U.S. DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

THE DISTRIBUTION OF LANTHANIDES AND YTTRIUM IN THE MINERALS
OF THE MONAZITE FAMILY

by

Michael Fleischer¹, Sam Rosenblum², and Mary Woodruff³

Open-File Report 91-580

¹Dept. Mineral Sciences, Smithsonian Inst., Wash., D.C. 20560
²12165 W. Ohio Place, Lakewood, CO 80228
³U.S. Geological Survey, Reston, VA 22092
Abstract

Minerals of the monazite structural group include arsenates, phosphates, and silicates with the general formula ABO_4 where $A = \text{Bi}, \text{Ca}, \text{Ce}, \text{La}, \text{Nd}, \text{Th}, \text{U},$ and/or Y; and $B = \text{P}^{+5}, \text{As}^{+5}$, and/or Si^{+5}. Monazite-family minerals contain essential REE and PO_4, and may have minor amounts of other elements. Monazite-(Ce) is the predominant species, constituting 763 analyses (Tables 1 to 3). Another 18 analyses are for other species of monazite and gasparite-(Ce) (Table 4), cheralites (Table 5), and huttonites (Table 6). Two additional tables list average compositions of monazite-(Ce) from various rock types, and a final table indexes the analyses of monazite-(Ce) according to the localities.
List of Tables

Table 1. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent
Table 2. Monazite-(Ce) from placers, atomic percent
Table 3. Dark monazite-(Ce), atomic percent
Table 4. Monazite-(La), monazite-(Nd), and gasparite-(Ce), atomic percent
Table 5. Cheralite, atomic percent
Table 6. Huttonite, atomic percent
Table 7. Average compositions of monazite-(Ce) from different types of rocks, Tables 1-3, atomic percent
Table 8. Previously published average compositions of monazites, atomic percent
Table 9. Locality index for monazite-(Ce)

Abbreviations used in tables for methods of analysis

AAS atomic absorption spectrophotometry
CH chromatographic
EP electron microprobe
ICC inductively coupled plasma
INA instrumental neutron activation
OS optical spectrography
XF x-ray fluorescence

Fig. 1. Relationships in the monoclinic system CePO₄-Th(PO₄)₂-ThSiO₄, modified from Bowie and Horne (1953)

Fig. 2. Relations of atomic ratios, from the data of Table 7.
The monazite structural group of minerals consists of monoclinic arsenates, phosphates, and silicates of the general formula ABO_4, where $A = Bi, Ca, Ce, La, Nd, Th, U$, and/or $Y; B = As^{3+}, P^{5+}$, and/or Si^{4+}. The minerals in this group are:

- Brabantite, $CaTh(PO_4)_2$
- Cheralite, $(Ca, Ce, Th)(P, Si)O_4$
- Gasparite-(Ce), $(Ce, La, Nd)AsO_4$
- Huttonite, $ThSiO_4$
- Monazite-(Ce), $(Ce, La, Nd, Th)(P, Si)O_4$
- Monazite-(La), $(La, Ce, Nd)PO_4$
- Monazite-(Nd), $(Nd, La, Ce)PO_4$
- Rooseveltite, $BiAsO_4$

Rooseveltite has not been reported to contain rare earth elements (REE) and will not be considered further here.

Brabantite has been reported to contain 3.05% RE$_2$O$_3$, but individual lanthanides were not determined. Figure 1 (modified from Bowie and Horne, 1953) shows the relationships of monazite, cheralite, huttonite, and brabantite.

Within the monazite group, the monazite family consists of minerals essential REE as cations, and essential phosphate (arsenate in gasparite-(Ce)) as the anion. Non-essential Th, Ca, Mg, and Pb may substitute for the REE and Si may substitute for P; both substitutions can be up to 25 percent, as indicated in Bowie and Horne (1953), Figure 1.

The distribution of lanthanides and yttrium in monazite family minerals has been the subject of many papers. Monazite was recognized long ago to be a mineral that is a concentrator of the light lanthanides, in accordance with their occupancy of positions with coordination number ten (10). However, the considerable effect of the geologic environment of formation on the distribution of the lanthanides was not recognized until the work of Murata and co-workers (1953, 1957, 1958), confirmed in a review by Fleischer and Altschuler (1969).

Other reports describing monazite (and other REE minerals) in specific rock types include those by Holt (1965) (carbonatites), Marchenko (1967) (gneiss and migmatite), Heinrich and Wells (1980) (several associations), and Clark (1984) (several associations). In addition, papers by Ploshko (1961) and by Marchenko and Goncharova (1964) discuss formation of monazite by pneumatolytic and hydrothermal processes. Finally, we note that papers by Balashov and Pozharitskaya (1968) and by Wells (1977) dwell on the physical-chemical reasons for fractionation of REE found in rocks and minerals.

This report is an update of Fleischer and Altschuler (1969) and includes a compilation of all available determinations of the lanthanides and yttrium in minerals of the monazite structural group, 786 in all. Monazite-(Ce) is the overwhelmingly dominant mineral, comprising no less than 763 of the analyzed samples. In Tables 1 to 6, atomic percentages of the REE plus contents of ThO$_2$ and U$_3$O$_8$ are listed in order of increasing sigma (the sum of the atomic percentages of La + Ce + Pr).
The averages tabulated in Tables 7 and 8 show the effect of the type of geological occurrence on the distribution of REE in monazite-(Ce), namely the increase in atomic percent of the light lanthanides and decrease of the yttrium content, from granitic pegmatites to granitic rocks to alkalic rocks and carbonatites. However, the range of composition is far less than in minerals of low REE content, and the variation of rare earth content in monazite is far less satisfactory as a guide to type of host rock than the variation in either apatite (Fleischer and Altschuler, 1969, 1986) or titanite (Fleischer, 1978).

The compositions of monazite-(Ce) in granitic rocks and in gneisses are not notably different. As discussed in detail by Rosenblum and Mosier (1983), the average composition of dark monazites (Table 7, column F) is distinct from those of (yellow) monazites of different genesis, and especially in their high content of europium. It should be noted that only one dark monazite (Table 4, no. 4) is not a monazite-(Ce).

Table 9 is an index in two parts. Table 9a lists localities and rock type for the analyses in Tables 1 through 6; Table 9b gives localities for Tables 1 through 3.
Table 1-1. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>11.9</td>
<td>21.5</td>
<td>20.3</td>
<td>9.9</td>
<td>21.3</td>
<td>8.6</td>
<td>13.7</td>
<td>10.3</td>
<td>12.4</td>
<td>10.4</td>
</tr>
<tr>
<td>Ce</td>
<td>35.4</td>
<td>29.7</td>
<td>32.3</td>
<td>35.2</td>
<td>32.8</td>
<td>39.8</td>
<td>41.7</td>
<td>39.3</td>
<td>37.3</td>
<td>42.1</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.4</td>
<td>-</td>
<td>5.8</td>
<td>-</td>
<td>6.6</td>
<td>8.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Nd</td>
<td>31.9</td>
<td>23.8</td>
<td>30.4</td>
<td>26.1</td>
<td>28.0</td>
<td>24.1</td>
<td>26.0</td>
<td>38.0</td>
<td>24.2</td>
<td>28.5</td>
</tr>
<tr>
<td>Sm</td>
<td>12.7</td>
<td>6.0</td>
<td>8.9</td>
<td>11.3</td>
<td>5.3</td>
<td>16.3</td>
<td>9.2</td>
<td>5.8</td>
<td>9.7</td>
<td>10.1</td>
</tr>
<tr>
<td>Eu</td>
<td>0.8</td>
<td>0.6</td>
<td>0.7</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>5.4</td>
<td>4.7</td>
<td>3.3</td>
<td>7.7</td>
<td>4.2</td>
<td>5.4</td>
<td>9.4</td>
<td>-</td>
<td>5.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.6</td>
<td>0.9</td>
<td>0.7</td>
<td>0.5</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.3</td>
<td>5.3</td>
<td>2.8</td>
<td>0.9</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>1.9</td>
<td>0.2</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>5.6</td>
<td>0.4</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.6)</td>
<td>(33.7)</td>
<td>(4.5)</td>
<td>-</td>
<td>(23.1)</td>
<td>(4.7)</td>
<td>(8.9)</td>
<td>-</td>
<td>-</td>
<td>(5.3)</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>INA</td>
<td>EP</td>
<td>XF</td>
<td>XF</td>
</tr>
<tr>
<td>$\Sigma = \text{La}+\text{Ce}+\text{Pr}$</td>
<td>47.3</td>
<td>51.2</td>
<td>52.6</td>
<td>53.5</td>
<td>54.1</td>
<td>54.2</td>
<td>55.4</td>
<td>56.2</td>
<td>58.1</td>
<td>58.3</td>
</tr>
<tr>
<td>La-Nd</td>
<td>79.2</td>
<td>75.0</td>
<td>83.0</td>
<td>79.6</td>
<td>82.1</td>
<td>78.3</td>
<td>81.4</td>
<td>94.2</td>
<td>82.3</td>
<td>86.8</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>20.8</td>
<td>17.5</td>
<td>16.4</td>
<td>20.4</td>
<td>14.4</td>
<td>21.7</td>
<td>816.6</td>
<td>5.8</td>
<td>17.4</td>
<td>13.2</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>7.5</td>
<td>0.6</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE_2O_3, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.12</td>
<td>68.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.37</td>
<td>0.90</td>
<td>0.67</td>
<td>0.38</td>
<td>0.76</td>
<td>0.36</td>
<td>0.53</td>
<td>0.27</td>
<td>0.51</td>
<td>0.36</td>
</tr>
<tr>
<td>ThO_2, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>6.18</td>
<td>0.20</td>
<td>-</td>
<td>3.8</td>
</tr>
<tr>
<td>U_3O_8, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-2 - Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>10.3</td>
<td>10.4</td>
<td>24.2</td>
<td>13.7</td>
<td>7.9</td>
<td>11.9</td>
<td>16.6</td>
<td>16.2</td>
<td>19.0</td>
<td>14.2</td>
</tr>
<tr>
<td>Ce</td>
<td>41.9</td>
<td>41.9</td>
<td>35.9</td>
<td>40.9</td>
<td>47.3</td>
<td>40.1</td>
<td>36.9</td>
<td>38.3</td>
<td>37.9</td>
<td>40.6</td>
</tr>
<tr>
<td>Pr</td>
<td>6.2</td>
<td>6.1</td>
<td>-</td>
<td>6.0</td>
<td>5.4</td>
<td>9.0</td>
<td>7.8</td>
<td>7.1</td>
<td>5.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Nd</td>
<td>24.4</td>
<td>26.6</td>
<td>28.1</td>
<td>33.2</td>
<td>36.1</td>
<td>31.1</td>
<td>27.0</td>
<td>20.3</td>
<td>19.9</td>
<td>21.1</td>
</tr>
<tr>
<td>Sm</td>
<td>10.1</td>
<td>11.1</td>
<td>6.1</td>
<td>4.3</td>
<td>2.3</td>
<td>5.1</td>
<td>3.4</td>
<td>10.2</td>
<td>11.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Eu</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
<td>0.3</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>6.6</td>
<td>3.9</td>
<td>2.9</td>
<td>1.9</td>
<td>0.4</td>
<td>2.5</td>
<td>8.3</td>
<td>5.3</td>
<td>7.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1.1</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(4.0)</td>
<td>(4.6)</td>
<td>(3.7)</td>
<td>(4.2)</td>
<td>(0.3)</td>
<td>(4.6)</td>
<td>(5.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method</td>
<td>INA</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>-</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>58.4</td>
<td>58.4</td>
<td>60.1</td>
<td>60.6</td>
<td>60.6</td>
<td>61.0</td>
<td>61.3</td>
<td>61.6</td>
<td>61.9</td>
<td>61.9</td>
</tr>
<tr>
<td>La-Nd</td>
<td>82.8</td>
<td>85.0</td>
<td>88.2</td>
<td>93.8</td>
<td>96.7</td>
<td>92.1</td>
<td>88.3</td>
<td>81.9</td>
<td>81.8</td>
<td>83.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>17.2</td>
<td>15.0</td>
<td>11.3</td>
<td>6.2</td>
<td>3.3</td>
<td>7.9</td>
<td>11.7</td>
<td>17.7</td>
<td>18.2</td>
<td>16.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>66.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>69.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53.26</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.42</td>
<td>0.39</td>
<td>0.86</td>
<td>0.41</td>
<td>0.22</td>
<td>0.38</td>
<td>0.61</td>
<td>0.80</td>
<td>0.95</td>
<td>0.67</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>1.21</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.00</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>0.26</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-3. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
((b) Tb + Y calc'd as Y)

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>15.3</td>
<td>19.0</td>
<td>20.9</td>
<td>16.6</td>
<td>15.2</td>
<td>19.3</td>
<td>21.7</td>
<td>9.1</td>
<td>13.6</td>
<td>19.5</td>
</tr>
<tr>
<td>Ce</td>
<td>38.6</td>
<td>36.4</td>
<td>30.8</td>
<td>40.7</td>
<td>38.3</td>
<td>38.4</td>
<td>35.3</td>
<td>47.7</td>
<td>45.7</td>
<td>38.9</td>
</tr>
<tr>
<td>Pr</td>
<td>8.1</td>
<td>6.8</td>
<td>10.7</td>
<td>5.4</td>
<td>9.2</td>
<td>5.1</td>
<td>6.1</td>
<td>6.5</td>
<td>4.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Nd</td>
<td>20.8</td>
<td>22.1</td>
<td>35.3</td>
<td>14.6</td>
<td>20.6</td>
<td>19.7</td>
<td>20.3</td>
<td>25.1</td>
<td>14.7</td>
<td>20.5</td>
</tr>
<tr>
<td>Sm</td>
<td>10.5</td>
<td>9.2</td>
<td>1.1</td>
<td>9.7</td>
<td>10.3</td>
<td>11.2</td>
<td>6.4</td>
<td>7.7</td>
<td>12.7</td>
<td>12.1</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>5.1</td>
<td>4.7</td>
<td>1.2</td>
<td>10.3</td>
<td>4.9</td>
<td>6.3</td>
<td>6.2</td>
<td>3.5</td>
<td>8.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Tb</td>
<td>0.5</td>
<td>0.4</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td>2.4</td>
<td>0.7</td>
<td></td>
<td>2.7</td>
<td>0.3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td>0.2</td>
<td></td>
<td>1.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.2)</td>
<td>(5.3)</td>
<td></td>
<td>(2.2)</td>
<td>(6.7)</td>
<td>(2.9)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>XF</th>
<th>XF</th>
<th>OS</th>
<th></th>
<th></th>
<th>XF</th>
<th>CH</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>62.0</td>
<td>62.2</td>
<td>62.4</td>
<td>62.7</td>
<td>62.7</td>
<td>62.8</td>
<td>63.1</td>
<td>63.3</td>
</tr>
<tr>
<td>La-Nd</td>
<td>82.8</td>
<td>84.3</td>
<td>97.7</td>
<td>77.3</td>
<td>83.3</td>
<td>82.5</td>
<td>83.4</td>
<td>88.4</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>17.0</td>
<td>15.5</td>
<td>2.3</td>
<td>22.6</td>
<td>16.5</td>
<td>17.5</td>
<td>15.3</td>
<td>11.5</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.74</td>
<td>0.86</td>
<td>0.59</td>
<td>1.14</td>
<td>0.74</td>
<td>0.98</td>
<td>1.07</td>
<td>0.36</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>5.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
<td>5.53</td>
<td>8.3</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>La</td>
<td>14.4</td>
<td>24.1</td>
<td>18.5</td>
<td>17.6</td>
<td>25.4</td>
<td>15.1</td>
<td>15.6</td>
<td>19.8</td>
</tr>
<tr>
<td>Ce</td>
<td>44.3</td>
<td>39.8</td>
<td>39.9</td>
<td>39.6</td>
<td>29.2</td>
<td>43.3</td>
<td>43.5</td>
<td>36.0</td>
</tr>
<tr>
<td>Pr</td>
<td>5.6</td>
<td>5.6</td>
<td>7.1</td>
<td>10.0</td>
<td>6.5</td>
<td>6.7</td>
<td>9.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Nd</td>
<td>24.8</td>
<td>28.9</td>
<td>15.5</td>
<td>22.3</td>
<td>33.0</td>
<td>26.2</td>
<td>25.3</td>
<td>27.5</td>
</tr>
<tr>
<td>Sm</td>
<td>4.7</td>
<td>4.7</td>
<td>4.5</td>
<td>6.0</td>
<td>1.0</td>
<td>6.2</td>
<td>6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>5.2</td>
<td>1.2</td>
<td>4.5</td>
<td>5.0</td>
<td>1.1</td>
<td>2.7</td>
<td>2.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Tb</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.6</td>
<td>0.5</td>
<td>3.5</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>2.4</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.4</td>
<td>0.1</td>
<td>3.0</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(8.1)</td>
<td>(1.6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(7.8)</td>
<td>(8.3)</td>
<td>(2.6)</td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>63.9</td>
<td>63.9</td>
<td>64.0</td>
<td>64.3</td>
<td>64.6</td>
<td>64.9</td>
<td>65.8</td>
<td>64.9</td>
</tr>
<tr>
<td>La-Nd</td>
<td>88.7</td>
<td>92.8</td>
<td>79.5</td>
<td>86.6</td>
<td>97.6</td>
<td>91.1</td>
<td>91.1</td>
<td>92.4</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>10.9</td>
<td>7.1</td>
<td>14.3</td>
<td>13.0</td>
<td>2.1</td>
<td>8.9</td>
<td>8.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.4</td>
<td>0.1</td>
<td>6.2</td>
<td>0.4</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE$_2$O$_3$, wt.%</td>
<td>64.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.58</td>
<td>0.83</td>
<td>1.19</td>
<td>0.79</td>
<td>0.77</td>
<td>0.58</td>
<td>0.62</td>
<td>0.72</td>
</tr>
<tr>
<td>ThO$_2$, wt.%</td>
<td>4.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.3</td>
<td>15.5</td>
<td>-</td>
</tr>
<tr>
<td>U$_3$O$_8$, wt.%</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-5. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (contd.)

<table>
<thead>
<tr>
<th></th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>25.3</td>
<td>19.8</td>
<td>20.0</td>
<td>21.1</td>
<td>18.2</td>
<td>21.8</td>
<td>20.2</td>
<td>21.8</td>
<td>15.7</td>
<td>15.3</td>
</tr>
<tr>
<td>Ce</td>
<td>39.7</td>
<td>39.7</td>
<td>40.2</td>
<td>35.1</td>
<td>41.5</td>
<td>35.1</td>
<td>37.9</td>
<td>37.0</td>
<td>45.6</td>
<td>43.4</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
<td>5.7</td>
<td>5.0</td>
<td>9.2</td>
<td>6.3</td>
<td>9.1</td>
<td>8.2</td>
<td>7.5</td>
<td>5.1</td>
<td>7.7</td>
</tr>
<tr>
<td>Nd</td>
<td>28.6</td>
<td>22.0</td>
<td>22.1</td>
<td>22.2</td>
<td>24.3</td>
<td>24.8</td>
<td>27.7</td>
<td>29.2</td>
<td>12.9</td>
<td>26.6</td>
</tr>
<tr>
<td>Sm</td>
<td>3.5</td>
<td>12.8</td>
<td>8.3</td>
<td>6.4</td>
<td>5.8</td>
<td>6.0</td>
<td>4.4</td>
<td>1.5</td>
<td>9.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Eu</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Gd</td>
<td>1.4</td>
<td>-</td>
<td>4.4</td>
<td>3.6</td>
<td>3.9</td>
<td>3.0</td>
<td>1.6</td>
<td>2.1</td>
<td>6.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Dy</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100 (1.7)</td>
<td>(7.4)</td>
<td>(6.2)</td>
<td>-</td>
<td>(3.1)</td>
<td>(0.8)</td>
<td>-</td>
<td>(20.7)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Method | OS | XF | OS | OS | XF | OS | OS | OS | XF | XF |

<p>| Σ = La+Ce+Pr | 65.0 | 65.2 | 65.2 | 65.4 | 66.0 | 66.0 | 66.3 | 66.3 | 66.4 | 66.4 |
| La-Nd | 93.6 | 87.2 | 87.3 | 87.6 | 90.3 | 90.8 | 94.0 | 95.5 | 79.3 | 93.0 |
| Sm-Ho | 6.2 | 12.8 | 12.7 | 12.3 | 9.7 | 9.2 | 6.0 | 3.6 | 19.5 | 6.7 |
| Er-Lu | 0.2 | - | - | 0.1 | - | - | - | 0.9 | 1.2 | 0.3 |
| RE₂O₃, wt.% | - | - | - | 51.6 | - | - | - | 47.0 | - | 65.0 |
| La/Nd | 0.89 | 0.90 | 0.91 | 0.95 | 0.75 | 0.88 | 0.73 | 0.75 | 1.22 | 0.58 |
| ThO₂, wt.% | - | - | 12.1 | 9.89 | - | - | - | - | - | - |
| U₃O₈, wt.% | - | - | - | - | - | - | - | - | - | - |</p>
<table>
<thead>
<tr>
<th></th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y/(Y+La)x100</th>
<th>Method</th>
<th>La-Nd</th>
<th>Sm-Ho</th>
<th>Er-Lu</th>
<th>RE$_2$O$_3$</th>
<th>La/Nd</th>
<th>ThO$_2$, wt.%</th>
<th>U$_3$O$_8$, wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>16.8</td>
<td>42.2</td>
<td>7.6</td>
<td>24.9</td>
<td>3.3</td>
<td>4</td>
<td>5.2</td>
<td>0.3</td>
<td>0.9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>(4.8)</td>
<td>OS</td>
<td>91.5</td>
<td>8.5</td>
<td></td>
<td>50.63</td>
<td>0.67</td>
<td>7.01</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>17.2</td>
<td>41.2</td>
<td>8.4</td>
<td>23.9</td>
<td>3.4</td>
<td>0.7</td>
<td>5.9</td>
<td>0.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>-</td>
<td>(6.6)</td>
<td>OS</td>
<td>90.7</td>
<td>9.3</td>
<td></td>
<td>73.1</td>
<td>0.72</td>
<td>8.90</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>26.8</td>
<td>40.1</td>
<td>4.2</td>
<td>25.3</td>
<td>4.2</td>
<td>-</td>
<td>1.5</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>-</td>
<td>(3.3)</td>
<td>OS</td>
<td>92.2</td>
<td>7.3</td>
<td></td>
<td>56.2</td>
<td>1.06</td>
<td>14.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>26.8</td>
<td>46.3</td>
<td>6.8</td>
<td>21.9</td>
<td>3.7</td>
<td>6.0</td>
<td>5.8</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>(8.4)</td>
<td>OS</td>
<td>89.0</td>
<td>10.5</td>
<td></td>
<td>73.1</td>
<td>1.06</td>
<td>14.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16.6</td>
<td>38.8</td>
<td>5.8</td>
<td>20.5</td>
<td>5.7</td>
<td>6.0</td>
<td>3.5</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>(6.7)</td>
<td>OS</td>
<td>87.9</td>
<td>11.8</td>
<td></td>
<td>56.2</td>
<td>1.06</td>
<td>14.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>22.6</td>
<td>39.0</td>
<td>5.1</td>
<td>20.6</td>
<td>6.0</td>
<td>8.3</td>
<td>3.8</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>(5.3)</td>
<td>OS</td>
<td>88.0</td>
<td>11.9</td>
<td></td>
<td>58.5</td>
<td>1.10</td>
<td>14.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>47.5</td>
<td>5.0</td>
<td>20.4</td>
<td>8.3</td>
<td>3.8</td>
<td>4.1</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>(8.1)</td>
<td>OS</td>
<td>87.9</td>
<td>11.9</td>
<td></td>
<td>58.5</td>
<td>0.73</td>
<td>14.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>45.7</td>
<td>8.8</td>
<td>21.1</td>
<td>3.8</td>
<td>3.2</td>
<td>4.1</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>(2.0)</td>
<td>XF</td>
<td>88.9</td>
<td>7.7</td>
<td></td>
<td>58.5</td>
<td>0.81</td>
<td>14.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>38.7</td>
<td>7.1</td>
<td>24.1</td>
<td>3.9</td>
<td>3.2</td>
<td>-</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>(5.0)</td>
<td>OS</td>
<td>91.9</td>
<td>8.6</td>
<td></td>
<td>58.5</td>
<td>0.84</td>
<td>14.8</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Eu + Gd calc'd as Gd
<table>
<thead>
<tr>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>21.0</td>
<td>23.4</td>
<td>18.3</td>
<td>22.5</td>
<td>23.3</td>
<td>18.2</td>
<td>19.0</td>
<td>22.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Ce</td>
<td>41.9</td>
<td>38.8</td>
<td>38.7</td>
<td>38.4</td>
<td>45.3</td>
<td>43.3</td>
<td>43.4</td>
<td>42.0</td>
<td>41.6</td>
</tr>
<tr>
<td>Pr</td>
<td>5.4</td>
<td>6.2</td>
<td>11.5</td>
<td>7.6</td>
<td>-</td>
<td>7.2</td>
<td>6.4</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Nd</td>
<td>21.0</td>
<td>20.4</td>
<td>24.9</td>
<td>27.8</td>
<td>23.6</td>
<td>27.5</td>
<td>18.1</td>
<td>21.6</td>
<td>21.0</td>
</tr>
<tr>
<td>Sm</td>
<td>4.8</td>
<td>5.3</td>
<td>4.9</td>
<td>1.5</td>
<td>3.4</td>
<td>3.8</td>
<td>9.5</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>5.9</td>
<td>2.9</td>
<td>1.7</td>
<td>2.2</td>
<td>1.8</td>
<td>-</td>
<td>3.6</td>
<td>6.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>-</td>
<td>(6.3)</td>
<td>(2.0)</td>
<td>(3.7)</td>
<td>(4.9)</td>
<td>-</td>
<td>(8.3)</td>
<td>(2.6)</td>
<td>(5.3)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>68.3</td>
<td>68.4</td>
<td>68.5</td>
<td>68.5</td>
<td>68.6</td>
<td>68.7</td>
<td>68.8</td>
<td>68.8</td>
<td>70.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>89.3</td>
<td>88.8</td>
<td>93.4</td>
<td>96.3</td>
<td>92.2</td>
<td>96.2</td>
<td>86.9</td>
<td>90.4</td>
<td>91.6</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>10.7</td>
<td>11.0</td>
<td>6.6</td>
<td>3.7</td>
<td>7.3</td>
<td>3.8</td>
<td>13.1</td>
<td>9.6</td>
<td>8.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE$_2$O$_3$, wt.%</td>
<td>-</td>
<td>52.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.00</td>
<td>1.12</td>
<td>0.74</td>
<td>0.81</td>
<td>0.99</td>
<td>0.99</td>
<td>1.05</td>
<td>1.05</td>
<td>1.19</td>
</tr>
<tr>
<td>ThO$_2$, wt.%</td>
<td>-</td>
<td>12.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U$_3$O$_8$, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-8. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>15.4</td>
<td>18.3</td>
<td>24.5</td>
<td>14.3</td>
<td>16.7</td>
<td>17.4</td>
<td>18.5</td>
<td>19.0</td>
<td>22.3</td>
<td>14.3</td>
</tr>
<tr>
<td>Ce</td>
<td>46.2</td>
<td>43.4</td>
<td>35.4</td>
<td>46.9</td>
<td>44.9</td>
<td>45.9</td>
<td>43.5</td>
<td>43.3</td>
<td>42.4</td>
<td>50.7</td>
</tr>
<tr>
<td>Pr</td>
<td>7.3</td>
<td>7.2</td>
<td>9.1</td>
<td>8.0</td>
<td>7.6</td>
<td>6.0</td>
<td>7.3</td>
<td>7.2</td>
<td>4.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Nd</td>
<td>23.0</td>
<td>27.3</td>
<td>25.1</td>
<td>18.4</td>
<td>21.6</td>
<td>19.0</td>
<td>27.5</td>
<td>20.0</td>
<td>21.1</td>
<td>22.8</td>
</tr>
<tr>
<td>Sm</td>
<td>4.3</td>
<td>3.8</td>
<td>2.2</td>
<td>7.2</td>
<td>4.1</td>
<td>4.6</td>
<td>3.2</td>
<td>4.2</td>
<td>6.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.9</td>
<td>-</td>
<td>3.0</td>
<td>5.2</td>
<td>3.3</td>
<td>2.8</td>
<td>-</td>
<td>3.7</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>-</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>1.5</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.3</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>-</td>
<td>-</td>
<td>(2.7)b</td>
<td>-</td>
<td>(4.0)</td>
<td>-</td>
<td>(4.6)</td>
<td>(4.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: XF, OS, CH, CH, INA, XF, XF, XF, OS, CH

$E = \text{La}+\text{Ce}+\text{Pr}$

<table>
<thead>
<tr>
<th></th>
<th>68.9</th>
<th>68.9</th>
<th>69.0</th>
<th>69.2</th>
<th>69.2</th>
<th>69.3</th>
<th>69.3</th>
<th>69.5</th>
<th>69.5</th>
<th>69.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-Nd</td>
<td>91.9</td>
<td>96.2</td>
<td>94.1</td>
<td>87.6</td>
<td>90.8</td>
<td>88.3</td>
<td>96.8</td>
<td>89.5</td>
<td>90.6</td>
<td>92.3</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>7.2</td>
<td>3.8</td>
<td>5.2</td>
<td>12.4</td>
<td>9.0</td>
<td>9.7</td>
<td>3.2</td>
<td>9.9</td>
<td>9.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.9</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.2</td>
<td>2.0</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REO_3, wt.%</td>
<td>-</td>
<td>50.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.67</td>
<td>0.67</td>
<td>0.98</td>
<td>0.78</td>
<td>0.77</td>
<td>0.92</td>
<td>0.67</td>
<td>0.95</td>
<td>0.95</td>
<td>0.63</td>
</tr>
<tr>
<td>ThO_2, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.7</td>
<td>-</td>
</tr>
<tr>
<td>UO_3, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-9. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.0</td>
<td>24.8</td>
<td>21.9</td>
<td>16.5</td>
<td>18.1</td>
<td>24.4</td>
<td>22.5</td>
<td>17.4</td>
<td>17.5</td>
<td>17.9</td>
</tr>
<tr>
<td>Ce</td>
<td>41.7</td>
<td>35.7</td>
<td>41.8</td>
<td>47.8</td>
<td>51.5</td>
<td>37.8</td>
<td>39.9</td>
<td>47.1</td>
<td>45.9</td>
<td>46.6</td>
</tr>
<tr>
<td>Pr</td>
<td>5.8</td>
<td>9.0</td>
<td>5.9</td>
<td>5.3</td>
<td>--</td>
<td>7.5</td>
<td>7.3</td>
<td>5.2</td>
<td>6.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Nd</td>
<td>23.1</td>
<td>25.2</td>
<td>21.9</td>
<td>22.7</td>
<td>30.4</td>
<td>19.2</td>
<td>19.9</td>
<td>20.1</td>
<td>24.3</td>
<td>21.8</td>
</tr>
<tr>
<td>Sm</td>
<td>4.4</td>
<td>2.2</td>
<td>4.8</td>
<td>6.0</td>
<td>--</td>
<td>4.2</td>
<td>5.1</td>
<td>7.5</td>
<td>5.4</td>
<td>6.1</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>3.0</td>
<td>3.1</td>
<td>3.7</td>
<td>1.7</td>
<td>--</td>
<td>5.1</td>
<td>2.7</td>
<td>2.7</td>
<td>2.3</td>
<td>--</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>1.81</td>
<td>0.6</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(5.4)</td>
<td>(5.1)</td>
<td>(9.3)</td>
<td>(5.8)</td>
<td>(1.5)</td>
<td>(3.0)</td>
<td>(1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>EP</td>
<td>XF</td>
</tr>
</tbody>
</table>

\(\Sigma = \text{La}+\text{Ce}+\text{Pr} \)

69.5 69.5 69.6 69.6 69.6 69.7 69.7 69.7 69.7 69.8

La-Nd 92.6 94.7 91.5 92.3 100.0 88.9 89.6 89.8 94.0 91.6

Sm-Ho 7.4 5.3 8.5 7.7 10.5 10.3 10.2 6.0 8.4

Er-Lu - - - - - 0.6 0.1 - - -

\(\text{RE}_2\text{O}_3, \text{wt.}\% \)

- - - - - - 61.8 - - -

La/Nd 0.95 0.98 1.00 0.73 0.60 1.27 1.13 0.87 0.72 0.82

\(\text{ThO}_2, \text{wt.}\% \)

- - - 10.1 11.4 2.0 14.3 11.2 3.3 9.5

\(\text{U}_3\text{O}_8, \text{wt.}\% \)

- - - - - - - - 0.1
<table>
<thead>
<tr>
<th></th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>21.9</td>
<td>17.4</td>
<td>28.6</td>
<td>21.8</td>
<td>19.6</td>
<td>22.2</td>
<td>20.8</td>
<td>19.6</td>
<td>15.9</td>
<td>20.8</td>
</tr>
<tr>
<td>Ce</td>
<td>41.8</td>
<td>44.4</td>
<td>41.2</td>
<td>39.7</td>
<td>50.3</td>
<td>40.8</td>
<td>43.1</td>
<td>40.5</td>
<td>46.1</td>
<td>44.0</td>
</tr>
<tr>
<td>Pr</td>
<td>6.1</td>
<td>8.0</td>
<td>-</td>
<td>8.4</td>
<td>-</td>
<td>7.0</td>
<td>6.1</td>
<td>9.9</td>
<td>8.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Nd</td>
<td>21.9</td>
<td>22.5</td>
<td>24.5</td>
<td>25.9</td>
<td>30.1</td>
<td>17.4</td>
<td>19.2</td>
<td>22.9</td>
<td>24.7</td>
<td>20.8</td>
</tr>
<tr>
<td>Sm</td>
<td>5.0</td>
<td>3.1</td>
<td>3.4</td>
<td>2.0</td>
<td>-</td>
<td>6.6</td>
<td>4.7</td>
<td>3.5</td>
<td>3.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>3.3</td>
<td>4.6</td>
<td>1.4</td>
<td>2.2</td>
<td>-</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>1.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>-</td>
<td>1.6</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.9</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(6.0)</td>
<td>(2.0)</td>
<td>(2.9)</td>
<td>(8.3)</td>
<td>(7.2)</td>
<td>(5.4)</td>
<td>b</td>
<td>(4.1)</td>
<td>(2.1)</td>
<td>-</td>
</tr>
</tbody>
</table>

Method: XF OS OS OS OS OS CH OS EP XF

La/Nd | 91.7 | 92.3 | 94.3 | 95.8 | 100.0 | 87.4 | 89.2 | 92.9 | 94.8 | 91.0 |

Sm-Ho | 8.3 | 7.7 | 5.6 | 4.2 | - | 12.3 | 10.2 | 7.1 | 5.0 | 9.0 |

Er-Lu | | | 0.1 | | - | 0.3 | 0.6 | - | 0.2 | - |

RE₂O₅, wt.% | | | | | | 70.7 | - | 71.6 | - | - |

La/Nd | 1.00 | 0.77 | 1.17 | 0.84 | 0.65 | 1.28 | 1.08 | 0.85 | 0.64 | 1.00 |

ThO₂, wt.% | | | | | | 5.3 | 12.2 | 7.37 | - | - |

U₃O₈, wt.% | | | | | | | | 0.08 | - | - |
<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>102</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>20.3</td>
<td>15.9</td>
<td>22.4</td>
<td>17.9</td>
<td>23.0</td>
<td>28.5</td>
<td>22.4</td>
<td>20.4</td>
<td>18.7</td>
<td>22.3</td>
</tr>
<tr>
<td>Ce</td>
<td>44.5</td>
<td>48.8</td>
<td>39.4</td>
<td>52.3</td>
<td>36.9</td>
<td>41.8</td>
<td>42.5</td>
<td>43.8</td>
<td>48.1</td>
<td>42.1</td>
</tr>
<tr>
<td>Pr</td>
<td>5.4</td>
<td>5.5</td>
<td>8.4</td>
<td>10.4</td>
<td>5.6</td>
<td>6.3</td>
<td>3.8</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>22.2</td>
<td>22.0</td>
<td>25.5</td>
<td>29.8</td>
<td>21.6</td>
<td>24.0</td>
<td>22.4</td>
<td>25.8</td>
<td>20.2</td>
<td>21.6</td>
</tr>
<tr>
<td>Sm</td>
<td>5.8</td>
<td>6.0</td>
<td>2.0</td>
<td>6.0</td>
<td>3.5</td>
<td>4.9</td>
<td>1.8</td>
<td>3.6</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.8</td>
<td>1.0</td>
<td>2.1</td>
<td>2.1</td>
<td>1.0</td>
<td>2.2</td>
<td>1.2</td>
<td>4.7</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>0.9</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(3.3)</td>
<td>(1.0)</td>
<td>-</td>
<td>(1.9)</td>
<td>(4.2)</td>
<td>(4.6)</td>
<td>-</td>
<td>-</td>
<td>(12.8)</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>XF</td>
<td>-</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>70.2</td>
<td>70.2</td>
<td>OS</td>
<td>70.2</td>
<td>70.3</td>
<td>70.3</td>
<td>70.5</td>
<td>70.5</td>
<td>70.6</td>
<td>70.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>92.4</td>
<td>93.0</td>
<td>95.7</td>
<td>100.0</td>
<td>91.9</td>
<td>94.3</td>
<td>92.9</td>
<td>96.3</td>
<td>90.8</td>
<td>92.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>7.6</td>
<td>7.0</td>
<td>4.1</td>
<td>-</td>
<td>8.1</td>
<td>5.6</td>
<td>7.1</td>
<td>3.7</td>
<td>9.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3, wt.%</td>
<td>-</td>
<td>-</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52.3</td>
<td>57.4</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.91</td>
<td>0.70</td>
<td>0.88</td>
<td>0.60</td>
<td>1.06</td>
<td>1.19</td>
<td>1.00</td>
<td>0.79</td>
<td>0.93</td>
<td>1.03</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>15.5</td>
<td>9.9</td>
<td>-</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
<td>-</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.30</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-12. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
<th>115</th>
<th>116</th>
<th>117</th>
<th>118</th>
<th>119</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>15.6</td>
<td>21.2</td>
<td>16.5</td>
<td>19.0</td>
<td>18.3</td>
<td>11.3</td>
<td>21.3</td>
<td>11.4</td>
<td>18.9</td>
<td>32.5</td>
</tr>
<tr>
<td>Ce</td>
<td>49.3</td>
<td>48.1</td>
<td>45.7</td>
<td>42.6</td>
<td>52.4</td>
<td>55.3</td>
<td>42.6</td>
<td>55.4</td>
<td>46.8</td>
<td>33.6</td>
</tr>
<tr>
<td>Pr</td>
<td>5.7</td>
<td>1.4</td>
<td>8.5</td>
<td>9.1</td>
<td>-</td>
<td>4.2</td>
<td>6.9</td>
<td>4.1</td>
<td>5.2</td>
<td>4.9</td>
</tr>
<tr>
<td>Nd</td>
<td>22.4</td>
<td>22.2</td>
<td>22.4</td>
<td>23.6</td>
<td>29.3</td>
<td>16.2</td>
<td>23.7</td>
<td>16.2</td>
<td>20.7</td>
<td>20.1</td>
</tr>
<tr>
<td>Sm</td>
<td>5.4</td>
<td>4.2</td>
<td>3.4</td>
<td>3.8</td>
<td>-</td>
<td>9.0</td>
<td>2.8</td>
<td>9.0</td>
<td>5.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.6</td>
<td>2.5</td>
<td>1.6</td>
<td>1.9</td>
<td>-</td>
<td>4.0</td>
<td>2.3</td>
<td>3.9</td>
<td>2.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(4.8)</td>
<td>(1.8)</td>
<td>(7.2)</td>
<td>(1.5)</td>
<td>(7.5)</td>
<td>(4.3)</td>
<td>(4.0)</td>
<td>-</td>
<td>(3.2)</td>
<td>(7.2)</td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>EP</td>
<td>-</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>CH</td>
<td>-</td>
<td>XF</td>
<td>-</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>70.6</td>
<td>70.7</td>
<td>70.7</td>
<td>70.7</td>
<td>70.7</td>
<td>70.8</td>
<td>70.8</td>
<td>70.9</td>
<td>70.9</td>
<td>71.0</td>
</tr>
<tr>
<td>La-Nd</td>
<td>93.0</td>
<td>92.9</td>
<td>93.1</td>
<td>94.3</td>
<td>100.00</td>
<td>87.0</td>
<td>94.5</td>
<td>87.1</td>
<td>91.6</td>
<td>91.1</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>7.0</td>
<td>6.7</td>
<td>6.1</td>
<td>5.7</td>
<td>-</td>
<td>13.0</td>
<td>5.5</td>
<td>12.9</td>
<td>8.4</td>
<td>8.9</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.4</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>69.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>59.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.70</td>
<td>0.95</td>
<td>0.74</td>
<td>0.81</td>
<td>0.62</td>
<td>0.70</td>
<td>0.90</td>
<td>0.70</td>
<td>0.91</td>
<td>1.62</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>9.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.7</td>
<td>7.35</td>
<td>-</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-13. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>121</th>
<th>122</th>
<th>123</th>
<th>124</th>
<th>125</th>
<th>126</th>
<th>127</th>
<th>128</th>
<th>129</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.3</td>
<td>19.6</td>
<td>17.7</td>
<td>22.9</td>
<td>15.5</td>
<td>21.2</td>
<td>21.4</td>
<td>22.6</td>
<td>20.3</td>
<td>24.3</td>
</tr>
<tr>
<td>Ce</td>
<td>42.1</td>
<td>44.8</td>
<td>47.5</td>
<td>43.4</td>
<td>49.9</td>
<td>44.0</td>
<td>43.4</td>
<td>43.4</td>
<td>44.4</td>
<td>43.3</td>
</tr>
<tr>
<td>Pr</td>
<td>4.7</td>
<td>6.7</td>
<td>5.9</td>
<td>4.9</td>
<td>5.8</td>
<td>6.0</td>
<td>6.4</td>
<td>5.3</td>
<td>6.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Nd</td>
<td>17.7</td>
<td>19.1</td>
<td>22.5</td>
<td>19.9</td>
<td>22.0</td>
<td>23.0</td>
<td>23.6</td>
<td>18.9</td>
<td>20.6</td>
<td>21.0</td>
</tr>
<tr>
<td>Sm</td>
<td>7.6</td>
<td>4.2</td>
<td>5.2</td>
<td>3.5</td>
<td>5.7</td>
<td>4.3</td>
<td>2.6</td>
<td>6.0</td>
<td>3.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>3.6</td>
<td>3.6</td>
<td>1.2</td>
<td>2.6</td>
<td>1.1</td>
<td>-</td>
<td>1.3</td>
<td>3.8</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>1.2</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(4.6)</td>
<td>(5.0)</td>
<td>(6.3)</td>
<td>(2.9)</td>
<td>(6.9)</td>
<td>(8.6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>CH</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>-</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>71.1</td>
<td>71.1</td>
<td>71.1</td>
<td>71.2</td>
<td>71.2</td>
<td>71.2</td>
<td>71.3</td>
<td>71.3</td>
<td>71.3</td>
<td>-</td>
</tr>
<tr>
<td>La-Nd</td>
<td>88.8</td>
<td>90.2</td>
<td>93.6</td>
<td>91.1</td>
<td>93.2</td>
<td>94.2</td>
<td>94.8</td>
<td>90.2</td>
<td>91.9</td>
<td>92.3</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>11.2</td>
<td>9.6</td>
<td>6.4</td>
<td>7.4</td>
<td>6.8</td>
<td>5.8</td>
<td>4.8</td>
<td>9.8</td>
<td>7.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>0.6</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52.4</td>
<td>-</td>
<td>49.2</td>
<td>-</td>
<td>59.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.37</td>
<td>1.03</td>
<td>0.79</td>
<td>1.15</td>
<td>0.70</td>
<td>0.92</td>
<td>0.91</td>
<td>1.20</td>
<td>0.99</td>
<td>1.16</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>1.59</td>
<td>-</td>
<td>7.1</td>
<td>7.80</td>
<td>7.3</td>
<td>19.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-14. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>135</th>
<th>136</th>
<th>137</th>
<th>138</th>
<th>139</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.1</td>
<td>19.7</td>
<td>18.9</td>
<td>20.0</td>
<td>25.0</td>
<td>26.5</td>
<td>19.5</td>
<td>17.9</td>
<td>14.9</td>
<td>13.5</td>
</tr>
<tr>
<td>Ce</td>
<td>38.3</td>
<td>46.2</td>
<td>46.9</td>
<td>44.9</td>
<td>41.3</td>
<td>40.4</td>
<td>46.4</td>
<td>50.1</td>
<td>52.9</td>
<td>58.4</td>
</tr>
<tr>
<td>Pr</td>
<td>9.0</td>
<td>5.5</td>
<td>5.6</td>
<td>6.5</td>
<td>5.2</td>
<td>4.9</td>
<td>5.9</td>
<td>3.9</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>19.9</td>
<td>20.5</td>
<td>20.7</td>
<td>25.6</td>
<td>19.2</td>
<td>19.5</td>
<td>21.2</td>
<td>17.4</td>
<td>19.4</td>
<td>28.1</td>
</tr>
<tr>
<td>Sm</td>
<td>4.5</td>
<td>6.2</td>
<td>6.1</td>
<td>1.8</td>
<td>5.6</td>
<td>4.1</td>
<td>4.1</td>
<td>3.4</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.2</td>
<td>3.7</td>
<td>2.7</td>
<td>2.0</td>
<td>5.1</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
<td>0.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(5.4)</td>
<td>(2.4)</td>
<td>(1.9)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(12.4)</td>
<td>(6.6)</td>
<td></td>
</tr>
</tbody>
</table>

Method

- | OS | XF | XF | - | XF | XF | - | XF | EP | OS |
- | 71.4 | 71.4 | 71.4 | 71.4 | 71.5 | 71.8 | 71.8 | 71.9 | 71.9 | 71.9 |

La-Nd

- | 91.3 | 91.9 | 92.1 | 97.0 | 90.7 | 91.3 | 93.0 | 89.3 | 91.3 | 100.0 |

Sm-Ho

- | 8.6 | 8.1 | 7.9 | 3.0 | 9.3 | 8.7 | 7.0 | 9.9 | 8.7 | - |

Er-Lu

- | 0.1 | - | - | - | - | - | - | 0.8 | - | - |

RE₂O₃, wt.%

| | 36.3 | - | - | - | - | - | 56.29 | 47.2 | - |

La/Nd

| | 1.21 | 0.96 | 0.91 | 0.78 | 1.30 | 1.36 | 0.92 | 1.03 | 0.77 | 0.48 |

ThO₂, wt.%

| | 7.65 | 10.4 | 11.8 | - | - | - | - | 8.35 | 25.4 | 2.6 |

U₃O₈, wt.%

| | - | 0.1 | - | - | - | - | - | 0.56 | - | - |
Table 1-15. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>141</th>
<th>142</th>
<th>143</th>
<th>144</th>
<th>145</th>
<th>146</th>
<th>147</th>
<th>148</th>
<th>149</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.7</td>
<td>19.6</td>
<td>20.7</td>
<td>26.1</td>
<td>23.6</td>
<td>18.6</td>
<td>22.0</td>
<td>21.6</td>
<td>19.3</td>
<td>23.2</td>
</tr>
<tr>
<td>Ce</td>
<td>39.6</td>
<td>46.5</td>
<td>45.6</td>
<td>41.1</td>
<td>43.3</td>
<td>47.0</td>
<td>45.0</td>
<td>41.4</td>
<td>47.0</td>
<td>45.7</td>
</tr>
<tr>
<td>Pr</td>
<td>7.7</td>
<td>5.9</td>
<td>5.8</td>
<td>4.9</td>
<td>5.3</td>
<td>6.6</td>
<td>5.2</td>
<td>9.2</td>
<td>5.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Nd</td>
<td>19.0</td>
<td>21.2</td>
<td>18.9</td>
<td>21.6</td>
<td>19.7</td>
<td>20.3</td>
<td>20.9</td>
<td>22.8</td>
<td>24.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Sm</td>
<td>4.4</td>
<td>4.0</td>
<td>5.0</td>
<td>2.6</td>
<td>5.1</td>
<td>3.6</td>
<td>4.6</td>
<td>2.7</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.4</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.2</td>
<td>2.0</td>
<td>4.0</td>
<td>2.6</td>
<td>3.0</td>
<td>2.6</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>Tb</td>
<td>0.4</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.6</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(5.5)</td>
<td>(6.4)</td>
<td>(5.3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(3.5)</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>-</td>
<td>OS</td>
<td>-</td>
<td>XF</td>
<td>-</td>
<td>XF</td>
<td>OS</td>
<td>-</td>
<td>OS</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>72.0</td>
<td>72.0</td>
<td>72.1</td>
<td>72.1</td>
<td>72.2</td>
<td>72.2</td>
<td>72.2</td>
<td>72.2</td>
<td>72.2</td>
<td>72.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>91.0</td>
<td>93.2</td>
<td>91.0</td>
<td>93.7</td>
<td>91.9</td>
<td>92.5</td>
<td>93.1</td>
<td>95.0</td>
<td>96.4</td>
<td>97.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>8.9</td>
<td>6.8</td>
<td>9.0</td>
<td>5.8</td>
<td>8.1</td>
<td>7.5</td>
<td>6.9</td>
<td>4.8</td>
<td>3.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>59.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52.8</td>
<td>67.89</td>
<td>57.1</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.30</td>
<td>0.92</td>
<td>1.10</td>
<td>1.21</td>
<td>1.20</td>
<td>0.92</td>
<td>1.05</td>
<td>0.95</td>
<td>0.80</td>
<td>0.94</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>10.2</td>
<td>-</td>
<td>17.5</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.10</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Table 1-16. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y.

<table>
<thead>
<tr>
<th>Element</th>
<th>151</th>
<th>152</th>
<th>153</th>
<th>154</th>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.8</td>
<td>24.7</td>
<td>27.7</td>
<td>18.7</td>
<td>20.9</td>
<td>17.0</td>
<td>21.5</td>
<td>23.9</td>
<td>22.4</td>
<td>19.3</td>
</tr>
<tr>
<td>Ce</td>
<td>46.6</td>
<td>41.9</td>
<td>39.7</td>
<td>47.0</td>
<td>44.6</td>
<td>51.0</td>
<td>41.6</td>
<td>42.5</td>
<td>44.2</td>
<td>47.3</td>
</tr>
<tr>
<td>Pr</td>
<td>5.9</td>
<td>5.7</td>
<td>4.9</td>
<td>6.6</td>
<td>6.8</td>
<td>4.4</td>
<td>9.3</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Nd</td>
<td>17.5</td>
<td>18.8</td>
<td>19.3</td>
<td>20.3</td>
<td>20.8</td>
<td>18.0</td>
<td>23.0</td>
<td>22.7</td>
<td>18.1</td>
<td>21.3</td>
</tr>
<tr>
<td>Sm</td>
<td>4.1</td>
<td>3.6</td>
<td>3.8</td>
<td>3.6</td>
<td>4.3</td>
<td>3.5</td>
<td>2.6</td>
<td>2.9</td>
<td>4.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Eu</td>
<td>a</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>3.4a</td>
<td>2.3</td>
<td>2.9a</td>
<td>2.5</td>
<td>2.6</td>
<td>2.8a</td>
<td>2.0</td>
<td>1.9</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Tb</td>
<td>b</td>
<td>-</td>
<td>b</td>
<td>0.2</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.9</td>
<td>1.4</td>
<td>0.6</td>
<td>0.6</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Ho</td>
<td>0.4</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>1.0</td>
<td>1.4</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(4.9)b</td>
<td>(1.5)</td>
<td>(5.3)b</td>
<td>-</td>
<td>(12.8)b</td>
<td>(1.8)</td>
<td>(0.9)</td>
<td>(3.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method
CH CH CH - EP CH OS - XF -

Σ = La+Ce+Pr 72.3 72.3 72.3 72.3 72.3 72.4 72.4 72.5 72.6 72.6
La-Nd 89.8 91.1 91.6 92.6 93.1 90.4 95.4 95.2 90.7 93.9
Sm-Ho 8.8 7.3 7.5 7.4 6.9 8.2 4.6 4.8 8.4 6.1
Er-Lu 1.4 1.6 0.9 - - 1.4 - - 0.9 -

RE₂O₃, wt.% 52.42 58.0 55.14 - 68.92 55.6 - - - -

La/Nd 1.13 1.31 1.44 0.92 1.00 0.94 0.93 1.05 1.24 0.91
ThO₂, wt.% 8.52 5.50 8.50 - - 8.0 - 5.7 - -

U₃O₈, wt.% - - - - - - - - 0.1 -

Table 1-17. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>161</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.7</td>
<td>22.7</td>
<td>24.6</td>
<td>24.4</td>
<td>25.0</td>
<td>21.7</td>
<td>27.4</td>
<td>21.1</td>
<td>21.6</td>
<td>21.0</td>
</tr>
<tr>
<td>Ce</td>
<td>45.3</td>
<td>39.0</td>
<td>39.4</td>
<td>43.1</td>
<td>42.4</td>
<td>45.2</td>
<td>41.0</td>
<td>45.9</td>
<td>45.3</td>
<td>52.3</td>
</tr>
<tr>
<td>Pr</td>
<td>4.6</td>
<td>11.1</td>
<td>8.8</td>
<td>5.5</td>
<td>5.6</td>
<td>6.2</td>
<td>4.9</td>
<td>6.3</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>21.6</td>
<td>20.6</td>
<td>23.9</td>
<td>22.1</td>
<td>24.8</td>
<td>18.3</td>
<td>18.9</td>
<td>22.8</td>
<td>23.7</td>
<td>26.7</td>
</tr>
<tr>
<td>Sm</td>
<td>4.0</td>
<td>5.1</td>
<td>2.0</td>
<td>4.9</td>
<td>1.2</td>
<td>3.7</td>
<td>3.3</td>
<td>2.4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.8</td>
<td>1.3</td>
<td>1.2</td>
<td>-</td>
<td>1.0</td>
<td>3.2</td>
<td>2.5</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>1.2</td>
<td>0.5</td>
<td>0.4</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(4.6)</td>
<td>(1.2)</td>
<td>(1.8)</td>
<td>-</td>
<td>(1.4)</td>
<td>-</td>
<td>(5.7)</td>
<td>-</td>
<td>-</td>
<td>(10.3)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>XF</th>
<th>OS</th>
<th>OS</th>
<th>XF</th>
<th>CH</th>
<th>XF</th>
<th>OS</th>
<th>-</th>
<th>-</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ</td>
<td>La+Ce+Pr</td>
<td>72.6</td>
<td>72.8</td>
<td>72.8</td>
<td>73.0</td>
<td>73.0</td>
<td>73.1</td>
<td>73.3</td>
<td>73.3</td>
<td>73.3</td>
</tr>
<tr>
<td>La-Nd</td>
<td>94.2</td>
<td>93.4</td>
<td>96.7</td>
<td>95.1</td>
<td>97.8</td>
<td>91.4</td>
<td>92.2</td>
<td>96.1</td>
<td>97.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>5.8</td>
<td>6.6</td>
<td>3.3</td>
<td>4.9</td>
<td>2.2</td>
<td>8.3</td>
<td>7.7</td>
<td>3.8</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>63.8</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.05</td>
<td>1.10</td>
<td>1.03</td>
<td>1.10</td>
<td>1.01</td>
<td>1.19</td>
<td>1.45</td>
<td>0.92</td>
<td>0.91</td>
<td>0.79</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.46</td>
<td>-</td>
<td>-</td>
<td>6.3</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-18. Monazite from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd as Y

<table>
<thead>
<tr>
<th>Method</th>
<th>XF</th>
<th>CH</th>
<th>OS</th>
<th>OS</th>
<th>XF</th>
<th>XF</th>
<th>XF</th>
<th>OS</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>73.4</td>
<td>73.4</td>
<td>73.5</td>
<td>73.5</td>
<td>73.5</td>
<td>73.6</td>
<td>73.6</td>
<td>73.7</td>
<td>73.7</td>
</tr>
<tr>
<td>La-Nd</td>
<td>92.1</td>
<td>92.4</td>
<td>91.5</td>
<td>93.5</td>
<td>94.2</td>
<td>95.1</td>
<td>98.0</td>
<td>87.4</td>
<td>88.6</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>7.9</td>
<td>7.0</td>
<td>8.4</td>
<td>6.5</td>
<td>5.8</td>
<td>4.9</td>
<td>2.0</td>
<td>9.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.6</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>43.65</td>
<td>75.5</td>
<td>66.1</td>
<td>-</td>
<td>-</td>
<td>53.8</td>
<td>44.8</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.03</td>
<td>1.18</td>
<td>1.36</td>
<td>1.37</td>
<td>1.20</td>
<td>1.11</td>
<td>0.83</td>
<td>1.60</td>
<td>1.85</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>3.0</td>
<td>9.41</td>
<td>11.5</td>
<td>5.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-19. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th></th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y/(Y+La)x100</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td></td>
<td>3.9</td>
<td>CH</td>
</tr>
<tr>
<td>182</td>
<td>19.1</td>
<td>24.8</td>
<td>22.5</td>
<td>23.5</td>
<td>18.2</td>
<td>24.0</td>
<td>26.2</td>
<td>28.2</td>
<td>19.8</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(8.4)</td>
<td>XF</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td>(6.8)</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>(4.3)</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>(6.1)</td>
</tr>
<tr>
<td>186</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

La-Nd: 93.8 94.4 84.0 92.4 94.0 95.1 95.3 92.5 92.7 93.1
Sm-Ho: 6.2 5.6 16.0 7.6 5.6 4.7 4.4 7.4 6.9 6.7
Er-Lu: 0.4 0.2 0.3 0.1 0.4 0.2
RE₂O₃, wt.%: 58.8 46.3 60.6 56.8 57.15 65.9 55.6
La/Nd: 0.95 1.20 2.21 1.26 0.90 1.13 1.22 1.52 1.06 1.13
ThO₂, wt.%: 19.5 7.1 6.44 8.0
U₃O₈, wt.%: 1.6 - - - - - - - -
Table 1-20. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd

<table>
<thead>
<tr>
<th></th>
<th>191</th>
<th>192</th>
<th>193</th>
<th>194</th>
<th>195</th>
<th>196</th>
<th>197</th>
<th>198</th>
<th>199</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>27.6</td>
<td>24.4</td>
<td>18.7</td>
<td>25.6</td>
<td>25.9</td>
<td>21.1</td>
<td>26.2</td>
<td>23.0</td>
<td>24.9</td>
<td>25.0</td>
</tr>
<tr>
<td>Ce</td>
<td>41.7</td>
<td>44.0</td>
<td>55.3</td>
<td>44.2</td>
<td>42.5</td>
<td>46.6</td>
<td>37.6</td>
<td>44.8</td>
<td>44.7</td>
<td>43.8</td>
</tr>
<tr>
<td>Pr</td>
<td>4.7</td>
<td>5.6</td>
<td></td>
<td>4.3</td>
<td>5.7</td>
<td>6.4</td>
<td>10.3</td>
<td>6.3</td>
<td>4.6</td>
<td>5.4</td>
</tr>
<tr>
<td>Nd</td>
<td>19.8</td>
<td>20.5</td>
<td>26.0</td>
<td>16.0</td>
<td>18.5</td>
<td>19.2</td>
<td>21.5</td>
<td>22.3</td>
<td>17.3</td>
<td>20.0</td>
</tr>
<tr>
<td>Sm</td>
<td>3.1</td>
<td>3.3</td>
<td></td>
<td>3.6</td>
<td>4.3</td>
<td>2.9</td>
<td>1.8</td>
<td>1.4</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Eu</td>
<td>0.2</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
<td>1.5</td>
<td>3.1</td>
<td>2.2</td>
<td>2.6</td>
<td>1.5</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
<td></td>
<td></td>
<td>0.7</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.6</td>
<td></td>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>0.3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(2.3)</td>
<td>(0.3)</td>
<td>(7.2)</td>
<td>(2.6)</td>
<td></td>
<td>(2.6)</td>
<td>(1.5)</td>
<td>(1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>CH</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>CH</td>
<td>XF</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>74.1</td>
<td>74.1</td>
<td>74.1</td>
<td>74.1</td>
<td>74.1</td>
<td>74.2</td>
<td>74.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>93.8</td>
<td>94.5</td>
<td>100.0</td>
<td>90.1</td>
<td>92.6</td>
<td>93.3</td>
<td>95.6</td>
<td>96.4</td>
<td>91.5</td>
<td>94.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>6.2</td>
<td>5.5</td>
<td></td>
<td>9.2</td>
<td>7.4</td>
<td>6.4</td>
<td>4.4</td>
<td>3.2</td>
<td>6.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Er-Lu</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>0.3</td>
<td>0.4</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE$_2$O$_3$, wt.%</td>
<td>63.2</td>
<td>49.6</td>
<td></td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56.6</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.39</td>
<td>1.19</td>
<td>0.72</td>
<td>1.60</td>
<td>1.40</td>
<td>1.10</td>
<td>1.22</td>
<td>1.03</td>
<td>1.44</td>
<td>1.25</td>
</tr>
<tr>
<td>ThO$_2$, wt.%</td>
<td>6.34</td>
<td></td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.61</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>U$_3$O$_8$, wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207a</td>
<td>207b</td>
<td>208</td>
<td>209</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>La</td>
<td>23.9</td>
<td>23.4</td>
<td>30.0</td>
<td>23.4</td>
<td>19.9</td>
<td>25.0</td>
<td>23.8</td>
<td>24.2</td>
<td>20.5</td>
<td>22.4</td>
</tr>
<tr>
<td>Ce</td>
<td>44.9</td>
<td>45.3</td>
<td>39.4</td>
<td>45.6</td>
<td>48.8</td>
<td>49.4</td>
<td>45.0</td>
<td>46.2</td>
<td>49.0</td>
<td>46.2</td>
</tr>
<tr>
<td>Pr</td>
<td>5.4</td>
<td>5.5</td>
<td>4.9</td>
<td>5.3</td>
<td>5.6</td>
<td>-</td>
<td>5.6</td>
<td>5.4</td>
<td>4.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Nd</td>
<td>20.8</td>
<td>21.6</td>
<td>18.8</td>
<td>20.3</td>
<td>23.3</td>
<td>16.8</td>
<td>18.9</td>
<td>17.8</td>
<td>19.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Sm</td>
<td>3.3</td>
<td>2.3</td>
<td>3.4</td>
<td>3.5</td>
<td>2.4</td>
<td>2.3</td>
<td>3.8</td>
<td>3.3</td>
<td>2.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.7</td>
<td>0.8</td>
<td>2.2</td>
<td>1.7</td>
<td>-</td>
<td>6.5</td>
<td>2.9</td>
<td>3.1</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.1</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>(4.5)</td>
<td>(9.2)</td>
<td>(9.1)</td>
<td>(1.9)</td>
<td>-</td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
<td>EP</td>
<td>INA</td>
<td>OS</td>
<td>OS</td>
<td>CH</td>
<td>XF</td>
</tr>
<tr>
<td>ε = La+Ce+Pr</td>
<td>74.2</td>
<td>74.2</td>
<td>74.3</td>
<td>74.3</td>
<td>74.3</td>
<td>74.4</td>
<td>74.4</td>
<td>75.8</td>
<td>74.4</td>
<td>74.5</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.0</td>
<td>95.8</td>
<td>93.1</td>
<td>94.6</td>
<td>97.6</td>
<td>91.2</td>
<td>93.3</td>
<td>93.6</td>
<td>93.4</td>
<td>91.5</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>5.0</td>
<td>4.2</td>
<td>6.9</td>
<td>5.2</td>
<td>2.4</td>
<td>8.8</td>
<td>6.7</td>
<td>6.4</td>
<td>6.5</td>
<td>8.1</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53.55</td>
<td>71.63</td>
<td>-</td>
<td>-</td>
<td>53.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.15</td>
<td>1.08</td>
<td>1.60</td>
<td>1.15</td>
<td>0.85</td>
<td>1.49</td>
<td>1.26</td>
<td>1.36</td>
<td>1.08</td>
<td>1.32</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.63</td>
<td>-</td>
<td>1.94</td>
<td>21.3</td>
<td>19.5</td>
<td>16.30</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216a</td>
<td>216b</td>
<td>217</td>
<td>218</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>La</td>
<td>23.2</td>
<td>23.7</td>
<td>23.8</td>
<td>24.4</td>
<td>25.6</td>
<td>23.8</td>
<td>23.7</td>
<td>23.3</td>
<td>22.9</td>
<td>25.5</td>
</tr>
<tr>
<td>Ce</td>
<td>45.2</td>
<td>45.4</td>
<td>50.8</td>
<td>44.8</td>
<td>40.0</td>
<td>45.7</td>
<td>45.5</td>
<td>47.0</td>
<td>46.1</td>
<td>40.2</td>
</tr>
<tr>
<td>Pr</td>
<td>6.2</td>
<td>5.5</td>
<td>-</td>
<td>5.5</td>
<td>9.2</td>
<td>5.4</td>
<td>5.7</td>
<td>5.4</td>
<td>6.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Nd</td>
<td>17.3</td>
<td>19.7</td>
<td>25.4</td>
<td>20.4</td>
<td>18.1</td>
<td>19.9</td>
<td>20.4</td>
<td>19.8</td>
<td>16.2</td>
<td>18.4</td>
</tr>
<tr>
<td>Sm</td>
<td>3.4</td>
<td>3.7</td>
<td>-</td>
<td>3.3</td>
<td>3.6</td>
<td>3.2</td>
<td>3.6</td>
<td>3.4</td>
<td>6.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.9</td>
<td>2.0</td>
<td>-</td>
<td>1.6</td>
<td>3.0</td>
<td>2.0</td>
<td>1.1</td>
<td>1.1</td>
<td>2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>-</td>
<td>-</td>
<td>(8.4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(7.2)</td>
<td>(5.5)</td>
</tr>
</tbody>
</table>

Method
XF XF OS XF OS XF OS OS EP OS
Σ = La+Ce+Pr 74.6 | 74.6 | 74.6 | 74.7 | 74.8 | 74.9 | 74.9 | 75.7 | 75.0 | 75.0 |
La-Nd 91.9 | 94.3 | 100.0 | 95.1 | 92.9 | 94.8 | 95.3 | 95.5 | 91.2 | 93.4 |
Sm-Ho 7.7 | 5.7 | - | 4.9 | 6.6 | 5.2 | 4.7 | 4.5 | 8.8 | 6.6 |
Er-Lu 0.4 | - | - | - | 0.5 | - | - | - | - | - |
RE₂O₃, wt.% | - | - | - | - | 45.7 | - | - | - | 60.3 | - |
La/Nd 1.34 | 1.20 | 0.94 | 1.20 | 1.41 | 1.20 | 1.16 | 1.18 | 1.41 | 1.39 |
ThO₂, wt.% | - | - | 10.3 | - | - | - | 10.9 | 7.7 | 5.6 | - |
U₃O₈, wt.% | - | - | - | - | - | - | - | 0.4 | - |
<table>
<thead>
<tr>
<th>Element</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.8</td>
<td>45.6</td>
<td>5.6</td>
<td>19.8</td>
<td>3.2</td>
<td>-</td>
<td>2.0</td>
<td>2.9</td>
<td>1.2</td>
<td>4.3</td>
<td>2.6</td>
<td>5.5</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>21.8</td>
<td>47.1</td>
<td>5.2</td>
<td>20.1</td>
<td>2.7</td>
<td>-</td>
<td>1.1</td>
<td>1.0</td>
<td>0.5</td>
<td>1.6</td>
<td>1.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>49.6</td>
<td>9.0</td>
<td>21.3</td>
<td>1.6</td>
<td>-</td>
<td>1.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.5</td>
<td>40.6</td>
<td>5.6</td>
<td>15.3</td>
<td>2.0</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.9</td>
<td>48.7</td>
<td>4.7</td>
<td>15.9</td>
<td>3.4</td>
<td>-</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.9</td>
<td>51.6</td>
<td>4.9</td>
<td>16.2</td>
<td>2.6</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.9</td>
<td>47.4</td>
<td>6.8</td>
<td>17.0</td>
<td>3.3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.9</td>
<td>46.5</td>
<td>6.9</td>
<td>17.7</td>
<td>3.2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.0</td>
<td>47.3</td>
<td>5.0</td>
<td>19.2</td>
<td>3.3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>46.2</td>
<td></td>
<td></td>
<td>3.3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Tb + Dy + Y calcd. as Y

<table>
<thead>
<tr>
<th></th>
<th>219</th>
<th>220</th>
<th>221</th>
<th>222</th>
<th>223</th>
<th>224</th>
<th>225</th>
<th>226</th>
<th>227</th>
<th>228</th>
</tr>
</thead>
<tbody>
<tr>
<td>La/Nd</td>
<td>1.20</td>
<td>1.15</td>
<td>1.01</td>
<td>1.20</td>
<td>1.37</td>
<td>1.19</td>
<td>1.41</td>
<td>1.29</td>
<td>1.19</td>
<td>1.25</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-24. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y/(Y+La)×100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>229</td>
<td>230</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>22.6</td>
<td>24.3</td>
<td>23.6</td>
<td>21.9</td>
<td>23.6</td>
<td>21.4</td>
<td>24.8</td>
<td>23.2</td>
<td>20.5</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>46.9</td>
<td>45.8</td>
<td>46.9</td>
<td>47.6</td>
<td>41.8</td>
<td>48.7</td>
<td>45.5</td>
<td>47.0</td>
<td>50.2</td>
<td>47.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>5.7</td>
<td>5.2</td>
<td>4.8</td>
<td>5.9</td>
<td>10.0</td>
<td>5.3</td>
<td>5.1</td>
<td>5.2</td>
<td>4.8</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>20.0</td>
<td>18.6</td>
<td>21.7</td>
<td>17.0</td>
<td>18.8</td>
<td>19.2</td>
<td>19.8</td>
<td>21.4</td>
<td>16.8</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>2.4</td>
<td>3.8</td>
<td>3.0</td>
<td>2.5</td>
<td>1.8</td>
<td>3.5</td>
<td>3.0</td>
<td>1.4</td>
<td>2.8</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.3</td>
<td>1.9</td>
<td>-</td>
<td>2.1</td>
<td>3.7</td>
<td>1.9</td>
<td>1.8</td>
<td>1.1</td>
<td>2.6</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>1.0</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>0.6</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(3.1)</td>
<td>(12.8)</td>
<td>(6.7)</td>
<td>-</td>
<td>(1.0)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>OS</td>
<td>EP</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>75.2</td>
<td>75.3</td>
<td>75.3</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
<td>75.4</td>
<td>75.5</td>
<td>75.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.2</td>
<td>93.9</td>
<td>97.0</td>
<td>92.4</td>
<td>94.2</td>
<td>94.6</td>
<td>95.2</td>
<td>96.8</td>
<td>92.3</td>
<td>92.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.6</td>
<td>5.9</td>
<td>3.0</td>
<td>6.7</td>
<td>5.5</td>
<td>5.4</td>
<td>4.8</td>
<td>3.2</td>
<td>7.1</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.9</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>-</td>
<td>66.53</td>
<td>-</td>
<td>57.0</td>
<td>-</td>
<td>-</td>
<td>44.6</td>
<td>43.4</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.13</td>
<td>1.31</td>
<td>1.09</td>
<td>1.29</td>
<td>1.26</td>
<td>1.11</td>
<td>1.25</td>
<td>1.08</td>
<td>1.22</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>9.97</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>240</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>22.3</td>
<td>22.0</td>
<td>25.4</td>
<td>19.7</td>
<td>20.3</td>
<td>24.8</td>
<td>25.3</td>
<td>25.7</td>
<td>21.1</td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>49.8</td>
<td>47.7</td>
<td>45.0</td>
<td>47.6</td>
<td>49.3</td>
<td>45.8</td>
<td>45.2</td>
<td>46.0</td>
<td>48.6</td>
<td>47.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>3.4</td>
<td>5.8</td>
<td>5.1</td>
<td>8.3</td>
<td>6.0</td>
<td>5.1</td>
<td>5.2</td>
<td>4.1</td>
<td>6.2</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>18.7</td>
<td>19.3</td>
<td>19.6</td>
<td>20.7</td>
<td>21.89</td>
<td>19.0</td>
<td>20.1</td>
<td>15.3</td>
<td>17.1</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>3.1</td>
<td>4.8</td>
<td>2.9</td>
<td>3.7</td>
<td>2.6</td>
<td>3.4</td>
<td>2.4</td>
<td>2.7</td>
<td>3.2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.7</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>1.3a</td>
<td>2.4</td>
<td>2.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>2.2</td>
<td>1.0</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(5.7)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1.2)b</td>
<td>(2.6)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>EP</th>
<th>XF</th>
<th>XF</th>
<th>XF</th>
<th>XF</th>
<th>CH</th>
<th>XF</th>
<th>XF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>75.5</td>
<td>75.5</td>
<td>75.5</td>
<td>75.6</td>
<td>75.6</td>
<td>75.7</td>
<td>75.7</td>
<td>75.8</td>
</tr>
<tr>
<td>La-Nd</td>
<td>94.2</td>
<td>94.8</td>
<td>95.1</td>
<td>96.3</td>
<td>97.4</td>
<td>94.7</td>
<td>95.8</td>
<td>91.1</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>5.5</td>
<td>5.2</td>
<td>4.9</td>
<td>3.7</td>
<td>2.6</td>
<td>5.3</td>
<td>4.2</td>
<td>7.3</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>RE₂O₅, wt.%</td>
<td>48.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>63.03</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.95</td>
<td>0.93</td>
<td>1.31</td>
<td>1.26</td>
<td>1.68</td>
<td>1.23</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>5.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-26. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th>Element</th>
<th>249</th>
<th>250</th>
<th>251</th>
<th>252</th>
<th>253</th>
<th>254</th>
<th>255</th>
<th>256</th>
<th>257</th>
<th>258</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>26.6</td>
<td>23.3</td>
<td>21.2</td>
<td>25.3</td>
<td>22.5</td>
<td>22.2</td>
<td>26.0</td>
<td>24.0</td>
<td>21.1</td>
<td>24.4</td>
</tr>
<tr>
<td>Ce</td>
<td>43.7</td>
<td>42.0</td>
<td>49.1</td>
<td>45.9</td>
<td>47.4</td>
<td>49.4</td>
<td>50.0</td>
<td>46.2</td>
<td>49.9</td>
<td>45.4</td>
</tr>
<tr>
<td>Pr</td>
<td>5.7</td>
<td>10.7</td>
<td>5.7</td>
<td>4.8</td>
<td>6.1</td>
<td>4.4</td>
<td>-</td>
<td>5.9</td>
<td>5.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Nd</td>
<td>17.3</td>
<td>18.4</td>
<td>18.6</td>
<td>18.7</td>
<td>19.0</td>
<td>21.2</td>
<td>24.0</td>
<td>18.7</td>
<td>19.2</td>
<td>19.5</td>
</tr>
<tr>
<td>Sm</td>
<td>4.1</td>
<td>1.9</td>
<td>2.7</td>
<td>3.2</td>
<td>3.3</td>
<td>2.8</td>
<td>-</td>
<td>2.9</td>
<td>2.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.6</td>
<td>3.7</td>
<td>1.5</td>
<td>2.1</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.7</td>
<td>1.8²</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.0)</td>
<td>(3.7)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(9.1)</td>
<td>(4.0)</td>
<td>(5.8)²</td>
<td>(4.6)</td>
</tr>
</tbody>
</table>

Method
- CH | OS | XF | XF | OS | EP | OS | ID | CH | EP |

La + Ce + Pr = 76.0
La-Nd = 3.3
94.4
94.7
95.0
97.2
100.00
94.8
95.3
95.6

Sm-Ho = 6.7
5.6
5.4
5.3
4.8
2.8
-5.1
4.6
4.4

Er-Lu = -
-0.2
-0.1
0.1

RE₂O₃, wt.% = 52.13
46.8
63.75

La/Nd = 1.54
1.27
1.14
1.35
1.18
1.05
1.08
1.28
1.10
1.25

ThO₂, wt.% = 6.46
15.3
8.12
4.00
11.6

U₃O₈, wt.% = 0.09
-0.30

Table 1-27. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th>Element</th>
<th>259</th>
<th>260</th>
<th>261</th>
<th>262</th>
<th>263</th>
<th>264</th>
<th>265</th>
<th>266</th>
<th>267</th>
<th>268</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>23.7</td>
<td>24.3</td>
<td>23.7</td>
<td>25.7</td>
<td>25.9</td>
<td>22.1</td>
<td>25.7</td>
<td>26.9</td>
<td>26.4</td>
<td>25.5</td>
</tr>
<tr>
<td>Ce</td>
<td>47.6</td>
<td>46.8</td>
<td>47.4</td>
<td>45.7</td>
<td>46.4</td>
<td>49.7</td>
<td>46.0</td>
<td>44.4</td>
<td>45.2</td>
<td>51.0</td>
</tr>
<tr>
<td>Pr</td>
<td>4.9</td>
<td>5.1</td>
<td>5.1</td>
<td>4.9</td>
<td>4.1</td>
<td>4.6</td>
<td>4.8</td>
<td>5.2</td>
<td>4.9</td>
<td>-</td>
</tr>
<tr>
<td>Nd</td>
<td>13.4</td>
<td>18.7</td>
<td>19.0</td>
<td>19.0</td>
<td>15.5</td>
<td>18.4</td>
<td>18.4</td>
<td>18.5</td>
<td>18.8</td>
<td>23.5</td>
</tr>
<tr>
<td>Sm</td>
<td>6.9</td>
<td>3.6</td>
<td>2.9</td>
<td>3.2</td>
<td>2.7</td>
<td>2.4</td>
<td>2.9</td>
<td>3.0</td>
<td>3.2</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>3.5</td>
<td>1.5</td>
<td>1.9</td>
<td>1.5</td>
<td>2.4</td>
<td>1.2</td>
<td>2.2</td>
<td>2.0</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(6.4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(2.6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(8.0)</td>
<td></td>
</tr>
</tbody>
</table>

Method: EP, XF, CH, XF, XF, XF, XF, XF, OS

\[z = La + Ce + Pr \]

\[\Sigma = La + Ce + Pr \]

La-Nd: 76.2 76.2 76.2 76.2 76.3 76.4 76.4 76.5 76.5 76.5 76.5

Sm-Ho: 10.4 5.1 4.8 4.7 6.5 4.7 5.1 5.0 4.7

Er-Lu: - - - - 1.6 0.5 - - - -

RE₂O₃, wt.%: 60.2 - - - 62.4 - - - -

La/Nd: 1.77 1.30 1.25 1.35 1.67 1.20 1.40 1.45 1.40 1.09

ThO₂, wt.%: 4.5 - - - 8.75 - - - -

U₂O₈, wt.%: 2.5 - - - - - - - -
Table 1-28. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y/(Y+La) x100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>269</td>
<td>270</td>
<td>271</td>
<td>273</td>
<td>273</td>
<td>274</td>
<td>275</td>
<td>276</td>
<td>277</td>
<td>278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>19.2</td>
<td>25.6</td>
<td>23.2</td>
<td>21.7</td>
<td>19.3</td>
<td>21.0</td>
<td>23.1</td>
<td>25.2</td>
<td>26.2</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>51.5</td>
<td>45.9</td>
<td>48.1</td>
<td>52.3</td>
<td>53.4</td>
<td>49.3</td>
<td>47.8</td>
<td>47.1</td>
<td>42.1</td>
<td>46.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>5.9</td>
<td>5.1</td>
<td>5.3</td>
<td>2.7</td>
<td>4.0</td>
<td>6.5</td>
<td>5.9</td>
<td>4.5</td>
<td>8.5</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>16.8</td>
<td>17.6</td>
<td>19.6</td>
<td>18.0</td>
<td>18.6</td>
<td>18.6</td>
<td>19.0</td>
<td>18.4</td>
<td>19.0</td>
<td>19.3</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>3.8</td>
<td>3.0</td>
<td>1.4</td>
<td>2.9</td>
<td>3.0</td>
<td>2.4</td>
<td>2.1</td>
<td>2.4</td>
<td>2.3</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>2.1</td>
<td>2.8</td>
<td>1.2</td>
<td>1.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.8</td>
<td>1.8</td>
<td>1.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>b</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.7</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>0.4</td>
<td>1.3</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x100</td>
<td>(0.9)b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(7.2)</td>
<td>(2.2)</td>
<td>(1.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method | CH | XF | XF | EP | XF | XF | - | OS | OS | XF | |
Σ = La+Ce+Pr | 76.6 | 76.6 | 76.6 | 76.7 | 76.7 | 76.8 | 76.8 | 76.8 | 76.8 | 76.8 | |
La-Nd | 93.4 | 94.2 | 96.2 | 94.7 | 95.3 | 92.8 | 95.2 | 95.8 | 96.1 | 96.4 | |
Sm-Ho | 6.6 | 5.8 | 3.8 | 5.1 | 4.5 | 5.6 | 4.7 | 4.2 | 3.9 | 3.4 | |
Er-Lu | - | - | - | 0.2 | 0.2 | 1.6 | 0.1 | - | - | 0.2 | |
RE₂O₃, wt.% | - | - | 55.1 | 49.05 | 68.3 | - | - | - | - | - | |
La/Nd | 1.14 | 1.45 | 1.18 | 1.21 | 1.04 | 1.31 | 1.26 | 1.33 | 1.36 | 1.19 | |
ThO₂, wt.% | 8.48 | - | - | - | - | - | - | - | 6.7 | - | |
U₃O₈, wt.% | 0.04 | - | - | - | - | - | - | - | - | - | |
<table>
<thead>
<tr>
<th></th>
<th>279</th>
<th>280</th>
<th>281</th>
<th>282</th>
<th>283</th>
<th>284</th>
<th>285</th>
<th>286</th>
<th>287</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.0</td>
<td>25.2</td>
<td>28.0</td>
<td>23.3</td>
<td>21.5</td>
<td>24.3</td>
<td>26.3</td>
<td>28.3</td>
<td>23.8</td>
<td>23.1</td>
</tr>
<tr>
<td>Ce</td>
<td>50.7</td>
<td>51.6</td>
<td>42.9</td>
<td>51.9</td>
<td>52.8</td>
<td>46.8</td>
<td>45.5</td>
<td>46.8</td>
<td>46.8</td>
<td>48.0</td>
</tr>
<tr>
<td>Pr</td>
<td>4.1</td>
<td>-</td>
<td>6.0</td>
<td>1.7</td>
<td>2.6</td>
<td>5.8</td>
<td>5.1</td>
<td>1.8</td>
<td>6.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Nd</td>
<td>20.3</td>
<td>23.2</td>
<td>13.9</td>
<td>14.7</td>
<td>17.2</td>
<td>17.3</td>
<td>17.5</td>
<td>18.3</td>
<td>18.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Sm</td>
<td>2.0</td>
<td>-</td>
<td>4.2</td>
<td>3.1</td>
<td>3.1</td>
<td>2.7</td>
<td>3.2</td>
<td>4.4</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Eu</td>
<td>a</td>
<td>-</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>0.7</td>
<td>-</td>
<td>3.8</td>
<td>2.6</td>
<td>1.7</td>
<td>2.0</td>
<td>2.4</td>
<td>0.4</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Tb</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>0.6</td>
<td>0.4</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(0.9)</td>
<td>(7.2)</td>
<td>(2.4)</td>
<td>(10.1)</td>
<td>-</td>
<td>(8.7)</td>
<td>-</td>
<td>(21.5)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th>CH</th>
<th>OS</th>
<th>XF</th>
<th>EP</th>
<th>CH</th>
<th>XF</th>
<th>-</th>
<th>XF</th>
<th>XF</th>
</tr>
</thead>
</table>

Σ = La+Ce+Pr	76.8	76.8	76.9	76.9	76.9	76.9	76.9	76.9	76.9	76.9
La-Nd	97.1	100.0	90.8	91.6	94.1	94.2	94.4	95.2	95.2	95.3
Sm-Ho	2.9	-	8.8	7.7	5.6	5.4	5.6	4.8	4.8	4.6
Er-Lu	-	-	0.4	0.7	0.3	0.4	-	-	0.1	
RE₂O₃, wt.%	61.0	-	-	-	53.99	50.13	-	-	-	-
La/Nd	1.08	1.09	2.01	1.59	1.25	1.40	1.50	1.55	1.30	1.26
ThO₂, wt.%	7.23	9.7	-	-	-	5.77	-	-	-	-
U₃O₈, wt.%	-	-	-	-	-	-	-	-	-	-

Table 1-29. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd) (a) Eu + Gd calc. as Gd; (b) Tb + Y calc. as Y
Table 1-30. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th>Element</th>
<th>289</th>
<th>290</th>
<th>291</th>
<th>292</th>
<th>293</th>
<th>294</th>
<th>295</th>
<th>296</th>
<th>297</th>
<th>298</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.8</td>
<td>26.4</td>
<td>22.3</td>
<td>26.6</td>
<td>25.9</td>
<td>25.0</td>
<td>24.1</td>
<td>24.1</td>
<td>25.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Ce</td>
<td>48.3</td>
<td>42.1</td>
<td>48.1</td>
<td>46.9</td>
<td>46.2</td>
<td>52.1</td>
<td>47.9</td>
<td>48.3</td>
<td>46.3</td>
<td>51.1</td>
</tr>
<tr>
<td>Pr</td>
<td>5.8</td>
<td>8.4</td>
<td>6.6</td>
<td>3.6</td>
<td>5.0</td>
<td>-</td>
<td>5.2</td>
<td>4.8</td>
<td>5.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Nd</td>
<td>18.9</td>
<td>19.2</td>
<td>16.2</td>
<td>14.8</td>
<td>18.5</td>
<td>22.9</td>
<td>12.7</td>
<td>17.2</td>
<td>18.5</td>
<td>18.7</td>
</tr>
<tr>
<td>Sm</td>
<td>1.6</td>
<td>2.2</td>
<td>2.6</td>
<td>1.9</td>
<td>2.9</td>
<td>-</td>
<td>3.7</td>
<td>2.8</td>
<td>2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>2.0</td>
<td>1.5</td>
<td>1.7</td>
<td>3.3</td>
<td>1.5</td>
<td>-</td>
<td>2.8</td>
<td>2.8</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>-</td>
<td>1.1</td>
<td>2.0</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(3.2)</td>
<td>-</td>
<td>(2.3)</td>
<td>-</td>
<td>(6.3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>76.9</td>
<td>76.9</td>
<td>77.0</td>
<td>77.1</td>
<td>77.1</td>
<td>77.1</td>
<td>77.2</td>
<td>77.2</td>
<td>77.2</td>
<td></td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.8</td>
<td>96.1</td>
<td>93.2</td>
<td>91.9</td>
<td>95.6</td>
<td>100.0</td>
<td>89.9</td>
<td>94.4</td>
<td>95.7</td>
<td>95.9</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>3.8</td>
<td>3.7</td>
<td>6.0</td>
<td>7.9</td>
<td>4.4</td>
<td>-</td>
<td>9.2</td>
<td>5.6</td>
<td>4.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.4</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>51.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.21</td>
<td>1.38</td>
<td>1.38</td>
<td>1.80</td>
<td>1.40</td>
<td>1.09</td>
<td>1.90</td>
<td>1.40</td>
<td>1.40</td>
<td>1.20</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>9.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35
	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y/(Y+La)	Method	RE₂O₃ wt.%	La/Nd	ThO₂ wt.%	U₃O₈ wt.%
La	24.4	23.9	28.3	29.0	26.6	25.0	24.1	26.9	16.3	23.0										
Ce	47.8	48.1	43.5	43.1	45.8	475.	48.4	46.3	55.3	48.7										
Pr	5.1	5.3	5.5	5.2	5.0	5.0	5.1	4.4	6.0	5.9										
Nd	18.1	18.4	18.9	19.6	18.3	15.5	14.4	17.3	17.5	18.2										
Sm	2.7	3.3	3.8	1.8	2.8	5.0	5.4	2.9	3.0	1.5										
Eu	-	-	-	0.3	-	-	-	-	-	a										
Gd	1.9	1.0	-	0.9	1.5	2.0	2.6	2.2	1.9^a	1.9										
Tb	-	-	-	-	-	-	-	-	-	-										
Dy	-	-	-	0.1	-	-	-	-	-	0.3										
Ho	-	-	-	-	-	-	-	-	-	-										
Er	-	-	-	-	-	-	-	-	0.4											
Tm	-	-	-	-	-	-	-	-	-											
Yb	-	-	-	-	-	-	-	-	0.1											
Lu	-	-	-	-	-	-	-	-	-											
Y/(Y+La)x100	-	(0.9)	-	-	-	(1.4)	(1.7)	-	(2.0)	(3.2)										
Method	XF	OS	XF	XF	XF	EP	EP	XF	CH	-										
Σ = La+Ce+Pr	77.3	77.3	77.3	77.3	77.4	77.5	77.6	77.6	-	-										
La-Nd	95.4	95.7	96.2	96.9	95.7	93.0	92.0	94.9	95.1	95.8										
Sm-Ho	4.6	4.3	3.8	3.1	4.3	7.0	8.0	5.1	4.9	3.7										
Er-Lu	-	-	-	-	-	-	-	0.5												
RE₂O₃ wt.%	-	-	-	-	-	-	-	63.4	59.7	50.0	-	54.71								
La/Nd	1.35	1.30	1.50	1.48	1.45	1.61	1.67	1.55	0.93	1.26										
ThO₂ wt.%	-	9.3	-	-	-	4.1	5.6	-	-	7.64										
U₃O₈ wt.%	-	-	-	-	-	0.1	0.2	-	-	0.29										
Table 1-32. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd.)

<table>
<thead>
<tr>
<th></th>
<th>309a</th>
<th>309b</th>
<th>309c</th>
<th>310</th>
<th>311</th>
<th>312</th>
<th>313</th>
<th>314</th>
<th>315</th>
<th>316</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.3</td>
<td>24.5</td>
<td>23.2</td>
<td>25.2</td>
<td>24.6</td>
<td>25.7</td>
<td>26.9</td>
<td>23.3</td>
<td>26.9</td>
<td>20.0</td>
</tr>
<tr>
<td>Ce</td>
<td>41.6</td>
<td>47.4</td>
<td>52.9</td>
<td>48.3</td>
<td>48.2</td>
<td>47.0</td>
<td>46.6</td>
<td>51.3</td>
<td>40.3</td>
<td>52.8</td>
</tr>
<tr>
<td>Pr</td>
<td>9.1</td>
<td>6.2</td>
<td>5.5</td>
<td>4.2</td>
<td>4.9</td>
<td>5.1</td>
<td>4.3</td>
<td>3.3</td>
<td>10.7</td>
<td>5.1</td>
</tr>
<tr>
<td>Nd</td>
<td>20.1</td>
<td>19.4</td>
<td>16.3</td>
<td>16.2</td>
<td>17.3</td>
<td>17.8</td>
<td>17.9</td>
<td>15.2</td>
<td>18.5</td>
<td>22.1</td>
</tr>
<tr>
<td>Sm</td>
<td>3.3</td>
<td>1.8</td>
<td>1.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.0</td>
<td>2.9</td>
<td>3.1</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.6</td>
<td>2.1</td>
<td>0.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.8</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
</tr>
<tr>
<td>Dy</td>
<td>1.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.8)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>XF</th>
<th>XF</th>
<th>CH</th>
<th>XF</th>
<th>OS</th>
<th>XF</th>
<th>XF</th>
<th>XF</th>
<th>OS</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ</td>
<td>La+Ce+Pr</td>
<td>73.0</td>
<td>78.1</td>
<td>81.6</td>
<td>77.7</td>
<td>77.7</td>
<td>77.8</td>
<td>77.8</td>
<td>77.9</td>
<td>77.9</td>
</tr>
<tr>
<td>La-Nd</td>
<td>93.1</td>
<td>97.5</td>
<td>97.9</td>
<td>93.9</td>
<td>95.0</td>
<td>95.6</td>
<td>95.7</td>
<td>93.1</td>
<td>96.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>6.9</td>
<td>2.4</td>
<td>2.1</td>
<td>5.6</td>
<td>5.0</td>
<td>4.4</td>
<td>4.3</td>
<td>6.7</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>54.0</td>
<td>54.0</td>
<td>54.0</td>
<td>47.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>La/ Nd</td>
<td>1.11</td>
<td>1.26</td>
<td>1.42</td>
<td>1.56</td>
<td>1.42</td>
<td>1.44</td>
<td>1.50</td>
<td>1.53</td>
<td>1.45</td>
<td>0.90</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>2.39</td>
<td>2.39</td>
<td>2.39</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-33. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>317</th>
<th>318</th>
<th>319</th>
<th>320</th>
<th>321</th>
<th>322</th>
<th>323</th>
<th>324</th>
<th>325</th>
<th>326</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>23.8</td>
<td>22.3</td>
<td>23.1</td>
<td>26.2</td>
<td>30.1</td>
<td>26.8</td>
<td>23.9</td>
<td>26.7</td>
<td>24.7</td>
<td>25.6</td>
</tr>
<tr>
<td>Ce</td>
<td>51.9</td>
<td>51.5</td>
<td>48.9</td>
<td>47.1</td>
<td>42.6</td>
<td>40.5</td>
<td>51.9</td>
<td>46.2</td>
<td>47.0</td>
<td>47.4</td>
</tr>
<tr>
<td>Pr</td>
<td>2.3</td>
<td>4.2</td>
<td>6.0</td>
<td>4.7</td>
<td>5.3</td>
<td>10.7</td>
<td>2.3</td>
<td>5.2</td>
<td>6.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Nd</td>
<td>15.6</td>
<td>16.6</td>
<td>17.3</td>
<td>18.1</td>
<td>18.3</td>
<td>18.5</td>
<td>15.5</td>
<td>17.8</td>
<td>17.9</td>
<td>18.9</td>
</tr>
<tr>
<td>Sm</td>
<td>2.8</td>
<td>2.7</td>
<td>2.3</td>
<td>2.5</td>
<td>3.5</td>
<td>1.4</td>
<td>2.8</td>
<td>2.5</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.3</td>
<td>1.8</td>
<td>1.4</td>
<td>1.4</td>
<td>-</td>
<td>2.1</td>
<td>2.3</td>
<td>1.6</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.0</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(6.0)</td>
<td>(2.7)</td>
<td>-</td>
<td>-</td>
<td>(3.3)</td>
<td>(1.1)</td>
<td>(6.4)</td>
<td>-</td>
<td>(2.0)</td>
<td>-</td>
</tr>
</tbody>
</table>

Method
- XF 78.0 78.0 78.0 78.0 78.0 78.0 78.1 78.1 78.1 78.1
- OS 93.6 94.6 95.3 96.1 96.3 96.5 93.6 95.9 96.0 97.0
- XF 6.2 5.2 4.5 3.9 3.7 3.5 6.2 4.1 3.6 3.0
- OS 0.2 0.2 0.2 - - - 0.2 - 0.4 -
- XF 52.9 - - - - - - - - -
- OS 1.53 1.34 1.34 1.45 1.64 1.45 1.54 1.50 1.38 1.35
- XF 18.7 7.57 - - 0.18 - - - 1.04 -
- OS - - - - - - - - - -
- OS 1.38 - - - - - - - - -
Table 1-34. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th></th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y/(Y+La)x100</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
<td>14.3</td>
<td>56.5</td>
<td>7.3</td>
<td>20.0</td>
<td>1.3</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>328</td>
<td>24.4</td>
<td>47.3</td>
<td>6.5</td>
<td>17.1</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>329</td>
<td>20.1</td>
<td>50.8</td>
<td>7.3</td>
<td>17.6</td>
<td>1.7</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>330</td>
<td>23.5</td>
<td>49.6</td>
<td>5.1</td>
<td>18.8</td>
<td>2.1</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>331</td>
<td>22.8</td>
<td>49.5</td>
<td>6.0</td>
<td>14.7</td>
<td>5.3</td>
<td>-</td>
</tr>
<tr>
<td>332</td>
<td>23.0</td>
<td>52.0</td>
<td>3.3</td>
<td>15.2</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>333</td>
<td>24.0</td>
<td>52.0</td>
<td>2.3</td>
<td>15.4</td>
<td>2.8</td>
<td>-</td>
</tr>
<tr>
<td>334</td>
<td>26.2</td>
<td>47.4</td>
<td>5.8</td>
<td>17.0</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>335</td>
<td>26.0</td>
<td>47.6</td>
<td>4.7</td>
<td>17.5</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>336</td>
<td>26.0</td>
<td>47.4</td>
<td>4.7</td>
<td>16.7</td>
<td>1.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Method
OS | XF | CH | EP | XF | XF | CH | XF | CH
Σ = La+Ce+Pr | 78.1 | 78.2 | 78.2 | 78.2 | 78.3 | 78.3 | 78.3 | 78.3 | 78.3 | 78.4
La-Nd | 98.1 | 95.3 | 95.8 | 97.0 | 93.0 | 93.5 | 93.7 | 95.3 | 95.8 | 95.1
Sm-Ho | 1.9 | 4.5 | 3.6 | 3.0 | 7.0 | 6.3 | 6.1 | 4.0 | 4.2 | 4.4
Er-Lu | - | 0.2 | 0.6 | - | - | 0.2 | 0.7 | - | 0.5
RE$_2$O$_3$, wt.% | - | - | - | 64.6 | 61.3 | - | - | 60.84 | 61.8
La/Nd | 0.72 | 1.43 | 1.14 | 1.25 | 1.55 | 1.51 | 1.56 | 1.64 | 1.50 | 1.56
ThO$_2$, wt.% | - | - | - | 5.60 | 6.5 | - | - | 4.26 | -
U$_3$O$_8$, wt.% | - | 0.25 | - | 0.2 | - | - | - | - | -
Table 1-35. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th>REE</th>
<th>337</th>
<th>338</th>
<th>339</th>
<th>340</th>
<th>341</th>
<th>342</th>
<th>343</th>
<th>344</th>
<th>345</th>
<th>346</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.6</td>
<td>32.2</td>
<td>25.1</td>
<td>25.3</td>
<td>27.8</td>
<td>26.3</td>
<td>23.2</td>
<td>27.2</td>
<td>24.1</td>
<td>26.6</td>
</tr>
<tr>
<td>Ce</td>
<td>48.8</td>
<td>40.0</td>
<td>48.4</td>
<td>49.0</td>
<td>46.3</td>
<td>47.5</td>
<td>49.1</td>
<td>51.3</td>
<td>52.2</td>
<td>47.2</td>
</tr>
<tr>
<td>Pr</td>
<td>5.0</td>
<td>6.2</td>
<td>4.9</td>
<td>4.2</td>
<td>4.4</td>
<td>4.7</td>
<td>6.2</td>
<td>2.4</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>16.9</td>
<td>17.3</td>
<td>18.4</td>
<td>13.0</td>
<td>16.1</td>
<td>17.5</td>
<td>19.6</td>
<td>21.5</td>
<td>15.7</td>
<td>16.1</td>
</tr>
<tr>
<td>Sm</td>
<td>2.9</td>
<td>2.7</td>
<td>2.5</td>
<td>2.7</td>
<td>2.1</td>
<td>2.6</td>
<td>1.3</td>
<td>2.6</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.8</td>
<td>0.4</td>
<td>0.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>0.5</td>
<td>-</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.5</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>1.0</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(0.3)</td>
<td>(7.1)</td>
<td>(5.5)</td>
<td>(1.3)</td>
<td>(1.6)</td>
<td>-</td>
<td>-</td>
<td>(5.8)</td>
<td>(3.8)</td>
<td>(1.9)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th>Method</th>
<th>XF</th>
<th>ICP</th>
<th>OS</th>
<th>XF</th>
<th>-</th>
<th>XF</th>
<th>XF</th>
<th>OS</th>
<th>XF</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>78.4</td>
<td>78.4</td>
<td>78.4</td>
<td>78.5</td>
<td>78.5</td>
<td>78.5</td>
<td>78.5</td>
<td>78.5</td>
<td>78.7</td>
<td>78.7</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.3</td>
<td>95.7</td>
<td>96.8</td>
<td>91.5</td>
<td>94.6</td>
<td>96.0</td>
<td>98.1</td>
<td>100.0</td>
<td>94.4</td>
<td>94.8</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.7</td>
<td>3.6</td>
<td>3.2</td>
<td>6.0</td>
<td>5.4</td>
<td>4.0</td>
<td>1.9</td>
<td>-</td>
<td>5.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>65.1</td>
<td>-</td>
<td>42.5</td>
<td>61.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58.48</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.46</td>
<td>1.86</td>
<td>1.36</td>
<td>1.95</td>
<td>1.73</td>
<td>1.50</td>
<td>1.18</td>
<td>1.27</td>
<td>1.54</td>
<td>1.65</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>3.32</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.1</td>
<td>-</td>
<td>4.96</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>0.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-36. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th></th>
<th>347</th>
<th>348</th>
<th>349</th>
<th>350</th>
<th>351</th>
<th>352</th>
<th>353</th>
<th>354</th>
<th>355</th>
<th>356</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>20.3</td>
<td>27.8</td>
<td>24.5</td>
<td>26.1</td>
<td>25.2</td>
<td>27.0</td>
<td>28.5</td>
<td>19.3</td>
<td>24.2</td>
<td>27.7</td>
</tr>
<tr>
<td>Ce</td>
<td>52.4</td>
<td>45.6</td>
<td>52.8</td>
<td>47.9</td>
<td>48.1</td>
<td>41.9</td>
<td>44.0</td>
<td>54.3</td>
<td>52.4</td>
<td>46.7</td>
</tr>
<tr>
<td>Pr</td>
<td>6.0</td>
<td>5.4</td>
<td>1.5</td>
<td>4.8</td>
<td>5.5</td>
<td>9.9</td>
<td>6.4</td>
<td>5.3</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Nd</td>
<td>16.7</td>
<td>13.5</td>
<td>14.9</td>
<td>16.6</td>
<td>17.6</td>
<td>17.8</td>
<td>14.3</td>
<td>14.5</td>
<td>15.5</td>
<td>16.1</td>
</tr>
<tr>
<td>Sm</td>
<td>1.9</td>
<td>3.0</td>
<td>3.0</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
<td>3.3</td>
<td>2.6</td>
<td>2.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>0.6</td>
<td>0.2</td>
<td>0.1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>2.2</td>
<td>3.5</td>
<td>1.9</td>
<td>1.6a</td>
<td>1.2</td>
<td>1.8</td>
<td>2.9</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7a</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
<td>-</td>
<td>1.2</td>
<td>0.5</td>
<td>0.6</td>
<td>-</td>
<td>1.2</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>-</td>
<td>(2.4)</td>
<td>(4.8)</td>
<td>(2.8) b</td>
<td>-</td>
<td>(1.6)</td>
<td>-</td>
<td>(5.2)</td>
<td>(1.9) b</td>
<td></td>
</tr>
</tbody>
</table>

Method:
- XF
- CH

\(\varepsilon = \frac{La+Ce}{Pr} \)
- 78.7
- 78.8
- 78.8
- 78.8
- 78.8
- 78.9
- 78.9
- 78.9
- 78.9

La-Nd
- 95.4
- 92.3
- 93.7
- 95.4
- 96.4
- 96.6
- 93.2
- 93.4
- 94.4
- 95.0

Sm-Ho
- 4.4
- 7.3
- 6.1
- 4.1
- 3.6
- 3.3
- 6.8
- 6.2
- 5.4
- 5.0

Er-Lu
- 0.2
- 0.4
- 0.2
- 0.5
- 0.1
- 0.4
- 0.2

RE₂O₃, wt. %
- 61.69
- 59.7
- 61.21

La/Nd
- 1.22
- 2.06
- 1.64
- 1.57
- 1.43
- 1.52
- 1.99
- 1.33
- 1.56
- 1.72

ThO₂, wt. %
- 4.62
- 5.32

U₃O₈, wt. %
- -
Table 1-37. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th>Element</th>
<th>357</th>
<th>358</th>
<th>359</th>
<th>360</th>
<th>361</th>
<th>362</th>
<th>363</th>
<th>364</th>
<th>365</th>
<th>366</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>26.4</td>
<td>28.6</td>
<td>28.4</td>
<td>29.5</td>
<td>23.0</td>
<td>27.1</td>
<td>28.6</td>
<td>29.2</td>
<td>27.2</td>
<td>17.2</td>
</tr>
<tr>
<td>Ce</td>
<td>47.4</td>
<td>43.0</td>
<td>43.3</td>
<td>45.0</td>
<td>51.5</td>
<td>46.8</td>
<td>41.0</td>
<td>41.7</td>
<td>46.3</td>
<td>56.8</td>
</tr>
<tr>
<td>Pr</td>
<td>5.1</td>
<td>7.3</td>
<td>7.2</td>
<td>4.5</td>
<td>4.6</td>
<td>5.3</td>
<td>9.6</td>
<td>8.3</td>
<td>5.8</td>
<td>5.3</td>
</tr>
<tr>
<td>Nd</td>
<td>17.6</td>
<td>17.9</td>
<td>18.0</td>
<td>15.5</td>
<td>15.1</td>
<td>15.2</td>
<td>17.4</td>
<td>20.8</td>
<td>16.9</td>
<td>17.7</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5</td>
<td>1.3</td>
<td>1.3</td>
<td>3.9</td>
<td>2.9</td>
<td>2.3</td>
<td>1.5</td>
<td>-</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.0</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.4</td>
<td>1.9</td>
<td>-</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(5.0)</td>
<td>(2.4)</td>
<td>(1.3)</td>
<td>(2.2)</td>
<td>(1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>CH</td>
<td>OS</td>
<td>XF</td>
<td>CH</td>
<td>CH</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>78.9</td>
<td>78.9</td>
<td>78.9</td>
<td>79.0</td>
<td>79.1</td>
<td>79.2</td>
<td>79.2</td>
<td>79.2</td>
<td>79.3</td>
<td>79.3</td>
</tr>
<tr>
<td>La-Nd</td>
<td>96.5</td>
<td>96.8</td>
<td>96.9</td>
<td>94.5</td>
<td>94.2</td>
<td>94.4</td>
<td>96.6</td>
<td>100.0</td>
<td>96.2</td>
<td>97.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>3.5</td>
<td>3.1</td>
<td>3.1</td>
<td>5.5</td>
<td>5.7</td>
<td>4.6</td>
<td>3.4</td>
<td>-</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3, wt.%</td>
<td>-</td>
<td>60.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>39.69</td>
<td>-</td>
<td>-</td>
<td>62.08</td>
<td>55.1</td>
</tr>
<tr>
<td>La/ Nd</td>
<td>1.50</td>
<td>1.60</td>
<td>1.58</td>
<td>1.90</td>
<td>1.52</td>
<td>1.78</td>
<td>1.64</td>
<td>1.40</td>
<td>1.61</td>
<td>0.97</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.94</td>
<td>-</td>
<td>-</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-38. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th>Element</th>
<th>367</th>
<th>368</th>
<th>369</th>
<th>370</th>
<th>371</th>
<th>372</th>
<th>373</th>
<th>374</th>
<th>375</th>
<th>376</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>27.4</td>
<td>23.9</td>
<td>25.8</td>
<td>25.8</td>
<td>26.1</td>
<td>25.7</td>
<td>29.7</td>
<td>24.2</td>
<td>27.7</td>
<td>31.3</td>
</tr>
<tr>
<td>Ce</td>
<td>51.9</td>
<td>52.3</td>
<td>49.1</td>
<td>53.6</td>
<td>49.7</td>
<td>50.4</td>
<td>45.9</td>
<td>52.8</td>
<td>47.1</td>
<td>43.2</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
<td>3.2</td>
<td>4.5</td>
<td>3.7</td>
<td>3.4</td>
<td>3.9</td>
<td>2.5</td>
<td>4.7</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>20.7</td>
<td>15.2</td>
<td>18.0</td>
<td>18.0</td>
<td>12.3</td>
<td>13.0</td>
<td>15.0</td>
<td>15.3</td>
<td>16.8</td>
<td>18.0</td>
</tr>
<tr>
<td>Sm</td>
<td>-</td>
<td>2.4</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.7</td>
<td>1.6</td>
<td>2.5</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>1.5</td>
<td>2.6</td>
<td>1.8</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>1.4</td>
<td>0.3</td>
<td>0.2</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1</td>
<td>0.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(6.3)</td>
<td>(4.5)</td>
<td>(2.7)</td>
<td>(2.6)</td>
<td>(1.2)</td>
<td>1.0</td>
<td>(1.2)</td>
<td>(3.6)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Method

| OS | XF | EP | EP | XF | XF | XF | XF | XF |

Σ = La+Ce+Pr

La-Nd	100.00	94.6	97.4	97.4	91.8	92.5	94.5	94.8	96.3	97.5
Sm-Ho	5.4	2.6	2.6	6.2	5.9	5.5	5.1	3.7	2.5	
Er-Lu	-	-	-	2.0	1.6	-	0.1	-		
RE₂O₃, wt.%	-	-	57.65	59.06	48.8	49.4	48.3	-	-	-
La/Nd	1.32	1.57	1.43	1.43	2.12	1.98	1.98	1.58	1.65	1.74
ThO₂, wt.%	8.2	-	8.04	8.07	-	-	-	-	-	-
U₃O₈, wt.%	-	-	0.64	0.91	-	-	-	-	-	-
Table 1-39. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y; (c) Tb + Dy + Y calcd. as Y

<table>
<thead>
<tr>
<th></th>
<th>377</th>
<th>378</th>
<th>379</th>
<th>380</th>
<th>381</th>
<th>382</th>
<th>383</th>
<th>384</th>
<th>385</th>
<th>386</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>25.4</td>
<td>23.2</td>
<td>23.2</td>
<td>27.8</td>
<td>22.9</td>
<td>22.1</td>
<td>25.0</td>
<td>24.0</td>
<td>23.4</td>
<td>26.2</td>
</tr>
<tr>
<td>Ce</td>
<td>54.1</td>
<td>51.8</td>
<td>52.9</td>
<td>51.6</td>
<td>53.4</td>
<td>53.4</td>
<td>52.4</td>
<td>49.2</td>
<td>51.1</td>
<td>49.0</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
<td>4.6</td>
<td>3.5</td>
<td>10.2</td>
<td>3.4</td>
<td>4.2</td>
<td>2.3</td>
<td>6.5</td>
<td>5.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Nd</td>
<td>20.5</td>
<td>14.8</td>
<td>14.9</td>
<td>16.8</td>
<td>14.8</td>
<td>14.9</td>
<td>15.0</td>
<td>15.5</td>
<td>18.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Sm</td>
<td>-</td>
<td>2.8</td>
<td>2.5</td>
<td>1.8</td>
<td>2.5</td>
<td>1.9</td>
<td>2.5</td>
<td>2.2</td>
<td>1.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>a</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>a</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>1.6</td>
<td>1.6</td>
<td>0.9a</td>
<td>1.2</td>
<td>1.4</td>
<td>1.8</td>
<td>1.0</td>
<td>0.7a</td>
<td>0.7</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>c</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>1.0</td>
<td>1.3</td>
<td>0.6</td>
<td>1.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.7</td>
<td>c</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(8.9)</td>
<td>(5.4)</td>
<td>(3.7)</td>
<td>(1.5)</td>
<td>(4.6)</td>
<td>(0.6)</td>
<td>(4.4)</td>
<td>-</td>
<td>(1.1)</td>
<td>1.6</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>CH</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>XF</td>
<td>CH</td>
<td>EP</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>79.5</td>
<td>79.6</td>
<td>79.6</td>
<td>79.6</td>
<td>79.7</td>
<td>79.7</td>
<td>79.7</td>
<td>79.7</td>
<td>79.7</td>
<td>79.8</td>
</tr>
<tr>
<td>La-Nd</td>
<td>100.0</td>
<td>94.4</td>
<td>94.5</td>
<td>96.4</td>
<td>94.5</td>
<td>94.6</td>
<td>94.7</td>
<td>95.2</td>
<td>97.9</td>
<td>94.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>-</td>
<td>5.4</td>
<td>5.5</td>
<td>3.4</td>
<td>3.8</td>
<td>4.3</td>
<td>5.2</td>
<td>4.2</td>
<td>2.1</td>
<td>5.8</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>1.1</td>
<td>0.1</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58.92</td>
<td>-</td>
<td>45.5</td>
<td>-</td>
<td>-</td>
<td>64.6</td>
<td>64.7</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.24</td>
<td>1.57</td>
<td>1.56</td>
<td>1.65</td>
<td>1.55</td>
<td>1.48</td>
<td>1.67</td>
<td>1.55</td>
<td>1.29</td>
<td>1.82</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>12.2</td>
<td>-</td>
<td>-</td>
<td>7.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-40. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd

<table>
<thead>
<tr>
<th>Element</th>
<th>Method</th>
<th>La/Nd</th>
<th>ThO₂, wt.%</th>
<th>U₃O₈, wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.0</td>
<td>1.62</td>
<td>1.68</td>
<td>0.035</td>
</tr>
<tr>
<td>Ce</td>
<td>53.1</td>
<td>1.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pr</td>
<td>2.7</td>
<td>1.74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nd</td>
<td>14.8</td>
<td>1.77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5</td>
<td>1.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>24.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.7</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.0</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)</td>
<td>3.9 (5.5)</td>
<td>- (4.4) (4.0)</td>
<td>(0.9) (4.2)</td>
<td>(3.3)</td>
</tr>
</tbody>
</table>

RE₂O₃, wt.% - - - 67.2 - - - - -

La-Nd 94.6 94.7 95.1 95.8 94.6 94.2 94.6 94.7
Sm-Ho 5.3 5.1 4.8 4.2 5.3 5.4 5.7 5.3 5.2
Er-Lu 0.1 0.2 0.1 - 0.1 - 0.2 0.1 0.1

Method XF XF XF CH CH CH X X X X

Σ = La+Ce+Pr 79.8 79.8 79.8 79.8 79.9 79.9 80.0 80.0 80.0

<table>
<thead>
<tr>
<th>RE₂O₃, wt.%</th>
<th>67.2</th>
</tr>
</thead>
</table>
Table 1-41. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>397</th>
<th>398</th>
<th>399</th>
<th>400</th>
<th>401</th>
<th>402</th>
<th>403</th>
<th>404</th>
<th>405</th>
<th>406</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>15.5</td>
<td>26.8</td>
<td>24.5</td>
<td>28.4</td>
<td>23.1</td>
<td>23.5</td>
<td>25.9</td>
<td>24.2</td>
<td>25.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Ce</td>
<td>42.5</td>
<td>44.1</td>
<td>55.5</td>
<td>46.6</td>
<td>53.8</td>
<td>51.2</td>
<td>49.9</td>
<td>54.0</td>
<td>53.7</td>
<td>44.0</td>
</tr>
<tr>
<td>Pr</td>
<td>22.0</td>
<td>9.1</td>
<td>-</td>
<td>5.1</td>
<td>3.2</td>
<td>5.4</td>
<td>4.3</td>
<td>2.0</td>
<td>1.5</td>
<td>9.2</td>
</tr>
<tr>
<td>Nd</td>
<td>15.6</td>
<td>17.2</td>
<td>20.0</td>
<td>14.4</td>
<td>14.5</td>
<td>15.1</td>
<td>17.0</td>
<td>14.1</td>
<td>14.9</td>
<td>17.2</td>
</tr>
<tr>
<td>Sm</td>
<td>3.0</td>
<td>1.3</td>
<td>-</td>
<td>1.5</td>
<td>2.4</td>
<td>2.2</td>
<td>2.8</td>
<td>2.6</td>
<td>2.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.4</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>0.9</td>
<td>0.6</td>
<td>0.1</td>
<td>1.3</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(1.2)</td>
<td>(0.7)</td>
<td>(4.2)</td>
<td>(1.9)</td>
<td>(3.9)</td>
<td>(3.6)</td>
<td>(1.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>CH</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
<td>EP</td>
<td>XF</td>
<td>XF</td>
<td>OS</td>
</tr>
<tr>
<td>ß = La+Ce+Pr</td>
<td>80.0</td>
<td>80.0</td>
<td>80.0</td>
<td>80.1</td>
<td>80.1</td>
<td>80.1</td>
<td>80.1</td>
<td>80.2</td>
<td>80.2</td>
<td>80.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.6</td>
<td>97.2</td>
<td>100.0</td>
<td>94.5</td>
<td>94.6</td>
<td>95.2</td>
<td>97.1</td>
<td>94.3</td>
<td>95.1</td>
<td>97.4</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.4</td>
<td>2.8</td>
<td>-</td>
<td>3.9</td>
<td>5.2</td>
<td>4.7</td>
<td>2.9</td>
<td>5.5</td>
<td>4.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>54.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.99</td>
<td>1.56</td>
<td>1.23</td>
<td>1.97</td>
<td>1.59</td>
<td>1.56</td>
<td>1.52</td>
<td>1.72</td>
<td>1.68</td>
<td>1.57</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>-</td>
<td>13.7</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>8.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.82</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-42. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>407</th>
<th>408</th>
<th>409</th>
<th>410</th>
<th>411</th>
<th>412</th>
<th>413</th>
<th>414</th>
<th>415</th>
<th>416</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>28.2</td>
<td>25.3</td>
<td>20.6</td>
<td>24.5</td>
<td>28.7</td>
<td>27.7</td>
<td>28.9</td>
<td>27.1</td>
<td>29.5</td>
<td>27.2</td>
</tr>
<tr>
<td>Ce</td>
<td>52.0</td>
<td>54.9</td>
<td>53.6</td>
<td>51.5</td>
<td>49.5</td>
<td>52.6</td>
<td>48.0</td>
<td>53.2</td>
<td>46.6</td>
<td>53.2</td>
</tr>
<tr>
<td>Pr</td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
<td>4.3</td>
<td>4.2</td>
<td>5.4</td>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>17.2</td>
<td>19.8</td>
<td>16.7</td>
<td>17.1</td>
<td>17.3</td>
<td>17.4</td>
<td>18.0</td>
<td>19.7</td>
<td>15.5</td>
<td>19.6</td>
</tr>
<tr>
<td>Sm</td>
<td>2.4</td>
<td>2.5</td>
<td>2.5</td>
<td>2.3</td>
<td>2.2</td>
<td>1.0</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>2.7</td>
<td>6.2</td>
<td>3.5</td>
<td>2.7</td>
<td>1.9</td>
<td>1.8</td>
<td></td>
<td>7.4</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>80.2</td>
<td>80.2</td>
<td>80.3</td>
<td>80.3</td>
<td>80.3</td>
<td>80.3</td>
<td>80.3</td>
<td>80.3</td>
<td>80.4</td>
<td>80.4</td>
</tr>
<tr>
<td>La-Nd</td>
<td>97.4</td>
<td>100.0</td>
<td>97.0</td>
<td>97.4</td>
<td>97.6</td>
<td>97.7</td>
<td>98.3</td>
<td>100.0</td>
<td>95.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.6</td>
<td>3.0</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
<td>1.7</td>
<td></td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er-Lu</td>
<td></td>
</tr>
<tr>
<td>RE2O3, wt.%</td>
<td>58.53</td>
<td></td>
<td>59.72</td>
<td>57.67</td>
<td>58.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.64</td>
<td>1.28</td>
<td>1.23</td>
<td>1.43</td>
<td>1.54</td>
<td>1.59</td>
<td>1.49</td>
<td>1.38</td>
<td>1.90</td>
<td>1.39</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>7.59</td>
<td>9.1</td>
<td></td>
<td>8.91</td>
<td>7.35</td>
<td>7.16</td>
<td></td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-43. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y; (c) Tb + Dy + Y calcd. as Y

<table>
<thead>
<tr>
<th>Element</th>
<th>417</th>
<th>418</th>
<th>419</th>
<th>420</th>
<th>421</th>
<th>422</th>
<th>423</th>
<th>424</th>
<th>425</th>
<th>426</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>26.3</td>
<td>29.5</td>
<td>24.9</td>
<td>25.8</td>
<td>22.6</td>
<td>25.8</td>
<td>8.7</td>
<td>23.0</td>
<td>28.1</td>
<td>24.7</td>
</tr>
<tr>
<td>Ce</td>
<td>49.8</td>
<td>47.1</td>
<td>51.0</td>
<td>50.5</td>
<td>53.9</td>
<td>49.9</td>
<td>65.2</td>
<td>53.5</td>
<td>43.8</td>
<td>53.6</td>
</tr>
<tr>
<td>Pr</td>
<td>4.4</td>
<td>3.9</td>
<td>4.6</td>
<td>4.2</td>
<td>4.0</td>
<td>4.8</td>
<td>6.7</td>
<td>4.1</td>
<td>8.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Nd</td>
<td>11.6</td>
<td>14.9</td>
<td>14.9</td>
<td>16.1</td>
<td>16.4</td>
<td>17.0</td>
<td>11.6</td>
<td>16.4</td>
<td>17.1</td>
<td>13.8</td>
</tr>
<tr>
<td>Sm</td>
<td>2.7</td>
<td>1.1</td>
<td>2.0</td>
<td>2.5</td>
<td>1.9</td>
<td>2.4</td>
<td>4.8</td>
<td>1.9</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.5</td>
<td>1.7</td>
<td>1.6</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>3.0</td>
<td>1.0</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Tb</td>
<td>0.5</td>
<td>0.2</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>c</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.1</td>
<td>1.2</td>
<td>0.4</td>
<td>0.9</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>c</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Ho</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.7</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(0.9)</td>
<td>(1.2)</td>
<td>(3.9)</td>
<td>(1.9)</td>
<td>(1.1)</td>
<td>(2.2)</td>
<td>(0.15)</td>
<td>(2.8)</td>
<td>(1.2)</td>
<td>(4.6)</td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>XF</td>
<td>CH</td>
<td>EP</td>
<td>CH</td>
<td>EP</td>
<td>XF</td>
<td>CH</td>
<td>OS</td>
<td>XF</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.5</td>
<td>80.6</td>
<td>80.6</td>
<td>80.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>92.1</td>
<td>95.4</td>
<td>95.4</td>
<td>96.6</td>
<td>96.9</td>
<td>97.5</td>
<td>92.2</td>
<td>97.0</td>
<td>97.7</td>
<td>94.5</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>6.4</td>
<td>4.4</td>
<td>4.1</td>
<td>3.4</td>
<td>3.1</td>
<td>3.3</td>
<td>7.8</td>
<td>2.9</td>
<td>2.3</td>
<td>5.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>1.5</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>49.2</td>
<td>48.2</td>
<td>61.76</td>
<td>60.38</td>
<td>56.3</td>
<td>59.71</td>
<td>50.6</td>
<td>53.45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>2.27</td>
<td>1.98</td>
<td>1.67</td>
<td>1.60</td>
<td>1.38</td>
<td>1.52</td>
<td>0.75</td>
<td>1.40</td>
<td>1.64</td>
<td>1.79</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>-</td>
<td>6.20</td>
<td>7.85</td>
<td>-</td>
<td>9.05</td>
<td>5.77</td>
<td>5.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-44. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>427</th>
<th>428</th>
<th>429</th>
<th>430</th>
<th>431</th>
<th>432</th>
<th>433</th>
<th>434</th>
<th>435</th>
<th>436</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>25.1</td>
<td>24.6</td>
<td>19.5</td>
<td>25.7</td>
<td>24.3</td>
<td>24.6</td>
<td>28.4</td>
<td>24.9</td>
<td>22.7</td>
<td>26.3</td>
</tr>
<tr>
<td>Ce</td>
<td>51.5</td>
<td>51.9</td>
<td>55.2</td>
<td>49.9</td>
<td>56.5</td>
<td>51.2</td>
<td>47.8</td>
<td>51.4</td>
<td>52.0</td>
<td>49.2</td>
</tr>
<tr>
<td>Pr</td>
<td>4.1</td>
<td>4.2</td>
<td>6.1</td>
<td>5.2</td>
<td>-</td>
<td>5.1</td>
<td>4.7</td>
<td>4.6</td>
<td>6.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Nd</td>
<td>16.5</td>
<td>16.5</td>
<td>17.0</td>
<td>17.0</td>
<td>19.2</td>
<td>15.0</td>
<td>16.2</td>
<td>16.6</td>
<td>17.2</td>
<td>17.6</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5</td>
<td>2.7</td>
<td>2.2</td>
<td>2.2</td>
<td>-</td>
<td>1.9</td>
<td>1.9</td>
<td>2.4</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>\text{Y/(Y+La)} \times 100</td>
<td>(3.0)</td>
<td>(1.9)</td>
<td>-</td>
<td>(5.4)</td>
<td>(9.2)</td>
<td>-</td>
<td>-</td>
<td>(2.4)</td>
<td>-</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>

Method
- EP
- XF
- EP
- OS
- XF
- XF
- EP
- EP
- XF

\[\varepsilon = \text{La+Ce+Pr} \]
- 80.7| 80.7| 80.8| 80.8| 80.8| 89.9| 80.9| 80.9| 80.9| 80.9

\[\text{La-Nd} \]
- 97.2| 97.2| 97.8| 97.8| 100.0| 95.9| 97.1| 97.5| 98.1| 98.5

\[\text{Sm-Ho} \]
- 2.8| 2.8| 2.2| 2.2| - | 4.7| 2.9| 2.5| 1.9| 1.5

\[\text{Er-Lu} \]
- -| -| -| -| -| 0.4| -| -| -| -

\[\text{RE}_2\text{O}_3, \text{wt.\%} \]
- 54.87| 60.8| -| -| -| -| 62.46| 62.33| 69.4

\[\text{La/Nd} \]
- 1.52| 1.49| 1.15| 1.51| 1.27| 1.63| 1.75| 1.50| 1.32| 1.49

\[\text{ThO}_2, \text{wt.\%} \]
- 10.89| 8.44| -| 2.45| 7.5| -| -| 8.71| 1.79| -

\[\text{U}_3\text{O}_8, \text{wt.\%} \]
- -| -| -| -| -| -| -| 0.48| -| -
Table 1-45. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y

<table>
<thead>
<tr>
<th></th>
<th>437</th>
<th>438</th>
<th>439</th>
<th>440</th>
<th>441</th>
<th>442</th>
<th>443</th>
<th>444</th>
<th>445</th>
<th>446</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>27.7</td>
<td>28.0</td>
<td>23.9</td>
<td>23.7</td>
<td>24.4</td>
<td>25.7</td>
<td>25.8</td>
<td>26.0</td>
<td>30.0</td>
<td>29.8</td>
</tr>
<tr>
<td>Ce</td>
<td>53.2</td>
<td>44.5</td>
<td>51.2</td>
<td>53.5</td>
<td>51.6</td>
<td>50.3</td>
<td>50.2</td>
<td>50.0</td>
<td>51.1</td>
<td>45.4</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
<td>8.4</td>
<td>5.9</td>
<td>3.4</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.1</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>Nd</td>
<td>19.1</td>
<td>19.1</td>
<td>13.4</td>
<td>14.5</td>
<td>15.7</td>
<td>16.6</td>
<td>16.6</td>
<td>16.3</td>
<td>18.7</td>
<td>12.0</td>
</tr>
<tr>
<td>Sm</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
<td>2.3</td>
<td>2.2</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
<td>-</td>
<td>2.4</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>1.6a</td>
<td>1.0</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>1.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(6.5)</td>
<td>-</td>
<td>(2.5)b</td>
<td>(3.6)</td>
<td>-</td>
<td>(6.5)</td>
<td>(5.2)</td>
<td>(6.6)</td>
<td>(8.0)</td>
<td>(6.2)</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>XF</td>
<td>CH</td>
<td>XF</td>
<td>-</td>
<td>EP</td>
<td>EP</td>
<td>EP</td>
<td>OS</td>
<td>-</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>80.9</td>
<td>80.9</td>
<td>80.6</td>
<td>80.6</td>
<td>81.0</td>
<td>81.0</td>
<td>81.0</td>
<td>81.1</td>
<td>81.1</td>
<td>81.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>100.0</td>
<td>100.0</td>
<td>94.4</td>
<td>95.1</td>
<td>96.7</td>
<td>97.6</td>
<td>97.6</td>
<td>97.4</td>
<td>99.8</td>
<td>93.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>4.4</td>
<td>3.3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
<td>-</td>
<td>6.1</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃, wt.%</td>
<td>-</td>
<td>-</td>
<td>62.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.45</td>
<td>1.47</td>
<td>1.78</td>
<td>1.63</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
<td>1.60</td>
<td>1.60</td>
<td>2.48</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.88</td>
<td>2.46</td>
<td>2.42</td>
<td>6.1</td>
<td>2.1</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-46. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd; (c) Tb, Dy + Y calcd. as Y

<table>
<thead>
<tr>
<th>Element</th>
<th>447</th>
<th>448</th>
<th>449</th>
<th>450</th>
<th>451</th>
<th>452</th>
<th>453</th>
<th>454</th>
<th>455</th>
<th>456</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.6</td>
<td>27.0</td>
<td>26.0</td>
<td>26.0</td>
<td>26.7</td>
<td>27.5</td>
<td>28.7</td>
<td>26.4</td>
<td>26.3</td>
<td>22.3</td>
</tr>
<tr>
<td>Ce</td>
<td>51.8</td>
<td>48.8</td>
<td>50.4</td>
<td>50.6</td>
<td>49.7</td>
<td>53.7</td>
<td>49.0</td>
<td>54.9</td>
<td>49.1</td>
<td>53.4</td>
</tr>
<tr>
<td>Pr</td>
<td>4.8</td>
<td>5.4</td>
<td>4.8</td>
<td>4.6</td>
<td>4.8</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Nd</td>
<td>16.0</td>
<td>16.1</td>
<td>16.2</td>
<td>16.3</td>
<td>17.3</td>
<td>18.8</td>
<td>14.0</td>
<td>18.7</td>
<td>16.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5</td>
<td>1.6</td>
<td>1.9</td>
<td>2.4</td>
<td>1.5</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>a</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>0.6</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>-</td>
<td>0.7a</td>
<td>0.2</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>c</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>c</td>
<td>0.1</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.8)</td>
<td>(0.3)</td>
<td>(1.6)</td>
<td>(1.8)</td>
<td>-</td>
<td>(7.5)</td>
<td>(0.7)</td>
<td>(5.7)</td>
<td>(1.0)c</td>
<td>-</td>
</tr>
<tr>
<td>ε = La+Ce+Pr</td>
<td>81.2</td>
<td>81.2</td>
<td>81.2</td>
<td>81.2</td>
<td>81.2</td>
<td>81.3</td>
<td>81.3</td>
<td>81.4</td>
<td>81.4</td>
<td>-</td>
</tr>
<tr>
<td>La-Nd</td>
<td>97.2</td>
<td>97.3</td>
<td>97.4</td>
<td>97.5</td>
<td>98.5</td>
<td>100.0</td>
<td>95.3</td>
<td>100.0</td>
<td>97.8</td>
<td>98.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.8</td>
<td>2.7</td>
<td>2.6</td>
<td>2.5</td>
<td>1.5</td>
<td>-</td>
<td>4.7</td>
<td>-</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3, wt.%</td>
<td>59.55</td>
<td>69.88</td>
<td>-</td>
<td>61.40</td>
<td>68.56</td>
<td>-</td>
<td>49.8</td>
<td>-</td>
<td>60.5</td>
<td>54.0</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.54</td>
<td>1.68</td>
<td>1.60</td>
<td>1.60</td>
<td>1.54</td>
<td>1.46</td>
<td>2.05</td>
<td>1.41</td>
<td>1.60</td>
<td>1.34</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>8.45</td>
<td>-</td>
<td>13.0</td>
<td>8.04</td>
<td>1.26</td>
<td>7.0</td>
<td>-</td>
<td>7.9</td>
<td>1.47</td>
<td>2.39</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>0.24</td>
<td>-</td>
<td>-</td>
<td>0.64</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 1-47. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd

<table>
<thead>
<tr>
<th></th>
<th>457</th>
<th>458</th>
<th>459</th>
<th>460</th>
<th>46</th>
<th>462</th>
<th>463</th>
<th>464</th>
<th>465</th>
<th>466</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.8</td>
<td>23.4</td>
<td>30.2</td>
<td>31.5</td>
<td>22.6</td>
<td>22.2</td>
<td>31.3</td>
<td>25.0</td>
<td>21.4</td>
<td>23.7</td>
</tr>
<tr>
<td>Ce</td>
<td>52.7</td>
<td>52.3</td>
<td>51.3</td>
<td>50.0</td>
<td>47.9</td>
<td>48.3</td>
<td>47.1</td>
<td>52.4</td>
<td>54.7</td>
<td>53.2</td>
</tr>
<tr>
<td>Pr</td>
<td>6.0</td>
<td>5.8</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>11.1</td>
<td>3.2</td>
<td>4.2</td>
<td>5.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Nd</td>
<td>16.2</td>
<td>16.5</td>
<td>18.5</td>
<td>18.5</td>
<td>13.0</td>
<td>13.1</td>
<td>14.6</td>
<td>15.8</td>
<td>16.0</td>
<td>13.6</td>
</tr>
<tr>
<td>Sm</td>
<td>1.5</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>2.3</td>
<td>0.9</td>
<td>2.4</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>a</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>2.9</td>
<td>3.0</td>
<td>1.6</td>
<td>-</td>
<td>1.0^a</td>
<td>0.9</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>0.2</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>-</td>
<td>(0.6)</td>
<td>(3.1)</td>
<td>(5.2)</td>
<td>-</td>
<td>(2.5)</td>
<td>(0.9)</td>
<td>(2.2)</td>
<td>(1.1)</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>XF</th>
<th>OS</th>
<th>OS</th>
<th>OS</th>
<th>OS</th>
<th>XF</th>
<th>EP</th>
<th>CH</th>
<th>XF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>81.5</td>
<td>81.5</td>
<td>81.5</td>
<td>81.5</td>
<td>81.6</td>
<td>81.6</td>
<td>81.6</td>
<td>81.6</td>
<td>81.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>97.7</td>
<td>98.0</td>
<td>100.0</td>
<td>100.0</td>
<td>94.6</td>
<td>94.7</td>
<td>96.2</td>
<td>97.4</td>
<td>97.6</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.3</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>5.1</td>
<td>5.3</td>
<td>3.8</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>61.0</td>
<td>68.93</td>
<td>-</td>
<td>-</td>
<td>59.8</td>
<td>-</td>
<td>50.4</td>
<td>60.68</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.41</td>
<td>1.42</td>
<td>1.63</td>
<td>1.70</td>
<td>1.74</td>
<td>1.69</td>
<td>2.14</td>
<td>1.58</td>
<td>1.34</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>3.8</td>
<td>-</td>
<td>9.4</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.13</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.28</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-48. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>467</th>
<th>468</th>
<th>469</th>
<th>470</th>
<th>471</th>
<th>472</th>
<th>473</th>
<th>474</th>
<th>475</th>
<th>476</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>27.6</td>
<td>22.9</td>
<td>26.8</td>
<td>29.6</td>
<td>29.8</td>
<td>27.2</td>
<td>26.7</td>
<td>23.2</td>
<td>22.7</td>
<td>27.6</td>
</tr>
<tr>
<td>Ce</td>
<td>50.8</td>
<td>53.0</td>
<td>50.2</td>
<td>46.3</td>
<td>46.3</td>
<td>50.5</td>
<td>51.0</td>
<td>53.9</td>
<td>53.7</td>
<td>50.3</td>
</tr>
<tr>
<td>Pr</td>
<td>3.5</td>
<td>6.2</td>
<td>5.1</td>
<td>6.3</td>
<td>6.1</td>
<td>4.6</td>
<td>4.6</td>
<td>5.3</td>
<td>6.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Nd</td>
<td>13.9</td>
<td>14.5</td>
<td>16.0</td>
<td>13.2</td>
<td>13.7</td>
<td>15.4</td>
<td>15.5</td>
<td>15.0</td>
<td>15.2</td>
<td>15.8</td>
</tr>
<tr>
<td>Sm</td>
<td>1.9</td>
<td>2.1</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.2</td>
<td>2.1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>a</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.3</td>
<td>0.8a</td>
<td>-</td>
<td>2.1</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(1.7)</td>
<td>(4.0)b</td>
<td>(2.9)</td>
<td>(1.9)</td>
<td>(1.9)</td>
<td>(2.2)</td>
<td>(2.0)</td>
<td>(1.1)</td>
<td>-</td>
<td>(0.8)</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>CH</td>
<td>XF</td>
<td>-</td>
<td>-</td>
<td>EP</td>
<td>EP</td>
<td>CH</td>
<td>XF</td>
<td>EP</td>
</tr>
<tr>
<td>E = La+Ce+Pr</td>
<td>81.9</td>
<td>82.1</td>
<td>82.1</td>
<td>82.2</td>
<td>82.2</td>
<td>82.3</td>
<td>82.3</td>
<td>82.4</td>
<td>82.4</td>
<td>82.4</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.8</td>
<td>96.6</td>
<td>98.1</td>
<td>95.4</td>
<td>95.9</td>
<td>97.7</td>
<td>97.8</td>
<td>97.4</td>
<td>97.6</td>
<td>98.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.2</td>
<td>3.1</td>
<td>1.4</td>
<td>4.6</td>
<td>4.1</td>
<td>2.3</td>
<td>2.2</td>
<td>2.6</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3</td>
<td>63.2</td>
<td>63.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61.44</td>
<td>60.83</td>
<td>56.06</td>
<td>52.7</td>
<td>62.61</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.99</td>
<td>1.58</td>
<td>1.68</td>
<td>2.24</td>
<td>2.18</td>
<td>1.77</td>
<td>1.72</td>
<td>1.55</td>
<td>1.49</td>
<td>1.75</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>4.6</td>
<td>5.46</td>
<td>-</td>
<td>2.6</td>
<td>1.8</td>
<td>8.45</td>
<td>8.33</td>
<td>-</td>
<td>-</td>
<td>6.42</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.50</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Table 1-49. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>477</th>
<th>478</th>
<th>479</th>
<th>480</th>
<th>481</th>
<th>482</th>
<th>483</th>
<th>484</th>
<th>485</th>
<th>486</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>22.0</td>
<td>21.7</td>
<td>30.7</td>
<td>28.7</td>
<td>27.1</td>
<td>27.9</td>
<td>22.9</td>
<td>28.0</td>
<td>27.0</td>
<td>34.7</td>
</tr>
<tr>
<td>Ce</td>
<td>57.0</td>
<td>54.7</td>
<td>45.2</td>
<td>50.0</td>
<td>51.4</td>
<td>50.1</td>
<td>49.8</td>
<td>49.8</td>
<td>51.4</td>
<td>38.6</td>
</tr>
<tr>
<td>Pr</td>
<td>3.5</td>
<td>6.1</td>
<td>6.8</td>
<td>4.0</td>
<td>4.2</td>
<td>4.7</td>
<td>10.1</td>
<td>5.1</td>
<td>4.6</td>
<td>9.7</td>
</tr>
<tr>
<td>Nd</td>
<td>10.4</td>
<td>15.1</td>
<td>11.9</td>
<td>13.8</td>
<td>14.9</td>
<td>16.4</td>
<td>12.5</td>
<td>15.6</td>
<td>15.3</td>
<td>17.0</td>
</tr>
<tr>
<td>Sm</td>
<td>1.8</td>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>2.2</td>
<td>0.9</td>
<td>2.2</td>
<td>1.5</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>4.9</td>
<td>0.6</td>
<td>0.2</td>
<td>1.4</td>
<td>-</td>
<td>2.3</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.2</td>
<td>-</td>
<td>1.8</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(0.3)</td>
<td>(0.6)</td>
<td>-</td>
<td>(0.6)</td>
<td>(2.3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.3)</td>
<td>-</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>EP</th>
<th>XF</th>
<th>XF</th>
<th>EP</th>
<th>XF</th>
<th>XF</th>
</tr>
</thead>
</table>
\[\vartriangle = (La+Ce+Pr) \]
| 82.5 | 82.5 | 82.7 | 82.7 | 82.7 | 82.7 | 82.8 | 82.9 | 83.0 | 83.0 | |
| 92.9 | 97.6 | 94.6 | 96.5 | 97.6 | 99.1 | 95.3 | 98.5 | 98.3 | 100.0 |
| 6.9 | 2.4 | 1.8 | 3.3 | 2.4 | 0.9 | 4.5 | 1.5 | 1.7 | - |
| 0.2 | - | 3.6 | 0.2 | - | 0.2 | - | - | - | - |
| RE_2O_3 | - | 70.11 | 62.5 | 52.3 | 59.55 | - | 54.7 | - | - |
| La/Nd | 2.12 | 1.44 | 2.58 | 2.08 | 1.82 | 1.70 | 1.83 | 1.79 | 1.76 | 2.04 |
| ThO_2, wt.% | - | - | - | - | - | 7.47 | - | - | 6.7 |
| U_3O_8, wt.% | - | - | - | - | - | - | - | - | - |
Table 1-50. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

(a) Eu + Gd calcd. as Gd; (b) Tb + Y calcd. as Y; (c) Tb + Dy + Y calcd. as Y

<table>
<thead>
<tr>
<th>Element</th>
<th>487</th>
<th>488</th>
<th>489</th>
<th>490</th>
<th>491</th>
<th>492</th>
<th>493</th>
<th>494</th>
<th>495</th>
<th>496</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>23.5</td>
<td>18.2</td>
<td>20.6</td>
<td>28.6</td>
<td>23.5</td>
<td>27.8</td>
<td>31.2</td>
<td>29.3</td>
<td>26.5</td>
<td>28.3</td>
</tr>
<tr>
<td>Ce</td>
<td>54.8</td>
<td>58.8</td>
<td>60.3</td>
<td>50.7</td>
<td>55.1</td>
<td>55.5</td>
<td>47.5</td>
<td>50.0</td>
<td>53.5</td>
<td>55.5</td>
</tr>
<tr>
<td>Pr</td>
<td>4.8</td>
<td>6.1</td>
<td>2.3</td>
<td>4.0</td>
<td>4.7</td>
<td>-</td>
<td>4.8</td>
<td>4.3</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>Nd</td>
<td>13.9</td>
<td>14.8</td>
<td>5.9</td>
<td>7.9</td>
<td>13.2</td>
<td>16.7</td>
<td>14.9</td>
<td>14.1</td>
<td>14.0</td>
<td>16.2</td>
</tr>
<tr>
<td>Sm</td>
<td>1.9</td>
<td>1.5</td>
<td>0.8</td>
<td>-</td>
<td>2.5</td>
<td>1.6</td>
<td>1.8</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>a</td>
<td>a</td>
<td>0.1</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>0.3</td>
<td>a</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.1</td>
<td>0.6</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>c</td>
<td>0.2</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>c</td>
<td>2.0</td>
<td>5.4</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
<td>1.7</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>4.7</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(1.4)</td>
<td>(3.4)</td>
<td>(1.5)</td>
<td>-</td>
<td>(0.9)</td>
<td>(0.6)</td>
<td>-</td>
<td>(2.8)</td>
<td>(0.4)</td>
<td>-</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th>CH</th>
<th>CH</th>
<th>XF</th>
<th>XF</th>
<th>CH</th>
<th>OS</th>
<th>XF</th>
<th>EP</th>
<th>CH</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>83.1</td>
<td>83.1</td>
<td>83.2</td>
<td>83.3</td>
<td>83.3</td>
<td>83.5</td>
<td>83.6</td>
<td>83.8</td>
<td>83.8</td>
<td>83.8</td>
</tr>
<tr>
<td>97.0</td>
<td>97.9</td>
<td>89.1</td>
<td>91.2</td>
<td>96.5</td>
<td>100.0</td>
<td>98.4</td>
<td>97.7</td>
<td>97.8</td>
<td>100.0</td>
</tr>
<tr>
<td>3.0</td>
<td>2.1</td>
<td>4.8</td>
<td>5.4</td>
<td>3.3</td>
<td>-</td>
<td>1.6</td>
<td>2.3</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>6.1</td>
<td>3.4</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3</td>
<td>-</td>
<td>60.05</td>
<td>-</td>
<td>-</td>
<td>60.85</td>
<td>-</td>
<td>-</td>
<td>57.45</td>
<td>56.2</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.69</td>
<td>1.23</td>
<td>3.49</td>
<td>3.62</td>
<td>1.78</td>
<td>1.66</td>
<td>2.09</td>
<td>2.08</td>
<td>1.89</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>-</td>
<td>7.95</td>
<td>-</td>
<td>-</td>
<td>4.15</td>
<td>8.4</td>
<td>-</td>
<td>-</td>
<td>2.78</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-51. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (contd.)

<table>
<thead>
<tr>
<th></th>
<th>497</th>
<th>498</th>
<th>499</th>
<th>500</th>
<th>501</th>
<th>502</th>
<th>503</th>
<th>504</th>
<th>505</th>
<th>506</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.7</td>
<td>27.5</td>
<td>31.2</td>
<td>27.7</td>
<td>24.1</td>
<td>27.3</td>
<td>26.5</td>
<td>28.2</td>
<td>31.7</td>
<td>33.9</td>
</tr>
<tr>
<td>Ce</td>
<td>53.8</td>
<td>51.3</td>
<td>48.4</td>
<td>56.5</td>
<td>55.0</td>
<td>53.2</td>
<td>52.9</td>
<td>56.5</td>
<td>48.9</td>
<td>42.5</td>
</tr>
<tr>
<td>Pr</td>
<td>5.4</td>
<td>5.2</td>
<td>4.6</td>
<td>-</td>
<td>5.3</td>
<td>3.9</td>
<td>5.1</td>
<td>-</td>
<td>4.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Nd</td>
<td>13.5</td>
<td>15.0</td>
<td>14.2</td>
<td>15.8</td>
<td>13.1</td>
<td>13.5</td>
<td>14.3</td>
<td>15.3</td>
<td>14.4</td>
<td>12.1</td>
</tr>
<tr>
<td>Sm</td>
<td>1.6</td>
<td>0.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.8</td>
<td>0.7</td>
<td>0.7</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.8a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.7</td>
<td>0.4</td>
<td>-</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.1)</td>
<td>(0.3)</td>
<td>(0.4)</td>
<td>(0.4)</td>
<td>(2.0)</td>
<td>(3.2)</td>
<td>-</td>
<td>(0.5)</td>
<td>-</td>
<td>(3.2)</td>
</tr>
<tr>
<td>Method</td>
<td>CH</td>
<td>-</td>
<td>-</td>
<td>OS</td>
<td>-</td>
<td>EP</td>
<td>-</td>
<td>OS</td>
<td>XF</td>
<td>XF</td>
</tr>
<tr>
<td>$\Sigma = \text{La}+\text{Ce}+\text{Pr}$</td>
<td>83.9</td>
<td>84.0</td>
<td>84.2</td>
<td>84.2</td>
<td>84.4</td>
<td>84.4</td>
<td>84.5</td>
<td>84.7</td>
<td>84.9</td>
<td>85.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>97.4</td>
<td>99.0</td>
<td>98.4</td>
<td>100.0</td>
<td>97.5</td>
<td>97.9</td>
<td>98.8</td>
<td>100.0</td>
<td>99.3</td>
<td>97.3</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.6</td>
<td>1.0</td>
<td>1.6</td>
<td>-</td>
<td>2.5</td>
<td>2.1</td>
<td>1.2</td>
<td>-</td>
<td>0.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Er-Lu</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE$_2$O$_3$</td>
<td>59.01</td>
<td>69.36</td>
<td>56.63</td>
<td>-</td>
<td>59.01</td>
<td>48.57</td>
<td>70.84</td>
<td>-</td>
<td>-</td>
<td>68.6</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.83</td>
<td>1.83</td>
<td>2.20</td>
<td>1.75</td>
<td>1.84</td>
<td>2.02</td>
<td>1.85</td>
<td>1.84</td>
<td>2.20</td>
<td>2.80</td>
</tr>
<tr>
<td>ThO$_2$, wt.%</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>9.1</td>
<td>2.42</td>
<td>12.61</td>
<td>0.23</td>
<td>9.4</td>
<td>-</td>
<td>0.11</td>
</tr>
<tr>
<td>U$_3$O$_8$, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-52. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>Table 1-52: Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>507</td>
</tr>
<tr>
<td>La</td>
<td>26.6</td>
</tr>
<tr>
<td>Ce</td>
<td>54.0</td>
</tr>
<tr>
<td>Pr</td>
<td>4.8</td>
</tr>
<tr>
<td>Nd</td>
<td>10.6</td>
</tr>
<tr>
<td>Sm</td>
<td>2.6</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.1</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(1.5)</td>
</tr>
<tr>
<td>Method</td>
<td>CH</td>
</tr>
<tr>
<td>La+Ce+Pr</td>
<td>85.4</td>
</tr>
<tr>
<td>La-Nd</td>
<td>96.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.0</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>2.51</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>6.25</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1-53. Monazite-(Ce) from igneous and metamorphic rocks, atomic percent (cont'd)
(a) Eu + Gd calcd. as Gd; (c) Tb + Dy + Y calcd. as Y
<table>
<thead>
<tr>
<th>Element</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>Y/(Y+La)x100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27.5</td>
<td>28.1</td>
<td>29.5</td>
<td>30.5</td>
<td>30.5</td>
<td>25.7</td>
<td>32.1</td>
<td>25.1</td>
<td>24.9</td>
<td>27.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.4</td>
<td>54.2</td>
<td>53.2</td>
<td>52.1</td>
<td>50.9</td>
<td>56.8</td>
<td>51.2</td>
<td>57.5</td>
<td>58.5</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>4.5</td>
<td>4.3</td>
<td>4.5</td>
<td>5.8</td>
<td>4.7</td>
<td>4.0</td>
<td>5.1</td>
<td>4.7</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>12.1</td>
<td>11.9</td>
<td>9.7</td>
<td>10.3</td>
<td>12.0</td>
<td>11.4</td>
<td>11.1</td>
<td>10.7</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>1.4</td>
<td>0.5</td>
<td>1.1</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>527</td>
<td>528</td>
<td>529</td>
<td>530</td>
<td>531</td>
<td>532</td>
<td>533</td>
<td>534</td>
<td>535</td>
<td>536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>39.3</td>
<td>35.6</td>
<td>40.2</td>
<td>35.2</td>
<td>38.9</td>
<td>40.3</td>
<td>37.0</td>
<td>40.8</td>
<td>36.8</td>
<td>29.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>45.0</td>
<td>49.4</td>
<td>44.4</td>
<td>50.0</td>
<td>46.1</td>
<td>44.4</td>
<td>48.5</td>
<td>43.9</td>
<td>48.6</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>4.0</td>
<td>3.4</td>
<td>3.9</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
<td>3.1</td>
<td>4.1</td>
<td>3.5</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>10.7</td>
<td>11.0</td>
<td>9.6</td>
<td>11.1</td>
<td>9.6</td>
<td>9.6</td>
<td>9.9</td>
<td>10.2</td>
<td>10.3</td>
<td>8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>1.0</td>
<td>0.6</td>
<td>0.7</td>
<td>0.4</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.6</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.4</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
<td>1.4</td>
<td>0.6</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(0.3)</td>
<td>(0.9)</td>
<td>(1.1)</td>
<td>(0.9)</td>
<td>-</td>
<td>(2.0)</td>
<td>(0.1)</td>
<td>(4.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method
EP | EP | OS | OS | XF

$\varepsilon =$
La+Ce+Pr | 88.3 | 88.4 | 88.5 | 88.5 | 88.6 | 88.6 | 88.6 | 88.8 | 88.9 | 89.0

La-Nd | 99.0 | 99.4 | 98.1 | 99.6 | 98.2 | 98. | 98.5 | 99.0 | 99.2 | 97.2

Sm-Ho | 1.0 | 0.6 | 1.8 | 0.4 | 1.8 | 1.7 | 1.5 | 1.0 | 0.7 | 2.4

Er-Lu | - | - | 0.1 | - | - | 0.1 | - | - | 0.1 | 0.4

RE$_2$O$_3$ | - | 62.92 | 65.20 | - | - | 9.2 | 59.24 | - | 66.1 | -

La/Nd | 3.67 | 3.24 | 4.19 | 3.17 | 4.05 | 4.2 | 3.74 | 4.00 | 3.57 | 3.55

ThO$_2$, wt.% | - | 3.23 | - | - | 1.8 | - | 11.6 | - | 0.08 | -

U$_3$O$_8$, wt.% | - | - | - | - | - | - | - | - | 0.4 | -
<table>
<thead>
<tr>
<th>Element</th>
<th>537</th>
<th>538</th>
<th>539</th>
<th>540</th>
<th>541</th>
<th>542</th>
<th>543</th>
<th>544</th>
<th>545</th>
<th>546</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>39.7</td>
<td>25.8</td>
<td>35.5</td>
<td>37.5</td>
<td>37.6</td>
<td>24.3</td>
<td>29.7</td>
<td>39.5</td>
<td>39.4</td>
<td>32.8</td>
</tr>
<tr>
<td>Ce</td>
<td>51.0</td>
<td>61.1</td>
<td>49.4</td>
<td>45.2</td>
<td>59.9</td>
<td>55.0</td>
<td>46.4</td>
<td>46.3</td>
<td>52.6</td>
<td>50.8</td>
</tr>
<tr>
<td>Pr</td>
<td>3.3</td>
<td>2.2</td>
<td>4.2</td>
<td>6.3</td>
<td>5.0</td>
<td>4.5</td>
<td>3.4</td>
<td>3.8</td>
<td>4.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Nd</td>
<td>9.8</td>
<td>9.2</td>
<td>9.6</td>
<td>10.9</td>
<td>8.1</td>
<td>9.8</td>
<td>9.9</td>
<td>8.5</td>
<td>9.3</td>
<td>8.5</td>
</tr>
<tr>
<td>Sm</td>
<td>0.9</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>0.6</td>
<td>0.4</td>
<td>-</td>
<td>1.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>c</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>-</td>
<td>(0.8)c</td>
<td>(0.7)</td>
<td>-</td>
<td>(1.6)</td>
<td>(0.3)</td>
<td>-</td>
<td>(1.7)</td>
<td>(0.2)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Method</td>
<td>EP</td>
<td>CH</td>
<td>-</td>
<td>XF</td>
<td>CH</td>
<td>-</td>
<td>XF</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>89.0</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
<td>89.2</td>
<td>89.2</td>
<td>89.3</td>
<td>89.5</td>
<td>89.6</td>
<td>89.7</td>
</tr>
<tr>
<td>La-Nd</td>
<td>98.8</td>
<td>98.3</td>
<td>98.7</td>
<td>100.0</td>
<td>97.3</td>
<td>99.0</td>
<td>99.2</td>
<td>98.0</td>
<td>99.1</td>
<td>98.6</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>1.2</td>
<td>1.7</td>
<td>1.3</td>
<td>-</td>
<td>2.0</td>
<td>1.0</td>
<td>0.8</td>
<td>1.9</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>63.9</td>
<td>-</td>
<td>-</td>
<td>63.2</td>
<td>-</td>
<td>-</td>
<td>69.96</td>
<td>70.36</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>3.54</td>
<td>2.80</td>
<td>3.70</td>
<td>3.45</td>
<td>3.00</td>
<td>3.03</td>
<td>3.99</td>
<td>4.64</td>
<td>3.45</td>
<td>3.96</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>5.07</td>
<td>-</td>
<td>-</td>
<td>3.1</td>
<td>-</td>
<td>-</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>547</td>
<td>548</td>
<td>549</td>
<td>550</td>
<td>551</td>
<td>552</td>
<td>553</td>
<td>554</td>
<td>555</td>
<td>556</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>La</td>
<td>35.3</td>
<td>44.9</td>
<td>21.9</td>
<td>37.8</td>
<td>36.9</td>
<td>36.8</td>
<td>37.7</td>
<td>39.5</td>
<td>33.2</td>
<td>37.9</td>
</tr>
<tr>
<td>Ce</td>
<td>50.9</td>
<td>44.9</td>
<td>65.0</td>
<td>48.7</td>
<td>49.4</td>
<td>49.1</td>
<td>48.9</td>
<td>47.2</td>
<td>53.1</td>
<td>49.5</td>
</tr>
<tr>
<td>Pr</td>
<td>3.5</td>
<td>-</td>
<td>3.0</td>
<td>3.5</td>
<td>3.7</td>
<td>4.2</td>
<td>3.5</td>
<td>3.5</td>
<td>3.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Nd</td>
<td>9.8</td>
<td>10.2</td>
<td>9.0</td>
<td>9.2</td>
<td>9.6</td>
<td>9.4</td>
<td>9.4</td>
<td>8.5</td>
<td>9.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Sm</td>
<td>0.5</td>
<td>-</td>
<td>0.7</td>
<td>0.8</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)×100</td>
<td>(2.0)</td>
<td>-</td>
<td>-</td>
<td>(1.3)</td>
<td>-</td>
<td>(0.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method</td>
<td>XF</td>
<td>OS</td>
<td>XF</td>
<td>-</td>
<td>EP</td>
<td>XF</td>
<td>XF</td>
<td>-</td>
<td>-</td>
<td>XF</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>89.7</td>
<td>89.8</td>
<td>89.9</td>
<td>90.0</td>
<td>90.0</td>
<td>90.1</td>
<td>90.1</td>
<td>90.2</td>
<td>90.2</td>
<td>90.5</td>
</tr>
<tr>
<td>La-Nd</td>
<td>99.5</td>
<td>100.0</td>
<td>98.9</td>
<td>99.2</td>
<td>99.6</td>
<td>99.5</td>
<td>99.5</td>
<td>98.7</td>
<td>99.3</td>
<td>99.5</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>0.5</td>
<td>-</td>
<td>1.1</td>
<td>0.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>1.3</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>3.60</td>
<td>4.40</td>
<td>2.43</td>
<td>4.11</td>
<td>3.84</td>
<td>3.91</td>
<td>4.01</td>
<td>4.65</td>
<td>3.65</td>
<td>4.21</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>557</td>
<td>558</td>
<td>559</td>
<td>560</td>
<td>561</td>
<td>562</td>
<td>563</td>
<td>564</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>38.4</td>
<td>35.4</td>
<td>33.2</td>
<td>32.4</td>
<td>37.4</td>
<td>30.8</td>
<td>35.6</td>
<td>39.1</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>48.9</td>
<td>52.2</td>
<td>54.4</td>
<td>56.0</td>
<td>50.1</td>
<td>58.2</td>
<td>50.2</td>
<td>50.8</td>
<td>47.0</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>3.6</td>
<td>3.4</td>
<td>3.4</td>
<td>2.7</td>
<td>3.8</td>
<td>2.6</td>
<td>5.9</td>
<td>2.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>8.4</td>
<td>8.2</td>
<td>8.5</td>
<td>8.5</td>
<td>8.7</td>
<td>8.0</td>
<td>7.3</td>
<td>6.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.7</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>0.4</td>
<td>-</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)\times100</td>
<td>(0.2)</td>
<td>(0.6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(4.1)</td>
<td></td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>EP</th>
<th>XF</th>
<th>XF</th>
<th>XF</th>
<th>CH</th>
<th>XF</th>
<th>EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon = La+Ce+Pr$</td>
<td>90.9</td>
<td>91.0</td>
<td>91.0</td>
<td>91.1</td>
<td>91.3</td>
<td>91.6</td>
<td>91.7</td>
</tr>
<tr>
<td>La-Nd</td>
<td>99.3</td>
<td>99.2</td>
<td>99.5</td>
<td>99.6</td>
<td>100.0</td>
<td>99.6</td>
<td>99.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>RE$_2$O$_3$</td>
<td>69.95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70.3</td>
</tr>
<tr>
<td>La/Nd</td>
<td>4.57</td>
<td>4.32</td>
<td>3.91</td>
<td>3.81</td>
<td>4.30</td>
<td>3.85</td>
<td>4.88</td>
</tr>
<tr>
<td>ThO$_2$, wt.%</td>
<td>0.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U$_3$O$_8$, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-1. Monazite-(Ce) from placers, atomic percent
(b) Tb + Y calc'd. as Y

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>12.7</td>
<td>16.4</td>
<td>19.1</td>
<td>19.2</td>
<td>16.6</td>
<td>28.0</td>
<td>20.0</td>
<td>19.5</td>
<td>18.3</td>
<td>17.8</td>
</tr>
<tr>
<td>Ce</td>
<td>41.3</td>
<td>41.5</td>
<td>37.1</td>
<td>40.2</td>
<td>40.3</td>
<td>29.3</td>
<td>37.9</td>
<td>41.7</td>
<td>41.1</td>
<td>44.5</td>
</tr>
<tr>
<td>Pr</td>
<td>5.1</td>
<td>4.7</td>
<td>7.3</td>
<td>4.9</td>
<td>8.0</td>
<td>7.6</td>
<td>7.4</td>
<td>4.5</td>
<td>8.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Nd</td>
<td>32.7</td>
<td>24.8</td>
<td>28.7</td>
<td>14.2</td>
<td>24.0</td>
<td>28.2</td>
<td>24.7</td>
<td>26.1</td>
<td>23.5</td>
<td>17.8</td>
</tr>
<tr>
<td>Sm</td>
<td>7.4</td>
<td>7.2</td>
<td>6.9</td>
<td>-</td>
<td>3.3</td>
<td>4.7</td>
<td>5.7</td>
<td>6.3</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.8</td>
<td>-</td>
<td>3.1</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>b</td>
</tr>
<tr>
<td>Dy</td>
<td>0.8</td>
<td>-</td>
<td>0.9</td>
<td>8.2</td>
<td>-</td>
<td>2.2</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>5.3</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(2.5)</td>
<td>(5.4)</td>
<td>(6.7)</td>
<td>(2.7)</td>
<td>(6.8)</td>
<td>(11.3)</td>
<td>-</td>
<td>(3.5)</td>
<td>(4.9)</td>
<td>(3.2)</td>
</tr>
<tr>
<td>Method</td>
<td>EP</td>
<td>OS</td>
<td>EP</td>
<td>CH</td>
<td>OS</td>
<td>EP</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>CH</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>59.1</td>
<td>62.6</td>
<td>63.5</td>
<td>64.3</td>
<td>64.9</td>
<td>64.9</td>
<td>65.3</td>
<td>65.7</td>
<td>67.5</td>
<td>68.0</td>
</tr>
<tr>
<td>La-Nd</td>
<td>91.8</td>
<td>87.4</td>
<td>92.2</td>
<td>78.5</td>
<td>88.9</td>
<td>93.1</td>
<td>90.0</td>
<td>91.8</td>
<td>91.0</td>
<td>85.8</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>8.2</td>
<td>12.6</td>
<td>7.8</td>
<td>8.2</td>
<td>11.1</td>
<td>6.9</td>
<td>9.2</td>
<td>8.2</td>
<td>4.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>8.9</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>59.2</td>
<td>-</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>60.6</td>
<td>-</td>
<td>55.34</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.39</td>
<td>0.66</td>
<td>0.67</td>
<td>1.35</td>
<td>0.69</td>
<td>0.99</td>
<td>0.81</td>
<td>0.75</td>
<td>0.78</td>
<td>1.00</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>6.6</td>
<td>6.49</td>
<td>9.2</td>
<td>1.14</td>
<td>-</td>
<td>5.9</td>
<td>0.67</td>
<td>6.67</td>
<td>-</td>
<td>1.01</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>0.50</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.40</td>
<td>-</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>11a</td>
<td>11b</td>
<td>11c</td>
<td>11d</td>
<td>11e</td>
<td>11f</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>La</td>
<td>20.4</td>
<td>25.5</td>
<td>26.7</td>
<td>27.7</td>
<td>28.3</td>
<td>28.8</td>
<td>17.9</td>
<td>16.2</td>
<td>18.2</td>
<td>16.8</td>
</tr>
<tr>
<td>Ce</td>
<td>42.8</td>
<td>45.7</td>
<td>48.5</td>
<td>48.9</td>
<td>49.7</td>
<td>50.3</td>
<td>45.2</td>
<td>44.2</td>
<td>44.6</td>
<td>47.0</td>
</tr>
<tr>
<td>Pr</td>
<td>4.8</td>
<td>4.9</td>
<td>4.5</td>
<td>4.8</td>
<td>4.3</td>
<td>4.7</td>
<td>5.1</td>
<td>8.0</td>
<td>5.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Nd</td>
<td>22.2</td>
<td>17.2</td>
<td>15.0</td>
<td>13.1</td>
<td>12.7</td>
<td>11.9</td>
<td>25.2</td>
<td>23.2</td>
<td>24.0</td>
<td>24.5</td>
</tr>
<tr>
<td>Sm</td>
<td>5.8</td>
<td>2.9</td>
<td>2.0</td>
<td>2.4</td>
<td>1.9</td>
<td>1.5</td>
<td>5.9</td>
<td>2.8</td>
<td>6.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>4.0</td>
<td>3.8</td>
<td>3.3</td>
<td>3.1</td>
<td>3.1</td>
<td>2.8</td>
<td></td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)</td>
<td></td>
</tr>
<tr>
<td>RE2O3</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td></td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
<td>8.2</td>
<td></td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.0</td>
<td>20.5</td>
<td>17.0</td>
<td>20.3</td>
<td>17.3</td>
<td>15.7</td>
<td>15.3</td>
<td>18.5</td>
<td>12.4</td>
<td>19.4</td>
</tr>
<tr>
<td>Ce</td>
<td>45.2</td>
<td>41.1</td>
<td>43.9</td>
<td>43.5</td>
<td>46.8</td>
<td>49.3</td>
<td>48.7</td>
<td>45.9</td>
<td>55.2</td>
<td>45.8</td>
</tr>
<tr>
<td>Pr</td>
<td>4.6</td>
<td>7.4</td>
<td>8.3</td>
<td>5.6</td>
<td>5.3</td>
<td>4.5</td>
<td>5.5</td>
<td>5.2</td>
<td>2.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Nd</td>
<td>24.9</td>
<td>22.0</td>
<td>22.6</td>
<td>21.6</td>
<td>24.6</td>
<td>22.8</td>
<td>23.7</td>
<td>17.9</td>
<td>17.9</td>
<td>24.7</td>
</tr>
<tr>
<td>Sm</td>
<td>5.0</td>
<td>3.3</td>
<td>3.1</td>
<td>5.4</td>
<td>4.6</td>
<td>6.6</td>
<td>5.9</td>
<td>4.8</td>
<td>9.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>5.7</td>
<td>4.1</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>6.2</td>
<td>1.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>1.4</td>
<td>1.1</td>
<td>0.9</td>
<td>0.8</td>
<td>0.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(8.3)</td>
<td>(5.6)</td>
<td>(5.4)</td>
<td>(5.9)</td>
<td>(7.0)</td>
<td>(1.0)</td>
<td>(0.5)</td>
<td>(4.6)</td>
<td>(1.3)</td>
<td>(9.6)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>La+Ce+Pr</td>
<td>68.8</td>
<td>69.0</td>
<td>69.2</td>
<td>69.4</td>
<td>69.4</td>
<td>69.5</td>
<td>69.5</td>
<td>69.6</td>
<td>69.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>93.7</td>
<td>91.0</td>
<td>91.8</td>
<td>91.0</td>
<td>94.0</td>
<td>92.3</td>
<td>93.2</td>
<td>87.5</td>
<td>87.5</td>
<td>94.4</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>6.3</td>
<td>9.0</td>
<td>7.2</td>
<td>9.0</td>
<td>6.0</td>
<td>7.7</td>
<td>6.8</td>
<td>12.3</td>
<td>12.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.76</td>
<td>0.93</td>
<td>0.75</td>
<td>0.94</td>
<td>0.70</td>
<td>0.69</td>
<td>0.65</td>
<td>1.03</td>
<td>0.69</td>
<td>0.79</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>6.09</td>
<td>14.4</td>
<td>5.7</td>
<td>7.3</td>
<td>-</td>
<td>-</td>
<td>10.3</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-4. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.0</td>
<td>15.4</td>
<td>16.5</td>
<td>20.0</td>
<td>17.2</td>
<td>19.6</td>
<td>17.6</td>
<td>21.3</td>
<td>21.4</td>
<td>21.4</td>
</tr>
<tr>
<td>Ce</td>
<td>43.9</td>
<td>48.9</td>
<td>48.7</td>
<td>43.9</td>
<td>47.0</td>
<td>44.7</td>
<td>47.8</td>
<td>43.5</td>
<td>45.1</td>
<td>45.4</td>
</tr>
<tr>
<td>Pr</td>
<td>6.8</td>
<td>5.7</td>
<td>4.8</td>
<td>6.1</td>
<td>5.9</td>
<td>5.8</td>
<td>4.9</td>
<td>5.7</td>
<td>4.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Nd</td>
<td>25.7</td>
<td>22.8</td>
<td>24.4</td>
<td>24.6</td>
<td>23.0</td>
<td>25.0</td>
<td>24.2</td>
<td>22.9</td>
<td>21.2</td>
<td>21.5</td>
</tr>
<tr>
<td>Sm</td>
<td>4.3</td>
<td>6.0</td>
<td>4.3</td>
<td>4.0</td>
<td>6.0</td>
<td>3.6</td>
<td>4.6</td>
<td>5.2</td>
<td>4.6</td>
<td>5.3</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>0.9</td>
<td>1.3</td>
<td>0.9</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(3.3)</td>
<td>(2.2)</td>
<td>(4.5)</td>
<td>(7.6)</td>
<td>(5.6)</td>
<td>(6.7)</td>
<td>(4.1)</td>
<td>(3.6)</td>
<td>(4.6)</td>
<td>(3.5)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>69.7</td>
<td>70.0</td>
<td>70.0</td>
<td>70.0</td>
<td>70.1</td>
<td>70.1</td>
<td>70.3</td>
<td>70.5</td>
<td>71.1</td>
<td>71.3</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.4</td>
<td>92.8</td>
<td>94.4</td>
<td>94.6</td>
<td>93.1</td>
<td>95.1</td>
<td>94.5</td>
<td>93.4</td>
<td>92.3</td>
<td>92.8</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.6</td>
<td>7.2</td>
<td>5.6</td>
<td>5.4</td>
<td>6.9</td>
<td>4.9</td>
<td>5.5</td>
<td>6.6</td>
<td>7.7</td>
<td>7.2</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.5</td>
<td>60.5</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.74</td>
<td>0.68</td>
<td>0.68</td>
<td>0.81</td>
<td>0.75</td>
<td>0.78</td>
<td>0.73</td>
<td>0.93</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>Th₂O₅, wt.%</td>
<td>5.5</td>
<td>7.8</td>
<td>6.3</td>
<td>13.4</td>
<td>11.0</td>
<td>10.7</td>
<td>8.8</td>
<td>10.9</td>
<td>6.33</td>
<td>6.09</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>5.43</td>
</tr>
</tbody>
</table>
Table 2-5. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>18.1</td>
<td>22.2</td>
<td>17.7</td>
<td>15.4</td>
<td>19.0</td>
<td>17.9</td>
<td>20.3</td>
<td>17.0</td>
<td>20.3</td>
</tr>
<tr>
<td>Ce</td>
<td>48.2</td>
<td>43.2</td>
<td>48.9</td>
<td>48.1</td>
<td>47.9</td>
<td>48.9</td>
<td>45.9</td>
<td>49.5</td>
<td>45.5</td>
</tr>
<tr>
<td>Pr</td>
<td>5.0</td>
<td>5.9</td>
<td>4.9</td>
<td>8.1</td>
<td>4.7</td>
<td>4.8</td>
<td>5.6</td>
<td>5.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Nd</td>
<td>22.5</td>
<td>23.9</td>
<td>22.9</td>
<td>16.6</td>
<td>23.2</td>
<td>23.8</td>
<td>23.2</td>
<td>21.3</td>
<td>22.1</td>
</tr>
<tr>
<td>Sm</td>
<td>4.4</td>
<td>4.1</td>
<td>4.6</td>
<td>8.0</td>
<td>4.1</td>
<td>3.7</td>
<td>4.4</td>
<td>6.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.8</td>
<td>0.7</td>
<td>1.0</td>
<td>-</td>
<td>1.1</td>
<td>0.9</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(6.2)</td>
<td>(4.2)</td>
<td>(4.3)</td>
<td>(6.2)</td>
<td>(4.7)</td>
<td>(3.9)</td>
<td>(4.1)</td>
<td>(0.9)</td>
<td>(3.9)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>71.3</td>
<td>71.3</td>
<td>71.5</td>
<td>71.6</td>
<td>71.6</td>
<td>71.6</td>
<td>71.8</td>
<td>72.0</td>
<td>72.0</td>
</tr>
<tr>
<td>La-Nd</td>
<td>93.8</td>
<td>95.2</td>
<td>94.4</td>
<td>88.2</td>
<td>94.8</td>
<td>95.4</td>
<td>95.0</td>
<td>93.3</td>
<td>94.1</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>6.2</td>
<td>4.8</td>
<td>5.6</td>
<td>11.8</td>
<td>5.2</td>
<td>4.6</td>
<td>5.0</td>
<td>6.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>63.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.81</td>
<td>0.93</td>
<td>0.77</td>
<td>0.93</td>
<td>0.82</td>
<td>0.75</td>
<td>0.88</td>
<td>0.80</td>
<td>0.92</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>13.15</td>
<td>11.2</td>
<td>16.39</td>
<td>2.85</td>
<td>11.2</td>
<td>11.2</td>
<td>5.4</td>
<td>12.3</td>
<td>4.3</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>La</td>
<td>19.4</td>
<td>19.3</td>
<td>17.5</td>
<td>19.6</td>
<td>17.6</td>
<td>22.9</td>
<td>18.9</td>
<td>19.9</td>
<td>20.6</td>
</tr>
<tr>
<td>Ce</td>
<td>48.1</td>
<td>48.7</td>
<td>50.2</td>
<td>48.5</td>
<td>50.6</td>
<td>45.4</td>
<td>49.5</td>
<td>46.4</td>
<td>46.3</td>
</tr>
<tr>
<td>Pr</td>
<td>4.6</td>
<td>4.4</td>
<td>4.8</td>
<td>4.4</td>
<td>4.5</td>
<td>4.6</td>
<td>4.5</td>
<td>6.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Nd</td>
<td>23.9</td>
<td>22.9</td>
<td>19.9</td>
<td>23.7</td>
<td>22.4</td>
<td>20.9</td>
<td>23.7</td>
<td>23.2</td>
<td>21.2</td>
</tr>
<tr>
<td>Sm</td>
<td>3.1</td>
<td>3.3</td>
<td>6.2</td>
<td>2.9</td>
<td>4.1</td>
<td>4.2</td>
<td>2.8</td>
<td>3.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Dy</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>0.9</td>
<td>0.8</td>
<td>-</td>
<td>0.6</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(2.1)</td>
<td>(8.7)</td>
<td>(5.1)</td>
<td>(3.6)</td>
<td>(3.1)</td>
<td>(4.2)</td>
<td>(2.6)</td>
<td>(1.6)</td>
<td>(4.2)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>72.1</td>
<td>72.4</td>
<td>72.5</td>
<td>72.5</td>
<td>72.7</td>
<td>72.9</td>
<td>72.9</td>
<td>73.0</td>
<td>73.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>96.0</td>
<td>95.3</td>
<td>92.4</td>
<td>96.2</td>
<td>95.1</td>
<td>93.8</td>
<td>96.6</td>
<td>96.2</td>
<td>94.4</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.5</td>
<td>4.7</td>
<td>7.6</td>
<td>3.8</td>
<td>4.9</td>
<td>6.2</td>
<td>3.4</td>
<td>3.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.82</td>
<td>0.84</td>
<td>0.88</td>
<td>0.83</td>
<td>0.79</td>
<td>1.10</td>
<td>0.80</td>
<td>0.86</td>
<td>0.97</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>9.45</td>
<td>9.2</td>
<td>6.4</td>
<td>10.8</td>
<td>8.0</td>
<td>7.0</td>
<td>4.5</td>
<td>5.5</td>
<td>0.55</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-7. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>18.8</td>
<td>19.9</td>
<td>23.4</td>
<td>18.9</td>
<td>20.6</td>
<td>21.6</td>
<td>19.0</td>
<td>17.6</td>
<td>17.3</td>
<td>27.6</td>
</tr>
<tr>
<td>Ce</td>
<td>49.4</td>
<td>48.0</td>
<td>45.4</td>
<td>48.6</td>
<td>48.1</td>
<td>47.0</td>
<td>48.7</td>
<td>51.2</td>
<td>51.8</td>
<td>39.9</td>
</tr>
<tr>
<td>Pr</td>
<td>5.1</td>
<td>5.4</td>
<td>4.6</td>
<td>5.9</td>
<td>4.9</td>
<td>5.0</td>
<td>5.9</td>
<td>4.8</td>
<td>4.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Nd</td>
<td>21.4</td>
<td>22.1</td>
<td>20.4</td>
<td>22.3</td>
<td>20.8</td>
<td>21.9</td>
<td>22.1</td>
<td>22.2</td>
<td>23.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Sm</td>
<td>4.6</td>
<td>-</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>3.6</td>
<td>3.6</td>
<td>3.4</td>
<td>2.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.7</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.7)</td>
<td>(7.6)</td>
<td>(4.3)</td>
<td>-</td>
<td>(2.1)</td>
<td>(2.77)</td>
<td>(3.9)</td>
<td>(3.5)</td>
<td>(2.9)</td>
<td>(13.3)</td>
</tr>
<tr>
<td>ε = La+Ce+Pr</td>
<td>73.3</td>
<td>73.3</td>
<td>73.4</td>
<td>73.4</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td>73.7</td>
</tr>
<tr>
<td>La-Nd</td>
<td>94.7</td>
<td>95.4</td>
<td>93.8</td>
<td>95.7</td>
<td>94.4</td>
<td>95.5</td>
<td>95.7</td>
<td>95.8</td>
<td>96.6</td>
<td>88.6</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>5.3</td>
<td>4.6</td>
<td>6.2</td>
<td>4.3</td>
<td>5.6</td>
<td>4.5</td>
<td>4.3</td>
<td>4.2</td>
<td>3.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>59.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.88</td>
<td>0.90</td>
<td>1.15</td>
<td>0.85</td>
<td>0.98</td>
<td>0.99</td>
<td>0.86</td>
<td>0.79</td>
<td>0.75</td>
<td>1.85</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>0.95</td>
<td>2.3</td>
<td>7.07</td>
<td>-</td>
<td>9.2</td>
<td>9.2</td>
<td>7.3</td>
<td>9.7</td>
<td>7.8</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-8. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>20.4</td>
<td>23.9</td>
<td>21.6</td>
<td>18.1</td>
<td>19.7</td>
<td>23.6</td>
<td>23.4</td>
<td>22.9</td>
<td>24.1</td>
<td>20.9</td>
</tr>
<tr>
<td>Ce</td>
<td>48.3</td>
<td>45.4</td>
<td>47.6</td>
<td>51.2</td>
<td>49.0</td>
<td>46.3</td>
<td>46.0</td>
<td>46.0</td>
<td>45.4</td>
<td>48.1</td>
</tr>
<tr>
<td>Pr</td>
<td>5.0</td>
<td>4.5</td>
<td>4.6</td>
<td>4.5</td>
<td>5.1</td>
<td>4.0</td>
<td>4.6</td>
<td>5.1</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Nd</td>
<td>23.6</td>
<td>20.4</td>
<td>21.2</td>
<td>21.2</td>
<td>21.9</td>
<td>22.0</td>
<td>20.6</td>
<td>20.8</td>
<td>21.1</td>
<td>22.1</td>
</tr>
<tr>
<td>Sm</td>
<td>2.2</td>
<td>3.4</td>
<td>3.4</td>
<td>3.8</td>
<td>3.6</td>
<td>3.2</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>1.5</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>1.6</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>0.7</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>(Y/(Y+La)\times100)</td>
<td>(1.0)</td>
<td>(2.5)</td>
<td>(4.4)</td>
<td>(6.4)</td>
<td>(2.4)</td>
<td>(5.6)</td>
<td>(4.2)</td>
<td>(3.3)</td>
<td>(3.0)</td>
<td>(3.3)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>73.7</td>
<td>73.8</td>
<td>73.8</td>
<td>73.8</td>
<td>73.9</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
</tr>
<tr>
<td>La-Nd</td>
<td>97.3</td>
<td>94.2</td>
<td>95.0</td>
<td>95.0</td>
<td>95.7</td>
<td>95.9</td>
<td>94.6</td>
<td>94.8</td>
<td>95.1</td>
<td>96.1</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.7</td>
<td>5.8</td>
<td>5.0</td>
<td>5.0</td>
<td>4.3</td>
<td>4.1</td>
<td>5.4</td>
<td>5.2</td>
<td>4.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.86</td>
<td>1.17</td>
<td>1.02</td>
<td>0.85</td>
<td>0.90</td>
<td>1.07</td>
<td>1.14</td>
<td>1.10</td>
<td>1.14</td>
<td>0.95</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>13.5</td>
<td>2.00</td>
<td>-</td>
<td>8.8</td>
<td>7.15</td>
<td>8.4</td>
<td>-</td>
<td>6.24</td>
<td>-</td>
<td>4.2</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-9. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.5</td>
<td>23.5</td>
<td>18.3</td>
<td>22.8</td>
<td>20.3</td>
<td>23.5</td>
<td>18.9</td>
<td>21.6</td>
<td>18.4</td>
<td>19.9</td>
</tr>
<tr>
<td>Ce</td>
<td>50.0</td>
<td>44.2</td>
<td>50.6</td>
<td>45.3</td>
<td>48.7</td>
<td>45.9</td>
<td>50.0</td>
<td>47.5</td>
<td>49.5</td>
<td>51.3</td>
</tr>
<tr>
<td>Pr</td>
<td>4.6</td>
<td>6.5</td>
<td>5.3</td>
<td>6.1</td>
<td>5.3</td>
<td>4.9</td>
<td>5.5</td>
<td>5.4</td>
<td>6.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Nd</td>
<td>21.6</td>
<td>21.8</td>
<td>22.2</td>
<td>22.5</td>
<td>21.6</td>
<td>21.9</td>
<td>19.6</td>
<td>21.4</td>
<td>21.6</td>
<td>21.9</td>
</tr>
<tr>
<td>Sm</td>
<td>2.9</td>
<td>3.6</td>
<td>3.1</td>
<td>3.0</td>
<td>3.2</td>
<td>3.3</td>
<td>4.5</td>
<td>2.2</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>1.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.9</td>
<td>0.5</td>
<td>1.5</td>
<td>0.9</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Ho</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>6.4</td>
<td>3.0</td>
<td>1.2</td>
<td>7.3</td>
<td>4.5</td>
<td>1.0</td>
<td>8.4</td>
<td>6.0</td>
<td>5.7</td>
<td>8.8</td>
</tr>
<tr>
<td>Σ = La + Ce + Pr</td>
<td>74.1</td>
<td>74.2</td>
<td>74.2</td>
<td>74.2</td>
<td>74.3</td>
<td>74.3</td>
<td>74.5</td>
<td>74.5</td>
<td>74.5</td>
<td>74.5</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.7</td>
<td>96.0</td>
<td>96.4</td>
<td>96.7</td>
<td>95.9</td>
<td>96.2</td>
<td>94.0</td>
<td>95.9</td>
<td>96.1</td>
<td>96.4</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.3</td>
<td>4.0</td>
<td>3.4</td>
<td>3.3</td>
<td>4.1</td>
<td>3.8</td>
<td>6.0</td>
<td>4.1</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td></td>
</tr>
<tr>
<td>RE₂O₃</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.90</td>
<td>1.08</td>
<td>0.82</td>
<td>1.01</td>
<td>0.94</td>
<td>1.07</td>
<td>0.96</td>
<td>1.01</td>
<td>0.85</td>
<td>0.91</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>6.9</td>
<td>8.2</td>
<td>8.8</td>
<td>9.1</td>
<td>10.1</td>
<td>7.2</td>
<td>15.6</td>
<td>9.7</td>
<td>5.9</td>
<td>9.7</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-10. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.2</td>
<td>20.9</td>
<td>19.3</td>
<td>24.4</td>
<td>19.6</td>
<td>18.9</td>
<td>23.0</td>
<td>20.4</td>
<td>20.1</td>
<td>21.7</td>
</tr>
<tr>
<td>Ce</td>
<td>50.8</td>
<td>48.6</td>
<td>50.7</td>
<td>45.8</td>
<td>50.5</td>
<td>51.7</td>
<td>46.7</td>
<td>49.5</td>
<td>49.7</td>
<td>47.4</td>
</tr>
<tr>
<td>Pr</td>
<td>4.5</td>
<td>5.1</td>
<td>4.6</td>
<td>4.5</td>
<td>4.6</td>
<td>4.3</td>
<td>5.3</td>
<td>5.1</td>
<td>5.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Nd</td>
<td>22.0</td>
<td>21.9</td>
<td>22.1</td>
<td>21.0</td>
<td>21.9</td>
<td>20.9</td>
<td>18.8</td>
<td>21.5</td>
<td>21.67</td>
<td>21.7</td>
</tr>
<tr>
<td>Sm</td>
<td>2.6</td>
<td>2.8</td>
<td>2.8</td>
<td>3.4</td>
<td>2.9</td>
<td>3.3</td>
<td>3.1</td>
<td>2.9</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.9</td>
<td>0.7</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(0.9)</td>
<td>(3.8)</td>
<td>(1.6)</td>
<td>(3.3)</td>
<td>(3.9)</td>
<td>(4.8)</td>
<td>(3.0)</td>
<td>(3.2)</td>
<td>(3.7)</td>
<td>(3.7)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>74.5</td>
<td>74.6</td>
<td>74.6</td>
<td>74.7</td>
<td>74.7</td>
<td>74.9</td>
<td>75.0</td>
<td>75.0</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td>La-Nd</td>
<td>96.5</td>
<td>96.5</td>
<td>96.7</td>
<td>95.7</td>
<td>96.6</td>
<td>95.8</td>
<td>93.8</td>
<td>96.5</td>
<td>96.6</td>
<td>96.7</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>3.5</td>
<td>3.5</td>
<td>3.3</td>
<td>4.3</td>
<td>3.4</td>
<td>4.2</td>
<td>6.0</td>
<td>3.5</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE_2O_3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.87</td>
<td>0.95</td>
<td>0.87</td>
<td>1.16</td>
<td>0.89</td>
<td>0.90</td>
<td>1.22</td>
<td>0.95</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>ThO_2, wt.%</td>
<td>5.0</td>
<td>7.8</td>
<td>11.5</td>
<td>7.5</td>
<td>8.2</td>
<td>5.4</td>
<td>-</td>
<td>7.9</td>
<td>9.3</td>
<td>6.0</td>
</tr>
<tr>
<td>U_3O_8, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-11. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
<th>101</th>
<th>102</th>
<th>103</th>
<th>104</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>20.5</td>
<td>23.4</td>
<td>21.2</td>
<td>23.6</td>
<td>22.1</td>
<td>23.7</td>
<td>22.8</td>
<td>22.1</td>
<td>26.0</td>
<td>21.6</td>
</tr>
<tr>
<td>Ce</td>
<td>49.8</td>
<td>46.3</td>
<td>49.4</td>
<td>47.2</td>
<td>47.8</td>
<td>47.1</td>
<td>46.9</td>
<td>48.7</td>
<td>44.3</td>
<td>48.5</td>
</tr>
<tr>
<td>Pr</td>
<td>4.8</td>
<td>5.5</td>
<td>4.6</td>
<td>4.5</td>
<td>5.4</td>
<td>4.6</td>
<td>5.7</td>
<td>4.6</td>
<td>5.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Nd</td>
<td>20.5</td>
<td>19.7</td>
<td>21.0</td>
<td>20.6</td>
<td>20.7</td>
<td>19.6</td>
<td>20.6</td>
<td>21.5</td>
<td>19.2</td>
<td>20.9</td>
</tr>
<tr>
<td>Sm</td>
<td>3.5</td>
<td>3.8</td>
<td>2.7</td>
<td>3.4</td>
<td>3.2</td>
<td>3.4</td>
<td>3.1</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>0.9</td>
<td>1.3</td>
<td>1.1</td>
<td></td>
<td>0.8</td>
<td></td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(5.0</td>
<td>-</td>
<td>(4.0)</td>
<td>(3.3)</td>
<td>(3.7)</td>
<td>(3.1)</td>
<td>(0.7)</td>
<td>(1.4)</td>
<td>(2.4)</td>
<td>(2.6)</td>
</tr>
</tbody>
</table>

Method

La+Ce+Pr | 75.1 | 75.2 | 75.2 | 75.3 | 75.3 | 75.4 | 75.4 | 75.4 | 75.5 | 75.5 |
La-Nd | 95.6 | 94.9 | 96.2 | 95.9 | 96.0 | 95.0 | 96.0 | 96.9 | 94.7 | 96.4 |
Sm-Ho | 4.4 | 5.1 | 3.8 | 4.1 | 4.0 | 5.0 | 4.0 | 3.1 | 5.3 | 3.6 |
Er-Lu | | | | | | | | | | |
RE2O3 | | | | | | | 62.6 | 61.45 | | |
La/Nd | 1.00 | 1.19 | 1.01 | 1.15 | 1.07 | 1.21 | 1.11 | 1.03 | 1.35 | 1.03 |
ThO2, wt.% | 9.8 | 8.2 | 4.44 | 8.6 | 4.91 | 12.4 | 11.6 | - | 9.7 |
U3O8, wt.% | | | | 0.23 | | 0.26 | | | | |
<table>
<thead>
<tr>
<th></th>
<th>106</th>
<th>107</th>
<th>108</th>
<th>109</th>
<th>110</th>
<th>111</th>
<th>112</th>
<th>113</th>
<th>114</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>26.7</td>
<td>20.8</td>
<td>19.7</td>
<td>18.1</td>
<td>22.4</td>
<td>22.1</td>
<td>24.9</td>
<td>24.4</td>
<td>22.7</td>
<td>21.2</td>
</tr>
<tr>
<td>Ce</td>
<td>44.5</td>
<td>49.2</td>
<td>50.9</td>
<td>52.7</td>
<td>48.1</td>
<td>49.6</td>
<td>45.4</td>
<td>47.7</td>
<td>49.4</td>
<td>49.9</td>
</tr>
<tr>
<td>Pr</td>
<td>4.5</td>
<td>5.8</td>
<td>5.2</td>
<td>5.0</td>
<td>5.4</td>
<td>4.3</td>
<td>5.5</td>
<td>4.3</td>
<td>4.3</td>
<td>5.4</td>
</tr>
<tr>
<td>Nd</td>
<td>19.2</td>
<td>19.9</td>
<td>20.5</td>
<td>20.7</td>
<td>20.3</td>
<td>19.0</td>
<td>18.4</td>
<td>16.0</td>
<td>17.9</td>
<td>19.2</td>
</tr>
<tr>
<td>Sm</td>
<td>2.9</td>
<td>2.4</td>
<td>2.7</td>
<td>3.0</td>
<td>3.5</td>
<td>3.8</td>
<td>3.7</td>
<td>3.0</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.5</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.7</td>
<td>0.6</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td>1.2</td>
<td>1.6</td>
<td>0.9</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+Ln)x100</td>
<td>(2.4)</td>
<td>(5.0)</td>
<td>(1.2)</td>
<td>(1.7)</td>
<td>(4.5)</td>
<td>-</td>
<td>(4.4)</td>
<td>(3.4)</td>
<td>(3.2)</td>
<td></td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>75.7</td>
<td>75.8</td>
<td>75.8</td>
<td>75.8</td>
<td>75.9</td>
<td>76.0</td>
<td>75.8</td>
<td>76.4</td>
<td>76.4</td>
<td>76.5</td>
</tr>
<tr>
<td>La-Nd</td>
<td>94.9</td>
<td>95.7</td>
<td>96.3</td>
<td>96.5</td>
<td>96.2</td>
<td>95.0</td>
<td>94.2</td>
<td>92.4</td>
<td>94.3</td>
<td>95.7</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>5.1</td>
<td>4.2</td>
<td>3.7</td>
<td>3.5</td>
<td>3.8</td>
<td>5.0</td>
<td>5.3</td>
<td>6.1</td>
<td>5.6</td>
<td>4.3</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>51.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60.32</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.39</td>
<td>1.05</td>
<td>0.96</td>
<td>0.87</td>
<td>1.10</td>
<td>1.16</td>
<td>1.35</td>
<td>1.53</td>
<td>1.27</td>
<td>1.10</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>3.85</td>
<td>11.0</td>
<td>6.8</td>
<td>3.1</td>
<td>10.5</td>
<td>10.3</td>
<td>-</td>
<td>7.4</td>
<td>4.6</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-13. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>116</th>
<th>117</th>
<th>118</th>
<th>119</th>
<th>120</th>
<th>121</th>
<th>122</th>
<th>123</th>
<th>124</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>25.8</td>
<td>23.7</td>
<td>19.8</td>
<td>20.0</td>
<td>25.2</td>
<td>21.5</td>
<td>23.7</td>
<td>21.3</td>
<td>19.6</td>
<td>21.2</td>
</tr>
<tr>
<td>Ce</td>
<td>45.1</td>
<td>47.1</td>
<td>52.4</td>
<td>50.7</td>
<td>46.6</td>
<td>49.2</td>
<td>47.7</td>
<td>51.8</td>
<td>52.9</td>
<td>49.7</td>
</tr>
<tr>
<td>Pr</td>
<td>5.6</td>
<td>5.2</td>
<td>4.4</td>
<td>6.0</td>
<td>4.9</td>
<td>6.0</td>
<td>5.4</td>
<td>3.7</td>
<td>4.4</td>
<td>6.2</td>
</tr>
<tr>
<td>Nd</td>
<td>19.3</td>
<td>19.6</td>
<td>20.5</td>
<td>18.9</td>
<td>19.1</td>
<td>18.3</td>
<td>18.0</td>
<td>19.6</td>
<td>20.2</td>
<td>17.8</td>
</tr>
<tr>
<td>Sm</td>
<td>3.5</td>
<td>3.1</td>
<td>2.3</td>
<td>2.4</td>
<td>3.0</td>
<td>3.3</td>
<td>3.5</td>
<td>2.0</td>
<td>2.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>1.0</td>
<td>1.2</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>0.6</td>
<td>0.6</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.9)</td>
<td>(2.3)</td>
<td>(1.6)</td>
<td>(3.0)</td>
<td>(4.8)</td>
<td>(3.8)</td>
<td>(12.2)</td>
<td>-</td>
<td>(2.2)</td>
<td>(9.8)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>76.5</td>
<td>76.0</td>
<td>76.6</td>
<td>76.7</td>
<td>76.7</td>
<td>76.7</td>
<td>76.8</td>
<td>76.8</td>
<td>76.9</td>
<td>77.1</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.8</td>
<td>95.6</td>
<td>97.1</td>
<td>95.6</td>
<td>95.8</td>
<td>95.0</td>
<td>94.8</td>
<td>96.4</td>
<td>97.1</td>
<td>94.9</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.2</td>
<td>4.4</td>
<td>2.9</td>
<td>4.2</td>
<td>4.2</td>
<td>4.0</td>
<td>5.2</td>
<td>3.6</td>
<td>2.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>51.31</td>
<td>-</td>
<td>-</td>
<td>62.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.34</td>
<td>1.21</td>
<td>0.97</td>
<td>1.07</td>
<td>1.32</td>
<td>1.17</td>
<td>1.32</td>
<td>1.09</td>
<td>0.97</td>
<td>1.19</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>7.35</td>
<td>11.0</td>
<td>7.5</td>
<td>2.85</td>
<td>7.2</td>
<td>4.2</td>
<td>6.2</td>
<td>6.06</td>
<td>5.6</td>
<td>12.1</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>

75
Table 2-14. Monazite-(Ce) from placers, atomic percent (contd.)

<table>
<thead>
<tr>
<th></th>
<th>126</th>
<th>127</th>
<th>128</th>
<th>129</th>
<th>130</th>
<th>131</th>
<th>132</th>
<th>133</th>
<th>134</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>23.1</td>
<td>27.1</td>
<td>25.0</td>
<td>20.4</td>
<td>24.4</td>
<td>27.5</td>
<td>24.7</td>
<td>22.7</td>
<td>23.7</td>
<td>26.5</td>
</tr>
<tr>
<td>Ce</td>
<td>49.4</td>
<td>45.6</td>
<td>47.9</td>
<td>53.3</td>
<td>49.2</td>
<td>45.9</td>
<td>49.5</td>
<td>52.1</td>
<td>50.6</td>
<td>47.4</td>
</tr>
<tr>
<td>Pr</td>
<td>4.8</td>
<td>4.7</td>
<td>5.2</td>
<td>4.4</td>
<td>4.7</td>
<td>5.0</td>
<td>4.3</td>
<td>3.9</td>
<td>4.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Nd</td>
<td>18.2</td>
<td>17.8</td>
<td>17.6</td>
<td>18.8</td>
<td>17.3</td>
<td>17.4</td>
<td>19.5</td>
<td>18.1</td>
<td>17.3</td>
<td>18.0</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5</td>
<td>3.8</td>
<td>2.5</td>
<td>2.4</td>
<td>2.3</td>
<td>4.2</td>
<td>1.8</td>
<td>2.4</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Eu</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.4</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.3</td>
<td>1.0</td>
<td>0.1</td>
<td>0.7</td>
<td>0.3</td>
<td>-</td>
<td>0.2</td>
<td>0.8</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)\times100</td>
<td>(2.2)</td>
<td>(4.4)</td>
<td>(3.5)</td>
<td>(3.3)</td>
<td>(2.5)</td>
<td>-</td>
<td>(2.1)</td>
<td>(3.0)</td>
<td>(1.5)</td>
<td>(2.6)</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>77.3</td>
<td>77.4</td>
<td>78.1</td>
<td>78.1</td>
<td>78.3</td>
<td>78.4</td>
<td>78.5</td>
<td>78.7</td>
<td>78.8</td>
<td>78.8</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.5</td>
<td>95.2</td>
<td>95.7</td>
<td>96.9</td>
<td>95.6</td>
<td>95.8</td>
<td>98.0</td>
<td>96.8</td>
<td>96.1</td>
<td>96.8</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.5</td>
<td>4.8</td>
<td>4.0</td>
<td>3.1</td>
<td>4.3</td>
<td>4.2</td>
<td>2.0</td>
<td>3.2</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3</td>
<td>58.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>63.42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58.64</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.27</td>
<td>1.52</td>
<td>1.42</td>
<td>1.09</td>
<td>1.41</td>
<td>1.58</td>
<td>1.27</td>
<td>1.25</td>
<td>1.37</td>
<td>1.47</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>6.4</td>
<td>5.20</td>
<td>-</td>
<td>6.8</td>
<td>7.0</td>
<td>-</td>
<td>9.2</td>
<td>4.7</td>
<td>6.5</td>
<td>12.2</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2-15. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>136</th>
<th>137</th>
<th>138</th>
<th>139</th>
<th>140</th>
<th>141</th>
<th>142</th>
<th>143</th>
<th>144</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>26.9</td>
<td>24.1</td>
<td>19.2</td>
<td>24.7</td>
<td>22.9</td>
<td>25.6</td>
<td>24.5</td>
<td>18.5</td>
<td>25.9</td>
<td>27.2</td>
</tr>
<tr>
<td>Ce</td>
<td>49.4</td>
<td>50.6</td>
<td>56.0</td>
<td>50.9</td>
<td>52.5</td>
<td>50.2</td>
<td>51.1</td>
<td>55.3</td>
<td>50.0</td>
<td>49.7</td>
</tr>
<tr>
<td>Pr</td>
<td>4.4</td>
<td>4.3</td>
<td>4.3</td>
<td>4.2</td>
<td>4.5</td>
<td>4.3</td>
<td>4.5</td>
<td>6.5</td>
<td>4.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Nd</td>
<td>16.6</td>
<td>16.6</td>
<td>18.1</td>
<td>15.9</td>
<td>16.3</td>
<td>15.6</td>
<td>16.1</td>
<td>15.8</td>
<td>16.7</td>
<td>12.4</td>
</tr>
<tr>
<td>Sm</td>
<td>2.4</td>
<td>2.5</td>
<td>1.8</td>
<td>2.2</td>
<td>3.3</td>
<td>2.3</td>
<td>2.1</td>
<td>3.6</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>0.3</td>
<td>1.1</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>1.3</td>
<td>0.9</td>
<td>-</td>
<td>1.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(2.2)</td>
<td>(2.2)</td>
<td>(0.7)</td>
<td>(2.2)</td>
<td>(4.7)</td>
<td>(2.5)</td>
<td>(1.5)</td>
<td>(4.6)</td>
<td>(0.9)</td>
<td>(0.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>79.0</th>
<th>79.5</th>
<th>79.8</th>
<th>79.9</th>
<th>80.1</th>
<th>80.1</th>
<th>80.3</th>
<th>80.6</th>
<th>80.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-Nd</td>
<td>97.3</td>
<td>95.6</td>
<td>97.6</td>
<td>95.7</td>
<td>96.2</td>
<td>95.7</td>
<td>96.2</td>
<td>96.1</td>
<td>97.3</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.7</td>
<td>4.3</td>
<td>2.4</td>
<td>4.2</td>
<td>3.8</td>
<td>4.2</td>
<td>3.7</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>RE2O3</td>
<td>-</td>
<td>58.77</td>
<td>-</td>
<td>58.22</td>
<td>-</td>
<td>58.03</td>
<td>58.60</td>
<td>-</td>
<td>62.51</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.62</td>
<td>1.45</td>
<td>1.06</td>
<td>1.55</td>
<td>1.40</td>
<td>1.64</td>
<td>1.52</td>
<td>1.17</td>
<td>1.55</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>-</td>
<td>6.6</td>
<td>3.6</td>
<td>7.3</td>
<td>11.4</td>
<td>7.9</td>
<td>8.4</td>
<td>3.3</td>
<td>8.1</td>
</tr>
<tr>
<td>U3O8, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 2-16. Monazite-(Ce) from placers, atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>146</th>
<th>147</th>
<th>148</th>
<th>149</th>
<th>150</th>
<th>151</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>20.1</td>
<td>22.2</td>
<td>20.1</td>
<td>26.4</td>
<td>24.4</td>
<td>30.1</td>
</tr>
<tr>
<td>Ce</td>
<td>53.9</td>
<td>51.3</td>
<td>56.9</td>
<td>51.7</td>
<td>56.0</td>
<td>52.4</td>
</tr>
<tr>
<td>Pr</td>
<td>6.8</td>
<td>7.4</td>
<td>4.4</td>
<td>4.2</td>
<td>5.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Nd</td>
<td>12.2</td>
<td>16.0</td>
<td>15.8</td>
<td>14.6</td>
<td>13.7</td>
<td>12.1</td>
</tr>
<tr>
<td>Sm</td>
<td>5.1</td>
<td>2.5</td>
<td>2.5</td>
<td>1.8</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Dy</td>
<td>1.9</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(5.2)</td>
<td>(3.2)</td>
<td>(0.8)</td>
<td>(1.7)</td>
<td>-</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

Method
- EP
- EP
- EP
- XF
- EP
- XF

- $\Sigma = \text{La+Ce+Pr}$
- 80.8 80.9 81.4 82.3 85.7 86.4

- La-Nd
- 93.0 96.9 97.2 96.9 99.4 98.5

- Sm-Ho
- 7.0 3.1 2.8 3.0 0.6 1.4

- Er-Lu
- - - - 0.1 - 0.1

- RE_2O_3
- - - - 58.24 68.90 61.86

- La/Nd
- 1.65 1.39 1.27 1.81 1.78 2.49

- ThO_2, wt.%
- 11.7 6.3 5.75 8.1 1.28 6.6

- U_3O_8, wt.%
- - - - - -

78
Table 3-1. Dark Monazite(Ce), atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>10.5</td>
<td>11.4</td>
<td>18.5</td>
<td>14.0</td>
<td>15.3</td>
<td>16.4</td>
<td>15.7</td>
<td>19.6</td>
<td>15.8</td>
<td>17.8</td>
</tr>
<tr>
<td>Ce</td>
<td>40.2</td>
<td>41.4</td>
<td>33.3</td>
<td>42.9</td>
<td>44.0</td>
<td>43.8</td>
<td>44.4</td>
<td>42.3</td>
<td>44.4</td>
<td>44.2</td>
</tr>
<tr>
<td>Pr</td>
<td>6.4</td>
<td>6.8</td>
<td>9.1</td>
<td>6.1</td>
<td>6.1</td>
<td>5.5</td>
<td>6.0</td>
<td>4.2</td>
<td>6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Nd</td>
<td>32.0</td>
<td>28.5</td>
<td>25.5</td>
<td>28.4</td>
<td>25.5</td>
<td>23.6</td>
<td>24.9</td>
<td>25.6</td>
<td>25.1</td>
<td>25.9</td>
</tr>
<tr>
<td>Sm</td>
<td>7.6</td>
<td>6.5</td>
<td>5.4</td>
<td>6.0</td>
<td>5.2</td>
<td>5.0</td>
<td>5.3</td>
<td>5.1</td>
<td>5.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Eu</td>
<td>0.9</td>
<td>1.2</td>
<td>1.7</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Gd</td>
<td>2.4</td>
<td>3.8</td>
<td>6.1</td>
<td>1.9</td>
<td>3.0</td>
<td>4.9</td>
<td>2.8</td>
<td>1.5</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(1.3)</td>
<td>(1.4)</td>
<td>-</td>
<td>(1.3)</td>
<td>(2.5)</td>
<td>(1.0)</td>
<td>(2.5)</td>
<td>(0.6)</td>
<td>(2.6)</td>
<td>(1.2)</td>
</tr>
</tbody>
</table>

Method

RE₂O₃	70.70	67.45	55.70	72.72	-	-	-	66.32	-	67.55
La/Nd	0.33	0.40	0.73	0.49	0.60	0.69	0.63	0.77	0.63	0.69
ThO₂, wt.%	0.75	0.32	0.001	0.35	-	-	-	0.54	-	1.0
U₃O₈, wt.%	-	-	-	-	-	-	-	-	-	-
Table 3-2. Dark Monazite(Ce), atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>18.2</td>
<td>17.9</td>
<td>19.8</td>
<td>21.3</td>
<td>17.9</td>
<td>20.3</td>
<td>21.2</td>
<td>23.3</td>
<td>19.9</td>
<td>19.5</td>
</tr>
<tr>
<td>Ce</td>
<td>44.5</td>
<td>44.0</td>
<td>44.9</td>
<td>44.1</td>
<td>47.9</td>
<td>44.7</td>
<td>44.8</td>
<td>43.0</td>
<td>46.7</td>
<td>46.5</td>
</tr>
<tr>
<td>Pr</td>
<td>5.2</td>
<td>7.4</td>
<td>5.7</td>
<td>5.2</td>
<td>5.0</td>
<td>5.9</td>
<td>5.3</td>
<td>5.1</td>
<td>4.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Nd</td>
<td>25.7</td>
<td>24.5</td>
<td>24.7</td>
<td>24.3</td>
<td>23.9</td>
<td>23.9</td>
<td>23.2</td>
<td>22.6</td>
<td>22.8</td>
<td>23.5</td>
</tr>
<tr>
<td>Sm</td>
<td>3.7</td>
<td>3.1</td>
<td>2.8</td>
<td>3.1</td>
<td>3.4</td>
<td>3.6</td>
<td>3.4</td>
<td>2.9</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>2.1</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.3</td>
<td>1.4</td>
<td>2.0</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(1.2)</td>
<td>(1.6)</td>
<td>(1.1)</td>
<td>(1.4)</td>
<td>(4.6)</td>
<td>(1.2)</td>
<td>(1.2)</td>
<td>(1.5)</td>
<td>(1.4)</td>
<td>(0.8)</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>-</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>67.9</td>
<td>69.3</td>
<td>70.4</td>
<td>70.6</td>
<td>70.8</td>
<td>70.9</td>
<td>71.3</td>
<td>71.4</td>
<td>71.4</td>
<td>71.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>93.6</td>
<td>93.8</td>
<td>95.1</td>
<td>94.9</td>
<td>94.7</td>
<td>94.8</td>
<td>94.5</td>
<td>94.0</td>
<td>94.2</td>
<td>95.1</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>6.4</td>
<td>5.9</td>
<td>4.9</td>
<td>5.1</td>
<td>5.3</td>
<td>5.2</td>
<td>5.5</td>
<td>6.0</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>61.4</td>
<td>52.75</td>
<td>71.8</td>
<td>55.08</td>
<td>56.4</td>
<td>69.95</td>
<td>71.96</td>
<td>60.99</td>
<td>55.56</td>
<td>65.02</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.71</td>
<td>0.73</td>
<td>0.80</td>
<td>0.88</td>
<td>0.75</td>
<td>0.85</td>
<td>0.91</td>
<td>1.03</td>
<td>0.87</td>
<td>0.83</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>0.53</td>
<td>0.66</td>
<td>0.70</td>
<td>0.59</td>
<td>-</td>
<td>0.65</td>
<td>0.68</td>
<td>3.2</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>

80
Table 3-3. Dark Monazite(Ce), atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.6</td>
<td>20.5</td>
<td>23.0</td>
<td>20.3</td>
<td>19.7</td>
<td>19.8</td>
<td>17.6</td>
<td>24.7</td>
<td>22.0</td>
<td>21.4</td>
</tr>
<tr>
<td>Ce</td>
<td>46.6</td>
<td>46.2</td>
<td>43.5</td>
<td>46.2</td>
<td>47.1</td>
<td>47.5</td>
<td>48.9</td>
<td>42.4</td>
<td>45.5</td>
<td>46.1</td>
</tr>
<tr>
<td>Pr</td>
<td>5.4</td>
<td>5.0</td>
<td>5.4</td>
<td>5.5</td>
<td>5.6</td>
<td>5.5</td>
<td>6.4</td>
<td>5.8</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Nd</td>
<td>23.5</td>
<td>23.4</td>
<td>22.2</td>
<td>22.1</td>
<td>20.3</td>
<td>21.6</td>
<td>21.1</td>
<td>19.9</td>
<td>22.1</td>
<td>22.5</td>
</tr>
<tr>
<td>Sm</td>
<td>3.1</td>
<td>3.0</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>3.2</td>
<td>2.9</td>
<td>4.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Eu</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>1.4</td>
<td>1.5</td>
<td>2.1</td>
<td>1.9</td>
<td>2.0</td>
<td>1.8</td>
<td>2.2</td>
<td>2.4</td>
<td>1.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y/(Y+La)x100</td>
<td>(0.8)</td>
<td>(1.35)</td>
<td>(3.5)</td>
<td>(1.4)</td>
<td>(1.7)</td>
<td>(1.2)</td>
<td>(1.4)</td>
<td>(5.6)</td>
<td>(1.0)</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>71.6</td>
<td>71.7</td>
<td>71.9</td>
<td>72.0</td>
<td>72.4</td>
<td>72.8</td>
<td>72.9</td>
<td>73.0</td>
<td>73.0</td>
<td></td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.1</td>
<td>95.1</td>
<td>94.1</td>
<td>94.1</td>
<td>92.7</td>
<td>94.4</td>
<td>94.0</td>
<td>92.8</td>
<td>95.1</td>
<td>95.5</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.9</td>
<td>4.9</td>
<td>5.9</td>
<td>5.9</td>
<td>7.1</td>
<td>5.6</td>
<td>6.0</td>
<td>7.2</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>64.90</td>
<td>54.57</td>
<td>49.8</td>
<td>60.07</td>
<td>-</td>
<td>61.47</td>
<td>46.36</td>
<td>65.21</td>
<td>70.69</td>
<td>56.85</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.83</td>
<td>0.88</td>
<td>1.04</td>
<td>0.92</td>
<td>0.97</td>
<td>0.92</td>
<td>0.83</td>
<td>1.24</td>
<td>1.00</td>
<td>0.95</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>1.02</td>
<td>0.59</td>
<td>0.57</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
<td>0.06</td>
<td>9.6</td>
<td>0.70</td>
<td>0.82</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-4. Dark Monazite(Ce), atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>21.6</td>
<td>22.0</td>
<td>21.7</td>
<td>21.9</td>
<td>17.2</td>
<td>22.0</td>
<td>17.3</td>
<td>23.6</td>
<td>23.9</td>
<td>21.1</td>
</tr>
<tr>
<td>Ce</td>
<td>46.4</td>
<td>46.2</td>
<td>46.9</td>
<td>48.8</td>
<td>51.4</td>
<td>47.5</td>
<td>51.6</td>
<td>46.1</td>
<td>47.5</td>
<td>49.2</td>
</tr>
<tr>
<td>Pr</td>
<td>5.3</td>
<td>5.2</td>
<td>5.5</td>
<td>3.4</td>
<td>5.7</td>
<td>4.9</td>
<td>5.7</td>
<td>5.4</td>
<td>4.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Nd</td>
<td>21.8</td>
<td>21.8</td>
<td>20.5</td>
<td>20.6</td>
<td>18.6</td>
<td>21.3</td>
<td>18.8</td>
<td>19.3</td>
<td>19.9</td>
<td>18.6</td>
</tr>
<tr>
<td>Sm</td>
<td>3.2</td>
<td>2.9</td>
<td>3.4</td>
<td>2.7</td>
<td>4.2</td>
<td>2.6</td>
<td>4.2</td>
<td>3.1</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Eu</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Gd</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.1</td>
<td>2.1</td>
<td>1.3</td>
<td>2.1</td>
<td>1.5</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)x100 (1.1) (1.1) (1.2) (0.8) (1.7) (1.3) (1.6) (1.7) (1.2) (0.5)</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>OS</td>
<td>OS</td>
<td>OS</td>
<td>XF</td>
<td>-</td>
<td>OS</td>
<td>OS</td>
<td>CH</td>
<td>-</td>
<td>XF</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>73.3</td>
<td>73.4</td>
<td>74.1</td>
<td>74.1</td>
<td>74.3</td>
<td>74.4</td>
<td>74.6</td>
<td>75.1</td>
<td>76.3</td>
<td>76.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>95.1</td>
<td>95.2</td>
<td>94.6</td>
<td>94.7</td>
<td>92.9</td>
<td>95.7</td>
<td>93.4</td>
<td>94.4</td>
<td>96.2</td>
<td>95.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>4.9</td>
<td>4.8</td>
<td>5.4</td>
<td>5.1</td>
<td>7.1</td>
<td>4.3</td>
<td>6.6</td>
<td>5.6</td>
<td>3.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>58.70</td>
<td>63.21</td>
<td>62.26</td>
<td>66.82</td>
<td>-</td>
<td>50.82</td>
<td>44.74</td>
<td>-</td>
<td>56.85</td>
<td>68.45</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.99</td>
<td>1.01</td>
<td>1.06</td>
<td>1.06</td>
<td>0.92</td>
<td>1.03</td>
<td>0.92</td>
<td>1.22</td>
<td>1.20</td>
<td>1.13</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>0.70</td>
<td>0.83</td>
<td>0.70</td>
<td>0.53</td>
<td>-</td>
<td>0.58</td>
<td>1.3</td>
<td>-</td>
<td>0.78</td>
<td>0.66</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3-5. Dark Monazite(Ce), atomic percent (cont'd)

<table>
<thead>
<tr>
<th></th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>24.3</td>
<td>22.1</td>
<td>25.3</td>
<td>29.1</td>
<td>31.7</td>
<td>26.3</td>
<td>21.3</td>
</tr>
<tr>
<td>Ce</td>
<td>47.7</td>
<td>52.4</td>
<td>50.2</td>
<td>48.1</td>
<td>48.3</td>
<td>57.9</td>
<td>63.5</td>
</tr>
<tr>
<td>Pr</td>
<td>5.0</td>
<td>4.1</td>
<td>4.5</td>
<td>4.8</td>
<td>2.9</td>
<td>2.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Nd</td>
<td>20.1</td>
<td>17.7</td>
<td>16.3</td>
<td>17.0</td>
<td>13.8</td>
<td>2.8</td>
<td>-</td>
</tr>
<tr>
<td>Sm</td>
<td>2.3</td>
<td>1.4</td>
<td>2.2</td>
<td>0.8</td>
<td>1.6</td>
<td>3.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Eu</td>
<td>0.6</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Gd</td>
<td>-</td>
<td>1.3</td>
<td>1.1</td>
<td>-</td>
<td>0.9</td>
<td>4.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Tb</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(1.3)</td>
<td>(0.7)</td>
<td>(0.8)</td>
<td>-</td>
<td>(1.9)</td>
<td>(1.7)</td>
<td>(2.0)</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>OS</th>
<th>XF</th>
</tr>
</thead>
<tbody>
<tr>
<td>La+Ce+Pr</td>
<td>77.0</td>
<td>78.6</td>
</tr>
<tr>
<td>La-Nd</td>
<td>97.1</td>
<td>96.3</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>2.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>59.32</td>
<td>62.46</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.21</td>
<td>1.25</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>0.78</td>
<td>1.40</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>La</td>
<td>35.1</td>
<td>44.5</td>
</tr>
<tr>
<td>Ce</td>
<td>12.8</td>
<td>33.4</td>
</tr>
<tr>
<td>Pr</td>
<td>8.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Nd</td>
<td>30.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Sm</td>
<td>5.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Eu</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(2.7)</td>
<td>-</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>EP</th>
<th>CH</th>
<th>XF</th>
<th>XF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>56.8</td>
<td>81.2</td>
<td>90.9</td>
<td>40.2</td>
</tr>
<tr>
<td>La-Nd</td>
<td>86.8</td>
<td>99.7</td>
<td>100.0</td>
<td>79.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>12.7</td>
<td>0.3</td>
<td>20.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>67.34</td>
<td>68.03</td>
<td>70.19</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.17</td>
<td>2.41</td>
<td>4.58</td>
<td>0.15</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5-1. Cheralite, atomic percent

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>19.5</td>
<td>18.3</td>
</tr>
<tr>
<td>Ce</td>
<td>45.1</td>
<td>48.1</td>
</tr>
<tr>
<td>Pr</td>
<td>4.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Nd</td>
<td>21.5</td>
<td>22.9</td>
</tr>
<tr>
<td>Sm</td>
<td>6.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Eu</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La) x 100</td>
<td>(0.4)</td>
<td>-</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th></th>
<th>EP</th>
<th>XF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε = La+Ce+Pr</td>
<td>69.0</td>
<td>72.3</td>
</tr>
<tr>
<td>La-Nd</td>
<td>90.5</td>
<td>95.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>9.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>RE$_2$O$_3$</td>
<td>27.25</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>0.91</td>
<td>0.80</td>
</tr>
<tr>
<td>ThO$_2$, wt.%</td>
<td>31.64</td>
<td>-</td>
</tr>
<tr>
<td>U$_3$O$_8$, wt.%</td>
<td>4.33</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 6-1. Huttonite, atomic percent

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>-</td>
<td>17.9</td>
<td>14.9</td>
<td>18.6</td>
<td>16.4</td>
<td>20.2</td>
<td>19.7</td>
</tr>
<tr>
<td>Ce</td>
<td>-</td>
<td>52.4</td>
<td>56.2</td>
<td>48.4</td>
<td>58.9</td>
<td>60.2</td>
<td>71.3</td>
</tr>
<tr>
<td>Pr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nd</td>
<td>-</td>
<td>29.7</td>
<td>28.9</td>
<td>22.5</td>
<td>20.5</td>
<td>19.6</td>
<td>9.0</td>
</tr>
<tr>
<td>Sm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tb</td>
<td>5.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>25.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>24.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>24.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+La)*100</td>
<td>(40.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[\xi = \text{La} + \text{Ce} + \text{Pr} \]

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>70.3</th>
<th>71.1</th>
<th>72.9</th>
<th>79.5</th>
<th>80.4</th>
<th>91.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-Nd</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>95.4</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>46.5</td>
<td>-</td>
<td>-</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>53.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE2O3</td>
<td>5.5</td>
<td>11.7</td>
<td>13.6</td>
<td>24.61</td>
<td>16.7</td>
<td>4.5</td>
<td>20.5</td>
</tr>
<tr>
<td>La/Nd</td>
<td>-</td>
<td>0.60</td>
<td>0.52</td>
<td>0.83</td>
<td>0.80</td>
<td>1.03</td>
<td>2.18</td>
</tr>
<tr>
<td>ThO2, wt.%</td>
<td>43.2</td>
<td>64.0</td>
<td>63.6</td>
<td>40.56</td>
<td>58.3</td>
<td>69.9</td>
<td>56.4</td>
</tr>
<tr>
<td>U3O8</td>
<td>2.44</td>
<td>0.83</td>
<td><0.47</td>
<td>1.63</td>
<td><0.47</td>
<td>1.04</td>
<td><0.47</td>
</tr>
<tr>
<td>SiO2, wt.%</td>
<td>17.2</td>
<td>13.5</td>
<td>10.4</td>
<td>10.95</td>
<td>11.1</td>
<td>12.8</td>
<td>8.1</td>
</tr>
<tr>
<td>P2O5, wt.%</td>
<td>0.7</td>
<td>7.1</td>
<td>8.9</td>
<td>10.00</td>
<td>10.5</td>
<td>7.4</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Table 7-1. Average composition of monazite-(Ce), Tables 1-3, atomic percent

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>21.2</td>
<td>24.2</td>
<td>25.2</td>
<td>29.7</td>
<td>28.3</td>
<td>20.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Ce</td>
<td>45.4</td>
<td>48.1</td>
<td>43.5</td>
<td>51.8</td>
<td>49.3</td>
<td>46.0</td>
<td>48.2</td>
</tr>
<tr>
<td>Pr</td>
<td>5.8</td>
<td>5.3</td>
<td>8.5</td>
<td>4.3</td>
<td>4.8</td>
<td>5.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Nd</td>
<td>19.3</td>
<td>17.5</td>
<td>20.2</td>
<td>12.5</td>
<td>1.2</td>
<td>22.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Sm</td>
<td>5.1</td>
<td>2.7</td>
<td>2.1</td>
<td>1.3</td>
<td>1.7</td>
<td>3.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Eu</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>2.5</td>
<td>1.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100Y/(Y+Ln)</td>
<td>(3.8)</td>
<td>(3.3)</td>
<td>(2.6)</td>
<td>(4.4)</td>
<td>(0.8)</td>
<td>(1.55)</td>
<td>(4.0)</td>
</tr>
<tr>
<td>no detns.</td>
<td>138</td>
<td>120</td>
<td>24</td>
<td>6</td>
<td>6</td>
<td>44</td>
<td>145</td>
</tr>
<tr>
<td>Σ=La+Ce+Pr</td>
<td>72.4</td>
<td>77.6</td>
<td>77.2</td>
<td>85.8</td>
<td>82.4</td>
<td>71.9</td>
<td>75.0</td>
</tr>
<tr>
<td>La-Nd</td>
<td>91.7</td>
<td>95.1</td>
<td>97.4</td>
<td>98.3</td>
<td>97.6</td>
<td>93.9</td>
<td>96.0</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>8.1</td>
<td>4.7</td>
<td>2.6</td>
<td>1.4</td>
<td>2.3</td>
<td>6.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>58.9</td>
<td>56.5</td>
<td>55.3</td>
<td>-</td>
<td>-</td>
<td>61.6</td>
<td>-</td>
</tr>
<tr>
<td>no. detns.</td>
<td>17</td>
<td>79</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>38</td>
<td>-</td>
</tr>
<tr>
<td>ThO₂, wt.%</td>
<td>9.0</td>
<td>6.3</td>
<td>6.0</td>
<td>-</td>
<td>2.1</td>
<td>0.9</td>
<td>7.9</td>
</tr>
<tr>
<td>no detns.</td>
<td>80</td>
<td>71</td>
<td>3</td>
<td>-</td>
<td>8</td>
<td>37</td>
<td>130</td>
</tr>
<tr>
<td>U₃O₈, wt.%</td>
<td>1.18</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.16</td>
</tr>
<tr>
<td>no detns.</td>
<td>20</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
</tbody>
</table>

Key to Table 7
A-E = from Table 1:
A=av. of 117 analyses from granitic pegmatites;
B=av. of 187 from granites, granodiorites, and quartz monzonites;
C=av. of 44 from gneisses;
D=av. of 13 from alkalic rocks and alkalic pegmatites;
E=av. of 25 from carbonatite;
F=av. of 46 dark monazites from Table 3;
G=av. of 151 from placers (Table 2)

Note: The averages for R.E. compositions do not include data from analyses in which La, Ce, Pr, or Nd were not determined. However, determinations of Y/(Y+Ln) and for ThO₂ or U₃O₈ from such analyses were used in calculating the averages above.

The averages for U₃O₈ are considered to be uncertain. For example, for A, the average of 1.18% becomes 0.40% if the highest determination (15.64% is omitted; the average for G of 1.16% becomes 0.33% if the two highest determinations (5.43, 6.1%) are omitted.
Table 8-1. Previously published average compositions of monazites, atomic percent

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>20.6</td>
<td>18.0</td>
<td>21.3</td>
<td>21.7</td>
<td>24.2</td>
<td>24.0</td>
<td>31.3</td>
<td>23.9</td>
</tr>
<tr>
<td>Ce</td>
<td>44.2</td>
<td>45.7</td>
<td>48.8</td>
<td>49.4</td>
<td>42.4</td>
<td>46.6</td>
<td>51.2</td>
<td>46.0</td>
</tr>
<tr>
<td>Pr</td>
<td>5.7</td>
<td>7.1</td>
<td>5.6</td>
<td>5.7</td>
<td>8.3</td>
<td>5.4</td>
<td>4.3</td>
<td>5.5</td>
</tr>
<tr>
<td>Nd</td>
<td>20.0</td>
<td>16.8</td>
<td>18.5</td>
<td>18.6</td>
<td>20.8</td>
<td>18.2</td>
<td>11.2</td>
<td>18.8</td>
</tr>
<tr>
<td>Sm</td>
<td>5.1</td>
<td>3.7</td>
<td>2.3</td>
<td>2.3</td>
<td>2.0</td>
<td>3.1</td>
<td>0.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gd</td>
<td>3.8</td>
<td>2.8</td>
<td>1.3</td>
<td>1.7</td>
<td>2.1</td>
<td>1.9</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Tb</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dy</td>
<td>0.2</td>
<td>3.3</td>
<td>1.2</td>
<td>0.3</td>
<td>-</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Ho</td>
<td>-</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Er</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yb</td>
<td>0.1</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Lu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y/(Y+Ln)x100</td>
<td>(4.9)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(3.6)</td>
<td>(0.7)</td>
<td>-</td>
</tr>
<tr>
<td>Method</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Σ = La+Ce+Pr</td>
<td>70.5</td>
<td>70.8</td>
<td>75.7</td>
<td>76.8</td>
<td>74.9</td>
<td>76.0</td>
<td>86.8</td>
<td>75.4</td>
</tr>
<tr>
<td>La-Nd</td>
<td>90.5</td>
<td>87.6</td>
<td>94.2</td>
<td>95.4</td>
<td>95.7</td>
<td>94.2</td>
<td>98.0</td>
<td>94.2</td>
</tr>
<tr>
<td>Sm-Ho</td>
<td>9.3</td>
<td>10.6</td>
<td>5.3</td>
<td>4.5</td>
<td>4.1</td>
<td>5.7</td>
<td>1.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Er-Lu</td>
<td>0.2</td>
<td>1.8</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>RE₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La/Nd</td>
<td>1.03</td>
<td>1.07</td>
<td>1.15</td>
<td>1.17</td>
<td>1.17</td>
<td>1.32</td>
<td>2.79</td>
<td>1.28</td>
</tr>
</tbody>
</table>

ThO₂, wt.%

U₃O₈, wt.%
<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Alakurtti, N. Karelia, U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>N. Karelia, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Chkalov, N. Karelia U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Zhirov et al.</td>
<td>1961</td>
<td>Alakurtti, N. Karelia</td>
<td>granite</td>
</tr>
<tr>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Chkalov, N. Karelia U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Brown Derby mine, Gunnison Co., Colo.</td>
<td>granite</td>
</tr>
<tr>
<td>Mittelfehldt and Miller and Andersen</td>
<td>1983</td>
<td>Sweetwater pluton, Calif.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Kalita</td>
<td>1961</td>
<td>Kapraovo, Karelia U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Brown Derby mine, Gunnison Co., Colo.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Rapp and Wilson</td>
<td>1986</td>
<td>Raade, Norway</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Brown Derby mine, Gunnison Co., Colo.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Chernaya Salma, Karelia, U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Murata et al.</td>
<td>1957</td>
<td>Jamestown, Colo.</td>
<td>aplite-pegmatite zone, aegirine-type ore</td>
</tr>
<tr>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>granite</td>
</tr>
<tr>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukrainian Shield</td>
<td>granite</td>
</tr>
<tr>
<td>McCarty</td>
<td>1935</td>
<td>New Mexico</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Kalita</td>
<td>1961</td>
<td>Kaita, Karelia</td>
<td>granite</td>
</tr>
<tr>
<td>Vainshtsein et al.</td>
<td>1956b</td>
<td>Karelia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Kornetova and Kazakova</td>
<td>1982</td>
<td>Siberia</td>
<td>granite</td>
</tr>
<tr>
<td>Kalita</td>
<td>1961</td>
<td>Alakurtti, Karelia U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Kalita</td>
<td>1959</td>
<td>N.W. Karelia</td>
<td>granite</td>
</tr>
<tr>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukrainian Shield</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Semenor and Khomyakov</td>
<td>1981</td>
<td>N. Karelia</td>
<td>granite</td>
</tr>
<tr>
<td>Kalita</td>
<td>1969</td>
<td>eastern Baltic Shield</td>
<td>pegmatite</td>
</tr>
<tr>
<td>quoted by Vlasov</td>
<td>1964</td>
<td>Chernaya Salma, Karelia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Sahama and Vahatalo</td>
<td>1941</td>
<td>Luikohlahti, Karelia</td>
<td>granite</td>
</tr>
<tr>
<td>Kornetova and Osoledkina</td>
<td>1966</td>
<td>Siberia</td>
<td>granite</td>
</tr>
</tbody>
</table>

Table 9a. Locality and Rock Type Index - Monazite-(Ce)
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Leonova and Nikitin</td>
<td>1962</td>
<td>Karelia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>30</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Chernaya Salma, Karelia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>31</td>
<td>Hugo</td>
<td>1970</td>
<td>Styr Kraal, S. Africa</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>32</td>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Temryuk, Karelia, U.S.S.R.</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>33</td>
<td>Kalita</td>
<td>1961</td>
<td>Neblogera, Karelia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>34</td>
<td>Zhirov et al.</td>
<td>1961</td>
<td>N. Karelia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>35</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Dniepr region, Ukraine</td>
<td>biotite gneiss</td>
</tr>
<tr>
<td>36</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Grans, Sao Paulo, Brazil</td>
<td>granite pegmatite; inner part of crystal 37</td>
</tr>
<tr>
<td>37</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Grans, Sao Paulo, Brazil</td>
<td>granite pegmatite; outer part of crystal 36</td>
</tr>
<tr>
<td>38</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>39</td>
<td>Kalita</td>
<td>1961</td>
<td>Nuoleinnieme, Karelia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>40</td>
<td>Sahama and Vahatalo</td>
<td>1939</td>
<td>Impilahti, Karelia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>41</td>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Given, Karelia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>42</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Karelia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>43</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Crabtree Creek, N. Carolina</td>
<td>pegmatite</td>
</tr>
<tr>
<td>44</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-quartz monzonite</td>
</tr>
<tr>
<td>45</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Mozambique</td>
<td>pegmatite</td>
</tr>
<tr>
<td>46</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukrainian Shield</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>47</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Kirovgrad-Zhitomir</td>
<td>Archean garnet-biotite gneiss</td>
</tr>
<tr>
<td>48</td>
<td>Zagats and Kuts</td>
<td>1964</td>
<td>Gnilopyat River Basin, Ukraine</td>
<td>spodumene pegmatite</td>
</tr>
<tr>
<td>49</td>
<td>Semenov</td>
<td>1963</td>
<td>S. Asia</td>
<td>calcite vein</td>
</tr>
<tr>
<td>50</td>
<td>Khomyakov</td>
<td>1964</td>
<td>W. Tannu-Ola, U.S.S.R.</td>
<td>granodiorite-quartz monzonite</td>
</tr>
<tr>
<td>51</td>
<td>McCarty</td>
<td>1935</td>
<td>not known</td>
<td>granodiorite-quartz monzonite</td>
</tr>
<tr>
<td>52</td>
<td>McCarty</td>
<td>1935</td>
<td>Cleveland Co., N.C., USA</td>
<td>granodiorite-quartz monzonite</td>
</tr>
<tr>
<td>53</td>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Glukhovets, U.S.S.R.</td>
<td>garnet-muscovite pegmatite</td>
</tr>
<tr>
<td>54</td>
<td>Hugo</td>
<td>1970</td>
<td>Debaraes, S. Africa</td>
<td>pegmatite</td>
</tr>
<tr>
<td>55</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>pegmatite</td>
</tr>
<tr>
<td>56</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>pegmatite</td>
</tr>
<tr>
<td>57</td>
<td>Orsa et al.</td>
<td>1967</td>
<td>Ukraine</td>
<td>pegmatite</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

Table 1.

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Petaca, N. Mexico</td>
<td>granite, pegmatite</td>
</tr>
<tr>
<td>59</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Ukraine</td>
<td>Archean biotite gneiss</td>
</tr>
<tr>
<td>60</td>
<td>McCarty</td>
<td>1935</td>
<td>McDowell Co., N.C.</td>
<td>pegmatite, gneiss</td>
</tr>
<tr>
<td>61</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Brazil</td>
<td>pegmatite, gneiss</td>
</tr>
<tr>
<td>62</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-quartz monozite, gneiss</td>
</tr>
<tr>
<td>63</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>64</td>
<td>Ivantishin et al</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>65</td>
<td>Shukolyukov et al</td>
<td>1979</td>
<td>not known</td>
<td>pegmatite</td>
</tr>
<tr>
<td>66</td>
<td>quoted by Vlasov</td>
<td>1964</td>
<td>Mongolia</td>
<td>alkali hydrothermalite, gneiss</td>
</tr>
<tr>
<td>67</td>
<td>Mannucci et al.</td>
<td>1986</td>
<td>Val Vigazzo, Italy</td>
<td>porphyroblast, gneiss</td>
</tr>
<tr>
<td>68</td>
<td>Mohr</td>
<td>1984</td>
<td>North Carolina</td>
<td>core of zoned porphyroblast</td>
</tr>
<tr>
<td>69</td>
<td>Mohr</td>
<td>1984</td>
<td>North Carolina</td>
<td>rim of zoned porphyroblast</td>
</tr>
<tr>
<td>70</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Hittero, Norway</td>
<td>granite</td>
</tr>
<tr>
<td>71</td>
<td>Zhirov et al.</td>
<td>1961</td>
<td>Impilahti, Karelia, U.S.S.R.</td>
<td>granite, pegmatite</td>
</tr>
<tr>
<td>72</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>main ore</td>
</tr>
<tr>
<td>73</td>
<td>Zagats and Kuts</td>
<td>1964</td>
<td>Gnilopat river basin, Ukraine</td>
<td>Archean biotite gneiss</td>
</tr>
<tr>
<td>74</td>
<td>Fujii</td>
<td>1961</td>
<td>Fukushima Pref., Japan</td>
<td>gneiss</td>
</tr>
<tr>
<td>75</td>
<td>Zhirov et al.</td>
<td>1961</td>
<td>Kupchinit, Karelia</td>
<td>pegmatite, gneiss</td>
</tr>
<tr>
<td>76</td>
<td>Popernalok</td>
<td>1961</td>
<td>Popernalore, Karelia</td>
<td>pegmatite, dolomite</td>
</tr>
<tr>
<td>77</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>East ore, Bayan Obo, China</td>
<td>dolomite</td>
</tr>
<tr>
<td>78</td>
<td>Zhirov et al.</td>
<td>1961</td>
<td>Tedino, Karelia</td>
<td>gneiss</td>
</tr>
<tr>
<td>79</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Petaca, N. Mexico</td>
<td>pegmatite, gneiss</td>
</tr>
<tr>
<td>80</td>
<td>Shmakin and Shirgaev</td>
<td>1970</td>
<td>Gutero, Biryasins area, Siberia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>81</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Kurumkan, E. Siberia</td>
<td>cordierite gneiss</td>
</tr>
<tr>
<td>82</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>83</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Pysstinoe, Siberia</td>
<td>pegmatite, quartzite</td>
</tr>
<tr>
<td>84</td>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Chaffee Co., Colo.</td>
<td>granite, pegmatite</td>
</tr>
<tr>
<td>85</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Gramma, Sao Paulo, Brazil</td>
<td>pegmatite, gneiss</td>
</tr>
<tr>
<td>86</td>
<td>Sahama and Vahatalo</td>
<td>1941</td>
<td>Turku, Finland</td>
<td>granite</td>
</tr>
<tr>
<td>87</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nev.</td>
<td>granodiorite-quartz monozite, gneiss</td>
</tr>
<tr>
<td>88</td>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Petaca, N. Mexico</td>
<td>pegmatite</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Pluhar</td>
<td>1979</td>
<td>Takua Pa, S. Thailand</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>90</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nev.</td>
<td>granodiorite-pegmatite quartz monzonite</td>
</tr>
<tr>
<td>91</td>
<td>Vainshein et al.</td>
<td>1956b</td>
<td>Zhezholev, Ukraine</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>92</td>
<td>McCarty</td>
<td>1935</td>
<td>Arendel, Norway</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>93</td>
<td>Shukolyukov et al.</td>
<td>1978</td>
<td>Eki Varaki, N. Karelia, U.S.S.R.</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>94</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Chudnov-Berdesinskii Ukraine</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>95</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Pemba, Minas Gerais, Brazil</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>96</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-pegmatite quartz monzonite</td>
</tr>
<tr>
<td>97</td>
<td>Konetova</td>
<td>1963</td>
<td>Siberia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>98</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>99</td>
<td>Amli</td>
<td>1975</td>
<td>Troland, Norway</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>100</td>
<td>Vainshein et al.</td>
<td>1956b</td>
<td>Arendal, Norway</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>101</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Amelia, Va.</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>102</td>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Pocos, N. Mexico</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>103</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Gnilopyat river basin, Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>104</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Ferros, Minas Gerais, Brazil</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>105</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Kirovgrad-Zhitomir, Ukraine</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>106</td>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Nova Pavlova, Karelia, U.S.S.R.</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>107</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Gnilopyat river, Ukraine</td>
<td>pegmatite</td>
</tr>
<tr>
<td>108</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>E. Sayan</td>
<td>granite</td>
</tr>
<tr>
<td>109</td>
<td>Leonova and Nikitin</td>
<td>1962</td>
<td>Chkalov, Karelia</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>110</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Zhalzhosk, Ukraine</td>
<td>gneissic</td>
</tr>
<tr>
<td>111</td>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Chaffee Co., Colo.</td>
<td>granite</td>
</tr>
<tr>
<td>112</td>
<td>Bernstein</td>
<td>1982</td>
<td>N. Carolina</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>113</td>
<td>quoted by Vlasov</td>
<td>1964</td>
<td>European S.S.R.</td>
<td>alkali granite</td>
</tr>
<tr>
<td>114</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Kirovgrad-Zhitomir, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>115</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Minas Gerais, Brazil</td>
<td>granite pegmatite</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

Table 1. Analyses

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leonora and Nikitin</td>
<td>1962</td>
<td>Chkalov, Karelia U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Shmakin and Shiryeeva</td>
<td>1970</td>
<td>Moma, Siberia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Kalita</td>
<td>1969</td>
<td>East Baltic shield U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Petaca, N. Mexico</td>
<td>granite</td>
</tr>
<tr>
<td>Kostin and Volzhenkova</td>
<td>1965</td>
<td>not stated</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Murata et al.</td>
<td>1953</td>
<td>Portland, Conn.</td>
<td>granite</td>
</tr>
<tr>
<td>Zhirov et al.</td>
<td>1961</td>
<td>Tedina, Karelia, U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Park Co., Colo.</td>
<td>granite</td>
</tr>
<tr>
<td>Marchenko</td>
<td>1967</td>
<td>S.E. Ukraine</td>
<td>biotite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Park Co., Colo.</td>
<td>gneiss</td>
</tr>
<tr>
<td>Willie</td>
<td>1950</td>
<td>Normanville district, Australia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Lyckhovich</td>
<td>1962</td>
<td>Talitsk massif, Gornyi Altai</td>
<td>biotite</td>
</tr>
<tr>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Arendal, Norway</td>
<td>granite</td>
</tr>
<tr>
<td>Lyakhovich and Barinskii</td>
<td>1961</td>
<td>Kurokhol massif W. Tuva</td>
<td>granite</td>
</tr>
<tr>
<td>Fishman et al.</td>
<td>1968</td>
<td>Sol'ner massif Polar Urals</td>
<td>granite</td>
</tr>
<tr>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-quartz monzonite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Petaca, N. Mexico</td>
<td>granite</td>
</tr>
<tr>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Petaca, N. Mexico</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Zhang and Tao</td>
<td>1986</td>
<td>East ore, Bayan Obo China</td>
<td>granite</td>
</tr>
<tr>
<td>Wainshtein et al.</td>
<td>1956b</td>
<td>Tedino, Karelia, U.S.S.R.</td>
<td>pegmatitic granodiorite</td>
</tr>
<tr>
<td>Pavlenko et al.</td>
<td>1959</td>
<td>Uzuntaig massif, E. Tuva granosyenite</td>
<td>quartz monzonite</td>
</tr>
<tr>
<td>Fishman et al.</td>
<td>1968</td>
<td>source of the Bolshaya Pobk river, U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>Hugo</td>
<td>1970</td>
<td>Kroma Puts, S. Africa</td>
<td>pegmatitic granodiorite</td>
</tr>
<tr>
<td>Kucha</td>
<td>1980</td>
<td>Bogatyne area, Lower Silesia, Poland</td>
<td>granite</td>
</tr>
<tr>
<td>Murata et al.</td>
<td>1959</td>
<td>Sao Bento, Rio Grande do Norte, Brazil</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-quartz monzonite</td>
</tr>
<tr>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td>hydrothermal quartz vein</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Hollis, N. Carolina</td>
<td>quartz monzonite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pegmatite</td>
</tr>
<tr>
<td>144</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Pamirs, Siberia</td>
<td>albitized quartzite</td>
</tr>
<tr>
<td>145</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Kiev dist., Ukraine</td>
<td>kaolinized granite</td>
</tr>
<tr>
<td>146</td>
<td>Bukhanov and Shvetsova</td>
<td>1966</td>
<td>Near-Polar Urals</td>
<td>quartz vein</td>
</tr>
<tr>
<td>147</td>
<td>Vainshtein et al.</td>
<td>1956a</td>
<td>Borshechevoch ridge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transbaikal</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Pobozhs, Ukraine</td>
<td>garnet-biotite gneiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>riebeckite-type ore</td>
</tr>
<tr>
<td>149</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>biotite gneiss</td>
</tr>
<tr>
<td>150</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Azov region, U.S.S.R.</td>
<td>metasomatic granite</td>
</tr>
<tr>
<td>151</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>biotite-garnet pegmatite</td>
</tr>
<tr>
<td>152</td>
<td>Marchenko</td>
<td>1967</td>
<td>S.E. Ukraine</td>
<td>quartz vein</td>
</tr>
<tr>
<td>153</td>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>not given</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(same as 146?)</td>
</tr>
<tr>
<td>155</td>
<td>Graeser and Schwander</td>
<td>1987</td>
<td>Italy</td>
<td>pegmatite vein in gneiss</td>
</tr>
<tr>
<td>156</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>metasomatic feldspar rock gneiss</td>
</tr>
<tr>
<td>157</td>
<td>Ivantishin et al</td>
<td>1964</td>
<td>Ukraine</td>
<td>biotite vein in Precambrian gneiss</td>
</tr>
<tr>
<td>158</td>
<td>Haapala et al.</td>
<td>1969</td>
<td>Puumala, Finland</td>
<td>granite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pegmatite</td>
</tr>
<tr>
<td>159</td>
<td>Zhirov et al.</td>
<td>1961</td>
<td>Chkalov, Karelia, U.S.S.R.</td>
<td>quartz vein</td>
</tr>
<tr>
<td>160</td>
<td>Bukahov and Shvetsova</td>
<td>1966</td>
<td>near-Polar Urals</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Choong</td>
<td>1971</td>
<td>Malaysia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(av. of 5)</td>
</tr>
<tr>
<td>162</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>Kirovograd-Zhitomir granite gneiss</td>
</tr>
<tr>
<td>163</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>biotite granite</td>
</tr>
<tr>
<td>164</td>
<td>Pavlenko et al.</td>
<td>1959</td>
<td>Ilektag massif, E. Tuva</td>
<td>pegmatite</td>
</tr>
<tr>
<td>165</td>
<td>Shmakin and Shiryaeva</td>
<td>1970</td>
<td>Gutaro-Biryagin area, Siberia</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Znamenskii et al.</td>
<td>1967</td>
<td>Myakulski river, E. Sayan</td>
<td>2-mica granite</td>
</tr>
<tr>
<td>167</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>exocontact metasomatites</td>
</tr>
<tr>
<td>168</td>
<td>Mineev</td>
<td>1963</td>
<td>Tarbagatan, Kazakhstan</td>
<td>exocontact metasomatites</td>
</tr>
<tr>
<td>169</td>
<td>Mineev</td>
<td>1963</td>
<td>Tarbagatan, Kazakhstan</td>
<td>exocontact</td>
</tr>
<tr>
<td>170</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Uba, Minas Gerais, Brazil</td>
<td>Alpine cleft</td>
</tr>
<tr>
<td>171</td>
<td>Bearth</td>
<td>1934</td>
<td>Perdotech, Switzerland</td>
<td>leucocratic</td>
</tr>
<tr>
<td>172</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>granite</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler, Nevada</td>
<td>granodiorite-quartz monozite</td>
</tr>
<tr>
<td>174</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-quartz monozite</td>
</tr>
<tr>
<td>175</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Azov region, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>176</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Chudnov-Berdesinskii, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>177</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Kuu massif, Kazakhstan</td>
<td>granite</td>
</tr>
<tr>
<td>178</td>
<td>L'vov</td>
<td>1965</td>
<td>Borisovskii massif</td>
<td>pegmatite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kochkar, Urals</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Trace</td>
<td>1960</td>
<td>Hicks Dome, Illinois</td>
<td>cherty residuum overlying limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>granodiorite-quartz monozite</td>
</tr>
<tr>
<td>180</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>microclinite</td>
</tr>
<tr>
<td>181</td>
<td>Kovalenko et al.</td>
<td>1971</td>
<td>Buge-Gaziyan, Mongolia</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Temryuk, Azov region, U.S.S.R.</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Manuacci et al.</td>
<td>1986</td>
<td>Val Vigezzo, Italy</td>
<td>pegmatite</td>
</tr>
<tr>
<td>184</td>
<td>Leonova and Nikitin</td>
<td>1962</td>
<td>Pertti Vokera, Karelia</td>
<td>granite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>185</td>
<td>Kapustin</td>
<td>1985</td>
<td>Novipoltov massif, U.S.S.R.</td>
<td>carbonatite</td>
</tr>
<tr>
<td>186</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Gnilopyat river basin</td>
<td>biotite gneiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Gnilopyat river basin</td>
<td>garnet-biotite gneiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ukraine</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>granodiorite-quartz monozite</td>
</tr>
<tr>
<td>189</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>metasomatic feldspar rock</td>
</tr>
<tr>
<td>190</td>
<td>Semenov and Khomyakov</td>
<td>1981</td>
<td>India</td>
<td>strongly magnetic</td>
</tr>
<tr>
<td></td>
<td>Lee and Bastron</td>
<td>1967</td>
<td>Mt. Wheeler area, Nevada</td>
<td>garnodiorite-quartz monozite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sulfatian</td>
</tr>
<tr>
<td>192</td>
<td>Kirillov and Ryzhova</td>
<td>1968</td>
<td>Karelia, U.S.S.R.</td>
<td>carbonatite</td>
</tr>
<tr>
<td>193</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Nazarene, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pegmatite</td>
</tr>
<tr>
<td>194</td>
<td>L'vov and Zhangurov</td>
<td>1963</td>
<td>Borisovskii massif, Urals</td>
<td>pegmatite</td>
</tr>
<tr>
<td>195</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Hittero, Norway</td>
<td>pegmatite</td>
</tr>
<tr>
<td>196</td>
<td>Znamenskii et al.</td>
<td>1967</td>
<td>Tickhaya river, E. Sayan</td>
<td>biotite granite</td>
</tr>
<tr>
<td>197</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>198</td>
<td>Kuts</td>
<td>1966</td>
<td>Azov region, U.S.S.R.</td>
<td>xenoliths in granite</td>
</tr>
<tr>
<td>199</td>
<td>Marchenko</td>
<td>1967</td>
<td>S.E. Ukraine</td>
<td>garnet-biotite pegmatite</td>
</tr>
<tr>
<td>200</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Yuzhakova, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>201</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Torjevitsy, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>202</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>E. Sayan</td>
<td>granite</td>
</tr>
<tr>
<td>203</td>
<td>Pavlenko et al.</td>
<td>1959</td>
<td>Milzei massif, E. Tuva</td>
<td>alaskite</td>
</tr>
<tr>
<td>Analyses</td>
<td>Author</td>
<td>Date</td>
<td>Locality</td>
<td>Rock Type</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>204</td>
<td>Kuts</td>
<td>1966</td>
<td>Belmichaya, Azov region U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>205</td>
<td>White and Nelen Mittelfehldt and Miller</td>
<td>1987</td>
<td>Foote mine, N. Carolina</td>
<td>granite</td>
</tr>
<tr>
<td>206</td>
<td>Murata et al.</td>
<td>1983</td>
<td>Sweetwater Wash. pluton, Calif.</td>
<td>granite</td>
</tr>
<tr>
<td>207a</td>
<td>Murata et al.</td>
<td>1958</td>
<td>Juiz de Fera, Minas Gerais, Brazil</td>
<td>pegmatite</td>
</tr>
<tr>
<td>207b</td>
<td>Murata et al.</td>
<td>1958</td>
<td>Juiz de Fera, Minas Gerais, Brazil</td>
<td>inner part of crystal</td>
</tr>
<tr>
<td>208</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>metasomatic</td>
</tr>
<tr>
<td>209</td>
<td>Znamenskii et al.</td>
<td>1967</td>
<td>E. Sayan</td>
<td>biotite</td>
</tr>
<tr>
<td>210</td>
<td>Znamenskii et al.</td>
<td>1967</td>
<td>E. Sayan</td>
<td>biotite</td>
</tr>
<tr>
<td>211</td>
<td>Vainshtein et al. Murata et al.</td>
<td>1956b</td>
<td>Kalchik river, Ukraine</td>
<td>pegmatite</td>
</tr>
<tr>
<td>212</td>
<td>Vainshtein et al.</td>
<td>1957</td>
<td>Juiz de Fera, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>213</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Temryuk, Azov region, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>214</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Pabuzhe, Ukraine</td>
<td>Archean biotite gneiss</td>
</tr>
<tr>
<td>215</td>
<td>Vainshtein et al. Murata et al.</td>
<td>1955</td>
<td>Torgeritsy, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>216a,b</td>
<td>Vainshtein et al. Murata et al.</td>
<td>1957</td>
<td>Shelby district, N. Car.</td>
<td>quartz monozite</td>
</tr>
<tr>
<td>217</td>
<td>Mannucci et al.</td>
<td>1981</td>
<td>Alps, Italy</td>
<td>pegmatite</td>
</tr>
<tr>
<td>218</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>Proterozoic gneiss</td>
</tr>
<tr>
<td>219</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Zhelzheskii, Ukraine</td>
<td>gneissic granite</td>
</tr>
<tr>
<td>220</td>
<td>Znamenskii et al.</td>
<td>1967</td>
<td>Tishkaya river, E. Sayan</td>
<td>biotite</td>
</tr>
<tr>
<td>221</td>
<td>Kuts</td>
<td>1966</td>
<td>Berda river, Azov region, U.S.S.R.</td>
<td>aplitic granite</td>
</tr>
<tr>
<td>222</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Sluch river basin, Azov region</td>
<td>Proterozoic biotite gneiss</td>
</tr>
<tr>
<td>223</td>
<td>Fujii</td>
<td>1961</td>
<td>Ishikawa-Che, Fukushima Prefecture, Japan</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>L'vov</td>
<td>1965</td>
<td>Borisovskii massif, Urals</td>
<td>kyanite schist</td>
</tr>
<tr>
<td>225</td>
<td>Leonova and Nikitin</td>
<td>1962</td>
<td>Lake Laakensko, Karelia, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>226</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>E. Sayan</td>
<td>biotite</td>
</tr>
</tbody>
</table>

Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>Yalovenko and Yur'ova</td>
<td>1964</td>
<td>Lazovatka, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>228</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>229</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Eldzhurtin massif, Caucasus</td>
<td>biotite granite</td>
</tr>
<tr>
<td>230</td>
<td>Kuts</td>
<td>1966</td>
<td>Torgevitsy, Ukraine</td>
<td>pegmatite</td>
</tr>
<tr>
<td>231</td>
<td>Anderson</td>
<td>1986</td>
<td>Fen district, Norway</td>
<td>carbonate plagiogranite pegmatite</td>
</tr>
<tr>
<td>232</td>
<td>Semenov</td>
<td>1963</td>
<td>Ras-Iz, Polar Urals</td>
<td>garnet-biotite gneiss</td>
</tr>
<tr>
<td>233</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Slyuch river basin, Ukraine</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>234</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Yucca Valley, Calif.</td>
<td>granite</td>
</tr>
<tr>
<td>235</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Torgevitsy, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>236</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Korovischin massif, Gorny Altai</td>
<td>granite</td>
</tr>
<tr>
<td>237</td>
<td>L'vov</td>
<td>1968</td>
<td>Varlamoff massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>238</td>
<td>Lyakhovich</td>
<td>1968</td>
<td>Urals</td>
<td>quartz vein biotite granite</td>
</tr>
<tr>
<td>239</td>
<td>Jefferies</td>
<td>1985</td>
<td>Carnmenellis pluton, Cornwall, England</td>
<td>granite</td>
</tr>
<tr>
<td>240</td>
<td>Wyllie</td>
<td>1950</td>
<td>Cooglegong, W. Australia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>241</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Temryuk, Azov region, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>242</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Blyunov mine, Urals</td>
<td>pegmatite main magnetic ore</td>
</tr>
<tr>
<td>243</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayun Obo, China</td>
<td>granite</td>
</tr>
<tr>
<td>244</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Kiev dist., U.S.S.R.</td>
<td>biotite granite</td>
</tr>
<tr>
<td>245</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>metasomatic granite</td>
</tr>
<tr>
<td>246</td>
<td>Yurk et al.; quoted by Lazarenko et al.</td>
<td>1980</td>
<td>Ukraine</td>
<td>aplitic granite</td>
</tr>
<tr>
<td>247</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>248</td>
<td>Yalovenko nd Yur'ova</td>
<td>1967</td>
<td>Rovno, Ukraine</td>
<td>pegmatite granite</td>
</tr>
<tr>
<td>249</td>
<td>Shmakin and Shiryaeva</td>
<td>1970</td>
<td>Gutero-Biryasin area, Siberia</td>
<td>granite</td>
</tr>
<tr>
<td>250</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>251</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Talitsk massif, Gorny Altai</td>
<td>biotite granite</td>
</tr>
<tr>
<td>252</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Fukushima, Japan</td>
<td>pegmatite</td>
</tr>
<tr>
<td>253</td>
<td>Kuts</td>
<td>1966</td>
<td>Temryuk, Azov region, U.S.S.R.</td>
<td>quartz-scheelite vein in serpentine</td>
</tr>
<tr>
<td>254</td>
<td>Anderson</td>
<td>1986</td>
<td>Fen dist., Norway</td>
<td>carbonate plagiogranite pegmatite</td>
</tr>
<tr>
<td>255</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Juiz de Fera, Minas, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>256</td>
<td>Charey</td>
<td>1986</td>
<td>Cornwall, England</td>
<td>granite</td>
</tr>
<tr>
<td>257</td>
<td>Povilaitis and Varshal</td>
<td>1969</td>
<td>Kuu massif, Kazakhstan</td>
<td>quartz-scheelite vein in serpentine</td>
</tr>
<tr>
<td>Analyses</td>
<td>Author</td>
<td>Date</td>
<td>Locality</td>
<td>Rock Type</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>258</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phukat, S. Thailand</td>
<td>granite</td>
</tr>
<tr>
<td>259</td>
<td>Mannucci et al.</td>
<td>1986</td>
<td>Alps, Italy</td>
<td>pegmatite</td>
</tr>
<tr>
<td>260</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Tamryuk, Azov region</td>
<td>pegmatite</td>
</tr>
<tr>
<td>261</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Ostropec, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>262</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Krutocheg, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>263</td>
<td>Marchenko</td>
<td>1967</td>
<td>S.E. Ukraine</td>
<td>aplitic biotite</td>
</tr>
<tr>
<td>264</td>
<td>Lyakhevic</td>
<td>1968</td>
<td>Kazakhstan</td>
<td>biotite granite</td>
</tr>
<tr>
<td>265</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Noiro-Shaitaken, Urals</td>
<td>two-mica</td>
</tr>
<tr>
<td>266</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Krivoi reg., Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>267</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Krutocheg, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>268</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Juiz de Fera, Minas Gerais, Brazil</td>
<td>pegmatite</td>
</tr>
<tr>
<td>269</td>
<td>Kornetova</td>
<td>1963</td>
<td>Siberia</td>
<td>granite</td>
</tr>
<tr>
<td>270</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Buzivka, Ukraine</td>
<td>kaolinized</td>
</tr>
<tr>
<td>271</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Talitsk massif, Gorny Altai</td>
<td>biotite</td>
</tr>
<tr>
<td>272</td>
<td>Jefferies</td>
<td>1985</td>
<td>Carnmenellis pluton, Cornwall, England</td>
<td>granite</td>
</tr>
<tr>
<td>273</td>
<td>Kapustin</td>
<td>1966</td>
<td>Vuorijarvi, Karelia U.S.S.R.</td>
<td>carbonatite</td>
</tr>
<tr>
<td>274</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Kochkar massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>275</td>
<td>Kuts, quoted by Lazarenko et al.</td>
<td>1980</td>
<td>Berda, Ukraine</td>
<td>aplitic granite</td>
</tr>
<tr>
<td>276</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Shelby dist., N. Carolina</td>
<td>sillimanite</td>
</tr>
<tr>
<td>277</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>schist</td>
</tr>
<tr>
<td>278</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>E. Sayan</td>
<td>gneiss</td>
</tr>
<tr>
<td>279</td>
<td>Povilaitis and Varshal</td>
<td>1969</td>
<td>Kuu massif, Kazakhstan</td>
<td>granite</td>
</tr>
<tr>
<td>280</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Juiz de Fera, Minas Gerais, Brazil</td>
<td>vein in greisen</td>
</tr>
<tr>
<td>281</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td>quartz vein</td>
</tr>
<tr>
<td>282</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>granite</td>
</tr>
<tr>
<td>283</td>
<td>Jefferies</td>
<td>1985</td>
<td>Carnmenellis pluton Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>284</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>granodiorite-tonalite</td>
</tr>
<tr>
<td>285</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Kirovgrad, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>286</td>
<td>Khamrabaev and Azimov</td>
<td>1986</td>
<td>Aktau massif, W. Uzbekistan</td>
<td>granite</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>288</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Ekaterinov massif, Ukraine</td>
<td>biotite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>granite</td>
</tr>
<tr>
<td>289</td>
<td>Kuts</td>
<td>1966</td>
<td>Anatoiskii, Azov region, U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>290</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Gnilopyat river basin, Ukraine</td>
<td>Archean biotite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>granite</td>
</tr>
<tr>
<td>291</td>
<td>Lyakhovich</td>
<td>1968</td>
<td>E. Sayan</td>
<td>biotite</td>
</tr>
<tr>
<td>292</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Dzeybk region, E. Urals, Ukraine</td>
<td>biotite</td>
</tr>
<tr>
<td>293</td>
<td>Vainshtein et al.</td>
<td>1956a</td>
<td>Borsechevoch Ridge, Transbaikal</td>
<td>gneissic granite</td>
</tr>
</tbody>
</table>

(average of 6)

294	Murata et al.	1959	Ferros, Minas Gerais, Brazil	granite
295	Lyakhovich	1962	Kochkar massif, Urals, Brazil	pegmatite
296	Vainshtein et al.	1955	Badeiba, Transvaal, Brazil	pegmatite
297	Vainshtein et al.	1956b	Temryak, Azov region, U.S.S.R.	pegmatite
				granite
299	Vainshtein et al.	1955	Korea	pegmatite
300	Murata et al.	1953	Shelby dist., N. Carolina	quartz monzonite
				pegmatite
301	Pavlenko et al.	1966	Milizei massif, E. Tuva, Brazil	biotite
302	Lyakhovich and Barinskii	1961	Edygaei massif, W. Tuva, Brazil	quartz vein
303	Vainshtein et al.	1956b	Temryuk, Azov region, U.S.S.R.	pegmatite
304	Mannucci et al.	1986	Alps, Italy	fissure
305	Mannucci et al.	1986	Alps, Italy	pegmatite
306	Gavrilo and Turanskaya	1958	Kirograd, Ukraine	granite
307	Orsa et al.	1967	Middle Dniepr region, Ukraine	pegmatite
				granite
308	Lazarenko et al.	1980	Ekaterinava, Ukraine	
309a,b,c	Ploshko and Knyazaeva	1965	Urushten complex, Caucasus	

3 analyses of 1 sample

<p>| 310 | L'vov | 1965 | Demerinskii massif, Urals | granite |
| | Murata et al. | 1957 | Chesterfield, Va. | granite |
| 312-313 | Vainshtein et al. | 1956b | Gorevka, Ukraine | granite |
| 314 | Aleksiev and Tsetkovskaya | 1962 | Rila Mts., Bulgaria | granite |
| 315 | Zayats and Kuts | 1964 | Gnilopyat river basin, Ukraine | Archean biotite |
| | | | | gneiss |
| 316 | Nadashovskii et al. | 1969 | Far Eastern, U.S.S.R. | alkali granite |
| 317-318 | Vainshtein et al. | 1956b | Gorovka, Ukraine | granite |
| 319 | Lyakhovich | 1962 | Murzins massif, Urals | granite |
| 320 | Vainshtein et al. | 1955 | Ostrope, Austria | pegmatite |
| 321 | Wylie | 1950 | Olary, S. Australia | gold mine |</p>
<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Chudnov-Berdesinskii, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>323</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>324</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Suberov, Ukraine</td>
<td>biotite granite</td>
</tr>
<tr>
<td>325</td>
<td>Kuts</td>
<td>1966</td>
<td>Analolisk, Azov region U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>326</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Kurumkan, E. Siberia</td>
<td>granite</td>
</tr>
<tr>
<td>327</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>East ore, Bayan Obo, China</td>
<td>pegmatite</td>
</tr>
<tr>
<td>328</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>329</td>
<td>Semenov</td>
<td>1963</td>
<td>Transbaikal</td>
<td>granite</td>
</tr>
<tr>
<td>330</td>
<td>Povilaitis and Varshal</td>
<td>1967</td>
<td>Kuu massif, Kazakhstan</td>
<td>quartz vein</td>
</tr>
<tr>
<td>331</td>
<td>Mannucci et al.</td>
<td>1986</td>
<td>Alps, Italy</td>
<td>pegmatite</td>
</tr>
<tr>
<td>332</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>333</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>334</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>alkali granite</td>
</tr>
<tr>
<td>335</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Zasentriskoi, E. Siberia</td>
<td>alkali granite</td>
</tr>
<tr>
<td>336</td>
<td>Belolipetskii and Elina</td>
<td>1967</td>
<td>not given</td>
<td>alkali granite</td>
</tr>
<tr>
<td>337</td>
<td>Pinkney and Wood, quoted by Semenov</td>
<td>1963</td>
<td>Van Reinsdorf, S. Africa</td>
<td>hydrothermal vein in syenite</td>
</tr>
<tr>
<td>338</td>
<td>Bermanec et al.</td>
<td>1988</td>
<td>Yugoslavia</td>
<td>hydrothermal vein in syenite</td>
</tr>
<tr>
<td>339</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Shelby dist., N. Carolina</td>
<td>biotite schist</td>
</tr>
<tr>
<td>340</td>
<td>L'vov</td>
<td>1965</td>
<td>Samarskii massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>341</td>
<td>Batieva</td>
<td>1976</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>alkali granite</td>
</tr>
<tr>
<td>342</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Pastinnec, E. Siberia</td>
<td>quartz syenite</td>
</tr>
<tr>
<td>343</td>
<td>Khonyakov</td>
<td>1964</td>
<td>Tannu-Ola</td>
<td>granite</td>
</tr>
<tr>
<td>344</td>
<td>Murata et al.</td>
<td>1959</td>
<td>San Rafael, Rio Grande do Norte, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>345</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>346</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Polar Urals</td>
<td>alkali granite</td>
</tr>
<tr>
<td>347</td>
<td>Kapustin</td>
<td>1966</td>
<td>Nama Vara, Karelia, U.S.S.R.</td>
<td>quartz vein</td>
</tr>
<tr>
<td>348</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td>quartz vein</td>
</tr>
<tr>
<td>349</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>350</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Polar Urals</td>
<td>alkali granite</td>
</tr>
<tr>
<td>351</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Transbaikal</td>
<td>biotite granite</td>
</tr>
<tr>
<td>352</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>basin of Sluch river, Ukraine</td>
<td>Proterozoic garnet-biotite gneiss</td>
</tr>
<tr>
<td>353</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td>quartz vein</td>
</tr>
<tr>
<td>354</td>
<td>Lyakhovich</td>
<td>1968</td>
<td>Gorny Altai</td>
<td>pegmatite</td>
</tr>
<tr>
<td>Analyses</td>
<td>Author</td>
<td>Date</td>
<td>Locality</td>
<td>Rock Type</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>355</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>356</td>
<td>Bel'kov</td>
<td>1979</td>
<td>alkali granite, Kola Peninsula</td>
<td>alkali granite</td>
</tr>
<tr>
<td>357</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Temryuk, Azov region, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>358</td>
<td>Zayats and Kuts</td>
<td>1969</td>
<td>Sluck river basin, Ukraine</td>
<td>biotite gneiss</td>
</tr>
<tr>
<td>359</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>Lower Proterozoic gneiss</td>
</tr>
<tr>
<td>360</td>
<td>same as 358?</td>
<td>1956a</td>
<td>Borshchevich ridge, Transbaikal</td>
<td>granite</td>
</tr>
<tr>
<td>361</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>362</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>metasomatic granite</td>
</tr>
<tr>
<td>363</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>364</td>
<td>Borovskii and Gerasimovskii</td>
<td>1945</td>
<td>Urusika river, Siberia</td>
<td>granite</td>
</tr>
<tr>
<td>365</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>alkali granite</td>
</tr>
<tr>
<td>366</td>
<td>Orsa et al.</td>
<td>1967</td>
<td>Middle Dniepr region, Ukraine</td>
<td>pegmatite</td>
</tr>
<tr>
<td>367</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>368</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>369,370</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>granite</td>
</tr>
<tr>
<td>371-372</td>
<td>L'vov</td>
<td>1965</td>
<td>Samarskii massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>373</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Dzhabyk region, E. Urals</td>
<td>granite</td>
</tr>
<tr>
<td>374</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>375</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Zasentiske, E. Siberia</td>
<td>granite</td>
</tr>
<tr>
<td>376</td>
<td>Van Wambke</td>
<td>1977</td>
<td>Karonge deposit, Burundi Republic</td>
<td>granite</td>
</tr>
<tr>
<td>377</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>378,379</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite pegmatite</td>
</tr>
<tr>
<td>380</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula, U.S.S.R.</td>
<td>metasomatic granite</td>
</tr>
<tr>
<td>381</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>382</td>
<td>L'vov</td>
<td>1965</td>
<td>Varlamovskii massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>383</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>384</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>Analyses</td>
<td>Author</td>
<td>Date</td>
<td>Locality</td>
<td>Rock Type</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>-------</td>
<td>---------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>385</td>
<td>Povilaitis and Varshal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>Mannucci et al.</td>
<td>1986</td>
<td>Rauris, Italy</td>
<td>gneiss</td>
</tr>
<tr>
<td>387,388</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>390</td>
<td>Kupriyanova et al.</td>
<td>1964</td>
<td>European S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>391,392</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>molybdenite vein</td>
</tr>
<tr>
<td>393</td>
<td>Orsa et al.</td>
<td>1967</td>
<td>Zaporozh'ye, Ukraine</td>
<td>biotite granite</td>
</tr>
<tr>
<td>394-396</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>397</td>
<td>Shiryaeva</td>
<td>1971</td>
<td>Mamsk region, Siberia</td>
<td>muscovite</td>
</tr>
<tr>
<td>398</td>
<td>Kuts</td>
<td>1966</td>
<td>Ingulets region, Ukraine</td>
<td>pegmatite</td>
</tr>
<tr>
<td>399</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Consicao de Meto, Ventre, Minas Gerais, Brazil</td>
<td>pegmatite</td>
</tr>
<tr>
<td>400</td>
<td>McKie</td>
<td>1962</td>
<td>Kangankunde, Malawi</td>
<td>carbonatite</td>
</tr>
<tr>
<td>401</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>402</td>
<td>Lyakovich</td>
<td>1968</td>
<td>Kazakhstan</td>
<td>biotite granite</td>
</tr>
<tr>
<td>403</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>404,405</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>406</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>407</td>
<td>Jefferies et al.</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>408</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>409</td>
<td>Pluhar</td>
<td>1979</td>
<td>Takua Pa, S. Thailand</td>
<td>granite pegmatite</td>
</tr>
<tr>
<td>410-412</td>
<td>Jefferies et al.</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>413</td>
<td>Semenov and Barinskii</td>
<td>1958</td>
<td>Tennet, Yakutia</td>
<td>pegmatite</td>
</tr>
<tr>
<td>414</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>alkaline growth</td>
</tr>
<tr>
<td>415</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Aidan</td>
<td>pegmatite</td>
</tr>
<tr>
<td>416</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Juiz de Fera, Minas Gerais, Brazil</td>
<td>schist wall rock of pegmatite</td>
</tr>
<tr>
<td>417</td>
<td>L'vov</td>
<td>1965</td>
<td>Varlamoff massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>418</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Dzhabyk region, E. Urals</td>
<td>granite</td>
</tr>
<tr>
<td>419</td>
<td>Bel'kov</td>
<td>1979</td>
<td>Kola Peninsula</td>
<td>metasomatic granite</td>
</tr>
<tr>
<td>420</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>421</td>
<td>Orsa et al.</td>
<td>1967</td>
<td>Middle Dniepr region, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>422</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
</tbody>
</table>
Table 9a. Locality Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>423</td>
<td>Kukharenko et al.</td>
<td>1961,</td>
<td>Namo Vara, Karelia</td>
<td>sulfatian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1965</td>
<td></td>
<td>carbonatite</td>
</tr>
<tr>
<td>424</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>426</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>biotite granite</td>
</tr>
<tr>
<td>427-428</td>
<td>Jeffries</td>
<td>1985</td>
<td>Cornwall, England</td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Il'men Mts., Urals</td>
<td>biotite granite</td>
</tr>
<tr>
<td>430</td>
<td>Shlyukova</td>
<td>1986</td>
<td>Khibina massif, Kola Peninsula, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>431</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>432</td>
<td>Lyakhovich</td>
<td>1968</td>
<td>Kazakhstan</td>
<td>granite</td>
</tr>
<tr>
<td>433</td>
<td>Vainshtein et al.</td>
<td>1956a</td>
<td>Borschchevoch ridge, Transbaikal</td>
<td></td>
</tr>
<tr>
<td>av. of 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Il'men Mts., Urals</td>
<td></td>
</tr>
<tr>
<td>435</td>
<td>Andersen</td>
<td>1986</td>
<td>Fen dist., Norway</td>
<td>carbonatite</td>
</tr>
<tr>
<td>436</td>
<td>Proshchenko</td>
<td>1967</td>
<td>E. Siberia</td>
<td>abitite</td>
</tr>
<tr>
<td>437</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>438</td>
<td>Borovskii and Gerasimovskii</td>
<td>1945</td>
<td>Elizavetinsk, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>439</td>
<td>Kovalenko et al.</td>
<td>1971</td>
<td>Ink-Khairken, Mongolia</td>
<td>granite</td>
</tr>
<tr>
<td>440</td>
<td>Aleksiev and Tsvetkova</td>
<td>1962</td>
<td>Rila Mts., Bulgaria</td>
<td>granite</td>
</tr>
<tr>
<td>441</td>
<td>Semenov and Khomyakov</td>
<td>1981</td>
<td>India</td>
<td>weakly magnetic</td>
</tr>
<tr>
<td>445</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>schist wall rock of granite</td>
</tr>
<tr>
<td>446</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Pamirs, Siberia</td>
<td>quartz-carbonate vein</td>
</tr>
<tr>
<td>447</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite skarn, lead deposit</td>
</tr>
<tr>
<td>448</td>
<td>Papunen and Lindsjo</td>
<td>1972</td>
<td>Korsnas, Finland</td>
<td>carbonatite</td>
</tr>
<tr>
<td>449</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Hollis, N. Carolina</td>
<td>quartz monzonite dike</td>
</tr>
<tr>
<td>450</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>451</td>
<td>Anderson</td>
<td>1986</td>
<td>Fen dist., Norway</td>
<td>carbonatite</td>
</tr>
<tr>
<td>452</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>carbonatite</td>
</tr>
<tr>
<td>453</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Dzhabyk region, E. Urals</td>
<td>carbonatite</td>
</tr>
<tr>
<td>454</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>455</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>granite</td>
</tr>
<tr>
<td>456</td>
<td>Ploshko</td>
<td>1961</td>
<td>Malaya Laba river, Caucasus, U.S.S.R.</td>
<td>talc-actinolite rock</td>
</tr>
</tbody>
</table>

Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>Yalovenko and Yur'eva</td>
<td>1967</td>
<td>Roches, Ukraine</td>
<td>granite</td>
</tr>
<tr>
<td>458</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>main ore</td>
</tr>
<tr>
<td>459</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Juiz de Feros, Minas Gerais, Brazil</td>
<td>pegmatite</td>
</tr>
<tr>
<td>460</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Mar de Espinha, Minas Gerais, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>461</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Ukraine</td>
<td>Archean biotite gneiss</td>
</tr>
<tr>
<td>462</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
</tbody>
</table>

(same as 461?)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>463</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Dzhabyk region, E. Urals</td>
<td>granite</td>
</tr>
<tr>
<td>464</td>
<td>Jefferies</td>
<td>1986</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>465</td>
<td>Orsa et al.</td>
<td>1967</td>
<td>Zaporzhge, Ukraine</td>
<td>plagiogranite</td>
</tr>
<tr>
<td>466</td>
<td>L'vov</td>
<td>1965</td>
<td>Demarinskii massif, Urals</td>
<td>granite</td>
</tr>
<tr>
<td>467</td>
<td>Leonova and Nikitin</td>
<td>1962</td>
<td>Karelia, U.S.S.R.</td>
<td>granite</td>
</tr>
<tr>
<td>468</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>pegmatite</td>
</tr>
<tr>
<td>469</td>
<td>Semenov</td>
<td>1963</td>
<td>Magadchereaa, U.S.S.R.</td>
<td>quartz vein</td>
</tr>
<tr>
<td>470</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td>dolomitized quartzite</td>
</tr>
<tr>
<td>471</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Pamirs, Siberia</td>
<td>quartzite</td>
</tr>
<tr>
<td>472-473</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite arfvedsonite</td>
</tr>
<tr>
<td>474</td>
<td>Vladykin et al.</td>
<td>1982</td>
<td>Mongolia</td>
<td>gneiss</td>
</tr>
<tr>
<td>475</td>
<td>Lyakhovich</td>
<td>1967</td>
<td>Azov region, U.S.S.R.</td>
<td>biotite granite</td>
</tr>
<tr>
<td>476</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>477</td>
<td>Kretsev and Zamoryanskaya</td>
<td>1986</td>
<td>not given</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>main ore</td>
</tr>
<tr>
<td>479</td>
<td>Meliksetyan</td>
<td>1963</td>
<td>Megri pluton, Armyan S.S.R.</td>
<td>syenite</td>
</tr>
<tr>
<td>480</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Sucundu region, E. Urals</td>
<td>granite</td>
</tr>
<tr>
<td>481</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>482</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>central Asia</td>
<td>quartz vein</td>
</tr>
<tr>
<td>483</td>
<td>Zayats and Kuts</td>
<td>1964</td>
<td>Pobuzhe, Ukraine</td>
<td>garnet-biotite gneiss</td>
</tr>
<tr>
<td>484</td>
<td>Vainshtein et al.</td>
<td>1956b</td>
<td>Pyat Palsen, Aldan</td>
<td>graphite granite</td>
</tr>
<tr>
<td>485</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Shelby dist., N. Carolina</td>
<td>biotite gneiss</td>
</tr>
<tr>
<td>486</td>
<td>Borovskii and Gerasimovskii</td>
<td>1945</td>
<td>Andermanskii, Uriskiken river, Siberia</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>Orsa et al.</td>
<td>1967</td>
<td>Middle Dniepr region, Ukraine</td>
<td>plagiogranite</td>
</tr>
<tr>
<td>488</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>alteration</td>
</tr>
<tr>
<td>489</td>
<td>Mineev et al.</td>
<td>1962</td>
<td>Vishnevye Mts., Urals</td>
<td>garnet-biotite</td>
</tr>
<tr>
<td>490</td>
<td>Es'kova and Ganzeev</td>
<td>1964</td>
<td>Urals</td>
<td>product of chevkinite, fenite</td>
</tr>
</tbody>
</table>

![Image 0x0 to 583x784]
<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>491</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>quartz-wolframite vein in gneiss</td>
</tr>
<tr>
<td>492</td>
<td>Murata et al.</td>
<td>1959</td>
<td>San Rafael, Rio Grande do Norte, Brazil</td>
<td>pegmatite</td>
</tr>
<tr>
<td>493</td>
<td>Vainshtein et al.</td>
<td>1961</td>
<td>E. Sayan</td>
<td>carbonatite</td>
</tr>
<tr>
<td>494</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Mt. Pass, Calif.</td>
<td>carbonatite</td>
</tr>
<tr>
<td>495</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>vein granite</td>
</tr>
<tr>
<td>496</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Sabinopolis, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>497</td>
<td>Vinogradov and Elina</td>
<td>1968</td>
<td>N.W. Kola Peninsula, U.S.S.R.</td>
<td>pegmatite</td>
</tr>
<tr>
<td>498</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>East Ore Bayan Obo, China</td>
<td>aegirine type</td>
</tr>
<tr>
<td>499</td>
<td>Kuznetsova et al.</td>
<td>1980</td>
<td>northern Siberia</td>
<td>dolomite-ankerite carbonatite</td>
</tr>
<tr>
<td>500</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Sabinopolis, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>501</td>
<td>Dubrovskii</td>
<td>1968</td>
<td>Yuroeisk complex, Kola Peninsula</td>
<td>granite</td>
</tr>
<tr>
<td>502</td>
<td>Jefferies</td>
<td>1985</td>
<td>Cornwall, England</td>
<td>biotite granite</td>
</tr>
<tr>
<td>503</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>East ore zone, Bayan Obo, China</td>
<td>late stage vein</td>
</tr>
<tr>
<td>504</td>
<td>Murata et al.</td>
<td>1959</td>
<td>Sabinopolis, Brazil</td>
<td>granite</td>
</tr>
<tr>
<td>505</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Urals</td>
<td>pegmatite</td>
</tr>
<tr>
<td>506</td>
<td>Serdyuchenko et al.</td>
<td>1967</td>
<td>Byelorussia</td>
<td>Precambrian</td>
</tr>
<tr>
<td>507</td>
<td>Chistyakova and Kazakova</td>
<td>1968</td>
<td>Kazakhstan</td>
<td>biotite gneiss</td>
</tr>
<tr>
<td>508</td>
<td>L'vov and Zhangurov</td>
<td>1968</td>
<td>Chelyabin dist., E. Urals</td>
<td>granite</td>
</tr>
<tr>
<td>509</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>gneiss</td>
</tr>
<tr>
<td>510</td>
<td>Ivantishin et al.</td>
<td>1964</td>
<td>Ukraine</td>
<td>gneiss</td>
</tr>
<tr>
<td>511</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>carbonatite</td>
</tr>
<tr>
<td>512</td>
<td>Vainshtein et al.</td>
<td>1961</td>
<td>E. Sayan</td>
<td>pseudomorph</td>
</tr>
<tr>
<td>513</td>
<td>Kalenor et al.</td>
<td>1963</td>
<td>Far Eastern U.S.S.R.</td>
<td>after loparite in hydrothermally altered syenite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>late stage vein</td>
</tr>
<tr>
<td>514</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>carbonate</td>
</tr>
<tr>
<td>515</td>
<td>Kapustin</td>
<td>1966</td>
<td>E. Sayan</td>
<td>pegmatite</td>
</tr>
<tr>
<td>516</td>
<td>Mineev</td>
<td>1968</td>
<td>N.W. Tarbagatau, Kazakhstan</td>
<td>biotite</td>
</tr>
<tr>
<td>517</td>
<td>Mineev</td>
<td>1968</td>
<td>N.W. Tarbagatau, Kazakhstan</td>
<td>apogranite</td>
</tr>
<tr>
<td>518</td>
<td>Chistov</td>
<td>1965</td>
<td>E. Siberia</td>
<td>carbonatite</td>
</tr>
<tr>
<td>519</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Mt. Pass, Calif.</td>
<td>carbonatite</td>
</tr>
<tr>
<td>520</td>
<td>Vetoshkina et al.</td>
<td>1980</td>
<td>Ploska Mt., Kola Peninsula, U.S.S.R.</td>
<td>amazonite</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>521</td>
<td>Semenov et al.</td>
<td>1967</td>
<td>Tarbagatau, Kazakhstan</td>
<td>quartz-fluorite pegmatite</td>
</tr>
<tr>
<td>522</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>pegmatite granite</td>
</tr>
<tr>
<td>523</td>
<td>Zuev and Kosterin</td>
<td>1961</td>
<td>Central Asia</td>
<td>granite</td>
</tr>
<tr>
<td>524</td>
<td>Lyakhovich</td>
<td>1968</td>
<td>Kazakhstan</td>
<td>hydrothermal</td>
</tr>
<tr>
<td>525</td>
<td>Povilaitis and Varshal</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>biotite granite</td>
</tr>
<tr>
<td>526</td>
<td>Mineev</td>
<td>1968</td>
<td>K.Tarbagatau, N.W. Tarbagatau, N.W. Kazakhstan</td>
<td>biotite apogranite</td>
</tr>
<tr>
<td>527</td>
<td>quoted by Vlasov</td>
<td>1964</td>
<td>Mongolia</td>
<td>alkali hydrothermalite inclusion in pyroxene</td>
</tr>
<tr>
<td>528</td>
<td>Michael</td>
<td>1988</td>
<td>Bishop tuff, Calif.</td>
<td>carbonatite foramites</td>
</tr>
<tr>
<td>529</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>quartzite</td>
</tr>
<tr>
<td>530</td>
<td>Semenov et al.</td>
<td>1978</td>
<td>Tamil Nadu, India</td>
<td>aegirine-type ore</td>
</tr>
<tr>
<td>531</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Pamirs</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>Jobbins et al.</td>
<td>1977</td>
<td>Sri Lanka</td>
<td>gem</td>
</tr>
<tr>
<td>534</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Magnet Cove, Ark.</td>
<td>aplit-pyrite dike in carbonatite</td>
</tr>
<tr>
<td>535</td>
<td>Bloomfield and Garson Holt</td>
<td>1965</td>
<td>Kangankunde Hill, Malawi</td>
<td>carbonatite</td>
</tr>
<tr>
<td>536</td>
<td>Semenov</td>
<td>1963</td>
<td>Kazakhstan</td>
<td>greisen</td>
</tr>
<tr>
<td>537</td>
<td>Plaksenko et al.</td>
<td>1982</td>
<td>Shiryaeva pluton, U.S.S.R.</td>
<td>gabbro-dolerite</td>
</tr>
<tr>
<td>538</td>
<td>Povilaitis and Kuznetsova et al</td>
<td>1959</td>
<td>Kuu massif, Kazakhstan</td>
<td>granite</td>
</tr>
<tr>
<td>539</td>
<td></td>
<td>1980</td>
<td>N. Siberia</td>
<td>dolomite-ankerite carbonatite</td>
</tr>
<tr>
<td>540</td>
<td>Borovskii and Marchenko</td>
<td>1945</td>
<td>Kounrad deposit, Balkhesh</td>
<td>granite</td>
</tr>
<tr>
<td>541</td>
<td>Gerasimovskii</td>
<td>1967</td>
<td>S.E. Ukraine</td>
<td>hydrothermal gneissic xenolith in syenite</td>
</tr>
<tr>
<td>542</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>late-stage vein pegmatite schlieren in gransyenite quartz vein in banded layer</td>
</tr>
<tr>
<td>543</td>
<td>Pavlenko et al.</td>
<td>1959</td>
<td>Dugdin massif, E. Tuva</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>Komov et al.</td>
<td>1974</td>
<td>Polar Urals</td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>East ore, Bayan Obo, China</td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Kazakhstan</td>
<td>hydrothermally altered pegmatite carbonatite</td>
</tr>
<tr>
<td>548</td>
<td>Rose et al.</td>
<td>1958</td>
<td>Magnet Cove, Arkansas</td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>Lyakhovich</td>
<td>1962</td>
<td>Eldzhurtin massif, N. Caucasus</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>quoted by Vlasov</td>
<td>1964</td>
<td>Kounrad, Kazakhstan</td>
<td></td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>551</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket, S. Thailand</td>
<td>granite</td>
</tr>
<tr>
<td>552</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Vishnevye Mts., Urals</td>
<td>pegmatite</td>
</tr>
<tr>
<td>553</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Central Kazakstan</td>
<td>carbonate vein</td>
</tr>
<tr>
<td>554</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>quartz vein</td>
</tr>
<tr>
<td>555</td>
<td>Es'kova and Ganzeev</td>
<td>1969</td>
<td>Vishnevye Mts., Urals</td>
<td>dolomite vein in ultramafic rock</td>
</tr>
<tr>
<td>556</td>
<td>Vainshtein et al.</td>
<td>1955</td>
<td>Kazakhstan</td>
<td>hydrothermally altered pegmatite</td>
</tr>
<tr>
<td>557</td>
<td>Zhang and Tao</td>
<td>1986</td>
<td>Bayan Obo, China</td>
<td>dolomite type, main ore</td>
</tr>
<tr>
<td>558</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket, S. Thailand</td>
<td>granite</td>
</tr>
<tr>
<td>559</td>
<td>Es'kova and Ganzeev</td>
<td>1964</td>
<td>Vishnevye Mts., Urals</td>
<td>pegmatite</td>
</tr>
<tr>
<td>560</td>
<td>Es'kova and Ganzeev</td>
<td>1964</td>
<td>Vishnevye Mts., Urals</td>
<td>alakal muscovite-corundum pegmatite</td>
</tr>
<tr>
<td>561</td>
<td>Heinrich and Levinson</td>
<td>1961</td>
<td>Ravalli Co., Mont.</td>
<td>carbonatite</td>
</tr>
<tr>
<td>562</td>
<td>Zhabin and Svyazhin</td>
<td>1962</td>
<td>Vishnevye Mts., Urals</td>
<td>albitite</td>
</tr>
<tr>
<td>563</td>
<td>Somina and Bulakh</td>
<td>1966</td>
<td>E. Sayan</td>
<td>carbonatite</td>
</tr>
<tr>
<td>564</td>
<td>Es'kova and Ganzeev</td>
<td>1964</td>
<td>Vishnevye Mts., Urals</td>
<td>alkali pegmatite</td>
</tr>
<tr>
<td>565</td>
<td>Gramaccioli and Segelstad</td>
<td>1978</td>
<td>Piani, Italy</td>
<td>pegmatite</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td>granite</td>
</tr>
<tr>
<td>2</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Johore State, Malaysia</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nekrasov</td>
<td>1972</td>
<td>Kular region, Far Eastern SiO$_2$ 12.04; U.S.S.R. P$_2$O$_5$ 24.08%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>McCarty</td>
<td>1935</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Li and Grebennikova</td>
<td>1962</td>
<td>Siberia</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Parak, Malaysia</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>McCarty</td>
<td>1935</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nekrasov</td>
<td>1972</td>
<td>Kular region, Far Eastern SiO$_2$ 12.04; P$_2$O$_5$ 24.08%</td>
<td></td>
</tr>
<tr>
<td>11a-f</td>
<td>Richartz</td>
<td>1961</td>
<td>Brazil black sand (separated into magnetic fractions; listed in order of increasing magnetism</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>McCarty</td>
<td>1935</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>14,15,16</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>McCarty</td>
<td>1935</td>
<td>Idaho</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>McCarty</td>
<td>1935</td>
<td>Florida</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Kedah State, Malaysia</td>
<td></td>
</tr>
<tr>
<td>20-22</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Hedrick</td>
<td>1988</td>
<td>Florida</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Zemel</td>
<td>1936</td>
<td>Aldan, U.S.S.R.</td>
<td>gold placer</td>
</tr>
<tr>
<td>25</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>26</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>27-28</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>29</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>30-33</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>34</td>
<td>Flinter</td>
<td>1963</td>
<td>Silian, Malaysia</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Flinter</td>
<td>1963</td>
<td>Trong Parak, Malaysia</td>
<td></td>
</tr>
<tr>
<td>36-38</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>39</td>
<td>Lazinski</td>
<td>1969</td>
<td>Baltic Sea coast</td>
<td>black sand</td>
</tr>
<tr>
<td>40-43</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>44</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov.</td>
<td></td>
</tr>
<tr>
<td>45-50</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>51</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Kanper Perak, Malaysia</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>53-54</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>55</td>
<td>Hedrick</td>
<td>1988</td>
<td>E. Australia</td>
<td></td>
</tr>
<tr>
<td>56-57</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>58</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Serenban, Malaysia</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>61-64</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>65</td>
<td>Trace</td>
<td>1960</td>
<td>Hardin Co., Ill.</td>
<td>cherty residuum overlying limestone</td>
</tr>
<tr>
<td>66</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>67</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Semeling, Kedah State</td>
<td>Malaysia</td>
</tr>
<tr>
<td>68</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Batu Gugel, Perak State</td>
<td>Malaysia</td>
</tr>
<tr>
<td>69-71</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>72</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Pertang, Perak State</td>
<td>Malaysia</td>
</tr>
<tr>
<td>73</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Bider, Perak State</td>
<td>Malaysia</td>
</tr>
<tr>
<td>74</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Petaling, Salanger State</td>
<td>Malaysia</td>
</tr>
<tr>
<td>75</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>76</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>77</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>78</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>79</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S.</td>
<td>Thailand</td>
</tr>
<tr>
<td>80-81</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S.</td>
<td>Thailand</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>86-88</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Selangor State, Malaysia</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Soong</td>
<td>1978</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phukat Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranung Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Hedrick</td>
<td>1988</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Sunghai, Perak State, Malaysia</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranung Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Flinter et al.</td>
<td>1963</td>
<td>Pulau Besur, Malacca State, Malaysia</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Travancore, India</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Hwang et al.</td>
<td>1981</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranung Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Semenov and Turanskaya quoted by Vlasov, v. 2, p. 283</td>
<td>1964</td>
<td>Korea</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Chen et al.</td>
<td>1973</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>108-110</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Wylie</td>
<td>1950</td>
<td>Scottsdale dist., Tasmania</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Hedrick</td>
<td>1988</td>
<td>China</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Wylie</td>
<td>1950</td>
<td>Byron Bay, N.S. Wales,</td>
<td>a split of same sample</td>
</tr>
<tr>
<td>117</td>
<td>Murata et al.</td>
<td>1957</td>
<td>Byron Bay, N.S. Wales,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a split of same sample</td>
</tr>
<tr>
<td>118</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Chen et al.</td>
<td>1973</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Pacific Grove, Calif.</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Wylie</td>
<td>1950</td>
<td>Stannum, N.S. Wales,</td>
<td>alluvial Australia</td>
</tr>
<tr>
<td>123</td>
<td>Smirnov</td>
<td>1969</td>
<td>Riphaen sediments, Middle Dniester area, Ukraine</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Wylie</td>
<td>1950</td>
<td>Cape Everard, Victoria</td>
<td>beach sand Australia</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

Table 2. Analyses

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Hedrick</td>
<td>1988</td>
<td>W. Australia</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Wylie</td>
<td>1950</td>
<td>King Island, Australia</td>
<td>beach sand</td>
</tr>
<tr>
<td>132</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Murata et al.</td>
<td>1953</td>
<td>Pacific Grove, Calif.</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Heinrich et al.</td>
<td>1960</td>
<td>Pacific Grove, Calif.</td>
<td>split of 135</td>
</tr>
<tr>
<td>137</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>141-142</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phong Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Hammond</td>
<td>1946</td>
<td>Travancore, India</td>
<td>beach sand</td>
</tr>
<tr>
<td>145</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phang Nge Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Pluhar</td>
<td>1979</td>
<td>Phuket Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Pluhar</td>
<td>1979</td>
<td>Ranang Prov., S. Thailand</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Styles and Young</td>
<td>1983</td>
<td>Afu Hills, Nigeria</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Rosenblum</td>
<td>1974</td>
<td>Liberia</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Kivu, Zaire</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nekrasova and Nekrasov</td>
<td>1983</td>
<td>Indigirka river, N.E. Yakutia</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kosterin et al.</td>
<td>1962</td>
<td>Maritime Prov., E. Siberia</td>
<td>cassiterite placer</td>
</tr>
<tr>
<td>4</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Kivu, Zaire</td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>Donnot et al.</td>
<td>1973</td>
<td>Brittany, France</td>
<td>gray, Paleozoic schist</td>
</tr>
<tr>
<td>8</td>
<td>Nekrasova and Nekrasov</td>
<td>1983</td>
<td>Indigirka river, N.E. Yakutia</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Donnot et al.</td>
<td>1973</td>
<td>Brittany, France</td>
<td>gray, Paleozoic schist</td>
</tr>
<tr>
<td>10</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Kivu, Zaire</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>France</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Chen, Li, and Wu</td>
<td>1973</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Rosenblum and Moser</td>
<td>1983</td>
<td>Livengood, Alaska</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Rosenblum and Moser</td>
<td>1983</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Kivu, Zaire</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Ruby, Alaska</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>S.W. Taiwan</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Eagle, Alaska</td>
<td></td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Teller, Alaska</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>S.W. Taiwan</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Montana</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Rio San Juan, Peru</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Soong</td>
<td>1978</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Rio Morro, Peru</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Chen, Li, and Wu</td>
<td>1973</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>28-29</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Tanana, Alaska</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Livengood, Alaska</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Talkeetna, Alaska</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Livengood, Alaska</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Nekrasova and</td>
<td>1983</td>
<td>Obirivisty river, N.E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nekrasov</td>
<td></td>
<td>Yakutia</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Soong</td>
<td>1978</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Soong quoted by</td>
<td>1983</td>
<td>S.W. Taiwan</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Huang et al.</td>
<td>1980</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Rosenblum and Mosier</td>
<td>1982</td>
<td>Tanana, Alaska</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Nekrasova and</td>
<td>1983</td>
<td>Sclar river, N.E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nekrasov</td>
<td></td>
<td>Yakutia</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Tanana, Alaska</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Nekrasova and</td>
<td>1983</td>
<td>Dzhatuk river, N.E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nekrasov</td>
<td></td>
<td>Yakutia</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Rosenblum and Mosier</td>
<td>1983</td>
<td>Ophir, Alaska</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Soong</td>
<td>1978</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Nekrasova and</td>
<td>1983</td>
<td>Vera river, N.E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nekrasov</td>
<td></td>
<td>Yakutia</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Vaquero Nazabal</td>
<td>1978</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Soong</td>
<td>1978</td>
<td>Taiwan</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maksimovic and Panto</td>
<td>1983</td>
<td>Liverici, Yugoslavia</td>
<td>bauxite</td>
</tr>
<tr>
<td>2</td>
<td>Semenov</td>
<td>1969</td>
<td>Ilimaussaq, Greenland</td>
<td>alkalic rock</td>
</tr>
<tr>
<td>3</td>
<td>Borovskii and</td>
<td>1945</td>
<td>Balkhash</td>
<td>granite</td>
</tr>
<tr>
<td></td>
<td>Gerasimovskii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nekrasova and</td>
<td>1983</td>
<td>Uruselekh river,</td>
<td>dark monozite</td>
</tr>
<tr>
<td></td>
<td>Nekrasov</td>
<td></td>
<td>Siberia</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Proshchenko quoted by</td>
<td>1964</td>
<td>N. Yakutia</td>
<td>alkali granite</td>
</tr>
<tr>
<td></td>
<td>Vlasov, v. 1, p. 243</td>
<td></td>
<td></td>
<td>pegmatite</td>
</tr>
<tr>
<td>6</td>
<td>Graeser and Schwander</td>
<td>1987</td>
<td>Italy</td>
<td>pegmatite vein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in gneiss</td>
</tr>
<tr>
<td>7</td>
<td>Shukolyukov et al.</td>
<td>1979</td>
<td>Alakurtti, N. Karelia</td>
<td>U.S.S.R.</td>
</tr>
<tr>
<td>8</td>
<td>Maksimovic and Panto</td>
<td>1980</td>
<td>Greece</td>
<td>Marmora bauxite</td>
</tr>
<tr>
<td>9</td>
<td>Graeser and Schwander</td>
<td>1987</td>
<td>Italy</td>
<td>pegmatite vein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in gneiss</td>
</tr>
</tbody>
</table>
Table 9a. Locality and Rock Type Index - Monazite-(Ce) (contd.)

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Analyses</th>
<th>Author</th>
<th>Date</th>
<th>Locality</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Bowles et al.</td>
<td>1980</td>
<td>Kuttakhuzhi, Travancore</td>
<td>kaolinized pegmatite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Pavlenko et al.</td>
<td>1959</td>
<td>Bayankul massif, E. Tuva</td>
<td>amazonite pegmatite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.		Kosterin and Zuev	1962	not given	veinlet in granophyre
					huttonite-monazite
2-3		Kucha	1980	Bogatyn area, Lower Silesia, Poland	"eeporphor-huttonite", amazonite pegmatite, huttonite-monazite
4		Pavlenko et al.	1965	S.E. Siberia	
5		Kucha	1980	Bogatyn area, Lower Silesia, Poland	huttonite-monazite
6		Kucha	1980	Bogatyn area, Lower Silesia, Poland	huttonite-monazite
7		Kucha	1980	Bogatyn area, Lower Silesia, Poland	huttonite-monazite
Table 9b. Locality Index - Monazite-(Ce)

<table>
<thead>
<tr>
<th>Country</th>
<th>Table</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burundi Republic</td>
<td>1</td>
<td>376</td>
</tr>
<tr>
<td>Liberia</td>
<td>2</td>
<td>114, 126, 130, 134, 137, 139, 141, 142, 145, 149, 151</td>
</tr>
<tr>
<td>Malawi</td>
<td>1</td>
<td>400, 535</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
<td>31, 54, 138, 296, 337</td>
</tr>
<tr>
<td>Zaire</td>
<td>3</td>
<td>1, 4, 10, 16, 17, 18, 21</td>
</tr>
<tr>
<td>"South Asia"</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
<td>15, 72, 77, 134, 149, 243, 327, 458, 478, 498, 503, 509</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5, 113</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>190, 441, 530</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9, 13, 98, 102, 144</td>
</tr>
<tr>
<td>Japan</td>
<td>1</td>
<td>74, 223, 252</td>
</tr>
<tr>
<td>Korea</td>
<td>1</td>
<td>299</td>
</tr>
<tr>
<td>Korea</td>
<td>2</td>
<td>106</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2, 8, 19, 34, 35, 51, 58, 67, 68, 72–74, 89, 99, 101</td>
</tr>
<tr>
<td>Mongolia</td>
<td>1</td>
<td>66, 181, 437, 474, 527</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1</td>
<td>533</td>
</tr>
<tr>
<td>Taiwan</td>
<td>2</td>
<td>92, 107, 119</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12, 14, 19, 22, 25, 27–29, 35–38, 44, 47</td>
</tr>
<tr>
<td>Thailand</td>
<td>1</td>
<td>89, 258, 409, 551, 558</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1, 3, 6, 12, 14, 15, 16, 20–22, 25–33, 36–38, 40–50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>129, 132, 133, 138, 140, 143, 146–148</td>
</tr>
<tr>
<td>U.S.S.R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Siberia"</td>
<td>1</td>
<td>20, 28, 80, 83, 97, 117, 165, 249, 269, 364, 397</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13, 36, 44, 47</td>
</tr>
<tr>
<td>"Central Asia"</td>
<td>1</td>
<td>482, 523</td>
</tr>
<tr>
<td>"East Siberia, "Far Eastern U.S.S.R.", "Maritime Province"</td>
<td>1</td>
<td>81, 316, 326, 335, 342, 375, 436, 513, 518</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4, 10, 59</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>"N. Siberia"</td>
<td>1</td>
<td>499, 539</td>
</tr>
<tr>
<td>Aldan</td>
<td>1</td>
<td>415, 484</td>
</tr>
<tr>
<td>Balkhash</td>
<td>1</td>
<td>540</td>
</tr>
<tr>
<td>Gornyi Altai</td>
<td>1</td>
<td>127, 236, 251, 271, 354, 543</td>
</tr>
<tr>
<td>Kabaridi-Balkarsk</td>
<td>A.S.S.R.</td>
<td>298</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1</td>
<td>156, 168, 169, 177, 189, 257, 264, 279, 330, 385, 402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>424, 432, 455, 468, 488, 491, 495, 507, 516, 517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>521, 522, 524–526, 536, 538, 547, 550, 553, 556</td>
</tr>
<tr>
<td>Pamirs</td>
<td>1</td>
<td>144, 446, 471, 544</td>
</tr>
<tr>
<td>Polar Urals</td>
<td>1</td>
<td>130, 142, 146, 154, 160, 232, 281, 346, 348, 350, 353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>470, 471, 544</td>
</tr>
<tr>
<td>Sayan</td>
<td>1</td>
<td>108, 166, 196, 202, 209, 210, 220, 226, 278, 291, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512, 515, 563</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>81, 316, 326, 335, 342, 375, 436, 513, 518</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4, 10, 59</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>"N. Siberia"</td>
<td>1</td>
<td>499, 539</td>
</tr>
<tr>
<td>Aldan</td>
<td>1</td>
<td>415, 484</td>
</tr>
<tr>
<td>Balkhash</td>
<td>1</td>
<td>540</td>
</tr>
<tr>
<td>Gornyi Altai</td>
<td>1</td>
<td>127, 236, 251, 271, 354, 543</td>
</tr>
<tr>
<td>Kabaridi-Balkarsk</td>
<td>A.S.S.R.</td>
<td>298</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1</td>
<td>156, 168, 169, 177, 189, 257, 264, 279, 330, 385, 402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>424, 432, 455, 468, 488, 491, 495, 507, 516, 517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>521, 522, 524–526, 536, 538, 547, 550, 553, 556</td>
</tr>
<tr>
<td>Pamirs</td>
<td>1</td>
<td>144, 446, 471, 544</td>
</tr>
<tr>
<td>Polar Urals</td>
<td>1</td>
<td>130, 142, 146, 154, 160, 232, 281, 346, 348, 350, 353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>470, 471, 544</td>
</tr>
<tr>
<td>Sayan</td>
<td>1</td>
<td>108, 166, 196, 202, 209, 210, 220, 226, 278, 291, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512, 515, 563</td>
</tr>
</tbody>
</table>
Table 9b. Locality Index - Monazite-(Ce)

<table>
<thead>
<tr>
<th>Country</th>
<th>Table</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.S.R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannu-Ola</td>
<td>1</td>
<td>50, 343</td>
</tr>
<tr>
<td>Timan</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Transbaikal</td>
<td>1</td>
<td>147, 293, 329, 351, 360, 433</td>
</tr>
<tr>
<td>Tuva</td>
<td>1</td>
<td>129, 136, 164, 203, 301, 302, 543</td>
</tr>
<tr>
<td>Urals</td>
<td></td>
<td>178, 194, 224, 237, 238, 242, 262, 265, 267, 274, 292, 295, 310, 319, 340,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>371-373, 382, 383, 417, 418, 429, 434, 438, 453, 463, 466, 480, 489,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>490, 505, 508, 552, 555, 559, 560, 562, 564</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>1</td>
<td>286</td>
</tr>
<tr>
<td>Yaktia</td>
<td>1</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2, 8, 34, 40, 42, 45</td>
</tr>
<tr>
<td>"Australia"</td>
<td>1</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>131</td>
</tr>
<tr>
<td>"East Australia"</td>
<td>2</td>
<td>55, 104</td>
</tr>
<tr>
<td>"South Australia"</td>
<td>1</td>
<td>321</td>
</tr>
<tr>
<td>New South Wales</td>
<td>1</td>
<td>116, 117, 122</td>
</tr>
<tr>
<td>Tasmania</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td>Victoria</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>West Australia</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
<td>320</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1</td>
<td>282, 314, 323, 328, 332, 333, 345, 349, 355, 361, 368, 374, 378, 379,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>381, 383, 387, 388, 391, 392, 394-396, 401, 404, 405, 426, 440</td>
</tr>
<tr>
<td>England</td>
<td>1</td>
<td>239, 256, 272, 283, 369, 370, 403, 407, 410-412, 420, 422, 427, 428, 447,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450, 464, 472, 473, 476, 481, 502</td>
</tr>
<tr>
<td>Finland</td>
<td>1</td>
<td>86, 158, 448</td>
</tr>
<tr>
<td>France</td>
<td>3</td>
<td>5-7, 9, 11</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>67, 155, 183, 217, 259, 304, 305, 331, 386, 565</td>
</tr>
<tr>
<td>Norway</td>
<td>1</td>
<td>8, 11, 70, 92, 99, 100, 128, 195, 231, 254, 435, 451</td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
<td>139</td>
</tr>
<tr>
<td>Spain</td>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
<td>171</td>
</tr>
<tr>
<td>"U.S.S.R."</td>
<td>1</td>
<td>53, 113, 137, 185, 390, 469, 537</td>
</tr>
<tr>
<td>Azov region</td>
<td>1</td>
<td>150, 175, 182, 198, 204, 213, 221, 222, 241, 253, 260, 289, 297, 303,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>325, 357, 475</td>
</tr>
<tr>
<td>Baltic region</td>
<td>1</td>
<td>25, 118</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Armenia</td>
<td>1</td>
<td>479</td>
</tr>
<tr>
<td>Byelorussia</td>
<td>1</td>
<td>506</td>
</tr>
<tr>
<td>Caucasus</td>
<td>1</td>
<td>229, 309a, b, c, 456, 549</td>
</tr>
<tr>
<td>Karelia and Kola Peninsula</td>
<td>1</td>
<td>1-5, 9, 13, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32-34, 39-42, 71, 75, 76,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78, 93, 106, 109, 116, 122, 135, 151, 159, 172, 184, 192, 208, 225,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245, 273, 284, 287, 334, 341, 347, 356, 362, 365, 380, 389, 415, 419,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>423, 430, 442-444, 467, 497, 501, 520</td>
</tr>
</tbody>
</table>
Table 9b. Locality Index - Monazite-(Ce)

<table>
<thead>
<tr>
<th>Country</th>
<th>Table</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yugoslavia</td>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>338</td>
</tr>
</tbody>
</table>

United States:

<table>
<thead>
<tr>
<th>Country</th>
<th>Table</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>3</td>
<td>13, 18, 20, 21, 30-33, 39, 41, 43</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1</td>
<td>534, 538</td>
</tr>
<tr>
<td>California</td>
<td>1</td>
<td>7, 206, 234, 494, 519, 528</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>120, 135, 136</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1</td>
<td>121</td>
</tr>
<tr>
<td>Florida</td>
<td>2</td>
<td>18, 23</td>
</tr>
<tr>
<td>Idaho</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Illinois</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>Montana</td>
<td>1</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Nevada</td>
<td>1</td>
<td>44, 55, 56, 62, 87, 90, 96, 131, 141, 167, 173, 174, 180, 188, 191</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1</td>
<td>17, 58, 79, 88, 102, 119, 132, 133</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1</td>
<td>43, 52, 60, 68, 69, 112, 143, 205, 206a,b, 207a,b, 208, 209, 210, 211, 212, 225, 228, 255, 268, 280, 294, 344, 367, 377, 399, 408, 414, 416, 431, 432, 437, 445, 452, 454, 459, 460, 492, 496, 500, 504</td>
</tr>
<tr>
<td>Virginia</td>
<td>1</td>
<td>101, 311</td>
</tr>
</tbody>
</table>

South America

<table>
<thead>
<tr>
<th>Country</th>
<th>Table</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>1</td>
<td>36, 37, 61, 85, 95, 104, 115, 140, 170, 193, 207a,b, 212, 225, 255, 268, 280, 294, 344, 367, 377, 399, 408, 414, 416, 431, 437, 445, 452, 454, 459, 460, 492, 496, 500, 504</td>
</tr>
<tr>
<td>Peru</td>
<td>2</td>
<td>11a-11f</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24, 26</td>
</tr>
</tbody>
</table>

No Locality Given

1 51, 65, 120, 153, 336, 477
Fig. 1. Relationships in the monoclinic system CePO$_4$-CaTh(PO$_4$)$_2$-ThSiO$_4$ modified from Bowie and Horne (1953).
References

Aml, Reidar (1975), Mineralogy and rare earth geochemistry of apatites and xenotime from the Gloeheria granite pegmatite, southern Norway: American Mineralogist, v. 60, p. 607-620

Andersen, Tom (1986), Compositional variation of some rare-earth minerals from the Fen complex (Telemark, S.E. Norway): implications for the mobility of rare earths in a carbonatite system: Mineralogical Magazine, v. 50, p.503-509

Bearth, P. (1934), X-ray spectroscopic analysis of a turnerite from the Tavetsch: Schweizerische Mineralogische Petrographische Mitteilungen, v. 14, p. 442-446 (in German)

Bukanov, V.V. and Shvetsova, I.V. (1966), Typomorphic features of accessory monazite from a vein of Alpine type of the Near-Polar Urals: Mineral. Sbornik L'vov Univ., v. 20, p. 595-599 (in Russian)

Fleischer, Michael (1978), Relation of the relative concentration of lanthanides in titanite to type of host rocks: American Mineralogist, v. 63, p. 869-875

Flinter, B.H.; Butler, J.R.; and Harral, G.M. (1973), A study of alluvial monazite from Malaysia, American Mineralogist, v. 48, p. 1210-1226

Graeser, Stefan and Schwander, Hans (1987), Gasparite-(Ce) and monazite-(Nd), two new minerals of the monazite group from the Alps: Schweizerische Mineralogische und Petrographische Mitteilungen, p. 67, p. 103-117

Haapala, Ilmeri; Ervamaa, Pentti; Lofgren, Arvo; and Ojanpera, Pentti (1969), An occurrence of monazite in Puumala, eastern Finland: Bulletin of the Geological Society of Finland, v. 41, p. 117-124
Hwang, Jon-Mau; Shih, Jang-Shang; Yeh, Yu-Char; and Wu, Wjaw-Chii (1981), Determination of rare earth oxides in monazite sand and rare-earth impurities in high-purity rare earth oxides, by high-performance liquid chromatography: Analyst, v. 106, p. 869-872
Kalita, A.P. (1969), Features of the distribution of lanthanides and yttrium in rare-earth granitic pegmatites of the eastern part of the Baltic Shield: in Features of the distribution of rare earths in pegmatites: Izdatel Nauka, p. 79-100 (in Russian)

Kirillov, A.S. and Ryzhova, R.I. (1968), Geochemistry of rare-earth elements in carbonatites of the Karelian-Kola Province: Leningrad University, Mineralogiya, Geokhimi, Sbornik Statei, v. 3, p. 87-97 (in Russian)

Kukharev, A.A.; Bulakh, A.G.; and Baklanova, K.A. (1961), Sulfate-monazite from carbonatites of the Kola Peninsula: Zapiski Vsosoyuzhnogo Mineralogicheskogo Obschhestva, v. 90, p. 373-381 (in Russian)

Kukharev, A.A.; Orlova, M.P.; Bulakh, A.G.; and others (1965), The Caledonian complex of ultrabasic, alkalic rocks and carbonatites of the Kola Peninsula and northern Karelia: geology, petrology, mineralogy, geochemistry: Izdatel Nedra, Moscow, p. 1-772 (in Russian)

Kuts, V.P. (1966), Features of the distribution, morphology, and composition of accessory monazites from crystalline rocks of the Azov region, Mineral. Sbornik L'vov Univ., v. 20, p. 279-284 (in Russian)

L'vov, B.K. (1965), Petrology, mineralogy, and geochemistry of granitic rocks of the Kochkarsk region, Urals: Leningrad Gosudarst Univ., Izdatel, p. 1-164 (in Russian)

L'vov, B.K. and Zhangurov, A.A. (1968), Accessory monazite from granites and metamorphic rocks of the eastern Ural anticlinorium: in Accessory minerals of igneous rocks, Izdatel Nauka, Moscow, p. 196-204 (in Russian)

Maksimovich, Zoran and Panto, Gyorgy (1983), Mineralogy of yttrium and lanthanide elements in karstic bauxite: Travaux Comite Internationale Etude Bauxites, Alumine, et Aluminum, v. 13, p. 191-200 (in English)

Mannucci, Gregorio; Dielle, Valeria; Gramaccioli, G.M.; and Pilati, Tullio (1986), A comparative study of some pegmatitic and fissure monazite from the Alps: Canadian Mineralogist, v. 24, p. 469-474

McKee, Duncan (1962), Goyazite and florencite from two African carbonatites: Mineralogical Magazine, v. 33, p. 281-287

Mineev, D.A.; Makarochkin, B.A.; and Zhabin, A.G. (1962), Study of the behavior of lanthanides in the process of alteration of rare-earth minerals: Geokhimiya 1962, no. 6, p. 590-597 (in Russian)

Ploshko, V.V. and Knyazeva, D.N. (1965), Rare earths, yttrium, and thorium in post-magmatic processes of acidic intrusions of the Urushten complex, northern Caucasus: in Accessory elements as criteria of the comagmatic metallogenic specialization of magmatic complexes, Izdatel Nauka, Moscow, p. 146-152 (in Russian)

Pluhar, Emanuel (1979), Geochemistry of monazites from Thailand and its application to prospecting for tin ores: Berliner Geowissenschaftlichen Abhandlungen, Ser. A, no. 12, p.1-53 (in German)

Rapp, R.P. and Watson, E.V. (1966), Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas: Contributions to Mineralogy and Petrology, v. 94, p. 304-316

Sahama, T.G. and Vahatalo, Veikko (1939), The rare earth content of wiikite, Bulletin Commission Geol. Finlanide no. 125, p. 97-109
Sahama, T.G. and Vahatalo, Veikko (1941), X-ray spectroscopic study of rare earths in some Finnish eruptive rocks and minerals: Bulletin Commission Geol. Finlande no. 126, p. 50-83
Semenov, E.I.; Kostyunina, L.P.; and Kulakov, M.P. (1967), Rare-earth accessory mineralizations in quartz-fluorite pegmatites of Kazakhstan, in Mineralogy of pegmatites and hydrothermalites of alkalic massifs, Izdatel Nauka, Moscow, p. 137-149 (in Russian)
Somina, M. Ya. and Bulakh, A.G. (1966), Florencite from carbonatites of eastern Sayan and some problems of the chemical constitution of the crandallite group: Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, v. 95, p. 537-550 (in Russian)

Soong, Kuo-Liang (1978), The genesis of the black monazite from Taiwan: Acta Oceanographica Taiwanica no. 8, p. 43-62 (in English)

Vainshtein, E.E.; Tugarinov, A.I.; and Turanskaya, N.V. (1956b), Regularities in the distribution of rare earths in certain minerals: Geokhimiya 1956, p. 35-56 (in Russian), translation in Geochemistry, 1956, p. 159-178

Vaquero Nazabal, C. (1979), Discovery, for the first time in Spain, of an abnormal facies monazite containing europium: Boletin Geol. Minero, v. 90, p. 374-379 (in Spanish)

Vlasov, K.A. (ed)(1964), Geochemistry and mineralogy of rare elements and genetic types of their deposits, v. 1 and v. 2 (in Russian)

Zayats, A.P. and Kuts, V.F. (1964), Rare-earth elements in accessory minerals of gneisses of the Ukrainian crystalline shield: Geokhimiya 1964, p. 1209-1211 (in Russian)

