

Open-File Report 91-502

GEOMORPHIC AND VEGETATIVE RECOVERY PROCESSES ALONG MODIFIED STREAM CHANNELS OF WEST TENNESSEE

Prepared by the U.S. GEOLOGICAL SURVEY

in cooperation with the TENNESSEE DEPARTMENT OF TRANSPORTATION

attenuates with time to a minimum and, in conjunction with reduced rates of channel widening, results in small variations in the width-depth ratio.

Variations in projected width-depth ratios also occur due to gross differences in the character of the channel alluvium. As indicated by Schumm (1960), channels cut through silt-clay alluvium tend to be narrower and deeper than those in sediments that contain greater percentages of coarse material. Although Schumm's "M" (percentage of silt-clay in the channel perimeter) was not calculated in this study, those channels that have been described as the "loess tributaries" display generally lower width-depth ratios than the sand-bed streams over the long term. Projected mean width-depth ratios for the loess tributaries and the sand-bed streams after 40 years of adjustment range from 4.0 to 6.4, and from 6.8 to 11.4, respectively. Similarly, after 115 years of adjustment, the estimated width-depth ratios for the fine-grained channels range from 4.3 to 6.8, and for the sand-bed channels, from 7.4 to 13.1. The discrete ranges given above are more a function of the lack of channel bed-level recovery along the loess tributaries (which keeps the channels deep) than of differences in widening rates due to greater cohesion in the channel banks. Furthermore, the loess tributaries have some of the greatest widening rates recorded during the study, and this is attributed to substantial amounts of channel bed-level lowering.

There are many uncertainties involved in projecting natural processes and forms 100 years into the future. Data presented in this section and tables 26 through 28 are estimates of the long-term channel geometry along adjusting channels in West Tennessee. The attenuation of processes such as bed-level change and channel widening have been accounted for through time and location within the general framework of the models of channel evolution and bank-slope development. However, variables such as further direct human intervention, land-use changes and low-frequency climatic events cannot be incorporated into this analysis and therefore create a degree of unreliability.

Riparian-Vegetation Recovery

The most apparent characteristic of unstable bank conditions is a general lack of woody-riparian vegetation. The rate of bank widening is perhaps the most influential factor determining the type and abundance of riparian species. Bank accretion also affects species presence; high accretion rates appear to limit the presence of many species through suffocation of the root zone. Together, bank widening and accretion exert a pervasive influence on the riparian-vegetation community. The unstable banks are typically unshaded, which might also affect the early stages of revegetation; many stable-site species are relatively shade tolerant.

Natural or man-induced disturbance in vegetation systems have received considerable attention recently among students of plant ecology (White, 1979). Channel-bank responses to channelization

(direct and indirect) are a major disturbance to riparian vegetation along West Tennessee channels. Little previous study has been directed toward the analysis and interpretation of plant ecological recovery on channelization-disturbed banks (Hupp and Simon, 1986).

Results of this part of the study pertain mostly to the bank forms and woody vegetation of strictly riparian zones (below the top-bank or flood-plain level). Along channelized reaches, the distinction between banks and flood plain is relatively clear. However, along some swampy, stable upstream reaches this topographic distinction may be blurred. Thirty-eight species of woody plants were identified along the channel banks of the study streams (table 29); this does not include vines such as blackberry and herbaceous perennial species. Seventy-seven species of trees and shrubs in total, that occur on riparian surfaces, flood plains, and fluvial wetlands were identified.

Table 29.--List of woody riparian species in West Tennessee

Species	Name	
code	Scientific	Common
ALSE	Alnus serrulata	Alder
ASTR	Asimina triloba	Pawpaw
ACNE	Acer negundo	Boxelder
AČRU	Acer rubrum	Red Maple
ACSA	Acer saccharinum	Silver Maple
ARSP	Aralia spinosa	Hercules Club
BENI	Betula nigra	River Birch
CACA	Carpinus caroliniana	Ironwood
CACO	Carya cordiformis	Bitternut
CELA	Celtis laevigata	Sugarberry
CEPO	Cephalanthus occidentalis	Buttonbush
COAM	Cornus amomum	Red Willow
CRSP	Crataegus spp.	Hawthorn
FOAC	Forestiera acuminata	Swamp Forestiera
FRPE	Fraxinus pennsylvanica	Green Ash
GLTR	Gleditsia triacanthos	Honey Locust
JŪNI	Juglans nigra	Black Walnut
LIST	Liquidambar styraciflua	Sweetgum
MAPO	Maclura pomifera	Osage Orange
NYAQ	Nyssa aquatica	Water Tupelo
PLÓC	Platanus occidentalis	Sycamore
PODE	Populus deltoides	Cottonwood
PRSE	Prunus serotina	Black Cherry
QUBI	Quercus bicolor	Swamp Red Oak
QUFP	Quercus falcata Var. pagodaefolia	Cherrybark Oak
QULY	Quercus lyrata	Overcup Oak
QŪNI	Quercus nigra	Water Oak
QUPH	Quercus phellos	Willow Oak
QŬŔŬ	Quercus rubra	Red Oak
RHGL	Rhus glabra	Staghorn Sumac
ROPS	Robinia pseudoacacia	Black Locust
SÁCĂ	Sambucus canadensis	Elderberry
SANI	Salix nigra	Black Willow
TADI	Taxodium distichum	Bald Cypress
TIHE	Tilia heterophylla	Basswood
ULAL	Ulmus alata	Winged Elm
ŬĹĂM	Ulmus americana	American Elm
ULRU	Ulmus rubra	Slippery Elm

[This table provides explanation for species code in tables 30 and 31 and figures 57 and 58]

Several sites had woody vegetation that did not germinate in place; this includes sites where top-bank plants have been carried to mid-bank locations on slump blocks. Slumped vegetation is not included in species-presence analyses. Sites without in situ woody plants indicate substantial bank instability (Hupp and Simon, 1986). Species presence by site are listed in table 30. Eighty sites are included in species-presence analyses. The most common species on disturbed West Tennessee streams is river birch (Betula nigra), occurring in 75 percent of the study sites. Also important in re-establishment are black willow (Salix nigra, 68 percent), silver maple (Acer saccharinum, 55 percent), sycamore (Platanus occidentalis, 55 percent), boxelder (Acer negundo, 54 percent), cottonwood (Populus deltoides, 29 percent), and green ash (Fraxinus pennsylvanica, 26 percent). Common bank species along unmodified reaches include river birch, sycamore, silver maple, green ash, and boxelder mixed with ironwood (Carpinus caroliniana, 25 percent), sweetgum (Liquadambar styraciflua, 20 percent), overcup oak (Quercus lyrata, 14 percent), cherrybark oak (Quercus falcata var. pagodaefolia, 10 percent), water oak (Quercus nigra, 10 percent), and American elm (Ulmus americana, 8 percent). Bald cypress (Taxodium distichum, 13 percent) and tupelo gum (Nyssa aquatica, 10 percent), are common bank species in backwater swampy reaches. Black willow is conspicuously unimportant along undisturbed reaches with no mature forest while other species such as river birch and silver maple that are found along disturbed reaches, are relatively common along most West Tennessee stream reaches. The Hatchie River is used as an ecological measure of the undisturbed natural system (table 30); all sites along this stream are in stage I of the channel evolution model.

To test vegetative recovery through species response and establishment, dendrogeomorphic and species-presence data were compared. This analysis provides information concerning riparian environments that support specific species or suites of species. The 80 sites categorized by stage of bank-slope development and site variables (widening rate, accretion rate, percent vegetative cover; fig. 46) provide a set of dependent variables that is used in the following statistical analyses of species-presence data. Widening rates (total widening in ft/yr), accretion rates (mean rate of accretion in in/yr), and percent woody vegetative cover (mean percent cover) were each separated into 5 categories, for ease of statistical operations. The categories for the site variables are listed in table 23. All sites listed in table 30 were used in parts of the categorization. Because of missing data points, however, two sites were omitted in the widening categorization, four sites in the accretion categorization, and two sites in the vegetative cover categorization. The five categories for each of the main variables (widening rate, accretion rate, and percent vegetative cover; table 23) were chosen to avoid wide ranges in the number of possible sites per category, which tends to bias subsequent statistical operations performed on the contingency tables. The descriptor terms of each category lead to a proper interpretation of widening and accretion rates, however, the wide range of cover values may make the descriptors somewhat misleading. For example, medium cover would indicate a substantial amount of bank cover, but a value of only 26 percent would fall into this category. Likewise, a value of 51 percent, slightly better than half, falls into the high-cover category.

Table 30.--Summary of woody species present at selected stream sites

ALSE	Ainun zermiana	FOAC	Forestiera acuminata	QUNI	Quercus nigra
ASTR	Asimina triloba	FRPE	Fradrus pennytvanics	QUPH	Quercus phellos
ACNE	Acer negundo	GLTR	Gleditria triacanthae	QURU	Quercus rubra
ACRU	Actr ribrim	JUNI	Jugian nigra	RHGL	Rhue globra
ACSA	Acer sacchartsum	LIST	Liquidambar styracifina	ROPS	Robinia prendoacacia
ARSP	Aralia spinosa	MAPO	Maciura pomifera	SACA	Sambucus canadensis
BENI	Betnia nigra	NYAQ	Nyuva aquatica	SANI	Salix nigra
CACA	Carpinus caroliniana	PLOC	Platante occidentalis	KLAT	Taxodium distichum
CACO	Carya condiformis	PODE	Populue deitoides	TIHE	Tilla heterophylla
CELA	Celtie laevigata	PRSE	Present scroting	ULAL	Ulmuu alata
CEPO	Cephalanting occidentalis	QUBI	Quercus bicolor	ULAM	Ubnue americana
COAM	Cornus amonum	QUFP	Quercus falcata Vez. pagodaefolia	ULRU	Ulmur rubra]
CRSP	Cratas gue spp.	QULY	Quercus lyrata		

Stream North Fork Obion River South Fork Obion River Rutherford Fork Obion River	lution stage IV V IV IV IV IV V IV V V V V V V V V	07025600 0702500 07025400 07025375 07025320 07024500 07024550 07024550 07024550 07024500 07024500 07024500 07024350 07022550	River mile 5.9 10.0 21.1 26.4 34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	species 0 6 2 10 6 8 3 0 3 2 10 3 3	BENI ACNE ACNE ACNE ACNE BENI BENI BENI ACSA TIHE	FRPE BENI ACRU ACSA BENI SANI SANI	CEPO CACA BENI BENI SANI JUNI	FRPE CACO PLOC	SANI LIST LIST QUPH	PLOC PLOC SACA	QUPH SAN I QURU	ULRU	
North Fork Obion River South Fork Obion River	IV IV IV IV IV IV IV VI VI VI VI VI VI	07025600 0702500 07025400 07025375 07025320 07024500 07024550 07024550 07024550 07024500 07024500 07024500 07024350 07022550	5.9 10.0 21.1 26.4 34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	0 0 2 10 6 8 3 0 3 2 10 3	BENI ACNE ACNE ACNE ACNE BENI BENI BENI ACSA TIHE	FRPE BENI ACRU ACSA BENI SANI SANI BENI	CEPO CACA BENI BENI SANI JUNI	FRPE FRPE CACO PLOC	SANI LIST LIST QUPH	PLOC PLOC SACA	SANI	ULRU	
South Fork Obion River	V IV IV IV IV IV IV IV IV IV IV IV IV	07025500 07025400 07025375 07025340 07025320 07024520 07024525 07024525 07024525 07024520 07024530 07024530 07024350 07024350 070225100 07025100	10.0 18.0 21.1 26.4 34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	0 6 2 10 6 8 3 0 3 2 10 3	BENI ACNE ACNE ACNE ACNE BENI BENI BENI ACSA TIHE	FRPE BENI ACRU ACSA BENI SANI SANI BENI	CACA BENI BENI SANI JUNI	FRPE CACO PLOC	LIST LIST QUPH	PLOC PLOC SACA	SANI	ULRU	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1	07025400 07025375 07025340 07025320 07024800 07024550 07024550 07024550 07024500 07024460 07024430 07024350 07024350	18.0 21.1 26.4 34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	6 2 10 6 8 3 0 3 2 10 3	BENI ACNE ACNE ACNE ACNE BENI BENI BENI ACSA TIHE	FRPE BENI ACRU ACSA BENI SANI SANI BENI	CACA BENI BENI SANI JUNI	FRPE CACO PLOC	LIST LIST QUPH	PLOC PLOC SACA	SANI	ULRU	
	IV III V IV IV IV VI VI VI VI	07025375 07025340 07025320 07024550 07024550 07024550 07024525 07024500 07024460 07024460 07024350 07024350	21.1 26.4 34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	2 10 6 3 0 3 2 10 3	BENI ACNE ACNE ACNE ACNE BENI BENI BENI ACSA TIHE	FRPE BENI ACRU ACSA BENI SANI SANI BENI	CACA BENI BENI SANI JUNI	FRPE CACO PLOC	LIST LIST QUPH	PLOC PLOC SACA	SANI	ULRU	
	111 V V V V V V V V V V V V V	07025340 07025320 07024550 07024550 07024525 07024500 07024520 07024460 07024460 07024350 070225100 07025100	26.4 34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	10 6 3 0 3 2 10 3	ACNE ACNE ACNE ACSA BENI BENI ACSA TIHE	BENI ACRU ACSA BENI SANI SANI BENI	BENI BENI SANI JUNI	CACO PLOC	LIST QUPH	PLOC SACA	SANI	ULRU	
	VI V V V V V V V V V V V V	07025320 07024800 07024550 07024555 07024525 07024500 07024460 07024430 07024350 070225100 07025100	34.9 5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	6 8 3 0 3 2 10 3	ACNE ACNE ACSA BENI BENI ACSA TIHE	ACRU ACSA BENI SANI SANI BENI	BENI BENI SANI JUNI	CACO PLOC	LIST QUPH	PLOC SACA	SANI	ULRU	
	V V IV IV VI VI VI VI	07024800 07024550 07024525 07024500 07024500 07024460 07024430 07024350 070225100 07025100	5.8 11.4 16.8 19.2 23.2 28.5 33.8 4.9	8 3 0 3 2 10 3	ACNE ACSA BENI BENI ACSA TIHE	ACSA BENI SANI SANI BENI	BENI SANI JUNI	PLOC	QUPH	SACA			
	V IV IV VI VI VI VI VI	07024550 07024525 07024500 07024460 07024430 07024350 07024350 07025100 07025500	11.4 16.8 19.2 23.2 28.5 33.8 4.9	3 0 3 2 10 3	ACSA BENI BENI ACSA TIHE	BENI SANI SANI BENI	SANI						
Rutherford Fork Obion River		07024525 07024500 07024460 07024430 07024350 07025100 07025050	16.8 19.2 23.2 28.5 33.8 4.9	0 3 2 10 3	BENI BENI ACSA TIHE	SANI SANI BENI	JUNI	PAYN	PLOC	PODE	QURU	SANI	TADI
Rutherford Fork Obion River	IV IV VI VI V IV	07024500 07024460 07024430 07024350 07025100 07025100 07025050	19.2 23.2 28.5 33.8 4.9	3 2 10 3	BENI ACSA TIHE	SANI BENI		PAYN	PLOC	PODE	quru	SANI	TADI
Rutherford Fork Obion River	IV VI VI V V IV	07024460 07024430 07024350 07025100 07025050	23.2 28.5 33.8 4.9	2 10 3	BENI ACSA TIHE	SANI BENI		PAYN	PLOC	PODE	quru	SANI	TADI
Rutherford Fork Obion River	VI VI V V V V	07024430 07024350 07025100 07025050	28.5 33.8 4.9	10 3	ACSA TIHE	BENI		PAYN	PLOC	PODE	quru	SANI	TADI
Rutherford Fork Obion River	VI V V IV	07024350 07025100 07025050	33.8 4.9	3	TIHE			PAYN	PLOC	PODE	QURU	SANI	TADI
Rutherford Fork Obion River	V V IV	07025100 07025050	4.9	_		SANI	TADI						
Rutherford Fork Obion River	V V IV	07025100 07025050	4.9	_	BENI	SANI	TADI						
Rutherford Fork Obion River	V IV	07025050		-									
	IV			5	ACNE	BENI	SACA	SANI					
			10.4	2	BENI	SANI							
	IV	07025025	15.2	3	BENI	RHGL	SANI						
		07025020	17.1	1	BENI								
	IV	07025000	17.9	7	ACNE	ACSA	BENI	CRSP	PLOC	RHGL	SANI		
	IV	07025001	24.5	3	ACNE	ACSA	BENI						
	VI	07024900	29.9	6	ACNE	ACRU	BENI	CACA	PLOC	ULAM			
	VI	07024888	39.4	5	BENI	ACNE	LIST	PLOC	ULAM				
	VI	07024880	43.3	7.	ALSE	ACRU	BENI	CACA	DAYN	PLOC	ULAM		
Obion River	v	07027200	20.8	3	ACSA	PODE	SANI						
	11	07027180	25.6	2	PODE	SANI							
	V	07026300	34.2	3	ASTR	PODE	SANI						
	Ý	07026250	42.4	3		PODE							
	v	07026000	53.7	3		ACSA							
	V	07025900	62.2	5	ACSA	FRPE	PLOC	PODE	SANI				
	V	07024800	68.5	8	ACNE	ACSA	BENI	PLOC	QUPH	SACA	SANI	ULRU	
Davidson Creek	v	07025917	2.2	4	ACNE	PODE	SACA	SANI					
	IŶ	07025913	5.8	3		PODE							
	ĪV	07025909	7.5	2		SANI							
	111	07025905	9.0	9			ACSA	CELA	FRPE	MAPO	PODE	RHGL	SANI
North Fork Forked Deer River	VI	07029105	3.8	4	ACSA	BENI	PODE	SANT					
	ÿ	07029100	5.1	3		PLOC		•••••					
	IV	07029040	13.6	2		BENI							
	ÿ	07028840	18.8	3		BENI	SANT						
	ĪŇ	07028835	20.2	ō			•••••						
	īv	07028820	23.9	ă									
	i	07028500	34.6	6	AL SE	ACNE	ACRU	BENI	FRPE	ULRU			
	i	07028410	41.6	5					SANI	•••••			
South Fork Forked Deer River	v	07028200	3.3	3	ACSA	BENI	SANT						
THE TALK TALKAR PAGE NITE	īv	07028150	5.6	6					SANI		I		
	iv	07028100	7.9	Ő	ACHE	NUGA	OCH1		- onn I	JLRU			
	iv	07028050	11.9	ŏ									
	iv	07028000	13.3	ĭ	ACSA								
	īv	07027800	16.3	ò									
	iv	07027720	27.6	ŏ									
	iii	07027680	33.7	8	ACSA	CACA	FRPF	JEIM 7	LIST	PL OC	ULAM	1	

	Bank evo-	- · · •		Number									
Stream	lution stage	Station <u>number</u>	River mile				Spec	ies g	ode				
Pond Creek	IV	07029080	1.1	2	ACSA	SANI							
, one of tex	iv	07029075	3.1	ī	SANI								
	iv	07029070	7.3	1	SANI								
、 ·	iv	07029060	11.4	•	SANI							•	*
Hatchie River	I	07030025	49.5	13			-		CELA	FOAC	LIST	PLOC	QULY
	Ī	07030000	68.4	13			QUFP			EOAC	QUPH	01.00	
	1	07030000	00.4	13			QUFP		LELA	FUAL	worn	FLOG	WOLI
		07020000	00.0	14					EOAC	EDDE	LIST		DDCE
	I	07029900	80.8	16							LISI	PLUC	PROE
				•					QUFP		~		
	I	07029650	121.1								QUNI		
	I	07029500	135.1	10	ACNE SANI	ACSA	BENI	CACA	FOAC	FRPE	LIST	PLOC	QUPH
	1	07029430	162.3	12		RENI	CACA	FRPE	LIST	NYAQ	PLOC	QULY	QUNI
	4	0/02/430	102.3			ULAM							
	I.	07029400	181.8	5				PLOC	ULAM				
		07000//F		•		AONE	40011	DENT		64 C 4	CANT		
Porter Creek	· V	07029445	1.5						LIST			~ ~ ~ ~ ~ ~	
	V	07029440	8.8	9							SACA	SANI	
	IV	07029439	11.2	8					PLOC		SANI		
	VI	07029438	13.9						PLOC				
	IV	07029437	17.1	6	ALSE	ACRU	BENI	PLOC	PODE	SANI			
Cub Creek	VI	07029450	1.5	12			BENI	CACA	COAM	FRPE	LIST	PLOC	PODE
						SAN I							
	VI	07029449	2.2	6	ALSE	ACNE	BENI	CACA	PODE	SANI			
	v	07029448	5.7	5	ALSE	BENI	CACA	SANI	ULAL				
	I۷	07029447	6.9	6	ALSE	ACRU	BENI	ULAL	ARSP				
				-									
Cane Creek	. IV.	. 4	3.6	8							PODE		
	IV	8	7.1	8						PRSE	RHGL	SANI	
· _	IV	12	10.2	5			PLOC						
· .	IV	j 16	12.6	9	ACNE	ACSA	FRPE	GLTR	MAPO	PODE	RHGL	ROPS	SAN
Wolf River	I۷	07031700	9.1	13			BENI		FRPE	GLTR	PLOC	PODE	QULI
	IV	07031650	18.9	8					GLTR	PLOC	SANI	ULAL	
	ĪV	07030610	23.6	6	ACNE	ACSA	BENI	PLOC	SACA	SANI			
	Ī	07030600	31.2	8	ACNE	ACRU	ACSA	BENI	CACA	PLOC	SANI	ULAM	I
	I	07030500	44.4	6					SACA				
	i	07030395	57.5	13							PODE	QULY	,
	•	5,050575					SACA						
,	I	07030392	69.9	9					QULY	QUNI	SACA	TADI	ULAN

Table 30.--Summary of woody species present at selected stream sites--Continued

- .

Standardized residuals as computed from contingency tables show species associations; positive and negative, for each of the 15 site categories. Positive associations are those with positive residual values, whereas negative associations are those with negative residual values. These values reflect species "preference" and "avoidance" patterns for the categorized site variables. Residual values between +1 and -1 are not considered particularly meaningful. A complete listing of all standardized residuals for 38 riparian species is given in table 31. Residual values for 12 selected species are graphically displayed in figure 55.

Black willow and river birch, the two most commonly occurring riparian species along disturbed reaches, tolerate moderate amounts of widening and accretion (fig. 55). Black willow in particular tolerates high accretion rates and is one of the few common species that does not have a positive association for very high cover (fig. 55). This suggests an important role in the initial stabilization of banks. However, after substantial cover occurs on the bank, closing canopies limit the continued dominance of black willow, due to its high light requirement (U.S. Department of Agriculture, 1965). River birch, a common pioneer, remains an important species after canopy closure (high and very high cover percentage, fig. 55) and is part of the suite of species along unmodified West Tennessee streams (Hatchie River; table 30).

Green ash and cottonwood are present in the early-to-middle stages of bank recovery. Both tolerate medium- or high-widening rates (fig. 55). Green ash is a shade-tolerant species (U.S. Department of Agriculture, 1965) with many of the same residual-value patterns of the "natural" species such as bald cypress and overcup oak (fig. 55). Cottonwood occurs in a wide range of environmental conditions, including sites with high-accretion rates like its relative, black willow (fig. 55). Cottonwood has no residual values with an absolute value much greater than 2; this suggests that its use as an indicator species is limited, with the possible exception of bank accretion.

Bald cypress and overcup oak characterize undisturbed banks or levees Hatchie River; table 30). Their residual-value patterns are strikingly similar (fig. 55). Water oak and American elm (fig. 55) are also "natural" bank or bottomland species. Note the rather striking associations (fig. 55) with only very high cover, very low widening, and low to medium accretion, with negative associations for all other site categories. This suggests rather "rigid" adaptations for stable sites, as opposed to the "elastic" adaptation pattern (large ecological amplitude) that appears to be characteristic of early- and mid-recovery species (pioneers). Thus the presence of these undisturbed site species indicate re-stabilized conditions associated with late stage V or VI. The dominant presence of species like black willow and river birch suggests previous channel-bank instability, mass wasting, and subsequent high-accretion rates associated with early- and mid-stage V. Absence or near absence of in situ woody plants indicates the general condition of bank instability associated with stage IV.

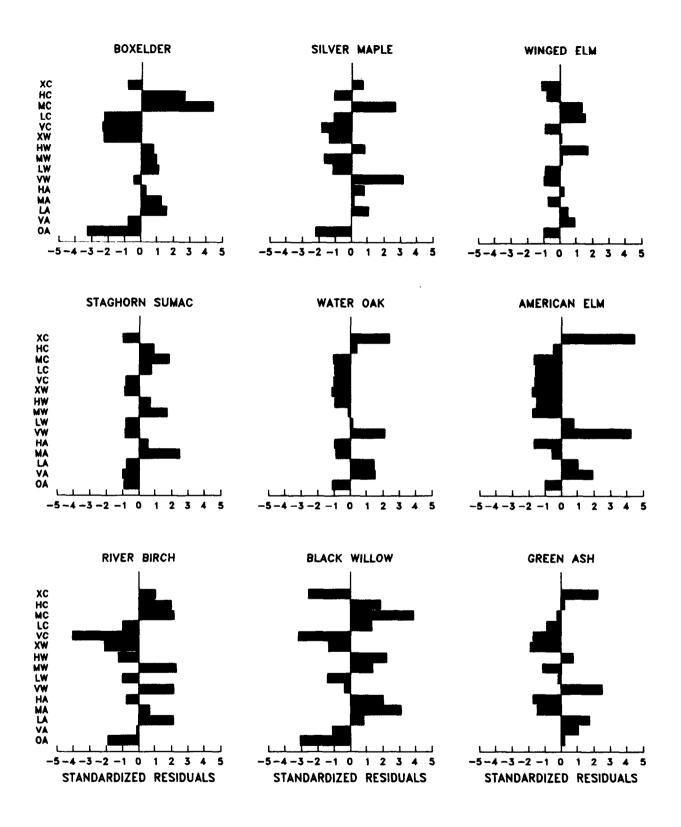
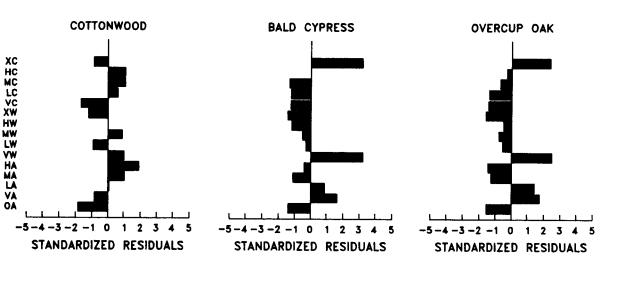



Figure 55.——Standardized residuals for each site—variable category showing site "preferences" for 12 selected riparian plants.

EXPLANATION

хс	VERY HIGH COVER
HC	HIGH COVER
MC	MEDIUM COVER
LC	LOW COVER
VC	VERY LOW COVER
XW	VERY HIGH WIDENING
HW	HIGH WIDENING
MW	MEDIUM WIDENING
LW	LOW WIDENING
VW	VERY LOW WIDENING
HA	HIGH ACCRETION
MA	MEDIUM ACCRETION
LA	LOW ACCRETION
VA	VERY LOW ACCRETION
OA	ZERO ACCRETION

Figure 55.——Standardized residuals for each site—variable category showing site "preferences" for 12 selected riparian plants——Continued.

Table 31.--Standardized residuals for species association of 38 woody riparian species by bank condition and vegetation cover [Quantitative definitions of widening, accretion, and cover are provided in table 23]

		Standardized residuals
(Dark constitution Vocatation cou
Species	30	
Code	Name	Very
		rence tow Low Medium High high Zero tow Low Medium High tow Low Medium High high
BENI	Betula nigra	2.14 -1.00 2.28 -1.26 -2.15 -1.89 -0.06 2.14 0.72 -0.76 -4.07 -1.00 2.14 1.99
SANI	Salix nigre	-3.11 -1.06 0.91 3.14 2.10 -3.26 1.36 3.84 1.90
ACSA	Acer saccharinum	-1.10 -1.66 0.84 -1.33 -2.17 0.02 1.13 0.19 0.86 -1.84 -1.10 2.71 -1.06
PLOC	Platanus occidentalis	1.64 -0.65 -3.36 -3.24 1.78
ACNE	Acer negundo	1.26 0.28 -2.49 -2.36 4.38 2.55 -
CACA	Carpinus caroliniana	19.40 3.21 0.90 -0.83 -1.82 -1.55 -0.83 1.11 1.25 -0.89 -0.61 -1.96 -1.20 -0.72 -0.10 3.25
LIST	Liquidambar styraciflua	
ALSE	Alnus semulata	0.44 -1.74 1.33 -0.39 2.74 -
FRPE	Fraxinus pennsylvanica	-0.89 -0.24 0.25
PODE	Populus deftoides	-1.84 -0.80 0.11 1.10 1.97 -1.72 0.63 1.09 1.10 -
ULAM	Ulmus americana	0.80 -1.74 -1.51 -1.80 -1.02 1.97 1.10 -0.50 -1.63 -1.63 -1.57 -1.69 -0.50
ACRU	Acer rubrum	-1.43 -0.97 -0.90 0.88 -0.49 1.45 -0.75 -1.54 0.16 -0.83 4.21 -
QULY	Quercus hyrata	1.82 1.48 -1.23 -1.45 -1.45 -1.40 -0.70 -0.27
SACA	Sambucus canadensis	-0.62 -1.45 -1.40 2.54 1.66 -
TADI	Texodium distichum	3.21 -0.26 -0.47 -1.17 -1.39 -1.35 1.67 0.94 -1.07 -0.33 -1.26 -1.22 -1.31 -0.01
NYAQ	Nyssa aquatica	1.70 0.94 -0.30 -1.08 -1.28 -1.24 1.17 1.18 -0.99 -0.16 -1.16 -1.12 -1.20 1.32
QUFP	Quercus falcata Var. pagodaefolia	1.18 -0.99 -1.16 -1.16 -1.12 -0.23 -0.99
ULRU	Ulmus rubra	2.29 -0.99 -1.16 -1.16 -0.09 2.67 -0.99 -
FOAC	Forestiera acuminata	3.12-1.01-1.13 0.19-1.16-1.13 1.53 0.27-0.89 0.03-1.05-1.01 -0.04-0.89
QUNI	Quercus nigra	1.48 -0.89 -1.05 -1.05 -1.01 -1.09 0.36
QUPH	Quercus phellos	0.11 -0.10 1.35 -1.16 -0.10 0.60 1.48 -0.89 -1.05 -1.05 -1.01 1.02 0.36
CACO	Carya cordiformis	-0.87 -1.03 0.14 0.94 0.51 -0.79 -0.94 -0.94 -0.90 -0.97 0.60
ULAL	Ulmus alata	0.14 1.71 0.08 -1.00 0.94 0.51 -0.79 0.27 -0.94 1.59 1.37 -0.79 -
CELA	Celtis laevigata	-0.68 -0.80 -0.80 -0.78 0.58 -0.68
QUBI	Quercus bicolor	-0.86 -0.75 -0.89 -0.86 1.40 0.82 -0.68 -0.80 -0.80 -0.78 -0.83 -0.68
RHGL	Rhus glabra	0.58 -0.80 0.78 1.85 0.92
GLTR	Gleditsia triacanthos	-0.68 -0.65 1.03 -0.65 -0.63 2.59 -0.55 -
INN	Juglans nigra	-0.72 0.89 -0.78 -0.58 -0.55 1.03 -0.65 -0.63 -0.68 -0.55
MAPO	Maclura pomifera	-0.55 2.71 -0.65 -0.63 0.96 -0.55
QURU	Quercus rubra	-0.58 -0.55 -0.65 -0.65 -0.63 -0.68 -0.55
TIHE	Tilia heterophylla	-0.60 -0.72 0.89 -0.78 -0.58 1.39 -0.66 -0.65 -0.63 -0.68 -0.55
ARSP	Aralia spinosa	1.74 -0.42 -0.51 -0.49 1.48 -0.41 -0.39 -0.46 -0.46 2.00 -0.47 -0.39 -
ASTR	Asimina triloba	-0.44 -0.47 -0.39
CEPO	Cephalanthus occidentalis	-0.49 -0.65 2.22 -0.39 -0.46 -0.46 -0.44 1.82 -0.39
COAM	Comus amomum	-0.44 1.74 -0.42 -0.51 -0.49 -0.55 -0.41 -0.39 1.90 -0.46 -0.44 -0.47 2.35
CRSP	Crataegus spp.	-0.49 -0.55 -0.41 2.35 -0.46 -0.46 -0.44 1.82 -0.39 -
PRSE	Prunus serotina	-0.44 -0.49 -0.42 -0.51 -0.49 -0.55 2.22 -0.39 -0.46 -0.46 -0.44 -0.47 -0.39 1.
ROPS	Robinia pseudoacacia	1, 29 -0,47 -0,44 -0,49 <u>2,10 -0,51 -0,49 1,48 -0,41 -0.39 -0,46 -0,46 -0,44 1,90 -0,39 -0,56</u>
	¹ Positive values denote preference	natterns: negative values denote avoidance
'.		huming include and a more action and and a familie and a second

4

are insignificant. ²Percentage of sites at which the indicated plant is present.

Winged elm (Ulmus alata) and staghorn sumac (Rhus glabra) are often found along reaches that have previously experienced severe degradation. These two species are not normally considered to be riparian plants and are mentioned here to illustrate how banks, now so high that their upper portions are above most fluvial activity can support upland species (fig. 55). Their low vegetative cover "preferences" and tolerance to substantial widening make these plants good indicators of bank-disturbance conditions that resemble upland mass-wasting conditions.

Silver maple (Acer saccarhinum) and boxelder (Acer negundo) are common along recovering reaches. Although these species are present in stable riparian forests, many banks in the later stages of recovery may support these two species singularly or in tandem to the near exclusion of other species. Boxelder and silver maple site-variable patterns (fig. 55) typify species characteristic of middle- to late-bank recovery.

Species Distribution--Six-Stage Model

Data on species presence and site characteristics can be placed within the framework of the bank-slope-development model (Simon and Hupp, 1986a; Simon, 1989). The remainder of this discussion on species presence will be presented in relation to this six-stage bank-slope-development model (table 4, and, figure 30).

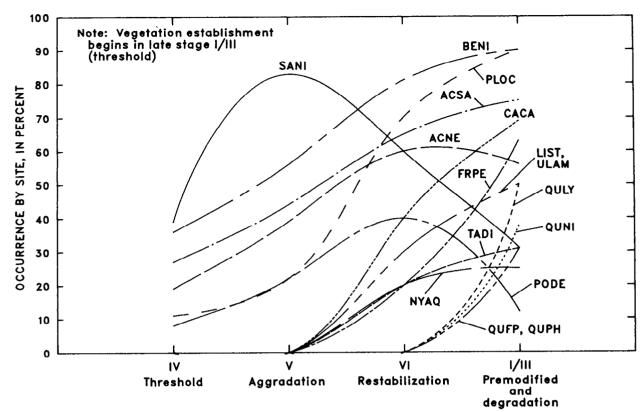
Species cover during stage I is always at or near 100 percent and the greatest number of species occurs here and along stage III reaches, which are vegetatively similar. Fourteen sites (table 30) were identified as stage I, principally along the Hatchie River and the upstream sites of the Wolf River. Stage I streams, in general, represent the "natural" geomorphic and botanical condition in West Tennessee. Stage II reaches are the constructed stage that have been recently straightened, dredged, and cleared of all woody-riparian vegetation. This stage is extremely short-lived; degradation or aggradation, depending on location in system, begins almost immediately.

Three sites are determined to be in stage III (table 30), although it undoubtedly exists in more areas not covered in our sampling scheme. Vegetatively, this stage resembles stage I areas, but geomorphically this stage is quite distinct. The banks are steeper and the channel bed has degraded considerably. This typically leaves mature riparian trees that were previously rooted at or below the low-water elevation, at mid-bank elevations now high and dry (fig. 56). Commonly a few trees have toppled into the channel. Imminent bank widening is apparent from the over-heightened and steepened banks and from the exposed and inclined old-tree bases and root systems. Vegetative-cover values drop dramatically as soon as mass wasting begins during stage IV.

Figure 56.——Upstream view of Davidson Creek near U.S. Highway 51; site is a typical reach during degradation stage (stage III).

Stage IV, the threshold stage, was investigated at 36 sites listed in table 30. The near absence of in situ vegetative cover is among the most striking characteristics of this stage. Vegetative cover values of approximately 20 percent represent maxima for this stage, and these values occur only in protected areas (typically on inside bends). Mean vegetative cover for this stage is just under 10 percent; 22 percent of the sites in stage IV are devoid of in situ woody plants. However, herbaceous species such as giant knotweed, cocklebur, and various grasses may form dense stands on these banks during the summer months. Such stands give the bank a falsely stable appearance. Reaches in late stage IV may support some of the early pioneer species in protected low-bank areas. The plants found here tolerate moderate amounts of bank instabilities and are present in low numbers. These numbers increase as widening subsides and low-bank areas of the reach move into stage V.

Stage V is the initial recovery stage. Eighteen sites were identified as stage V sites. This stage is characterized by relatively high accretion rates on the low- to mid-bank surfaces and relatively active widening on the vertical faces and upper bank. Mean vegetative cover for this stage is about


30 percent, and 6 percent of the sites lack in situ woody vegetation. There usually is less herbaceous vegetation here than in stage IV, owing to the high accretion rates and woody cover that may cause considerable shading. Black willow and river birch occur on more than 50 percent of these sites. Species richness increases in stage V. Mid-recovery species such as sycamore, green ash, cottonwood, and silver maple frequently invade areas adjacent to and upslope of the commonly dense thickets of black willow or river birch. All of these species tolerate relatively high accretion rates (fig. 55).

Stage VI reaches are largely recovered reaches with a meandering low-flow channel, relatively low banks, and tree-size vegetation occurring across the entire bank section down and into the low-flow channel. Ten sites were identified as stage VI; these are typically the most upstream sites and are the result of channel work at the turn of the century or in the 1940's. Species typical of stage I/III reaches begin to establish in stage VI including American elm (*Ulmus americana*), ironwood (*Carpinus caroliniana*), sweet gum (*Liquadambar styraciflua*), bald cypress (*Taxodium distichum*), and tupelo (*Nyssa aquatica*). Bottomland-oak species may be present on old levee surfaces, or areas of slightly higher elevations. Vegetative-cover values are at or near 100 percent at all sites. Outside bends suffer only from fluvial cutting, while inside bends are sites of point-bar development and subsequent vegetation establishment. Hydrologically, stage VI reaches can again have a prolonged hydroperiod (annual period of inundation) on the flood plains. The hydroperiod is often absent from this location along degraded reaches that are still recovering (stages III-V) because of increased channel capacity. The vegetation on stage VI reaches is not as mature or diverse as stage I. However, in all other aspects (vegetative, geomorphic, and hydrologic), stage VI reaches are basically recovered from channelization.

Vegetation Recovery and Life History

Patterns of vegetative recovery after channelization can be estimated, when considered in terms of the six-stage model. Vegetation-recovery patterns for 16 species are shown in figure 57 (table 29). Stage II has been omitted from figure 57 because all vegetation typically is removed. Stages I and III, being vegetatively similar, are placed at the end of the stage scale (fig. 57) as, given enough time, stage VI reaches will closely approach stage I reaches. If subsequent downstream channel work takes place, the degradation and recovery processes will begin again.

The initial species to colonize channelization-affected reaches are willow, river birch, silver maple, box elder, sycamore, and cottonwood (stage IV, fig. 57). Asexual reproduction by runners or cuttings is common in most of these species. In addition, these species grow rapidly and produce abundant seeds that are short-lived. Dispersal in these species is by wind, water, or both, and all disseminate their seeds in middle to late spring (Fowells, 1965; Harlow and Harrer, 1969). The timing of seed dispersal coincides with the typical decrease in water levels in late spring. Thus, seeds from these trees may be deposited on fresh bank substrates created by mass wasting, bank accretion, fluvial reworking,

STAGE OF CHANNEL EVOLUTION

EXPLANATION

SPECIES CODE AND SCIENTIFIC NAME

ACNE	ACER NEGUNDO
ACSA	ACER SACCHARINUM
BENI	BETULA NIGRA
CACA	CARPINUS CAROLINIANA
FRPE	FRAXINUS PENNSYLVANICA
LIST	LIQUIDAMBAR STYRACIFLUA
NYAQ	NYSSA AQUATICA
PLOC	PLATANUS OCCIDENTALIS
PODE	POPULUS DELTOIDES
QUFP	QUERCUS FALCATA
QULY	QUERCUS LYRATA
QUPH	QUERCUS PHELLOS
SANI	SALIX NIGRA
TADI	TAXODIUM DISTICHUM
ULAM	ULMUS AMERICANA

Figure 57.——Vegetation—recovery patterns for 16 species by stage of channel evolution. Percent of occurrence is the total number of sites where species was present relative to the total number of sites in a given stage. and late-spring exposure. The life-history characteristics of stage IV-V species make them particularly suited for establishment and growth along disturbed channels. If sites are relatively stable and accretion is not excessive, the successful establishment of these species is probable.

Variations in species patterns among stage IV-V sites may result from variations in the timing of water-elevation recession, rafting of viable seeds during high water, and the variability of seed release mechanisms among the individual species. The most successful pioneer species, black willow and river birch, are particularly tolerant of high accretion rates and shallow secondary sliding of accreted material, through layering and stem sprouting, respectively. Black willow and cottonwood (a related species) are the two species that reach maximums prior to stage I-III and have a substantial reduction of occurrence by stage I-III (fig. 57). These two species are probably limited by the low-light conditions of the subcanopy in mature "natural" riparian settings. All of the stage IV/V species are relatively short-lived and by stage VI, their dominance is substantially reduced due to sequential replacement by stable-site species (stage VI and I-III, fig. 57).

Stage I/III sites may have river birch present but the site may be a typical cypress-tupelo swamp, whereas an early stage V site may have river birch present to the near exclusion of all other species. Stage VI sites and some late stage V sites experience the gradual reduction of dominance by the "pioneer" species through the establishment of stable-site species (fig. 57). Thus, by stage I/III, two distinct suites of vegetation have become established, in addition to the initial suite in late stage IV (fig. 57). The second suite, which includes ironwood, green ash, sweetgum, American elm, bald cypress, and tupelo, is characteristic of southeastern bottomlands and represents the riparian plant community of relatively mature "natural" sites. All of these species, except sweetgum, are largely confined to bottomlands and have seeds that are dispersed by wind or water (Fowells, 1965). These plants have seeds that live up to 2 years as opposed to pioneer species whose seeds live only a few days to a week.

The last suite of vegetation includes the bottomland oaks, overcup oak, water oak, cherry bark oak (Q. falcata var. pagodaefolia), and willow oak (Q. phellos). Oaks produce heavy short-lived seeds that are normally animal-dispersed. The oaks tend to occur on natural and manmade levees, or on slightly elevated parts of the bottomland.

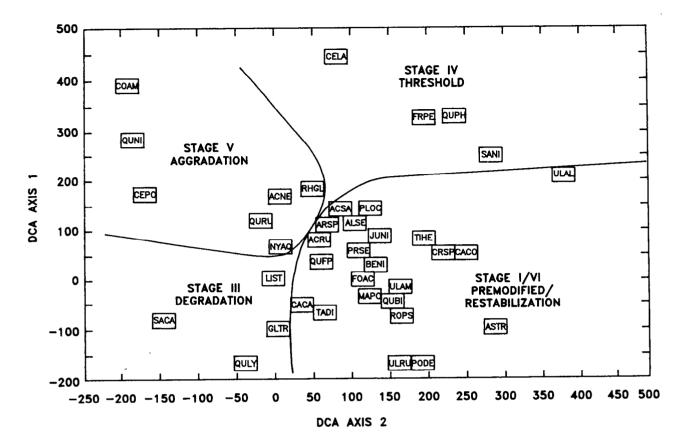
Thus, each of the three suites of tree species involved in vegetation recovery from channelization, have distinct life-history characteristics. The data suggest a trend from (1) fast-growing, short-lived trees with light, short-lived water- or wind-borne seeds, and a tolerance for bank disturbance and high-light conditions in the late stage IV and stage V part of bank recovery to, (2) long-lived, shade-tolerant trees with very specific growth requirements, long-lived water- or wind-borne seeds, and low tolerance to bank disturbance in stage VI to, (3) heavy-seeded, long-lived oak trees that share the bottomland with stage VI species after nearly complete ecologic and geomorphic recovery.

Perhaps the most important trend evident in figure 57 is the steadily increasing diversity of plants from stage IV to I/III. Species diversity has long been recognized to generally increase with physical site stability. Species-presence data by stage of bank-slope development are listed in table 32.

Table 32.--Indicator species and percent presence for threshold (stage IV), aggradation (stage V), and restabilization (stage VI) stages

Species	Species code	Presence in percent						
Species Tolerant of Bank-widening Disturbances (Late Stage IV Pioneers)								
Salix nigra	SANE	39						
Betula nigra	BENI	36						
Acer negundo	ACNE	19						
Acer saccharinum	ACSA	17						
Platanus occidentalis	PLOC	11						
Populus deltoides	PODE	8						
Alnus serrulata Unvegetated	ALSE	8 22						
Unvegetated		22						
Species Tolera (St	nt of High Deposition Rat age V Pioneers)	es						
• - •	SANI	83						
Salix nigra	BENI	56 56						
Betula nigra	ACSA	50 44						
Acer saccharinum	ACSA	39						
Acer negundo Sambucus canadensis	SACA	23						
Platanus occidentalis	PLOC	33 22						
Populus deltoides	PODE	22						
Alnus serrulata	ALSE	17						
Unvegetated	ALGE	6						
Recover	ry Species (Stage VI)							
Acer saccharinum	ACRE	65						
Betula nigra	BENI	90						
Plantanuss occidentalis	PLOC	70						
Acer negundo	ACNE	60						
Salix nigra	SANI	60						
Alnus serrulata ¹	ALSE	50						
Populus Deltoides	PODE	40						
Carpinús caroliniana	CACA	40						
Acer Rubrum	ACRU	30 30						
Liquidambar styraciflua	LIST ULAM	30 30						
Ulmus americana Betula Nigra	BENI	20						
	NYAQ	20						
Nyssa aquatica Taxodium Distichum	TADI	20						
Fraxunus pennsylvanica	FRPE	20						
Unvegetated	FAFE	20						

¹Only on sand/gravel bedded streams.


Species Ordination

Ordination is a type of multivariate analysis that examines numerous variables simultaneously. Ordination allows for the classification of vegetation data, in this case frequency data converted to standardized residuals (table 31). This classification is based entirely on species-presence data, apart from environmental data, leaving environmental interpretation to a subsequent, independent step (Gauch, 1982). The result of ordination is a two-dimensional array such that the spatial arrangement of species, or site variables, places similar species or sites close by and dissimilar ones far apart.

Both the species and site ordinations were performed using the computer program DECORANA (Hill and Gauch, 1980)--a detrended correspondence analysis (DCA). Results of the species ordination are shown in figure 58; the site ordination is shown in figure 59. In both, the entities are spread across two multivariate axes. The distance between entities can be considered analogous to "ecological distance." For example, very high cover (XC) and very low widening (VW) group closely together (fig. 59) and, conversely, this group is ecologically distant from very low cover (VC) and very high widening (XW).

The ordination of species shows clusters of species in groups (fig. 58). Inspection of the pattern (fig. 58) allows for each group to be independently associated with a particular stage of bank-slope development. The boundary lines are placed on figure 58 on the basis of computed residual values for each species. DCA axis-1 is largely one of stability, and the second axis is largely one of time since disturbance, or pioneer versus mature (figs. 58, 59). The stage IV clusters of species, largely disturbance-associated plants, are easily separated from the other stage clusters. However, the separation between stage V and stage VI is largely one of interpretation, as would be expected. The difference between stage V and stage VI may be thought of as an environmental gradient beginning with stabilizing but relatively active banks, through to stable natural-bank conditions. Thus, a stability gradient is revealed in figure 59 with the upper left corner the most unstable, and the lower right corner, the most stable.

The environmental gradients are perhaps better revealed in the site-variable ordination (fig. 59). The same general bank-slope-development stage pattern is also shown for the species ordination. The site variables can be associated with the various stages of bank-slope development (fig. 59). This ordination reflects the geomorphic processes and characteristics outlined in the bank-slope-development model. Site conditions naturally cluster in groups that can be identified with specific stages of the model. Thus, the ordination of species-presence data supports the conceptual framework of the bank-slope-development and channel evolution models; and indicates that patterns of species distribution may be used to infer levels of ambient bank stability.

EXPLANATION SPECIES CODE AND SCIENTIFIC NAME

TICA
CCIDENTALIS
LTOIDES
OTINA
COLOR
LCATA
RATA
GRA
IELLOS
JBRA
A
UDOACACIA
CANADENSIS
ISTICHUM
OPHYLLA
A
RICANA
RA

Figure 58.——Results of species ordination from detrended correspondence analysis (DCA). (Axes 1 and 2 are the first two principal components.)

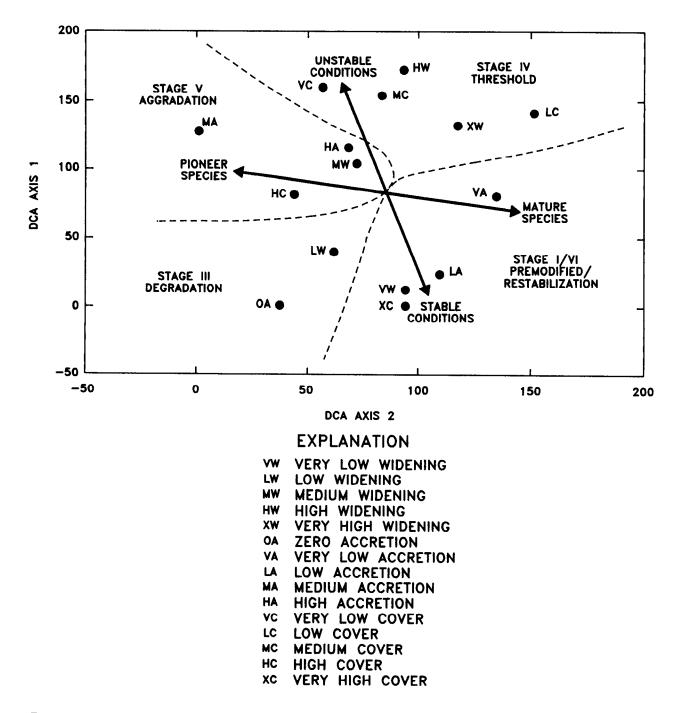


Figure 59.——Results of site—variable ordination from detrended correspondence analysis (DCA). (Axes 1 and 2 are the first two principal components.)

SUMMARY AND CONCLUSIONS

Dredging and straightening of alluvial channels in West Tennessee has caused significant adjustments in channel plan and profile. The removal of riparian vegetation during channel construction, and subsequent episodes of bank widening, resulted in increased streamflow velocities through a reduction in channel roughness. An interdisciplinary approach including geomorphology, soil mechanics and slope stability, dendrochronology, and plant ecology was used to determine geomorphic and vegetative-recovery processes along adjusting stream systems during the course of channel evolution.

A model of channel evolution was used to differentiate varying process-response mechanisms over the course of fluvial adjustment. Stage I, the premodified condition, is followed by the construction phase (stage II) where vegetation is removed, the channel deepened, and channel gradients and bank slopes steepened. Degradation (stage III) follows and is characterized by an increase in bank heights and angles until critical conditions of the bank material are exceeded, and the banks fail by mass-wasting processes (stage IV). Aggradation begins in stage V, and low-bank stability is achieved through a reduction in bank heights and bank angles. Stage VI (restabilization) is characterized by the relative migration of bank stability upslope (as determined by establishing woody-riparian species), point-bar development, and incipient meandering.

A quantitative model of bed-level adjustment over time and space was used to estimate amounts of bed degradation and aggradation at 5-year intervals, into the next century. A power equation relating channel-bed elevation to time used the exponent "b" as the primary indicator in describing the magnitude of channel bed-level changes. Maximum amounts of change occurred in reaches in the vicinity of the area of maximum disturbance (greatest imposed gradient change) and decreased nonlinearly with distance upstream. Aggradation took place downstream of this area of maximum disturbance, with the greatest rates occurring near stream mouths. Following a 10- to 15-year period of degradation, "secondary aggradation" occurred due to excessive incision and gradient reduction.

Channel-bank instabilities were induced by incision and undercutting of the bank toe, and resulted in channel widening by mass-wasting processes. Common failure types included rotational, planar, slab, and "pop out" (due to excess pore-water pressure). Failures generally occurred during or after recession of river stage due to bank saturation and the loss of support afforded by the flowing water (rapid drawdown condition). Highly degraded reaches, such as along Cane Creek, widened rapidly--up to 16 ft/y.

Drained shear-strength determinations were done on bank materials using a borehole-shear-test device that provides information on cohesion and the angle of internal friction of the material. Mean values of cohesion and the angle of internal friction for the loess-derived alluvium were 1.26 pounds per square inch and 30.1 degrees, respectively (168 tests). These direct-shear measurements were then used to calculate factors of safety and to construct bank-stability charts. Planar failures were found to be more critical in most cases, but rotational failures tended to produce higher rates of channel widening. An approximate threshold factor of safety of 2.0 was determined, indicating that for stream banks of loess-derived alluvium, the factor of safety of 1.50 commonly used in channel design, may be marginal. Factors of safety varied as expected with the stages of channel evolution. Critical bank conditions calculated for each site over a range of bank heights and bank angles were used to develop

slope-stability charts for the purpose of assessing the relative bank stability of sites. These were based on ambient-field and saturated-bank conditions.

A nomograph was developed for the purpose of determining stable-bank configurations for worst-case conditions (saturation during rapid drawdown) at given cohesive strengths. Potential bank instabilities can also be estimated by using the nomograph and by noting possible changes in bank height as a result of channel-bed degradation.

Rates and amounts of channel widening calculated using dendrogeomorphic, soil mechanics, and survey techniques compared closely with each other. These values differed by the amount of channel-bed degradation, the strength of the bank materials, and the degree of fluvial undercutting (pronounced if on outside bends). Projections of future channel widening were based on the extension of a "temporary angle of stability" upslope, until it intersects the flood-plain surface. Estimates of further top-bank widening were then made by subtracting the distance between this point and the present top-bank edge. Initial stable-bank configurations were estimated from temporary angles of bank stability; obtained independently by soil mechanics, and dendrogeomorphic techniques. The two values were 23 and 24 degrees, respectively.

Estimates of long-term width/depth ratios for the loess tributary streams and for the sand-bed streams after 40 years of adjustment range from 4.0 to 6.4, and from 6.8 to 11.4, respectively. After 115 years of adjustment, estimated width-depth ratios for the fine-grained channels range from 4.3 to 6.8, and for the sand-bed channels, from 7.4 to 13.1. These estimates (with their inherent uncertainties) were determined from estimates of channel bed-level changes (from the power equation), and from estimates of projected channel widening. A 10- to 15-year period of degradation, followed by either 25 or 100 years of aggradation was assumed for each site.

Data from dendrogeomorphic and plant-ecologic analyses described trends of channel response and recovery. Patterns of riparian-species distributions are strongly associated with the stages of channel evolution. Vegetation re-establishment during late stage IV and stage V indicates ameliorating bank conditions and the inception of low-bank stability. The most common pioneer species in this study were black willow, river birch, silver maple, and boxelder. Dating of these species was used to determine the timing of initial bank stability. Stages I and III had the most diverse riparian species; stage IV banks often had no woody species due to the highly unstable nature of the channel banks.

Contingency-table and standardized-residual analyses indicated species "preference" or "avoidance" for particular site characteristics such as widening, accretion, and woody vegetative cover. Distinct differences exist between pioneer and mature species for specific site characteristics. This indicates that vegetative reconnaissance of an area can be used for at least preliminary estimation of bank-stability conditions.

Detrended-correspondence analysis displayed vegetation patterns and delineated species assemblages associated with the six stages of channel evolution. Ordination of site variables (channel widening, bank accretion and woody vegetative cover) based on species data alone reflected the hydrogeomorphic characteristics of the six-stage model of channel evolution. Site conditions clustered in groups that can be identified with specific stages of the model. This analysis supports the conceptual framework of the channel-evolution model, and it indicates that patterns of species distribution can be used to infer ambient channel stability.

SELECTED REFERENCES

- Alexander, David, 1981, Threshold of critical power in streams: Discussion and reply: Geological Society of America Bulletin, part 1, v. 92, p. 310-12.
- Ashley, G.H., 1910, Drainage problems in Tennessee: Tennessee State Geological Survey Bulletin 3-A, p. 1-15.
- Begin, Z.B., Meyer, D.F., and Schumm, S.A., 1981, Development of longitudinal profiles of alluvial channels in response to base-level lowering: Earth Surface Processes and Land Forms, v. 6, p. 49-68.
- Bishop, A.W., and Bjerrum, L., 1960, The relevance of the triaxial test to the solution of stability problems, in Resource Conference on the Shear Strength of Cohesive Soils, Proceedings: American Society of Civil Engineers, p. 437-501.
- Blench, T., 1973, Factors controlling size, form and slope of stream channels, in Fluvial processes and sedimentation: Hydrology symposium, 9th, Edmonton, Canada, 1973, Proceedings, p. 421-439.
- Bradford, J.M., and Piest, R.F., 1980, Erosional development of valley-bottom gullies in the upper Midwestern United States, in Coates, D.R., and Vitek, J.D., eds., Thresholds in geomorphology: Boston, George Allen and Unwin, p. 75-101.
- Bragg, T.B., and Tatschi, A.K., 1977, Changes in flood-plain vegetation and land use along the Missouri River from 1826-1972: Environmental Management, v. 1, no. 4, p. 343-348.
- Bull, W.B., 1979, Threshold of critical power in streams: Geological Society of America Bulletin, part 1, v. 90, p. 453-464.
- Cairns, John, Jr., 1980, The recovery process in damaged ecosystems: Ann Arbor, Ann Arbor Science Publishers, Inc., 167 p.
- Carson, M.A., and Kirkby, M.J., 1972, Hillslope form and process: London, Cambridge University Press, 475 p.
- Chen, W.F., 1975, Limit analysis and soil plasticity: New York, Elsevier Scientific Publishing Co., p. 638.
- Cleaveland, M.K., 1980, Dating tree rings in Eastern United States. Dendrology in the Eastern Deciduous Forest Biome: Blacksburg, Virginia, Proceedings: Virginia Polytech Institute State University, Publication no. FWS-2-80, p. 110-124.
- Cowles, H.C., 1901, The physiographic ecology of Chicago and vicinity; a study of the origin, development and classification of plant societies: Botanical Gazette, v. 31, no. 2, p. 73-182.
- Daniels, R.B., 1960, Entrenchment of the Willow Drainage Ditch, Harrison County, Iowa: American Journal of Science, v. 258, p. 161-176.
- Davis, W.M., 1905, Complications of the geographical cycle: Report of the 8th Geographical Congress 1904, p. 150-163.
- Emerson, J.W., 1971, Channelization, a case study: Science, v. 173, p. 325-326.
- Everitt, B.L., 1968, Use of cottonwood in an investigation of the recent history of a floodplain: American Journal of Science, v. 266, p. 417-439.
- Fenneman, N.M., 1938, Physiography of Eastern United States: New York, McGraw-Hill, 714 p.
- Fowells, H.A., 1965, Silvics of forest trees of the United States: Washington D.C., U.S. Department of Agriculture, 762 p.
- Gauch, H.G., 1982, Multivariate analysis in community ecology: Cambridge, U.K., Cambridge University Press, 298 p.

- Gauch, H.G., Whittaker, R.H., and Wentworth, T.R., 1977, A comparative study of reciprocal averaging and other ordination techniques: Journal of Ecology, v. 65, p. 157-174.
- Gilbert, G.K., 1880, Report on the geology of the Henry Mountains (2d ed.), Geographical and Geological Survey of the Rocky Mountain Region: Washington, U.S. Government Printing Office, 170 p.
- Gleason, H.A., 1926, The individualistic concept of the plant association: New York Botanical Garden Control 279, Bulletin of the Torrey Botanical Club, v. 53, p. 7-26.
- Graf, W.L., 1977, The rate law in fluvial geomorphology: American Journal of Science, v. 277, p. 178-191.
- Grissinger, E.H., 1982, Bank erosion of cohesive materials in gravel-bed rivers, in Hey, R.D., Bathhurst, J.C., and Thorne, C.R., eds., Gravel-Bed Rivers: Fluvial Processes, Engineering and Management: New York, John Wiley, p. 273-287.
- Haberman, S.J., 1973, The analysis of residuals in cross-classified tables: Biometrics, v. 29, p. 205-220.
- Hack, J.T., 1960, Interpretation of erosional topography in humid temperate regions: American Journal of Science, v. 258-A, p. 80-97.
- Hack, J.T., and Goodlett, J.C., 1960, Geomorphology and forest ecology of a mountain region in the Central Appalachians: U.S. Geological Survey Professional Paper 347, 66 p.
- Handy, R.L., and Fox, J.S., 1967, A soil borehole direct-shear test device: Highway Research News, no. 27, p. 42-51.
- Harlow, W.M., and Harrer, E.S., 1969, Textbook of dendrochronolgy: New York, McGraw-Hill, 512 p.
- Harvey, M.D., Watson, C.C., and Schumm, S.A., 1983, Channelized streams: An analog for the effects of urbanization: International Symposium on Urban Hydrology, Hydraulics and Sediment Control, Lexington, Ky., University of Kentucky, 1983, Proceedings, p. 401-409.
- Hey, R.D., 1979, Dynamic process-response model of river channel development: Earth Surfaces Processes, v. 4, p. 592-72.
- Hidinger, L.L., and Morgan, A.E., 1912, Drainage problems of Wolf, Hatchie and South Fork of Forked Deer Rivers, in West Tennessee, in The Resources of Tennessee: Tennessee Geological Survey, v. 2, no. 6, p. 231-249.
- Hill, M.O., 1979, DECORANA a FORTRAN program for detrended correspondence analysis and reciprocal averaging: Ithaca, New York, Cornell University, Section of Ecology and Systematics.
- Hill, M.O., and Gauch, H.G., 1980, Detrended correspondence analysis: an improved ordination technique: Vegetatio, v. 42, p. 47-58.
- Huang, Y.H., 1983, Stability analysis of earth slopes: New York, Van Nostrand Reinhold Company, 305 p.
- Hupp, C.R., 1983, Geobotanical evidence of late Quaternary mass wasting in block field areas of Virginia: Earth Surface Processes and Landforms, v. 8, p. 439-450.
- ----- 1984, Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California: Environmental Geology and Water Sciences, v. 6, p. 121-128.
- ---- 1986, The headword extent of fluvial landforms and associated vegetation on Massanutten Mountain, Virginia: Earth Surface Processes and Landforms, v. 11, p. 545-555.

- ----- 1987, Determination of bank widening and accretion rates and vegetation recovery along modified West Tennessee streams, *in* International Symposium on Ecological Aspects of Tree Ring Analysis, New York, 1986, Proceedings: Department of Energy, CONF-8608144, p. 224-233.
- ----- 1988, Plant ecological aspects of flood geomorphology and paleoflood history, in Baker, V.C., Kochel, R.C., Patton, P.C., eds. Flood geomorphology: New York, John Wiley, p. 335-356.
- Hupp, C.R., and Osterkamp, W.R., 1985, Bottomland vegetation distribution along Passage Creek, Virginia, in relation to fluvial landforms: Ecology, v. 66, no. 3, p. 670-681.
- Hupp, C.R., and Simon, Andrew, 1986, Vegetation and bank-slope development: Interagency Sedimentation Conference, 4th, Las Vegas, Nevada, 1986, Proceedings, p. 83-92.
- ----- 1991, Bank accretion and the development of depositional surfaces along modified alluvial channels: Geomorphology (in press).
- Hurleburt, S.H., 1969, A coefficient of inter-specific association: Ecology, v. 50, p. 1-9.
- Jackson, L.E., 1977, Dating and recurrence frequency of prehistoric mudflows near Big Sur, Monterey County, California: Journal of Research of the U.S. Geological Survey, v. 5, no. 1, p. 17-32.
- LaMarche, V.C., Jr., 1968, Rates of slope degradation as determined from botanical evidence, White Mountains, California: U.S. Geological Survey Professional Paper 352-I, p. 341-377.
- Lambrechts, J.R., and Rixner, J.J., 1981, Comparison of shear strength values derived from laboratory triaxial, borehole shear, and cone penetration tests: *in* Laboratory Shear Strength of Soil: American Society of Testing Materials, Special Publication, no. 740, p. 551-565.
- Lane, E.W., 1955, The importance of fluvial morphology in hydraulic engineering: American Society of Civil Engineering Proceedings, 1955, v. 81, no. 795, p. 1-17.
- Little, W.C., Thorne, C.R., and Murphey, J.B., 1982, Mass bank failure analysis of selected Yazoo Basin streams: American Society of Agricultural Engineers Transactions, v. 25, no. 5, p. 1321-1328.
- Lohnes, R.A., and Handy, R.L., 1968, Slope angles in friable loess: Journal of Geology, v. 76, no. 3, p. 247-258.
- Luttenegger, A.J., 1987, Suggested method for performing the borehole shear test: Geotechnical Testing Journal, GTJODC, v. 10, p. 19-25.
- Luttenegger, J.A., and Hallberg, B.R., 1981, Borehole shear test in geotechnical investigations: American Society of Testing Materials Special Technical Publication no. 740, p. 566-578.
- Lutton, R.J., 1974, Use of loess soil for modeling rock mechanics: Vicksburg, U.S. Army Corps of Engineers Waterways Experiment Station, Reports S-74-28.
- Mackin, J.H., 1948, Concept of a graded river: Geological Society of America Bulletin, v. 59, p. 463-511.
- Maddox, R.S., 1915, West Tennessee gullied lands and their reclamation, in The Resources of Tennessee: Tennessee State Geological Survey, v. 5, no. 1, p. 8-22.
- McCall, J.D., and Knox, R.F., 1978, Riparian habitat in channelization projects: National Symposium on Strategies for Protection and Management of Floodplain Wetlands and Other Riparian Ecosystems, Proceedings, p. 125-128.
- Miller, N.A., 1985, A vegetation-habitat study along a portion of the North Fork Forked Deer River in West Tennessee: Journal of the Tennessee Academy of Science, v. 60, no. 2, p. 51-56.

- Miller, R.A., Hardeman, W.D., and Fullerton, D.S., 1966, Geologic map of Tennessee, west sheet: Tennessee Division of Geology, scale 1:250,000, 1 sheet.
- Morgan, A.E., and McCrory, S.H., 1910, Drainage of the lands overflowed by the North and Middle Forks of the Forked Deer River, and the Rutherford Fork of the Obion River in Gibson County, Tennessee: Tennessee State Geological Survey Bulletin 3-B, p. 17-43.
- Osterkamp, W.R., and Costa, J.E., 1987, Channel changes accompanying an extraordinary flood on a sand-bed stream, *in* Mayer, L., and Nash, D., Catastrophic flooding, Binghamton Geomorphology Symposium, 18th: Oxford, Ohio, Allen and Unwin.
- Parker, G., and Andres, D., 1976, Detrimental effects of river channelization, in Rivers 76: Conference of the American Society of Civil Engineers, Fort Collins, Colorado, August 1976, p. 1248-1266.
- Phipps, R.L., 1985, Collecting, preparing, cross-dating, and measuring tree increment cores: U.S. Geological Survey Water-Resources Investigations Report 85-4148, 48 p.
- Radford, A.E., Ahles, H.E., and Bell, C.R., 1968, Manual of the vascular flora of the Carolinas: Chapel Hill, North Carolina, University of North Carolina Press, 1183 p.
- Ramser, C.E., 1930, Erosion and silting of dredged drainage ditches: U.S. Department of Agriculture Technical Bulletin no. 184, 55 p.
- Reily, P.W., and Johnson, W.C., 1982, The effects of altered hydrologic regime on tree growth along the Missouri River in North Dakota: Canadian Journal at Botany, v. 60, no. 11, p. 2410-2423.
- Reineck, H.E., and Singh, I.B., 1975, Depositional sedimentary environments: New York, Springer-Verlag, 439 p.
- Robbins, C.H., and Simon, Andrew, 1983, Man-induced channel adjustment in Tennessee streams: U.S. Geological Survey Water-Resources Investigations Report 82-4098, 129 p.
- Rubey, W.W., 1933, Equilibrium conditions in debris-laden streams: American Geophysical Union, Transactions, p. 497-505.
- Ruhe, R.V., 1970, Stream regimen and man's manipulation, in Coates, D.R., ed., Environmental Geomorphology: Geomorphology Symposium, 1st, Binghamton, New York, 1970, Proceedings: Binghamton, New York, University of New York at Binghamton, Publications in Geomorphology, p. 9-23.
- Schumm, S.A., 1960, The shape of alluvial channels in relation to sediment type: U.S. Geological Survey Professional Paper, 352B, p. 17-30.
- ---- 1973, Geomorphic thresholds and the complex response of drainage systems, in Morisawa, M., ed., Fluvial Geomorphology: Binghamton, State University of New York, Publications in Geomorphology, p. 229-310.
- Schumm, S.A., Harvey, M.D. and Watson, C.C., 1984, Incised channels morphology, dynamics, and control: Littleton, Colo., Water Resources Publications, 200 p.
- Schumm, S.A., and Lichty, R.W., 1965, Time, space, and causality in geomorphology: American Journal of Science, v. 263, p. 110-119.
- Schumm, S.A., and Parker, R.S., 1973, Implications of complex response of drainage systems for Quaternary alluvial stratigraphy: Nature (Physical Science) v. 237, p. 75-76.
- Shields, F.D., Jr., and Nunnally, N.R., 1985, Environmental aspects of clearing and snagging: Journal of Environmental Engineering, v. 110, no. 1, p. 152-165.

- Shroder, J.F., Jr., 1978, Dendrogeomorphological analysis of mass movement of Table Cliffs Plateau, Utah: Quaternary Research, v. 9, p. 168-185.
- ----- 1980, Dendrogeomorphology: Review and new techniques in tree-ring dating: Progress in Physical Geography, v. 4, p. 161-188.
- Sidle, R.C., Pearce, A.J., and O'Loughlin, C.L., 1985, Hillslope stability and land use: Washington, American Geophysics Union, Geophysical Monogram no. 11 (Water Resources), 140 p.
- Sigafoos, R.S., 1961, Vegetation in relation to flood frequency near Washington, DC.: U.S. Geological Survey Professional Paper 424-C, p. 248-249.
- ----- 1964, Botanical evidence of floods and flood-plain deposition: U.S. Geological Survey Professional Paper 485-A, 35 p.
- Simon, Andrew, 1989, A model of channel response in disturbed alluvial channels: Earth Surface Processes and Landforms, v. 14, p. 11-26.
- ----- in press, Gradation processes and channel evolution in modified streams: Process, response, and form: U.S. Geological Survey Professional Paper 1470.
- Simon, Andrew, and Hupp, C.R., 1986a, Channel evolution in modified Tennessee channels: Federal Interagency Sedimentation Conference, 4th, Las Vegas, Nevada, 1986, Proceedings, v. 2, p. 5-71 to 5-82.
- ----- 1986b, Channel widening characteristics and bank slope development along a reach of Cane Creek, West Tennessee, in Subitzky, Seymour, ed., Selected papers in the hydrologic sciences: U.S. Geological Survey Water-Supply Paper 2290, p. 113-126.
- ----- 1987, Geomorphic and vegetative recovery processes along modified Tennessee streams: An interdisciplinary approach to disturbed fluvial systems: International Association of Scientific Hydrology, Special Publication no. 167, p. 251-262.
- Simon, Andrew, and Robbins, C.H., 1987, Man-induced gradient adjustment of the South Fork Forked Deer River, West Tennessee: Environmental Geology and Water Sciences, v. 9, no. 2, p. 109-118.
- Skempton, A.W., 1953, Soil mechanics in relation to geology: Proceedings of Yorkshire Geological Society, v. 29, p. 33-62.
- Speer, P.R., Perry, W.J., McCabe, J.A., Lara, O.G., and others, 1965, Low-flow characteristics of streams in the Mississippi embayment in Tennessee, Kentucky, and Illinois, with a section on Quality of water, by H.G. Jeffery: U.S. Geological Survey Professional Paper 448-H, 36 p.
- Strahler, A.H., 1978, Binary discriminant analysis: A new method for investigation species-environment relationships: Ecology, v. 59, no. 1, p. 108-116.
- Thorne, C.R., Murphey, J.B., and Little, W.C., 1981, Stream channel stability, Appendix D, Bank stability and bank material properties in the bluffline streams of northwest Mississippi: Oxford Mississippi, U.S. Department of Agriculture Sedimentation Laboratory, 257 p.
- Thorne, C. R., and Osman, A.M., 1988, The influence of bank stability on regime geometry of natural channels: in W.R. White (ed.), International Conference on River Regime: Chichester, John Wiley and Sons, p. 135-147.
- U.S. Army Corps of Engineers, 1907, Index map of the South Fork of Forked Deer River, Tennessee from Jackson to the mouth: Nashville, Tennessee, Tennessee State Archives, scale 1:48,000, 1 sheet.
- U.S. Bureau of Reclamation, 1973, Design of small dams (2d ed): Washington D.C., U.S. Government Printing Office.

U.S. Department of Agriculture, 1965, Silvics of Forest Trees of the United States: Agriculture Handbook No. 271, 762 p.

- White, P.S., 1979, Pattern, process and natural disturbance in vegetation: Botanical Review, v. 45, p. 229-299.
- Williams, G.P., and Wolman, M.G., 1984, Downstream effects of dams on alluvial rivers: U.S. Geological Survey Professional Paper 1286, 83 p.
- Wilson, K.V., 1979, Changes in channel characteristics, 1938-1974, of the Homochitto River and tributaries, Mississippi: U.S. Geological Survey Open-File Report 79-554, 18 p.
- Wineland, J.D., 1975, Borehole shear device: Proceedings, American Society of Civil Engineers, In Situ Measurement of Soil Properties, v. 1, p. 511-522.
- Yang, C.T., 1976, Minimum unit stream power and fluvial hydraulics: American Society of Civil Engineers, Journal of the Hydraulics Division, v. 102, no. HY7, p. 919-934.
- Zimmermann, R.C., and Thom, B.G., 1982, Physiographic plant geography: Progress in Physical Geography, v. 6, p. 45-59.

^{----- 1980,} Summary report final: Obion-Forked Deer River Basin Tennessee: Soil Conservation Service, 43 p.