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PREFACE

This report presents a computer program for estimating parameters of
ground-water flow simulations by using nonlinear regression. The program
documented in this report is designed for incorporation into a modified
version of the modular finite-difference ground-water flow model developed
by the U.S. Geological Survey, which is also documented in this report. The
performance of this computer program has been tested in models of both
hypothetical and actual ground-water flow systems. Future applications,
however, might reveal errors that were not detected in the test simulations.
Users are requested to notify the originating office of any errors found in
the report or in the computer program. Updates might occasionally be made
to both the report and computer program. Users who wish to be added to the
mailing list to receive notice of updates, if any, can send a request to:

U.S. Geological Survey
P.0. Box 25046, MS 413
Denver, CO 80225-0046

Copies of the computer program and test data sets on tape or diskette
are available at cost of processing from:

U.S. Geological Survey
WATSTORE Program Office
437 National Center
Reston, VA 22092
Telephone: (703) 648-5695
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A COMPUTER PROGRAM (MODFLOWP) FOR ESTIMATING PARAMETERS OF A TRANSIENT,

THREE-DIMENSIONAL, GROUND-WATER FLOW MODEL USING NONLINEAR REGRESSION

By Mary C. Hill

ABSTRACT

This report documents a new version of the U.S. Geological Survey
modular, three-dimensional, finite-difference, ground-water flow model
(MODFLOW) which, with the new Parameter-Estimation Package that also is
documented in this report, can be used to estimate parameters by nonlinear
regression. The new version of MODFLOW is called MODFLOWP (pronounced
MOD-FLOW.P), and functions nearly identically to MODFLOW when the Parameter-
Estimation Package is not used. Parameters are estimated by minimizing a
weighted least-squares objective function by the modified Gauss-Newton
method or by a conjugate-direction method. Parameters used to calculate the
following MODFLOW model inputs can be estimated: Transmissivity and storage
coefficient of confined layers; hydraulic conductivity and specific yield of
unconfined layers; vertical leakance; vertical anisotropy (used to calculate
vertical leakance); horizontal anisotropy; hydraulic conductance of the
River, Streamflow-Routing, General-Head Boundary, and Drain Packages; areal
recharge rates; maximum evapotranspiration; pumpage rates; and the hydraulic
head at constant-head boundaries. Any spatial variation in parameters can
be defined by the user. Data used to estimate parameters can include
existing independent estimates of parameter values, observed hydraulic heads
or temporal changes in hydraulic heads, and observed gains and losses along
head-dependent boundaries (such as streams). Model output includes
statistics for analyzing the parameter estimates and the model; these
statistics can be used to quantify the reliability of the resulting model,
to suggest changes in model construction, and to compare results of models
constructed in different ways.



INTRODUCTION
Terminology

Some of the terms used in this report are
discussion that they need to be defined before

the term 'parameter’ refers to a quantity being estimated.
the hydraulic conductivity of defined

parameters would be, for example,

so fundamental to the
proceeding. In this report,

Thus, typical

areas of confined model layers 4 and 5, the recharge rate applied to a

defined area of model layer 1 during specified
when multiplied by defined constants, produces
selected cells listed in a River Package input

time steps, or a value which,

the hydraulic conductance for

file. The values produced by

parameter estimation are estimates of these parameters.

In contrast, the term ’‘model input’ refer

to the properties required

in the input files of MODFLOW, the U.S. Geological Survey (USGS) modular,

three-dimensional finite-difference ground-water flow model.

The input

files are described by McDonald and Harbaugh (1988) and Prudic (1989).
Typical model inputs are transmissivity of confined layers, hydraulic

conductivity of unconfined layers, and recharg¢ flux.

be calculated using parameters.

Use of the term ‘model’ in this report also might cause confusion.

Many model inputs can

To

coordinate with usage in the regression literature (for example, Fuller,

1987, p. 9), in this report the term model gen‘rally refers to the equations

and assumptions used to represent a physical system.

In this sense, a model

includes not only the numerical representation of the physical equations,

but also includes assumptions made to represent a physical system.

illustrate, consider linear models, which are

in this report.

To

sed for illustrative purposes

Linear models are of the form presented in equation (6).

Assumptions required to create a linear model Include how many parameters

and independent variables to use. For nonline
constructed using the numerical representation
equations as described for MODFLOW by McDonald
Prudic (1989), typical assumptions concern the
conditions, the definition of parameters to be
exclusion of physical features, and so on.
therefore, can differ in one or several of the

construction. In general, models also can dif

r models, such as those

of the ground-water flow

and Harbaugh (1988) and
location and type of boundary

estimated, the inclusion or

Models of a physical system,

assumptions used in model

fer by being based on




different physical equations--for example, one model might only include flow
through porous media, as in MODFLOW, whereas another also might represent
flow through a fracture. No capacity to vary the physical equationmns,
however, is provided in this report.

Confusion results because the numerical representation of the ground-
water flow equation presented by McDonald and Harbaugh (1988) and Prudic
(1989) (MODFLOW) also is called a model. To resolve any confusion, in this
report all references to the numerical representation of the ground-water
flow equation include citation of McDonald and Harbaugh (1988) and Prudic
(1989) or reference to MODFLOW or MODFLOWP, and an effort has been made to
clearly state that in other references to models, the more extensive
definition discussed above is implied.

Problem
Most numerical models of ground-water flow systems need to be
calibrated--that is, the model needs to be made to match the physical system
being modeled. The model and the physical system are compared based on
calibration criteria that are defined by the user. For example, typical
calibration criteria are that model parameter values are to be consistent
with independent estimates of associated field parameters, and that

simulated hydraulic-head values are to be similar to observed values.

Numerical models of ground-water flow systems can be calibrated by
trial-and-error, in which simulated aspects of the physical system are
repeatedly, manually changed until the model satisfactorily matches the
physical system as measured using the defined calibration criteria.
Although trial-and-error.calibration is conceptually simple, it has three
limitations. First, there is no way to know if the estimated parameter
values satisfy the calibration criteria better than some untested set of
parameter values. This lack of knowing makes it difficult to test
hypotheses about a ground-water flow system because a model constructed
using one hypothesis might produce better results because of the parameter
values used, and not because that hypothesis is better than another. (The
process of comparing different hypotheses is called model discrimination.)
Second, it is difficult to determine if estimated parameters are highly

correlated--that is, that coordinated changes in model parameters would



produce identical results in terms of the caliLration criteria. When high
correlations are present, it is impossible to hniquely estimate the
parameter values. Third, the reliability of parameter estimates and
simulated results can only be assessed by the tedious process of manually
perturbing parameter values to perform a sensitivity analysis. The process
also is inexact because results depend on how much the parameter values are
perturbed, and the appropriate value is generally unknown. The lack of

precision makes it difficult to evaluate whether the calibrated model is

accurate enough to be used to make conclusions| about the aquifer system or

to predict aquifer response.

Alternatively, numerical models of ground-water flow systems can be
calibrated by nonlinear regression, in which the model itself is used to
determine changes in parameter values. Nonlinear regression is accomplished
in the following steps: !

1. Using the calibration criteria, definb an objective function, which
is a measure of how closely the model matches khe physical system.

2. Determine the parameter values that ﬂroduce the smallest value of
the objective function. This is called minimization or optimization of the
objective function, and, using the Parameter-Estimation Package of MODFLOWP,
can be accomplished with either the modified dauss-Newton method or a
conjugate-direction method. Because the grouﬂd-water flow equation is
nonlinear with respect to many of the parameters that are most commonly
estimated, the optimization methods are iteraine--that is, the same
procedure is repeated to update parameter values until the optimal parameter

values are reached.

3. Calculate statistics by which model discrimination and assessment
of model reliability can be accomplished easily and objectively.
Purpose and Sco

This report documents the changes made to MODFLOW, the USGS modular,
transient, three-dimensional, ground-water flow model, to create MODFLOWP
(pronounced MOD-FLOW<P). When used in conjunction with the new Parameter-
Estimation Package, which also is documented in this report, MODFLOWP is
designed to estimate parameters of ground-water flow simulations that are
steady-state or transient or both using nonlinear regression. When used
without the Parameter-Estimation Package, MODFLOWP performs almost exactly
like MODFLOW.




This report is intended to be used in conjunction with three other
publications. The first two are the documentation of MODFLOW (McDonald and
Harbaugh, 1988; Prudic, 1989). When applicable, their package and variable
names are repeated in this report, and the reader might need to refer to
those two publications for a complete discussion. The third publication is
Cooley and Naff’s (1990) teaching manual and documentation for a steady-
state, two-dimensional, ground-water flow model with nonlinear regression.
Many of the ideas presented in this report are discussed in more detail by
Cooley and Naff (1990), and that publication is referenced when those ideas

are discussed.

Parameters are estimated by .using existing, independent estimates of
parameter values (called prior estimates of the parameters), measured
hydraulic heads and temporal changes in hydraulic head, and measured gains
and losses along head-dependent boundaries (called observations of dependent
variables). Parameters that are used to calculate the following model
inputs can be estimated: properties of confined or unconfined aquifers;
horizontal anisotropy; vertical anisotropy (used to calculate the model
input vertical leakance); hydraulic conductance of selected cells of the
River, Streamflow-Routing, General-Head Boundary, or Drain Packages
(McDonald and Harbaugh, 1988; Prudic, 1989); areal recharge rates; maximum
evapotranspiration; pumpage rates; and the hydraulic head at constant-head

boundaries (head can vary linearly along the boundary).

The report begins with brief descriptions of numerical modeling of
grdund-water flow, followed by discussions of linear regression, nonlinear
regression, and the calculation of sensitivity-equation sensitivities used
in modified Gauss-Newton optimization and the gradient of the objective
function calculated by the adjoint-state method and used in conjugate-
direction optimization. Graphical and statistical methods for analyzing the
discrepancies between observed and simulated dependent-variable values, and
statistical methods for analyzing estimated parameter values and discrimi-
nating between different models are presented. There are detailed instruc-
tions for using the computer program, including data-entry formats. Two
test cases, data listings and outputs for those cases, a brief description
of all new and modified modules, and a listing of the FORTRAN program are
included. An example of how regression can be applied to a transient,

three-dimensional ground-water flow problem is shown in Yager (1991).



Parameter estimation requires the solution of many matrix equations
with dimensions equal to the number of active cells in the finite-difference
grid used to represent a ground-water flow system. These matrix equations
are solved most successfully by using direct (noniterative) or conjugate-
gradient solvers. The strongly implicit procedure (SIP) proved to be
impractical because one iteration parameter seed (McDonald and Harbaugh,
1988, p. 12-23) did not produce convergence for all matrix equations for
some test cases, and other solvers, such as slice-successive overrelaxation
(SSOR) and alternating-direction implicit (ADI), tend to be slow (Trescott
and Larson, 1977; Aziz and Settari, 1979, p. 281-294). A direct D4 solver
module for two-dimensional problems simulated using MODFLOW was used by Hill
(1990a), and is very efficient for two-dimensional problems. The D4 solver
is limited, however, because round-off error becomes significant for
problems with more than 500 to 1,000 active finite-difference cells. The D4
module has not been documented and is not readily available for users.
Conjugate-gradient solver modules have been developed for MODFLOW by Kuiper
(1987), Meyer and others (1989), Scandrett (1989), and Hill (1990b), and the
first and last modules are readily available for users. Conjugate-gradient
solvers generally are less efficient than D4 splvers for small problems, but
can be used to accurately solve large problems| (Hill, 1990a). Problems with
nonlinearities such as a water-table layer or nonlinear head-dependent

boundary, need an iterative solver.

Parameter estimation is complicated, and use of this package with an
inadequate background can easily produce fallacious conclusions. It is
assumed that readers of this report are familiar with the modeling of ground-
water flow and matrix addition and multiplication, and have a statistical
background equivalent to one college statistics course. Readers unfamiliar
with the modeling of ground-water flow need to| read one of the available
texts on the subject, such as Wang and Anderson (1982). Readers unfamiliar
with matrix addition and multiplication need tp read and do exercises from

Gere and Weaver (1965). Readers unfamiliar with statistics and linear

regression need to read and do exercises from Benjamin and Cornell (1970) or
another basic text on statistics, and Draper and Smith (1981). Readers
unfamiliar with nonlinear regression need to read and do exercises from Bard
(1974), Draper and Smith (1981), and Cooley and Naff (1990).

6



Notation

Throughout this report, matrices and vectors are presented using the
following notation:
Capital or Greek letters underlined twice indicate matrices: A, w.
A number underlined twice is a matrix, and all entries are equal
to that number: 1 is a matrix of ones.
Lower-case letters underlined once indicate column vectors: £, y.
A number underlined once is a column vector, and all entries are

equal to that number: 0 is a vector of zeros.

The element located in matrix row i and column j is designated as
follows: matrix A, elements ai,j; matrix V, elements vi,j

Tge ith element of vector £ is fi‘

A" 1is the transpose of matrix A.

gT is a row vector with the same elements as e.

é-l is the inverse of matrix A.

X is an N by M matrix if it has N rows and M columns. A column
vector might be N by 1, a row vector might be 1 by M

I is the identity matrix. Elements equal 1 along the diagonal and

are zero elsewhere.
Given a square, symmetric matrix A, 52 - éTé; é% = B, where B is
‘ defined so QTE = A.
If the scalar variable S is a function of vector a then:

as

da is a column vector with the ith element equal to 8S/8ai.
If the vector a is a function of the scalar «, then:
3a/8a is a column vector with the ith element equal to 3ai/8a.
Derivatives of matrices with respect to vectors produce arrays with
more than two dimensions. These are discussed in detail when they
are mentioned in the text.
Subscripts also are used to designate row, column, and layer number of
the finite-difference grid and sequential cell number, and are
defined when they are mentioned in the text.

Some module variables are used in the text to expedite relating the
text to the modules. These variables are written in uppercase letters, and
are defined in the text where they are introduced and in the "List of

Variables" in Appendix C.
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MODELING TRANSIENT, THREE-DIMENSIONAL, GROUND-WATER FLOW SYSTEMS

Ground-Water Flow Equation
MODFLOW is documented extensively by McDonald and Harbaugh (1988) and

Prudic (1989), and only those parts needed to understand MODFLOWP and the

Parameter-Estimation Package are repeated here.

In their development, McDonald and Harbaugh (1988, ch. 2) discretized
the ground-water flow equation spatially by using the block-centered,
finite-difference method, and they implicitly differenced the equation in
time. For one finite-difference cell, the discretized, differenced ground-
water flow equation can be written as (McDonald and Harbaugh, 1988, p. 2-
19):

n n n n
CRi,j-1/2,k(hi,j-l,k‘hi,j,k) *OR; h1y2, 6Py e, kP 5 K0
n n
C; 12,7, kMi-1, 1 kPE, 560 * CCantn, o kPhen, ke 5K
(L
n n n n
PO gk-12P 5 k1P 50 Y Vg 2Py el P LK)
-l
o0 0 n (Ar Ac Avk)(h i k i k)
+P7 . h, ., +Q% ., =5 L
i,j,k'i,j,k i,j,k si,j,k tn tn 1
where n is the time step at which hydraulic head is being
calculated, and n-1 is the previous time step;
i,j,k are the row, column, and layer of the finite-difference
cell, and, thus, identify spatial location;
Ar is the length of the cell as measured along a row (L);
Aci is the length of the cell as measured along a column (L);
Avk is the length of the cell as measured perpendicular to the
orientation of the layer (L);
h? j.k is the hydraulic head in the center of cell i,j,k at the
end of time step n;
CRi j-1/2,k are the lateral hydraulic conductances between the cell at
CRi 4172,k i,j,k and the two neighboring cells in row i (L2/T);



Cci-1/2 j k}are the lateral hydraulic conductances between the cell at

| Cci+1/2,j,k i,j,k and the two neighboring cells in column j (L /T);

Cvi,j,k-1/2}are the vertical hydraulic conductances between the cell

Cvi,j,k+1/2 at i,j,k and the two neighboring cells in adjoining
model layers (L2/T); i

P?,j,k is the sum of all conductances of head-dependent boundary
conditions applicable at cell i,j,k at time step n
w?/m;

Q?,j,k is the sum of all sources or sinks or both at cell i, j,k
at time step n, the conductances of head-dependent
boundaries multiplied by the|known hydraulic head of the
head-dependent boundary condition at cell i, j,k at time
step n, and terms related tolconstant-head boundaries
L3/1); ana

Ssi - is the specific storage, or the specific yield divided by

I Av,, at cell i,J,k.

k’

The calculation of the hydraulic conductancgs is discussed by McDonald
and Harbaugh (1988, ch. 5), and can be summarizeh as:

TR. . TR.
CR; . ja1/2,k = 28¢; TRl’llBZr 1‘1;;'k Ar.’ (2a)
! ! i,j,k j+1 i, j+l,k jj
TC. . TC, .
CCirviya, j k= 287 TG~ he e, (2b)
i i,j,k i+l i+l,j,k i
m Az ]-1
cv, . = | = Ar Ac ., (2¢)
i,j,k+1/2 g-lKg Jji
where TR, . is the transmissivity along the &ow at cell i,j,k, and

1k equals the hydraulic conductivity along the row multiplied
by saturated thickness (L2/T);
Tci,j,k is the transmissivity along the column at cell i,j,k, and
equals the hydraulic conductiviity along the column

multiplied by the saturated thickness (LZ/T);
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m is the number of strata between cell centers in model layers

k and k+l1 that have different values of vertical hydraulic

conductivity;
Azg is the thickness of each of the m strata (L);
K is the vertical hydraulic conductivity of each of the m

g
strata (L/T).

m Az |-1
z E_g is the vertical leakance (1/T).
g=l'g

The volume of aquifer material that is accounted for by each of the

conductances is shown in figure 1.

Areal view of cells in layer k showing nodes at
cell centers:

- COLUMNS
J <ﬂ EXPLANATION
\ \ N AQUIFER AREA ACCOUNTED
. node n \\ \ node (n+1) m FOR BY CR,', J+1/2, k
/ hﬁq 7 AQUIFER AREA ACCOUNTED
" \ L/ FOR BY CCiy1p2, ) ¢
2 [ N = SIDE VIEW OF VOLUME
8 7 —— ACCOUNTED FOR BY CV; ; ¢,12
_ | i ROW
+1 [ Acjy
node (n+NC) j COLUMN
k  LAYER
YT YT
Ar; Arjyq NR NUMBER OF ROWS
NC NUMBER OF COLUMNS
Side view of cells in row / showing nodes at
cell centers:
- COLUMNS
J J+1
node n
n k ®
[a
E Confining unit
_Jk o
+1|  node (nsNONR)]

Figure 1.--Aquifer-system volumes accounted for by conductances

CRi,j+%,k’ cci+%,j,k’ and CV,

1]kt in the block-centered,
finite-difference method.
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If equation (1) is

:

A(n)h(n) = B(mh(n-1) - £(m)

written for each cell of

he resulting equations can be expressed in matri

a finite-difference grid,

[x form as:

3)

where h(n) is a vector of hydraulic heads at all grid points at the end

of time step n [L];

A(n) equals At%n) + K + B(n) [L2/T];

S is a diagonal matrix of specific storage multiplied by cell
volume, or specific yield multiplied by cell area [L2];

At(n) is the length of time step n [T];

K is a matrix of horizontal and vertical conductances [LZ/T];

g(n) is a diagonal matrix of conductances at head-dependent
boundaries [Lz/t];

B(n) equals ZE%;T [L2/Ti; and

£(n) is a vector of the Qi,j,k’3and is| sometimes referred to as
the forcing function [L7/T].

Of the matrices from which A and B are calc
components off the main diagonal. The structure
rows, three columns, and two layers is shown in

to denote row, layer, and column numbers. K is

components off the main diagonal occur on six of

components, ui j k'
sum of the off-diagonal components for that row.

+ CC cv

Y11,1 7Ry 11 14%,1,1 Y%V 11

+ CC

Y,2,0 7 Ry 1,1 Y OB o 144,2,1

The Parameter-Estimation Package can accomm

on the main diagonal of K ar

ﬁlated, only K has nonzero

;of K for a problem with two

figure 2, using subscripts

Qymmetric, and all nonzero

[ diagonals. The
calculated as the negative

For example:

TR

date confined or unconfined

model layers (LAYCON of the Block-Centered Flow Package=0 or 1), but is not

designed to accommodate convertible layers (LAYCON=2 or 3).

difference cells in water-table layers become i

simulated hydraulic head declines below the bott

Finite-
ctive (’'go dry’') when the

om of a water-table layer.

MODFLOW does not allow these cells to become active again within a single

12
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simulation (McDonald and Harbaugh, 1988, p. 5-9).

The Parameter-Estimation

Package, however, reactivates these cells at the beginning of each

parameter-estimation iteration (see chapter in

this report on nonlinear

regression for a discussion of parameter-estimﬁtion iterations).

Estimated parameters can be used to calcul]
in table 1.
input instructions (McDonald and Harbaugh, 198

These model inputs are the quanti

component of equation (3) in which each model

noted.

Table 1.--Model inputs listed in the MODFLOW
and Harbaugh, 1988; Prudic, 1989) that can |
estimated by using the Parameter-Estimation
equation (3) in which they occur

Jate the model inputs listed
ties listed in the MODFLOW
8; Prudic, 1989).

input is included also is

The

input instructions (McDonald
be calculated using parameters

Package, and the terms of

Model Inputs

Term in Equation (3)

Properties of model layers
Confined layer
Transmissivity!,?2

Storage coefficient!
Unconfined layer
Hydraulic conductivity?,?

Specific yield!
All layers
Horizontal anisotropy by layer!?

Vertical leakance between layers!?,?
Vertical anisotropy between layers
(used to calculate vertical leakance)!

Head-dependent boundary conductances
River Package!l
Streamflow-Routing Package!
General Head-Dependent Boundary Package!
Drain Package!

Maximum evapotranspiration
Constant-head boundaries
Stresses

Pumpage
Recharge

v IR

v IR

IR IR

I~

L)
~
IHh

P(n);£(n)
£(n)
£(n)

Parameters can be defined by a natural-log t:

of confined layers, hydraulic conductivity o
vertical leakance between layers.
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Parameterization
Although the ground-water flow model permits different model-input

values and, therefore, parameter values to be assigned to each model cell,
and many model inputs can equal different values at different time steps,
estimating this many values is impractical given the data available for most
problems. Decreasing the number of parameter values permits them to be
reliably estimated with the available data (the reliability of estimates is
discussed later in this report). 1In general, the number of parameter values
estimated needs to be a fraction of the number of hydraulic-head and

streamflow gain-or-loss observations used to estimate them.

The number of unique parameter values to be estimated can be decreased
by assuming that some of the values are known and by parameterization (Shah
and others, 1978). In parameterization, a few parameter values are used to
define the model-input values for many cells and time steps. Yager (1991)
provides an example for a transient, three-dimensional ground-water flow

system.

In the Parameter-Estimation Package, spatially varying values of model
inputs can be calculated from parameters using cell-by-cell multiplicative
factors, multiplication arrays, and zone arrays. Multiplication and zone
arrays are used only for model inputs that are read as arrays by MODFLOW
(McDonald and Harbaugh, 1988), which includes all ’'Properties of model
layers’ listed in table 1 except horizontal and vertical anisotropy, and

maximum evapotranspiration and recharge.

As an example for a model input that is not read as an array by
MODFLOW, consider the conductance of the River Package. The conductance for
a cell equals the hydraulic conductivity of the riverbed times the area the
river occupies within the cell, divided by the riverbed thickness (McDonald
and Harbaugh, 1988, p. 6-5). The Parameter-Estimation Package allows the
user to define a different multiplicative factor for each river cell
included in defining a parameter. Spatial variations in riverbed hydraulic
conductivity, area, and thickness, therefore, can be included in
multiplicative factors, and a spatially constant parameter value can be
estimated. If the riverbed hydraulic conductivity can be considered to be
constant for the cells, the parameter can be defined as being equivalent to

that riverbed hydraulic conductivity, and the multiplicative factors would

15



equal the area of the river in each cell divided by the riverbed thickness.
Alternatively, the initial estimates of riverbld conductance can be used as
the multiplicative factors, and the parameter value initially set to 1.0.
Then, any change in the parameter value would indicate the change in
riverbed conductance produced by nonlinear regression. For example, a value
of 0.50 would indicate a 50-percent decrease i‘ the riverbed conductance for

the included cells. \

As an example for a model input read as an array by MODFLOW, consider
the transmissivity of a confined model layer. [If it is reasonable to assume
that the hydraulic conductivity is constant, the parameter could be defined
as the hydraulic conductivity. The multiplicative factor times the
multiplication array would equal layer thickness; a zone array could be used
if the parameter only represented the hydraulic conductivity of part of the
layer. If it is known that the hydraulic conductivity is smaller in one
part of the layer, this could be represented bﬂ decreasing the elements of
the multiplication array in that area, or by iﬂtroducing an additional
parameter equal to the smaller hydraulic conductivity value. If the
geohydrology of the ground-water flow system indicates that the hydraulic
conductivity is applicable to parts of other model layers, they can be
included in the definition.

For model inputs read as arrays by MODFLOW, the model input can be
calculated as the sum of contributions from more than one parameter. As a
simple example, consider the situation illustrated in figure 3. Here, it is
assumed that the model input varies linearly along columns of the finite-
difference grid. This variation can be represented by assigning one
parameter to be equal to the model input value jat row 1, and another
parameter to be equal to the model input value at row 10. If the product of
all multipliers for the first parameter equals P.O at row 1 and linearly
decreases to 0.0 at row 10, and the product of all multipliers for the
second parameter equals 0.0 at row 1 and linearly increases to 1.0 at row
10, the desired variation and parameter definitFon is obtained. Note that
the values of parameters defined along the two rows of the grid are
interpolated to all cells. For two-dimensional variation, two-dimensional
finite-element basis functions (Segerlind, 1976) or kriging (Keidser and

others, 1990) can be used to calculate multiplication arrays that perform
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the desired interpolation. For kriging, a fitted or assumed variogram is
used, and parameters can be defined as discussed in Appendix A. For three-
dimensional variation, three-dimensional finite-element basis functions
(Segerlind, 1979) can be used. Other interpolation techniques, such as
polynomial interpolation and cubic splines, can also be used.

T T T T T L T T T

------ Parameter 1

MODEL INPUT

PRODUCT OF MULTIPLIERS
FOR PARAMETER 1
[=]

FOR PARAMETER 2
5
>

PRODUCT OF MULTIPLIERS

ROW OF GRID

Figure 3.--Multipliers needed to define a discretized linear

variation in a model input using two parameters.
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The formulation provided for spatial parameterization allows a great
deal of flexibility in defining parameters. It is hoped that this will
allow users to define parameters that make the most physical sense in a
given situation, and to realistically represent spatial variability while
minimizing the number of parameters estimated. Note that any defined
spatial variability is assumed to be known, aﬁd all uncertainty is related
to the estimated parameters. If the spatial wvariability is not truly known,

which is common, the results of the nonlinear regression might indicate

The temporal parameterization permitted in the Parameter-Estimation

unrealistically reliable model results.

Package is limited to making parameter values equal for specified time
steps; the time steps can be from different stress periods and might or

might not be continuous. In a sense, this is zonation applied temporally.

Some estimated parameters can be redefin%d by a natural-log
transformation. Redefining the parameter in this way sometimes produces a
better-conditioned regression problem (Carrera, 1984), always ensures that
the parameter value remains positive, and, if the parameter is assumed to be
lognormally distributed, allows more convenient statistics to be used to
characterize the reliability of prior and final estimates. Hydraulic-
conductivity estimates commonly are considered to be lognormally distributed
because point hydraulic-conductivity measurements have been determined to be
lognormally distributed in some geohydrologic|situations (Davis, 1969, p.
76; Nielsen and others, 1973; Freeze, 1975; Neuman, 1982; Sudicky, 1986).

Some example lognormal distributions are| shown in figure 4.
Discussions of the lognormal distribution are| available in Benjamin and
Cornell (1970, p. 262-270), and Schmittroth (1979); the reader is referred
to these sources for its characteristics. Here, note that if K is a
lognormally distributed parameter, exp[E(4n K)], equals the modal value of
K, and exp[E(4n K)+a2/2] equals E(K), the mean of K, where 02 is the
variance of fn K. The exponential of confidence intervals on E(fn K),
therefore, are confidence intervals on the modal value of K, and might not
be symmetric about exp[E(4n K)]. The model imputs associated with
parameters that can be redefined by a natural-log transformation are noted

in table 1.
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Users who prefer 1og10 transformation can convert to log10 by
multiplying the log-transformed parameter value estimated by the Parameter-
Estimation Package by log,, e = 0.4342945. This is derived by noting that a

parameter, b, can be expressed as b = eln b. Then, 1og10 b=24nb 1og10 e.
10x10° I I
= [\/Gln y=0.1 —
2 5x10° —
N->'
B /cm y=1.0 7
Olp ¥= 0.472
L -
|
0 05 X 10° 1.0 X 10° 1.5 X 10°
y

Figure &4.--Lognormal distributions with the same mean showing
the effect of % oy’ where InY is a normally distributed random
variable. [Modified by Benjamin and Cornell (1970); used with

permission of the publisher.

OBSERVATIONS

Several types of commonly available observations of dependent variables
can be used to estimate parameters, including observations of hydraulic head
or temporal changes in hydraulic head at arbitrary times and locations,
observations of hydraulic head or temporal changes in hydraulic head
averaged over several model layers, and observations of gains and losses
along head-dependent boundaries, such as streamflow gains and losses. To
use these observations to estimaEe parameters by nonlinear regression,
corresponding simulated values, y, need to be calculated so that the
difference between observedAand simulated values can be evaluated and
minimized. Calculation of y for the differegt types of observations is
described in the following sections; use of y in nonlinear regression is
described later in tye text.

Calculation of y needs to be modified if water-table cells involved in

the calculation ‘go dry’. This problem also is discussed in this chapter.
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Hydraulic Head at One location Obgerved Over Time

Hydraulic heads can be observed for any time representc:,d by the

simulation. If the observation occurs within a time step, y is calculated
by linearly interpolating values calculated at the beginning and end of the
time step using TOFF, a coefficient specified by the user (Appendix A).
TOFF equals the time of the observation minus the time at the begimning of
the time step divided by the Iength of the time step. Use of TOFF is
illustrated in figure 5.

HYDRAULIC HEAD AT
ONE LOCATION

TIME STEP

EXPLANATION

¥ LINEARLY INTERPOLATED
SIMULATED HYDRAULIC HEAD

X TIME OF OBSERVED
HYDRAULIC HEAD

|
Figure 5.--Use of TOFF to calculate simulated values of hydraulic

heads observed within time steps by 11\+ear interpolation.
i

l
|
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Hydraulic heads observed at one location over time can be represented
in the Parameter-Estimation Package as hydraulic heads at each time of
observation, or as an initial hydraulic head followed by changes in
hydraulic head. The second representation permits some types of correlation
in the true errors to be accurately and easily represented, as described

later in this report in the section "Weighting Observations".

Hydraulic Head at Arbitrary locations

The finite-difference method calculates hydraulic heads at the center
of each active finite-difference cell within a layer. Observation wells,
however, rarely are located at cell centers and might not be screened
throughout the entire thickness represented by the model layer. In this
report, hydraulic heads are assumed to be equal through the thickness of
each model layer, so variations caused by limited screening of the
observation well within a layer are ignored. Simulated hydraulic heads at
observation locations are calculated by interpolating within the two-
dimensional plane of a single layer. Six locations (A-F) for which
hydraulic heads might need to be interpolated are shown in figure 6.
Location A is exactly in the center of a cell, so no interpolation would be
needed. Location E is exactly between two cell centers, so interpolation
using two hydraulic heads would be needed. Hydraulic heads at all other

locations would require interpolation using three or four hydraulic heads.

Exact interpolation of hydraulic heads is not always possible for the
finite-difference method described by equations (1) and (2) because
hydraulic properties that are defined for cells do not extend between
locations where hydraulic head is calculated. For example, interpolation
for locations C, D, or F in figure 6 could require as many as four different
hydraulic-conductivity values, and, for this complicated case, no exact

interpolation method is available.

Approximate geometric interpolation methods that exclude the variations
in hydraulic conductivity are available. In this report, geometric
interpolation based on linear, finite-element basis functions is used.
Linear one-dimensional basis functions (equivalent to linear interpolation)
are used for locations such as B and E in figure 6, which are adjacent to

two inactive cells or are exactly between adjoining cell centers; triangular
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basis functions are used for locations such as ¢ and F in figure 6, which
are within a triangle formed by the centers of three neighboring cells
because the fourth neighboring cell is inactive; and quadrilateral basis
functions are used for locations such as D in figure 6, which are within a
rectangle formed by the centers of four active cells. All basis functions
are calculated using local coordinates that are specified by the user and
define where the arbitrary location is within a cell relative to the
location of the cell center. These local coordinates are a row offset,
ROFF, and a column offset, COFF, and their use is illustrated in figure 6.
Note that ROFF is negative in the direction of decreasing row numbers, and

 COFF is negative in the direction of decreasing column numbers.

COLUMNS

1 j1 ] i | j+1
| | |

BENNHEW w}cﬁvé N
B} _,&\ N\ S\ coreng!

ROFF=-0.5 -0 I
.B Co

- —d__
1
I

|
(7] | |
S - ° COFF=-0.5 +A COFF=0.5
Q [
o« | |
| E |
— e D ROFF=0.5 °F
| <--
_ |
|
|
|

POINT _ ROFF COFF

A 0.0 0.0
B -0.25 -0.25
C -0.25 0.4
D 0.5 -0.5
E 0.25 0.0
F 0.4 0.25

Figure 6.--Locating points within a finite-difference cell
using ROFF and COFF.
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The basis functions used are described in numerous texts and are not
discussed in this report. They are equivalent to the one-dimensional
simplex, two-dimensional simplex, and quadratic-element basis functions of
Segerlind (1976, p. 24, 28, and 258), and the triangular "archetypal” and
rectangular-element basis functions of Wang and Anderson (1982, p. 119 and
153). Wang and Anderson (1982) do not discuss a linear, one-dimensional

basis function.

Errors introduced by using geometric interpolation might become
substantial when the hydraulic properties of neighboring cells are different
and cell dimensions are large. At such locations, the differences between
observed and simulated hydraulic heads might be inaccurate and could produce
inaccurate parameter estimates. This problem would be characterized by
larger than expected differences between observed and simulated hydraulic
heads.

Although this section only discusses observed hydraulic heads,
identical procedures are used when an initial hydraulic head followed by
temporal changes in hydraulic head are used.

Multilayer Hydraulic Heads

If an observation well is screened over intervals that represent more
than one model layer, and the observed hydraulic head or change in hydraulic
head is affected by all screened intervals, then the associated simulated
value is a weighted average of the hydraulic heads or changes in hydraulic
head calculated for each of the layers involved. The simulated value is
calculated by multiplying the hydraulic head or change in hydraulic head in
each layer by a user-specified proportion and then summing the results, as
shown in figure 7. A more realistic representation of this problem would be
produced by calculating the proportions based on the flow-system and aquifer

characteristics, but the Parameter-Estimation Package does not do this.

Interpolation for multilayer hydraulic heads can be complicated because
neighboring cells can be active or imactive, depending on the layer. In the
Parameter-Estimation Package, the interpolation is defined using the IBOUND
array (McDonald and Harbaugh, 1988, p. 4-2) of the first layer listed for
the multilayer hydraulic-head observation (see DATA SET 6A of the INPUT
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Ground surface

Model Layer 1

Model Layer 2 h,
Model Layer 3 h;
Model Layer 4 h,

A
Y=pzh; + pshz + pshy

h,, hs, and h, are calculated hydraulic heads at the
observation location in layers 2, 3, and 4.

P2, P3, and p, are proportions defined by the user.

Figure 7.--Calculating the simulated value

multilayer observation well.
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FILE, Appendix A). Thus, for each neighboring cell that is inactive in any

of the other model layers, the cell in the same row and column in the first

layer listed needs to be active. If no one layer contains a complete set of

inactive cells, correct interpolation cannot be accomplished. This is
illustrated in figure 8.

(A) (B)
Model Layer 2: Model Layer 2:
/, /,
7/ GH
. X . . x L]
EXPLANATION

[ - ] AcTivecewL
¥'/./)| INACTIVE CELL

Model Layer 3: Model Layer 3:
X  OBSERVATION

LOCATION

///AX. ////./AX.

Model Layer 4: Model Layer 4:

//////X. R

Model layer 4 has inactive cells that
correspond to the inactive cells in all
other layers, and is listed first in
data set 6A.

No one layer has inactive cells that
correspond to the inactive cells in all
other layers.

Figure 8.--Situations that do (A) and do not (B) produce correct
spatial interpolation for multilayer hydraulic-head observations.
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Head-dependent boundaries correspond to, for example, rivers, drains
and lakes, and can be simulated using the River, Drain, or General-Head
Boundary Packages (McDonald and Harbaugh, 1988, ch. 6, 9, and 11), or the
Streamflow-Routing Package (Prudic, 1989). Flows into or out of any part of
a head-dependent boundary for which gains and losses have been observed are

calculated as:

A NQCL NQCL Ki
| y = 1§1 c,q; = ifl c; BEAi(Hi-hi), (4)

where NQCL is the number of finite-difference cells (number of reaches for
the Streamflow-Routing Package) used to simulate that part of
the boundary;

q. is the simulated flow rate at one cell (L3/T) (negative for flow
out of the aquifer);

c is a user-defined multiplicative factor;

is the cell hydraulic conductivity (L/T) of, for example, the

riverbed or lakebed;
D is the cell thickness (L) of, for example, the riverbed or

lakebed;
Ai is the area of the water body within| the finite-difference cell
2, .
(L)! |
h; is the simulated hydraulic head in the ground-water system
adjacent to the head-dependent boundary (L); and
H is the water level in the water body| or the elevation of the

i
drain. .
The observed equivalent of y, y, would equal Q2 Ql’ as shown in figure 9A;
the related components of equation (4) are shown in figures 9A and 9B.
Generally c, = 1.0. However, if Ql or Q2 or both are located within a cell
instead of the edges of the cells as in figure 9A, c; needs to be less thfn

1.0 so that only part of the flow calculated for the cell is included in y.
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(A)

COLUMNS
J J+1 j+2 j+3
i-1
Q
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i /
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% i+1
o A /, /
//
+2 \82
i+3
(B)
o [ ) h o
n
EXPLANATION
” ONE OF THE NQCL CELLS REPRESENTING D THICKNESS OF THE WATER-BODY BED WITHIN
A THE REACH BETWEEN Q4 AND 02 IN THE MODEL n THE FINITE-DIFFERENCE CELL
/02 GAGING SITE H HYDRAULIC HEAD ON THE CONSTANT-HEAD
n SIDE OF THE HEAD-DEPENDENT BOUNDARY
A AREA OF THE WATER-BODY BED WITHIN h CALCULATED HYDRAULIC HEAD FOR CELL n
n THE FINITE-DIFFERENCE CELL n

Figure 9.--Representation of head-dependent boundary gain and loss

observations: A, gaging sites and cells used to represent the reach

between gaging sites in the model; and B, quantities used to calculate
the simulated gain or loss.
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There are exceptions to equation (4) in some of the model packages. In
the River and Streamflow-Routing Packages, if hi declines below the bottom
of the riverbed or streambed, the flow at cell i is calculated as (figure
10A and 10C):

K,

where Ei is the elevation of the bottom of the streambed. In the Drain
Package, if hi declines below the bottom of the| drain, qi-O (no flow is
simulated between the ground-water system and the drain, as shown in figure
10B). The Streamflow-Routing Package also has the exception that if the
calculated loss from a reach exceeds the flow into that reach, the loss is

set equal to the flow into the reach.

The exceptions noted above result in the elimination of hi from the
calculated head-dependent boundary gains and losses, and decrease the
importance of the observed gain or loss to the estimation of parameters. In
the extreme, an observation might have no affect on parameter estimation, in
which instance the observation is omitted for the parameter-estimation
iteration being executed. Messages are printed in the output from the
Parameter-Estimation Package when the exceptions listed above occur and when

an observation is omitted.

When the hydraulic head at a cell in a water-table layer declines below
the bottom of the aquifer, the cell is designated as inactive and remains
inactive through the last time step (McDonald and Harbaugh, 1988, p. 5-9).
Such cells are said to ’‘go dry’. At a dry cell, hydraulic head is not
calculated, and the cell cannot be used to calculate simulated hydraulic
heads or head-dependent boundary gains and loss¥s for the parameter-
estimation iteration. For head-dependent bound#ry reaches this generally
poses little problem because cells along the reaches do not tend to go dry
as often as other cells. When they do go dry, these cells usually account
for only a fraction of a reach. No special provisions have been made in the
Parameter-Estimation Package to account for cells going dry along head-

dependent boundary reaches with observed gains or losses.
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EXPLANATION

A. q
’ q, CALCULATED FLOW
K. CELL HYDRAULIC CONDUCTIVITY
Positive q; ! FOR HEAD-DEPENDENT BOUNDARY
:c\llrxilfgtro o \Slope= —pt A A, AREA OF WATER BODY
| OR DRAIN IN THE CELL
, h; CALCULATED HYDRAULIC HEAD
| IN THE MODEL LAYER
0 ' hi  E, BOTTOM OF STREAMBED
: ! H, ELEVATION OF WATER BODY
. ! OR DRAIN
Negative q; | |
indicates \ \
flow into
aquifer ! !
! I
| \ B.
! I -q;
! I
E; H;
Negative q;
C. indicates !
q; flow into
drain
Positive q;
indicates
flow into )
aquifer .
Flow into K; o
reach may : Slope = —5 A
_limit flow ' !
into aquifer I
O ! h,‘
! I
! 1
! I
Negative q; ! |
indicates | |
flow into .
stream | :
!
! I
L I
E H;

Figure 10.--The dependence of simulated gains and losses on hydraulic
head in the model layer (h i) in: A, the River Package, B, the Drain

Package, and C, the Streamflow-Routing Package.
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Problems are more severe when cells go dry at or adjacent to hydraulic-

head observation locations.
figure 11.

There are three types of problems, as shown in

First, if the observation is single layer and an adjacent cell

which is used in the interpolation method discussed earlier goes dry, the

dry cell usually can be omitted from the interﬁolation without introducing

too much error into the interpolated value.

This procedure was adopted in

the Parameter-Estimation Package. Second, if &he observation is multilayer

and cells used for interpolation in one or more layers go dry, the

proportions used to weight the hydraulic headsifrom those layers probably

are no longer valid.

Although the cells could be omitted from the

interpolation for the layers involved and a simulated hydraulic head

analogous to the observed value could be calculated, the problem with the

proportions can not easily be resolved.

In the Parameter-Estimation

Package, multilayer observations for which any cells used in the

interpolation go dry are omitted from the parameter-estimation procedure.

Tﬂird, if the observation is single layer or

containing the observation location goes dry i

the observation is omitted from the parameter-éstimation procedure.

ltilayer and the cell

any of the layers involved,
The

effect of omitting the observations for the laFt two situations is that the

impetus for changing the parameters to keep th
This loss

point, no practical alternative exists.

the parameter-estimation procedure.

As discussed previously in the section "G
the Parameter-Estimation Package reactivates a
of each parameter-estimation iteration, so tha

and number of observations are reinstated.

Omitted Observatio

If observations are alternately used and
successive parameter-estimation iterations, wh
head observations in water-table layers that g
boundary gain and loss observations, parameter
(see the section "The Sum-of-Squares Objective
Problems" for a discussion of parameter-estima

convergence). This problem can be addressed i
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Observation

location \
1. \ 2.

X

Situation 1: Single-layer simulation; cells 2, 3, and(or) 4 go dry;
recalculate interpolation.

Situation 2: Multilayer simulation; cells 2, 3, and(or) 4 go dry
in any layer; omit observation from parameter-
estimation procedure.

Situation 3: Single or multilayer simulation; cells 1 goes dry

in any layer; omit observation from parameter-
estimation procedure.

Figure 1l.--Effect of dry cells on calculated hydraulic head at an

observation location.

1. Eliminate the omitted observations during initial parameter
estimation iterations or early in the calibration process, and try
including them later when the parameter estimates are closer to the
final values or the model is closer to its final form.

2. A water-table layer can be simulated as a confined layer using
estimated layer thicknesses early in the calibration process, and
represented as a water-table layer later when the parameter
estimates are closer to the final values or the model is closer to
its final form.

3. For head-dependent boundary gain-and-loss observations, small
streambed or riverbed thicknesses can aggravate the problem.
Increase these thicknesses if such a change is realistic.

4. Review the method used to represent the ground-water flow system
and make changes if needed. This is the same process that a
modeler goes through in a trial-and-error calibration, and its goal
is to ensure that the physical system is being represented
realistically. Unrealistic representations cause problems in
nonlinear-regression parameter estimation just as they cause

problems when calibrating by trial and error.
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REVIEW OF PARAMETER ESTIMAT

ION AND

ANALYSIS OF RESULTS USING LINEAR REGRESSION

A brief review of linear regression is inc
framework within which to present the concepts.
brief, extensive discussions are available in D
Cooley and Naff (1990), from which much of the
condensed. For the less advanced reader, Ott (

elementary discussion.

luded to provide an easier
Although this review is
raper and Smith (1981) and
following discussion is

1988) provides a more

Assumed Linear Mode
In any type of regression procedure, a model structure needs to be

assumed.

linear function of the parameters.

true process is a linear function of the parameters.

Y = ByXy + Byxy + cce 4 BupXp

In linear regression, the assumed model can be expressed as a

This assumed model is correct if the

For example,

(6)

where y is the true calculated dependent variable (analogous, for
example, to hydraulic head in the ground-water flow
equation);
NP is the number of parameters;
ﬂlﬂzo--ﬂNP are true, unknown parameter values; and
Xq1Xy* e eXyp are independent variables (analogous to spatial dimensions

These

ent variables in some

and time in the ground-water flow equation).

E

might be functions of depen
applications.

The parameters ﬂl,ﬂzcoo are unknown, but can be estimated from

Pyp

observations, yq, which are observed at different values of the independent

variables. The data would be as follows:

(7

eeeX

(po%y 10%q 2000 % yp)» U0%p 1%9 2 NP

*** ('yp’*ND,1°*ND,2°* “*ND, NP

2

where the added subscripts indicate the sequential number of the

observation, and ND is the total number of observations. Note that the

first subscript on each independent variable, x is the observation

1’
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number, and the second is the number of the parameter it multiplies. These
data can be substituted into the model (eq. 6) to produce ND equations of
the form

y, = yq + eq - ﬂlxq,l + ﬂ2xq,2 + ."ﬂNqu,NP + eq q=1ND (8)

q

where L is the difference between observation yq and the surface predicted

by the true model, and is called the true error or disturbance.

The ND equations of (8) can be expressed using vectors and matrices as:

Y-X8+¢ (9)
where
r 3 - L ]
41 31,1 *1,2 X1, NP 2
y-4% t, x=-[%1 %2 0 Xw|, g-{f },
; j X : ﬂNP
. YND *ND,1 *ND,2 +-.  *ND,NP]
a €1 N
5_-4 € L.
L GNDJ

The elements of ¢ are assumed to be random variables, and the validity
of the regression procedure depends on their statistical properties. It is
generally assumed that (1) E(¢) = 0, so that the model is unbiased (Benjamin
and Cornell, 1970, p. 380) and (2) the variance-covariance matrix of the
errors is V(e) = 1 02, so that the elements of ¢ are uncorrelated and have
equal variances (Draper and Smith, 1981, p. 108). Violations of the second
assumption need to be accounted for by using a weight matrix, as discussed

in the section "Weighting Observations".
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The goal of regression is to determine estimates, b, of the true,
unknown parameter values, 8, so that an assumdd model that approximates the
true model produces calculated values, ;q' at |the observation points q,
which are similar to the measured values, Yq 8s measured by an objective
function. Replacing g with b in equation (9) yields:

A

y=Xb+e=y+e (10)

A

where y is a vector of calculated values of y and e is a vector of
residuals. The variable ¢ is used instead of ¢ to clearly indicate that the
components of e are not true errors. The ele‘ents of e are random variables
and have statistical properties that are consistent with the statistical
properties of the elements of ¢ if the assumed model is similar to the true

model.

Two objective functions commonly are used in ground-water flow
parameter-estimation problems, but both reduce to the sum-of-squares
objective function for any single run of the parameter-estimation procedure.
The maximum-likelihood objective function is discussed in the section
"Parameter Estimation and Analysis of Results Using Nonlinear Regression".

|

The sum-of-squares objective function is defined as:

ND A
z [y,-y.]
=1 9°4

S(b) 2

+ b,Xx .+ °*¢ + b

q 27q,2 (1)

2
np¥q,Np) ]

'
™M
<
'
~
o
[
b
[

where S(b) is a scalar, and e is the vector of residuals. A regression
problem solved using a sum-of-squares objective function is called a least-

squares regression problem.
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A plot of a sum-of-squares objective-function surface for a problem
with two parameters, b1 and b2, is shown in figure 12. For linear problems,
the contours are elliptic, and the minimum S(b) value usually is well-

defined and unique. The parameter values that produce the minimum

objective-function value can be calculated by solving 3S(b)/8b = 0, which is
equivalent to:
3as(b) 3s(b) as(b)
=0, =0, coeee = 0. (12)
8b1 ab2 abNP

The minimum is called a stationary point because all the derivatives in
equation (12) equal zero. Objective functions of nonlinear models can have
other types of stationary points, such as maxima or inflection points
(Hildebrand, 1976, p. 356-362), or relative and absolute minima. Various
kinds of stationary points, in addition to alternative terminology that
commonly is used to describe them, are shown in figure 13. A problem with a
well-defined, unique minimum and no other stationary points on the
objective-function surface is said to be well-conditioned. Although this
concept can be graphically displayed only in a one- or two-dimensional

parameter space, it applies for any number of parameters.

b,

!

Figure 12.--Sum-of-squares objective-function surface for a linear problem
problem with parameters b1 and b2 (modified from Himmelblau, 1972, p. 80;
used with permission of the publisher). .
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b,

Figure 13.--Stationary points on an objectiqe-function surface, labeled
using common terminology (modified from MdLaughlin, 1975, p. III-4).

In linear regression, the sensitivities, !whifh are defined as the
derivative of the calculated dependent variab]le, y, with respect to the
parameters, are required to calculate the b tﬂat satisfies equation (12).
The linear model is easy to use because the sensitivities are indépendent of

the parameter values. From equation (6):

' al— - X Qy—- - X XK} &L - (13)
9y, = 11 a8, T T2 3Byp NP
Substituting the parameter estimates, b, for the true parameters, g,
sensitivities at observation-point q equal:
dy 3y ay
—9 . x , —4 . x , eee — L x . (14)
abl q,1 8b2 q,2 abNP q,NP
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Note that X of equations (9) and (10) is a matrix of sensitivities, and
for linear problems simply equals the values of xq,l' xq’z, sse_ When the
model is nonlinear in the parameters, such as in most ground-water flow
problems, X is still a matrix of sensitivities and has the same function in
the following equations. The sensitivities, however, are not as easy to

calculate and they are dependent on the parameter values.

To proceed, consider a linear problem with a two-parameter model
equation, and xq,l-l’ q=1,ND, so the assumed model is a straight line with
intercept b1 and slope b2' Equation (12) can be solved to produce the
following well-known equations, called the normal equations, for b2 and b1:

Zx_ L,y - [(Bx_ ,)(Zy )]/ND
b. = q.2’qg q.2 q ’ (15)

2 2 2
Pq,2 T (g 9 /NP

bl - (zyq)/ND - bz(zxq’z)/ND’
where the summations are for the ND observations.

Using the matrix notation of equation (9), equation (15) is the solution of:

T

Xxb-%y (16)

where, for the simple linear problem with two parameters,

1 x1,2
X= |1 %,
L xyp ol
Then,
[ND =X,
_T_" ox 2(:' y2| » and
[77q,2 q,2
[ 3y
X'y = 1,
2%q,2Y

vhere, again, the summations are for the ND observations. By using these

definitions, it can easily be verified that equations (15) and (16) are
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equivalent. Regardless of the dimensions or limearity of the problem, all
least-squares regression problems are solved uiing normal equations of the
form of equation (16).

Weighting Observations
If the observations used in a regression jnalysis are (1) not equally

reliable, (2) have different units, or (3) hav

correlated, it cannot be assumed that the true errors have the statistical

true errors that are

properties required to produce a valid regression even if the assumed model
is correct--that is, although E(¢) = Q0 is still valid, it cannot be assumed
that the variance-covariance matrix of the true errors 2(;), satisfies 2(;)
- laz (Draper and Smith, 1981, p. 108). As a result, the residuals used in

the regression procedure need to be weighted. |

Before proceeding, consider the three conditions for which weighting is
required and the function the weights have in the regression for each of
these conditions. Observations might not be equally reliable if, for
example, they are observed with varying degree§ of accuracy. In ground-
water flow problems, this variability might occur if the elevations of some
observation wells were determined by standard surveying methods to within a
few hundredths of a foot, whereas the elevations of other observation wells
were determined by an altimeter or from a topographic map to within a few
feet. When performing regression with such obéervations, it is more
important for hydraulic-head residuals to be smaller at locations with more
accurate elevations than at locations with less accurate elevations, and
weights are assigned that indicate this variation in importance.

Observations have different units if for example, both hydraulic heads (L)
and streamflow gains and losses (L /T) are observed. Weights are used to
indicate that a difference of, for example, between the observed and
simulated values for the two types of observations are not equivalent, to
indicate variations in observation accuracy, or both. True errors would be
correlated if, for example, hydraulic head at the same well was observed at
many times, and errors in determining the elevation or position of the well
were common to all observations. Weighting then is used to indicate that

the errors associated with those observations are correlated.



It is important to note that model error generally cannot be repre-
sented in the weight matrix. If the form and affect of model error can be
evaluated, the data can be adjusted accordingly. For example, if a well
penetrates only part of a pumped aquifer and the entire aquifer is
represented as a model layer, the affects of partial penetration can be
evaluated and the observations corrected to reflect full penetration. As
the estimated transmissivity near the well changes during the calibration

process, the correction can be recalculated.

Structure and Use of the Weight Matrix
Weighting is implemented by using a symmetric weight matrix, w, that
ideally would be calculated from the variance-covariance matrix of the true

errors, V(e), as:

w = o2 [V, a”n
where 02 is the user-defined common error variance of the true errors (see
below). In practice, V(e) is unknown. ItsAestimate, V(¢), is estimated by
the user, and the estimated weight matrix, w, is calculated from V(¢) as in
equation (17). 1If w approximately equals w, the weighted true errors

satisfy the desired conditions, E(gﬁg) = 0 and 2(9*5) - laz. If, in

addition, the model is correct, a2 approximately equals the estimated error
variance, sz, which is calculated as the minimized value of the objective
function divided by ND-NP (divide by ND+NPR-NP if there are prior parameter
estimates; see "Prior Information on Estimated Parameters"). The square
root of s2 is called the standard error of estimate (Draper and Smith, 1981,
P. 207). Discrepancies between 02 and 52 indicated an incorrect model, an
incorrect weight matrix, or biased observations; see "Adjustments Commonly
Required During Parameter Estimation".

In weighted least-squares regression, the weighted residuals, é*g,
replace the unweighted residuals, e. The weighted residuals might be
dimensionless or might have the units of any of the dependent variables,
depending on how the modeler defines 02. The weighted sum-of-squares

objective function (eq. 11) is:

s - ef@)T e - et we. (18)
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The weighted normal equations (eq. 16) are:

xfoxb~x

¥ (19)

1€ >
1€ >

If all observations have the same units (for example, if all
observations are hydraulic heads), the user can define a 02 such that the
variance-covariance matrix of the true errors can be expressed as:

V() = o%u, (20)

where W is an ND by ND matrix and either 02 or W is dimensionless. Then, by
equation (17):

w=o2tuly -wl (21)

The estimated matrix, w, would be of the same form. In this situation, the

weight matrix and, thus, the parameter estimates produced by the regression

routine are independent of the common variance, and the criterion that 02
=~ 82 is always satisfied. If W is considered to be dimensionless, the units
of the weighted residuals are the same as the units of the observations.

If there are observations with two differ#nt kinds of units (for
example, if hydraulic heads and streamflow gai+s and losses are observed)
and if it is assumed that the true errors of tﬁe two kinds of observations
are statistically independent (this will be di

"Simplifying Assumptions"), the variance-covariance matrix of the true

cussed in the section
errors can be expressed as:

2
Vo,

1o

¥(e) = 0 Zo

2|, (22)
£

where W aﬁ is the variance-covariance matrix of errors in observed hydraulic
heads and temporal changes in hydraulic head (gh), and Z ag is the variance-
covariance matrix for errors in observed head-dependent boundary gains and
losses (gf). Generally, 02 is defined to be equal to either aﬁ or a% or
1.0. If 02 equals 02, the weight matrix equal‘:
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- 2wen™t - 2 |. (23)

1€

10

Again, the estimated matrix, o, would be of the same form. The weight
matrix and the parameter estimates produced by the regreséion routine are
affected by the ratio aﬁ/a%, and, if W is dimensionless, the weighted
residuals have the same units as the hydraulic-head observations. If a% is
defined as the common error variance, the ratio a%/aﬁ affects the regression
routine, and, if W is dimensionless, the weighted residuals have the same

units as the head-dependent boundary gain-and-loss observations.

If o2 is set equal to 1.0 and is dimensionless, w = [!(g)]-l, and the
residuals are dimensionless. In this situation, if the model and Y(g) are

correct, 52 is close to 1.0.

If the true errors are all uncorrelated, the nonzero entries in V(e¢),
and therefore in w and é, occur on the diagonal. A diagonal weight matrix
is conceptually and computationally simple, and only diagonal weight
matrices are allowed in the Parameter-Estimation Package. However, a data
transformation described in the following sections can be used so that some

types of temporal correlations of the true errors can be included.

Estimation of the Variance-Covariance
Matrix of the True Errors
In transient ground-water flow problems, various dependent variables
might be observed at many locations, and they might be observed at many
times. The most general variance-covariance matrix of the true errors would
include the following correlations: (1) Correlations between errors in
observations made at different locations at the same time; (2) correlations
between errors in observations made at the same location at different times;
and (3) correlations between errors in observations made at different
locations and different times. Such a matrix would be impossible to
estimate accurately, and laborious to estimate at all. Fortunately,
assumptions about the true errors that are realistic for many circumstances

can be made to simplify this variance-covariance matrix. Seven assumptions
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I

that result in a simple diagonal weight matrix
further defined and discussed in the following
is noted in both parts of the text. This set

They are presented so that one set of assumpti
The

error and model error is included in the discu

weight matrix can be thoroughly analyzed.

plague the development of ground-water flow mo
1. True error includes measurement errors and
errors.,
* Required for a valid regression
2, Errors of different k<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>