system to recalculate the work '-
station mapping transformation.

ST.PICROT = -1 'true
Call CalcWsMap.

Further examples of the use of the plotting system switches are
in the program QF1.BAS in which the author has made significant
use of all the switches.

Figure 13 shows the default position of a simple square plot
drawn on the screen with all the switches off and then the effect
of setting each switch on before sending the plot to the screen.

28

REFER TO FIGURE 13 - Effect of JKPLOT system switches
Appendix B, Page 12

I - Constructing a JKPLOT System Library

1 - Stand-Alone Libraries

If a programmer is going to need the JKPLOT routines regularly a
library can be constructed in order to avoid recompiling and
explicitly linking individual modules. The device independent
module, JK2DPLT, and all of the device-specific modules, QBSCR,
QBEP, QBHP, QBJKF, and QBHPF, can be put into the library. The
user cannot include more than one of the "traffic controller"
modules constructed from DEVALL.BAS because subroutine names in a
library must be unique. If the user is always going to be using
the same devices, for example the screen and an Epson printer,
then the "traffic controller" module DEVSE can be included in the
library. However if the selection of devices may change
regularly it is wiser to link to the "traffic controller"
explicitly. In either case the library, qb.lib, supplied with
QuickBasic must form the basis for the library because some
version of the "traffic controller" (which uses the INTERRUPT
command) must always be linked with the application program. A
batch file for constructing a library named JK2DPLT.LIB follows.

copy qb.lib jk2dplt.lib
be jk2dplt /ah/x/o;
be qbscr /ah/x/o;
be qbhp /ah/x/o;
be qbep /ah/x/o;
be qbjkf /ah/x/o;
be qbhpf /ah/x/o;
be qblaser /ah/x/o;
lib jk2dplt.lib-+jk2dplt-+qbscr-+qbhp,,jk2dplt.lib;
lib jk2dplt.lib-+qbep-+qbjkf-+qbhpf-+qblaser,,jk2dplt.lib;

A batch file that will compile and link a program, EXAMPLE1.BAS,
using this library is

be examplel.bas /ah/x/o;
be devse.bas /ah/x/o;
link examplel + devse,,,jk2dplt.lib;

2 - Quick Libraries

The same modules that can be put into a stand-alone library can
be put into a quick library for use when executing programs from
within the QuickBasic environment. Because subroutine references
in the quick library must be resolved within that library, a
"traffic controller" module must be selected for inclusion in the

29

library. The user may, however, have different libraries for
different combinations of output devices.

To construct a quick library for directing output to just the
screen and an Epson printer the user first must enter the
QuickBasic environment by entering "qb /I" from the keyboard.
The "/I" option must be used in order to include the routines
that allow the use of the INTERRUPT command. Then all the
modules that are to be included in the library must be loaded,
and the Make Library option must be selected from the Run menu.
The library will be constructed automatically after the user has
entered a library name, say JK2DPLT.QLB. The user can cause the
library to be loaded when entering QuickBasic by entering "be /I
jk2dplt.qlb" from the keyboard. Then only the main module of a
program under development need be loaded before running a program
in QuickBasic.

J - Capabilities and Use of the File-Reading
Plot Driver, QF1.BAS

Up to ten plot files with the same page size can be plotted using
the program, QF1.BAS. The program is too large to run in
QuickBasic and must be compiled. A batch file for compiling and
linking QF1.BAS (which incorporates all the code modules
discussed in later sections), follows:

be QF1.BAS /ah/x/o;
be DPRM1.BAS /ah/x/o;
be JK2DPLT.BAS /ah/x/o;
be AX2D.BAS /ah/x/o;
be JK3DPLT.BAS /ah/x/o;
be AX3D.BAS /ah/x/o;
be DEVALL.BAS /ah/x/o;
be QBSCR.BAS /ah/x/o;
be QBEP.BAS /ah/x/o;
be QBHP.BAS /ah/x/o;
be QBHPF.BAS /ah/x/o;
be QBJKF.BAS /ah/x/o;
be QBLASER.BAS /ah/x/o;
link QF1+DPRM1+JK2DPLT+AX2D+JK3DPLT+AX3D+DEVALL+QBSCR+

QBEP+QBHP+QBHPF+QBJKF+QBLASER,,,qb.lib;

The link command is really inserted on one line but is shown here
continued onto a second line because of line length limitations.
The resulting execution module, QF1.EXE, can be executed by
entering "QF1" via the keyboard.

The user is first presented with a header identifying the
program. After pressing any key the following main menu of
action choices is presented.

30

1) File name input
2) Go to plot option menu
3) Change output device
4) Execute a DOS command
5) Exit to system

The user must enter a number between 1 and 5, and if no plot file
names are present the user cannot choose number 2. The
appropriate first action is to input a list of plot file names.
As each plot file name is entered the program checks that the
file is indeed a plot file and that all page sizes for the plots
are the same.

The default output device is the PC screen and depends upon what
hardware is available on the user's computer. If the user wants
to change output devices, choice number 3 should be selected,
after which the user is presented with the following menu.

1) PC screen
2) Epson hires 8
3) Epson hires 13
4) Epson lowres 8
5) Epson lowres 13
6) HPGL plotter
7) HPGL plot file
8) HP laser direct
9) HP laser file
10) JKPLOT plot file
11) Return to main menu

The user can select any of the device choices or return to the
main menu without changing the output device. If the user
selects a device which is not present on the machine the program
may fail or stall. The program does some error checking, but
there are some fatal situations that are not checked.

After specifying plot file names and selecting the desired output
device the user should enter 2 via the keyboard, at which time a
plot option menu shown in Figure 14 (showing numbers used for the
PC enhanced graphics screen) will be presented on the screen.
Present selections are shown in upper case in this figure but are
in reverse video on the screen.

REFER TO FIGURE 14 - Menu for plot modification selections
available using QF1.BAS

Appendix B, Page 12

The user selects the function to be performed by pressing the key
shown on the menu. The centering, rotation, and paper size
selections are toggle type selections requiring no further
entries to accomplish the function to be performed. If the user

31

elects to specify a non-default window, viewport, or scale
factors further numerical entries are required. In this case the
menu is erased and the screen shows the upper and lower allowable
bounds for the required numerical input, and the user is prompted
for the numerical entry or entries.

Interpretation of the window and viewport entries is
straightforward, but interpretation of the user-specified scaling
entries depends upon which kind of plotter is being used. The
window limits are specified in plot inches, and the window must
lie within the page limits. The viewport limits are entered in
inches if an "inch-type" plotter is being used or in device
coordinates for non "inch-type" devices.

For non "inch-type" plotters (e.g. screens for which the term
"plot inches is not meaningful) a scale factor of 1 indicates
that the selected window is scaled to the largest aspect-
preserving size that will fit in the selected window. The user
can select a scale factor between 0 and 1, reducing the resulting
plot by that factor. For example if the scale factor is set to
.5, the plot will be one-half as large it would have been under
default viewport-filling calculations.

For "inch-type" plotters a viewport larger than the window size
can be specified, in which case the scale factor needed to fill
the viewport is calculated. For example if the window selected
is 5 inches by 5 inches and the viewport is set to 10 inches by
10 inches, the maximum allowed scale factor, which will fill the
viewport, is 2. The user can select any value between 0 and the
maximum scale factor value. Continuing the above example, if the
user selects a scale factor of 1.5, the resulting plot will be
7.5 inches by 7.5 inches.

When the user is satisfied with the plotting parameters shown on
the main menu, depression of the "P" key will cause the plot to
be sent to the plotter. After the plot is finished the user must
depress the <ESCAPE> key to return to the main menu. If the user
decides not to make the plot and wants to return to the main
menu, the "Q" key must be depressed after which the screen will
clear and the main menu will again be displayed. To exit from
the program the user can choose entry number 5 from the main
menu.

The execution module for a more advanced version of the program
QF1.BAS is included on the accompanying disk. This program,
QF2.EXE uses routines from a menu and screen entry library still
under development and is much more user friendly than QF1. The
library, however, is still under development and thus although
the code works on my computer, it may fail to work on other
configurations.

32

SECTION IV - 2D-AXES -2 Dimensional Axes and Scaled Plotting

A - Introduction

A common scientific use of plotting capabilities is the making of
graphs, including annotated axis lines, labels, and titles. The
2 dimensional axis library, AX2D.BAS, contains routines for
defining the axis parameters, drawing axes, and automatically
scaling data for plotting. In order to use the 2 dimensional
axis routines the following "include" metacommands must be placed
at the beginning of the program:

1 $INCLUDE: 'JK2DPLT.INC'
' $INCLUDE: 'AX2D.INC'.

All the parameter values necessary for drawing the axes are
stored in structured variables with types AxpgT or AxprmT defined
in the include file AX2D.INC. A variable of type AxpgT stores
the information common to both X and Y axes, and two AxprmT
variables hold the values defining the individual axes. All
three variables are global within the AX2D.BAS module. The user
is supplied with a set of subroutines and functions for setting
these parameter values and causing the axes to be drawn. Default
axis parameters are supplied, and if the user tries to set
impossible combinations of parameters the axis routines either
insert default settings or fail to draw anything at all.

B - Axis Types

There are three types of axis setup specifications, type 1, type
2, and type 3. Types 1 and 2 are arithmetic axis specifications
and type 3 identifies a logarithmic specification.

When a type 1 axis is specified, the tick mark locations and
their numerical values on the axis are determined by three
parameters, STRT, STEP, and END. The left (or lower) end of the
axis is assigned the value STRT; the right (or top) end of the
axis is assigned the value END; and annotated tick marks are
placed every multiple of the step size along the axis. For
example if the axis is 10 inches long, STRT is set to 10, END is
set to 60, and STEP is set to 10, tick marks will be placed every
2 inches along the axis with values 10, 20, 30, 40, 50, and 60.
This is the default axis type.

When a type 2 axis is chosen, the left (or lower) end of the axis
is assigned the value STRT, and tick marks are placed every inch
along the axis. The numerical value associated with the tick
marks is incremented every inch along the axis by the value STP.
The value of the parameter END is not applicable. Consider an
example with the axis length set to 10 inches, STRT set to 10,
and STP set to 10. In this case eleven tick marks will be
plotted on the axis with values 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, and 110.

33

When type 3 axis is specified the left (or lower) end of the axis
is assigned the value STRT, and the value of CYCLE is the length
in inches of each cycle along the axis. The value of the
parameter END is not applicable for the LOG axis type. Tick
marks are placed along the axis at appropriate increments within
each cycle plotted, but the numerical values are annotated only
at tick marks representing powers of 10. If the cycle length
chosen is such that some of the regular tick marks are too close
together to be plotted distinctly, the rest of the marks for that
cycle are omitted. Consider the case for which the axis is 10
inches long, STRT is set to 10, and CYCLE is set to 5. The left
end of the axis will be assigned the value 10, and the right end
of the axis will be assigned the value 1000, or two logarithmic
cycles higher. Annotated tick marks will be placed at both ends
and the middle of the line with values 10, 100, and 1000, and
nine intermediated tick marks will be plotted in each cycle.

C - The Axis Parameters

Axis information common to both the X and Y axes in a picture is
stored in a structured variable with type AxpgT, defined in the
include file, AX2D.INC. The meanings of the axis page entries
are explained in Table 7.

REFER TO TABLE 7 - Structured variable for storing axis
information common to both vertical and horizontal axes.

Appendix A, Page 6

The axis drawing parameters for a single axis, either horizontal
(X) or vertical (Y), are stored in a typed variable as defined in
Table 8. Comments explain the meaning of the parameters. A
knowledgeable user can set these parameters explicitly using the
RetAxPrms and SetAxprms subroutines, but for most applications
the subroutines and functions supplied with the 2 dimensional
axis library will suffice for parameter value setting.

REFER TO TABLE 8 - Structured variable type for defining axes
Appendix A, Page 7

D - Drawing axes

In order to utilize the routines in the 2 dimensional axis
library the user should first call the subroutine

SUB ResetAxes()

to insure that the structured variables defining the axes are set
to default values. Then the page specification subroutine

34

SUB SetAxpg (xpage, ypage, tit$, xlab$, ylab$, xlen, ylen)

should be called. This routine sets the axis-drawing page,
specifies axis lengths for both the X and Y axes, and stores the
page title and axis labels. The variables xpage and ypage are
page size in inches. These page size variables are used mainly
for computing an appropriate size for the annotation characters
and are over-written if subsequently used subroutines or
functions use different values. The character variables tit$,
xlab$ and ylab$ are the page title, to be centered at the top of
the page, and the x and y axis labels respectively. The
variables xlen and ylen hold the axis lengths in inches. Certain
of the axis-drawing routines will substitute default values for
these necessary axis parameters, but it is good practice for a
programmer to specify them explicitly with the SetAxpg subroutine
call. Table 9 lists the functions and subroutines which cause
immediate drawing, in contrast to routines which only set
parameters.

REFER TO TABLE 9 - Axis routines which cause drawing to occur
Appendix A, Page 8

The axis routine with the most explicit specification of
parameters is

SUB SetAxis (wch$, atyp, aorig, astep, aend, alen, alab$, aside%,
xpos, ypos).

The variable wch$ can take on the values of "X" or "Y" specifying
the horizontal or vertical axis respectively. The type of axis
is specified in the variable type, which can take on values of 1,
2, or 3 (see section IV-B). Variable aorig specifies the
starting value of the axis, and variable astep specifies either
the annotation step size or the cycle length as explained in
section IV-B. For a type 1 axis the variable aend specifies the
value at the end of the axis. The axis label is stored in the
variable alab$, and this label takes precedence over a label
specified in a previous SetAxpg subroutine call. The variable
aside% specifies on which side of the axis the annotation and
label are to be drawn. If aside% equals 0 or 1 the annotation
and label are drawn on the "normal" side of the axis (below a
horizontal axis and to the left of a vertical axis). Any other
value of aside% will cause the annotation and label to be drawn
on the other side of the axis line. The location of the starting
end of the axis line is specified in the variables xpos and ypos,
in inches displacement from the present origin. This subroutine
call will draw a single axis.

If the user has preset some of the axis parameters or is willing
to accept default calculations, the subroutine

35

SUB SetAxes (xtyp, xorig, xstep, xend, ytyp, yorig, ystep, yend)

can be used to draw both the horizontal and vertical axes with
one subroutine call. For each axis the four variables of the
form ?typ, ?orig, ?step, and ?end, where the ? can be either x or
y, specify the type, start, step or cycle, and end of the axis.
If reasonable values of the other axis parameters have not be
preset, the subroutine calculates default values.

The function

FUNCTION autoplt% (xpage, ypage, xmin, xmax, ymin, ymax,
errmsg$)

can be used to draw both axes with all default parameter values.
The user must supply the routine with the page size in the
variables xpage and ypage and the minimum and maximum values to
be plotted in the next four variables. Reasonable rounded axis
beginning, ending, and step values are calculated for each axis,
and the axes are then drawn, centered in the page area. Any
error that occurs is recorded in the character variable errmsg$.
Figure 15 shows the appearance of a plot of a parabola made using
all default parameter values on an 8 inch by 10 inch plot with
page size, title, and labels set by a call to the subroutine
SetAxPg. The size has been reduced, but the relative appearance
is shown.

REFER TO FIGURE 15 - Axis plot using all default parameters (size
reduced)

Appendix B, Page 13

When the autoplt% function is being used there are cases in which
a user would want both axes to have the same scale and not be
scaled to conform to a rectangular page size. The subroutine^
that switches equal axis scaling on or off is

SUB eqplt (ind$).

The parameter ind$ can take the values "ON" or "OFF". This
subroutine is ignored unless the axes are being defined with the
autoplt% function and both axis types are the same.

The function

FUNCTION axis2% (xpage, ypage, xmin, xmax, ymin, ymax,
calconly%, errmsg$)

performs nearly the same function as the autoplt% function except
that the axis2% function can be set to calculate the axis

36

parameters without actually plotting the axes. If the variable
calconly% is FALSE (0) then this function calculates the
parameter values and plots the axes, while if calconly% is TRUE
(-1) the parameters are calculated but the drawing is bypassed.
This capability is useful for a programmer who wants to set most,
but not all, of the axis parameters to default values. The
programmer can exercise the axis2% function with calconly% set to
TRUE, modify the axis parameters, and then exercise the axis2%
function with calconly% set to FALSE.

If both axis parameters have been set the subroutine

SUB Frame()

draws an outline around the rectangular region specified by the
two axes, and the subroutine

SUB grid(xgrd%, ygrd%)

draws a grid on that rectangular region. The integer valued
parameters xgrd% and ygrd% must be greater than or equal to 1.
If the parameter values are 1 then grid lines are drawn at every
major tick mark. If the values are greater than 1 then extra
grid lines are inserted at regular intervals between the major
tick marks.

E - Setting axis parameters

Table 10 lists the 2 dimensional axis routines for setting axis
parameters before calling one of the active drawing routines
listed in section IV-D.

REFER TO TABLE 10. Axis parameter-setting routines
Appendix A, Page 8

Because the subroutines

SUB ResetAxes()

and
SUB SetAxpg (xpage, ypage, tit$, xlab$, ylab$, xlen, ylen)

should be called before any of the drawing subroutines they have
been discussed in section IV-D rather than this section.

The default value for axis annotation character height is .125
inches. The annotation numbers are plotted with this height.
The user can change this base annotation height using the
subroutine

SUB SetAxht2 (xht, yht).

37

The heights are in inches. If non-null string variables are
specified for the axis labels (by using the SetAxPg subroutine),
these are plotted at twice the base annotation height (.25 inches
for default). If the graph was given a title then the title
string is centered at the top of the plot and written using a
height equal to 2.5 times the base annotation height.

If the user wants extra non-annotated tick marks between the main
tick marks on an axis, the subroutines

SUB xticks (n%)
SUB yticks (n%)

can be used. If n% is greater than 1 the extra tick marks are
inserted at regular intervals between the major tick marks.

For various aesthetic reasons a user may want to have certain
parts of the axis annotation suppressed. The following
subroutines are all suppression switches in that their function
is to suppress drawing of parts of the axes. Comments after the
subroutine names indicate the function to be suppressed.

SUB nodraw (x$, y$) 'suppresses axis, numbers, and labels
SUB nolab (x$, y$) ' suppresses labels
SUB nonum (x$, y$) ' suppresses axis numbering
SUB nofrst (x$, y$) 'suppresses first number annotation
SUB nolast (x$, y$) 'suppresses last number annotation
SUB noend (x$, y$) 'suppresses both first and last numbers

The arguments, x$ and y$, can take on the character values "ON"
or "OFF", indicating that the suppression function is to be
active or not for the x or y axis. Figure 16 shows the affect of
these suppression functions on a horizontal axis.

REFER TO FIGURE 16 - Suppression function effects on a single;
horizontal axis. A) no suppression, B) sub nolab, C) sub nunum,
D) sub nofrst, E) sub nolast, F) sub noend.

Appendix B, Page 13

There are two subroutines

SUB RetAxprms (prmx AS AxprmT, prmy AS AxprmT)
SUB SetAxprms (prmx AS AxprmT, prmy AS AxprmT)

that allow the user to access and change any of the axis
parameters. The subroutine RetAxprms returns both axis parameter
variables as its arguments. The user can then change the value
of any parameter and then use the SetAxprms subroutine to send
the parameters back to the axis module. If the user sets
inconsistent or nonsensical values for the parameters, the

38

drawing routines will either ignore them or change the values to
defaults.

F - Scaled plotting

Once a pair of axes has been defined the user can plot directly
in scaled coordinates using the scaled plotting routines listed
in Table 11.

REFER TO TABLE 11 - Scaled plotting subroutines
Appendix A, Page 9

Each scaled plotting routine name is that of a standard plotting
subroutine preceded by an "s", standing for "scaled". The
functions performed by the scaled plotting routines are the same
as those performed by the corresponding standard routine except
that locations are specified in the scaled coordinates defined by
the axis system rather than in plot inches. Character heights
are still specified in inches.

If logarithmic scaling is in effect (axis type 3) negative or
zero location arguments are invalid because the logarithm
function is defined only for positive arguments. When presented
with such invalid arguments the scaling routines return a scaled
value of zero. This procedure may not be totally satisfactory,
but the only simple alternative is to allow the program to halt
with a fatal error.

G - Axis example program

The program, EXAMPLE4.BAS, which produces Figure 17, demonstrates
the use of some of the axis commands. Notice particularly how
the interplay between the present origin, the axis page size, -and
the axis lengths place the graph in the desired location in the
overall plot page. The JKPLOT code modules necessary for example
4 are EXAMPLE4.BAS, JK2DPLT.BAS, AX2D.BAS, DEVS.BAS, and
QBSCR.BAS.

REFER TO EXAMPLE4.BAS - Program to produce figure 17.
Appendix C, Page 8

REFER TO FIGURE 17. Axis and scaled plotting example.
Appendix B, Page 14

39

H - Intermediate plot files with axis commands

The module, JKFSEP.BAS, discussed in section III-E-3, for
producing intermediate plot file output can be used for
intermediate plot file output. This module contains the basic
plot system routines and all the axis routines listed in tables
9, 10, and 11 in addition to the subroutines Setaxprms() and
Retaxprms().

In order to send the plot shown in Figure 17 to a JKPLOT
intermediate plot file the user must modify the source code to
change the output device number and to specify a name for the
intermediate plot file. Before compiling the program that
produces figure 17 the user must replace the code line

devno% = VideoHardware%

with the two lines of code

devno% = JKFIL
CALL SetFnam(devno%,"EXAMPLE4.PLT")

in order to specify that the intermediate plot file output is to
be placed in a file named EXAMPLE4.PLT. Note that the output
intermediate plot file name must be specified before the
initialization call to PLOTS.

To compile EXAMPLE4.BAS modified to produce an intermediate plot
file the user can enter the following batch file using an editor
such as EDLIN. The result of running the batch file will be a
file named EXAMPLE4.EXE containing executable code which can be
run by just entering EXAMPLE4 via the keyboard.

be EXAMPLE4.BAS /ah/x/o;
be JKFSEP.BAS /ah/x/o;
link EXAMPLE4 + JKFSEP;

Executing the program EXAMPLE4.EXE will produce the intermediate
plot file EXAMPLE4.PLT.

REFER TO EXAMPLE4.PLT - Intermediate plot file for figure 17.
Appendix D, Page 4

The file-reading program QF1.BAS, discussed in section III-J, can
be used to send the intermediate plot file "EXAMPLE4.PLT 11 to the
desired output device.

40

SECTION V - BASIC 3D PLOTTING

A - Introduction

The JKPLOT system has the capability for 3 dimensional plotting
using Cartesian (x, y, z) coordinates. The most basic part of
the code follows the general philosophy described in Foley and
Van Dam [2] by having the viewing parameters specified in terms
of a center of projection, view reference plane, view plane
window, and view surface viewport. These parameters are seldom
easy for a user to visualize even when a simple plot is to be
made, and so a set of subroutines that make setting 3d viewing
parameters easier has been superimposed.

The subroutines and functions necessary for 3 dimensional
plotting are in a code module named JK3DPLT.BAS, which when added
to the 2 dimensional plotting modules, provides the capabilities
for setting projection parameters and drawing lines in three
dimensions. More sophisticated capabilities for drawing axes in
three dimensions and for scaled 3 dimensional plotting are in a
module named AX3D.BAS which is described in section VI.

B - The 3d workbox

For plotting in 3 dimensions a rectangular parallelepiped, called
the 3d workbox, is used to specify absolute 3d Cartesian
coordinates. One corner of the workbox is the 3d origin with
absolute coordinates (0,0,0), and the default axis lengths are 1
absolute unit. The 3 dimensional plot is scaled so that the
workbox fills as much of the 3 dimensional viewport as possible.
The default 3d viewport is the same rectangle as the default work
station window as specified by the parameters xpage and ypage in
the initialization call to the PLOTS subroutine.

The dimensions of the 3d workbox can be set by the user by
calling the . '-..

SUBROUTINE Setwkbox(xlen,ylen,zlen),

where xlen, ylen, and zlen specify the lengths of the axis in
absolute 3d units. Because the workbox is always scaled to fill
as much of the 3d viewport as possible the shape of the box is
specified by the ratios of the lengths of the axes, and a workbox
with dimensions 1,2, and 3 will appear the same as a workbox with
dimensions 100, 200, and 300 when plotted. Of course the
appearance of lines plotted using absolute 3d coordinates will
differ within the two boxes.

The absolute 3d origin (0,0,0) is always located at one corner of
the workbox, the the three edges of the box emanating from this
origin form a right handed coordinate system. The horizontal
plane is defined by the X and Y axes and the vertical direction

41

is specified by the Z axis. The outline of the specified workbox
can be drawn on any figure using the subroutine,

SUBROUTINE Drawwkbox().

C - Specifying the 3d Viewpoint

In order to define the projection of the 3 dimensional plot onto
a 2 dimensional plane, a conceptual viewpoint must be defined.
This point can be thought of as the location of a hypothetical
"viewer" observing the 3 dimensional object. The viewpoint can
be defined either by specifying X, Y, and Z displacements from
the 3 dimensional origin in absolute workbox units or by
specifying a horizontal angle, a vertical angle, and a distance
from the center of the workbox in absolute 3d units. The
horizontal angle is measured counterclockwise from the positive X
axis. These viewing parameters are specified using the
subroutines

SUBROUTINE vuabs(xabs, yabs, zabs)

and

SUBROUTINE vuang(hangle, vangle, absdist).

Figures 18 and 19 show how the viewing parameters specify the
location of a "viewer" with relation to a unit 3d workbox.

REFER TO FIGURE 18. Location of the hypothetical "viewer" as
specified by use of the subroutine call "vuabs(-5,-5,5)".

Appendix B, Page 15

REFER TO FIGURE 19. Location of the hypothetical "viewer" as
specified by use of the subroutine call "vuang(45, 35,8. 66) . ~"

Appendix B, Page 15

D - Initializing a 3d plot

In order to use the 2d and 3d plotting capabilities in an
application program the user must reference the 2d and 3d
"include" files at the beginning of a program. The Quickbasic
program statements that accomplish this referencing are

1 $INCLUDE: 'JK2DPLT.INC'
' $INCLUDE: ' JK3DPLT.INC'.

If, in addition, the user wants to use the 2d axis routines the
following include statement

42

' $INCLUDE: 'AX2D.INC'

must be added.

To initialize a 3d plot the user must first initialize a 2d plot
in the standard way using the subroutine Plots,

CALL Plots (xpage, ypage, devno%, tkerr%).

The values of xpage and ypage set the default work station
window, world coordinate viewport, and world coordinate window.
At this time the work station map is set for the device being
addressed, and the work station transformation, world coordinate
transformation, and world coordinate mapping are set to the
identity map. The user can then cause 2d drawing to occur.

Initialization of the 3d perspective transformation is caused by
a call to the subroutine

SUBROUTINE Bgn3d().

This subroutine stores the current world coordinate pipe,
initializes a new world coordinate pipeline to the identity pipe,
sets the 3d workbox to the unit parallelepiped, sets the 3d
viewport to the default world coordinate viewport, and sets the
default viewpoint approximately to the location specified by the
command

CALL vuabs(5, -10, 5).

This viewpoint makes the X axis point to the right, the Y axis
point away from the observer, and the Z axis point vertically
upward.

In order to terminate the 3d portion of a plot the user must call
the subroutine,

SUBROUTINE End3d().

This call returns the plot system to the state that it was in
before the 3d initiating call to Bgn3d.

If the user does not want to change the 3d workbox, the 3d
viewport, or the viewpoint, 3d drawing can be accomplished
immediately using the subroutine

SUBROUTINE PLOT3D(x, y, z, p%),

where x, y, and z are coordinates of a point in three dimensional
space specified in absolute 3d units and p% controls the pen in
exactly the same way as the corresponding parameter does in the
2d call to

43

SUBROUTINE PLOT(x, y, p%).

Figure 20 shows, within a special demonstration framework, the
result of using all 3d defaults. The 3d absolute coordinates of
corners of the 3d workbox are added to show the orientation of
the cube. The outline showing the horizontal and vertical
viewing angles and two title lines at the bottom of the page and
framing the 3d plot can be generated using the command

SUBROUTINE Autoframe(xpage,ypage, titlel$, title2$).

This subroutine retrieves the viewing angles from the 3d system,
displays them, and centers the 3d viewport appropriately in the
remaining part of the page.

REFER TO FIGURE 20. Figure of a stadium-like object plotted
within the default unit 3d workbox as viewed from the default 3d
viewpoint.

Appendix B, Page 16

The program EXAMPLES.BAS will produce the plot shown in figure
20. The code modules necessary for example 5 are EXAMPLES.BAS,
JK2DPLT.BAS, JK3DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLES.BAS - Program to produce figure 20.
Appendix C, Page 10

As noted in section V-B the dimensions of the workbox can be
changed using the subroutine

SUBROUTINE Setwkbox(xlen, ylen, zlen).

The call to this subroutine changes the shape of the workbox and
also changes the scaling applied to absolute 3d units. In order
to show the effect of changing the workbox dimensions four
workbox dimension were specified for the workbox and the stadium-
like figure (which is still plotted within a unit cube, is drawn
in each workbox. The result is shown in figure 21. The four
workboxes were located on the plotting surface by using the
subroutine

SUBROUTINE Setvp3d(l, r, b, t),

where 1, r, b, t and the left, right, bottom, and top edges of
the viewport in 2d world coordinates. The 3d viewport serves the
same purpose for a 3d plot that the 2d viewport does for a 2d
plot, except that the 3d viewport coordinates must be in world
coordinates.

44

REFER TO FIGURE 21. Four figures of a stadium-like object
plotted within specified workboxes. The workbox dimensions as
specified by the Setwkbox subroutine are A) 1,1,1 B) 2,2,2 C)
1,2,1 and D) 1,1,2.

Appendix B, Page 17

The program EXAMPLES.BAS will produce the plot shown in figure
21. The code modules necessary for example 6 are EXAMPLES.BAS,
JK2DPLT.BAS, JK3DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLES.BAS - Program to produce figure 21.
Appendix C, Page 12

E - 3d Drawing Commands

The 3d drawing commands are

SUBROUTINE Plot3d(x, y, z, p%)

and

SUBROUTINE Polyline3d(xary(),yary(),zary(),npts%,lintyp%,q%,ht).

These commands work in exactly the same manner as their 2d
correspondents except that the locations are specified by three
coordinates which are always absolute 3d units (as defined by the
3d workbox).

There are two more absolute 3d drawing commands available,

SUBROUTINE Symbol3d(x,y,z,ht,txt$,angle)

and

SUBROUTINE Csymbol3d(x,y,z,ht,q%,angle,icode%),

but these are of limited use because the symbols are always drawn
in the plane of constant height as specified by the z coordinate
value.

Figure 22 demonstrates the use of the Polyline3d subroutine.

REFER TO FIGURE 22. 3D spiral draw using absolute 3d
coordinates.

Appendix B, Page 18

45

The program EXAMPLE?.BAS will produce the plot shown in figure
22. The program modules necessary for example 7 are
EXAMPLE?.BAS, JK2DPLT.BAS, JK3DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLE?.BAS - Program to produce figure 22.
Appendix C, Page 14

F - Drawing 2d Plots in 3 Dimensions

It is often quite useful to be able to project a 2d plot onto a
plane oriented in 3 dimensions. This capability is especially
valuable if the user wants to use 2d routines such as axis
drawing routines to annotate 3d axes. The user must first
initialize the 3d plot system by using the subroutine Bgn3d and
optionally specifying a workbox, 3d viewport and viewpoint. The
subroutine

SUBROUTINE Strgrafiti(xl,yl,zl,x2,y2,z2,x3,y3,z3)

then allows the user to specify a plane in 3 dimensions and then
plot a standard 2d plot onto that plane.

A plane in three dimensions can be specified by three points.
These points are specified in the Strgrafiti parameter list by
the x, y, and z coordinates of the points followed by the integer
1, 2, or 3. The point (xl,yl,zl) is the origin of the 2d plot on
the plane as specified by the three points. The second point
(x2,y2,z2) specifies the direction of the positive X axis. The
distance of the second point from the first has no meaning
because plot units along this axis are workbox units. The third
point (x3,y3,z3) specifies the direction of the 2d positive Y
axis. This point can be any point not on the same line as the
first two. For the 2d plot the Y axis is take to be orthogonal
to the X axis no matter where the third point is located, and the
Y units are again workbox units. Figure 23 shows a typical use
of the three points locate a plane in 3d using the Strgrafiti
subroutine.

REFER TO FIGURE 23. Defining the orientation of a plane in 3
dimensions for the Strgrafiti subroutine.

Appendix B, Page 19

After the 2d plot has been drawn on the plane the user can return
to standard 3d plotting by executing the command

SUBROUTINE Endgrafiti().

Figure 24 shows a simple plot made using the grafiti subroutines.

46

REFER TO FIGURE 24. A simple plot using the grafiti commands.
Appendix B, Page 19

The program EXAMPLES.BAS will produce the plot shown in figure
24. The code modules necessary for examples are EXAMPLES.BAS,
JK2DPLT.BAS, JK3DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLES.BAS - Program to produce figure 24.
Appendix C, Page 16

G - More General 3d Setup Commands

The use of the concepts of a 3d workbox, a viewport for the 3d
plot, and a viewpoint make setting up a 3d plot relatively
intuitive. In fact the 3d plot system translates these
specifications into more general 3d viewing parameters for a
perspective projection as described in Foley and Van Dam[2].
These parameters are

a) a center of projection (COP)
b) a view plane with a U,V coordinate system specified by

a view reference point (VRP),
a view plane normal vector (VPN),
and a view up vector (VUP)

c) a U,V window on the view plane (UVWIN)
d) a front and back clipping plane (set with UVWIN)
e) a viewport on the view surface (the 3d viewport).

The use of these parameters to define the 3d to 2d projection is
much too complex to be discussed in this paper. The reader is
referred to Foley and Van Dam [2] for a complete discussion of
the meanings of the parameters and the methods of constructing
the perspective projection matrices. -

The JKPLOT system does, however, have subroutines available for
setting the required parameters directly and using them to
produce a 3d plot. The subroutines are

SUBROUTINE Setcop(x, y, z)
SUBROUTINE Setvrp(x, y, z)
SUBROUTINE Setvpn(x, y, z)
SUBROUTINE Setvup(x, y, z)

and SUBROUTINE Setuvwin(l,r,b,t,f,bk).

The parameters x, y, and z are the coordinates of a point in 3d
or the displacements defining a vector in 3d, depending upon
whether the parameter being set is a point or a vector. The six
parameters in the subroutine Setuvwin(l,r,b,t,f,bk) are left,
right, base, top, front, and back limits of the uv window. The

47

front and back clipping plane definitions are specified in terms
of displacements from the view reference point on the view plane.
After using these subroutine to set projection parameters the
user should call the subroutine

SUBROUTINE sc!3d2d()

to cause the 3d plot system to calculate the required projection
matrices for plotting.

It is possible using these parameters to include 3 dimensional
clipping in a plot system, but this capability has not been
included in the present JKPLOT system in order to keep the code
module size reasonable. The calculations in the plotting system,
however, are compatible with 3d clipping as described in Foley
and Van Dam. In order to demonstrate the use of these
subroutines figure 25 and the accompanying example program,
EXAMPLE 9.AS, that generates the figure reproduce five figures
from Foley and Van Dam.

REFER TO FIGURE 25. Reproduction of five figures from Foley and
Van Dam [2]. A) Figure 8.46, page 307. B) Figure 8.47, page 307.
C) Figure 8.47, using code on page 308. D) Figure 8.49, page

309 E) Figure 8.41, page 303.
Appendix B, Page 20

The program EXAMPLE9.BAS will produce the plot shown in figure
25. The code modules necessary for example 9 are EXAMPLE9.BAS,
JK2DPLT.BAS, JK3DPLT.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLE9.BAS - Program to produce figure 25.
Appendix C, Page 18

One figure in Foley and Van Dam [2] which cannot be reproduced
using the JKPLOT system is figure 8.57, page 315. This plot
exercises front and back plane clipping capabilities that have
been omitted from the JKPLOT system.

H - Windows, Viewports, Transformations, and Clipping Windows
in 3d Plotting

In a program that uses the 3d plotting system and also the
grafiti system, commands to set windows, viewports, 2d
transformations, and clipping windows have different effects
depending upon where they are initiated in the program and also
depending upon whether the commands refer to the work station
pipe or the world coordinate pipe. Axis specification and scaled
plotting commands can also interact with the 3d plotting
commands.

48

The commands relating to the work station pipeline set parameters
for the the normalized device coordinate plane are are not
affected by either 3d or grafiti commands. They take affect upon
execution and continue to function until canceled. The effect of
commands relating to the world coordinate pipeline, however, have
limited scope within a program.

One can think of the 2d, 3d, and grafiti initializations as three
layers of code nested within each other. 3d initialization
cannot occur until 2d initialization has occurred, and grafiti
commands cannot be executed unless the 3d system has been
initialized. When the 3d system is initialized, the whole
existing 2d world coordinate pipeline is stored, and another 2d
world coordinate pipeline is initialized for use with the 3d
plotting commands. Thus none of the world coordinate windows,
viewports, transformations, and clipping windows specified before
3d initialization are in effect during 3d plotting. Upon
termination of 3d plotting, the original pipeline is reinstated,
and the effect on subsequent 2d plotting is the same as it was
before the 3d system was initialized.

After the 3d system has been initialized the 2d window, viewport,
transformation and clipping commands can be executed. If these
commands are executed before grafiti initialization, they are in
effect throughout 3d plotting, including grafiti plotting, except
for the 2d world coordinate clipping rectangle. The 2d world
coordinate clipping rectangle is removed when the grafiti
transformation is initialized. Thus a user could set a world
coordinate clipping region which clipped some edges of a 3d
workbox being drawn, but a grafiti plot extending throughout the
workbox would be drawn completely. When the grafiti section is
terminated, the old clipping window comes back into affect.
World coordinate windows, viewports, transformations, and
clipping rectangles initiated in a grafiti section of a plot have
affect only until the end of the grafiti section.

Axis definition and scaled plotting commands do not follow the.
guidelines described for windows, viewports, and transformations.
Once a 2d axis system has been defined, the 2d scaled plotting
transformation is in effect until the axes have been reset.
These scaling factors are stored separately from the world
coordinate pipeline and are not affected by the 3d and grafiti
commands; however, the interaction of the axis scaling and the 3d
projections can produce some surprising results if great care is
not taken.

I - Metafile Mode for 3d plotting

To use the 3d plot system in metafile mode, the user can link the
module, JKFSEP.BAS, with the applications program. A batch file
for compiling and linking an application program, APP.BAS, with
JKFSEP.BAS is

49

BC APP.BAS /AH/X/0;
BC JKFSEP.BAS /AH/X/O;
LINK APP+JKFSEP;

This batch file will produce an execution module named APP.EXE
which can then be executed by entering APP via the keyboard.

To run the program from within the QuickBasic environment a user
would first open the file APP.BAS and then load JKFSEP.BAS. The
program could then be run using the QuickBasic "RUN" option. The
file-reading program QF1.BAS, discussed in section III-J, can be
used to send the intermediate plot file to the desired output
device.

50

SECTION VI - 3D-AXES -3 Dimensional Axes and Scaled Plotting

A - Introduction

A common scientific use of plotting capabilities is the making of
graphs, including annotated axis lines, labels, and titles. The
3 dimensional axis library, 3DAX.BAS, contains routines for
defining the axis parameters, drawing axes, and automatically
scaling data for plotting. In order to use the 3d axis routines
in a program the following four "include" metacommands must be
placed at the beginning of the program:

' $INCLUDE: 'JK2DPLT.INC'
' $INCLUDE: 'AX2D.INC'
' $INCLUDE: 'JK3DPLT.INC'
1 $INCLUDE: 'AX3D.INC'.

All the parameter values necessary for drawing the axes are
stored in a structured variable with type AxprmT defined in the
include file 3DAX.INC. Three AxprmT typed variables, global
within the 3DAX.BAS module, hold the values defining the axes.
The user is supplied with a set of subroutines and functions for
setting these parameter values and causing the axes to be drawn.
The annotation for the axes is always placed to provide the best
visibility for the 3d viewpoint. The axis types and the meanings
of the parameters are the same as their 2d counterparts.

B - Drawing Axes

In order to utilize the routines in the 2 dimensional axis
library the user must first call the 3d axis page specification
subroutine

SUB SetAxpg3d (x31$, x3ax, y3l$, y3ax, z31$, z3ax).

This routine resets the 3d axis parameters, sets the axis lengths
by redefining the workbox dimensions, and specifies axis labels.
The character variable parameters (ending with a $) are the
labels; the other parameters are the axis lengths.

The axis annotation and scaling parameters are set using the
subroutine

SUBROUTINE Setaxes3d(xt,xs,xp,xe,yt,ys,yp,ye,zt,zs,zp,ze).

The parameter xt is the axis type; xs is the starting value; xp
is the step value, and xe is the ending value on the axis. The y
and z axis parameters have similar meanings.

Sometimes the 3d view makes the default axis annotation size
inappropriate. The user can set this annotation size variable
using the subroutine

51

SUBROUTINE SetAxhtS(xht, yht, zht),

where the height specifications are in workbox units. There are
times when a user might want to specify a 3d axis, which requires
that all three axes be defined using the Setaxes3d subroutine,
but would like to suppress drawing of any or all of the axes.
Axis drawing can be suppressed using the subroutine

SUBROUTINE nodraw3d(x$, y$, z$).

The character parameters x$, y$, and z$ can take on the values
"ON" or "OFF". The value "ON" means that the axis will not be
drawn while the value "OFF" specified that the axis is to be
drawn.

The 3d scaled plotting commands are

SUBROUTINE Splot3d(x, y, z, p%)

and

SUBROUTINE Spoly3d(x(),y(),z(),npts%,inc%,lintyp%,q%,ht).

These subroutines function in exactly the same manner as their 2d
counterparts.

C - 3d Axis Example Programs

In section V a 3d spiral (figure 22, program example 7) was drawn
without using any axis commands or scaled plotting. In order to
plot the spiral within the workbox the figure had translated 150
units along the x axis, 150 units along the y axis, and -250
units along the z axis. This translation was accomplished in the
section defining the spiral curve. The program, EXAMPLIO.BAS
(note the lack of the final E in the program name - omitted to
make the name 8 characters long), shows how this translation can
be accomplished by specifying a 3d axis system and using scaled
plotting. The defined axes are displayed with the spiral in
figure 26. The code modules necessary for example 10 are
EXAMPLIO.BAS, JK2DPLT.BAS, AX2D.BAS, JK3DPLT.BAS, AX3D.BAS,
DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPLIO.BAS - Program to produce figure 26.
Appendix C, Page 21

REFER TO FIGURE 26. Figure of a stadium-like object plotted
using 3d axis commands and 3d scaled plotting.

Appendix B, Page 20

52

Figure 27 shows a complex display using a variety of 2d and 3d
plotting commands. Supplementary axes are drawn using a
combination of 3d graffiti commands and 2d axis commands
explicitly.

REFER TO FIGURE 27. Graph using 3d axis and scaled plotting
commands.

Appendix B, Page 21

The program EXAMPL11.BAS (note the lack of the final E in the
program name - ommited to make the name 8 characters long) will
produce the plot shown in figure 27. The code modules necessary
for example 11 are EXAMPL11.BAS, JK2DPLT.BAS, AX2D.BAS,
JK3DPLT.BAS, AX3D.BAS, DEVS.BAS, and QBSCR.BAS.

REFER TO EXAMPL11.BAS - Program to produce figure 27.
Appendix C, Page 23

D - Intermediate Plot Files with 3d Axis Commands

The module, JKFSEP.BAS, discussed in section III-E-3, for
producing intermediate plot file output can be used. This module
contains both the 2d and 3d basic plot system routines and all
the 2d and 3d axis routines.

Before compiling the program that produces figure 27 the user
must modify the source code to specify a name for the
intermediate plot file. By replacing the following line of code

devno% = VideoHardware%

with the two lines of code

devno% = JKFIL
CALL SetFnam(devno%,"EXAMPL11.PLT")

the intermediate plot file output will be placed in a file named
figure27.PLT. Note that the output intermediate plot file name
must be specified before the initialization call to PLOTS.

To compile EXAMPL11.BAS modified to produce an intermediate plot
file the user can enter the following batch file using an editor
such as EDLIN. The result of running the batch file will be a
file named EXAMPL11.EXE containing executable code which can be
run by just entering EXAMPL11 via the keyboard.

be EXAMPL11.BAS /ah/x/o;
be JKFSEP.BAS /ah/x/o;
link EXAMPL11 + JKFSEP;

53

Executing the program EXAMPL11.EXE will produce the intermediate
plot file. The file-reading program QF1.BAS, discussed in
section III-J, can be used to send the intermediate plot file to
the desired output device.

54

SECTION VII - CONCLUSION

The JKPLOT basic plot system provides a simple graphics interface
between an IBM PC compatible microcomputer and a variety of
plotting devices. The programs are written in an elementary
language and are structured to make it easy for a user to modify
the system to fit unique needs.

SECTION VIII - REFERENCES

1. ACM/SIGGRAPH Graphics Standards Planning Committee, First

report of the CORE definition subgroup, preliminary draft,

1977.

2. Foley, James D. and Andries Van Dam, 1984, Fundamentals
of Computer Graphics, Addison-Wesley, Reading,
Massachusetts, 664 p.

3. Hopgood, F. R. A., Duce, D. A., Gallop, J. R., and
Sutcliffe, D. C., 1983, Introduction to the graphics kernel
system (GKS): Academic Press, New York, 200 p.

4. Programming CALCOMP Electromechanical Plotters, 1976,
California Computer Products, Inc., 32 p.

55

APPENDIX A

Tables 1-11

APPENDIX A

TABLES

module

name

2D-BASIC
2D-AXES
3D-BASIC
3D-AXES

JK2DPLT

38454

X
X
X
X

AX2D

36357

X

X

JK3DPLT AX3D

21750 8324

X
^r *»

total

size

38454
74811
60204

104885

Table 1 - Four configurations and code size totals of the
device-independent code modules in the JKPLOT system.

'define plot system device
CONST TEXT% = 0

'PC graphics modes for use
CONST PCCGA% = 1
CONST PCEGA% = 2
CONST PCVGA% = 3
CONST PCMCGA% = 4
CONST PCPRF% = 5

'PC graphics modes for use
CONST PCEGAM% = 6
CONST PCVGAM% = 7
CONST PCMCGAM% = 8
CONST PCPRFM% = 9

CONST PCHERC% =10
'Epson Printer Graphics

CONST EPSHR% =11
CONST EPSHW% =12
CONST EPSLR% =13
CONST EPSLW% = 14

'Pen plotter direct output
CONST HPPEN% = 15

'File output
CONST HPFIL% =16
CONST JKFIL% =17

'Laser printer output
CONST HPLAS% = 18
CONST LSFIL% = 19

identifier constants
'text output

with color monitors
'PC Color Graphics
'PC Enhanced Graphics
'PC VGA Graphics
'PC MCGA Graphics
'PC Professional Graphics
'(not implemented)

with monochrome monitors
'PC Enhanced Graphics
'PC VGA Graphics
'PC MCGA Graphics
'PC Professional Graphics
'(not implemented)
'PC Hercules Graphics

'high resolution, 8" carriage
'high resolution, 13" carriage
'low resolution, 8" carriage
'low resolution, 13" carriage

'HPGL Pen Plotter

'HPGL File Output
'JKPLOT Intermediate Plot File

'direct output
'laser file output

Table 2. Numerical codes and defined constants
for JKPLOT output.

Appendix A - Page 1

CONST GBLACK = 0
CONST GBLUE = 5
CONST GGREEN = 7
CONST GLTBLUE = 6
CONST GRED =13
CONST GPURPLE = 3
CONST GORANGE =11
CONST GWHITE = 1

CONST GYELLOW = 9
CONST GBROWN = 2
CONST GNAVY = 4
CONST GPINK = 15
CONST GDKRED =12
CONST GLTGREEN = 8
CONST GLTYELLOW =10
CONST GLTRED = 14

Table 3. Defined constant and symbolic values for use
with the NEWPEN command

Appendix A - Page 2

SUMMARY OF STANDARD CALLING SEQUENCES

CALL PLOTS(XPAGE, YPAGE, DEVNO%, TKERR%)
XPAGE, YPAGE are the dimensions, in inches, of the plot.
DEVNO% is the numerical code for the output device.
TKERR% is the error return code.

CALL PLOT(X, Y, P%)
X, Y are the X,Y coordinates, in inches from the

current origin, of a pen movement's terminal
position.

P% specifies the pen up/down status during
movement (up = 3, down = 2). If negative, a
new origin is established at the new
position. If 999 the plot is terminated.

CALL SYMBOL(X, Y, HT, TXT$, ANGLE)
CALL CSYMBOL(X, Y, HT, Q%, ANGLE, PENUP%)
CALL NUMBER(X, Y, HT, FPN, ANGLE, NDEC%)

X, Y define the relative origin of the character
string (lower left corner of first character
for SYMBOL and NUMBER calls - center of
symbol for CSYMBOL calls).

HT is the height, in inches, of characters
to be plotted.

TXT$ is the string variable containing the text
to be plotted in SYMBOL call.

Q% is the integer code specifying a centered
symbol to be plotted in CSYMBOL call.

FPN is the number to be plotted in NUMBER call.
ANGLE is the angle at which the character string

is to be plotted.
NDEC% specifies the number of decimals to be

plotted in a NUMBER call.
PENUP% specifies whether pen is up or down for a

call to CSYMBOL.
CALL POLYLINE(XARY(), YARY(), NPTS%, INC%, LINTYP%, Q%, HT)

XARY(), YARY() are the arrays of data coordinates.
NPTS% is the number of points in the data array.
INC% specifies the frequency of points used to

define the line segment endpoints.
LINTYP% specifies the type of line to be drawn

through the data points [(0)line/no symbols,
(>0)line+symbols,(<0)symbols/no line] and the
increment between plotted symbols.

Q% is the integer code of the centered
symbol to be plotted.

HT is the height of symbols to be plotted.
CALL NEWPEN(PN%)

PN% is the number of the pen selected.

Table 4. Summary of standard calling sequences
(Page 1 of 2)

Appendix A - Page 3

CALL FACTOR(FACT)
FACT . is the scale factor that determines the

enlargement or reduction of subsequent
moves.

CALL COMMENT(ROW%, COL%, LENGTH%, CMT$)
ROW%, COL% row and column for screen output - for use

by an application programmer
LENGTH% length of field to be erased before printing

comment on screen - for use by an application
programmer

CMT$ is the variable containing the comment.
CALL SetFnam(DEVNO%,FILNAM$)

DEVNO% can be either QBJKF or QBHPF.
FILNAM$ is the name of the file to which the plot

output is to be written.
CALL NEWFONT(FONT%)

FONT% font number (0 <= FONT% <= 7)
CALL NEWCFONT(CFONT%)

CFONT% centered symbol font number
(presently only CFONT% = 0 is implemented)

Table 4. Summary of standard calling sequences
(Page 2 of 2)

QBSCR.BAS -CGA, EGA, and VGA PC screen
QBEP.BAS -Epson Printer (high and low

resolution and 8" and 13" carriage)
QBHP.BAS -Plotters responding to the HPGL

graphics language
QBJKF.BAS -JKPLOT intermediate plot file

output
QBHPF.BAS -HPGL file output
QBLAS.BAS -HP laser printer

 » W » » » » » » » » MM MM MM MM MM MM M» ̂ B M» ̂ M ̂ M ̂ M ̂ M ̂ B ̂ M

Table 5. Device specific code for plot drivers

Appendix A - Page 4

C: CALL PLOTS(XPAGE, YPAGE, DEVNO%, TKERR%)
F: PLOTS, XPAGE, YPAGE
C: CALL PLOTS(5, 10, 3, TKERR%)
F: PLOTS, 5, 10

C: CALL PLOT(X, Y, P%)
F: PLOT, X, Y, P%
C: CALL PLOT(5, ,10, 2)
F: PLOT, 5, 10, 2

C: CALL SYMBOL(X, Y, HT, TXT$, ANGLE)
F: SSYMBOL, X, Y, HT, ANGLE, TXT$
C: CALL SYMBOL(1, 2, .5, "THIS IS TEXT", 0)
F: SSYMBOL, 1, 2, .5, 0, THIS IS TEXT

C: CALL CSYMBOL(X, Y, HT, Q%, ANGLE, PENUP%)
F: CSYMBOL, X, Y, HT, Q%, ANGLE, PENUP%
C: CALL CSYMBOL(1, 2, .5, 3, 0, -1)
F: CSYMBOL, 1, 2, .5, 3, 0, -1

C: CALL NUMBER(X, Y, HT, FPN, ANGLE, NDEC%)
F: NUMBER, X, Y, HT, FPN, ANGLE, NDEC%
C: CALL NUMBER(1, 2, .5, 12.34, 0, 2)
F: NUMBER, 1, 2, .5, 12.34, 0, 2

C: CALL POLYLINE(XARY(), YARY(), NPTS%, INC%, LINTYP%, Q%, HT)
F: POLYLINE, NPTS%, INC%, LINTYP%, Q%, HT
 followed by npts% lines, each of the form XARY(I%), YARY(I%)

C: CALL POLYLINE(XARY(), YARY(), 3, 1, 0, 2, .5)
F: POLYLINE, 3, 1, 0, 2, .5

If 4
3, 6
5/7

C: CALL NEWPEN(PN%)
F: NEWPEN, PN%
C: CALL NEWPEN(13)
F: NEWPEN, 13

C: CALL FACTOR(FACT)
F: FACTOR, FACT
C: CALL FACTOR(.5)
F: FACTOR, .5

Table 6. Examples of intermediate plot file output
for JKPLOT subroutine calls

(Page 1 of 2)

Appendix A - Page 5

C: CALL COMMENT(ROW%, COL%, LENGTH%, CMT$)
F: NCOMMENT, ROW%, COL%, LENGTH%, CMT$
C: CALL COMMENT(1, 2, 50, "THIS IS A COMMENT"
F: NCOMMENT, 1, 2, 50, THIS IS A COMMENT

C: CALL NEWFONT(FONT%)
F: NEWFONT, FONT%
C: CALL NEWCFONT(CFONT%)
F: NEWCFONT, CFONT%

Table 6. Examples of intermediate plot file output
for JKPLOT subroutine calls

(Page 2 of 2)

TYPE AxpgT
xpage
ypage
title
ht
frame
eqplt
eps

END TYPE

AS SINGLE
AS SINGLE
AS STRING *
AS SINGLE
AS INTEGER
AS INTEGER
AS SINGLE

'horizontal page size in inches
'vertical page size in inches

80'title, centered at top of page
'annotation character height
'TRUE = draw all four sides
'TRUE = equal X and Y scales
'eps = distance tolerance var.

Table 7. - Structured variable for storing axis information
common to both vertical and horizontal axes.

Appendix A - Page 6

TYPE AxprmT
which
set
org
scl
typ
xpos
ypos
axis
strt
xend
stp
xstep
cycle
ht
dec
side
stck
grd
nodraw
nonum
nolab
nofrst
nolast
noend
lab

END TYPE

AS STRING *
AS INTEGER
AS SINGLE
AS SINGLE
AS INTEGER
AS SINGLE
AS SINGLE
AS SINGLE
AS SINGLE
AS SINGLE
AS SINGLE
AS SINGLE
AS SINGLE
AS SINGLE
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS STRING *

1 '"X" = horizontal, "Y" = vertical
'TRUE if parms are set, else FALSE
'offset variable for scaling
'scale multiplier for scaling
'axis type (See Section B)
'x coordinate of start of axis
'y coordinate of start of axis
' length of axis in inches
'starting tick annotation value
'tick annotation value at axis end
'type 2 axis-inch increment value
'type 1 axis-annotation step value
'type 3 axis-length of one cycle
'ht of annotation in inches
'no of decimals for numbers
'0,1 for normal; -1 for reversed
'no of subticks per increment
'TRUE if grid will be drawn
'TRUE=do not draw anything
'TRUE=do not draw numbers
'TRUE=do not label axis
'TRUE=do not draw first tick no
'TRUE=do not draw last tick no
'TRUE=nofrst and nolast

80'axis label

Table 8. - Structured variable type for defining axes

Appendix A - Page 7

FUNCTION autoplt% (xpage, ypage, xmin, xmax, ymin, ymax,
errmsg$)

FUNCTION axis2% (xpage, ypage, xmin, xmax, ymin, ymax,
calconly%, errmsg$)

SUB SetAxes (xtyp, xorig, xstep, xend, ytyp, yorig, ystep, yend)
SUB SetAxis (wch$, atyp, aorig, astep, aend, alen, alab$, aside%,

xpos, ypos)
SUB grid (xgrd%, ygrd%)
SUB frame ()

Table 9. - Axis routines which cause drawing to occur.

SUB SetAxpg (xpage, ypage, tit$, xlab$, ylab$, xlen, ylen)
SUB eqplt (ind$)
SUB nodraw (x$, y$)
SUB noend (x$, y$)
SUB nofrst (x$, y$)
SUB nolab (x$, y$)
SUB nolast (x$, y$)
SUB nonum (x$, y$)
SUB ResetAxes ()
SUB SetAxht2 (xht, yht)
SUB xticks (n%)
SUB yticks (n%)
SUB RetAxprms (prmx AS AxprmT, prmy AS AxprmT)
SUB SetAxprms (prmx AS AxprmT, prmy AS AxprmT)

Table 10. Axis parameter-setting routines

Appendix A - Page 8

SUB splot (x, y, p%)
SUB ssymbol (x, y, ht, txt$, angle)
SUB scsymbol (x, y, ht, tkiq%, angle, icode%)
SUB sNumber (x, y, ht, fpn, angle, ndec%)
SUB spolyline (xary(), yary(), npts%, inc%, lintyp%, tkiq%, ht)

Table 11. - Scaled plotting subroutines

Appendix A - Page 9

APPENDIX B

Figures 1-27.

RSCII

32

33

 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

 53

54

55

HflP

0

"

$

X

'

(

)

X

+

,

.

/

0
1
2
3
4
5
6
7

SIMPLEX

1

1

11

#

s
%
&

1

(
)
*

+
,

.

/
0
1
2
3 ;
4
5
6
7

DUPLEX

2

f

n

*
$
%
&
t

- (

)
*

+

,

.

/
0
1
2
3
4
5
6
7

TRIPLEX

3

I
ti

*

%

&
'

(

)
*

+

,

.

/
0
1
2
3
4
5
6
7

ITflLIC

4

/
if

#

%

A
'

(

)
*

-f

*

.

/
0
1
2
3
4
5
6
7

SCRIPT

5

/
n

*
%

<fir
»

r
)
*
4-

«

.

/
0
/
2
3
4
5
6
7

GREEK

6

!
n

#
S
%
<Sc

1

(
)
*

+
,

.
/
0
1
2
3
4
5
6
7

SPECIflL

7

1

n

*

$

%

&
f

(

)
*

-f

,

.

/
0
1
2
3,
4
5
6
7

Figure 1. - JKPLOT character fonts for standard SYMBOL call
(page 1 of 4)

Appendix B - Page 1

flscn

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

HflP

0

8
9

<
-

>
?

fl
B
C
D
E
r
6
H
I
J
K
L
M
N
0

SIMPLEX

1

8
9
*

;
<
=
>
?
@
A
B
C
D
E '
F
G
H

1
J
K
L
M

j
0

DUPLEX

2

a
9
*

;
<
=
>
9

@

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0

TRIPLEX

3

B
9
:
;
<
=
>
?
©
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0

ITRL1C

4

a
9
*

;
<
r=

>

9

@

A
B
C
D
E
F
C
H
J
J
K
L
M
N
0

SCRIPT

5

a
9
*

t

<
r=

>

?

@

A
(B
C
&
e
?
b
H
$
f
K
£
m
n

GREEK

6

8

9

i

<

ss

>

9

@

A
B
H
A
E
4>

r
X
i

K
A
M
N
0

SPECIflL

7

8
9

»"

<
=

>
9

@

IP

1

P
ft
Mz
a
p
R
R
ft
R
M.
Ot
Eo

Figure i. - JKPLOT character fonts for standard SYMBOL call
(page 2 of 4)

Appendix B - Page 2

ASCII

80

81

. 62

83

64

65

66

87

68

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

HRP

0

P

Q

R

S
T
U
V
W
X
Y
Z

a
b
c
d
e
f

9

SIMPLEX

1

P

Q

R
S
T
U
V
W
X
Y
Z
[
\
]
t
_

0

b
c
d
e
f

g

DUPLEX

2

P

Q
R
S
T
U
V
W
X
Y
Z
[
\
]
t
_
*

a
b
c
d
e
f

g

TRIPLEX

3

P

Q
R
S
T
U
V
W
X
Y
Z
[
\
]
t
_
*

a
b
c
d
e
f
g

ITfiLIC

P

Q
R
S
T
U
V
W
X
Y
Z

_ [
\
]
t
 M

4

a
6
c
d
e

f
9

SCRIPT

5

(P

J2

fc

&
3T
U
V
W
X

y
9
[

\

]
t

^^^

Of

L
o
<L
»

/
f

GREEK SPECIfiL

6 7

n Co
0 <

P >

I 1

T II
T

+
n ±
I =F
\1/ vt^ ^%

Z
[-r

\

] *
t ==

_ <
i ^

a ^
P
?) ' °V
<5
e o

?
r *

Figure 1. - JKPLOT character fonts for standard SYMBOL call
(page 3 of 4)

Appendix B - Page 3

Rscn

104

105

. 106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

.125

126

127

MRP

0

h

I

j
k

I

m
n
o

P
q
r
s
i
u
V

V

X

a
z

SIMPLEX

i

h
i

j
k
1
m
n
0

P
q
r
s
t
u
V

w
X

y
z
11
I
~
t

DUPLEX

2

h
*

j
k
1
m
n
o
P
q
r
s
t
u
V

IT

X

y
z
I1j
~
0

TRIPLEX

3

h
i
j
k
1
m
n
o
P
q
r
B

t

U

V

w
X

7
z
J1}
~
o

ITRLIC

4

h
i
j
k
I
m
n
o
P
q
r
s
t
V

V

w
X

y
z
\\
\
~
o

SCRIPT

5

A,
*

/
k
t

 m,

-TV

*

/v

f
+
6*

t

U,

t*-

w

*
y
^
I
1
I
~
o

GREEK

6

X
I

K

X

M
V

0

7T

tf

P
Q

r
V

w
t
V
£
-1
1
{
~

SPECIRL

7

9

4

»

>

7

,

,

0

1

2

3

4

S

*

7

*

*

Figure i. - JKPLOT character fonts for standard SYMBOL call
(page 4 of 4)

Appendix B - Page 4

0 T

2 A

3 +

4 X

5 O

6 t

7 X

8 Z

9 Y

10 X

11 *

12 X

13 1

Figure 2. Symbols for centered CSYMBDL call

LIHTTP* - -2

LIHTTP* - -1

LINTTPX - Q

LINTTPI - 1

LINTTPX - 2

INC* - 1 INCS - 2 INC* - 3 INCS - 4

Figure 3. Examples of type of line drawn for selected
values of the parameters LINTYPX and INC7.

Appendix B - Page 5

EXRMPLE

Figure 4. An elementary example showing the use of the
JKPLOT system (size reduced)

EXflMPLE

MODIFIED

Figure 5. An example showing the result of modifying the
intermediate plot file for Figure 4
(size reduced)

Appendix B - Page 6

Example 2

Exampl* 2

<n

X-flXIS

OJ

to
_j
3C

Z 31JUUX3
EXRHPLE 2

n

to

 f PT-2

Figure 6. An example showing the use of most of the
elementary commands available in the JKPLOT
system (size reduced)

Appendix B - Page 7

WORLD COOKOS PLOT INCHES DCY CDORDS

WC HINOON HC VIEMftttT/MS MINDOM MS V1CMKMTT

Figure 7. Sequence of images showing a duck in world
coordinates, normalized device coordinates,
and screen coordinates under default plot
system settings

WORLD DOORDS PLOT INCHES DEV COOROS

47t

MC NINOOM MC MINDOM M9 VICMrtWT

Figure 8. Sequence of images of a duck in world
coordinates, normalized device coordinates,
and screen coordinates with a world coordinate
window, work station window, and work station
viewport selected

Appendix B - Page B

WORLD COOROS PLOT INCHES OEV COORDS

319

HC MINOOM MC VXCMTORT/ie MINOOM M3 VICMfDKT

Figure 9. Sequence of images of a duck in world coordinates,
normalized device coordinates, and screen
coordinates with a world coordinate viewport half
as high as the world coordinate window

Appendix B - Page 9

Po
in
t

FI
RS

T
TH

EN

RO

TA
TE

TH
EN

TR

AN
SL
AT
E

3> a a 19 D a H-

X

F
i
g
u
r
e

iO

.
S
e
q
u
e
n
c
e

of

i
m
a
g
e
s

of

a

d
u
c
k

s
h
o
w
i
n
g

th

e
o
r
d
e
r

of

o
p
e
r
a
t
i
o
n
s

to

c
o
m
p
l
e
t
e

a

t
r
a
n
s
f
o
r
m
a
t
i
o
n

HC
 O
BJ

EC
T

1

HC TR
AN
 '

NC

OB
JC
CT

TR
AN
Sr
OR
lC
D

NC CL
IP

 *
iH

UM
Hi

CL
IP
PE
D

.
«
?
.
.
,

MO
P

'

PL
OT

IN

CH

OB
JE

CT

1
1

.
»«

..
.,

,
TR

fl
N
'

PL
OT

IN
CH

OB
JE

CT

TR
AN

SF
OR

ME
D

»

,
CL
IP
 '

PL
OT

IN

CH

OB
JE

CT

TR
AN

SF
OR

ME
D

CL
IP
PE
D

.,
.«

,
Hf

lP

OB
JE

CT

IN

DE

VI
CE

CO

OR
DI

NA
TE

S

1
MO

RL
D

CO
OR

DI
NN

TE
 P

IP
E

HO
RK

ST
AT
IO
N

PI
PE

F
i
g
u
r
e

ii

.
Th

e
c
o
m
p
l
e
t
e

2
-
d
i
m
e
n
s
i
o
n
a
l

J
K
P
L
O
T

p
i
p
e
l
i
n
e

Appen
dix B
 - Pag

e 11

M
rt

M
fT

*
'

IR
M

ft
rC

A
r^

B
*

^
V*

»
. "

"fl
U
r

A
4

TO
M

r*
W

KB
A

^ H
-T

H
t

"fi
S

ffl
T

I
r
'
J
fK

1
I
I

1
M

M
J

M
M

O
IM

C
fir

e
W

K
m

rr
iM

 p
«r

(£
)

*
(i
ll
)

*>
t|
l)

*
dt)

IW
1M

(J
l)

M
r

dD
*
'

(II
I)

i
ii

i
M

M
J

M
O

Ti
w

t f
ire

W

K
im

iH
 r
rt

(jii) >
*

&
i
t

^i
*

ij^
l

1
1

il

.
Tl

lr*
^

if
r

^
*

1
M

M
J

ew
B

iM
C

 fi
re

W

K
im

rt
H

 r
rt

&

(ill)
*
'

&
11

11
1

y
il

^
i

i

"
y

*
*
'

^
*

M
M

J
M

OH
IIM

C
fir

e
W

K
nu

nw
 r
rt

v

(f
:

*
'

&
^

V
*

& i i
A

-
$

"
y

*

~I>

M
M

J
ew

B
iM

C
 fi

re

W
K

m
ri
w

 ri
re

(§
1 1

-M
r*

W
iV

y
-*

-
$i i

i
A

*
^

^

^
*

^ 1
M

M
J

e
w

vt
im

 fi
re

W

K
it
w

i*
 r

ire

0
rf

ll
^

il

V
U

ft
if
r

^
(
ii

^
"-

1

^

I
I
t

i
M

M
J

H
0

0
IM

C
 f
ir
e

W

K
 n

W
H

M
 P

IT

t
A

H

«
"

>1
*

ft
*

^
A

^
-*

-
F j

I
I
I

I
M

M
J

M
O

VI
W

K
fir

e
W

K
m

ri
w

 r
rc

jx
rL

o
r
t

oi
nc

w
tO

N
m

,
rir

cL
iN

C

9T
C

P
1

oe
rn

uL
T

ri
rc

L
ir
c

3t
cr

 2
C

U
LL

 C
v«

l2
rf

T
ro

n
(.

2
9

r
.2

9
,

.9
,

0
,

4
3

,
1,

1
,

 a
t(

M

W
IL

L
9
*l

T
rn

2
C

M
C

%

 o

tt
J
I

3
tC

f
3

9%

3
«
tC

U
p
>

l>
M

C
~,

.7

9
,

1,

0
,

1)

3T
C

f
4

a
t

9
«

tN
B

N
ln

tU
9

,
1,

0

,
.9

1
a

ll
-

9
*l

M
0

V
p

»
IO

,
.3

,
.3

,
11

oX

 9

*i
C

U
p

»
(M

C
%

.7

5
,

1
,

0
,

1)

3T
C

r
9

C
U

LL
 C

vs
lW

T
ro

n
C

.2
3
,

.7
9

,
.9

,
0

,
4

9
,

1,

1
,

!(

))

C
U

LL
 9

*l
T

rn
2
O

4
9
%

 o

tU
I

9T
C

f
6

 »
 -

3
»
lC

U
p
*l

'V
3
",

0

,
1,

.7

3
,

1)

3T
C

f
T

B
»

-
9
*t

M
»
N

ln
tl
.9

,
1,

.9

,
II

0
*

-
9
*t

M
iV

p
»
M

2
0
,

2
4

0
,

12
0,

39

81

oX

S

«
iC

U
p

K
(M

S
%

O

/
I,

.7

5
,

1)

F
i
g
u
r
e

12
.

I
m
a
g
e
s

of

an

o
c
t
a
g
o
n

as

it

is

p
a
s
s
e
d

t
h
r
o
u
g
h

t
h
e

J
K
P
L
O
T

p
i
p
e
l
i
n
e

u
n
d
e
r

c
u
m
u
l
a
t
i
v
e
l
y

m
o
r
e

c
o
m
p
l
e
x

o
p
e
r
a
t
i
o
n
s

n - no. SWITCHES orr B - ST.PJCROT ON

C - ST.CLPCCN ON 0 - ST.NOCOflSP ON

Figure 13. Effect of JKPLOT system switches

MMMMM OPTION SELECTION *****

PLOT CENTERING
L - Lower Left
C - centered

PLOT WINDOW
B - defouLl
M - eeLecL

Default 0
Preeenl 0

DefouLt 0
Preeent 0
Clipping 0

XHox 1
YMox 1

PLOT ROTRTION
U " unrelated
R - rotated

PLOT VIEWPORT
5 - default
V - eelect

RSPECT PRESERVE
C - oep preserve
T aspect off

PLOT SCRLINB
F - viewport fit
I " eelect(lnch)

WINDOW
 x r

10 0 7
10 0 7

VIEWPORT
639 0
639 0
639 0

479
479
447.3

SCflLE MULTIPLIER
XD.foult 1 XPr...nt 1
YOefoult 1 YPreeent 1

INSERT OPTION SELECTION KEY OR (PJ TO PLOT, 10) TO QUIT

Figure 14. - Menu for plot modification selections available
using QF1.BAS

Appendix B - Page 12

DEFflULT fiXIS PRRRhETERS

X O.ec -

02 468
X-fiXIS

10 12

Figure 15. - Axis plot using all default parameters
(size reduced)

R _____________
0 IB 20 30 40 SO SO TO M 90 1*0

COHPLETE

.....
 ID SO 30 «0 SO 80 70 89 GO 190

......
NO NUMBER

...........
It n 30 40 SO SO 70 M 90 ItO

NO FIRST

E
p 10 ao an « so eo 70 00 BO

HO LflST

..........
10 ao 30 « so eo ro 90 go

NO CNO

Figure 16. - Suppression function effects on a single horizontal
axis. A) no suppression, B) nolab, C) nunum.
D) nofrst, E) nolast, F) noend

Appendix B - Page 13

SIMPLE

 Z 4 I I ! 12
X-fttIS

SIMPLE-LOG

-1.0 -». .0 1.5 1.0
x-flxis

FflNCY
 2 4 I 10 12 -

R

»

e ,

T-

\

2

\'

N

4

S,

/

^
/

/
/

*

111 12

a
VI

X-RX1S

-i.O -0.C 1.0 t.C l.P
x-nxis

Figure 17. - Axis and scaled plotting example.

Appendix B - Page 14

1-5,-

Figure IB. - Location of the hypothetical "viewer" as specified
by use of the subroutine call "vuabs(-5,-5,5)"

Figure 19. - Location of the hypothetical "viewer" as specified
by use of the subroutine call "vuang(45,35,B.66)

Appendix B - Page 15

(0,I, 1)

(0,0,0)

(1,1,0)

(1,0,0)

HORIZ
-63

-K VERT

24

 todliM

Figure 20. - Figure of a stadium-like object plotted within the
default unit 3d workbox as viewed from the default 3d viewpoint

Appendix B - Page 16

Figure 21. - Four figures of a stadium-like object plotted within
specified-workboxes. The workbox dimensions as specified by the
Setwkbox subroutine are A) 1,1,1 B) 2,2,2 C) 1,2,1 and D) 1,1,2

Appendix B - Page 17

I HORIZ

71 -135
-K VERT

30

SPlRflL

Figure 22. - 3D spiral drawn using absolute 3d coordinates

Appendix B - Page IB

- 3
LX" war
I" »«

amnn
rune

Figure 23. - Defining the orientation of a plane in 3 dimensions
for the Strgrafiti subroutine

HOfttt

amnx

Figure 24. - A simple plot using the grafiti commands

Appendix B - Page 19

B

0

Figure 25. - Reproduction of five figures from Foley and Van Dam
[23. A) Figure 8.46, page 307. B) Figure 8.47, page 307. C)
Figure 8.47, using code on page 308. D) Figure 8.49, page 309
E) Figure 8.41, page 303

J HORIZ
XT" -135

I/" tCRT

I 31

90 SPIRAL USING

SCALED PLOTTING

Figure 26. 3D spiral plotted using 3d axis commands and 3d
scaled plotting

Appendix B - Page 2O

HORIZ
-46

VERT

28

PHflSE

DJRGRftM

Figure 27. Graph using 3d axis and scaled plotting commands

Appendix B - Page 21

APPENDIX C

EXAMPLE PROGRAMS

EXAMPLE1.BAS

'program examplel.bas to produce figure 4
' $INCLUDE: 'jk2dplt.inc'
DECLARE SUB drawex (xp! , ypi , ht!)
DECLARE SUB drawrect (1, r, b, t)
DECLARE FUNCTION VideoHardware% ()
'initialize the plot
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "examplel.plt")

xpage = 5
ypage = 5
CALL Plots(xpage, ypage, devno%, erret%)
CALL drawex(5, 5, .5)

'terminate the plot
CALL Plot(0, 0, 999)
END

SUB drawex (xp, yp, ht)
CALL Plot(0, 0, 3)
CALL Plot(xp, 0, 2)
CALL Plot(xp, yp, 2)
CALL Plot(0, yp, 2)
CALL Plot(0, 0, 2)

'construct, locate, and plot the text "EXAMPLE" in the center of
the plot

t$ = "EXAMPLE"
rot = 0
X = .5 * (xp - ht * LEN(t$))
y - .5 * (yp - ht)
CALL Symbol(x, y, ht, t$, 0)

END SUB

SUB drawrect (1, r, b, t)
CALL Plot(l, b, 3)
CALL Plot(r, b, 2)
CALL Plot(r, t, 2)
CALL Plot(l, t, 2)
CALL Plot(l, b, 2)

END SUB

Appendix C - Page 1

EXAMPLE2.BAS

'program example2.bas to produce figure 6
' $INCLUDE: 'jk2dplt.inc'
'declarations for subroutines to draw each of the four subareas
DECLARE SUB upperleft ()
DECLARE SUB lowerleft ()
DECLARE SUB lowerright ()
DECLARE SUB upperright ()
DECLARE FUNCTION VideoHardware% ()
'program to demonstrate use of basic plot system
DIM SHARED xpage, ypage
'set page size and initialize plot
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "example2.pit")

xpage = 10
ypage = 10
CALL Plots(xpage, ypage, devno%, erret%)
IF NOT erret% THEN

'draw outline and four subareas
CALL Plot(0, 0, 3)
CALL Plot(xpage, 0, 2)
CALL Plot(xpage, ypage, 2)
CALL Plot(0, ypage, 2)
CALL Plot(0, 0, 2)
CALL Plot(xpage / 2, 0, 3)
CALL Plot(xpage / 2, ypage, 2)
CALL Plot(0, ypage / 2, 3)
CALL Plot(xpage, ypage / 2, 2)

'comment call for user information use
CALL Comment(24, 1, 78, "UPPER LEFT CORNER")

'move origin to upper left subarea
CALL Plot(0, ypage / 2, -3)
CALL upperleft

'comment call for user information use
CALL Comment(24, 1, 78, "LOWER LEFT CORNER")

'move origin to lower left subarea
CALL Plot(0, -ypage / 2, -3)
CALL lowerleftCAUL lowerierr

'use comment for information
CALL Comment(24, 1, 78, "LOWER RIGHT CORNER")

'move origin for lower right subarea
CALL Plot(xpage / 2, 0, -3)
CALL lowerright

'use comment for information
CALL Comment(24, 1, 78, "UPPER RIGHT CORNER")

'move origin for upper right subarea
CALL Plot(0, ypage / 2, -3)
CALL upperright

Appendix C - Page 2

EXAMPLE2.BAS (continued)

'move origin back to original position
CALL Plot(-xpage / 2, -ypage / 2, -3)

'end plot
CALL Plot(0, 0, 999)

ELSE
PRINT "open error "; erret%

END IF
END

SUB lowerleft
DIMxary(lO), yary(10)

CALL Newpen(GRED)
'draw axis lines

CALL Plot(l, 1, 3)
CALL Plot(4, 1, 2)
CALL Plot(l, 1, 3)
CALL Plot(l, 4, 2)

'label axes
CALL Symbol(.7, 1.9, .2, "Y-AXIS", 90)
CALL Symbol(1.9, .4, .2, "X-AXIS", 0)

'show use of LINE call
FOR i = 1 TO 10

xary(i) = (i - 1) / 3 + 1
yary(i) = xary(i)

NEXT i
CALL PolyLine(xary()
FOR i = 1 TO 10

yary(i) = SQR(xary(i))
NEXT i
CALL PolyLine(xary(), yary(), 10, 1, 1,
CALL PolyLine(yary(), xary(), 10, 1, 0,

END SUB

SUB lowerright
DIM x(3), y(3), d$(3)

CALL Newpen(GGREEN)
'simple annotated point plotting

Y(l) = 4
x(2) = 4
y(2) = 3
x(3) = 2
y(3) = 1
d$(l) = "PT-1"
d$(2) = "PT-2"
d$(3) = "PT-3"
FOR i = 1 TO 3

yary(), 10, 1, -1, 0, .1)

1)
1)

CALL Csymbol(x(i),
xp = x(i) + .2
yp = y(i) - .2

y(i), .15, 3, 0, -1)

Appendix C - Page 3

EXAMPLE2.BAS (continued)

CALL Symbol(x(i) + .15, y(i) - .15, .15, d$(i), 0)
NEXT i

END SUB

SUB upperleft
ht = .25
txt$ = "Example 2"
xp = xpage / 4 - .5 * ht * LEN(txt$)
yp = ypage / 4 - .5 * ht
CALL Symbol(xp, yp, ht, txt$, 0)

'show use of FACTOR call
CALL Factor(.5)
CALL Symbol(xp, yp, ht, txt$, 0)
CALL Factor(1)

END SUB

SUB upperright
'set parameters for standard SYMBOL call

CALL Newpen(GLTBLUE)
'show use of angles with SYMBOL call

ht = .15
a$ = " EXAMPLE 2"
xp = xpage / 4
yp = ypage / 4
FOR i = 0 TO 7

d = 45 * i
CALL Symbol(xp, yp, ht, a$, d)

NEXT i
END SUB

Appendix C - Page 4

EXAMPLES.BAS

'program examples.bas showing stages of pipeline
' $INCLUDE: 'jk2dplt.inc'
DECLARE SUB arrowl (xll, yll, x2i, y2! , hi!)
DECLARE SUB xsymbol (x, y, ht, txt$, angle)
DECLARE SUB Isymbol (x, y, ht, txt$, angle)
DECLARE SUB drawoct (x, y, r)
DECLARE FUNCTION VideoHardware% ()

'use this devno% for screen output
devno% = VideoHardware%

'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "examples.pit")

DIM mat(4, 4)
sl% = 1
WHILE sl% <> 0

CLS
a$ = "PIPELINE DEMO PROGRAM"
LOCATE 2, 40 - .5 * LEN(a$)
PRINT a$
PRINT
INPUT "Insert step number (between 1 and 7 : 0 to quit): "; sl%
IF Sl% 0 0 THEN
xpage = 1
ypage = 1
CALL Plots(xpage, ypage, devno%, tkerr%)
IF sl% <> 7 THEN

CALL Plot(0, 0, 3)
CALL Plot(xpage, 0, 2)
CALL Plot(xpage, ypage, 2)
CALL Plot(0, ypage, 2)
CALL Plot(0, 0, 2)
CALL Plot(xpage / 2, 0, 3)
CALL Plot(xpage / 2, ypage, 2)
CALL Plot(0, ypage / 2, 3)
CALL Plot(xpage, ypage / 2, 2)

END IF
IF sl% >= 2 THEN

CALL Eva12dTran(.25, .25, .5, 0, 45, 1, 1, mat())
CALL SetTrn2("CTM", mat())

END IF
IF sl% >= 3 THEN

a% = SetClip%(»CTM", .75, 1, 0, 1)
END IF
IF sl% >= 4 THEN

a% = SetWcWin%(.5, 1, 0, .5)
a% = SetWcVp%(0, .5, .5, 1)
a% = SetClip%(»CTM", .75, 1, 0, 1)

END IF

Appendix C - Page 5

EXAMPLE3.BAS (continued)

IF sl% >= 5 THEN
CALL Eval2dTran(.25, .75, .5, 0, 45, 1, 1, mat())
CALL SetTrn2("WS" / mat())

END IF
IF sl% >= 6 THEN

a% = SetClip%("WS", 0, 1, .75, 1)
END IF
IF sl% >= 7 THEN

a% = SetWsWin%(.5, 1, .5, 1)
a% = SetWsVp%(120, 240, 120, 360)
a% = SetClip%("WS" / 0, 1, .75, 1)

END IF
CALL drawoct(.25, .25, .22)
CALL Plot(0, 0, 999)

END IF
WEND

END

- XI))

SUB arrowl (xl, yl, x2, y2, hi)
IF xl = X2 THEN

IF y2 > yl THEN
angl = 3.14157 / 2

ELSE
angl = 3 * 3.14157

END IF
ELSE

angl = ATN((y2 - yl)
IF X2 < xl THEN

angl = angl + 3
END IF

END IF
rang2 = angl +
rang3 = angl - 30
CALL Plot(xl, yl, 3)
CALL Plot(x2, y2, 2)
CALL Plot(x2 - hi * COS(rang2), y2 - hi * SIN(rang2),
CALL Plot(x2, y2, 3)

14157

30 *
*

3.14157 / 180
3.14157 / 180

2)

CALL Plot(x2 - hi * COS(rang3), y2 - hi * SIN(rang3), 2)
END

SUB

SUB

drawoct (x, y, r)
1 = r / (1 +
CALL Plot(x +
CALL Plot(x -
CALL Plot(X -
CALL Plot(x -
CALL Plot(x -
CALL Plot(x +
CALL Plot(x +
CALL Plot(x +
CALL Plot(x +

1.414)
i, y
i, y
r, y
r, y
i/ y
i, y
r, y
r, y
i, y

r,
r,
1,
1,
r,
r,
1,
1,
r,

3)
2)
2)
2)
2)
2)
2)
2)
2)

Appendix C - Page 6

EXAMPLES.BAS (continued)

CALL Plot(x - 1, y + r, 3)
CALL Plot(x - 1, y - r, 2)
CALL Plot(x - 1 / 2, y + r, 3)
CALL Plot(x - 1 / 2, y - r, 2)
CALL Plot(x, y + r, 3)
CALL Plot(x, y - r, 2)
CALL Plot(x + 1 / 2, y + r, 3)
CALL Plot(x + 1 / 2, y - r, 2)
CALL Plot(x +1, y + r, 3)
CALL Plot(x + 1, y - r, 2)

END SUB

SUB Isymbol (x, y, ht, txt$, angle)
xp = x - ht * (LEN(txt$) + .5)
yp = y = .5 * ht
CALL Symbol(xp, y, ht, txt$, angle)

END SUB

SUB xsymbol (x, y, ht, txt$, angle)
xp = x - .5 * ht * LEN(txt$)
CALL Symbol(xp, y, ht, txt$, angle)

END SUB

Appendix C - Page 7

EXAMPLE4.BAS

'program example4.bas to produce figure 17
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'ax2d.inc'
DECLARE FUNCTION VideoHardware% ()

dm% = 100
DIM xary(dm%), yary(dm%)

'define parabola
xmin = 1E+20
ymin = xmin
xmax = -xmin
ymax = xmax
FOR i% = 1 TO 10

xary(i%) = i%
yary(i%) = (5.5 - i%) "2
IF xary(i%) < xmin THEN xmin = xary(i%)
IF yary(i%) < ymin THEN ymin = yary(i%)
IF xary(i%) > xmax THEN xmax = xary(i%)
IF yary(i%) > ymax THEN ymax = yary(i%)

NEXT i%
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "example4.pit")
'draw page outline

xpage = 7: ypage = 7
CALL Plots(xpage, ypage, devno%, ierr%)
CALL Plot(0, 0, 3)
CALL Plot(xpage, 0, 2)
CALL Plot(xpage, ypage, 2)
CALL Plot(0, ypage, 2)
CALL Plot(0, 0, 2)

'draw the axes - left, simple side
CALL ResetAxes
CALL Plot(0, 4, -3)
CALL SetAxpg(3, 3, "SIMPLE", "X-AXIS", "Y-AXIS", 2, 2)

'autoplot centers the 2x2 inch axis square in the 3x3 page square
a% = autoplt%(3, 3, xmin, xmax, ymin, ymax, errmsg$)

'draw the parabola
CALL spolyline(xary(), yary(), 10, 1, 0, tkiq%, ht)

'draw the axes - right, fancy side
CALL Plot(0, -4, -3)
CALL Plot(4, 4, -3)
CALL ResetAxes
CALL SetAxpg(3, 3, "FANCY", " X-AXIS", "Y-AXIS", 2, 2)

'calculate defaults first
a% = axis2%(3, 3, xmin, xmax, ymin, ymax, -1, errmsg$)
CALL xticks(4)
CALL yticks(4)
CALL grid(2, 2)

Appendix C - Page 8

EXAMPLE4.BAS (continued)
c******

'draw the regular axes
a% = axis2%(3, 3, xmin, xmax, ymin, ymax, 0, errmsgS)

'draw the parabola
CALL spolyline(xary(), yaryO, 10, 1, 0, tkiq%, ht)

'draw the opposite side axes
CALL SetAxisC'Y'', 1, -5, 5, 25, 2, "RIGHT SIDE", -1, 2.5, .5)
CALL SetAxisC'X", 1, 0, 2, 12, 2, "", -1, .5, 2.5)
CALL Plot(-4, -4, -3)

'example using log type axis for y axis
FOR i% = 1 TO 100
yary(i%) = CSNG(i%) / 100
xary(i%) = EXP(-3! * yary(i%)) * SIN(yary(i%) * 8 * 3.14157)

NEXT i%
CALL ResetAxes
CALL SetAxpg(3, 3, "SIMPLE-LOG", " X-AXIS", "Y-LOGAXIS", 2, 2)
CALL SetAxesd, -1, .5, 1, 3, .01, 1, 0)
CALL spolyline(xary(>, yaryO, 100, 1, 0, tkiq%, ht)
CALL Plot(4, 0, -3)
CALL ResetAxes
CALL SetAxpg(3, 3, "FANCY-LOG", » X-AXIS", "Y-LOGAXIS", 2, 2)
CALL xticks(5)
CALL frame
CALL SetAxesd, -1, .5, 1, 3, .01, 1, 0)
CALL srid(5, 1)
CALL spolyline(xary(), yaryO, 100, 1, 0, tkiq%, ht)
CALL SetAxisC'Y", 3, .01, 1, 0, 2, "RIGHT SIDE", -1, 2.5, .5)
CALL SetAxisC'X", 1, -1, .5, 1, 2, "", -1, .5, 2.5)
CALL Plot(-4, 0, -3)
CALL Plot(0, 0, 999)
END

Appendix C - Page 9

EXAMPLES.BAS

'program examples.bas to generate figure 20
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'jk3dplt.inc'
DECLARE FUNCTION VideoHardware% ()
DECLARE SUB stand ()
DATA -50, 50, 5, .4 , .3 , .5
DATA 60, 150, 5, .4, .4 , .7
DATA 180, 280, 5, .3, .35, .5
DATA 290, 320, 5, .2, .25, .3
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "fig20.plt")
'initiate the 2d plot

xpage =10
ypage =10
CALL Plots(xpage, ypage, devno%, tkerr%)

'initiate 3d plot, set viewpoint, and set up display frame
CALL Bgn3d
CALL vuabs(5, -10, 5)
CALL autoframe(10, 10, "stadium", " ")

'draw workbox and call subroutine to draw stadium-like figure
CALL drawwkbox
CALL stand

'end the 3d portion of the plot
CALL end3d

'add annotation for workbox corners to show orientation
CALL Symbol(1, 2.5, .2, "(0,0,0)", 0)
CALL Symbol(5.7, 1.75, .2, "(1,0,0)", 0)
CALL Symbol(2, 4.75, .2, "(0,1,0)", 0)
CALL Symbol(.22, 7.6, .2, "(0,0,1)", 0)
CALL Symbol(8, 3.5, .2, "(1,1,0)", 0)
CALL Symbol(3, 9, .2, "(0,1,1)", 0)
CALL Symbol(7.5, 8.5, .2, "(1,1,1)", 0)

'terminate the plot
CALL Plot(0, 0, 999)
END

SUB stand
DIMS(4), e(4), p(4), r(4), 1(4), h(4)
'read parameters defining stadium-like figure

FOR i% = 1 TO 4
READ s(i%), e(i%), p(i%), r(i%), l(i%), h(i%)

NEXT i%
'draw the figure

FOR i% = 1 TO 4
FOR j = s(i%) TO e(i%) STEP p(i%)

a = .0174533 * j
CALL Plot3D(.5, .5, .1, 3)
CALL Plot3D(.5, .5, l(i%), 2)

Appendix C - Page 10

EXAMPLES.BAS (continued)

CALL Plot3D(.5 + r(i%) * COS(a), .5 + r(i%) * SIN(a), h(i%), 2)
CALL Plot3D(.5 + r(i%) * COS(a), .5 + r(i%) * SIN(a), 0, 2)

NEXT j
NEXT i%

END SUB

Appendix C - Page 11

EXAMPLES.BAS

'program examples.bas to produce figure 21
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'jk3dplt.inc'
DECLARE FUNCTION VideoHardware% ()
DECLARE SUB stand ()
DECLARE SUB frmdrw (xl, xu, yl, yu, bx, by, bz)
DIMxl(4), x2(4), yl(4), y2(4) , bx(4), by(4) , bz(4), bs$(4)
DIM SHARED s(4), e(4), p(4), r(4), 1(4), h(4)
'define the 3d viewports, the workbox sides, and identifying symbol
DATA .5, 4.5, 6, 10, 1, 1, 1, "A"
DATA 5.5, 9.5, 6, 10, 2, 2, 2, "B"
DATA .5, 4.5, 1, 5, 1, 2, 1, "C"
DATA 5.5, 9.5, 1, 5, 2, 1, 2, "D"
'define the stadium-like figure
DATA -50, 50, 10, .4 , .3 , .5
DATA 60, 150, 10, .4, .4 , .7
DATA 180, 280, 10, .3, .35, .5
DATA 290, 320, 10, .2, .25, .3

FOR i% = 1 TO 4
READ x1(i%), x2(i%), y1(i%), y2(i%), bx(i%), by(i%), bz(i%), bs$(i%)

NEXT i%
FOR i% = 1 TO 4
READ s(i%), e(i%), p(i%), r(i%), l(i%), h(i%)

NEXT i%
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "fig21.plt")
'initiate the 2d plot

xpage = 10
ypage = 10.5
CALL Plots(xpage, ypage, devno%, tkerr%)
CALL Plot(0, 0, 3)
CALL Plot(xpage, 0, 2)
CALL Plot(xpage, ypage, 2)
CALL Plot(0, ypage, 2)
CALL Plot(0, 0, 2)

'draw the four viewports, workboxes, and figures within
ht = .2
FOR i% = 1 TO 4

CALL Symbol(xl(i%), yl(i%) - 2 * ht, ht, bs$(i%), 0)
CALL frmdrw(x1(i%), x2(i%), y1(i%), y2(i%), bx(i%), by(i%), bz(i%))

NEXT i%
'terminate the plot

CALL Plot(0, 0, 999)
END

Appendix C - Page 12

EXAMPLES.BAS (continued)

SUB frmdrw (xl, xu, yl, yu, bx, by, bz)
'subroutine to draw the specified viewport, workbox, and figure

'outline the workbox
CALL Plot(xl, yl, 3)
CALL Plot(xu, yl, 2)
CALL Plot(xu, yu, 2)
CALL Plot(xl, yu, 2)
CALL Plot(xl, yl, 2)

'begin 3d plotting and set viewpoint
CALL Bgn3d
CALL vuabs(5, -10, 5)

'set the specified 3d viewport and the workbox
CALL setvp3d(xl, xu, yl, yu)
CALL setwkbox(bx, by, bz)

'draw the workbox and figure
CALL drawwkbox
CALL stand

'end this portion of the 3d drawing
CALL end3d

END SUB

SUB stand
'subroutine to draw a stadium-like figure

FOR i% = 1 TO 4
FOR j = s(i%) TO e(i%) STEP p(i%)

a = .0174533 * j
CALL Plot3D(.5, .5, .1, 3)
CALL Plot3D(.5, .5, l(i%), 2)

CALL Plot3D(.5 + r(i%> * COS(a), .5 + r(i%> * SIN(a>, h(i%>, 2)
CALL Plot3D(.5 + r(i%> * COS(a), .5 + r(i%) * SIN(a), 0, 2)

NEXT j
NEXT i%

END SUB

Appendix C - Page 13

EXAMPLE?.BAS

'program example?.bas to produce figure 22
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'jk3dplt.inc'
DECLARE FUNCTION VideoHardware% ()

npts% = 180
DIM xx(npts%), yy(npts%), zz(npts%)

deg2rad = 3.14159 / 180
theta = -90
phi = 0
rad = 180

'define the spiral
FOR i% = 1 TO npts%
rth = theta * deg2rad
rph = phi * deg2rad
xx(i%) = rad * COS(rth) * COS(rph) + 150
yy(i%) = rad * COS(rth) * SIN(rph) + 150
zz(i%) = rad * SIN(rth) + 250
theta = theta + 1
phi = phi + 18
rad = rad - 1

NEXT i%
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "fig22.pit")
'initiate 2d plot

xpage = 8
ypage =8.5
CALL Plots(xpage, ypage, devno%, ier%)

'initiate the 3d plot
CALL Bgn3d

'calculate nice viewpoint specification values and set viewpoint
rad = 5000
rth = 30 * deg2rad
rph = -135 * deg2rad
xv = rad * COS(rth) * COS(rph) + 3
yv = rad * COS(rth) * SIN(rph) + 3
zv = rad * SIN(rth) + 5
CALL vuabs(xv, yv, zv)

'set the workbox dimensions and make a nice frame for picture
CALL setwkbox(300, 300, 350)
CALL autoframe(xpage, ypage, "SPIRAL", "")

'draw the spiral
CALL PolyLine3D(xx(), yy(), zz(), npts%, 1, 0, 1, .1)

'draw some lines to help the view orient the picture
CALL Plot3D(150, 150, 0, 3)
CALL Plot3D(150, 150, 350, 2)
CALL Plot3D(150, 0, 0, 3)
CALL Plot3D(150, 300, 0, 2)
CALL Plot3D(0, 150, 0, 3)

Appendix C - Page 14

EXAMPLE?.BAS (continued)

CALL Plot3D(300, 150, 0, 2)
'end the 3d portion of the plot

CALL End3d
'terminate the plot

CALL Plot(0, 0, 999)
END

Appendix C - Page 15

EXAMPLES.BAS

'program examples.bas to produce figure 24
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'jkSdplt.inc'
DECLARE FUNCTION VideoHardware% ()
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL Setfnam(JKFIL, "fig24.plt")
'inititate the 2d plot

xpage = 10
ypage = 10
CALL Plots(xpage, ypage, devno%, tkerr%)

'initiate the 3d plot, set viewpoint, make nice frame, and draw uorkbox
CALL BgnSd
CALL vuabs(50, -100, 50)
CALL autoframe(10, 10, "GRAFITI", "EXAMPLE")
CALL drawwkbox

'start the grafiti plotting
CALL Strgrafiti(0, 0, 0, 1, 0, 0, 0, 1, 1)

'make 2d dimensions to fill across the whole uorkbox cube, plot outline
newy = 1.414
newx = 1
ht = newy / 15
CALL Plot(0, 0, 3)
CALL Plot(newx, 0, 2)
CALL Plot(newx, newy, 2)
CALL Plot(0, newy, 2)
CALL Plot(0, 0, 2)

'plot four 2d lines on plane in 3 dimensions
a$ = "A"
a = .5 * (1 - LEN(a$) * ht)
CALL Symbol(a, 12 * ht, ht, a$, 0)
a$ = "SIMPLE"
a = .5 * (1 - LEN(a$) * ht)
CALL Symbol(a, 9 * ht, ht, a$, 0)
a$ = "GRAFITI"
a = .5 * (1 - LEN(a$) * ht)
dx = .5 * (1 - LEN(a$) * ht - 2 * ht)
CALL Symbol(a, 6 * ht, ht, a$, 0)
a$ = "CALL"
a = .5 * (1 - LEN(a$) * ht)
CALL Symbol(a, 3 * ht, ht, a$, 0)

'draw an inner border on the plane
CALL Plot(dx, ht, 3)
CALL Plot(l - dx, ht, 2)
CALL Plot(l - dx, 1.414 - ht, 2)
CALL Plot(dx, 1.414 - ht, 2)
CALL Plot(dx, ht, 2)

'end grafiti plotting
CALL Endgrafiti

Appendix C - Page 16

'end 3d plotting
CALL End3d

'terminate the plot
CALL Plot(0, 0, 999)
END

Appendix C - Page 17

EXAMPLES.BAS

'program examples.bas to produce figure 25
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: ' jk3dplt.inc'
DECLARE SUB house ()
DECLARE SUB windrw (a$)
DECLARE FUNCTION VideoHardware% ()
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "fig25.plt")
'initiate the 2d plot and draw page outline

xpage = 10
ypage = 7
CALL Plots(xpage, ypage, devno%, tkerr%)
CALL Plot(0, 0, 3)
CALL Plot(xpage, 0, 2)
CALL Plot(xpage, ypage, 2)
CALL Plot(0, ypage, 2)
CALL Plot(0, 0, 2)

'Foley and Van Dam, pg 307, fig 8.46
'set the 2d world coordinate viewport, draw and identify viewport

a% = SetWcVp%(l, 3, 4, 6)
CALL windrw("A")

'begin 3d plotting
CALL Bgn3d

'set viewing parameters
CALL setcop(8, 6, 84)
CALL setvrp(0, 0, 0)
CALL setvpn(0, 0, -1)
CALL setvup(0, 1, 0)
CALL setuvwin(-50, 50, -50, 50, -100, 100)
CALL setvp3d(l, 3, 4, 6)

'cause the plot system to calculate required projection matrices
CALL sc!3d2d

'draw the house
CALL house

'end this part of the 3d drawing
CALL end3d

'Foley and Van Dam, pg 307, fig 8.47
a% = SetWcVp%(4, 6, 4, 6)
CALL windrw("B")
CALL Bgn3d
CALL setvrp(0, 0, 54)
CALL setcop(8, 6, 30)
CALL setvpn(0, 0, -1)
CALL setvup(0, 1, 0)
CALL setuvwin(-l, 17, -1, 17, -100, 100)
CALL setvp3d(4, 6, 4, 6)
CALL sc!3d2d
CALL house

Appendix C - Page 18

EXAMPLES.BAS (continued)
k*

CALL end3d
'Foley and Van Dam, pg 308, fig 8.47

a% = SetWcVp%(7, 9, 4, 6)
CALL windrw("C")
CALL Bgn3d
CALL setvrp(8, 6, 54)
CALL setcop(0, 0, 30)
CALL setvpn(0, 0, -1)
CALL setvup(0, 1, 0)
CALL setuvwin(-9, 9, -7, 11, -100, 100)
CALL setvp3d(7, 9, 4, 6)
CALL sc!3d2d
CALL house
CALL end3d

'Foley and Van Dam, pg 309, fig 8.49
a% = SetWcVp%(2.5, 4.5, 1, 3)
CALL windrw("D")
CALL Bgn3d
CALL setvrp(16, 0, 54)
CALL setcop(20, 25, 20)
CALL setvpn(0, 0, -1)
CALL setvup(0, 1, 0)
CALL setuvwin(-20, 20, -5, 35, -1000, 1000)
CALL setvp3d(2.5, 4.5, 1, 3)
CALL sc!3d2d
CALL house
CALL end3d

'Foley and Van Dam, pg 311, fig 8.41
a% = SetWcVp%(5.5, 7.5, 1, 3)
CALL windrw("E")
CALL Bgn3d
CALL setvrp(16, 0, 54)
CALL setcop(20, 25, 20)
CALL setvpn(-l, 0, -1)
CALL setvup(0, 1, 0)
CALL setuvwin(-12, 13, -2, 23, -100, 100)
CALL setvp3d(5.5, 7.5, 1, 3)
CALL sc!3d2d
CALL house
CALL end3d

'terminate the plot
CALL Plot(0, 0, 999)
END

SUB house
'front face of house at z=30

CALL Plot3D(0, 0, 30, 3)
CALL Plot3D(16, 0, 30, 2)
CALL Plot3D(16, 10, 30, 2)
CALL Plot3D(8, 16, 30, 2)
CALL Plot3D(0, 10, 30, 2)

Appendix C - Page 19

EXAMPLES.BAS (continued)

CALL Plot3D(0, 0, 30, 2)
'back face at z=54

CALL Plot3D(0, 0, 54, 3)
CALL Plot3D(16, 0, 54, 2)
CALL Plot3D(16, 10, 54, 2)
CALL Plot3D(8, 16, 54, 2)
CALL Plot3D(0, 10, 54, 2)
CALL Plot3D(0, 0, 54, 2)

'connect front and back
CALL Plot3D(0, 0, 30, 3)
CALL Plot3D(0, 0, 54, 2)
CALL Plot3D(16, 0, 30, 3)
CALL Plot3D(16, 0, 54, 2)
CALL Plot3D(16, 10, 30, 3)
CALL Plot3D(16, 10, 54, 2)
CALL Plot3D(8, 16, 30, 3)
CALL Plot3D(8, 16, 54, 2)
CALL Plot3D(0, 10, 30, 3)
CALL Plot3D(0, 10, 54, 2)

END SUB

SUB windrw (a$)
a% = SetWcWin%(0, 1, 0, 1)
CALL Plot(0, 0, 3)
CALL Plot(l, 0, 2)
CALL Plot(l, 1, 2)
CALL Plot(0, 1, 2)
CALL Plot(0, 0, 2)
a% = ResetClip%("CTM")
CALL Symbol(0, -.2, .1, a$, 0)

END SUB

Appendix C - Page 20

EXAMPL10.BAS

'program exampllO.bas to produce figure 26
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'ax2d.inc'
' $INCLUDE: 'jk3dplt.inc'
' $INCLUDE: 'ax3d.inc'
DECLARE FUNCTION VideoHardware% ()
'extend the stack for big program

CLEAR , , 2000
DIM prmx AS AxprmT, prmy AS AxprmT, prmz AS AxprmT
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "fig26.plt")
'define the 3d spiral - this time without including a translation

npts% = 180
DIM xx(npts%), yy(npts%), zz(npts%)

deg2rad = 3.14159 / 180
npts% =180
theta = -90
phi = 0
rad = 180
FOR i% = 1 TO npts%

rth = theta * deg2rad
rph = phi * deg2rad
xx(i%) = rad * COS(rth) * COS(rph)
yy(i%) = rad * COS(rth) * SIN(rph)
zz(i%) = rad * SIN(rth)
theta = theta + 1
phi = phi + 18
rad = rad - 1

NEXT i%
'initialize the 2d plot system

xpage =8
ypage = 8.5 ;,
CALL Plots(xpage, ypage, devno%, ier%)

'plot the page outline in 2d
CALL Plot(0, 0, 3)
CALL Plot(xpage, 0, 2)
CALL Plot(xpage, ypage, 2)
CALL Plot(0, ypage, 2)
CALL Plot(0, 0, 2)

'initialize the 3d plot system
CALL Bgn3d

'show the calculation of the viewpoint location
a = 30
b = -135
c = 500
rad = c
rth = a * deg2rad
rph = b * deg2rad

Appendix C - Page 21

EXAMPL10.BAS (continued)

xv = rad * COS(rth) * COS(rph) + 3
yv = rad * COS(rth) * SIN(rph) + 3
zv = rad * SIN(rth) + 5
CALL vuabs(xv, yv, zv)

' include a nice frame
ttll$ = "3D SPIRAL USING"
tt!2$ = "SCALED PLOTTING"
CALL autoframe(xpage, ypage, ttll$, tt!2$)

'set the workbox dimensions using the SetAxpg3d command
CALL SetAxpg3d("", 6, "", 6, "", 7)

'set the 3d axis system so that the spiral with be drawn in
'the center of the workbox

CALL setaxes3d(l, -150, 50, 150, 1, -150, 50, 150, 1,
250, 50, 100, 0)
'draw the spiral

CALL spoly3d(xx(), yy(), zz(), npts%, l, 0, 1, .1)
'add some lines parallel to the axes to help visualation

CALL splot3d(0, 0, -250, 3)
CALL splot3d(0, 0, 100, 2)
CALL splot3d(0, -150, -250, 3)
CALL splot3d(0, 150, -250, 2)
CALL splot3d(-150, 0, -250, 3)
CALL splot3d(150, 0, -250, 2)

'terminate the 3d portion of the plot
CALL end3d

'terminate the plot
CALL Plot(0, 0, 999)
END

Appendix C - Page 22

EXAMPL11.BAS

'program examplll.bas to produce figure 27
' $INCLUDE: 'jk2dplt.inc'
' $INCLUDE: 'jk3dplt.inc'
' $INCLUDE: 'ax2d.inc'
' $INCLUDE: 'Ax3d.inc'
DECLARE FUNCTION VideoHardware% ()
DIM prmx AS AxprmT, prmy AS AxprmT, prmz AS AxprmT
DIMx(lO), y(10), z(10), xx(10), zO(10)
'set extra stack space for big program

CLEAR , , 2000
'use this devno% for screen output

devno% = VideoHardware%
'use this devno% for plot file output
' devno% = JKFIL
' CALL SetFnam(JKFIL, "fig27.pit")
'define the 3d curve

npts% = 10
FOR i% = 1 TO 10

zs = 1.4 * CSNG(i%)
z(i%) = zs
ys = zs * zs / 65.33
y(i%) = ys
xs = 1.2 + .2 * ys * ys
x(i%) = 10 A xs
xx (i%) = xs
zO(i%) = 0

NEXT i%
'set page size and initialize the 2d plot system

xpage = 6.5
ypage = 8
CALL Plots(xpage, ypage, devno%, ier%)

'initialize the 3d plot system, specify viewing parameters, and frame
CALL Bgn3d
CALL vuabs(30, -31, 23)
CALL autoframe(xpage, ypage, "PHASE", "DIAGRAM")

'set the 3d axis page (and thus workbox dimensions) and labels
CALL SetAxpg3d("", 7, "PHASE", 3, "AMPLITUDE", 3)

'specify that only the Y and Z axis annotation is to be drawn
CALL nodraw3d("ON", "OFF", "OFF")

'change from default height to the labels can be read
CALL SetAxht3(.13, .13, .13)

'specify the axis types and limits and draw axes
'note that because the X axis is not drawn the axes are disconnected

CALL setaxes3d(3, 10, 3.5, 1000, 1, 0, 1, 3, 1, 0, 3, 15, 0)
'draw the main 3d curve

CALL spoly3d(x(), y(), zO, 10, 1, 1, 1, .1)
'draw lines parallel to the z and x axes to each of the line nodes
'to help with 3d visualization

FOR i% = 1 TO npts%
CALL splot3d(x(i%), y(i%), 0, 3)
CALL splot3d(x(i%), y(i%), z(i%), 2)

Appendix C - Page 23

EXAMPL11.BAS (continued)

CALL splot3d(10, y(i%), z(i%), 2)
NEXT i%

'add supplementary annotation for the x axis using grafiti and
'2d axis commands in the grafiti plane defined by the equation Z=0
'the grafiti XY plane is thus the XY 3d plane also

CALL strgrafiti(0, 0, 0, 1, 0, 0, 0, 1, 0)
CALL ResetAxes
CALL SetAxht2(.13, .13)

'specify that only the X axis is to be drawn
CALL nodraw("OFF", "ON")
CALL SetAxis("X", 3, 10, 3.5, 1000, 7, "FREQUENCY", 1, 0,

0)
CALL SetAxis("Y", 1, 0, 1, 3, 3, "", 1, 0, 0)
CALL frame

'draw the 2d trace of the 3d curve in the plane Z=10
CALL spolyline(x(), y(), 10, 1, 1, 2, .15)

'add grid to the plane Z=0
CALL nodraw("OFF", "OFF")
CALL grid(l, 2)
CALL endgrafiti

'add supplementary annotation for the x axis using grafiti and
'2d axis commands in the grafiti plane defined by the equation Y=0
'the grafiti XY plane is now the 3d YZ plane

CALL strgrafiti(0, 0, 0, 0, 1, 0, 0, 0, 1)
'draw only the grafiti X axis (the 3d Y axis)

CALL nodraw("OFF", "ON")
CALL SetAxht2(.08, .08)
CALL SetAxis("X", 1, 0, .5, 3, 3, "PHASE", -1, 0, 3)
CALL SetAxis("Y", 1, 0, 3, 15, 3, "", 1, 0, 0)
CALL frame

'specify that both axes are to be gridded
CALL nodraw("OFF", "OFF")
CALL grid(l, 1)

'draw the trace of the 3d curve on the plane YZ (Log X = 1)
CALL spolyline(y(), z(), 10, 1, 1, 3, .15)

'terminate the plot
CALL endgrafiti
CALL end3d
CALL Plot(0, 0, 999)
END

Appendix C - Page 24

APPENDIX D

EXAMPLE INTERMEDIATE PLOT FILES

EXAMPLE 1 PLOT FILE

PLOTS, 5 , 5
PLOT, 0,0,3
PLOT, 5,0,2
PLOT, 5,5,2
PLOT, 0,5,2
PLOT, 0,0,2
SSYMBOL, .75 , 2.25 , .5 , 0 ,EXAMPLE
PLOT, 0,0, 999

Appendix D - 1

EXAMPLE 2 PLOT FILE

PLOTS, 10 , 10
PLOT, 0,0,3
PLOT, 10 , 0 , 2
PLOT, 10 , 10 , 2
PLOT, 0 , 10 , 2
PLOT, 0,0,2
PLOT, 5,0,3
PLOT, 5 , 10 , 2
PLOT, 0,5,3
PLOT, 10 , 5 , 2
NCOMHENT, 24 , 1 , 78 ,UPPER LEFT CORNER
PLOT, 0 , 5 ,-3
SSYMBOL, 1.375 , 2.375 , .25 , 0 ,Example 2
FACTOR, .5
SSYMBOL, 1.375 , 2.375 , .25 , 0 ,Example 2
FACTOR, 1
NCOMHENT, 24 , 1 , 78 ,LOWER LEFT CORNER
PLOT, 0 ,-5 ,-3
NEWPEN, 13
PLOT, 1,1,3
PLOT, 4,1,2
PLOT, 1,1,3
PLOT, 1,4,2
SSYMBOL, .7 , 1.9 , .2 , 90 ,Y-AXIS
SSYMBOL, 1.9 , .4 , .2 , 0 ,X-AXIS
POLYLINE, 10 , 1 ,-1 , 0 , .1
1/1
1.333333,1.333333
1.666667,1.666667
2,2
2.333333,2.333333
2.666667,2.666667
3,3
3.333333,3.333333
3.666667,3.666667
4,4
POLYLINE, 10 , 1 , 1 , 1 , .1
1/1
1.333333,1.154701
1.666667,1.290995
2,1.414214
2.333333,1.527525
2.666667,1.632993
3,1.732051
3.333333,1.825742
3.666667,1.914854
4/2
POLYLINE, 10 , 1 , 0 , 2 , .1
1/1
1.154701,1.333333

Appendix D - 2

EXAMPLE 2 PLOT FILE (continued)

1.290995,1.666667
1.414214,2
1.527525,2.333333
1.632993,2.666667
1.732051,3
1.825742,3.333333
1.914854,3.666667
2/4
NCOMMENT, 24 , 1 ,
PLOT, 5 , 0 ,-3
NEWPEN, 7
CSYMBOL, 1 , 4 , .15 ,
SSYMBOL, 1.15 , 3.85 ,
CSYMBOL, 4 , 3 , .15 ,
SSYMBOL, 4.15 , 2.85 ,
CSYMBOL, 2 , 1 , .15 ,
SSYMBOL, 2.15 , .85 ,
NCOMMENT, 24 , 1 , 78
PLOT, 0 , 5 ,-3
NEWPEN, 6
SSYMBOL, 2.5
SSYMBOL, 2.5
SSYMBOL, 2.5
SSYMBOL, 2.5
SSYMBOL, 2.5
SSYMBOL, 2.5
SSYMBOL, 2.5
SSYMBOL, 2.5
PLOT,-5 ,-5 ,
PLOT, 0 , 0 4

78 ,LOWER RIGHT CORNER

3 , 0 ,-1
.15 , 0 ,PT-1
3 , 0 ,-1
.15 , 0 ,PT-2
3 , 0 ,-1
.15 , 0 ,PT-3
,UPPER RIGHT CORNER

EXAMPLE 2
EXAMPLE 2
EXAMPLE 2
EXAMPLE 2
EXAMPLE 2
EXAMPLE 2
EXAMPLE 2
EXAMPLE 2

/ 2.5 ,
/ 2.5 ,
/ 2.5 ,
/ 2.5 ,
/ 2.5 ,
/ 2.5 ,
, 2.5 ,
/ 2.5 ,
-3

999

- .15 t
, .15 t

. 15 ,
. .15 ,

. 15 t

.15 ,

. 15 t

.15 ,

r 0 ,

r 45 ,

r 90 ,

r 135 ,

r 180 ,

r 225 ,

r 270 ,

r 315 ,

Appendix D - 3

EXAMPLE 4 PLOT FILE

PLOTS f 7 f 7
PLOT, 0,0,3
PLOT, 7,0,2
PLOT, 7,7,2
PLOT, 0,7,2
PLOT, 0,0,2
RESETAXES
PLOT, 0 , 4 ,-3
SETAXP6, 3,3,2,2
SIMPLE
X-AXIS
Y-AXIS
AUTOPLT, 3 , 3 , 1 , 10 , .25 , 20.25
SPOLYLINE, 10 , 1 , 0 , 0 , 0
1,20.25
2,12.25
3,6.25
4,2.25
5,.25
6,.25
7,2.25
8,6.25
9,12.25
10,20.25
PLOT, 0 ,-4 ,-3
PLOT, 4 , 4 ,-3
RESETAXES
SETAXP6, 3,3,2,2
FANCY

X-AXIS
Y-AXIS
AXIS2, 3 , 3 , 1 , 10 , .25 , 20.25 ,-1
XTICKS, 4
YTICKS, 4
GRID, 2,2
AXIS2, 3 , 3 , 1 , 10 , .25 ,20.25 , 0
SPOLYLINE, 10 , 1 , 0 , 0 , 0
1,20.25
2,12.25
3,6.25
4,2.25
5,.25
6,.25
7,2.25
8,6.25
9,12.25
10,20.25
SETAXIS,Y, 1 ,-5 , 5 , 25 , 2 ,-1 , 2.5 , .5 ,RIGHT SIDE
SETAXIS,X, 1,0,2,12,2,-!, .5,2.5,
PLOT,-4 ,-4 ,-3
RESETAXES

Appendix D - 4

EXAMPLE 4 PLOT FILE (continued)
-*******
SETAXPG, 3,3,2,2
SIMPLE-LOG
X-AXIS

Y-LOGAXIS
SETAXES, 1 ,-1 , .5 , 1 , 3 , .01
SPOLYLINE, 100 ,1,0,0,0
.2413383,.01
.4536956,.02
.6256253,.03
.7488483,.04
.8185796,.05
.8336214,.06
.7962285,.07
.711767,.08
.5882019,.09
.4354528,.1
.2646668,.11
8.745702E-02,.12
-8.484181E-02, .13
-.2418596,.14
-.3747746,.15
-.4767694,.16
-.5433368,.17
-.5724226,.18
-.5644107,.19
-.521957,.2
-.449693,.21
-.353824,.22
-.2416544,.23
-.1210708,.24
-2.131539E-05,.25
.1139799,.26
.2142932,.27
.2955103,.28
.3537207,.29
.386664,.3
.3937738,.31
.376115,.32
.3362221,.33
.2778573,.34
.2057061,.35
.1250339,.36
4.132653E-02,.37
-4.006219E-02,.38
-.1142334,.39
-.1770199,.4
-.2252015,.41
-.2566487,.42
-.270391,.43
-.2666095,.44
-.2465587,.45

Appendix D - 5

-*************
-.212426,.46
-.1671427,.47
-.1141588,.48
-5.719984E-02,.49
-2.013736E-05,.5
5.383093E-02,.51
.1012164,.52
.1395823,.53
.1670811,.54
.1826444,.55
.186005,.56
.1776656,.57
.1588234,.58
.1312555,.59
.0971746,.6
5.906859E-02,.61
1.952824E-02,.62
-1.891728E-02,.63
-5.395387E-02,.64
-8.361311E-02,.65
-.1063737,.66
-.1212297,.67
-.1277225,.68
-.1259378,.69
-.1164678,.7
-.1003458,.71
-.0789564..72

EXAMPLE 4 PLOT FILE (continued)

-.1003458,.71
-.0789564,.72
-5.392922E-02,.73
-2.702404E-02,.74
-1.426832E-05,.75
2.542346E-02,.76
4.780738E-02,.77
6.593093E-02,.78
7.892124E-02,.79
8.627384E-02,.8
.0878623,.81
8.392403E-02,.82
7.502446E-02,.83
6.200297E-02,.84
4.590493E-02,.85
2.790521E-02,.86
9.227777E-03,.87
-8.932694E-03,.88
-.0254831,.89
-3.949358E-02,.9
-.0502455,.91
-5.726362E-02,.92
-6.033134E-02,.93
-5.948896E-02,.94
-5.501629E-02,.95
-4.740136E-02,.96

Appendix D - 6

EXAMPLE 4 PLOT FILE (continued)
r!

-3.729815E-02,.97
-2.547645E-02,.98
-1.276749E-02,.99
-8.986503E-06,!
PLOT, 4 , 0 ,-3
RESETAXES
SETAXP6, 3,3,2,2
FANCY-LOG

X-AXIS
Y-LO6AXIS
XTICKS, 5
FRAME
SETAXES, 1 ,-1 , .5 , 1 , 3 , .01 , 1 , 0
GRID, 5 , 1
SPOLYLINE, 100 ,1,0,0,0
.2413383,.01
.4536956,.02
.6256253,.03
.7488483,.04
.8185796,.05
.8336214,.06
.7962285,.07
.711767,.08
.5882019,.09
.4354528,.1
.2646668,.11
8.745702E-02,.12
-8.484181E-02,.13
-.2418596,.14
-.3747746,.15
-.4767694,.16
-.5433368,.17
-.5724226,.18
-.5644107,.19
-.521957,.2
-.449693,.21
-.353824,.22
-.2416544,.23
-.1210708,.24
-2.131539E-05,.25
.1139799,.26
.2142932,.27
.2955103,.28
.3537207,.29
.386664,.3
.3937738,.31
.376115,.32
.3362221,.33
.2778573,.34
.2057061,.35
.1250339,.36

Appendix D - 7

-****************
4.132653E-02,.37
-4.006219E-02,.38
-.1142334,.39
-.1770199,.4
-.2252015,.41
-.2566487,.42
-.270391,.43
-.2666095,.44
-.2465587,.45
-.212426,.46
-.1671427,.47
-.1141588,.48
-5.719984E-02,.49
-2.013736E-05,.5
5.383093E-02,.51
.1012164,.52
.1395823,.53
.1670811,.54
.1826444,.55
.186005,.56
.1776656,.57
.1588234,.58
.1312555,.59
.0971746,.6
5.906859E-02,.61
1.952824E-02,.62
-1.891728E-02,.63
-5.395387E-02,.64
-8.361311E-02,.65
-.1063737,.66
-.1212297,.67
-.1277225,.68
-.1259378,.69
-.1164678,.7
-.1003458,.71
-.0789564,.72
-5.392922E-02,.73
-2.702404E-02,.74
-1.426832E-05,.75
2.542346E-02,.76
4.780738E-02,.77
6.593093E-02,.78
7.892124E-02,.79
8.627384E-02,.8
.0878623,.81
8.392403E-02,.82
7.502446E-02,.83
6.200297E-02,.84
4.590493E-02,.85
2.790521E-02,.86
9.227777E-03,.87

EXAMPLE 4 PLOT FILE (continued)

Appendix D - 8

EXAMPLE 4 PLOT FILE (continued)
M

-8.932694E-03,.88
-.0254831,.89
-3.949358E-02,.9
-.0502455,.91
-5.726362E-02,.92
-6.033134E-02,.93
-5.948896E-02,.94
-5.501629E-02,.95
-4.740136E-02,.96
-3.729815E-02,.97
-2.547645E-02,.98
-1.276749E-02,.99
-8.986503E-06,!
SETAXIS,Y, 3,.01,1,0,2,-1,2.5,.5 ,RIGHT SIDE
SETAXIS,X, 1,-1, .5,1,2,-!, .5,2.5,
PLOT,-4 , 0 ,-3
PLOT, 0,0, 999

Appendix D - 9

APPENDIX E

JKPLOT FUNCTIONS AND SUBROUTINES
(organized by module)

LIST OF SUBROUTINES AND FUNCTIONS ORGANIZED BY CODE MODULE
(Long lines are continued onto the next line with indentation)

SUBROUTINES AND FUNCTIONS IN THE JK2DPLT.BAS MODULE

"CalComp-like" entry points
SUB Plots (x, y, devno%, tkerr%) 9
SUB Plot (x!, y!, p%) 10
SUB PolyLine (xary(), yary(), npts%, inc%, lintyp%,

tkiq%, ht) .. 11
SUB Symbol (x! , y!, ht!, txt$, angle!) 10
SUB Csymbol (x!, y!, ht!, q%, angle!, icode%) 11
SUB Number (x, y, ht, fpn, angle, ndec%) 11
SUB Factor (rfact) ... 13
SUB Newpen (spen%) ... 12
SUB Comment (row%, col%, llen%, txt$) 13

pipe manipulation entry points
FUNCTION ResetClip% (wch$) 26
FUNCTION SetClip% (wch$, 1, r, b, t) 26

work station entry points
SUB SetFnam (wch%, nam$) 13
FUNCTION SetWsWin% (1!, r!, b!, t!) 25
FUNCTION SetWsVp% (1!, r!, b!, t!) 25

world coordinate entry points
FUNCTION SetWcWin% (1!, r!, b!, t!) 25
FUNCTION SetWcVp% (1!, r!, b!, t!) 25

transformation entry points
SUB AcmTrn2 (wch$, mat()) 26
SUB SetTrn2 (wch$, mat()) 26
SUB Eval2dTran (fx!, fy!, tx!, ty!, rotdeg!, sx!,

sy!, mat!()) .. 26
font manipulation entry points

SUB newfont (f%) ... 11
SUB newcfont (f%) .. 11

SUBROUTINES AND FUNCTIONS IN THE AX2D.BAS MODULE

FUNCTION autoplt% (xpage, ypage, xmin, xmax, ymin,
ymax, errmsg$) .. 36

FUNCTION axis2% (xpage, ypage, xmin, xmax, ymin, ymax,
calconly%, errmsg$) 36

SUB eqplt (ind$) ... 36
SUB frame () ... 37
SUB grid (xgrd%, ygrd%) 37
SUB nodraw (x$, y$) .. 38
SUB noend (x$, y$) ... 38
SUB nofrst (x$, y$) .. 38
SUB nolab (x$, y$) ... 38
SUB nolast (x$, y$) .. 38
SUB nonum (x$, y$) ... 38
SUB ResetAxes () ... 37
SUB scsymbol (x, y, ht, tkiq%, angle, icode%) 39

Appendix E - Page 1

SUBROUTINES AND FUNCTIONS IN THE AX3D.BAS MODULE (continued)

SUB SetAxht3 (xht, yht, zht) 52
SUB SetAxpg3d (x3l$, x3ax, y3l$, y3ax, z3l$, z3ax) 51
SUB splot3d (x, y, z, p%) 52
SUB spoly3d (xary(), yary(), zary(), npts%, inc%, lintyp%,

tkiq%, ht) .. 52

Appendix E - Page 3

APPENDIX F

JKPLOT FUNCTIONS AND SUBROUTINES

(organized alphabetically)

LIST OF SUBROUTINES AND FUNCTIONS ORGANIZED ALPHABETICALLY
(Long lines are continued onto the next line with indentation)

SUB AcmTrn2 (wch$, mat()) 26
SUB autoframe (xpage, ypage, ttll$, tt!2$) 44
FUNCTION autoplt% (xpage, ypage, xmin, xmax, ymin,

ymax, errmsg$) .. 36
FUNCTION axis2% (xpage, ypage, xmin, xmax, ymin, ymax,

calconly%, errmsg$) 36
SUB Bgn3d () ... 43
SUB Comment (row%, col%, llen%, txt$) 13
SUB Csymbol (x!, yl, htl, tkiq%, anglel, icode%) 11
SUB Csymbol3D (x!, yl, zl, htl, q%, anglel, icode%) 45
SUB drawwkbox () ... 42
SUB end3d () ... 43
SUB endgrafiti () .. 46
SUB eqplt (ind$) ... 36
SUB Eval2dTran (fxl, fyl, txl, tyl, rotdegl, sxl,

syl, matl()) .. 26
SUB Factor (rfact) ... 13
SUB frame () ... 37
SUB grid (xgrd%, ygrd%) 37
SUB newcfont (f%) .. 11
SUB newfont (f%) ... 11
SUB Newpen (spen%) ... 12
SUB nodraw (x$, y$) .. 38
SUB nodraw3d (x$, y$, z$) 52
SUB noend (x$, y$) ... 38
SUB nofrst (x$, y$) .. 38
SUB nolab (x$, y$) ... 38
SUB nolast (x$, y$) .. 38
SUB nonum (x$, y$) ... 38
SUB Number (x, y, ht, fpn, angle, ndec%) 11
SUB Plot (xl, yl, p%) 10
SUB Plot3D (xl, yl, zl, p%) 45
SUB Plots (x, y, devno%, tkerr%) 9
SUB PolyLine (xary(), yary(), npts%, inc%, lintyp%, -

tkiq%, ht) .. 11
SUB PolyLine3D (x3l(), y3l(), z3i(), npts%, inc%, lintyp%,

tkiq%, htl) ... 45
SUB ResetAxes () ... 37
FUNCTION ResetClip% (wch$) 26
SUB Scl3d2d () ... 48
SUB scsymbol (x, y, ht, tkiq%, angle, icode%) 39
SUB SetAxes (xtyp, xorig, xstep, xend, ytyp, yorig,

ystep, yend)... 36
SUB setaxes3d (xt, xs, xp, xe, yt, ys, yp, ye, zt, zs,

zp, ze, nodraw3%) 37
SUB SetAxht2 (xht1, yht1) 37
SUB SetAxht3 (xht, yht, zht) 51
SUB SetAxis (wch$, atyp, aorig, astep, aend, alen,

alab$, aside%, xpos, ypos) 35
SUB SetAxpg (xpage, ypage, tit$, xlab$, ylab$, xlen, ylen) . 37

Appendix F - Page 1

APPENDIX 6

JKPLOT FUNCTIONS AND SUBROUTINES WITH FILE OUTPUT FORM
ORGANIZED BY MODULE

LIST OF SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

(Long lines are continued onto the next line with indentation)

SUBROUTINES AND FUNCTIONS IN THE JK2DPLT.BAS MODULE
**

*****»CalComp-like" entry points*****

SUB Plots (x, y, devno%, tkerr%)
PLOTS, x, y

SUB Plot (x!, y!, p%)
PLOT, x, y, p%

SUB PolyLine (xary(), yary(), n%, inc%, typ%, q%, ht)
POLYLINE, n%, inc%, typ%, q%, ht
(Then n% lines are written, each containing an xary and a yary
element, seperated by a comma.)

SUB Symbol (x!, y!, ht!, txt$, angle!)
SSYMBOL, x, y, ht, angle, txt$

SUB Csymbol (x!, y!, ht!, q%, a, i%)
CSYMBOL, x, y, ht, q%, a, i%

SUB Number (x, y, ht, fpn, a, d%)
NUMBER, x, y, ht, fpn, a, d%

SUB Factor (rfact)
FACTOR, rfact

SUB Newpen (spen%)
NEWPEN, spen%

SUB Comment (row%, col%, llen%, txt$)
NCOMMENT, row%, col%, llen%, txt$

*****pipe manipulation entry points*****

FUNCTION ResetClip% (wch$)
RESETCLIP, wch$

FUNCTION SetClip% (wch$, 1, r, b, t)
SETCLIP, wch$, 1, r, b, t

*****work station entry points*****

SUB SetFnam (wch%, nam$)
(This subroutine is actually executed within the JKFSEP.bas
subroutine; nothing is written to the output file.)

Appendix G - Page 1

LIST OF SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

continued
(Long lines are continued onto the next line with indentation)

FUNCTION SetWsWin% (1!, r!, b!, t!)
SETWSWIN, 1, r, b, t

FUNCTION SetWsVp% (1!, r!, b!, t!)
SETWSVP, I, I, b, t

*****vorld coordinate entry points*****

FUNCTION SetWcWin% (1!, r!, b!, t!)
SETWCWIN, 1, r, b, t

FUNCTION SetWcVp% (1!, r!, b!, t!)
SETWCVP, 1, r, b, t

*****transformation entry points*****

SUB AcmTrn2 (wch$, mat())
ACMTRN2, vch$
(followed by 16 lines with one entry of the 4x4 matrix, mat(),
on each line - elements are written by column within row)

SUB SetTrn2 (wch$, mat())
SETTRN2, wch$
(followed by 16 lines with one entry of the 4x4 matrix, mat(),
on each line - elements are written by column within row)

SUB Eval2dTran (fx, fy, tx, ty, rotdeg, sx, sy, mat())
(This subroutine is actually executed within the JKFSEP.bas
subroutine; nothing is written to the output file.)

*****font manipulation entry points***** ;,

SUB newfont (f%)
NEWFONT, f%

SUB newcfont (f%)
NEWCFONT, f%

SUBROUTINES AND FUNCTIONS IN THE AX2D.BAS MODULE

FUNCTION autoplt% (xpage, ypage, xmin, xmax, ymin, ymax, errmsg$)
AUTOPLT, xpage, ypage, xmin, xmax, ymin, ymax

Appendix G - Page 2

LIST OP SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

continued
(Long lines are continued onto the next line with indentation)

FUNCTION axis2% (xpage, ypage, xmin, xmax, ymin, ymax,
calconly%, errmsg$)

AXIS2, xpage, ypage, xmin, xmax, ymin, ymax, calconly%

SUB eqplt (ind$)
EQPLT, ind$

SUB frame
FRAME

SUB grid (xgrd%, ygrd%)
GRID, xgrd%, ygrd%

SUB nodraw (x$, y$)
NODRAW, x$, y$

SUB noend (x$, y$)
NOEND, x$, y$

SUB nofrst (x$, y$)
NOFRST, X$, y$

SUB nolab (x$, y$)
NOLAB, X$, y$

SUB nolast (x$, y$)
NOLAST, x$, y$

SUB nonum (x$, y$)
NONUM, x$, y$

SUB ResetAxes
RESETAXES

SUB scsymbol (x, y, ht, g%, a, i%)
SCSYMBOL, x, y, ht, q%, a, i%

SUB SetAxes (xtyp, xorig, xstep, xend, ytyp, yorig, ystep, yend)
SETAXES, xtyp, xorig, xstep, xend, ytyp, yorig, ystep, yend

SUB SetAxht2 (xht, yht)
SETAXHT2, xht, yht

Appendix G - Page 3

LIST OP SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

continued
(Long lines are continued onto the next line with indentation)

SUB setAxis (wch$, atyp, aorig, astep, aend, alen,
alab$, aside%, xpos, ypos)

SETAXIS, wch$, atyp, aorig, astep, aend, alen, aside%, xpos,
ypos, alab$

SUB SetAxpg (xpage, ypage, tit$, xlab$, ylab$, xlen, ylen)
SETAXP6, xpage, ypage, xlen, ylen
tit$
xlab$
ylab$

SUB sNumber (x, y, ht, fpn, a, d%)
SNUMBER, x, y, ht, fpn, a, d%

SUB splot (x, y, p%)
SPLOT, x, y, p%

SUB spolyline (xary(), yary(), n%, inc%, typ%, g%, ht)
SPOLYLINE, n%, inc%, typ%, q%, ht
(Then n% lines are written, each containing an xary and a yary
element, seperated by a comma.)

SUB ssymbol (x, y, ht, txt$, angle)
SSSYHBOL, x, y, ht, angle, txt$

SUB xticks (n%)
XTICKS, n%

SUB yticks (n%)
YTICKS, n%

SUBROUTINES AND FUNCTIONS IN THE JK3DPLT.BAS MODULE
ft**************************;

initialization entry points

SUB autoframe (xpage, ypage, ttll$, tt!2$)
AUTOFRAME, xpage, ypage
ttll$
tt!2$

SUB Bgn3d
B6N3D

SUB end3d
END3D

Appendix G - Page 4

LIST OP SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

continued
(Long lines are continued onto the next line with indentation)

SUB setvpSd (1, r, b, t)
SETVP3D / 1 / r / b / t

SUB setwkbox (x, y, z)
SETWKBOX, X, y, Z

*****easy viewpoint setup entry points*****

SUB vuabs (xO, yO, zO)
VUABS, xO, y0, z 0

SUB vuang (hang, vang, zper)
VUAN6, hang, vang, zper

*****viewpoint setup a al Foley and VanDam*****

SUB sc!3d2d
SCL3D2D

SUB setcop (x, y, z)
SETCOP, x, y, z

SUB setuvwin (1, r, b, t, f, bk)
SETUVWIN, 1, r, b, t, f, bk

SUB setvpn (x, y, z)
SETVPN, x, y, z

SUB setvrp (x, y, z)
SETVRP, x, y, z
mm mm mm mm mm mm mm mm mm mm mm mm mm « » mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm ̂ v ̂ m ̂ m ̂ v ̂ v ̂ v ̂ v ̂ v ̂ B ̂ m mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm i

SUB setvup (x, y, z)
SETVUP, x, y, z
mm i

*****display entry points*****
mmmmmmmmmmmmmmmmmmmmmmmmmmmm t

SUB drawwkbox
DRAWWKBOX

*****3d versions of basic plot subroutines*****
*****routines are actually in JK2DPLT.BAS module*****

^v mm m» m» m» mm

SUB Csymbol3D (x, y, z, ht, q%, a,
CSYMBOL3D, x, y, z, ht, q%, a, i%

Appendix G - Page 5

LIST OF SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

continued
(Long lines are continued onto the next line with indentation)

SUB Symbol 3D (x, y, z, ht, txt$, angle)
SSYMBOL3D, x, y, z, ht, angle, txt$

SUB PolyLineSD (x3(), y3(), z3(), n%, inc%, typ%, q%, ht)
POLYLINE3D, n%, inc%, typ%, g%, ht
(Then n% lines are written, each containing an xary , yary, and
zary element, seperated by a comma.)

SUB PlotSD (x, y, z, p%)
PLOT3D, x, y, z, p%

*****grafiti entry points*****

SUB endgrafiti
END6RAFITI

SUB strgrafiti (xl, yl, zl, x2, y2, z2, x3, y3, z3)
STR6RAFITI
(The next three each lines contain the x, y, and z coordinates
of the registration points, seperated by commas.)

SUBROUTINES AND FUNCTIONS IN THE AX3D.BAS MODULE

SUB nodraw3d (x$, y$, z$)
NODRAW3D, x$, y$, z$

SUB setaxes3d (xt, xs, xp, xe, yt, ys, yp, ye, zt, zs,
zp, ze, nodraw3%)

SETAXES3D, xt, xs, xp, xe, yt, ys, yp, ye, zt,
zs, zp, ze, nodraw3%

SUB SetAxht3 (xht, yht, zht)
SETAXHT3, xht, yht, zht

SUB setAxpgSd (x3l$, x3ax, y31$, y3ax, z3l$, z3ax)
SETAXP63D, x3ax, y3ax, z3ax
X31$
y3i$
Z31$

SUB splotsd (x, y, z, p%)
SPLOT3D, x, y, z, p%

Appendix G - Page 6

LIST OP SUBROUTINES AND FUNCTIONS FOR JKPLOT FILE OUTPUT
ORGANIZED BY CODE MODULE

continued
(Long lines are continued onto the next line with indentation)

SUB spolySd (xaryO, yary(), zary(), n%, inc%, typ%, q%, ht)
SPOLYLINE3D, n%, inc%, typ%, q%, ht
(Then n% lines are written, each containing an xary, a yary,
and a zary element, seperated by a comma.)

Appendix G - Page 7

APPENDIX H

JKPLOT FUNCTIONS AND SUBROUTINES WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

LIST OF SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

(Long lines are continued onto the next line with indentation)

SUB AcmTrn2 (wch$, mat())
ACMTRN2, wch$
(followed by 16 lines with one entry of the 4x4 matrix, mat(),
on each line - elements are written by column within row)

SUB autoframe (xpage, ypage, ttll$, tt!2$)
AUTOFRAME, xpage, ypage
ttll$
tt!2$

FUNCTION autoplt% (xpage, ypage, xmin, xmax, ymin, ymax, errmsg$)
AUTOPLT, xpage, ypage, xmin, xmax, ymin, ymax

FUNCTION axis2% (xpage, ypage, xmin, xmax, ymin, ymax,
calconly%, errmsg$)

AXIS2, xpage, ypage, xmin, xmax, ymin, ymax, calconly%

SUB Bgn3d
B6N3D

SUB Comment (row%, col%, llen%, txt$)
NCOMMENT, row%, col%, llen%, txt$

SUB Csymbol (x!, y!, ht!, q%, a, i%)
CSYMBOL, x, y, ht, g%, a, i%

SUB CsymbolSD (x, y, z, ht, g%, a, i%)
CSYMBOL3D, x, y, z, ht, q%, a, i%

SUB drawbox (xl, xu, yl, yu, zl, zu)
DRAWBOX, xl, xu, yl, yu, zl, zu

SUB drawuvwin
DRAWUVWIN

SUB drawwkbox
DRAWWKBOX

SUB end3d
END3D

SUB endgrafiti
ENDGRAFITI

SUB eqplt (ind$)
EQPLT, ind$

Appendix H - Page 1

LIST OF SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

continued
(Long lines are continued onto the next line with indentation)

SUB Eval2dTran (fx, fy, tx, ty, rotdeg, sx, sy, mat())
(This subroutine is actually executed within the JKFSEP.bas
subroutine; nothing is written to the output file.)

SUB Factor (rfact)
FACTOR, rfact

SUB frame
FRAME

SUB grid (xgrd%, ygrd%)
GRID, xgrd%, ygrd%

SUB Matlden (d%, mat())
(This subroutine is actually executed within the JKFSEP.bas
subroutine; nothing is written to the output file.)

SUB MatMul (ImatO, lr%, lc%, rmat(), rr%, rc%, mat())
(This subroutine is actually executed within the JKFSEP.bas
subroutine; nothing is written to the output file.)

SUB newcfont (f%)
NEWCFONT, f%

SUB newfont (f%)
NEWFONT, f%

SUB Newpen (spen%)
NEWPEN, spen%

SUB nodraw (x$, y$)
NODRAW, x$, y$

SUB nodraw3d (x$, y$, z$)
NODRAW3D, x$, y$, z$

SUB noend (x$, y$)
NOEND, x$, y$

SUB nofrst (x$, y$)
NOFRST, x$, y$

SUB nolab (x$, y$)
NOLAB, x$, y$

Appendix H - Page 2

LIST OF SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

continued
(Long lines are continued onto the next line with indentation)

SUB nolast (x$, y$)
NOLAST, x$, y$

SUB nonum (x$, y$)
NONUM, x$, y$

SUB Number (x, y, ht, fpn, a, d%)
NUMBER, x, y, ht, fpn, a, d%

SUB plate3d (xpage, ypage, hang, vang, ttll$, tt!2$)
PLATE3D, xpage, ypage, hang, vang
ttll$
tt!2$

SUB Plot (x!, y!, p%)
PLOT, x, y, p%

SUB Plot3D (x, y, z, p%)
PLOT3D, X, y, Z, p%

SUB Plots (x, y, devno%, tkerr%)
PLOTS, x, y

SUB PolyLine (xary(), yary(), n%, inc%, typ%, q%, ht)
POLYLINE, n%, inc%, typ%, q%, ht
(Then n% lines are written, each containing an xary and a yary
element, seperated by a comma.)

SUB PolyLine3D (x3(), y3(), z3(), n%, inc%, typ%, q%, ht)
POLYLINE3D, n%, inc%, typ%, q%, ht
(Then n% lines are written, each containing an xary , yary, and
zary element, seperated by a comma.)

SUB ResetAxes
RESETAXES

FUNCTION ResetClip% (wch$)
RESETCLIP, WCh$

SUB resetuvwin
RESETUVSIN

SUB SCl3d2d
SCL3D2D

Appendix H - Page 3

LIST OF SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

continued
(Long lines are continued onto the next line with indentation)

SUB scsymbol (x, y, ht, q%, a, i%)
SCSYMBOL, x, y, ht, q%, a, i%

SUB SetAxes (xtyp, xorig, xstep, xend, ytyp, yorig, ystep, yend)
SETAXES, xtyp, xorig, xstep, xend, ytyp, yorig, ystep, yend

SUB setaxes3d (xt, xs, xp, xe, yt, ys, yp, ye, zt, zs,
zp, ze, nodraw3%)

SETAXES3D, xt, xs, xp, xe, yt, ys, yp, ye, zt,
zs, zp, ze, nodrav3%

SUB SetAxht2 (xht, yht)
SETAXHT2, xht, yht

SUB SetAxhtS (xht, yht, zht)
SETAXHT3, xht, yht, zht

SUB SetAxis (vch$, atyp, aorig, astep, aend, alen,
alab$, aside%, xpos, ypos)

SETAXIS, vch$, atyp, aorig, astep, aend, alen, aside%, xpos,
ypos, alab$

SUB SetAxpg (xpage, ypage, tit$, xlab$, ylab$, xlen, ylen)
SETAXPG, xpage, ypage, xlen, ylen
tit$
xlab$
ylab$

SUB SetAxpg3d (x31$, x3ax, y31$, y3ax, z31$, z3ax)
SETAXPG3D, x3ax, y3ax, z3ax
X31$
731$
Z31$

FUNCTION SetClip% (wch$, 1, r, b, t)
SETCLIP, wch$, 1, r, b, t

SUB setcop (x, y, z)
SETCOP, x, y, z

SUB setcpn (x, y)
SETCPN, x, y

SUB SetFnam (vch%, nam$)
(This subroutine is actually executed within the JKFSEP.bas
subroutine; nothing is written to the output file.)

Appendix H - Page 4

LIST OF SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

continued
(Long lines are continued onto the next line with indentation)

SUB SetTrn2 (wch$, mat(»
SETTRN2, wch$
(followed by 16 lines with one entry of the 4x4 matrix, mat(),
on each line - elements are written by column within row)

SUB setuvwin (1, r, b, t, f, bfc)
SETUVWIN, 1, r, b, t, I, bfc

SUB setvp3d (1, r, b, t)
SETVP3D, 1, r, b, t

SUB setvpn (x, y, z)
SETVPN, x, y, z

SUB setvrp (x, y, z)
SETVRP, x, y, z

SUB setvup (x, y, z)
SETVUP, x, y, z

FUNCTION SetWcVp% (1!, r!, b!, t!)
SETWCVP, 1, r, b, t

FUNCTION SetWcWin% (1!, r!, b!, t!)
SETWCWIN, 1, r, b, t

SUB setwfcbox (x, y, z)
SETWKBOX, x, y, z

FUNCTION SetWsVp% (1!, r!, b!, t!)
SETWSVP, 1, r, b, t

FUNCTION SetWsWin% (1!, r!, b!, t!)
SETWSWIN, 1, r, b, t

SUB sNumber (x, y, ht, fpn, a, d%)
SNUMBER, x, y, ht, fpn, a, d%

SUB splot (x, y, p%)
SPLOT, x, y, p%

SUB splotSd (x, y, z, p%)
SPLOT3D, x, y, z, p%

Appendix H - Page 5

LIST OP SUBROUTINES AND FUNCTIONS WITH FILE OUTPUT FORM
ORGANIZED ALPHABETICALLY

continued
(Long lines are continued onto the next line with indentation)

SUB spoly3d (xary(), yary(), zary(), n%, inc%, typ%, q%, ht)
SPOLYLINE3D, n%, inc%, typ%, g%, ht
(Then n% lines are written, each containing an xary, a yary,
and a zary element, seperated by a comma.)

SUB spolyline (xary(), yary(), n%, inc%, typ%, g%, ht)
SPOLYLINE, n%, inc%, typ%, g%, ht
(Then n% lines are written, each containing an xary and a yary
element, seperated by a comma.)

SUB ssymbol (x, y, ht, txt$, angle)
SSSYMBOL, x, y, ht, angle, txt$

SUB strgrafiti (xl, yl, zl, x2, y2, z2, x3, y3, z3)
STR6RAFITI
(The next three each lines contain the x, y, and z coordinates
of the registration points, seperated by commas.)

SUB Symbol (x!, y!, ht!, txt$, angle!)
SSYMBOL, x, y, ht, angle, txt$

SUB Symbol3D (x, y, z, ht, txt$, angle)
SSYMBOL3D, x, y, z, ht, angle, txt$

SUB vuabs (xO, yO, zO)
VUABS, xO, yO, zO

SUB vuang (hang, vang, zper)
VUANG, hang, vang, zper

SUB xticfcs (n%)
XTICKS, n%

SUB yticks (n%)
YTICKS, n%

Appendix H - Page 6

APPENDIX I

GETTING STARTED

GETTING STARTED
page

1) FIRST STEP I!!!!....................................... 1
2) DESTINATION (HARD) DISK AND DIRECTORY STRUCTURE ASSUMED. 1
3) DESTINATION DIRECTORIES FOR THE JKPLOT SYSTEM.......... 1
4) COPYING THE JKPLOT FILES FROM YOUR FLOPPY DISK DRIVE

	TO YOUR HARD DRIVE................................... 3
5) MAKING LIBRARIES IN THE \JKPLOT\LIB DIRECTORY.......... 3
6) USING THE LIBRARIES JKPLTSCR.QLB AND JKPLOT.LIB........ 4
7) BATCH FILES SHOWING THE USE OF THE JKPLOT SYSTEM....... 4
8) SOME ANTICIPATED PROBLEMS.............................. 6
9) IF ALL ELSE FAILS...................................... 7

1) FIRST STEP !!!!!

Make a complete set of backup disks for the JKPLOT disks supplied!

2) DESTINATION (HARD) DISK AND DIRECTORY STRUCTURE ASSUMED

In order to execute programs and use QuickBasic a user must have
certain programs in directories somewhere on the working disk. My
hard disk is DISK C. If your hard disk is specified by another
letter you will have to adjust all the batch files accordingly. On
my hard disk I keep all the DOS commands in the directory C:\DOS,
and I keep all the QuickBasic modules in a directory named
C:\QKBAS. Again, if your directory names are different you will
have to adjust the batch files and other instructions accordingly.

Because I access different compilers and word processors at
different times I do not like to have my search path search all the
directories I may use every time I want to work on the computer.
I thus have batch files located in the C:\DOS directory (which I
always have in my search path) which when executed set the search
path to specific directories. The batch file, named SETQK.BAT,
which I execute before working in QuickBasic contains only two
lines,

PATH=C:\DOS;C:\QKBAS
SET LIB=C:\QKBAS\

setting the path so that all the QuickBasic modules are available
and setting the environment variable LIB so the QuickBasic can
locate its libraries. Whenever I am going to work in QuickBasic I
just have to enter SETQK via the keyboard.

3) DESTINATION DIRECTORIES FOR THE JKPLOT SYSTEM

On disk A in the root directory is a batch file, JKSETUP.BAT, which

Appendix I - Page 1

will copy all the files from the JKPLOT floppy disks onto your hard
disk. This batch file will create a directory named JKPLOT on your
hard disk. The JKPLOT directory will contain nothing by
subdirectories storing the JKPLOT programs, examples, figure
programs, figure plot files, and batch files for constructing
libraries, etc. The subdirectories created will be

C:\JKPLOT\SOURCE contains ALL the programs necessary
for using the JKPLOT system.

[Also in this directory is a execution file, QF2.EXE, which is a
program that reads an intermediate plot file and directs the output
to any of the devices addressed by the JKPLOT system. This program
uses menu and screen input routines that are still under
development and thus the source for the program is not supplied.
It does, however, work well on my system and on yours too, I hope.]

C:\JKPLOT\EXAMPLES contains QuickBasic source code for
the 11 examples referenced in the
documentation and listed in
appendix and contains the plot
files for examples 1, 2, and 4.

C:\JKPLOT\FIGPRGS contains the source code for the
27 figures referenced in the
documentation.

C:\JKPLOT\FIGPLTS contains the intermediate plot
files for all the figures except
for figure 12. The plot file for
figure 12 is very large (300K).
A batch file that will construct
the plot file, FIG12.PLT, is
located in the BATCH directory.

C:\JKPLOT\BATCH contains batch files making some
quick examples using the programs
in the FIGPRGS directory.

C:\JKPLOT\LIB contains batch files for
constructing a collection of
libraries

As a matter of habit I do not have permanent files in the JKPLOT
directory, only subdirectories. Then when I want to work with the
system I copy the necessary files (If I am using one of the
libraries for the system I need to copy only that, the INCLUDE
files, and the font files into the directory.) into the JKPLOT
directory, do what work I want, and then copy any new files that I
want to save into another subdirectory. In this way my JKPLOT
system file directory does not get filled with junk, and I can just
erase all the files in it without worrying about erasing any system

Appendix I - Page 2

files.

4) COPYING THE JKPLOT FILES FROM YOUR FLOPPY DISK DRIVE
TO YOUR HARD DRIVE

In the root directory of JKPLOT disk 1 there is a batch file named
JKSETUP.BAT. This batch file will create the JKPLOT directory on
your hard disk and copy all the files from the floppy disks into
the appropriate subdirectories on your hard disk. To execute this
program (assuming that your floppy drive is drive A) enter

A:\JKSETUP drive

where drive is your hard drive letter followed by a colon (e.g. C:)
via the keyboard. The program will then copy all the files from
floppy disk 1 onto the hard disk. The program will then halt and
tell you to put JKPLOT disk 2 into the floppy and press any key
(except <ctrl>C) . The files from disk 2 will then be copied. This
process will continue until all disks have been copied onto your
hard disk.

5) MAKING LIBRARIES IN THE \JKPLOT\LIB DIRECTORY

There are two batch files in the \JKPLOT\LIB directory, SCRQLB.BAT
and LIBMAK.BAT. SCRQLB.BAT constructs a Quick Library (for use
with the QuickBasic interpreter rather than the compiler) named
JKPLTSCR.QLB. The library contains all the plot system routines
necessary for sending output to the screen. The other batch file,
LIBMAK.BAT will construct a library, JKPLOT.LIB, which contains all
the plot system routines and all the device drivers. Because a
user may want not want to load all the device drivers for a simple
program with output, for example, only to the screen, the library
does not contain a version of the "traffic-controller". The user
must link that with his application program explicitly.

To construct the Quick Library, JKPLTSCR.QLB, change your working
directory to \JKPLOT\LIB by entering

CD \JKPLOT\LIB

via the keyboard. Then enter

SETQK

to execute the batch file that sets the search path and LIB
environment variable to access the QuickBasic modules located in
the directory \QKBAS, and then enter

SCRQLB

via the keyboard. The program will then construct the library.

Appendix I - Page 3

6) USING THE LIBRARIES JKPLTSCR.QLB AND JKPLOT.LIB

To use this library to draw one of the figures, say figure 27, onto
the screen, first change your working directory to \JKPLOT (which
I keep empty for the reasons stated earlier) by entering

CD \JKPLOT

via the keyboard. If you haven't executed the SETQK batch file to
set the search path and LIB environment variable do so now. Then
copy the necessary auxiliary files from the \JKPLOT\SOURCE
directory into your working directory by entering

copy SOURCE\JKFONT.*
copy SOURCE\JKCFONT.*
copy SOURCE\CONFIG.*
copy SOURCE*.INC

via the keyboard. Next copy the application program, FIG27.BAS,
from the \JKPLOT\FIGPRGS directory by entering

copy FIGPRGS\FIG27.BAS

via the keyboard. You are now ready to enter QuickBasic by
entering

qb FIG27.BAS /ah/1LIB\JKPLTSCR.QLB.

The /ah switch allows more memory to be used, and the /I switch
instructs QuickBasic to load the library JKPLTSCR.QLB located in
the subdirectory LIB. Next instruct QuickBasic to run the program
by pressing the (Ctrl) and F5 keys. The program should then
execute and display figure 27 on the screen. The remove the figure
and return to the QuickBasic environment, just press the <ESCAPE>
key.

Batch program files that demonstrate how to draw the figures
directly onto the screen, compile the programs using the JKPLOT.LIB
library, and construct intermediate plot files for the figures are
located in the directory \JKPLOT\BATCH.

7) BATCH FILES SHOWING THE USE OF THE JKPLOT SYSTEM

In the directory \JKPLOT\BATCH are four batch programs showing how
to use the JKPLOT system. I have put some checks in the programs
to make sure that they are run directly from the \JKPLOT\BATCH
directory because I erase some files and want to make sure that I
am not inadvertently erasing permanent files. These checks can be
removed from the batch file if you wish.

The first program, DRAWFIG.BAT, will draw any of the figures except
figure 12 (which requires special handling) onto the screen. The

Appendix I - Page 4

program assumes that you have constructed the Quick Library
JKPLTSCR.QLB as described in section 5. If you have not done so
the program will not run. To execute the program just enter (using
figure 6 as an example)

DRAWFIG fig6.bas.

The program will then copy the necessary files into the BATCH
directory, enter QuickBasic, and draw the figure onto the screen.

The second program, FIGEXE.BAT, will construct an execution module
(again using figure 6 as an example), FIG6.EXE. This program
assumes that you have constructed the library, JKPLOT.LIB, as
described in section 5. The program copies the necessary files
into the BATCH directory, executes the program DEVMAK.BAS to
construct a "traffic controller" module, DEVS.BAS, for directing
output to the screen, compiles modules FIG6.BAS AND DEVS.BAS, and
then links them using the JKPLOT.LIB library. The result is the
execution module, FIG6.EXE, which can then be executed by entering

FIG6

via the keyboard.

The third example batch file is FIG12MAK.BAT. The program
FIG12.BAS cannot be executed directly for output to the screen
because it uses work station properties unique to the JKPLOT
intermediate plot file output module QBJKF.BAS. The more efficient
plot file output module, JKFSEP.BAS, cannot be used with the
program. FIG12MAK.BAT first copies necessary system files and the
application program FIG12.BAS from the SOURCE and FIGPRGS
directories, compiles the modules, and links them. The result is
an execution module, FIG12.EXE, which is then executed to produce
the intermediate plot file, FIG12.PLT. This file can be directed
to the screen using the program QF2.EXE located in the SOURCE
directory.

The fourth program is QF1MAK.BAT, which will place an execution
module, QF1.EXE, in the directory \JKPLOT\SOURCE for later use.
The program copies all of the JKPLOT system files necessary and
also copies three files related to QF1, QF1.BAS, DPRM1.BAS, and
UTILS.INC from the \JKPLOT\SOURCE directory. The QF1 application
program was split into two seperate source programs because the
combined source program was too big for the compiler to handle.
The batch program QF1MAK.BAT compiles and links the modules to
produce QF1.EXE, and then copies QF1.EXE back to the directory
\JKPLOT\SOURCE. All of the files copied into the BATCH directory
and also the object and execution modules are then erased.

Appendix I - Page 5

8) SOME ANTICIPATED PROBLEMS

a) Not having the exact same directory structure as described in
sections 2 and 3. The system can be structured any way the user
wants, but the batch files used for examples assume the exact
structure described.

b) Not setting the proper search path and LIB environment
variable. If the search path is not set so the the command system
can find the QuickBasic modules and libraries the error message

Bad command or file name

will appear on the screen when a QuickBasic command such as

qb

is entered via the keyboard.

c) Programs execute and draw lines but leave out all text
plotting. The FONT files, JKFONT.* and JKCFONT.* must be in the
directory in which the plot system is being used because they are
read into the character definition arrays at run time. If the
program cannot find them it just proceeds to skip any symbol
drawing calls. The programs QF1.BAS and QF2.EXE check for the
presence of these files and place an error message on the screen
warning the user that the text plotting calls will be ignored.

d) If the three configuration files, CONFIG.LPT, CONFIG.HP, and
CONFIG.LAS, are not present in the working directory the JKPLOT
system cannot direct output to the printer or an HPGL plotter.
Sometimes the system will print an error message on the screen
allowing the user to return to command level, but sometimes the
program will just lock up, requiring the user to reboot.

e) The error "subprogram not defined" occurs on a program line
that contains the words

CALL INTERRUPT

when a user is trying to execute a program within the QuickBasic
environment. This will occur if the user entered QuickBasic
without using the /I option. The /I option causes QuickBasic to
load the library QB.LIB, which contains the INTERRUPT subprogram.
Trouble with the interrupt call can also occur if the file,
REGS.INC, is not in the working directory.

The same type of error can occur when linking a program if the
library, QB.LIB, is not referenced in the proper field in the LINK
routine. For example to link object modules (assumed to have been
previously compiled) to produce figure 6 on the screen without

Appendix I - Page 6

referencing the library JKPLOT.LIB the LINK command would look like

LINK fig6+jk2dplt+devs+qbscr,,,qb.lib;

9) IF ALL ELSE FAILS

If all else fails, please read the documentation.

Appendix I - Page 7

APPENDIX J

CHANGING OR ADDING FONTS OR CHARACTERS

CHANGING OR ADDING FONTS OR CHARACTERS

Structure of the symbol table in a font set

Every character or symbol that can be drawn using the SYMBOL or
CSYMBOL subroutines is defined as a sequence of pen moves with the
pen up (no line drawn) or down (line drawn) . Each pen move is
specified by a triple of integers, (x%,y%,p%). The totality of
moves defining all the characters in a font set are stored in three
one-dimensional arrays specifying an integer x coordinate, an
integer y coordinate, and an integer specifying whether the pen is
to be up or down. The x and y coordinates specify displacements of
the pen move relative to the last pen position, and the pen
position parameter can take on the value 2 for pen down or 3 for
pen up. Integers rather than floating point variables were used to
store the x and y displacements in order to save variable storage
space, but this artifice requires that the displacements be scaled
internally in the subroutines that draw the symbols. Different
font sets may have different scaling factors, but every character
in a single font set is scaled by the same factor.

In order to draw a particular character, the program must know
which of the (x%,y%,p%) triples is the first move in the character
and also how many moves are used to define the character. The
starting move can be identified by the integer representing its
index in the three arrays defining the moves. Hence there are two
arrays of integers used to store the starting index and the length
(or number of moves required) of the characters.

Structure of the font files

The structure of the font files is the same for both the text
symbol (SYMBOL subroutine) and centered symbol (CSYMBOL subroutine)
definitions. The first line of the font file is a line of text
identifying the font style and has no effect on the internal
operations of the JKPLOT system. The second line of the file
contains a character string of ASCII symbols. Each character that
can be drawn is identified by a number that has an ASCII character
representation in QuickBasic (i.e. a number between 1 and 255), and
the character string in the second line of the font file identifies
which of these numbers is acceptable and also specifies the order
in which the characters are defined later in the file. The third
line of file contains three integers separated by commas. The
first integer specifies the number of characters in the font set.
This number must obviously be the length of the character string in
the second line of the file. The second integer specifies the
total number of pen moves required to define all the characters,
and the third integer specifies a divisor used to scale the pen
move definitions to a one inch size. The rest of the file consists
of a sequence of similar sections, one for each character to be
defined.

Appendix J - Page 1

For each character the first line of the section contains three
integers separated by commas. The first integer identifies the
character to be drawn. In the case of standard text symbols this
integer is just the ASCII representation of the corresponding
character in the second line of the file. For centered symbols to
be used by the CSYMBOL subroutine this number is the parameter used
to specify the symbol to be drawn, but the corresponding character
in the second line of the font file is the character representation
of this number plus thirty-three. The addition of thirty-three to
the symbol parameter was added so that a symbol identified by zero
could be defined even though zero is not acceptable as a QuickBasic
ASCII number and also so that the second line of the font file
would consist of all printable characters.

The second integer in the first line defining a character is the
index of the first move as defined in the three arrays storing the
x displacement, y displacement, and penup/pendown parameter. Note
that the index of the start of the first character in the list is
zero. The third integer specifies the number of moves defining the
character.

The rest of the lines defining the character consist of three
integers, separated by commas, identifying the x displacement, y
displacement, and penup/pendown parameter (2 for pen down, 3 for
pen up). For the standard symbol fonts the pen should be left one
inch to the right of the starting position to assure proper
placement of later characters in the text string to be plotted.
For the centered symbol fonts the pen is left in the center of the
unit square in which the symbol is to be drawn.

Consider the definition of the upper case A in the default font
file JKFONT.O. The first line defining the character is

65, 218, 8

and is interpreted as follows. The 65 identifies the upper case A
because it is the ASCII representation of an upper case A. The 218
specifies that the first move defining the character has index 218
in the x displacement, y displacement, and penup/pendown arrays.
The 8 notes the number of moves defining the character. The
remainder of the character definition consists of the eight lines

0,12,2
2,2,2
4,0,2
2,-2,2
0,-12,2
-8,8,3
8,0,2
6,-8,3

specifying the pen moves. Note that all moves are relative to the

Appendix J - Page 2

previous pen position, and that the final pen position is 14 units
to the right of the initial pen position. Clearly the scaling
factor for the default character font is 14.

ADDING A SYMBOL, JK, TO THE CENTERED SYMBOL FONT FILE

As an exercise showing how to add a symbol to a font file the
symbol JK, using the vertical stem of the J as part of the K, will
be added as a new centered symbol in the symbol table. The new
centered font file will be called JKCFONT.l and can be accessed by
the JKPLOT system using the NEWCFONT subroutine. All the
modifications to the file can be accomplished using the EDLIN text
editor.

The first step is to copy the file JKCFONT.O to the file JKCFONT.l
so that the original font file not disturbed. The initial header
of the font file consists of the three lines

JKPLOT STANDARD CENTERED SYMBOL FONT
!"#$%&'()*+,-.
14,92,14

The first line can be changed to something like

JKPLOT EXTENDED CENTERED SYMBOL FONT, NUMBER 1

so that when the file is printed a reader can immediately be
informed that this is not the original font file. The string

!"#$%&'()*+,-.

in the second line of the file header must be augmented on the
right with the character identifying the parameter q% in ^the
CSYMBOL subroutine parameter list. For this example the value of
q% that is to identify the new symbol will arbitrarily chosen to be
32. The character to be appended to the right end of the second
line can be found by adding 33 to the parameter value, resulting in
65. The ASCII character corresponding to 65 is "A", so that the
second line in the header of the font file JKCFONT.l is

!"#$%&'()*+,-.A

Before adjusting the third line of the header the section defining
the new character should be appended to the end of the font file.
A sequence of moves defined by the sequence of triples

0,7,3
0,-10,2
-l,-2,2

Appendix J - Page 3

-2,-2,2
-1,0,2
-2,2,2
-1,2,2
14,-4,3
-7,7,2
7,7,2
_7 7 T1 i ' i J

will suffice to define the JK symbol. This set of eleven lines
must be preceded by a line defining the parameter value q%, the
index of the starting move in the array of triples defining all the
moves in the table, and the number of moves in the character. The
value of q% to be used to identity the new symbol was chosen to be
32.

To find the index of the first new move in the array of triples the
user must look at the last symbol defined in the old file. That
symbol is defined by the four lines

13,89,3
0,-6,3
0,12,2
0,-6,3

with starting move index 89. Because there are 3 moves the index
of the last item in the move table is 89 + 2 (The indices of the
three moves are 89, 90, and 91.), which equals 91. Hence the first
move of the next symbol must have index 92. The number of moves in
the new character is 11, and so the first line defining the new
character is

32,92,11

and the complete set of lines to be appended to the font file is

32,92,11
0,7,3
0,-10,2

-2^-2 ,'2
-1,0,2
-2,2,2
1,2,2
14,-4,3
-7,7,2
7,7,2
-7,-7,3

The only step left is to adjust the third line of the old file,

14,92,14

Appendix J - Page 4

to reflect that there is 1 more character in the file and there are
11 more move triples in the arrays that hold the displacements and
penup/pendown specifications. The new line is thus

15,98,14

with the rightmost 14 left unchanged because that is the scaling
factor for the complete font set and cannot be modified without
changing all the characters. The complete three line header for
the new font file is thus

JKPLOT EXTENDED CENTERED SYMBOL FONT, NUMBER 1
!"#$%&'()*+,-.A
15,103,14

and the new font file, JKCFONT.l is now available for use with the
JKPLOT subroutine CSYMBOL.

Note that because this new symbol is a centered symbol, the final
move of the symbol definition leaves the pen at the original
location. If the new symbol were to be added to a standard font,
the last pen move would leave the pen one inch to the right of the
starting position.

To display the new symbol on the screen along with the grid used
for calculating the pen moves execute the following program using
the QuickBasic interpreter. Remember to use the "/I" option when
entering QuickBasic. The JK2DPLT.BAS, DEVS.BAS, and QBSCR.BAS
modules must be loaded with the program.

' $INCLUDE: ' jk2dplt.inc'
DECLARE FUNCTION VideoHardware% ()

xpage = 1
ypage = 1
devno% = VideoHardware%
CALL Plots(xpage, ypage, devno%, tker%)
CALL Newpen(GLTBLUE)
FOR i% = 0 TO 14

j = i% / 14
CALL Plot(j, 0, 3)
CALL Plot(j, ypage, 2)
CALL Plot(0, j, 3)
CALL Plot(xpage, j, 2)

NEXT i%
CALL Newpen(GWHITE)
CALL newcfont(l)
CALL Csymbol(.5, .5, 1, 32, 0, -1)
CALL Plot(0, 0, 999)
END

Appendix J - Page 5

