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For example: (59) 65; means, cross out 59° and write in 65°.

From left to right across top of sheet 1:

(163) 175; (161) 170; (159) 165; (157) 160; (155) stays as is; (153) 150; (151)
145; (149) 140; (147) 135; (145) 130; (143) 125; (141) 120; (139) 115; (137) 110
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INTRODUCTION

This report presents a summary of the major, regionally developed, metamorphic episodes that affected
Alaska throughout the evolution and accretion of its many lithotectonic terranes. Sheets 1 and 2 (Map and
table showing metamorphic rocks of Alaska) that accompany this report are a 1:2,500,000-scale Metamorphic
facies map of Alaska and a summary of metamorphic units on the metamorphic map. This open-file report will
be superseded by Dusel-Bacon (in press a), a chapter of the Alaskan volume of the Geological Society of
America's publication commemorating the Decade of North American Geology, and the associated colored
version of the metamorphic facies map (Dusel-Bacon, in press). The metamorphic scheme (Zwart and others,
1967) used for the map (fig. 1; table 1) is based on the occurrence of pressure- and temperature-sensitive
metamorphic minerals. Regionally metamorphosed rocks are divided into four facies groups, each of which
reflects a different grade of metamorphism. In order of increasing temperatures of crystallization they are: (1)
laumontite and prehnite-pumpellyite facies (LPP); (2) greenschist facies (GNS); (3) epidote-amphibolite and
amphibolite facies (AMP); and (4) two-pyroxene (granulite) facies (2PX), which occurs only on the Seward
Peninsula. Where possible, the greenschist-facies and the epidote-amphibolite- and amphibolite-facies
groups are further divided on the basis of pressure of crystallization into three facies series: high-,
intermediate-, or low-pressure series. These facies series are indicated by an H, |, or L in place of the final
letter in the symbol used for the facies group. The metamorphic facies symbol for each episode is followed
by a symbol showing the age of metamorphism or its minimum and maximum age limits. Subscripts are used
to differentiate units that have the same metamorphic grade and age but that have different protoliths and are
believed to have different metamorphic histories.
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Figure 1.--Schematic representation of metamorphic-facies groups and series in P-T space and their letter
symbols used on sheets 1 and 2 (modified from Zwart and others, 1967). Stability fields of Al,SiOg
polymorphs andalusite (anda.), kyanite (ky.), and sillimanite (sill.) shown by dashed lines.
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Table 1.—-Scheme for determining metamorphic facies
[Modified from Zwart and others, 1967]

Facies
symbo

Diagnostic minerals
and assemblages

Forbidden minerals
and assemblages

Common
minerals and
assemblages

Remarks

LAUMONTITE AND PREHNITE-PUMPELLYITE FACIES

LPP

Laumontite + quartz,
prehnite + pumpellyite.

Pyrophyilite, analcime +
quartz, heulandite.

“Chlorite", saponite.
dolomite + quartz,
ankerite + quartz,
kaolinite, montmoril-
lonite, albite,
K-feldspar, “white mica™

Epidote. actinolite. and
“sphene” possible in
prehnite-pumpellyite
facies.

GREENSCHIST FACIES

GNS

GNL and GNI

GNH

GNH
(with

stipple. pL.1)

Staurolite, andalusite.
cordierite, plagioclase
{An>10), laumontite +
quartz, prehnite +
pumpellyite.

Epidote, chlorite.
chloritoid, albite.
muscovite, calcite,
dolomite, actinolite,
talc.

Low- and intermediate-pressure greenschist facies

Hornblende, glaucophane.

crossite, lawsonite,
jadeite + quartz,
aragonite.

High-pressure greenschist (blueschist} facies

Glaucophane, crossite,
aragonite, jadeite +
quartz.

Aimandine, paragonite.
stilpnomelane

Low-temperature subfacies of high-pressure greenschist facies

Above minerals plus
pumpellyite and {(or}
lawsonite.

Biotite and manganiferous
garnet possible. stilpno-
melane mainly restricted
to intermediate-pressure
greenschist facies

Subcalcic hornblende
(barroisite) may occur in
highest temperature part
of this facies.

EPIDOTE-AMPHIBOLITE AND AMPHIBOLITE FACIES

AMP

AML

AM! and AMH

Staurolite.

Andalusite + staurolite,
cordierite + orthoamphi-
bole.

Orthopyroxene +
clinopyroxene,
actinolite + calcic
plagioclase + quartz,
glaucophane.

Hornblende, plagio-
clase, garnet. biotite.
muscovite, diopside.
K-feldspar, rutile. cal-
cite, dolomite, scapolite

Low-pressure amphibolite facies

Kyanite.

Cordierite. sillimanite.
cummingtonite

Intermediate- and high-pressure amphibolite facies

Kyanite + staurolite.

Andalusite.

Pyralspite garnet rare in
lowest possible pressure
part of this facies

Sillimanite mainly re-
stricted to intermediate-
pressure amphibolte
facies

TWO-PYROXENE FACIES

2PX

Orthopyroxene +
clinopyroxene.

Staurolite, orthoamphi-
bole, muscovite, epidote.
zoisite.

Hypersthene, chinopyrox-

ene, garnet, cordierite.
anorthite, K-feidspar.
sillimanite, biotite.
scapolite, calcite. dolo-
mite. rutile

Hornblende possible
Kyanite may occur in high
er pressure part of this
facies and periclase and
wollastonite in low-
pressure part




Sheet 2 gives summary information for each map unit, including the number by which the unit is referred to in
this report; the facies and age designation of the unit; the lithotectonic terrane(s) in which the unit occurs; the
lithology and age range of the protoliths; the metamorphic rock types and minerals; and the known, minimum,
and (or) maximum age of metamorphism and the evidence for the three types of ages. Most, but not all, of

the units shown on sheets 1 and 2 are discussed in this report. The reader is referred to four more detailed,
regional metamorphic reports and accompanying 1:1,000,000-scale metamorphic facies maps on Alaska (fig.
2) for sources of information and a more complete discussion and listing of references for all the units shown
on sheets 1 and 2.
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Figure 2.--Map showing areas of study in the series of metamorphic facies reports of Alaska. A, Dusel-

Bacon and others (1989); B, Dusel-Bacon, Doyle, and Box (in press); C, Dusel-Bacon, Csejtey, and others (in
press); D, Dusel-Bacon, Brew, and Douglass (in press) and Dusel-Bacon and others (1991).



Where sufficient data are available, the possible tectonic origin of a given metamorphic episode is
discussed. Unless otherwise defined, all lithotectonic terranes are those of Jones and others (1987) west of
the 1415t meridian and of Monger and Berg (1987) east of it. All radiometric ages cited have been calculated
or recalculated using the decay constants of Steiger and Jager (1977). The DNAG Time Scale (Palmer, 1983)
is adopted in relating radiometric ages to geologic time. Abbreviations used in this report are explained in

table 2.
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TABLE 2. ABBREVIATIONS USED IN TEXT

conodont alteration index of Epstein and others (1977)
first metamorphic episode of polymetamorphic unit
second metamorphic episode of polymetamorphic unit
fabric formed during first metamomphic episode

fabric formed during second metamorphic episode
pressure

temperature

abbite

actinolite
amphibole
andalusite
barroisitic amphibole
biotite

chlorite
cordierite
clinopyroxene
crossite
chloritoid
epidote group mineral
glaucophane
garnet
hornblende
jadeite

jadeitic pyroxene
potassium feldspar
kyanite
lawsonite
muscovite
paragonite
plagioclase
prehnite
pumpellyite
quartz
sillimanite

spinel

sphene
staurolite
tremolite

white mica



DESCRIPTION AND ORIGIN OF METAMORPHIC EPISODES

BROOKS RANGE

A sequence of polymetamorphosed amphibolite-facies rocks recrystallized to greenschist- and
blueschist-facies assemblages (unit 1) crops out in the Baird Mountains of the southwestern Brooks Range.
The sequence includes pelitic schist, minor amounts of interayered quartzite, marble, and metabasite, and
crosscutting intermediate to mafic metaplutonic rocks. It makes up the Hub Mountain terrane of Mayfield and
others (1982). Mineral assemblages formed during M, include gt, hb, and pl in metabasite, and bt and gt in
pelitic schist (A.B. Till, written commun., 1987). A Late Proterozoic age for M, is indicated by K-Ar ages on mu
and hb between 729+22 and 594+18 Ma (Turner and others, 1979; Mayfield and others, 1982), and by an
Rb-Sr mineral-whole rock isochron age of 686+116 Ma (Armstrong and others, 1986). This metamorphic
episode is the oldest recorded anywhere in the Brooks Range and is the only documented evidence of
Proterozoic metamorphism in the region.

Most M; assemblages have been partially or, locally, totally recrystallized to greenschist- and blueschist-
facies assemblages during subsequent Mesozoic metamorphism (M,). Common M, minerals are ch, ep, wm,
ab, sp, bar amph, ac, and bl amph (A.B. Till, written commun., 1987). Recent unpublished mapping indicates
that blueschist-facies assemblages are most prevalent in rocks that lie structurally above and below thrust
slices of the amphibolite-facies rocks (A.B. Till, written commun., 1987). M, is attributed to a high-P evolving
to low-P, low-T metamorphic episode that affected the entire southern Brooks Range (unit 3 and M, of unit 2)
between Middle Jurassic and mid-Cretaceous time (discussed in a later section).

Areas of epidote- amph:bohte-facnes rooks panly recrystalhzed to Iower grade assemblages crop out in
the central Brooks Range (unit 2). By analogy with unit 1, they may also record pre-Mesozoic metamorphism.
These areas consist of polymetamorphosed pelitic, feldspathlc and graphitic schist, quarizite, marble,
orthogneiss, and metabasnte Protoliths are older than the Middle Devonian granitoids and, between
longitudes 151 and 153°, are older than the Proterozoic(?) or pre-middle Paleozoic granitoids (Dillon and
others, 1980) that mtrude them. lt is unclear, however, whether the granitoids, shown with the pattern that
denotes a metamorphosed pluton, were metamorphosed prior to the widespread Mesozoic episode that
affected the entire southern Brooks Range.

In general, the metamorphic rocks of this unit are distinguished from contiguous rocks of unit 3 by
having a coarser crystallinity, relict epidote-amphibolite-facies mineral assemblages, and a more complex
structural fabric (Hitzman and others, 1982; Dillon and others, 1987). The structural fabric includes a
penetrative fabric that predates that developed in unit 3, as well as one or more younger penetrative fabrics
also present in unit 3.

Low- to medium-grade metasedimentary, metavolcanic, and metacarbonate rocks of Proterozoic to
Middle(?) and Late Devonian protolith age crop out in the Romanzof and Davidson Mountains in the eastern
Brooks Range. Inthe Romanzof Mountains, metamorphic grade increases southward from prehnite-
pumpellyite facies (unit 11) to greenschist facies (unit 12). The metamorphic contact between these units
was probably gradational, although it has been subsequently modified by thrust faulting (Dusel-Bacon and
others, 1989). Metamorphism predates the Mississippian age of unmetamorphosed rocks that
unconformably overlie these units and postdates the Middle(?) Devonian protolith age of the youngest
metasedimentary rocks (Sable, 1977; Dusel-Bacon and others, 1989).

The indicated range in metamorphic age is similar to the Devonian intrusive age (380+10-Ma U-Pb upper
intercept age of zircon; Dillon and Bakke, 1987) of a peraluminous batholith that intrudes units 11 and 12,
suggesting that metamorphism and plutonism may have been products of the same tectonic regime. Parts of
the batholith are gneissic and mylonitically or cataclastically deformed (Sable, 1977), but the age of this
deformation is uncertain. Structural data collected from greenschist-facies rocks in the western end of unit 12
suggest that the pre-Mississippian rocks in that area were transported southeastward during Middle Devonian
(Ellesmerian?) thrusting (Oldow and others, 1987). Additional studies are needed to determine the nature
and extent of the proposed southeastward-thrusting event and its temporal relation to the metamorphism.

Isotopic and structural data (Sable, 1977; Dillon, 1987; Oldow and others, 1987) suggest that the rocks
of units 11 and 12 and perhaps some parts of the adjacent unmetamorphosed rock unit in the Romanzof
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Mountains area were subsequently involved in Mesozoic and perhaps early Cenozoic deformation and
metamorphism that was part of the widespread Jurassic and Early Cretaceous orogeny that affected the
schist belt of the southern Brooks Range (unit 3 and related units).

In the Davidson Mountains, metamorphism of greenschist-facies rocks of unit 13 predated, but was
associated with, intrusion of Late Devonian granitoids (Dusel-Bacon and others, 1989). This relationship is
suggested by an increase in the metamorphic grade from the ch- to the bt-gt-zone with decreasing distance
from the crosscutting Late Devonian plutons, and by the closeness in age between the maximum
metamorphic age provided by the youngest protolith age (Late Devonian) and the intrusive age of the
undeformed crosscutting granitoids..

Schist belt

A sequence of polydeformed blueschist- and greenschist-facies rocks (unit 3) crops out across almost
the entire width of the southern Brooks Range. This metamorphic sequence, informally called the schist belt,
consists of Devonian and older calcareous, pelitic, and graphitic metasedimentary rocks with volumetrically
minor metacarbonate rocks, metarhyolite, metabasite, and granitoid orthogneiss (Dillon and others, 1980;
Hitzman and others, 1982), and a subordinate amount of upper Paleozoic and locally Triassic metapelite and
metacarbonate rocks along its northern margin. The rocks were metamorphosed during a single, prolonged,
polyfacial episode and followed a clockwise P-T path that evolved from blueschist- to greenschist-facies
conditions. This path reflects tectonic loading followed by decompresson. Two phases of penetrative
deformation are recognized. Both are characterized by isoclinal folding, and their relation to each other
suggests refolding of early formed isoclines during decompression (Gottschalk, 1987). Inthe Wiseman area,
which is probably typical of much of the southern schist belt, lineations and fold axes plunge to the south,
and rocks have undergone N-vergent ductile-shear deformation concurrent with metamorphism (Gottschalk,
1987).

Most of the rocks in which the high-P minerals gl, w, and jdpx have been identified occur in a zone within
the southern part of this unit (sheet 1). The restricted occurrence of these minerals may be due to
compositional controls (most rocks whose composition favors the development of these minerals are
restricted to this zone) or, in part, to structural controls, as proposed by Hitzman (1980). He observed that
blueschist assemblages occurred within large nappe-like folds. Glaucophane is by far the most commonly
developed high-P mineral and occurs in metabasite, iron-rich metasedimentary rocks, and metatuff (Dusel-
Bacon and others, 1989). The assemblage ky+ctd also occurs locally in iron-rich metasedimentary rocks, but
it is not known whether the ky formed during the Jurassic to Cretaceous blueschist-to-greenschist episode or
during the possible pre-Devonian episode discussed in the previous section.

The metamorphic grade and overall degree of deformation within unit 3 decreases to the north. The
northern limit of this unit is defined, in part, on the basis of a CAl isotherm that delineates the first occurrence
of CAl values of less than 5 (corresponding to a temperature of less than 300 °C) for Ordovician through
Triassic rocks (A.G. Harris, written commun., 1984). It is possible that the northern part of this unit never
experienced the high-P episode recorded in the southern part, but available metamorphic and structural data
collected by W.P. Brosgé and C.F. Mayfield during reconnaissance mapping of the region did not indicate a
discrete change in the metamorphic history across the east-west strike of this unit. Future studies will
undoubtedly define a more precise northem limit to the area that experienced early high-P metamorphism.

The high-P phase of the P-T path began in the low-T gl-Iw stability field and evolved into the higher T ep-
gt-gl stability field. Evidence for this increase in T with time consists of inclusions composed of
pseudomorphs of pa and ep after lw within gt from metabasite at several localities across unit 3 (A.B. Till, oral
commun., 1987). Jadeite+quartz has been identified in the Ambler River quadrangle (Gilbert and others,
1977; Turner and others, 1979), and jdpx occurs in eclogite about 200 km to the east near Wiseman
(Gottschalk, 1987). Jadeite+quartz probably formed locally during the low-T phase of the high-P
metamorphism. Such formation is compatible with mineral assemblage data from the area near the eclogite
that suggest that the earliest phase of metamorphism occurred at P>8 kb and T=450 °C and subsequently
continued under blueschist- evolving to greenschist-facies conditions at P<8 kb and T=480 °C (Gottschalk,
1987).

If much of at least the southern half of unit 3 was originally metamorphosed under blueschist-facies
conditions (as suggested by the distribution of gl), then the degree of recrystallization under greenschist-
facies conditions is variable, ranging from very little to almost total. Core-to-rim zoning in amphiboles from gl to
ac to bar amph (Gotischalk, 1987; A.B. Till, oral commun., 1987) best records the decrease in P and increase
in T experienced during this episode. The latest phase of the greenschist-facies part of the metamorphic
episode produced a semipenetrative cleavage defined by the presence of aligned flakes of mu and ch and
by dislocations in the earlier formed foliation; this was followed by growth of largely postkinematic helicitic ab
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porphyroblasts and randomly oriented bt, partial to total replacement of early formed gt by ch, and local
formation of new idioblastic and unaltered gt porphyroblasts (Gilbert and others, 1977).

Low-grade rocks of the Doonerak window

Prehnite-pumpellyite-facies rocks (unit 4) and greenschist-facies rocks (unit 5), exposed in a structural
window in the Mount Doonerak area of the Endicott Mountains, were also metamorphosed, but to a much
lesser degree, during the widespread metamorphic episode that affected the schist belt between Middle
Jurassic and mid-Cretaceous time (Dusel-Bacon and others, 1989). Both of these units consist of
metasedimentary and metavolcanic rocks of Cambrian through Silurian age, and metabasite sills of Ordovician
and Devonian age; unit 5 also contains an unconformably overlying sequence of Mississippian through
Triassic metacarbonate and metasedimentary rocks along its northern and northeastern border (Dillon and
others, 1986).

The angular unconformity between the Mississippian rocks and the underlying Devonian and older
rocks in the window has been affected locally by normal faulting in the central part (Dillon and others, 1986)
and thrust faulting in the eastern part (Julian and others, 1984). Structural analysis indicates that the
schistosity and deformational structures in the Ordovician through Devonian rocks correspond with those in
the overlying Mississippian through Triassic rocks (Julian and others, 1984). Thus, rocks both above and
below the unconformity were metamorphosed during the same metamormphic episode.

The rocks of the Doonerak window are considered to be an exposure of the basement of the northern
Brooks Range and both areas are included in the North Slope terrane. Units 4 and 5 appear to have the same
structures as those in the structurally overlying blueschist- and greenschist-facies rocks of unit 3 outside the
window (H.G. Avé Lallemant, oral commun., 1987), suggesting that metamorphism of the basement rocks of
the window probably also occurred during Middle Jurassic to mid-Cretaceous time as a result of northward
overthrusting. Rocks in the eastern part of the window appear to be part of a duplex structure that formed
after the earliest and most pervasive metamorphic foliation and during formation of a second generation of
structures, dominated by asymmetric kink folds with northwest-dipping axial planes (Julian and others, 1984) .
The anomalously low (prehnite-pumpellyite facies) metamorphic grade of the structurally lowest rocks (unit 4),
together with the lack of high-P minerals in units 4 and 5, are in accordance with the structural observations of
Julian and her coworkers and suggest that the rocks of the window were metamorphosed under low-T and
moderate- to low-P conditions late in the metamorphic episode. They were then overthrust, probably from
the south, by the more deeply buried blueschist-facies rocks.

Age and tectonic origin of metamorphism

Metamomphism of unit 3 and related units of the southern Brooks Range clearly postdates the Triassic
age of the youngest protoliths and probably took place in Jurassic to mid-Cretaceous time as a result of north-
vergent tectonic loading. The spatial association between unit 3 and obducted oceanic rocks of the
Angayucham terrane (unit 8) along the southern margin of the Brooks Range and Jurassic ultramafic and
mafic rocks (Ju) in the northwestern and eastem ends of the Range has been used as evidence to suggest
that the rocks of the southern Brooks Range were tectonically loaded by north-directed overthrusting of
oceanic rocks of Mississippian to Jurassic age along a south-dipping subduction zone (Patton and others,
1977; Roeder and Mull, 1978; Turner and others, 1979). Prior to, and probably closely preceding, its
emplacement onto the continental rocks of the schist belt, the oceanic sequence was internally imbricated,
and ultramafic rocks were emplaced on top of mafic rocks, becoming the structurally highest part of the
sequence (Patton and others, 1977). A Middle to Late Jurassic time for this tectonic mixing is provided by K-
Ar ages on hb of about 172 to 154 Ma from gt amphibolite, presumably formed during thrusting, that occurs at
the base of the ultramafic sheets (Patton and others, 1977; Boak and others, 1985). Stratigraphic evidence
in the western Brooks Range suggests that overthrusting of the oceanic sequence onto the continental
rocks in that area began in the Middle Jurassic (Tailleur and Brosgé, 1970; Mayfield and others, 1983).

Dynamothermal metamorphism clearly had ceased by mid-Cretaceous time because Albian and
Cenomanian conglomeratic rocks in the Yukon-Koyukuk basin record the uplift and progressive erosional
stripping of the oceanic rocks and the underlying metamorphosed continental rocks of unit 3 (Patton, 1973;
Dillon and Smiley, 1984). This timing is consistent with Early to mid-Cretaceous (120-80 Ma) K-Ar cooling
ages on mica from unit 3 (Turner and others, 1979; Turner, 1984; Dillon and Smiley, 1984).

Obduction of the oceanic rocks apparently occurred in response to counterclockwise rotation and
oroclinal bending of the lower plate continental rocks of the Arctic Alaska plate (including the schist belt and
Doonerak window) driven by rifting in the Arctic region between Early Jurassic and Early Cretaceous time
(Tailleur, 1969; Mayfield and others, 1983; Grantz and May, 1983). Collision of a Jurassic and Cretaceous
intraoceanic arc terrane with the southward-facing continental margin adjacent to the Yukon-Koyukuk basin
has been proposed as an additional cause of the northward obduction (Box, 1985a).



Structural and metamorphic relations between the high-P schist belt and the structurally overlying, lower
T and P, greenschist-facies continental rocks (unit 9) and prehnite-pumpellyite-facies oceanic rocks (unit 8) to
the south suggests that post- or late-metamorphic down-to-the-south low-angle extensional faulting has
dismembered the upper plate, removing much of the section that originally buried the blueschists. This late
extensional phase of the orogeny has been postulated by several workers on the basis of map patterns
(Carlson, 1985; Miller, 1987), field observations near Wiseman (Gottschalk and Oldow, 1988), and field and
kinematic data from unit 10 in the Cosmos Hills east of Ambler (Box, 1987). Additional evidence in support of
late- or post-metamorphic extensional movement between upper and lower plate rocks is found in the
Cosmos Hills, where the allochthonous oceanic rocks of unit 8 cut across the metamorphic mineral zones in
unit 3 (Hitzman, 1984). Continuation of extensional tectonism into Late Cretaceous, and perhaps early
Tertiary, time is recorded in the deformational and metamorphic history of unit 10.

Weakly metamorphosed sedimentary and volcanic oceanic rocks crop out in a narrow V-shaped belt
around the margins of the Yukon-Koyukuk basin along the southern margin of the Brooks Range and the
northwestern margin of the Ruby geanticline, outboard of metamorphosed continental rocks to the north and
southeast, respectively. These rocks make up the Angayucham terrane and consist of an inner and
structurally lowest thrust sheet of ocean-continent transition-zone (Patton and others, in press; W.W. Patton,
Jr., and J.M. Murphy, oral commun., 1988) greenschist-facies metagraywacke and phyllite, with minor
amounts of metalimestone and metachert, of Devonian to Triassic protolith age (unit 9); and an outer
(basinward) overlying sheet of oceanic prehnite-pumpellyite-facies metabasite, metachert, metatuff,
metalimestone, and argillite of Mississippian to Jurassic protolith age (unit 8). The structurally highest thrust
sheet is of peridotite and gabbro (Ju).

These thrust sheets have been interpreted as components of an allochthonous oceanic complex,
rooted in the Yukon-Koyukuk basin, that was thrust onto the Proterozoic and early Paleozoic continental
margin during Middle Jurassic to mid-Cretaceous time causing blueschist- and greenschist-facies
metamorphism in the underlying rocks in the southern Brooks Range and possibly along the western margin
of the Ruby Geanticline (unit 28, discussed below in the section entitled Central Alaska) (Patton and others,
1977, in press; Turner and others, 1979; Patton and Box, 1985). Some, or all, of the prehnite-pumpellyite-
facies metamorphism of unit 8 may have accompanied thrust emplacement (Hitzman, 1983; Dusel-Bacon and
others, 1989) as suggested by the following observations: 1) In the Cosmos Hills, prehnite-pumpellyite-
facies metamorphism is most intense adjacent to the thrust surface between unit 8 and underlying unit 3
(Hitzman, 1983). 2) In the Ruby geanticline, gl occurs locally in metabasalt of unit 8 near the base of its
tectonic contact with underlying unit 28 (Patton and Moll, 1982). The occurrence of gl indicates that some of
these rocks were metamorphosed under high-P, low-T conditions and may have been tectonically intermixed
with other rocks of this unit, either during the intemal imbrication (emplacement of peridotite and gabbro on
top of the basaltic thrust sheets) that preceded the obduction of the oceanic complex, or during the
obduction itself (Patton and Moll, 1982).

The metamorphic history of unit 9 is less certain. In the Wiseman area of the southern Brooks Range,
Dillon and others (1987) consider that the rocks of this unit have a single semipenetrative cleavage, in sharp
contrast with the more complexly metamorphosed and deformed rocks of unit 3 to the north. However,
mapping in this same sequence of rocks by Gottschalk (1987) in the Wiseman area, and Hitzman and others
(1982) in the Cosmos Hills area, suggests that the rocks of this unit shared a common metamorphic history
with unit 3.

SEWARD PENINSULA

High-P blueschist-facies rocks that were partly recrystallized under intermediate-P greenschist-facies
conditions crop out over a large 125-by-150-km area (shown as unit 16) across the central Seward Peninsula.
These rocks, referred to as the Nome Group, consist of pelitic schist, quartzite, marble, metabasite, mafic
schist, and orthogneiss and are thought to have originated in a continental platform environment (Sainsbury
and others, 1970; Till, 1983; Forbes and others, 1984). Protoliths of metasedimentary and metavolcanic
rocks are Proterozoic and early Paleozoic (largely Ordovician) in age, and crosscutting orthogneiss has a
Devonian intrusive age (Till and others, 1986; Armstrong and others, 1986).

Metamorphic minerals in the metabasite are gl, ep, gt, ab, sp, ac, ch, wm; pseudomorphs of ep, pa, and
locally ab occur after Iw (Forbes and others, 1984; Thurston, 1985). Glaucophane is also present in pelitic
and mafic schist, and impure marble. Glaucophane-bearing eclogitic rocks have been found just east of the
Nome River (Thurston, 1985). Local stabilization of eclogitic rocks is attributed to either outcrop-scale
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metamorphic conditions marginally different (perhaps lower PH,0) from those in the surrounding rocks

(Thurston, 1985), or to small but complex variations in bulk composition (Evans and others, 1987).

Petrographic, structural, and phase-equilibrium data indicate that crystallization of the blueschist- and
greenschist-facies assemblages occurred during a single episode of high- evolving to intermediate-P, low-T
metamorphism, similar to that recorded in the schist belt of the southern Brooks Range. Metamorphic
conditions during the high-P phase of this monocyclic polyfacial episode started in the gl-lw-jdpx stability field
and, with increasing T, evolved into the ep-gt-gl stability field (Thurston, 1985). The P-T path passed through
approximately 9 to 11 kb at 400 to 450 °C during the highest P phase of the prograde episode and passed
into the ab-ep-bar amph field during initial stages of decompression and thermal relaxation (Forbes and
others, 1984). Static retrograde alteration under greenschist-facies conditions occurred during subsequent
rapid uplift. The final stages of this metamorphic episode are inferred to have taken place under intermediate-
P conditions, because subsequent Cretaceous amphibolite-facies metamorphism (of unit 18), discussed
below, that overprints the blueschist-facies fabric began in the ky stability field.

Metamorphism was synkinematic with penetrative ductile deformation, mesoscopic intrafolial isoclinal
folding, and development of flat-lying to gently dipping transposition foliation (Thurston, 1985). Stretching
lineations and isoclinal fold axes have a north-south trend (Till and others, 1986). The ubiquitous parallelism
between stretching lineations and fold axes suggests a highly noncoaxial deformation during which fold axes
rotated toward the stretching direction, as noted by Patrick (1986). Quartz petrofabrics indicate northward
vergence during deformation (Patrick, 1986).

Amphibolite-facies pelitic, calcareous, and quartzofeldspathic schist, marble, quartzite, and amphibolite
(unit 18) crop out within the Kigluaik, Bendeleben, and Darby Mountains of the southern Seward Peninsula.
Protoliths probably include upgraded lithologic equivalents of the Nome Group--the same protoliths as those
of unit 16 (Till and others, 1986). Intermediate-P conditions are indicated by the assemblage ky-st-sil in pelitic
schist; T conditions range from those of the bt zone to the sil+kf zone.

On the south flank of the Kigluaik Mountains, isograds that define a northward-increasing prograde
metamorphic sequence are closely spaced (Till, 1980; Thurston, 1985), indicating a fairly steep geothermal
gradient within the ky stability field. Thurston (1985) proposed that, in this area, the intermediate-P
amphibolite-facies minerals were statically superimposed on pelitic rocks whose foliation developed during
the widespread Jurassic blueschist-facies metamorphic episode (of unit 16) and that the ky-bearing
assemblages were produced during intermediate-P thermal metamorphism associated with Cretaceous
plutonism. Work by Patrick and Lieberman (1987) also indicates structural and metamorphic continuity across
the contact between units 16 and 18 and supports the hypothesis that the amphibolite-facies assemblages
(as well as granulite-facies assemblages, discussed below) were superimposed on (and mostly obliterated)
the earlier formed blueschist-facies assemblages.

In the Bendeleben and Darby Mountains, amphibolite-facies metamorphism was more dynamothermal in
character and produced ky-bearing assemblages that define a penetrative fabric. These assemblages are
overprinted by static, low-P, high-T assemblages that apparently formed as a result of thermal metamorphism
associated with Late Cretaceous (80 Ma) plutonism (Till and others, 1986).

In one area of the Kigluaik Mountains, high-T rocks, whose metamorphism is inferred to have been
associated with the thermal episode that culminated in the intrusion of 80-Ma plutons (A.B. Till, oral commun.,
1987), form an area large enough to show as a separate unit (unit 19). This unit consists of upper
amphibolite-facies bt gneiss; granulite-facies marble, pelitic, quartzofeldspathic, and mafic gneiss, and
migmatite; and gt Iherzolite partially recrystallized to sp Iherzolite (Till, 1980, 1983). Protoliths are assumed to
include upgraded lithologic equivalents of the Nome Group (Till and others, 1986). Relict ky inclusions within
gt formed during granulite-facies metamorphism indicate that granulite-facies metamorphism post-dated the
intermediate-P amphibolite-facies metamorphism (A.B. Till, oral commun., 1987).

Blueschist-facies metamorphism was apparently caused by rapid tectonic loading of a continental plate
(Forbes and others, 1984). Rb-Sr whole-rock-mica isochron ages and K-Ar mineral ages suggest that the
high-P metamorphic cycle took place during the Middle or Late Jurassic, before about 160 Ma, followed by
decompression and partial re-equilibration between about 160 and 100 Ma (Armstrong and others, 1986).
Similarities in protoliths, metamorphic grade, structural style, and apparent metamorphic age suggest a
correlation between the high-P, low-T metamorphic and tectonic history of unit 16 and the schist belt of the
southern Brooks Range (Armstrong and others, 1986; Patrick, 1986; Dusel-Bacon and others, 1989). By
analogy with the proposed history of the schist belt, multiple thrust sheets of oceanic rocks (Angayucham
terrane) may have once covered the Seward Peninsula (Till, 1983; Forbes and others, 1984). The nearest
possible remnant of that oceanic terrane is a sliver of north-south-trending blueschist-facies rocks (unit 17,
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discussed below) that crops out on the eastern Seward Peninsula; other possible remnants have been
proposed by Box (1985a).

A major difference in the subsequent metamorphic histories of the two areas, however, is the
subsequent occurrence of moderate- to high-T metamorphism and plutonism on the Seward Peninsula and
the absence of these thermal episodes in the schist belt. The rapid change from blueschist metamorphism to
intermediate-P amphibolite-facies metamorphism and plutonism is similar to that described in the southern
Aegean by Lister and others (1984). Intermediate-P metamorphism in the Aegean was synkinematic with
extensional deformation. It was probably driven by gravitational spreading, following the compressional
(blueschist) phase of tectonism. An alternative comparison is made by Patrick and Lieberman (1987) who
compare the sequence of metamorphic and plutonic episodes on the Seward Peninsula to that observed in
the Central Alps. They attribute the thermal overprinting to relaxation of isotherms following subduction,
leading to the onset of crustal anatexis. Because no evidence of extensional faulting has been identified on
the Seward Peninsula, the tectonic history of the Central Alps appears to be a better analog than does that of
the southern Aegean.

The environment of crystallization of the gt Iherzolite of unit 19 is unknown. Textural relations indicate
that gt was stable in the lherzolite prior to granulite-facies metamorphism, during which time the sp-bearing
assemblages apparently formed (Till, 1980; Lieberman and Till, 1987). The gt-bearing assemblage may be a
relict of an upper mantle environment or may have been metamorphosed in a deep crustal setting. In the
latter case, formation of the gt either occurred during a pre-Mesozoic event, or during the early phases of the
Jurassic and Cretaceous metamorphic episode of the schist belt and Seward Peninsula, simultaneous with
formation (at shallower levels) of the extensive blueschist-facies terranes (Lieberman and Till, 1987).

Blueschist-facies mylonitic metabasite and minor amounts of serpentinite crop out in a narrow fault-
bounded belt (unit 17) along the east side of the Darby Mountains (Till and others, 1986). Protoliths are
considered to range in age from middle Paleozoic to Jurassic on the basis of a tentative correlation with the
low-grade oceanic rocks of the Angayucham terrane (unit 8) that are present around the margins of the
Yukon-Koyukuk basin. Mylonitic metabasite in the northern part of the belt contains the assemblage cr-iw-pu,
which is indicative of the low-T subdivision of the blueschist facies; mylonitic metabasite in the southern part
of the belt contains the assemblage cr-ep-ac, indicative of the high-T (epidote-bearing) subdivision of the
blueschist facies (subdivisions those of Taylor and Coleman (1968) and Evans and Brown (1987)). Relict
igneous pyroxene grains are common in mylonitic metabasite in both areas (Till, 1983). The presence of cr
and Ilw in this unit indicates that pressures probably occurred within the lower part of the range of P conditions
in the nearby and more extensive unit 16. Somewhat different crystallization and deformational histories for
the two units are indicated, however, by the incomplete recrystallization and brittle deformation of this unit
compared with the complete recrystallization and ductile deformation of unit 16 (Till and others, 1986).

A Middle Jurassic to mid-Cretaceous metamorphic age is assigned to unit 17 on the basis of correlation
of its metamorphic history with that of the Angayuchum terrane. Arguing against this correlation is the
widespread development of high-P minerals in unit 17 and the general absence of high-P minerals in the
Angayucham terrane.

CENTRAL ALASKA

Metamorphlc umts 22 and 23 crop out southeast of the Susu latna fault and were metamorphosed
sometime during Proterozoic to middle Paleozoic time. The more extensive unit (22) consists of greenschist-
facies Late Proterozoic felsic metavolcanic rocks (Dillon and others, 1985) and pre-Ordovician schist,
quartzite, phyllite, argillite, marble, and mafic metavolcanic rocks (Silberman and others, 1979; Patton and
others, 1980). Metamorphic grade is mostly of the ch and bt zones, but locally reaches the gt zone. Pre-
Ordovician metamorphic, as well as protolith, ages are indicated for this unit because it is overlain by virtually
unmetamorphosed Ordovician through Devonian strata that yield conodont-alteration indices that
correspond with very low temperatures--generally less than 200 °C (A.G. Harris, written commun., 1984). A
minimum metamorphic age of 514 Ma is provided by the oldest of three K-Ar ages on mica from gqz-mu-ch
schist within this unit (Silberman and others, 1979). K-Ar and U-Pb data suggest that these rocks were not
affected by the Late Jurassic and (or) Early Cretaceous metamorphic episode that occurred northwest of the
Susulatna fault in the Ruby geanticline (Dillon and others, 1985).

The other pre-middle Paleozoic metamorphic unit (23) is limited in area. It consists of
polymetamorphosed and locally mylonitic pre-Ordovician schist, sheared grit, quartzite, phyllite, mafic and
felsic metavolcanic rocks, and schistose metaplutonic rocks (Dusel-Bacon and others, 1989). Metaigneous
rocks give Middle Proterozoic protolith ages (Silberman and others, 1979; Dillon and others, 1985).
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Polymetamorphism is suggested by replacement textures in pelitic rocks. The M, episode (or alternatively,
the maximum-T phase of a P-T loop) occurred under amphibolite-facies conditions and produced the
assemblage bt+gttsttco in qz-mica schist. Subsequent retrograde metamorphism (M,, or alternatively, a late
phase of M,) resulted in the almost complete replacement of st by ctd, gt by ch, and co by wm and ch.
Textural evidence suggests that retrogressive greenschist-facies metamorphism was accompanied by
shearing (Dusel-Bacon and others, 1989).

A maximum metamorphic age for both postulated metamorphic episodes is indicated by the Middie
Proterozoic protolith ages; a middle Paleozoic minimum metamorphic age for the episodes is tentatively
provided by the U-Pb lower intercept age on zircon (390+40 Ma) from the metavolcanic rocks (Dillon and
others, 1985) and by the virtually unmetamorphosed overlying Ordovician through Devonian strata. A Late
Proterozoic (663 Ma) K-Ar age on mu from recrystallized mylonite along the border of metaquartz diorite
(Silberman and others, 1979) may date the time of uplift and cooling, following retrogressive metamorphism
of the country rocks and metamorphism and shearing of the plutonic body.

Pre-Early Cretaceous metamorphism affected four monometamorphic units (24,25,28,30) and two
polymetamorphic units (26,27) in or near the Ruby geanticline. All of the units are considered to be part of
the Ruby terrane and contain continental sedimentary, volcanic, and plutonic protoliths of Proterozoic and
(or) Paleozoic age. Intermediate- to high-P metamorphism of unit 28, discussed in a later section, is
interpreted (Dusel-Bacon and others, 1989) to have taken place during the Mesozoic obduction of oceanic
thrust sheets onto the continental margin. Timing of metamorphism(s) in the other units is more uncertain,
and in most areas is known only to predate the intrusion of regionally extensive plutons that have yielded
Early Cretaceous (about 110 Ma) K-Ar ages (Silberman and others, 1979; Patton and others, 1987).

Little is known about the metamorphic history of monometamorphic greenschist- and epidote-
amphibolite-facies unit 24 and the higher grade areas of amphibolite-facies rocks (unit 25) within it. In the
northeastern exposure of unit 25, some of the amphibolite-facies minerals may have been produced by
thermal metamorphism caused by the adjacent Early Cretaceous plutons. In the southwestern exposure of
unit 25, however, foliation of the amphibolite-facies rocks trends northwestward, subperpendicular to
regional trends of thrust fault traces and plutons; metamorphism in this area clearly predates, and is unrelated
to, the intrusion of Cretaceous or early Tertiary plutons, most of which are too small to be shown on sheet 1
(G.M. Smith, written commun., 1986).

The third monometamorphic unit (30) consists of lower amphibolite-facies rocks that crop out in a small
area north of the Iditarod-Nixon Fork fault. These rocks include amphibolite, orthogneiss, pelitic schist, and
quartzite (Miller and Bundtzen, 1985) and were informally designated as the Idono sequence by Gemuts and
others (1983). U-Pb data on zircon from orthogneiss indicate an Early Proterozoic age for their granitoid
protolith (M.L. Miller and T.W. Stern, unpub. data, 1987). K-Ar dates on hb from amphibolites include both
Middle Proterozoic (1.22 and 1.08 Ga) and Early Cretaceous (126 Ma) ages; K-Ar dates on bt from
amphibolite are about 324 Ma and 133 Ma (Miller and Bundtzen, 1985; M.L. Miller, written commun., 1986).

Polydeformed and polymetamorphosed metasedimentary and metaigneous rocks (unit 26) crop out in
the Ray Mountains (Dover and Miyaoka, 1985a, b). This unit consists of quartzofeldspathic paragneiss,
augen gneiss (shown as a metamorphosed pluton), schist, gneiss, marble, quartzite, phyllonite, metabasite,
and amphibolite. Only the protolith age of the augen gneiss (Devonian: Patton and others, 1987) is known.
Dover and Miyaoka (1985a, b) proposed that the unit experienced at least three deformational episodes and
two major metamorphic episodes.

M, occurred primarily under amphibolite-facies conditions. It was synkinematic with ductile deformation,
and produced blastomylonitic fabrics that are axial planar to isoclinal folds. Isoclines produced during the M,
episode are overprinted by a second generation of folds that have an axial planar cleavage (S,) at a low to
moderate angle to the older schistosity. S, folds are tight and increase in abundance toward cataclastic
zones in which a cataclastic foliation is the dominant fabric; this fabric appears to coincide with the S,
cleavage. S, structures are invanably associated with greenschist-facies minerals attributed to a retrogressive
metamorphic episode (M,). Within intensely cataclasized phyllonite zones, M, minerals replace gt, bt, and st
that were produced during M; metamorphism; M, minerals also grew synkinematically along shear surfaces.
Glaucophane occurs with ctd in an M, mineral assemblage at one locality within a phyllonite zone (Dover and
Miyaoka, 1985b; sheet 1).

A similar sequence of polydeformed, polymetamorphosed, and moderately to strongly mylonitized
schist, gneiss, quartzite, marble, and amphibolite, and singly metamorphosed granitoid gneiss, including
augen gneiss (unit 27), crops out in the Kokrines Hills (Patton and others, 1978). The protolith age of the
granitoid gneiss is unknown, but on the basis of lithologic similarity with dated augen gneiss in the Ray
Mountains (unit 26) and in the southern Brooks Range (unit 2), a Devonian age is likely. | propose a tentative
polymetamorphic history for this unit on the basis of the foliowing field observations and interpretations made
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by J.T. Dillon (written commun., 1983): (1) metamorphic foliation (S,) in quartzite and associated schist and
gneiss is truncated by the granitoid gneiss whose foliation (S,) is approximately perpendicular to the intrusive
contact and locally to Sy; (2) S, foliation formed during an earlier metamorphic episode (M), and S, foliation
and cleavage formed during a later metamorphic episode {M,); and (3) M, produced bt, gt, sil, and locally ky
and kf in pelitic rocks, and M, produced gt, mu, and bt in granitoid gneiss. Broad structural relations suggest
that this unit may form an east-northeast-trending gneiss dome (Patton and others, 1978), but the age and
origin of doming or remobilization are unknown.

Proterozoic and (or) Paleozoic metamorphism may have occurred in several of the areas. The Idono
sequence (unit 30) yields both Middle Proterozoic and Early Cretaceous mineral ages, which may indicate a
correlation between its metamorphic history and that proposed for polymetamorphic unit 31 in southwestem
Alaska. As discussed in a later section, metamorphism of unit 31 apparently took place during both Early
Proterozoic and Jurassic to Cretaceous time. Amphibolite-facies metamorphism (M, of unit 27) in the
Kokrines Hills may have predated the probable Devonian intrusive age of granitic gneiss, whose presumed
metamorphic fabric is reported to crosscut the S, fabric of the rest of the unit. Similar orthogneiss, forming
the structurally lowest thrust sheets in the Ray Mountains, may also have experienced a pre- or syn-Devonian
metamorphic episode (M, of unit 26).

Obduction of mafic-ultramafic oceanic rocks onto the Proterozoic and middle Paleozoic continental
margin (area of the southem Brooks Range and Ruby geanticline) during Middle Jurassic to mid-Cretaceous
time is the most likely cause of the greenschist- and epidote-amphibolite-facies metamorphism of unit 24, and
the greenschist-facies M, metamorphism of unit 26. The occurrence of gl in an M, retrogressive greenschist-
facies assemblage, and the increased development of cataclastic fabrics and retrogressive metamorphism in
shear zones in the Ray Mountains (unit 26), supports the overthrust origin proposed above. This tectonic
model is the same one that is more clearly indicated for unit 28 (discussed below).

Greenschist-facies continental rocks (unit 28) and prehnite-pumpellyite-facies oceanic rocks (unit 29)
were metamorphosed during an Early Cretaceous or older Mesozoic episode that occurred locally under
high-P (blueschist-facies) conditions. These units are exposed within and east of both the Kokrines Hills and
the Kaiyuh Mountains. The units in both areas are correlative and have been offset by approximately 160 km
of right-lateral movement along the Kaltag fault (Patton and others, 1984). The greenschist-facies rocks (unit
28) make up a basement assemblage that consists of schist, quartzite, phyllite, slate, and mafic metavolcanic
rocks of Proterozoic(?) and Paleozoic age and recrystallized limestone, dolomite, and chert of early to middle
Paleozoic age. This unit is defined by the local presence of gl in pelitic schist (+wm+qzigttchtctd) and
metabasite (+ch+ab+eptac). It, like the similar undifferentiated greenschist- and epidote-amphibolite-facies
unit (24) that is devoid of gl, is included in the Ruby terrane.

The prehnite-pumpellyite-facies oceanic rocks (unit 29) occur as large thrust sheets (Patton and others,
1977) composed of metabasite, metachert, metasedimentary rocks, metalimestone, and metatuff. Protoliths
range in age from Late Devonian to Late Triassic. The northwesternmost thrust sheets are included in the
Tozitna terrane and the southeasternmost thrust sheets in the Innoko terrane. The degree of low-T
metamorphism varies considerably within the unit and appears to be a function of the structural position within
the thrust sheet (W.W. Patton, Jr., and S.E. Box, oral commun., 1985). Glaucophane occurs locally in
metabasite near the structural base of the Tozitna terrane (Patton and Moll, 1982) where localized higher P
conditions may have existed.

The intermediate- to locally high-P metamorphism of units 28 and 29 presumably resulted from tectonic
loading accompanying the obduction of thrust sheets of oceanic rocks onto the Proterozoic and early
Paleozoic continental margin. The primary evidence for this model is the occurrence of gl at the base of the
oceanic thrust sheets (the northwestern exposures of unit 29, assigned to the Tozitna terrane, and unit 8,
assigned to the Angayucham terrane and discussed previously), as well as in the underlying continental
greenschist-facies rocks of unit 29. Patton and others (in press) present stratigraphic evidence that the
obducted oceanic thrust sheets assigned by Jones and others (1987) to the Tozitna and the Angayucham
terranes are parts of a single terrane.

The direction from which these oceanic terranes were thrust and, therefore, correlation of their
metamorphic histories is a matter of some debate. According to one hypothesis (discussed earlier), the
thrust sheets of a (composite) Angayucham-Tozitna terrane were rooted in the Yukon-Koyukuk basin and
thrust southeastward over the continentally derived rocks of the Ruby geanticline (Patton and others, 1977,
in press; Patton and Moll, 1982; Turner, 1984). According to an alternative hypothesis, based on structural
analysis of S-C fabrics (non-coaxial schisocity and shear surfaces) and the sense of rotation of large-scale
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nappe-like folds (Miyaoka and Dover, 1985; Smith and Puchner, 1985; G.M. Smith, written commun., 1986),
the Tozitna terrane was thrust in the opposite direction--from the southeast toward the northwest. Dover and
Miyaoka (1985Db) attribute the development of cataclastic fabrics and accompanying retrogressive
metamorphism within a part of the lower plate rocks (M, of unit 26) to the northwestward obduction of the
Tozitna terrane that lies to the south.

Middle Jurassic and mid-Cretaceous maximum and minimum metamorphic age constraints for
metamorphism caused by southeastward thrusting out of the Yukon-Koyukuk basin are discussed in the
Brooks Range section. Metamorphism, if caused by northwestward obduction of the Tozitna terrane, would
have to postdate the Triassic age of the youngest protoliths of that terrane. Metamorphism of units 28 and
29, prior to late Early Cretaceous time, is also indicated by K-Ar ages of 134 and 136 Ma on metamorphic mu
from gl-bearing schist (unit 28} in the Kaiyuh Mountains (Patton and others, 1984), and by the 111-Ma age of
a granitoid pluton that intrudes both the Ruby and Angayucham terranes in the Kokrines Hills (Patton and
others, 1977, 1978).

SOUTHWESTERN ALASKA

The oldest dated metamorphic episode in Alaska is recorded in a narrow, northeast-trending, fault-
bounded belt of continentally derived amphibolite-facies rocks east of Kuskokwim Bay. These rocks, shown
as unit 31, form the antiformal (informal) Kanektok metamorphic complex of the Kilbuck terrane and are
composed of bt+hb+gttcpx gneiss, gt-mica schist, orthogneiss, gt amphibolite, and rare marble (Hoare and
Coonrad, 1979; Turmer and others, 1983). Kyanite, indicative of intermediate- to high-P conditions, occurs in
gt-mica schist at one locality. Protoliths are Early Proterozoic sedimentary, mafic volcanic, and granitic rocks
(Tumer and others, 1983). Metamorphic mineral grains generally define a strong lineation and a foliation that
is parallel to compositional layering. All of these structural features strike consistently to the northeast,
roughly parallel to the trend of the complex (Hoare and Coonrad, 1979; D.L. Turnher, written commun., 1982).
On the basis of aeromagnetic, gravity, and field data, the structural setting of this metamorphic complex
(Kilbuck terrane) has been interpreted as a rootless subhorizontal klippe (Hoare and Coonrad, 1979) or,
alternatively, as a block extending to an unknown depth between two southeast-dipping thrust faults (Box,
1985c¢).

A 1.77-Ga (Early Proterozoic) metamorphic age for amphibolite-facies metamorphism is indicated by a U-
Pb age on sph from orthogneiss, by the oldest of five Proterozoic K-Ar hb ages from amphibolite, and
possibly also by a whole-rock Rb-Sr "isochron" (Turner and others, 1983). A minimum age for this
metamorphic episode is provided by a 1.2-Ga age from 40Ar/39Ar incremental heating studies on hb from gt
amphibolite (Turner and others, 1983).

On the basis of isotopic data, subsequent greenschist-facies retrogressive metamorphism (M,) is
proposed to have affected the amphibolite-facies rocks during Late Jurassic to Early Cretaceous time. Nearly
all of the 58 dated rocks collected throughout the metamorphic complex show a total or partial resetting of K-
Ar hb and bt ages and fall in the range of 150 to 120 Ma (D.L. Tumer, written commun., 1982; Turner and
others, 1983). Because only a limited and cursory petrographic study of the the amphibolite-facies rocks has
been made, it is not known to what degree, and under what T and P conditions, recrystallization accompanied
the Mesozoic thermal episode that is documented by the isotopic dating. A latest Early Cretaceous minimum
age for M, is indicated because: (1) overlying unmetamorphosed Albian conglomerates contain Kanektok
components, and (2) unmetamorphosed Valanginian sediments to the south contain metamorphic gt and ep
thought to be derived from the metamorphic complex (Murphy, 1987).

Unit 31 is similar in its lithology, internal structure, structural relation to adjacent mafic complexes, and
Mesozoic K-Ar ages to the metamorphic belt that occurs along the southeastern borderland of the Yukon-
Koyukuk basin to the north (Ruby terrane) discussed in the previous section (Box, 1985a). The part of this
belt closest to unit 31 is the informally designated Idono sequence (unit 30) 250 km to the northeast (Miller
and Bundtzen, 1985)--a sequence which also gives Proterozoic and Early Cretaceous metamorphic-mineral
ages. Several linear northeast-trending faults separate the two metamorphic units. One of these, the
Iditarod-Nixon Fork fault, shows evidence of about 110 km of post-Cretaceous right-lateral offset (Grantz,
1966). If the other faults show similar senses of displacement, units 30 and 31 may prove to be right-lateral
offset equivalents, making both part of the Ruby terrane (Dusel-Bacon, Doyle, and Box, in press).

I ie. locally high-P. M . I hi [ . I
The predominant period of metamorphism in southwestern Alaska occurred under low-grade conditions

during Mesozoic time. Most of the rocks that were metamorphosed are of oceanic affinity; the continentally

derived Early Proterozoic metamorphic rocks of unit 31 apparently were retrograded during the Mesozoic.
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Blueschist-facies rocks occur in two areas (units 33,34) of the low-grade rocks, suggesting a subduction-
related origin for most of the low-grade metamorphism.

One of the areas of blueschist-facies rocks (unit 33} is part of a nappe complex of predominantly
schistose metavolcanic and metasedimentary rocks; other rocks in the nappe complex were metamormphosed
under pumpellyite-actinolite-facies (facies terminology of Turner, 1981} to greenschist-facies conditions (unit
32). Protoliths are thought to be of Permian and Late Triassic age (Box, 1985b). Recrystallization is generally
incomplete and primary textures and minerals are partly preserved. Diagnostic high-P minerals gl
(+ep+actpu) and Iw are sparse and poorly developed in unit 33 (Box, 1985b).

Metamormphism of units 32 and 33 is bracketed between the Late Triassic age of the youngest protolith
and the Middle Jurassic age of postmetamorphic mafic and ultramafic plutons (Hoare and Coonrad, 1978). A
231+7-Ma K-Ar age on amph (Box, 1985b) from schist of blueschist-facies unit 33 suggests that
metamorphism of the nappe complex may have begun during Late Triassic time.

The other area of greenschist- and locally blueschist-facies rocks, shown as unit 34, consists of mafic
schist interlayered with metachert, metalimestone, phyllite, and minor amounts of quartzose and calcareous
schist (Hoare and Coonrad, 1959). Protolith ages are unknown, but limestone is probably Ordovician,
Devonian, or Permian in age and chert may be as young as latest Jurassic (Tithonian) (Box, 1985b). Rocks of
this unit have been affected by post-metamorphic, horthwest-vergent imbrication (Box, 1985¢). Greenschist-
facies mafic schist is characterized by ch, ep, and ac, and blueschist-facies mafic schist by gi, ch, ac, and ep .

Actinolite from mafic schist of the northemmost exposure of unit 34 gives a K-Ar age of 14615 Ma (Box
and Murphy, 1987), suggesting a Late Jurassic or Early Cretaceous minimum metamorphic age. The Triassic
maximum age of metamorphism of units 32 and 33 is tentatively considered to apply also to unit 34.

The most extensive low-grade metamorphic unit (35) forms a diverse assemblage of prehnite-
pumpellyite-facies metabasalt, metagabbro, metavolcaniclastic and metasedimentary rocks, metachent, and
metalimestone. Protolith ages range from early or middle Paleozoic to Cretaceous (Jones and others, 1987;
Dusel-Bacon, Doyle, and Box, in press). Primary igneous or depositional fabrics are generally well preserved,
but locally the rocks are slaty, schistose, or highly sheared and disrupted. The lack of structural fabric, the
disrupted character, and the very low grade of this unit make it difficult both to determine which rocks have
been metamormphosed and to assess the relation between the timing of metamorphism and the intrusion of
crosscutting igneous bodies. A pre-Early Cretaceous age of metamorphism is inferred for all areas of unit 35
because unmetamorphosed Valanginian andesitic volcanic rocks unconformably overlie the northernmost
exposure of this unit (Patton and Moll, 1985), and unmetamorphosed Valanginian sedimentary rocks in the
southern exposure of the unit contain pr-pu-bearing metavoicanic clasts (Murphy, 1987).

Mesozoic metamorphism is attributed to progressive underthrusting of a composite subduction complex
(Goodnews terrane) beneath the northwestern margin of an oceanic arc (Togiak terrane), followed by
underthrusting of the Early Proterozoic continental metamorphic complex (Kilbuck terrane) beneath the
northwestem margin of Goodnews terrane (fig. 3) (Box, 1985b, c).

According to this tectonic model, metamorphism of blueschist- and greenschist-facies units 33 and 32,
respectively, occurred during the first episode of underthrusting. These two units make up the Cape Peirce
subterrane of the Goodnews terrane of Box (1985b, ¢). Box believes this subterrane structurally underlies
the prehnite-pumpellyite-facies rocks of the Togiak terrane and overlies the prehnite-pumpellyite-facies rocks
of the Platinum subterrane of the Goodnews terrane (terranes and subterranes are those of Box, 1985¢)
along low-angle southeast-dipping faults (fig. 3). Both areas of prehnite-pumpellyite-facies rocks are
included in unit 35. Metamorphism of the Cape Peirce subterrane is presumed to have occurred during
collision and partial subduction of an oceanic plateau (Platinum subterrane of the Goodnews terrane)
beneath an overriding intraoceanic subduction-related volcanic arc (Togiak terrane). Lithologic similarities
between the protoliths of the schistose blueschist- and greenschist-facies rocks of the Cape Peirce
subterrane and those of the relatively undeformed low-grade overlying and underlying subterranes, suggest
that the rocks of the Cape Peirce subterrane are the more tectonized equivalents of the adjacent two
subterranes (Box, 1985b). Mafic and ultramafic plutons that intrude the Cape Peirce subterrane, the
overlying Togiak terrane, and the underlying Platinum subterrane, provide a Middle Jurassic minimum age for
amalgamation of the three subterranes.

Structural data suggest that the overriding arc of the Togiak terrane was originally thrust to the north-
northeast over the Goodnews terrane (Box, 1985b). However, the low-angle fault mapped between the
upper plate Togiak terrane and the underlying Cape Peirce terrane juxtaposes lower T and P rocks over
higher T and P rocks, suggesting that the fault is a low-angle normal fault rather than a thrust fault (Box,
1985b). As suggested by Box, a good explanation for the present relation between the plates is that early
north-northeastward compressional faulting was followed by extensional (detachment) faulting. This same
fault relation (lower grade rocks above higher grade rocks) occurs in the southern Brooks Range and Ruby
geanticline (sheet 1); faulting in all these areas may have the same origin (extensional reactivation of earlier
compressional structures).
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Figure 3.--Map showing lithotectonic terranes (modified from Box, 19856) and metamorphic-facies units in
southwestern Alaska.
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The greenschist- and blueschist-facies rocks of unit 34 were probably metamorphosed during the
second episode of underthrusting. These rocks crop out along the northwestern margin of the Nukluk
subterrane of the Goodnews terrane of Box (1985¢). Late Jurassic to Early Cretaceous metamorphism of unit
34, and retrograde metamorphism of unit 31, probably took place as the continental Kilbuck terrane (unit 31)
was partially thrust beneath the accretionary forearc (Goodnews terrane) of an intracceanic volcanic arc
(Togiak terrane) (Box, 1985c). The following evidence supports this interpretation of the metamorphic
history: (1) unit 34 occurs along the tectonic boundary between the Kilbuck and Goodnews terranes, and 2)
the K-Ar age on ac from unit 34 falls in the same range as the Mesozoic K-Ar ages from the Kilbuck terrane.

YUKON-TANANA UPLAND AND ALASKA RANGE NORTH OF THE MCKINLEY AND DENALI FAULTS

Qverview

The age and origin of metamorphism of many of the units in the Yukon-Tanana upland and northern
Alaska Range are poorly known. Metamorphism throughout the Yukon-Tanana upiand predates the
widespread intrusion of undeformed mid-Cretaceous granitoids. Myionitic and blastomylonitic textures are
common in most rocks, reflecting a history of dynamic metamorphism, followed by varying degrees of more
static recrystallization. Many metamorphic unit boundaries are also terrane or subterrane boundaries defined
by low-angie faults. Metamorphic grade changes abruptly across many of the faults, indicating that major
metamorphism predated final emplacement of the fault-bounded units. Some of the low-angle faults place
higher grade over lower grade rocks (the relation expected of compressional faulting), whereas others place
lower grade over higher grade rocks (the relation expected of extensional faulting), suggesting a complex
syn- or post-metamorphic structural evolution. In their regional synthesis, Foster and her coworkers (1987)
interpret the low-angle faults as being south-dipping thrusts. Thrust sheets near the Canadian border were
emplaced in Early Jurassic time. Thrusting of other sheets may have occurred throughout a compressional
episode that included crustal thickening and metamorphism in either or both Jurassic and (or) Cretaceous
time. Inone area, however, kinematic data indicate that the most recent movement along the low-angle fault
that separates greenschist-facies unit 45 of the hanging wall from amphibolite-facies unit 46 of the footwall
was extensional, and that the hangingwall moved to the east-southeast (Pavlis and others, 1988b).

LN R B hih.

The oldest metamorphic episode inferred to have taken place in east-central Alaska produced eclogite
and interlayered bands and lenses of mafic, calc-magnesian, quartzitic, pelitic schist, and impure marble.
These rocks, shown as unit 36, are thought to be two klippen that form the upper plate of a folded thrust
(Brown and Forbes, 1984; Foster and others, 1983). Protoliths are Proterozoic or early Paleozoic in age.
Bulk chemistry suggests sedimentary protoliths for the eclogites of the western klippe (Swainbank and
Forbes, 1975), whereas discordant contacts exhibited by eclogitic rocks in the eastern klippen suggest that
they originated as mafic dikes (Laird and others, 1984).

Eclogite within the eastern klippe consists of various combinations of gt, omphacitic cpx, barroisite,
phengitic mu, gz, and rutile (Laird and others, 1984). Eclogite within the western klippe consists of
combinations of these minerals plus gl tr, ab, ep, and sph; ky+st+gt occurs in interlayered pelitic schist
(Brown and Forbes, 1986). Phase equilibria (excluding that proposed for gl) and thermobarometry suggest
P-T conditions of about 15+2kb and 600+25 °C (Laird and others, 1984; Brown and Forbes, 1986). Such
temperatures exceed the experimentally determined maximum stability limit of gl (Maresch, 1977) by about
50 °C. One explanation for this discrepancy is that the gl formed after the main phase of eclogite
crystallization, as was proposed for an eclogitic block along the Tintina fault in Yukon Territory by Erdmer and
Helmstaedt (1983). However, textural relations in the gl-bearing rocks of the western klippe show no
evidence of such a progression, and the discrepancy is thus far unresoived.

A polymetamorphic history for this unit is suggested, because some eclogitic rocks in both klippen are
overprinted by greenschist and epidote-amphibolite assemblages, which are characterized by hb, ab, ep, bt,
and ch (Brown and Forbes, 1986; Foster and others, 1987).

An early Paleozoic metamormphic age for the first, and dominant, episode is tentatively suggested by a
470+35-Ma K-Ar age on amph from eclogite in the western klippe (Swainbank and Forbes, 1975). Early
isoclinal, recumbent folds about a northwest-trending axis are attributed to this episode. This high-P, high-T
metamorphism only affected this group of thrust-bounded rocks and thus predated the time of their
emplacement. An Early Cretaceous age for subsequent retrograde metamorphism is proposed on the basis
of 115- to 103-Ma K-Ar ages on mica that were determined for associated rocks; the development of folds
about a northeast-trending axis is attributed to this metamorphic episode (Swainbank and Forbes, 1975).
Early Cretaceous metamorphism, discussed below, was widespread throughout east-central Alaska.
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Mineral chemistry and the occurrence of gl indicate that the eclogites are similar to those from alpine-
type orogenic environments (Group C of Coleman and others (1965)). The tectonic and metamorphic history
of the eclogites may be similar to that of other isolated eclogite occurrences on strike along the Tintina fault in
the Yukon Territory, as proposed by Erdmer and Helmstaedt (1983) and Brown and Forbes (1986). Eclogites
in central Yukon Territory experienced a subduction-cycle P-T trajectory that included eclogite
metamorphism, uplift through the stability field of gl, and finally greenschist-facies metamorphism (Erdmer
and Helmstaedt, 1983). The present distribution and geologic position of the eclogite bodies in east-central
Alaska and Yukon Territory suggest that rocks in both regions were emplaced as thrust sheets against or onto
the cratonic margin of westem North America (Erdmer and Helmstaedt, 1983). However, the timing of
metamorphism and tectonic emplacement of these eclogite-bearing terranes are not well enough
constrained to allow more than a tentative correlation. The early Paleozoic metamorphic age suggested for
the Alaskan eclogitic rocks, if valid, would argue against correlation with the Canadian eclogites, which are
believed to have middle Paleozoic protoliths and to have been metamorphosed during the late Paleozoic
(Erdmer and Armstrong, 1988).

Metamorphism during this time period was part of an orogenic episode that consisted of metamorphism,
plutonism, folding, and thrusting. This episode resulted from the closing of an ocean basin, represented by
the weakly metamorphosed rocks of unit 38 and associated ultramafic rocks (MzPzu). Accretion of
amphibolite-facies rocks of unit 37 was related to this episode (Foster and others, 1985, 1987).

The earliest phase of this orogenic episode produced intermediate-P amphibolite- and epidote-
amphibolite-facies bt gneiss and schist, amphibolite, marble, quartzite, and pelitic schist of unit 37. Rocks are
well foliated and multiply deformed; at least some protoliths are of Paleozoic age (Foster and others, 1985).
This unit is intruded by latest Triassic to earliest Jurassic granitoids, similar to those in the Stikinia terrane of
Yukon Territory, Canada (Tempelman-Kluit, 1976). Unit 37 is in thrust contact with adjacent rocks. It is
probably part of the Stikinia terrane or a comparable, but different, part of composite terrane | of Monger and
others (1982) that includes the Stikinia terrane and that was accreted to the margin of North America in
Jurassic time (Foster and others, 1987).

Amphibolite-facies metamorphism of unit 37 reached its peak about 213+2 Ma (40Ar/3%Ar integrated
plateau age on amph), foliowed by synmetamorphic intrusion of the Taylor Mountain batholith (shown as unit
JTRg) at about 209+3 Ma (Cushing and others, 1984). Northward thrusting of the amphibolite-facies rocks and
low-grade oceanic rocks (unit 38) took place during cooling and was completed by about 185 Ma (Foster and
others, 1987). The Early Cretaceous thermal event that strongly affected the adjacent augen gneiss-bearing
amphibolite-facies unit 46 to the south (described below) was of only minor intensity in unit 37, as indicated
by the Early Cretaceous apparent ages of the low-temperature gas fractions in most of the 40Ar/3%9Ar age
spectra (Foster and others, 1987).

Basalt and related oceanic protoliths of unit 38 were metamorphosed under prehnite-pumpellyite- and
lower greenschist-facies conditions during the waning stages of the regional metamorphism that
accompanied the closing of the ocean basin (Foster and others, 1987). This low-grade oceanic unit makes
up the Seventymile terrane and consists of massive and locally pillowed greenstone, argillite, metatuff, gz-wm
schist, gz-ac schist, quartzite, metalimestone, metachert, and metagraywacke. Most protolith ages are
unknown, but conodonts and radiolarians of Permian age occur in weakly metamorphosed chert in the Big
Delta quadrangle, and radiolarians of Mississippian age, brachiopods of Permian age, and conodonts of
Triassic age occur in the northern Eagle quadrangle (Foster and others, 1987). These rocks are associated
with ultramafic and gabbroic rocks. In at least one area, this package of rocks is part of a dismembered
ophiolitic assemblage (Keith and others, 1981). Unit 38 consists of a number of isolated thrust remnants,
which are themselves broken by internal thrust faults; metamorphic grade differs between individual thrust
remnants. Glaucophane (+eptgt) occurs in one such thrust remnant in a small exposure of metabasalt just
south of the Tintina fault (Keith and others, 1981; sheet 1).

An Early Jurassic age for low-grade metamorphism of unit 38 is indicated by a 201+5-Ma 40Ar/39Ar
integrated plateau age on ac from greenstone in southeastern Eagle quadrangle (G.W. Cushing, unpub.
data, 1984). Northwestward accretion of the amphibolite-facies unit resulted in thrusting of remnants of the
telescoped ocean basin, including this unit and the associated ultramafic rocks, northward onto greenschist-
facies unit 44 and southward onto amphibolite-facies unit 37 (Foster and others, 1987). This followed, or was
synchronous with, the low-grade metamorphism. The outcrop of gl-bearing greenstone may be part of a fault
sliver that was dragged to a greater depth in a subduction zone or a transpressive boundary along the
convergent margin.

Metamorphism of greenschist-facies unit 39, included in the Yukon-Tanana terrane, was probably also
part of the Late Triassic through Early Jurassic orogenic episode. This unit probably formed part of the
continental margin north of the ocean basin onto which the previous two metamorphic units were accreted.

17



Common rock types are gz-wm (+chtac) schist, quartzite, phyllite, and metavolcanic rocks; protoliths are
probably Paleozoic in age. Foliation is well developed, and rocks are multiply folded and commonly are
lineated. This unit is correlated with the Klondike Schist of McConnell (1905} that crops out across the
Canadian border (Foster and others, 1985). A Late Triassic to Early Jurassic metamorphic age is suggested
by a 175+14-Ma K-Ar age on mu (Tempelman-Kluit and Wanless, 1975) and by a 202+11-Ma Rb-Sr whole-
rock age (Metcalfe and Clark, 1983) determined for Klondike Schist in Canada.

The metamorphic ages of many units in east-central Alaska (units 40 to 45 in the Yukon-Tanana upland,
and units 53 and 54, and M, of units 47 and 48 in the Alaska Range; sheet 2) are unknown. Metamorphic
ages are bracketed between the known, or probable, Paleozoic age of the youngest protoliths and the Early
to mid-Cretaceous age of widespread plutonism that postdates regional metamorphism. Scattered late Early
Cretaceous K-Ar mineral and whole-rock ages on schist and a U-Pb age on monazite from orthogneiss (ages
given on sheet 2) tentatively suggest an Early Cretaceous age for latest metamorphism. Unit 47 and its
higher grade equivalent, unit 48, crop out south of the Tanana River and consist of metasedimentary,
metavolcanic, and metaplutonic rocks of Devonian and older protolith age (Aleinikoff and Nokleberg, 1985;
T.K. Bundtzen, oral commun., 1988). M, records greenschist-facies conditions in unit 47 but increases in
intensity northward; it grades into the amphibolite-facies M, of unit 48 in the west (Bundtzen, 1981). M,
metamorphism in units 47 and 48 postdates the Devonian age of the youngest known protoliths and
predates the Early Cretaceous age of the episode that is thought to have caused lower greenschist-facies
retrograde metamorphism (M) in units 47 and 48 as well as the monometamorphism of unit 49 (discussed in a
later section). In unit 48 and the western part of unit 47, Bundtzen and Turner (1979) proposed an Early
Jurassic minimum age for M, on the basis of the oldest of four K-Ar ages (195, 144, 123, and 104 Ma) on hb
from gt amphibolite in unit 48.

Unit 46, characterized by augen gneiss, gives Early Cretaceous ages from a number of isotopic systems
and on this basis, its latest, and probably its only, metamorphism is believed to be Early Cretaceous in age.
However, limited evidence from U-Pb zircon data from quartzite (Aleinikoff and others, 1984b, 1986) and
sillimanite gneiss from unit 46 (Aleinikoff and others, 1984a), and from structural relations between augen
gneiss and wallrocks in east-central Alaska and Yukon Territory, suggest that an earlier metamorphic episode
may have accompanied the Mississippian intrusion of batholithic sheets of what is now augen gneiss (Dusel-
Bacon and Aleinikoff, 1985). These structural relations are: (1) that some areas of augen gneiss coincide
with large structural and metamorphic culminations (Mortensen, 1983); and (2) that the concordant contacts
of the augen gneiss bodies, and parallelism between lithologic contacts and the gently dipping regional
penetrative fabric, suggest the augen gneiss bodies were intruded synkinematically into ductile crust (Dusel-
Bacon and Aleinikoff, 1985).

Amphibolite-facies unit 46 is characterized by large bodies of augen gneiss that form a discontinuous
belt of metamorphosed Mississippian plutons, believed to have developed beneath, or inland from, a
continental magmatic arc of Late Devonian to Early Mississippian age (Dusel-Bacon and Aleinikoff, 1985).
Other rock types, interpreted as having been wallrocks to the augen gneiss protolith, are amphibolite-facies
gz-mica schist, bt and bt-hb gneiss, quartzite, amphibolite, sillimanite gneiss, and minor amounts of marble,
calc-schist, and felsic gneiss. The Mississippian protolith age for the augen gneiss (about 340 Ma, on the
basis of a U-Pb lower intercept age of zircon and a Rb-Sr whole-rock isochron; Aleinikoff and others, 1986)
establishes a minimum protolith age for the adjacent wallrocks. Protoliths of some metavolcanic rocks are
Devonian in age (Aleinikoff and others, 1986).

Transitional low- to intermediate-P conditions are indicated for unit 46 by the local occurrence of ky and
(or) anda (sheet 1) in gz-mica (+gt+sttsil) schist. All the rocks of this unit are well foliated; commonly the
foliation is multiply foided into isoclinal folds on various scales. Many rocks exhibit a well-developed
stretching lineation, and most show some degree of mylonitization followed by varying degrees of
recrystallization.

A 600 km?2 body of sillimanite gneiss and flanking pelitic schist crops out in the western part of this unit
(shown on sheet 1 by the sillimanite isograd) and has been interpreted as a gneiss dome by Dusel-Bacon and
Foster (1983). Metamorphic grade increases across the pelitic schist on the flanks of the dome, where P-T
conditions locally were near the Al2SiOs triple point (approximately 3.8 kb and 500 °C; Holdaway, 1971), to
the gneissic core of the dome, where P-T conditions were near those of the second sillimanite isograd.
Garnet-biotite geothermometry (calibration of Ferry and Spear, 1978) indicates an equilibration T of 535 to
60030 °C for pelitic schist north of the dome and 655 to 705+30 °C for sillimanite gneiss in the core (Dusel-
Bacon and Foster, 1983).
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Petrographic evidence of a regional retrogressive metamorphic episode is minimal in most of this unit
and consists of local, and minor, chloritization of bt and gt, sericitization of pl, kf, and co, and the development
of ac from hb. In the southwestern part of unit 46, however, Nokleberg and others (1986a) note that
amphibolite-facies rocks are consistently retrograded to greenschist-facies assemblages, and that the
degree of retrogression increases to the south. This retrogressive metamorphism is shown on the map as
the second greenschist-facies episode in adjacent unit 47 to the south.

Metamorphism of unit 46 postdates the Mississippian intrusive age of the augen gneiss protolith and
predates the intrusion of Early and mid-Cretaceous plutons (generally with 105- to 85-Ma K-Ar cooling ages;
Wilson and others, 1985). A 115-Ma U-Pb age on zircon from an unmetamorphosed (late metamorphic?)
pluton that intrudes the sillimanite gneiss dome (Aleinikoff and others, 1984a) provides the most reliable
minimum age of metamorphism. Abundant isotopic data from the metamorphic rocks of this unit suggest that
metamorphism occurred between about 135 and 115 Ma: most conventional K-Ar mineral ages fall in the
range of about 125 to 110 Ma; a Rb-Sr mineral isochron for augen gneiss is 115 Ma; sph from augen gneiss
gives a concordant U-Pb age of 134 Ma; U-rich zircon fractions from sillimanite gneiss and quarizite show
Early Cretaceous lead loss (Aleinikoff and others, 1986); and hb from augen gneiss gives a 40Ar/39Ar
incremental heating plateau age of 119 Ma (T.M. Harrison, written commun., 1987).

Effects of Early Cretaceous metamorphism are believed to be widespread across much of east-central
Alaska. The following limited isotopic data suggest an Early Cretaceous age for metamorphism in units 41
and 42 in the northwestern Yukon-Tanana upland: three K-Ar mica ages and one whole-rock age from
greenschist-facies unit 41 range from 138 to 100 Ma (Forbes and Weber, 1982), and monazite from
orthogneiss of amphibolite-facies unit 42 gives a concordant U-Pb age of 115 Ma (J.N. Aleinikoff, written
comun., 1987). As mentioned earlier, retrograde effects on the eclogite-bearing klippen (unit 36) that overlie
unit 41 are attributed to this same episode.

Farther south, in the Alaska Range, retrograde metamorphism in polymetamorphic units 47 and 48 is
also interpreted as having taken place in the Early Cretaceous. In that area, M, metamorphism occurred
under ch-grade conditions; its effects are most evident where the metamorphic grade during M; was highest,
namely in retrograded amphibolite-facies unit 48 and in the northern part of polymetamorphic greenschist-
facies unit 47. M, assemblages in unit 48 and the adjacent area of unit 47 define a weak metamorphic
foliation that is axial planar to broad northeast-trending folds (Bundtzen, 1981). Characteristics of M,
metamorphism and accompanying deformation in the other parts of unit 47 vary widely, and thus correlation
of M, episodes throughout the unit is tentative (Dusel-Bacon, Csejtey, and others, in press). A late Early
Cretaceous metamorphic age for M, is suggested for unit 48 and the adjacent area of unit 47 by the oldest K-
Ar mica age (100 Ma) determined for those rocks (Bundtzen and Turner, 1979). A similar late Early
Cretaceous age is suggested by a 107-Ma K-Ar age on mu from phyllite of unit 47 in the central Alaska Range
(Sherwood, 1979). Nokleberg and others (1986a) report that mid-Cretaceous plutons in the northern part of
unit 47 in the Mt. Hayes quadrangle appear to have been weakly metamorphosed under lower greenschist-
facies conditions together with their polymetamorphosed wallrocks, suggesting that metamorphism in that
area continued longer, perhaps into Late Cretaceous time.

Low-grade regional metamorphism of monometamorphic unit 49 was synkinematic with the
development of northeast-trending folds and has been correlated with the M, of adjacent units 47 and 48
(Bundtzen and Turner, 1979). Mylonitic textures are common throughout this unit and indicate a large
dynamic component to the regional metamorphic episode. An Early Cretaceous age for this deformational
and metamorphic episode is proposed on the basis of a whole-rock K-Ar age of 108+3 Ma on metafelsite
(Bundtzen and Turner, 1979).

An eastward-increasing metamorphic sequence developed in Early(?) to Late Cretaceous time within
units 50 (at least in that part east of longitude 151°), 51, and 52--units that are bounded to the south by the
McKinley fault. Low- to intermediate-P conditions are indicated for the amphibolite-facies part of the
sequence (unit 52) and are inferred for the lower grade part of the sequence to the west. Evidence for this P
range consists of the sparse occurrence of relict anda, indicating low P, and the presence of gt in both
metabasic and metapelitic rocks, suggesting intermediate P. Metamorphism may have begun earlier in the
highest grade, eastern, part of the sequence. Geologic relations in the Healy quadrangle indicate that
metamorphism preceded, and continued during, intrusion of an Early Cretaceous pluton (105-Ma 40Ar/39Ar
hb incremental-heating plateau age) into unit 52. The pluton generally crosscuts the metamorphic fabric but,
locally, igneous contacts are migmatitic, and in places the pluton is foliated (Csejtey and others, 1986). Weak
metamorphic effects also have been noted in plutonic rocks of Late Cretaceous (70 Ma) age farther east
within unit 52 (W.J. Nokleberg, oral commun., 1987). Metamorphism of this sequence may have been part of
the M, metamorphic episode that affected unit 47 to the north. A similar eastward increase in metamorphic
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grade occurs in M, assemblages within the adjacent part of unit 47 south of the Hines Creek fault (Dusel-
Bacon, Csejtey, and others, in press).

The assumption that much of east-central Alaska was metamorphosed during Cretaceous time is based
on the interpretation that isotopic ages from throughout the region record uplift and cooling (to blocking
temperatures of about 500 °C in hb and about 300 °C in bt) that followed (by not more than 20 to 40 m.y.) an
initial episode of crustal thickening and metamorphism. Northward migration and accretion of the Wrangellia
terrane against the North American margin, which would have included the rocks of east-central Alaska north
of the McKinley and Denali faults, might be a possible cause of Cretaceous crustal thickening, but the timing
of the accretion appears to be too late to explain the widespread Early Cretaceous (110 to 135 Ma) isotopic
ages. As discussed in a subsequent section, accretion of the Wrangeliia terrane is believed to have
postdated the early Late Cretaceous (Cenomanian: 98 to 91 Ma) age of the youngest flysch in a basin that
separated the Wrangellia terrane from North America, and to have resulted in intermediate-P metamorphism
and synkinematic plutonism within the flysch basin at about 70 to 56 Ma. The mid- to Late Cretaceous
metamorphism of units 50 to 52 that crop out just north of the McKinley fault probably overlaped with
accretion of the Wrangellia terrane.

Given the problem of identifying the cause of a compressional episode in Early Cretaceous time, an
alternative possibility is that the Early Cretaceous ages may not date the time of crustal thickening and heating
but instead date uplift and cooling, perhaps brought about by extension, that followed the latest Triassic to
Early Jurassic compressional episode (discussed above) that affected units 37 and 39 near the United
States--Canadian boundary. The original western extent of this episode is unknown. It is possible that
metamorphism of other units in the Yukon-Tanana upland, whose metamorphic age is either given as Early
Cretaceous or is bracketed between Paleozoic and Early Cretaceous time, may have been initially heated
during the latest Triassic to Early Jurassic episode.

An argument in favor or this interpretation is the fact that oceanic rocks of unit 38 and associated
ultramafic rocks (MzFeu), both of which are interpreted as having been part of the ocean basin that separated
North America from a composite terrane that included the Stikinia terrane (Foster and others, 1987), occur far
west of units 37 and 39, suggesting a greater original extent of the accreted composite terrane than is now
recoghized. Moreover, extensional faulting recently has been proposed for several areas in the Yukon-
Tanana upland (Pavlis and others, 1988b; Duke and others, 1988; Hansen, 1989). Structural data collected
near the fault contact between the flanks of the sillimanite gneiss dome of unit 46 and the structurally
overlying mylonitic greenschist-facies rocks of unit 45 indicate that the latest fault movement was extensional
(east to southeast movement of the hanging wall; Pavlis and others, 1988b). Other low-angle faults that
place lower grade rocks over higher grade rocks (such as the fault which separates units 41 and 42 from units
43 and 44), the relation common in extended terranes, are possible candidates for extensional faulting. A
correspondance between the age of extension and the Early Cretaceous isotopic ages remains to be
proven, but it appears to be a reasonable supposition because augen gneiss and associated rocks of unit 46
are wallrocks to 90-Ma calderas (Bacon and others, 1990) and therefore were virtually at the surface by that
time.

Arguing against latest Triassic to Early Jurassic accretion-related metamorphism throughout much of the
Yukon-Tanana terrane time is the fact that latest Triassic to Early Jurassic plutons only occur in association
with unit 37 (of possible Stikinia terrane affinity) in the eastern part of the Yukon-Tanana upland, and isotopic
ages from upper greenschist- and amphibolite-facies metamorphic rocks in the rest of the upland and
adjacent parts of the Alaska Range are predominantly late Early Cretaceous.

AREA OF SOUTHERN ALASKA BETWEEN THE MCKINLEY AND DENALI FAULTS AND THE BORDER
RANGES FAULT SYSTEM

Several areas of amphibolite- and greenschist-facies metaigneous rocks and associated
metasedimentary rocks crop out in the Alaska Peninsula, the Talkeetna Mountains, the Gulkana area
northeast of the Talkeetna Mountains, and the eastern Chugach Mountains. Lithologic assemblages in all
areas (units 55 to 60) are similar and include varying amounts of most of the following rock types: amphibolite
and other amphibolite-facies rocks including mafic, calcareous, and pelitic schist, bt gneiss, marble, and
quartzite or metachert; greenschist-facies rocks including greenschist, greenstone, metavolcaniclastic rocks,
phyllite, argillite, and slate; and admixtures of the above rock types with massive to schistose intermediate to
mafic plutonic rocks that are variably altered, sheared, and foliated. The association of protoliths (mafic to
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intermediate extrusive and intrusive rocks, siliciclastic rocks, calcareous rocks, and chert) suggests an
oceanic affinity for most rocks. Unit 55 (Kakhonak Complex; see Detterman and Reed, 1980), and unnamed
wallrocks to Jurassic plutons mapped in the Talkeetna Mountains (see Csejtey and others, 1978), and unit 56
(retrograded schist at the southem edge of the Talkeetna Mountains; Csejtey and others, 1978) are included
in the Peninsular terrane. Unit 57 (informally designated metamorphic complex of Gulkana River; see
Nokleberg and others, 1986b) crops out along the contact between the Peninsular and Wrangellia terranes.
Unit 58 (informally designated Haley Creek metamorphic assemblage; see Plafker and others, 1989b), unit
59 (part of the Strelna metamorphics of Plafker and others, 1989b), and unit 60 (informally designated Dadina
River metamorphic assemblage; see Winkler and others, 1981; Aleinikoff and others, 1988; Plafker and
others, 1989b) are included by the cited workers in the Wrangellia terrane.

| interpret metamorphism in all the areas to have been part of the same metamorphic episode that was
early tectonic or syntectonic with the intrusion of Jurassic batholiths. Assumed protolith ages in the Penisular
terrane differ from those known or assumed in the Wrangellia terrane (sheet 2), however, and the widespread
metamorphic episode probably was imposed on different protolith assemblages. Evidence for a Jurassic
metamorphic age differs in the various areas and is summarized in sheet 2; the reader is referred to the
appropriate regional report (fig. 2) for a detailed discussion of these units.

Following the model of Plafker and others (1989b), metamorphism and synkinematic plutonism

probably took place within a magmatic arc(s) that developed as a result of left-oblique subduction of the
Farallon plate beneath a composite terrane composed of the Peninsular, Wrangellia, and Alexander terranes.

Unit 61 consists of a diverse sequence of greenschist- and epidote-amphibolite-facies tectonized
metaplutonic, metasedimentary, and metavolcanic oceanic rocks. They have been informally called the "Knik
River schist” by Carden and Decker (1977) and are described in detail by Pavlis (1983) and Pavlis and others
(1988a). This unit is spacially associated with both Jurassic mafic and ultramatic plutons that form part of the
Border Ranges ultramafic and mafic complex of Burns (1985) (shown on sheet 1 as unit Jmu) and with Early
Cretaceous trondhjemite. Pavlis and others (1988a) suggest that metamorphism of this unit accompanied
intrusion of the Early Cretaceous (135 to 110 Ma) tonalitic to trondhjemitic plutons. K-Ar ages on rocks from
this unit include a 177-Ma age on ac (Carden and Decker, 1977) and three younger ages on hb of 135, 121,
and 107 Ma (Pavlis, 1983). These ages are compatible with either a model in which metamorphism took place
during Jurassic time (in which case the younger ages were partly or totally reset during Early Cretaceous
intrusion), or in which some or all of the rocks were metamorphosed twice, each time in association with
nearby plutonism.

The metamorphic history of unit 62 is difficult to assess because this heterogeneous assemblage of
metaplutonic and metasedimentary rocks, referred to informally as the Cottonwood Creek complex of Richter
and others (1975) and Richter (1976), occurs as a narrow slice within the Denali fault zone that is widely
separated from the rest of the complex (probably the Alexander or Wrangellia terrane) from which it was
derived.

Unit 63, informally referred to as the metamorphic complex of Tlikakila River, crops out as a northeast-
trending belt within the Late Cretaceous and early Tertiary plutons of the Alaska-Aleutian Range batholith
(Carlson and Wallace, 1983; Nelson and others, 1983). Metamorphism is known to postdate the Late Triassic
protolith age of the youngest rocks. The spatial association between the metamorphic rocks of this unit and
the adjacent Late Cretaceous and Tertiary plutons suggests that metmorphism may have been related to
either one or both of the plutonic episodes. However, similarities in metamorphic rock types between this
unit and unit 55 (discussed above), suggest that at least some of the rocks of the metamorphic complex of
Tlikakila River may have been metamorphosed during the widespread episode of metamorphism and
tectonism that slightly preceded or accompanied Middle to Late Jurassic plutonism in the Alaska--Aleutian
Range and Talkeetna Mountains area.

Unit 94 crops out on Chichagof and Baranof Islands in southeastern Alaska and is also included in the
Wrangellia terrane. This unit consists of amphibolite-facies mafic metavolcanic rocks and marine
metasedimentary rocks whose protoliths predate the intrusion of Middle to Late Jurassic (168- to 155-Ma K-
Ar ages on bt and hb) diorite plutons (Loney and others, 1967). R.A. Loney (oral commun., 1985) considers
that the metamorphism of this unit is unrelated to the intrusion of the Jurassic plutons, because the direction
of increase in metamorphic grade bears no relation to the distance from the plutons. However, Johnson and
Karl (1985) report that rocks of this unit grade into the dioritic rocks of Jurassic and Jurassic or Cretaceous age
and become more migmatitic close to the plutons, implying a genetic connection between plutonism and
metamorphism. Because of the uncertainty in the metamorphic history of this unit, the age of metamorphism
is widely bracketed between Paleozoic and Early Cretaceous time, allowing for the possibilities that
metamorphism occurred long before plutonism, assuming the oldest possible protolith age for the rocks; or
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that metamorphism was associated with plutonism, as appears to be the case in other parts of the Wrangellia
terrane basement, as described above.

The greenschlst-facues marble, phylhte greenschist, mica schist, and weakly metamorphosed late
Paleozoic plutons (shown with a diagonal dash overprint) of unit 64 crop out in the Wrangell and Saint Elias
Mountains area (MacKevett, 1978; Hudson and others, 1977b; Campbell and Dodds, 1978). Marble is, in
part, Devonian in age and may be as old as Cambrian (Gardner and others, 1988).

In the Saint Elias Mountains, the late Paleozoic plutons have been altered to greenschist-facies
assemblages. Relations between the metamorphic rocks and the late Paleozoic plutons may indicate that
metamorphism in that area was synkinematic with plutonism. These relations, reported by Hudson and others
(1977a, b) consist of: (1) limited data that suggest that slightly higher grade metamorphic mineral
assemblages are developed adjacent to the plutons; and (2) the fact that the plutons are dominantly foliate
and commonly altered, and that contact relations between plutons and country rocks are locally complex,
sometimes being sharp and crosscutting and sometimes gradational.

In the southeastem McCarthy quadrangle, a pluton of Middle Pennsylvanian age (shown as a weakly
metamorphosed pluton of unit 65, discussed below) intrudes both the Alexander and Wrangellia terranes,
thereby indicating that the two terranes have been sutured since late Paleozoic time (MacKevett and others,
1986; Gardner and others, 1986). Because of this Middle Pennsylvanian minimum age for the juxtaposition
of the two terranes, low-grade metamorphism in much of the Alexander terrane (this unit), like the slightly
higher grade M, metamorphism in the Strelna Metamorphics of the Wrangellia terrane (unit 53) may have
been associated with the intrusion of Late Jurassic plutons. Although Late Jurassic plutons have not been
mapped within the Alexander terrane in Alaska, Late Jurassic to Early Cretaceous (160 to 130 Ma) plutons
make up a major intrusive suite within the continuation of these terranes in Canada (Dodds and Campbell,
1988). Geologic evidence from this unit in Canada suggests that regional metamorphism and deformation
may have occurred during latest Jurassic to earliest Cretaceous time (about 160 to 130 Ma) and been
associated with plutonism of that age (R.B. Campbeli and C.J. Dodds, written commun., 1986). Evidence on
which Campbell and Dodds base this interpretation consists of: (1) metamorphism and deformation appear to
postdate the deposition of Upper Triassic strata that probably rest unconformably on Paleozoic rocks but
nevertheless appear to be equally deformed and metamorphosed; (2) the younger plutons within the belt of
160- to 130-Ma plutons seem clearly to post-date the metamorphism and deformation in the northeast where
they produce distinct contact metamorphic aureoles; and (3) the older plutons of this group to the southwest
may have been intruded during the metamorphism and deformation, because they are commonly elongate
paraliel to the regional structural grain, but they ciearly have local cross cutting contacts and probably in part
post-date those events.

The late Paleozoic to Early Cretaceous age constraints given for this unit refiect the possibility that one
or both metamorphic episodes discussed above may have affected different parts of this unit.

Weakly metamorphosed oceanic rocks of the Wrangellaa terrane crop out south of the Talkeetna thrust
and Denali fault, and north of faults that separate them from the belt of greenschist- and amphibolite-facies
rocks that constitute the basement of the Peninsular and Wrangellia terranes. These weakly metamorphosed
rocks, shown as unit 65, include upper Paleozoic arc-related metavoicanic and metaplutonic rocks,
metalimestone, argillite, and metachert; overlying Middle Triassic argillite, Upper Triassic metabasalt (Nikolai
Greenstone), and Upper Triassic and Lower Jurassic metasedimentary rocks of the McCarthy Formation; and,
north of latitude 62°, small areas of overlying Triassic metalimestone, and Mesozoic marine metasedimentary
rocks.

Most rocks have not been penetratively deformed (except near major faults) and exhibit well-preserved
volcanic, sedimentary, or plutonic textures (MacKevett, 1978; Richter, 1976; W.J. Nokleberg, oral commun.,
1984; Beard and Barker, 1989). Locally, however, in the general area that is proposed to be the leading
edge along which the Wrangeliia terrane was accreted (Csejtey and others, 1982), rocks are weakly phyilitic or
schistose in the central Alaska Range (Smith, 1981; Nokleberg and others, 1985) and intensely folded and
sheared in the Talkeetna Mountains (Csejtey and others, 1978).

Triassic greenstone in most areas contains the assembiage ch-pr-pu-ab-ep, indicating prehnite-
pumpellyite-facies conditions (Richter, 1976; MacKevett, 1978; Csejtey and others, 1978; Smith, 1981;
Nokleberg and others, 1985). CAl values of 5.5 to 6.0 from Upper Triassic conodonts collected in the
McCarthy quadrangle from the Nizina and Chitistone Limestones and the lower part of the McCarthy
Formation suggest metamorphic temperatures of about 350 to 450 °C (M.W. Mulien, oral commun., 1989).
Locally, in the more deformed northern areas of this unit, greenstone may contain the assemblage ac-ch-ep-
ab, indicating lower greenschist-facies conditions.
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The metamorphic grade of these late Paleozoic metavolcanic and metaplutonic rocks is generally
comparable to that of the low-grade Mesozoic rocks. Inthe northeastern Gulkana quadrangle, the Ahtell
pluton contains metamorphic wm, ch, ab, and gz (W.J. Nokleberg, written commun., 1988). Metamorphic
minerals developed in the correlative diorite complex of Richter (1976) consist of ac, ch, ep, and wm (Barker
and Stern, 1986). Late Paleozoic metavolcanic rocks in the northwestern Nabesna quadrangle generally
contain the low-grade assemblage ch-ep-pu, except near the diorite complex where it has been recrystallized
to massive, fine-grained assemblages of hb, ep, ch, and feldspar (Richter, 1976). In the southeastern
McCarthy quadrangle, the (informal) Bamard Glacier pluton of Middle Pennsylvanian age (309t+5-Ma U-Pb
age on zircon; Gardner and others, 1988) is generally unfoliated, but, locally, it is cataclastically deformed
(MacKevett, 1978). It is this pluton, mentioned in the previous section, that is intrusive into both the low-
grade rocks of unit 65 to the west, included in the Wrangellia terrane, and the greenschist-facies rocks of unit
64 to the east, included in the Alexander terrane, thereby indicating that the two terranes were sutured
together by Middle Pennsylvanian time (MacKevett and others, 1986; Gardner and others, 1988). Although
the data are inconclusive, the pluton is tentatively shown on sheet 1 to have been weakly metamorphosed
along with the Wrangellia terrane wallrocks on the west, although numerous other possible correlations of its
metamorphic history are possible given the uncertainty of the timing of metamorphism in this region.

The age and cause of metamorphism may be different in different parts of unit 65. Because the
metamorphic grade is so low, it is difficult to determine with certainty whether some associated rocks have
been metamorphosed. In the southern part of this unit, the CAl values from the Late Triassic conodonts
indicate that metamorphism is post-Late Triassic in age. The minimum metamorphic age in that area is
uncertain, but | also assume that it postdates the Lower Jurassic part of the McCarthy Formation. A tentative
Middle or Late Jurassic minimum age of metamorphism for at least some areas of this unit is suggested by the
apparent lack of metamorphism in the Upper Jurassic and Lower Cretaceous Nutzotin Mountains sequence
in the Nabesna quadrangle (Richter, 1976) and in the Jurassic and Cretaceous sedimentary rocks that overlie
the McCarthy Formation in the Valdez and McCarthy quadrangles (Winkler and others, 1981; MacKevett,
1978).

Hornblende and biotite from the diorite complex in the northeastern part of unit 65 yield Early Jurassic K-
Ar ages (Richter and others, 1975), but it is uncertain whether these ages (1) date the predominant period of
metamorphism in that area, (2) provide a minimum age for a late Paleozoic or early Mesozoic episode, or (3)
represent a partial resetting of the Pennsylvanian protolith age by a possible Cretaceous metamomphic
episode, described below.

Metamorphism in some areas along the southern margin of unit 65 may have been associated with the
intrusion of the Jurassic plutons that | propose occurred during the greenschist- to amphibolite-facies
metamorphism of the Strelna Metamorphics (unit 59) to the south. Although the two units that may grade into
each other are separated by a thrust fault of Cretaceous age (Chitina fault: Gardner and others, 1986), an
overall proximity of the units during the Late Jurassic intrusive and metamorphic episode is suggested by the
facts that (1) a Late Jurassic pluton also intrudes unit 65 in one area in the westem McCarthy quadrangle, (2)
higher grade unit 59 includes a minor component of Upper Triassic rocks that are correlated with those of unit
65, and (3) metamorphic temperatures, as determined from Late Triassic conodonts, are comparable across
the Chitina fault (that is, about 350 to 450 °C to the north and about 350 °C to the south: M.W. Mullen, written
commun., 1989).

Some data suggest an altemative or, perhaps, additional, mid-Cretaceous metamorphic age for at least
the northern part of unit 65. Field and petrographic observations in the Talkeetna Mountains and the eastern
Alaska Range suggest that Jurassic and Cretaceous rocks that overlie the Triassic Nikolai Greenstone also
have undergone low-grade metamomphism (Béla Csejtey, Jr., written commun., 1984; Nokleberg and others,
1985). Three K-Ar whole-rock ages from samples of the Nikolai Greenstone from the southern part of this
unit in the central McCarthy quadrangle fall on a 112+11-Ma isochron (Silberman and others, 1981).

Silberman and his coworkers (1981) propose that the late Early Cretaceous K-Ar ages from the McCarthy
quadrangle date an episode of low-grade metamorphism that was caused by frictional heating that
accompanied the accretion of the Wrangellia terrane to the North American margin. Arguing against this
hypothesis for at least the McCarthy quadrangle, however, is the fact that the Upper Triassic rocks show no
sign of being deformed (although they have been heated to about 350 to 450 °C since the Late Triassic).
Assuming that the late Early Cretaceous K-Ar ages do in fact date the timing of low-grade metamorphism in
the central McCarthy quadrangle, an altemative interpretation is that metamorphism may have been coeval
with the northeast-directed, Early Cretaceous movement along the nearby Chitina fault (Gardner and others,
1986) that placed the medium-grade metamorphic rocks (unit 53) and synkinematic Jurassic plutonic rocks of
the Wrangellia terrane on top of the low-grade rocks of unit 65.

The localized development of a penetrative fabric and higher T ac-bearing mineral assemblages in the
central Alaska Range and the Talkeetna Mountains suggests that metamorphism, at least in these areas,
occurred during late Mesozoic accretion. Both areas were near the leading edge along which this terrane is
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thought to have been accreted in mid-Cretaceous time (Csejtey and others, 1982; Nokleberg and others,
1985).

Similar low-grade oceanic rocks crop out in southeastern Alaska where they are shown as units 91 and
99. Unit 91 is included in the northern part of the Taku terrane by Monger and Berg (1987), but
subsequently has been reinterpreted as part of the Wrangellia terrane by Plafker and others (1989a); unit 99
is included in the Wrangellia terrane by Monger and Berg (1987). The age and tectonic origin of their
metamorphism are also uncertain.

Mid-Crel to early Tei I hi

Low-grade metamorphism within a compressed flysch basin

Very weakly metamorphosed and highly deformed flyschoid rocks, primarily metagraywacke, semischist,
and argillite, and rocks from several tectonically interleaved fragments within the flysch, crop out as a
northeastward-tapering wedge (shown as unit 67) in the central Alaska Range between the low-grade rocks
of the Wrangellia terrane to the southeast, and the unmetamorphosed to moderately metamorphosed rocks
of the continental margin to the northwest. Flyschoid rocks are Late Jurassic to mid-Cretaceous
(Cenomanian) in protolith age (Csejtey and others, 1986). Tectonic fragments include protoliths that range in
age from Late Devonian to Late Jurassic age and include a variety of sedimentary, volcanic, and ophiolitic
rocks (Jones and others, 1980). The tectonic juxtaposition of the disparate fragments (terranes) included
within this unit is considered to have taken place during mid-Cretaceous time (Csejtey and others, 1978,
1982; Jones and others, 1980). According to Csejtey and others (1982}, the flyschoid rocks were deposited
in a basin between the North American craton and the approaching Talkeetna superterrane (equivalent to the
composite Peninsular-Wrangellia terrane) to the south, and the small terranes within the flysch were
transported in front of the superterrane by northward plate movement. Because the Wrangellia and
Alexander terranes are stitched together by a Pennsylvanian pluton, as mentioned in a previous section, the
superterrane also must have included the Alexander terrane as its southeasternmost component.

The dominant structural style of this metamorphic unit is compression and attendant thrust faulting that
has juxtaposed fragments of what were parts of extensive coherent terranes (Csejtey and others, 1978;
Jones and others, 1980). Deformation and recrystallization within the flysch terrane is most intense along
zones of concentrated shear; rocks in these zones are commonly phyllitic, semischistose, or protomylonitic.
The degree of metamorphism may vary within unit 67, but this aspect of the terranes has not been studied in
detail. Metamorphic minerals developed in flyschoid rocks indicate metamorphic conditions characteristic of
the prehnite-pumpellyite facies (Dusel-Bacon, Csejtey, and others, in press).

Metamorphism is bracketed between the mid-Cretaceous age of the youngest metamorphosed rocks
and the latest Paleocene and Eocene age of the overlying unmetamorphosed sedimentary and volcanic
rocks, and the early Tertiary age of postmetamorphic granitoids that intrude the flyschoid rocks (Csejtey and
others, 1982, 1986). The apparent increase in metamorphic grade toward zones of shearing, together with
age brackets for accretion that are approximately the same as those for low-grade metamorphism, suggest
that much of the metamorphism probably accompanied northward migration and accretion. Low-grade
metamorphism of some of the elements of the tectonic fragments may have occurred even earlier.

Intermediate-P metamorphism of the Maclaren metamorphic belt

The Maclaren metamorphic belt consists of a largely fault-bounded, 140-km-long, roughly symmetrical,
intermediate-P (Barrovian) sequence of: (1) prehnite-pumpellyite-facies metasedimentary rocks and
metagabbro (unit 68); (2) greenschist-facies phyllite, metagraywacke, marble, quartzite, metapelite, and
greenstone (unit 69); and (3) amphibolite-facies schist, gneiss, and amphibolite (unit 70) intruded by foliated,
synkinematic plutons of intermediate composition, shown as unit TKg with a cross pattern (Smith, 1981;
Csejtey and others 1982, 1986; Nokleberg and others, 1985). Protoliths are Triassic to Cretaceous in age.

Intermediate-P conditions for the sequence are indicated by the presence of ky (+sil+gt+st) in pelitic
schist and gneiss of unit 70 (Smith, 1981), and sil pseudomorphs after ky (L.S. Hollister, written commun.,
1985). Kyanite is also reported to occur in amphibolite (Smith, 1981)--further evidence of intermediate-, or
even, high-P conditions. Andalusite has been reported from two localities, one near the western and one
near the eastern boundary of unit 70 (Dusel-Bacon, Csejtey, and others, in press). These reported
occurrences of anda warrant further investigation, but they may simply indicate that higher structural levels are
exposed on the ends of the metamorphic belt, relative to deeper level exposure in the central part of it.

Where not affected by tectonic shortening, metamorphic grade increases gradually from the flanks of
the sequence toward its core. Along the southern limb of the belt, lower grade rocks dip northward under

higher grade rocks to form an inverted metamorphic sequence (Smith, 1981). East of longitude 147°, there
is an abrupt, rather than gradational, contact between greenschist- and amphibolite-facies rocks due to
tectonic shortening along steep north-dipping faults (Nokleberg and others, 1985). A similarly sharp change
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in metamorphic grade occurs on either side of a north-dipping thrust (overturned to the south along its
eastem end) that forms the southern margin of the foliated plutonic body, referred to as the East Susitna
batholith (Nokleberg and others, 1985; Smith, 1981). Deeper level rocks are exposed north of the thrust, as
indicated by the first appearance of sil and, with one exception, ky in upper plate rocks adjacent to the thrust
(Smith, 1981).

Metamorphic recrystallization occurred during and after two dynamic phases of a prolonged
metamorphic episode (Smith, 1981). The concordancy between intrusive contacts and metamorphic
foliations in the granitoids and in the metamorphosed wall rocks, together with an increase in metamorphic
grade toward the East Susitna batholith, indicates that the foliated granitoids intruded during the early part of
the metamorphic episode (Smith, 1981; Nokleberg and others, 1985). This may have been toward the end
of an early shearing phase or interkinematically before a final phase of shearing (Smith, 1981). U-Pb data on
zircon from schistose quartz diorite indicate a 70+7-Ma intrusive age of the East Susitna batholith (Aleinikoff
and others, 1982). U-Pb data on sphene and K-Ar data on biotite from the same rock indicate a 56-Ma
metamorphic age (Aleinikoff and others, 1982), which apparently marks the end of the prolonged Late
Cretaceous to early Tertiary metamorphic episode. Biotite from pelitic schist gives a similar K-Ar age of 57 Ma
(Smith and Lanphere, 1971). Rapid uplift and cooling during metamorphism is indicated by the fact that
approximately the same age is given by sphene, whose closure temperature is greater than 600 °C
(Mattinson, 1978), and biotite, whose closure temperature is about 280 °C (Harrison and others, 1985).

Metamorphism and tectonic shortening of the Maclaren metamorphic belt apparently resulted from the
accretion of the previously amalgamated Peninsular and Wrangellia terranes to the Yukon-Tanana and Nixon
Fork terranes of the ancient North American continent (Csejtey and others, 1982) and the synorogenic
intrusion of the East Susitna batholith (Nokleberg and others, 1985). The flyschoid protoliths of the Maclaren
metamorphic belt, as well as those of unit 67, were deposited mostly in the narrowing and subsequently
collapsed ocean basin between the converging terranes (Csejtey and others, 1982; Nokleberg and others,
1985).

The location in which the convergence, deformation, plutonism, and metamorphism took place is
disputed, however. Muttiple lines of field and isotopic evidence suggest that the Maclaren metamorphic belt
and East Susitna batholith are the offset equivalents of the Kluane Schist and Ruby Range batholith in Yukon
Territory, displaced 400 km by right-lateral Cenozoic movement along the Denali and McKinley faults
(summary of evidence given in Nokleberg and others, 1985; see also Aleinikoff and others, 1987).
Nokleberg and his coworkers (1985) postulate that intense deformation and prograde metamorphism of the
belt began during mid- to Late Cretaceous time as a result of the accretion of the Wrangellia terrane onto the
North American margin further to the south and continued during early Tertiary time as a resutt of the
northward migration of the flyschoid (Maclaren) terrane and the Wrangellia terrane along the North American
margin. Csejtey and others (1982) dispute the correlation between the two metamorphic-plutonic complexes
and propose instead that regional metamorphism of the Maclaren metamorphic belt occurred in place,
extends across the McKinley fault, and is only slightly offset by it. Although there is an apparent similarity in
metamorphic grade and a similar eastward increase in metamorphic grade on either side of the McKinley fault
in the east-central part of the Healy quadrangle, metamorphic data are insufficient to document continuity of
metamorphic history across the fault. Arguing against continuity of metamorphic history on either side of the
McKinley fault is the occurrence of a fault-bounded block of unit 54 (Windy terrane) between the areas of
amphibolite-facies rocks that Csejtey would correlate across the fault (units 52 and 70).

AREA OF SOUTHERN AND SOUTHEASTERN ALASKA THAT LIES SOUTH OF THE BORDER RANGES
FAULT SYSTEM

. : i

A belt of transitional, and tectonically intermixed high-P blueschist-facies to intermediate-P greenschist-
facies metabasalt, metachert, mica schist, marble, and fine-grained clastic rocks, derived from oceanic
protoliths, crops out immediately south of the Border Ranges fault system, at the northern margin of the
Chugach terrane. The belt, shown as unit 71, extends discontinuously for about 750 km from Kodiak Island
on the west to the Copper River on the east. This unit consists of fault-bounded, commonly internally
imbricated blocks, and includes, from southwest to northeast, the Raspberry Schist of Roeske (1986) on
Kodiak and Afognak Islands, the informally designated schist of Seldovia on the Kenai Peninsula (Forbes and
Lanphere, 1973; Carden and others, 1977), the informally designated schist of Iceberg Lake near Tazlina
Glacier (Winkler and others, 1981; Sisson and Onstott, 1986), and the informally designated schist of Liberty
Creek just west of the Copper River (Metz, 1976; Winkler and others, 1981; Plafker and others, 1989b).
Protolith ages are unknown.
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In most areas, greenschists that contain ch+ac commonly are finely intercalated with biue-amph-bearing
schists that contain cr+ep (Forbes and Lanphere, 1973; Carden and others, 1977; Carden, 1978; Winkler
and others, 1981). Glaucophane (+ep) has been identified only in the Raspberry Schist on Afognak Island,
and the assemblage gt+cr+ep is present in the schist of Iceberg Lake near Tazlina Glacier (Winkler and
others, 1981). Lawsonite coexists with blue amph at scattered localities along the belt (sheet 1).

The coexistence of blue amphibole with ep, and in one area with gt, is indicative of the high-T
subdivision of the blueschist facies (Taylor and Coleman, 1968; Evans and Brown, 1987). However, the
sporatic occurrence of w, which is diagnostic of the low-T subdivision of the blueschist-facies, indicates that
temperatures during metamorphism were probably near the boundary between the two subdivisions. Phase
equilibria that involve the breakdown of pu to form ep (Nitsch, 1971), and the breakdown of iw to form zo
(Franz and Althaus, 1977), suggest temperatures between about 350 and 400 °C. Phase equilibria and cr
composition indicate crystallization at about 6+2 kb for the schists of Iceberg Lake and Liberty Creek (Sisson
and Onstott, 1986). This P-T range is consistent with the hypothesis of Carden and others (1977) that the
finely developed intercalation of ac-ch-bearing layers and cr-bearing layers in the Raspberry Schist
(equivalent to the Kodiak schist unit of Carden and others, 1977) and the schist of Seldovia are probably due
to minor variations in original chemistry of layers that were metamorphosed under conditions close to the
boundary between the greenschist and blueschist facies (Turner, 1981).

Detailed mapping in the area of Kodiak Island indicates that post-metamorphic faults separate blocks
ranging from meters to hundreds of meters wide, and that overall the metamorphic grade of the blocks
increases from southeast to northwest (Roeske, 1986). To the north, the schist of Seldovia also occurs as
fault-bounded blocks of varying metamorphic grade (S.M. Roeske, oral commun., 1984).

The schist of Iceberg Lake makes up an elongate, 40- by 4-km, fault-bounded belt enclosed by the low-
grade McHugh Complex (unit 72) near the Tazlina Glacier. Several small elongate blocks of this unit (too small
to show on sheet 1) also occur in mélange along the Border Ranges fault system to the north (Winkler and
others, 1981). Similar metamorphic mineral assemblages (primarily those of the greenschist-facies) are
developed in the schist of Liberty Creek and the schist of Iceberg Lake, but rocks are noticeably finer grained
(generally less than 3 mm) in the former than in the latter (Plafker and others, 1989b). Crossite-bearing rocks
in the schist of lceberg L.ake locally contain gt and those in the schist of Liberty Creek, hematite.

Data for several isotopic systems suggest a Jurassic (primarily Early to early Middle Jurassic) age for the
intermediate- to high-P greenschist-facies episode. K-Ar ages on wm and cr (as well as on ac from the schist
of Seldovia) from unsheared rocks in all units except the schist of Liberty Creek range from Early to Late
Jurassic, from 190 to about 152 Ma (Forbes and Lanphere, 1973; Carden and others, 1977; Winkler and
others, 1981). Crossite-bearing rocks from the Raspberry Schist give an Early Jurassic age of 196 Ma for a
Rb-Sr whole rock-ph isochron and a 204+8 Ma for a U-Pb isochron of sph, wm, ab, and amph (Roeske and
Mattinson, 1986). Near the eastern end of the belt, cr and ph from unsheared rocks of the schist of Iceberg
Lake yield 40Ar/39Ar plateau ages of about 185 Ma (Sisson and Onstott, 1986).

Strongly sheared rocks from the schist of Iceberg Lake yield Early Cretaceous (138 to 113 Ma) K-Ar
mineral ages (Winkler and others, 1981), indicating partial resetting subsequent to the well-dated Jurassic
metamorphic episode. Resetting of the isotopic ages may have taken place during the emplacement of the
schistose rocks of the McHugh Complex, the adjacent seaward subduction complex (unit 72) that was
primarily accreted between Early Cretaceous and early Tertiary time (Winkler and others, 1981).

Early Cretaceous (123-107 Ma) K-Ar whole-rock ages have been determined for three samples of
sheared rock from the schist of Liberty Creek (Plafker and others, 1989b), but interpretation of these ages is
uncertain. Because of the very fine grain size of the unit, no minerals suitable for isotopic dating have been
successfully separated. If the schist of Liberty Creek, like the rest of the belt, was originally metamorphosed
during a Jurassic subduction-related transitional greenschist- to blueschist-facies episode, then its Early
Cretaceous ages probably represent the same resetting event, attributed to emplacement of the McHugh
Complex, that was proposed for the nearby schist of Iceberg Lake. Alternatively, the Early Cretaceous whole-
rock ages may in fact date the timing of subduction-related metamorphism of the schist of Liberty Creek. In
this case, a better analog for its metamorphic history would be that of the sparse blue-amph-bearing schist
within the prehnite-pumpellyite- to greenschist-facies mélange of unit 73 (Kelp Bay Group) of the Chugach
terrane on Chichagof Island , over 600 km to the southeast (discussed below). Arguing against the analogy
with the rocks on Chichagof Island is the fact that blue amphibole has only been found at one locality on
Chichagof Island, whereas it occurs across a much larger area and in more abundance in the schist of Liberty
Creek.

Similarities in lithology, mineralogy, and isotopic ages suggest that all parts of this unit, with the possible
exception of the schist of Liberty Creek, are segments of a formerly continuous belt of accreted, subduction-
related rocks. Metamorphism of the Raspberry Schist and schist of Seldovia is thought to have occurred as a
result of northwest-directed subduction which was coeval with magmatism in the nearby Alaska-Aleutian
Range during Early Jurassic time (Carden and others, 1977; Connelly, 1978). Plafker and others (1989b)
concur with this general hypothesis and propose that northward to eastward subduction beneath the
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(composite) Peninsular-Wrangellia terrane began in Late Triassic time and continued to Middle(?) Jurassic
time as a result of left-oblique subduction of the Farallon plate. As pointed out by Plafker and his coworkers,
the juxtaposition across the Border Ranges fault system of the low-T, high-P rocks of unit 71 with the
approximately coeval high-T plutonic and volcanic rocks of the Triassic to Jurassic arc (including unit Jmu and
the Talkeetna Formation that forms part of unit N) implies structural disruption of the seaward margin of the
arc. On the basis of the separation between the inner margins of accretionary prisms and magmatic belts in
modern arcs, Plafker and others (1989b) proposed that the observed juxtaposition indicates relative
underthrusting, on the order of 50 km, of the high- to intermediate-P rocks beneath the plutonic rocks.

Tectomc mélange mcluded in lhe mélange facies of the Chugach terrane (Plafker and others, 1977),
occurs immediately outboard of the Border Ranges fault or, in a few areas in southern Alaska, separated from
it by the high- to intermediate-P subduction complex discussed above. The mélange makes up all of unit 72
and the inboard parts of units 73 to 75. It consists of disrupted, deformed, and weakly metamorphosed
blocks, ranging from tens of meters to several kilometers in longest dimension, of greenstone, mafic schist,
metatuff, metagraywacke, metaargillite, metachert, metalimestone, phyllite, quartzite, serpentinite, and mafic
plutonic rocks. Blocks are aligned in a sheared matrix of argillite, metatuff, and metachert.

Unit 72 crops out around the Guif of Alaska and records primarily prehnite-pumpellyite-facies conditions;
exotic metamorphic blocks in the mélange locally record blueschist-facies conditions. This unit makes up the
McHugh Complex in the Chugach Mountains (Clark, 1973; Tysdal and Case, 1979; Winkler and others,
1981), the Seldovia Bay complex in the Kenai Mountains (Cowan and Boss, 1978), and the Uyak Complex in
the Kodiak Island area (Connelly, 1978). Near Seldovia, a small area of this unit is included in the Kachemak
terrane by Jones and others (1987). Paleontologic ages of radiolarians from the mélange matrix of this unit
range from Late Triassic to mid-Cretaceous (Albian to Cenomanian), the bulk of the fossil ages being Late
Jurassic to Early Cretaceous (Plafker and others, 1977; Connelly, 1978; Nelson and others, 1987). Fossils
from blocks within the mélange are as old as late Paleozoic.

Unit 73 crops out in southeastem Alaska and is made up primarily of mélange (revised Kelp Bay Group of
Johnson and Karl (1985)) that records prehnite-pumpellyite-facies, lower greenschist-facies, and rare
blueschist-facies conditions (Decker, 1980). Along its western margin, unit 73 also includes a less extensive
sequence of moderately deformed and disrupted bedded turbiditic metasedimentary and metavolcanic rocks
(Sitka Graywacke) metamorphosed under prehnite-pumpellyite- and greenschist-facies conditions; these
rocks are included in the flysch facies of the Chugach terrane (Plafker and others, 1977). Blocks within the
mélange are Triassic or Jurassic, Late Jurassic (Tithonian), and Early Cretaceous (Valanginian) in age (Loney
and others, 1975; Decker and others, 1980; Johnson and Karl, 1985; Brew and others, 1988). Deposition of
the mélange matrix took place, in part, during the Late Jurassic (Tithonian; Brew and others, 1988) and
presumably continued during at least the Early Cretaceous (age of the youngest blocks; Decker, 1980,
Johnson and Karl, 1985; Brew and others, 1988). The depositional age of the bedded rocks is unknown but
is considered to be Cretaceous on the basis of correlation with lithologically similar rocks in the Valdez Group
and Yakutat Group to the northwest (Plafker and others, 1977; Brew and Morrell, 1979).

Around the Gulf of Alaska, rocks of the flysch facies of the Chugach terrane (units 77 and 78, discussed
below) have been shown to have a younger depositional, and, presumably, metamorphic age than that of the
inboard mélange facies of the Chugach terrane (unit 72). In southeastern Alaska, however, the depositional
age of the flysch facies is unknown and separate metamorphic histories have not, as yet, been demonstrated
for the two tectonic facies. For this reason, both of these tectonic facies are included in unit 73 and in two
related polymetamorphic units (units 74 and 75) in which the early low-grade metamorphic episode was
overprinted by regionally extensive, low-P, thermal metamorphism associated with Eocene plutonism (Loney
and others, 1975; Loney and Brew, 1987).

The mélange of both areas is considered to be a subduction complex consisting of oceanic sedimentary
and igneous rocks, offscraped fragments of continental margin, or older subduction assemblages (Clark,
1973; Moore and Connelly, 1979; Plafker and others, 1977; Cowan and Boss, 1978; Decker, 1980; Winkler
and others, 1981). The relationship of crystallization to deformation observed on Kodiak and Afognak Islands
suggests that metamorphism occurred during active underthrusting, continued after accretion of the
subduction complex onto the overthrust plate, and was followed by late fracturing and cataclasis during uplift
of the complex (Connelly, 1978). This evolution is a reasonable hypothesis for the other areas of mélange as
well. As pointed out by Connelly (1978), a similar progression of deformation has been proposed for the
Franciscan Complex (subduction complex; Glassley and Cowan, 1975).

Accretion of the mélange facies may have taken place over a long time span that extended throughout
the Jurassic and Cretaceous. This prolonged period of accretion is suggested by Plafker and others (1989b)
because of an apparent southward decrease in age from Late Triassic to mid-Cretaceous noted in the
westem Valdez quadrangle (Winkler and others, 1981), and the probable convergent plate motion that is
indicated along the southern margin of the (composite) Peninsula-Wrangellia-Alexander terrane during much
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or all of Jurassic and Cretaceous time (Engebretsen and others, 1985). As suggested by Plafker and others
(1989b), the earliest accretion of Chugach terrane rocks is probably represented by the Jurassic
intermediate- to high-P greenschist-facies metamorphism of unit 71.

Although the innermost parts of the mélange complex of the Chugach terrane may have been accreted
as early as Jurassic time, accretion and metamorphism of much of units 72 to 75 probably occurred in Early to
mid-Cretaceous time, following accumulation of the youngest matrix material. Low-grade metamorphic
minerals that were interpreted by Decker and his coworkers (1980) to have formed during subduction and
accretion of unit 73 on Chichagof Island give Cretaceous K-Ar ages (106-91 Ma; Decker and others, 1980).
Early Cretaceous (135 to 110 Ma) plutons that intrude unit 72 northeast of Anchorage are interpreted to be
the result of near-trench plutonism that occurred during underthrusting of the mélange complex (Pavlis,
1982; Pavlis and others, 1988a). An early Tertiary minimum metamorphic age is indicated by the facts that:
(1) emplacement and metamorphism of the mélange complex preceded the probable latest Cretaceous or
early Tertiary emplacement and metamorphism of the tectonically underthrust flysch facies of the Chugach
terrane that occurs outboard of unit 72; and (2) metamorphic assemblages within flysch and mélange on
Baranof Island in southeastern Alaska (units 74 and 75) are overprinted by thermal metamorphism associated
with Eocene plutons (Loney and others, 1975).

Lithologically similar mélange composed of structurally disrupted lenses of Upper Jurassic to Lower
Cretaceous chert, argillite, conglomerate, mafic volcanic rocks, and rare blocks of exotic lithologies (Hudson
and others, 1977b) also occurs within units 79 to 81 of the Yakutat terrane. The Yakutat terrane lies outboard
of the Chugach terrane and has been correlated with it by Plafker and others (1977, 1983b). Mélange of the
Yakutat terrane occurs tectonically interieaved with flysch that comprises the dominant part of units 79 to 81
(discussed below); tectonic mixing is on a scale too small to aliow delineation of the mélange. As with the
Chugach terrane mélange, metamorphism of parts of the Yakutat terrane mélange may have occurred in the
Jurassic or Early Cretaceous. At one locality within unit 79, deformed mélange is crosscut by a tonalite pluton
(unit Kg) that gives discordant K-Ar ages of 96 Ma on hb and 84 Ma on bt (George Plafker, unpub. data,
1978). lt is also likely that, as is the case with the Chugach terrane mélange, blueschist-facies metamorphism
affected some of these rocks because glacial erratics of crossite-bearing metabasalt occur locally along
Russell Fiord and Yakutat Bay (George Plafker, unpub. data, 1987). The lithology and occurrence of these
erratics are most compatible with a source in the ice-covered parts of the Yakutat terrane.

A Iow-P facies series of Iow- to medlum- (and locally high-) T metamorphosed ﬂysch of the Chugach
terrane (units 76 to 78) and Yakutat terrane (units 79 to 81) forms an arcuate belt of rocks that extends from
the Sanak and Shumagin Islands off the southeast coast of the Alaska Peninsula in the west to the Saint Elias
Mountains area south of Yakutat Bay in the east. Protoliths of the Chugach terrane (western and central parts
of the belt) consist of a steeply dipping Upper Cretaceous (Maastrichtian) turbidite sequence of graywacke,
slate, and locally intercalated conglomerate and volcanic rocks (Moore, 1973; Jones and Clark, 1973; Nilsen
and Moore, 1979). Protoliths of the Yakutat terrane (eastern part of the belt) include these rock types, in
addition to small amounts of the structurally interleaved mélange (undifferentiated on sheet 1) discussed
above.

The flysch of the Chugach terrane forms a north-dipping accretionary prism that was underthrust
beneath either the mélange facies of that terrane or beneath the combined Peninsular and Wrangellia
terranes to the north. Metamorphic grade within the accretionary prism increases progressively to the east
around the Gulf of Alaska where it cuiminates in the polymetamorphic rocks of the (informal) Chugach
metamorphic complex (unit 78) of Hudson and Plafker (1982) that crops out in the eastern Chugach
Mountains and the Saint Elias Mountains. Flysch on Sanak and Shumagin Islands underwent laumontite-
facies metamorphism that was ascribed by Moore (1973) to burial. Within the rest of the prism, flysch and
related rocks underwent prehnite-pumpellyite-facies (unit 76) to lower greenschist-facies (unit 77 and M, of
unit 78) low-P metamorphism that probably accompanied north-directed underthrusting of the Chugach
terrane beneath the (composite) Peninsular-Wrangeliia terrane, and the development of south-vergent folds,
during latest Cretaceous to early Tertiary time (Moore and others, 1983; Sample and Moore, 1987; Nokleberg
and others, 1989). Metamorphism during this low-grade episode postdates the Maastrichtian age of the
protoliths and predates the intrusion of crosscutting tonalitic plutons that give K-Ar ages of 63 Ma on Kodiak
Island (Byme, 1982) and approximately 60-50 Ma (data summarized by Plafker and others, 19839b, and
Sisson and others, 1989) in the Chugach Mountains.

The Chugach metamorphic complex (unit 78), forms an elongate 200-km-long, and less than 50-km-
wide, east-west-trending belt made up of anda- and co-bearing schist and gneiss, and a core zone of sil-
bearing migmatite. These rocks represent the deepest parts of the accretionary prism that makes up the
Chugach terrane. They were initially metamorphosed during the greenschist-facies episode that affected the
adjacent rocks of unit 77 and further heated under low-pressure amphibolite-facies conditions that
developed during the widespread Eocene intrusion of tonalitic plutons. Metamorphic grade generally
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increases from the edges toward the elongate core of the metamorphic complex. This overall increase is
independent of the exposed distribution of major plutons, and, as Sisson and others (1989) point out, this
progression is not solely a product ot contact-metamorphic effects. In addition to the overall distribution of
metamorphic grades, local contact metamorphism has produced high-grade rocks near the contacts of large
telsic intrusions (Sisson and Hollister, 1988). Amphibolite-facies metamorphism and partial melting in the
core of the metamorphic complex overlapped in time with the development of second-generation north-
vergent folds, steeply dipping cleavage and schistosity, and near horizontal east-west-trending fold axes and
lineations (Sisson and Hollister, 1988).

Intrusion and M, metamorphism of unit 78 postdated the accretion of the upper Paleocene to middile
Eocene Orca Group of the Prince William terrane against the southern margin of the Chugach terrane (south
of the Contact fault). This relation is indicated by the fact that an elongate 51-Ma tonalite pluton (Winkler and
Plafker, 1981) and the metamorphic effects associated with it (M, of unit 85; Miller and others, 1984; Sisson
and others, 1989) crosscut the Chugach/Prince William terrane boundary near Miles Glacier.

Metamorphic P throughout the metamorphic complex (unit 78) was between 2 and 3 kb (about 10 km)
and T between 500 °C near the edge of the complex to about 650 °C in its migmatitic core (Sisson and others,
1989). These P-T estimates, together with those from the adjacent greenschist-facies unit 77, suggest a
nearly isobaric P-T-time path in which the rocks of unit 78, already heated to greenschist-facies conditions at a
depth of about 10 km during M,, were further heated to amphibolite-facies conditions during M.

The tectonic origin of the heat that produced both the amphibolite-facies Chugach metamorphic
complex and the widespread belt of early Tertiary plutons that crops out within the Chugach terrane and the
outboard Prince William terrane is problematic. Marshak and Karig (1977) pointed out that in a normal
subduction setting, the temperatures within an accretionary prism, such as the Chugach and Prince William
terranes, are much too low to cause partial melting. They proposed that the anomalous near-trench
plutonism was the result of eastward migration of a ridge-trench-trench triple junction along the continental
margin, and subduction of the Kula-Farallon spreading ridge. An second but related hypothesis proposed by
Plafker and others (1989b) suggests that the anomalous heating during the early Tertiary metamorphic and
plutonic episode resulted from the opening of a high-T oceanic-slab-free mantle window beneath the
continental margin, as the subducting Kula plate pulled away from the Farallon-Pacific plate, in a manner
analogous to one described along the San Andreas transform fault system by Dickinson and Snyder (1979).
According to a third hypothesis, the high temperatures that produced the Chugach metamorphic complex
resulted from a combination of heat introduced by extensive horizotal, as well as vertical, transport of fluids
(beginning during initial greenschist-facies metamorphism) followed by telsic melts, both of which were
generated from downdip in the subduction zone and involved either subduction of young hot oceanic crust
at a high rate and a low angle, or subduction of a spreading ridge (Sisson and Hollister, 1988; Sisson and
others, 1989).

A low-P facies series, similar to and probably correlative with that which developed within the Chugach
terrane flysch also was formed within Late Cretaceous flysch and the structurally interleaved mélange of the
Yakutat terrane (Hudson and others, 1977b). The flysch and mélange of the Yakutat Group are correlative
with the flysch and mélange of the Chugach terrane (Plafker and others, 1989b). The Yakutat Group, like the
Chugach terrane in south-central and southeastern Alaska, is extensively intruded by Eocene granitoid
plutons. Yakutat terrane rocks affected by the low-P metamorphic episode include: (1) laumontite- and
prehnite-pumpellyite-facies rocks of unit 79; (2) a narrow fault-bounded sliver of greenschist-facies rocks of
unit 80; and (3) epidote-amphibolite- and amphibolite-facies rocks of unit 81 (Hudson and others, 1977b). A
steep thermal gradient is indicated by a rapid progressive increase in metamorphic grade from prehnite-
pumpellyite-facies rocks to an area (oval in plan view) of amphibolite-facies rocks, with only a narrow interval of
intervening greenschist-facies rocks (not shown on sheet 1). Within the oval outcrop area of amphibolite-
tacies rocks, anda porphyroblasts are developed locally, and rocks are characterized by semigranoblastic
textures, providing evidence that metamorphism of these rocks was dominantly thermal in nature. The oval
outline suggests a buried pluton.

The rest of epidote-amphibolite- and amphibolite-facies unit 81 occurs as an elongate fault-bounded
sliver that is separated from the amphibolite-facies rocks of the Chugach terrane (unit 83, described below) by
the Fairweather fault to the northeast, and from the prehnite-pumpellyite-facies rocks of the Yakutat terrane
by another major fault to the southwest. Tectonic shortening, by thrust faulting or strike-slip faulting with a
significant dip-slip component, is suggested by the juxtaposition of high- and low-grade rocks along the
southwestern fault contact, and by the absence of intervening greenschist-facies rocks.

Major metamorphism is considered to be latest Cretaceous to early Tertiary in age, based on: (1) the
latest Cretaceous protolith age of the youngest rocks; (2) K-Ar ages on hb of about 65 Ma, determined for
amphibolites (Hudson and others, 1977b), and (3) the interpretation that this unit shared a common
metamorphic history with that of the adjacent Chugach terrane discussed above.
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A sequence of transmonal greenschust- to amphnbollte -facies rocks (umt 82) and amphnbohte-facnes
rocks (unit 83) crops out along the eastern margin of the Gulf of Alaska in the Saint Elias Mountains and
Fairweather Range (Brew, 1978; Hudson and others, 1977b; Hudson and Plafker, 1982). Protoliths are
interpreted as being turbidites and tholeiite of Late Cretaceous age because of lithologic similarity with the
flysch facies of the Chugach terrane (Platker and others, 1977; Barker and others, 1985). Most boundaries
of the sequence are faults. The two fault blocks that make up the higher grade part of the sequence are
presumed to have shared the same metamorphic history and to have subsequently been separated by right-
lateral displacement along the Fairweather fault (Dusel-Bacon, Csejtey, and others, in press).

The timing and number of metamorphic episodes that affected units 82 and 83 are unknown. A
Cretaceous maximum age of metamorphism is proposed on the basis of the probable age of the protoliths.
At least some of the metamorphism is known to have occurred prior to the intrusion of crosscutting plutons of
intermediate composition that have K-Ar ages on hb of 61+2 Ma in the southeastermn Yakutat quadrangle
(Hudson and others, 1977a) and K-Ar ages of about 52 Ma in the southwestern Skagway quadrangle
(George Plafker, unpub. data, 1978). A K-Ar age on hb of 67 Ma from amphibolite in the Nunatak Fiord area,
55 km northeast of Yakutat, suggests a latest Cretaceous metamorphic age (Barker and others, 1985). In the
same area, however, K-Ar ages on hb and bt from metamorphic rocks between Nunatak Fiord and the
southwestern Skagway quadrangle range from about 23 to 19 Ma, which suggests an additional, or
alternative, Miocene metamorphic age; these K-Ar ages fall close to or within the 37- to 21-Ma range of K-Ar
ages from mdespread felsic intrusive rocks (Hudson and others, 1977b; George Plafker, unpub. data, 1978).
Farther to the south, in the area northwest of Cross Sound, metamorphism appears to predate and to be
unrelated to the intrusion of Oligocene (28+8-Ma 40Ar/3 9Ar age on hb; Loney and Himmelberg, 1983)
gabbroic plutons (Dusel-Bacon and others, 1991; Dusel-Bacon, Brew, and Douglass, in press).

The origin of the metamorphic episode(s) that affected units 82 and 83 is unknown. In the northern and
central part of the area made up of these units, the spatial relation of the higher grade metamorphic rocks and
Tertiary plutons suggests a genetic link. Unlike the Chugach metamorphic complex (unit 78, and adjacent
parts of unit 77), described above, the thermal history of at least some parts of units 82 and 83 appears to be
complicated by the occurrence of multiple periods of plutonism (and perhaps metamorphism) in the Tertiary
and also probably by a much younger uplift history, as indicated by the exposure of the Miocene plutonic
rocks and discordant biotite-hornblende pairs. Another difference between these two metamorphic
sequences is the fact that ky, indicative of intermediate-P conditions, occurs at one locality in unit 83,
whereas anda, indicative of low-pressure conditions, is present in unit 78.

North-directed underthrusting of Chugach terrane flysch beneath the southern margin of the
(composite) Peninsular-Wrangellia-Alexander terrane, which is thought to have occurred during latest
Cretaceous to early Tertiary time, may be responsible for (1) greenschist-facies retrograde metamorphism
(M,) of overlying unit 58 (Haley Creek metamorphic assemblage) (Wallace, 1981, 1984; Nokleberg and
others, 1989); (2) prehnite-pumpellyite-facies retrograde metamorphism (M,) of overlying unit 59 (part of the
Strelna metamorphics of Plafker and others, 1989D); and (3) a low-grade overprint in the Jurassic plutons that
intrude unit 59 (Dusel-Bacon, Csejtey, and others, in press). Characteristic M, minerals in unit 59 are pr
(which occurs most commonly as lenses that bow apart the cleavage planes of metamorphic and igneous bt,
and less commonly as veins), ep, ch, and rare pu or lau (Dusel-Bacon, Csejtey, and others, in press).
Calcium-rich fluids which formed veins of pr, and probably played a part in crystallization of M, phases, may
have been derived from the underlying graywackes of the Valdez Group (Chugach terrane flysch). Lower
plate rocks belonging to the Valdez Group may underlie unit 59 at a fairly shallow level, as is the case with the
correlative Haley Creek metamorphic assemblage (unit 58), where the Valdez Group occurs at a depth of only
1 km (Page and others, 1986). Fracturing and fluid migration probably occurred during extension of upper
plate rocks belonging to the Strelna metamorphics as they were underthrust by rocks of the Valdez Group. A
possible analog to the proposed formation of pr in this unit is provided by the study of pr in plutonic and
metamorphic rocks of the Salinian block of California. Ross (1976) proposed that hydrous solutions, derived
from a "substratum"” of Franciscan(?) graywackes, migrated through fractured rocks of the tectonically thinned
margin of the Salinian block near the Sur fault zone, causing widespread crystallization of Ca-Al silicates.

A weakly metamorphosed and strongly deformed subduchon complex of flysch and tholeiite, shown as
prehnite-pumpellyite-facies unit 84 and related polymetamorphosed unit 85, crops out seaward of the slightly
older Chugach terrane subduction complex. This complex is separated from the Chugach terrane by the
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landward-dipping Contact fault system. In the northem Gulf of Alaska, units 84 and 85 make up the Orca
Group of the Prince William terrane (Tysdal and Case, 1979; Winkler, 1976; Winkler and Plafker, 1981; Helwig
and Emmet, 1981). On Kodiak Island, unit 84 constitutes the Ghost Rocks Formation of Byrne (1982) of the
Ghost Rocks terrane (Connelly, 1978; Byrne, 1986). The depositional age of the Orca Group is late
Paleocene to middle Eocene (Plafker and others, 1985). Eocene fossils are reported from the Ghost Rocks
Formation (Connelly, 1978), but the bulk of the formation accumulated during earliest Paleocene time with
mélange units including some Late Cretaceous material (Moore and others, 1983). Units 84 and 85 are
generally isoclinally folded and include metagraywacke, argillite, metalimestone, greenstone, and mafic
schist. Intense localized shearing has produced many zones of tectonic mélange on Kodiak Island (Byme,
1984) and in the southwestern part of Prince William Sound. In general, rocks of the Orca Group of unit 84
show a gradual increase in metamorphic grade from south to north (Goldfarb and others, 1986).

Low-grade metamorphism and deformation within both the Ghost Rocks and Prince William terranes
took place during early Tertiary time and predated, perhaps by very little, the intrusion of the early Tertiary
piutons that stitch them to the Chugach terrane. On Kodiak Island, these plutons, dated at 62 Ma, contact
metamomhosed the Upper Cretaceous and Paleocene Ghost Rocks Formation and cut its structural fabric
(Moore and others, 1983). Eocene and younger rocks in the Kodiak Islands are only slightly altered--further
supporting a Paleocene metamorphic age for that area (Moore and others, 1983). Intrusion and
metamorphism of the upper Paleocene to middle Eocene Orca Group occurred slightly later than did
metamorphism of the Ghost Rocks Formation. From Prince William Sound to the east, 53 to 48-Ma plutons
crosscut and contact metamorphosed already deformed and weakly metamorphosed rocks of the Orca Group
(Winkler and Plafker, 1981; Miller and others, 1984). If the timing of metamorphism parallels that of plutonism,
metamorphism began earlier in the west than in the east.

Low-grade metamorphism was probably associated with accretion of the terranes. Asymmetric north-
dipping south-verging folds, which developed within unit 84 and the adjacent greenschist-facies rocks of the
Chugach terrane (unit 77) near the Contact fault zone west of the Copper River, are interpreted as being
synaccretionary structures, developed during oblique thrust convergence (Plafker and others, 1986).
Similarly, Byme (1986) proposed that the development of conjugate folds and spaced cleavage within the
Ghost Rocks Formation occurred as a result of subhorizontal shortening of the accretionary complex during
underthrusting.

East of the Copper River within unit 85, the low-grade mineral assemblages and associated structures,
presumed to have formed during accretion, are overprinted by gt-co-bearing, low-P, amphibolite-facies
assemblages. These higher grade assemblages were produced during the regionally extensive,
predominantly thermal, metamormhism that accompanied the intrusion of Eocene piutons in this area of the
Prince William and adjacent Chugach terranes (Miller and others, 1984; Sisson and others, 1989). The
metamorphic effects of this episode extend across the Contact fault zone and correspond to the M, episode
of unit 78 (Chugach metamorphic complex), as discussed in a previous section.

SOUTHEASTERN ALASKA

The oldest metamormhic episode in southeastern Alaska occurred under dominantly greenschist-facies
conditions (M, of unit 86) on southern Prince of Wales Island (Gehrels and Saleeby, 1987b), in small areas
(not shown on sheet 1) on the southern tip of Gravina island and adjacent islands (Gehrels and others, 1987),
and under amphibolite-facies conditions (M, of unit 87) on southern Dall Island to the west (G.E. Gehrels, oral
commun., 1987). Both of these units consist of metavolcanic and metasedimentary rocks. They have been
described as the Wales Group (Buddington and Chapin, 1929; Herreid and others, 1978; Eberiein and
others, 1983) and most recently as the informally designated Wales metamorphic suite (Gehrels and Saleeby,
1987b). Unit 86 consists of greenschist-facies mafic schist, greenstone, pelitic schist, phyllite, and marble,
and small areas of amphibolite-facies schist and metaplutonic rocks. Unit 87 contains amphibolite-facies
equivalents of unit 86. Preliminary U-Pb ages on zircon indicate Middle and Late Cambrian protolith ages for
interlayered metaplutonic bodies, and thus Late Proterozoic and (or) Cambrian protolith ages for the
associated metasedimentary and metavolicanic rocks of these two units (Gehrels and Saleeby, 1987b).

In most areas, protolith features are obscured by penetrative metamorphic recrystallization and a high
degree of flattening (Gehrels and Saleeby, 1987b). Mineral lineations are common in the amphibolite-facies
rocks, and are present locally in mafic schist (Herreid and others, 1978; Eberlein and others, 1983).

A Late Cambrian and Early Ordovician age is indicated for M; metamorphism because: (1) metaplutonic
rocks of Middle and (or) Late Cambrian age are metamormphosed and deformed (Gehrels and Saleeby,
1987b), but uppermost Lower and Middle Ordovician strata of unit 88 that occur nearby and probably overlie
unit 86 are only weakly metamorphosed and lack the penetrative metamorphic fabric characteristic of unit 86
(Eberiein and others, 1983; Gehrels and Saleeby, 1987b); and (2) rocks from unit 86 yield K-Ar ages of about
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483 Ma (Turner and others, 1977). This metamorphic episode is part of the Wales orogeny of Gehrels and
Saleeby (19874, b). Although retrograde metamorphic effects have not been reported for units 86 and 87,
geologic relations indicate that they were probably affected by the same low-grade metamorphic episode
during Silurian and earliest Devonian time (shown as M,) that is recorded in adjacent unit 88.

A weakly to moderately developed, Silurian to earliest Devonian metamorphic episode is recorded in the
prehnite-pumpellyite-facies rocks of unit 88; in the lower greenschist-facies rocks of unit 89; and in the M,
episode of the polymetamorphosed greenschist- and locally epidote-amphibolite-facies rocks of unit 90.
Included in these units are basaitic to rhyolitic metavolcanic rocks, metasedimentary rocks, metachert, and
metalimestone of late Early Ordovician to Early Silurian protolith age, and quartz dioritic plutons of Middle
Ordovician to Early Silurian age (Eberlein and others, 1983; Gehrels and Berg, in press).

The metamorphic grade is lowest on southern Prince of Wales Island and increases westward and
eastward. Unit 88 is not penetratively deformed, and relict sedimentary and volcanic textures are widespread.
Crosscutting plutonic rocks, also assumed to have been weakly metamorphosed, are locally brecciated.
Metamorphism in the westernmost exposure of unit 88 increases southward into semischistose rocks of unit
89. East of Prince of Wales Island, the polymetamorphosed rocks of unit 30 generally are cataclastically
deformed and show no pronounced foliation; locally rocks are schistose (Berg and others, 1988; Gehrels and
others, 1983). Minor retrogressive metamorphism, apparent in the higher grade rocks of unit 90, is believed
to have occurred during one or more of the Cretaceous metamorphic episodes, described below.

A Silurian to earliest Devonian metamorphic age is indicated for the following reasons: (1) strata of Early
Silurian age are metamorphosed but overlying strata of middle Early Devonian age and younger are either
uhmetamorphosed, as on Prince of Wales Island, or only affected by the Cretaceous metamorphic episode,
as on the islands to the east (Gehrels and others, 1983); (2) metamorphosed Silurian rocks of unit 87 are cut
by an undeformed latest Silurian to earliest Devonian (408+10 Ma) pyroxenite (Eberlein and others, 1983;
G.E. Gehrels, written commun., 1984); and (3) Late Silurian trondhjemite dikes crosscut the foliation of
metadioritic rocks of Late Ordovician to Early Silurian protolith age, but have the same post-metamorphic
deformational features as their wallrocks, indicating that the trondhjemite dikes and plutons were intruded
before the final deformation that occurred during the latter stages of the episode (Gehrels and others, 1983;
G.E. Gehrels, oral commun., 1985). Metamorphism of this unit is considered to have been part of an
orogenic event referred to as the Klakas orogeny (Gehrels and others, 1983; Gehrels and Saleeby, 1987b).

Early Cretaceous metamorphism

Metamorphism in units 95 to 98 was apparently associated with the intrusion of elongate bodies of
highly foliated tonalite and diorite of Early Cretaceous age (120-110 Ma; Loney and others, 1967; Decker and
Plafker, 1982; Dusel-Bacon and others, 1991; Dusel-Bacon, Brew, and Douglass, in press). These units are
included in the Alexander terrane.

Unit 95 crops out near Glacier Bay and on Chichagof Island and consists of a diverse assemblage of
amphibolite-facies and hornblende-hornfels facies pelitic and semipelitic schist and gneiss, marble, and
amphibolite, and minor amounts of lower grade greenstone and greenschist; protoliths are sedimentary and
volcanic rocks of Silurian to Devonian age (Loney and others, 1975; Brew, 1978). On Chichagof Island, rocks
are intensely folded and there is a complete gradation in metamorphic textures between hornfels and foliated
rocks (Loney and others, 1975). Structural trends in metamorphic rocks parallel those of the Cretaceous
plutons. The general parallelism between the foliate fabric of the plutons, pluton wall-rock contacts, and
structures in the wall rocks, suggests that plutonism, folding, and thermal and dynamothermal metamorphism
all took place as part of a continuum that occurred under roughly the same stress conditions.

Units 96 to 98 crop out on Admiralty Island and the adjacent mainland and form a sequence of
metasedimentary, metavolcanic, and metaplutonic rocks that range in grade from prehnite-pumpellyite facies
(unit 96), to greenschist (or albite-epidote-hornfels) facies (unit 97), and finally to undifferentiated
greenschist (or albite-epidote-hornfels) facies and amphibolite (or hormblende-hornfels) facies (unit 98).
Protoliths range in age from Ordovician to Early Cretaceous (references given in Dusel-Bacon and others,
1991, and Dusel-Bacon, Brew, and Douglass, in press). Most medium and higher grade rocks are
penetratively deformed. Intrusive rocks of the largest batholith on Admiralty Island are poorly to well foliated,
but the trend of the foliation relative to that of the country rocks has not been studied in detail (Lathram and
others, 1965). Evidence that metamorphism was associated with late Early Cretaceous plutonism consists of
an apparent progressive increase in metamorphic grade toward the plutons, and a merging of contact
aureoles with large areas of dynamothermally metamorphosed phyllite, schist, and gneiss of unit 98 (Loney
and others, 1967).

The age and origin of metamorphism of greenschist- and, very locally, amphibolite-facies rocks of unit 92
is unknown. This unit crops out northeast of Glacier Bay and is bounded on the east by the Denali fault.
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Protoliths include mafic volcanic rocks, sedimentary rocks, and limestone, and have been correlated with
rocks of Silurian to Permian age (MacKevett and others, 1974). Unit 92 also is intruded by a pluton of the belt
of 120- to 110-Ma plutons that are thought to have been associated with metamorphism of units 95 to 98 to
the south; therefore, metamorphism of unit 92 may have had a similar origin. An alternative and slightly older
metamorphic history is suggested by geologic evidence from the apparent continuation of this unit about
100 km to the northwest in Canada. In that area, regional metamorphism and deformation appear to have
occurred between Late Triassic and Early Cretaceous time and may have been associated with latest Jurassic
to earliest Cretaceous (150-130 Ma) plutonism (R.B. Campbell and C.J. Dodds, written commun., 1986). This
possible metamorphic episode is analogous to that discussed tor unit 64 in the previous section (area of
southern Alaska between the McKinley and Denali faults and the Border Ranges fault system).

Prehnite-pumpellyite- to lower greenschist-facies metasedimentary rocks, intermediate to mafic
metavolcanic rocks, metalimestone, and metachert (unit 100 and related polymetamorphic unit 102) crop out
in a 150-km-long southeast-trending belt from Kupreanof Island to Cleveland Peninsula. Protoliths or rocks
correlated with the protoliths range in age from Late Triassic to mid-Cretaceous--Albian or Cenomanian (Berg
and others, 1972; Brew and others, 1984). Rocks have been weakly metamorphosed (ch-, ac-, and rarely bt-
zone assemblages) and locally are intensely folded and faulted. Metasedimentary rocks are generally poorly
foliated, but fine-grained variants have good cleavage. Greenschist and greenstone locally contain abundant
relict pyroxene phenocrysts (Brew and others, 1984).

Regional low-grade metamorphism is known to predate the intrusion of Alaskan-type mafic-ultramafic
bodies that have yielded K-Ar ages of 110 to 100 Ma (Lanphere and Eberlein, 1966; Clark and Greenwood,
1972; Brew and others, 1984; Douglass and Brew, 1985). The late Early Cretaceous minimum metamorphic
age indicated by these dates is close to the Albian or Cenomanian protolith age of the youngest rocks
included in this unit. The geographic limits of the area affected by this episode are not known with certainty;
they may have extended into the area shown as unit 101, discussed below.

Amphubohte-facnes pelitic schlst quartzofeldspathlc schlst and gneiss, amph schist and gneiss, and
minor amounts of marble, calc-schist, migmatite, and metaplutonic rocks (Berg and others, 1988; Brew and
others, 1984) of unit 103 crop out in the area of Wrangell and Revillagigedo Islands adjacent to and
extending some distance from 90-Ma plutons. Protoliths of unit 103 are considered to include Jurassic and
(or) Cretaceous flysch, Permian and Triassic limestone, and intrusive rocks of probable Jurassic to
Cretaceous age. Rocks are sufficiently recrystallized so that neither the original textures nor the original
structures remain.

Kyanite, indicative of intermediate-P metamorphic conditions, is common in the st+gttsil-bearing pelitic
schist of unit 103 (Berg and others, 1988; Douglass and Brew, 1985) and in aureoles developed around the
90-Ma plutons that intrude unit 102. In the northern part of unit 103 and within adjacent unit 102, relict anda
also has been observed in pelitic schist from the aureoles of 30-Ma plutons (sheet 1). In these areas, relict
porphyroblasts of statically formed anda have been replaced by static (radial) ky or in some locations by
mineral aggregates of intergrown ky and st (Dusel-Bacon and others, 1991; Dusel-Bacon, Brew, and
Douglass, in press). This crystallization sequence of the Al2SiOs polymorphs appears to indicate an increase
from low- to intermediate-P conditions in the northern part of this unit during intrusion and metamorphism.

Most of the 90-Ma plutons referred to above are of intermediate composition and contain primary gt and
epidote; they are part of a plutonic belt that extends from southern Revillagigedo Island north to the vicinity of
Haines (Zen and Hammarstrom, 1984a). Sillimanite and ky isograds are located around the large 90-Ma
plutons in the areas of Wrangell and northern Revillagigedo Islands, and metamorphic grade increases toward
the plutons (Dusel-Bacon and others, 1991; Dusel-Bacon, Brew, and Douglass, in press), providing
evidence that metamorphism was assocsated with plutonism. These plutons (shown as Kg with a "+"
overprint on sheet 1) are interpreted as having been emplaced during the waning stages of metamorphism
and deformation (Brew and others, 1984; Douglass and Brew, 1985; Berg and others, 1988).

Geothermometric and geobarometric data from two samples of gt-ky schist in the southem part of unit
103 indicate a final equilibration T and P of 600 °C, 7.5-8.5 kb, and 575-600 °C, 8.5-9.2 kb for mineral rims
(M.L. Crawford, written commun., 1983; Dusel-Bacon and others, 1991; Dusel-Bacon, Brew, and Douglass,
in press). A similar, moderately high, P of final crystallization has been proposed for the primary gt- and
epidote-bearing 90-Ma plutons that intruded this unit late in, or immediately following, the metamorphic
episode. Zen and Hammarstrom (1984b), citing experimental data on the composition of magmatic gt and on
the P required to crystallize magmatic epidote, propose that the magma began to crystallize at a minimum P of
13 to 15 kb (about 40 to 50 km) and finally crystallized at about 6 to 10 kb (about 20 to 30 km). The
combination of the high- to intermediate-P magmatic and crystallization history inferred for the plutons, and
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the occurrence of relict anda, indicative of low-P conditions (less than 3.8 kb; Holdaway, 1971), in their
aureoles in the Wrangell Island area, is indeed problematic.

Greenschist-facies unit 101 crops out south of amphibolite-facies unit 103 in the area of Revillagigedo
Island and consists of metasedimentary and metavolcanic rocks, and minor amounts of marble and
metaplutonic rocks (Berg and others, 1988). Protolith ages range from Devonian to Early Cretaceous (Berg
and others, 1988; Gehrels and others, 1987). On Revillagigedo Island and the peninsula to the northwest,
metamorphic foliation dips to the northeast, and the metamorphic sequence is cut by southwest-vergent
thrust faults (Berg and others, 1988; Rubin and Saleeby, 1987).

Metamorphism of unit 101 also may have been part of the same thermal episode that culminated in the
intrusion of early Late Cretaceous (approximately 90 Ma) plutons, as was the case for-unit 103. This relation is
suggested by the observation made by Berg and others (1988) that metamorphic mineral assemblages show
an apparent gradational increase in grade from the southwest to the northeast, beginning in the greenschist-
facies rocks of unit 101 and continuing into the amphibolite-facies unit 103. An argument against this
interpretation is the recent detailed mapping by M.L. Crawford (oral commun., 1988), which indicates an
abrupt, rather than gradational, increase in metamorphic grade at the boundary between units 101 and 103.
An alternative, but not necessarily mutually exclusive, interpretation is that regional greenschist-facies
metamorphism is a higher grade equivalent of the mid-Cretaceous episode that affected unit 100 (Dusel-
Bacon and others, 1991; Dusel-Bacon, Brew, and Douglass, in press). This hypothesis is based on an
extension of the interpretation of the metamorphic history of unit 100 to the northwest (Brew and others,
1984; Douglass and Brew, 1985) and on similarities noted during a reconnaissance of northern Revillagigedo
Island by D.A. Brew (unpub. data, 1983).

K-Ar age determinations on amphibolite- and greenschist-facies rocks on Revillagigedo Island show a
decrease in maximum apparent ages northward and eastward (Smith and Diggles, 1981; Berg and others,
1988). 40Ar/39Ar plateau ages on hb from plutonic and metamorphic rocks on Revillagigedo Island and from
similar rocks to the south in British Columbia, show a similar age pattern, ranging from greater than 90 Ma in
the west to about 56 Ma near the easten boundary of unit 103 (Sutter and Crawford, 1985). Upilift of this
block of rocks was greatest and occurred latest in the eastern part of the block. The eastemn boundary of the
block is spatially related to the Coast Range megalineament (Brew and Ford, 1978)--a topographic, structural,
and geophysical feature that appears to have been near the western limit of large-scale regional uplift of
southeastern Alaska and adjacent parts of British Columbia beginning in early Tertiary time (Crawford and
Hollister, 1982, 1983).

An intermediate-P (Barrovian) metamorphic sequence consisting of prehnite-pumpellyite-facies rocks
(unit 105}, greenschist-facies rocks (unit 106), and amphibolite-facies rocks (unit 107) crops out as an
elongate, northwest-trending belt along the mainland of southeastern Alaska from Skagway to the area east
of Wrangell Island. The Barrovian sequence increases in metamorphic grade to the northeast (Dusel-Bacon
and others, 1991; Dusel-Bacon, Brew, and Douglass, in press, and references contained therein). Protoliths
are thought to be clastic sedimentary rocks, mafic to intermediate volcanic, intrusive, and volcanogenic
sedimentary rocks, limestone, and chert. Few fossils have been found in these rocks but protolith ages are
considered to be Permian, Triassic, and Jurassic to Cretaceous {Brew and Ford, 1984).

An early foliation, presumably formed during either or both of the low-grade episodes recorded in
adjacent units 93 and 96, is locally detectable in unit 105 and the lowest grade part of unit 106 (Brew and
others, 1984). With increasing metamorphic grade, rocks develop well-defined crenulation cleavage and
transposition layering. Higher-grade rocks in unit 106 and all those in unit 107 are well foliated and lineated.
Foliation in gneissic rocks is locally anastamosing or lenticular. Mineral isograds marking the first appearance
of bt, gt, st, ky, and sil trend north-northwest, generally parallel with elongate quartz dioritic plutons referred to
as the tonalite sill by Brew and Ford (1981). It is shown on sheet 1 as the 600-km-long synkinematic intrusive
unit TKg, just east of the Coast Range megalineament. Isogradic surfaces dip moderately to steeply
northeast (Ford and Brew, 1973, 1977a; Brew and Ford, 1977), and hence are inverted. In the area east of
Kupreanof Island, isogradic surfaces appear to steepen northeastward toward the Coast Range
megalineament (Brew and others, 1984).

Garnet-biotite geothermometry for the sil-zone rocks of unit 107 (Himmelberg and others, 1984)
indicates an equilibration T of about 690 °C (calibration of Thompson, 1976) or 750 °C, (calibration of Ferry
and Spear, 1978). The absence of anda and the abundance of ky indicates a minimum equilibration P of
about 3.8 kb (Holdaway, 1971). Preliminary sphalerite geobarometry of three massive-sulphide deposits
within the megalineament zone on the mainland east of central Admiralty Island indicates a general P range
that is consistent with values of 3.8 to 4.5 kb at 575 °C, calculated from silicate mineral equilibria of st-zone
rocks in the same general area (Stowell, 1985). Geobarometry calculated by several methods indicates a P of
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about 9 kb for rocks to the north, but the data exhibit large scatter (G.R. Himmelberg, unpub. data, 1987;
Brew and others, 1987).

Amphibolite-facies rocks on the mainland east and southeast of Wrangell Island (unit 108) comprise
lithologies similar to those in the amphibolite-facies part of the Barrovian metamorphic sequence (unit 107) to
the north. Although they occur on strike, they are differentiated on the basis of possible P differences during
final equilibration of the rocks. Unit 108 is a heterogeneous complex of migmatite, massive to foliated or
gneissic batholiths, and smaller plutons that enclose metamorphic screens and roof pendants of paragneiss
(Berg and others, 1988). Protolith ages are not generally known, but those of paragneiss are probably
Paleozoic or Mesozoic (Brew and Ford, 1984; Berg and others, 1988) and at least some of those of
orthogneiss are Early Cretaceous (Barker and Arth, 1984; Hill, 1984).

Garnet and sil are common constituents of the paragneiss and pelitic schist of unit 108; co occurs locally
in the pelitic schist. Intermediate- to low-P conditions are suggested by mineral assemblages, and by
thermobarometric data that indicate P-T conditions of 3.5 to 4.5 kb and 650 °C (calibration of Ferry and Spear,
1978) for a sample of sil-gt-bt-qz-pl schist in northeastern Ketchikan quadrangle (M.L. Crawford, written
commun., 1983; Dusel-Bacon and others, 1991; Dusel-Bacon, Brew, and Douglass, in press). In many
areas, paragneiss grades downward and laterally into gneissic granodiorite; elsewhere it is in sharp contact
with plutonic rocks, or passes gradually into them through a zone of migmatite (Berg and others, 1988).
Quartz diorite of the tonalite sill is commonly at least weakly foliated, and in the extreme case, is gneissic. Its
foliation generally strikes north or northwest and is parallel to the outcrop trend and to the internal structure of
the adjoining metamorphic rocks of unit 108. Much of the quartz diorite also has mylonitic or cataclastic
textures, such as undulose quartz and granulated grain boundaries (Berg and others, 1988).

Metamorphism of units 105 to 108 (and M, of unit 104) is considered to be slightly pre- and syn-
kinematic with the latest Cretaceous and early Tertiary mesozonal intrusion of the tonalite sill. Intrusion of the
sill has been dated by U-Pb zircon methods at about 69 and 62 Ma in the north (Gehrels and others, 1984)
and at about 58 to 55 Ma in the south (Berg and others, 1988). Evidence for the association of
metamorphism and plutonism consists of the increase in metamorphic grade toward the sill; general
parallelism between the sill and isograds that define the Barrovian metamorphic sequence; and parallelism of
foliation, contacts, and locally developed lineation in the sill with structural elements in the adjacent
metamorphic rocks. Inthe Juneau area, truncation of metamorphic isograds by the sill, and parallelism
between foliation in the sill and that in the metamorphosed wallrocks, suggest that intrusion of the sill
accompanied a late stage of the regional metamorphism--a stage occurring after the thermal maximum but
before the end of penetrative deformation (Ford and Brew, 1977b). Epizonal plutons (Tg) intruded the
eastern part of the amphibolite-facies units during Eocene time. These Eocene plutons are surrounded by
low-P high-T metamorphic rocks and by migmatites. The original eastern limit of the Barrovian metamorphism
is obscured by the Eocene intrusions, but limited evidence indicates that the low-P metamorphism around
the Eocene plutons was superimposed over the previous intermediate-P metamo rphism.

A P-T-time path has been determined for the plutonic and metamorphic sequence that crops out near
Prince Rupert, British Columbia, across the international boundary from unit 108. Many aspects of that path
may also apply to the metamorphic history of unit 108 and perhaps also of units 105 to 107. Near Prince
Rupert, metamorphic reactions, thermobarometric data, and isotopic data indicate that rocks correlative with
those of unit 108 were uplifted and eroded at a rate of about 1 mm/yr between about 60 and 48 Ma,
beginning at a depth of about 20 km and terminating at about 5 km (Hollister, 1982; revised in Crawford and
others, 1987). The emplacement of the elongate 60-Ma Quotoon pluton, which is the continuation of the
Alaskan tonalite sill, apparently occurred at deep levels during the early stages of uplift. Emplacement of
intermediate and felsic plutons along the eastern margin of the complex occurred at high levels during the
end stages of uplift. According to the Canadian work, metamorphism continued throughout the period of
uplift under evolving P-T conditions (Hollister, 1982; Crawford and Hollister, 1982, 1983). Because of
similarities in style and conditions of metamorphism between rocks west of the megalineament in British
Columbia (correlative with unit 101) and early metamorphic relicts found in rocks east of the megalineament
(correlative with unit 108), Crawford and Hollister (1982, 1983) suggest that high-grade rocks east of the
megalineament were also metamorphosed during the episode associated with the intrusion of the 90-Ma
plutons, discussed above. The high-grade crustal block east of the megalineament is thought to have
remained at depth until it was displaced by rapid vertical uplift as a result of the weakening of the crust by
anatexis and the development of melt-lubricated shear zones--particularly the one represented by the
tonalite sill, along which rapid vertical movement was concentrated (Hollister and Crawford, 1986; Crawford
and others, 1987).

The tectonic environment of the widespread plutono-metamorphic episode that occurred along the
western edge of the Coast Mountains in early Late Cretaceous and early Tertiary time was dominated by
crustal thickening due to the accretion of an outboard terrane to the west. Monger and others (1982, 1983)
proposed that the plutono-metamorphic belt of the Coast Mountains of southeastern Alaska and British
Columbia developed as a welt resulting from the accretion of the amalgamated Wrangellia and Alexander
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terranes against the previously accreted Stikinia and other terranes in Cretaceous and Tertiary time. Brew
and Ford (1983) interpret the stratigraphic and paleomagnetic evidence to suggest that the Alexander and
Stikinia terranes are one and the same and that a rift developed in the megaterrane as it migrated northward.
According to their model, that rift was filled with the flysch and volcanic rocks of the Gravina belt (Berg and
others, 1972) during Late Jurassic and Early Cretaceous time. They propose that the plutono-metamorphic
belt formed as a result of the closure of the rift and the resultant crustal thickening during accretion of the
Chugach terrane--a terrane that lies to the west and southwest of the Alexander and Wrangellia terranes.
Workers in the southern extension of this metamorphic belt near Prince Rupert, British Columbia,
concur with the terrane accretion model of Monger and others (1982). They propose that the crustal
thickening resulted from west-directed tectonic stacking of crustal slabs along east-dipping thrusts. In places
the thrusts were possibly lubricated by the intrusion of melt (parent magma of intermediate epidote-bearing
plutons and sills) generated at the base of the crust (Hollister and Crawford, 1986; Crawford and others,
1987). These thrust faults, which were synchronous with 100- to 90-Ma plutonism near Prince Rupert, may
be correlative with thrusts identified on Revillagigedo Island in Alaska (M.L. Crawford, oral commun.,1987).
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