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PREFACE

This report presents the results of cooperative work performed under collaboration
of researchers from the United States Geological Survey (USGS) at Menlo Park, U.S.A.
and those from the Urban Earthquake Hazard Research Center (UEHR), Disaster Preven-
tion Research Institute, Kyoto University, Japan. The collaboration was motivated by the
effects of the 1989 Loma Prieta earthquake on the San Francisco Bay area and its sur-
rounding regions. In particular, the site effects on ground motion and earthquake damage
caused thereby, thus demonstrate the importance of seismic mircrozonation.

As part of its comprehensive program of investigating the effects of the Loma Prieta
earthquake regarding urban earthquake hazard, UEHR decided to pursue a possibility of
studying the details of the site effects of the Loma Prieta earthquake for the purpose of
development of appropriate methodology for microzonation. The main issue here was to
verify a long-period microtremor technique that has been studied and developed at UEHR.

After several correspondences between the USGS group and the UEHR group includ-
ing a visit of H. Kameda at Menlo Park in January 1990, discussion was made regarding the
research subject and an appropriate form of collaboration. M. Celebi and R. D. Borcherdt
of USGS, and H. Kameda and J. Akamatsu of UEHR joined these arrangements. Through
this, a joint research program which eventually led to this report was established.

The immediate goal of the joint research was to make direct comparison of long-
period microtremor data with strong motion and aftershock recordings from the Loma
Prieta earthquake with emphasis on specific site and geological effects on soil amplification
of ground motions. The ultimate goal is to establish better and comprehensive understand-
ing of ground motions on a scientific basis as well as to make it contribute to significant
improvement of microzonation techniques for engineering purposes. It was thus agreed
that a UEHR team would visit the Bay area and perform long-period microtremor mea-
surements in cooperation with the USGS group. The location of these surveys were to be
carefully selected so that their results can be compared with those from the Loma Prieta
earthquake recordings to be provided by the USGS group.

The UEHR team performed the field activities for long-period microtremor measure-
ments during the period of May 14-June 5, 1990. M. Fujita, a co-author of this report,
joined the team and contributed also to the data analysis following it. N. Ichikawa took
an essential role during the field activities as a technical staff.

Analysis of obtained data was performed, and discussion of the results as well as the
development of joint reports continued. In the meantime, R. D. Borcherdt visited Kyoto,
and H. Kameda and J. Akamatsu visited Menlo Park for these arrangements.

This report has been accomplished as an output of the joint works which took place as
outlined above. A companion Open-File Report, identical except for some administrative
parts, will be published by USGS. It is hoped that these reports will contribute to the
development of the subject discussed herein as international cooperative efforts.
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1. INTRODUCTION

It has been widely recognized that local geology has significant effects on earthquake
ground motions and consequently on the earthquake damage in urban areas. This has
been experienced worldwide, including the United States and Japan. In the United States,
it was typically observed in the San Francisco Bay regions during the 1906 earthquake
(Borcherdt and Gibbs, 1976) and again during the 1989 Loma Prieta earthquake (Borcherdt
and Glassmoyer, 1990; Kameda, 1990). In Japanese major earthquakes that have damaged
urban regions including Tokyo (1923), Nagoya (1943), Niigata (1964), etc., the effects of
local geology have been a pronounced common factor of hazards (Okamoto, 1984). This
arises from complex geological conditions of these cities which are located on coastal soft
alluvial plains near large river mouths like many other Japanese big cities.

This notion of the problem has led to the development of seismic microzonation tech-
niques (Proceedings of 1982). Microzonation at present is a common tool for assessment of
seismic risk of urban regions, and has been implemented in the development of earthquake
preparedness by many local governments and municipal authorities both in the U.S. and
Japan (Scawthorn et al., 1984).

Despite the past tremendous developments, there are problem areas where further
progress is required in the field of microzonation. The main subject dealt with in this
work is related seismic microzonation in long-period ranges (1-10 s). This period range
has not so far been a major issue in the microzonation techniques. However, recent urban
developments require that these long-period ranges be incorporated in the microzonation
technique. Specifically, high-rise buildings, flexible long-span bridges, sloshing of liquid
fuels contained in storage tanks are involved in regard to this period range. In this period
range, it is generally understood that surface waves are the main carrier of the seismic
energy. It is recently suggested that Py waves can also contribute significantly to the
seismic motions in this period range.

Among various methodologies for microzonation, this study deals with application
of long-period microtremor measurements. Microtremor technique has been proposed for
use in microzonation for a long time (Kanai, 1961). Despite its simplicity in field survey
activities, its physical verification is still under controversy. The question arises mainly
regarding the ambiguities of source of excitation that causes microtremor, which makes it
difficult to make physical understanding in terms of wave propagation theory. This pre-
vents the technique from being used to establish a quantitative basis for evaluation of soil
amplification of ground motions during earthquakes. These shortcomings are particularly
pronounced in the range of period shorter than one second where the main excitation comes
from widespread artificial sources including road and highway traffic, industrial activities,
etc.

However, there is a higher possibility that the microtremor technique be a much more
promising method if attention is focused on a long-period range (larger than one second),
which, as indicated above, is of increasing engineering importance. It is known that the
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long-period microtremor consists of microseisms that are regarded as the site response of

the ground excited by natural sources including sea waves. This means that the site is

subject to a uniform excitation which enables one to make physical interpretation of the

measured microtremor. If simultaneous recordings are obtained on a soil site and on an

outcrop of basement rock, it will be possible to evaluate the spectral amplification of the

soil site on a quantitative basis. This idea has been proposed and practiced for application
f long-period microtremors to seismic microzonation (Kagami et al., 1982).

In attempts to apply the long-period microtremor technique to seismic microzoning,
it is very important to make calibration between the microtremor recordings and actual
earthquake recordings. Akamatsu (1991) made a comp rative study in this direction, and
demonstrated that soil amplification due to long-period microtremor agrees well with that
from the surface-wave phase of earthquake recordings. This lays a seismological basis of
long-period microtremor technique to be used for microzonation.

The primary objective of this study is an assessment of the effects of local geology
sing long-period microtremors and the 1989 Loma Prieta earthquake recordings. For this
purpose, the joint works have been conducted by the researchers from the USGS and Kyoto
University, whose research arrangements were described in detail in Preface. As indicated
in Preface also, the ultimate goal of this study is to establish better and comprehensive
understanding of earthquake ground motions on a scientific basis and to make it contribute
to significant improvement of microzonation technique for engineering purposes.

In the following part of this report, field survey actirvities and major findings from the
microtremor measurements in the areas affected by the Loma Prieta earthquake are de-
scribed (2.). Then the strong motion recordings and the effects of local geology are demon-
strated (3.). Similar results are presented by using the Loma Prieta aftershock records (4.).
On this basis, comparative observations of the results from long-period microtremor and
earthquake recordings, regarding frequency content, spectral site amplification, directivity
of site amplification, etc. (5.). Then major conclusions of this study are summarized (6.).

‘While every phase of this study was performed in close cooperation among the authors,
it will be a proper way to indicate the major contributor(s) of each section of this report
as follows:

Preface : H. Kameda

1. Introduction : H. Kameda

2. Long-period microtremor : J. Akamatsu and M. Fujita
measurements

3. Strong motion recordings from : R. P Borcherdt
the Loma Prieta earthquake ‘

4. Loma Prieta aftershock records : M. Celebi

5. Comparative observations of the : J. atsu and M. Fujita

results from long-period micro-



tremor and earthquake recordings

6. Conclusions : All Contributors
Appendix : J. Akamatsu and M. Fujita
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2. LONG-PERIOD MICROTREMOR MEASUREMENTS
2.1 Observation and Analysis

Long-period microtremors (>1 s), or microseisms, are considered to be mainly gener-
ated by sea-waves; their frequency contents at a site vary with time according to sea-wave
and weather conditions. Therefore, an estimation of ground effects on microseisms should
be based on simultaneous observations at ground sites and rock sites. Amplification factors
for microseisms were evaluated with spectral ratios of ground sites to rock sites taken as
reference sites.

Observation systems are 3-component velocity seismograms with 14-bit digital recorders.
Natural periods of the seismometers are 10 s (PELS-76, 190 v/m/s) for ground sites and
1 s (PK-101, 260 v/m/s) for reference sites. To suppress artificial (mainly traffic) high-
frequency noises, a set of low-pass filters with cut-off frequencies of 1, 3 and 10 Hz were used
according to noise condition. Sensitivity and reliability of the two systems were checked
through simultaneous recordings at the reference sites (see Figs. A.1, A.15, and A.21). At
ground sites, seismometers were set on the pavement of the sidewalk, covered with carton
boxes and sand bags to prevent local winds.

All recordings were made for 11 min. with 50 Hz sampling; however, only 164 s
intervals with good artificial noise conditions were analyzed. Analyzing procedures are as
follows:

(1) selection of analyzing intervals,

(2) instrumental correction to obtain velocity seismograms of 0.1-3 Hz band,
(3) rotation of horizontal components to get proper direction of motions,

(4) calculation of amplitude spectra with F.F.T. and their ratio.

Instrumental corrections were achieved with Z-transform in the time domain (Morii and
Nishimura, 1986). The horizontal components were rotated to the direction parallel and
normal to the major structural line, such as the long axis of the bay, to examine the
directional characteristics in soil amplifications depending on the configuration of bedrock.
Spectra were obtained with a 10% cosine taper and triangular smoothing weight of 25
points.

2.2 Site Locations

Peninsula cities—In the bay area, the general trend of geological division is parallel
to the long axis of the bay. We set the measuring line perpendicular to the trend, from
a hillside in San Mateo to the bay coast in Foster City with 14 sites, including 4 strong-
motion sites. Figure 2.1 shows the site locations, 3 sites on the Franciscan assemblage
(KJf), 3 sites on Quaternary alluvium (Qal) and 8 sites on artificial fill overlying bay mud
(Qm). BIS on unit KJf was used for the reference site. Table 2.1 lists the site locations,
surface geology and observational information.
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Santa Clara Valley—Observations were carried out at 6 sites across the Santa Clara
Valley from Los Altos Hills to Alum Rock, the eastern part of San Jose, as shown in
Figure 2.2. Table 2.2 lists the site locations, geology and observational information. Three
sites, SNV, AGN and SJI, on thick soil deposits (Qal) were set near the strong motion
sites. PAH is on Tertiary and Quaternary sedimentary rocks (QTs). ARP is located on
the bedrock (TMzs), on the opposite side of the valley. KIR was used for the reference
site. In analysis the data at ARP was also used for comparison.

Santa Cruz—Figure 2.3 shows the site locations and surface geology in the city of
Santa Cruz. The measuring line of 5 km long, consisting of 18 sites, covers the typical
geological setting: marine terrace deposits (Qm) and alluvium (Qal), across the heavily
damaged San Lorenzo river side area. 15 sites were lbcated at the same places as the
aftershock observation sites (King et al., 1990). The reference site is LOE on quartz
diorite of the metasedimentary rocks unit (sch). Table #.3 lists the site specifications.

|

2.3 Results of Spectral Analyses

Peninsula cities—Figures A1-14 show velocity seiimograms, amplitude spectra and
their ratios. The horizontal components are rotated to the direction parallel and normal
to the long axis of the bay, that is, N40°W and N50°E, respectively. Figure Al shows the
difference between the system responses observed at the same place, BIS. It is ascertained
that the differences between the systems in the given frequency bands (Table 4) are within
5%. The characteristics of spectral ratios are as follows:

BIS, AP6 and MTR on unit KJf (Figs. A2-3):
AP6 and MTR show nearly the same spectra as those at the reference
site, BIS, in the wide frequency range of 0.1-3 Hz.

SYL, CHE and OT?2 on unit Qal (Figs. A4-6):

Amplitude spectra are nearly the same as those at the reference site in
the frequency range lower than 1 Hz. They increase with frequency above
1 Hz, showing the combined effects of increase of traffic noises and changes
of ground responses. As the spectral contents of traffic noise are considered
to increase monotonically with frequency in the same manner between the
vertical and horizontal components, the spectfal peaks around 1.8 Hz in
the horizontal components at SYL are attributable to the soft alluvial
deposits.

OTA,FOX, AP2, ARG, CHA, MAL, LON, and RWS on Qm (Figs. A7-14):

Spectral contents at the bay mud sites are quite different from those at
the reference site. The differences become larger from west to east: the
frequency at which amplification takes place becomes lower and the am-
plification becomes larger. These characteristics are more remarkable in
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the horizontal components than vertical ones at all sites, showing the low
rigidity of the bay mud and artificial fill. Although the characteristics are
not so typical at OTA and FOX, which are located near the boundary
between units Qal and Qm, the horizontal amplifications are larger than
vertical ones in the range of 0.8-2 Hz. The horizontal spectra at RWS
have two peaks around 0.5 Hz and 1.3 Hz, which might be considered as
the fundamental and higher resonances at the site.

Figure 2.4 shows the general trend of spectral change with site locations, where f, peak
denotes peak frequency and f;g., the frequency at which amplification occurs in the
honzonta.l components. Systematic decreases of f;,¢q) and fi;ce are remarkable. Although
_ fpeak can be variable according to the spectral contents of incident microseisms, observed

f) peak Seems to reflect the characteristic frequency of ground at the site, because the
spectra.l ratio also peaks at the same frequency.

Table 2.4 and Figure 2.5 show the mean spectral ratios in several frequency bands.
Frequency-dependent large amplifications at bay mud sites and their systematic change
with site locations are very remarkable. In addition to this, it is obvious that there are
directional differences in amplifications: in the horizontal components, amplifications in
the direction parallel to the geological divisions (N40°W) are generally larger than those
in normal direction (N50°E), except higher frequency bands at MAL and LON.

Santa Clara Valley—Figures A15-20 show the velocity seismograms, their spectra
and ratios. The horizontal components are rotated to N40°W and N50°E, parallel and
normal to the axis of the valley. All the ground sites are compared with ARP as well
as KIR, because the amplitudes at the reference site, KIR, are considerably larger than
those at ARP (Fig. A20).

Figure A15 shows the reliability of the systems. The differences in the given bands
are less than 5%. Tables 2.5.1-2.5.3 and Figures 2.6.1 and 2.6.2 show the mean spectral
ratios in the given frequency bands. The amplitude ratios are calculated to KIR, ARP
and assumed regular wave fields. The regular wave field is obtained with assumptions
of (1) line source of microseisms along the coastal region of the Pacific, (2) propagation
of microseisms as plane surface waves in the direction of N50°E, and (3) attenuation of
waves in a functional form of e~°", where a is the attenuation coefficient in km~?! and r
is distance in km. Each e in the band is estimated from the simultaneous observations
at KIR and ARM and listed in Table 2.5.3. Amplification characteristics at sites are as
follows:

KIR and PAH on QTs (Figure A16):

Spectral contents of these sites are nearly the same in the whole frequency
range of 0.1-3 Hz. However, they are much larger than those of corre-
sponding components at the rock site, ARP, even in the frequency range
lower than 1 Hz. It is suggested that there are some amplifications at the
rock sites on unit QTs compared to unit TMzs, even if we take account of
wave attenuation, as discussed in section 2.4.
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SNV, AGN and SJI on thick deposits of unit Qal (Figures A17-19):
In the frequency range lower than about 0.8 Hz, the ratios to KIR show
complicated variations around 1.

Comparing ARP, large amplification occurs at all these sites in the different manner
between the vertical and horizontal components. Horizontal fi;..s are about 0.2 Hz at
SNV and AGN, and 0.15 Hz at SJI, which are much lower than f;;ce at the bay mud
sites in Peninsula cities. The amplifications occur in a wide frequency range without sharp
peaks below 1 Hz, except 0.4 Hz peak in the N50°E component at SNV. Systematic
directional differences in the horizontal components are not obvious.

Santa Cruz—Figures A21-38 show seismograms, spectra and their ratios. Seismo-
grams are high-passed at 0.25 Hz to remove the following unfavorable long-period noises.
During the observations in Santa Cruz, the local winds were relatively strong (up to 7 m/s)
and made gust effects on the reference site, which was located in a redwood forest. Fig-
ure 2.7 shows the amplitudes of 3 components at LOE and their variation with time. The
amplitudes of 3 components at LOE during the observations at WAL, BLA, BAS, SBR,
EFF, CEW, PGM, and FNT differs remarkably from one another. In particular, the
EW component shows the unfavorable condition of the seismometer setting.

Table 2.6 and Figure 2.8 show the mean spectral ratios in which the vertical compo-
nents at LOE were used as references for all 3 components, since it can be safely assumed
that in the ordinary condition the spectral amplitudes of microseisms at the rock site are
considered nearly the same between the vertical and h&grizontal components. The errors
due to this are estimated as (11 £ 11%) for the 0.25-0.5 Hz band and (2 % 14%) for the
0.5-1.0 Hz band, respectively.

Generally, the soil amplifications occur in the frequency range higher than about
0.6 Hz, reflecting the small dimension of geological structures in Santa Cruz. Long-period
amplifications are smaller than those in Peninsula cities and the Santa Clara Valley. On
average amplifications at the alluvial sites (Qal) are larger than those at the marine terrace
deposits (Qt). The amplification characteristics at the sites are as follows:

BAR on marble (m) (Figure A22): J
Spectral contents at BAR are the same as those at LOE in the frequency
range of 0.25-3 Hz.

KAL, SHE, TRE, SBR, and EFF on unit Qt (Figures A23-27):

Spectral contents at KAL, located on the boundary between unit Qt and

metamorphic rocks (m), are the same as those at LOE. For other 4 sites,

frises are at 0.6-1.0 Hz and fpeaks’ 1.0-1.7 Hz in the horizontal compo-
| nents.

11 sites on Qal (Figures A28-38):
At WAL and BLA, which are located on and near the boundary between
units Qt and Qal, their frise? and fpea.ks are about 0.8 Hz and 1.5-2.0 Hz,
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respectively. For the other sites on unit Qal, fi;ce ranges from 0.6 Hz to
0.8 Hz, and fpeak from 1.0 Hz to 1.2 Hz, except WAL and BLA. These
values are slightly lower than those for sites on unit Qt. There are large
amplifications in the vertical component at CED due to unknown factors.

2.4 Discussion

Significant site-specific amplifications due to surface geology and bedrock structures
were obtained through field surveys in the three areas. We discuss the results in comparison
with the geological structures.

Peninsula cities—Figure 2.9 is a reproduction of a vertical cross section showing late
Quarternary sediments based on borehole data (Atwater et al., 1977). The section shows
a few km north to our profile. In general, frequency characteristics of amplifications and
their variations with site locations (Figures 2.4 and 2.5) appear very consistent to the
depth to bedrock and/or the thickness of the artificial fill on bay mud (Qm).

It is interesting to note the typical cases: In Foster City the depth to bedrock is 50 ft.
near the middle point between OTA and FOX, and 270 ft. near LON. In Redwood Shores,
these are 285 ft. at AP2 and 650 ft. near RWS, which are much deeper than in Foster City
(Bishop and Williams, 1974). The largest amplifications in the lower frequency at RWS
must reflect the largest thickness of sediments, including fill. Despite nearly the same
depth to bedrock at LON and AP2, LON has much larger amplifications than AP2,
the differences of which might be attributed not only to the effect of the soft surface layer
(Qm) but also to the difference in distance from the vertical edge of bedrock (TMzs). The
latter factor is possibly connected to the effect of configuration of bedrock on propagating
surface waves (Drake, 1980), which is also suggested from the observation of directional
characteristics in the horizontal amplifications, that is, larger amplification in the direction
parallel to the edge of bedrock (N40°W).

It seems necessary to take into account that in the marginal part there is a larger
variation of physical properties in the direction normal to the margin; namely, the elastic
constants and the bedrock depth change within a wavelength. This seems to bring the
directional difference in the effective physical properties, which could cause the observed
difference in amplifications. In the central part of the Santa Clara Valley, the differences
in horizontal amplifications are not systematic (Figures 2.6.1 and 2.6.2). The same fea-
tures are observed in the Kyoto basin, Japan, where the directed amplifications are more
remarkable in the marginal area of the basin (Akamatsu et al., 1991). In this connection,
it is interesting that the larger excitations of radial components than the transverse ones
were observed in the long-period range during the Loma Prieta earthquake at ground sites
as discussed in section 3.

Comparison of amplification factor with soil profile type—Hensolt and Brabb (1990)
zoned San Mateo County on the basis of depth to bedrock and soil properties mainly of
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shear-wave velocity for design of engineered structures. From definition of their soil profile
type, our observation sites in Peninsula cities are speciﬁbd as follows:

S1: BIS, AP6, MTR, SYL, CHE, OT2, FOX

S§2: OTA

S3: AP2

S4: ARG, CHA, MAL, LON, RWS _

‘CHE, OT2, FOX and OTA are located near the boundary between S1 and S2.
AP2 is near the boundary between S2 and S3. ARG is on the boundary between S3 and
S4. Amplification at OTA (S2) is slightly larger than those at CHE, OT2 and FOX in
, the frequency range of 0.5-1.0 Hz. Amplification of AP2 (S3) is much larger than that
at OTA (S2) sites in the higher frequency range of 0.5-1.0 Hz, although not so large in
the lower frequency range of 0.35-0.7 Hz. Amplifications at S4 sites and their frequency
characteristics are remarkable with variation from site tf site. This would imply that the
soil profile type can oversimplify the soil condition. Therefore, there is a strong prospect
that the microtremor measurement will be a useful tool for assessment of site condition
based on frequency characteristics. It will also provide useful information at sites where
the soil properties are not known in sufficient detail to determine the soil profile type.

Santa Clara Valley—There are large differences in amplitudes between KIR and
ARP, west and east of the valley in the frequency range higher than 0.2 Hz. It seems
reasonable to consider the attenuation during propagation of microseism as surface waves.
In the Los Angeles Basin, the attenuation coefficients were estimated at-0.016 for T = 6 sec
and 0.032 for T' = 3 sec. In the Santa Clara Valley, we obtained 0.014 for 0.125-0.25 Hz,
nearly the same as that for the Los Angeles basin, and 0.062 for 0.25-0.5 Hz, which is much
larger than for the Los Angeles basin. This may suggest that there are some differences in
amplification between the two rock sites; larger amplification at Tertiary and Quaternary
sedimentary rocks than Mesozoic and Tertiary sedimentary rocks.

The depth to bedrock in the central parts of the valley is not well known. The depths
of the layer with shear wave velocity larger than 2500 ft/s are about 700 ft. at SNV
and AGN, and 500 ft. at SJI. Amplifications at alluvial sites (Figure 2.6) extend to the
~ frequency range lower than those in Peninsula cities (Figure 2.5). This must reflect the
thickness of alluvial sediments and may also depend on the locations, that is, the central
part far from the edge of bedrock.

Amplifications in the higher frequency range of 0.5-1.0 Hz (Figure 6.2) are lower than
those for Peninsula cities (Figure 5), which may reflect the differences in soil conditions on
the uppermost layer such as shear wave velocities and consequently Poisson’s ratio between

alluvial sediments (Qal) and fill on bay mud (Qm).

The differences in amplifications between the two horizontal components are not sys-
tematic in the alluvial sites, which might be connected to the fact that these sites are
located far from the margin of the valley as discussed already.
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Santa Cruz—Amplifications of microseisms (Figure 2.8) appear mainly in the fre-
quency range higher than about 0.6 Hz, reflecting the small scale of the geological struc-
tures. However, mean spectral ratios seem generally to relate to the thickness of alluvial
deposits as follows:

From the preliminary report for the seismic refraction experiments (King et al., 1990),
the depth to a velocity layer with V, > 3.0 km/s is around 5 m on the upper terrace and
about 10 m on the lower terrace. It is also suggested that the thickness of alluvial deposits
is more than 70 m at sites on unit Qal. Amplifications in the range of 0.5-1.0 Hz are nearly
1 at KAL on the upper terrace of the west side of the San Lorenzo River. They increase
from the upper terrace to the lower terrace, and to the alluvial deposits around the river.
This general trend is considered to reflect the velocity structures.

2.5 SUMMARY

From observations in the Bay Area and Santa Cruz, amplifications of miroseisms due
to soil deposits are summarized as follows:

(1) Site-specific amplifications can be discussed with spectral ratios of ground
sites to rock sites.

(2) Frequency characteristics of amplifications are related to the depth to
bedrock and physical properties of soil deposits.

(3) Amplifications of horizontal components are larger than those of vertical
ones, reflecting low rigidity of deposits.

(4) In the marginal parts of the basin, there is a difference in amplifications
between the horizontal components, parallel and normal to the long axis
of the bay, suggesting the effect of configuration of bedrock on propagating
surface waves.

(5) It is suggested that amplification at Tertiary and Quaternary sedimentary
rocks is larger than that at Mesozoic and Tertiary sedimentary rocks.

(6) Microtremor measurement will provide useful knowledge for evaluation of -
the site factor needed to determine the design of structure.
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Fig. 2.1.

Geology

Locations of sites and surface geology in Peninsula cities.
BIS: reference site.
AP6, AP2, RWS and MAL: strong motion seismograph sites.

Qm : Holocene estuarine mud.

Qal : Quarternary alluvium.

KJf : Franciscan Formation, Mostly well-indurated sandstone and
shell.

TMzs: Tertiary and Mesozoic sedimentary rocks.
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QTs QTs

TMzs b%

Fig. 2.2. Locations of sites and surface geoiogy in Santa Clara Valley.
KIR: reference site.
SNV, AGKN and SJI: strong motion seismograph sites.

Geology Qm : Holocene estuarine mud.
Qal : Quarternary alluvium.
KJf : Franciscan Formation, Mostly well-indurated sandstone and
shell.

TMzs: Tertiary and Mesozoic sediméntary rocks.
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Fig 2.3. Locations of sites and surface geology in Santa Cruz. All the sites
except CEW, PGM and FNT are the same as the aftershock observation
sites (King et al., 1990).
LOE: reference sltes.

Geology MP : Metasedimentary rocks and Marble.

Qt : Marine terrace deposits.
Qal : Alluvium.
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Fig. 2.5. Mean spectral ratios in the given frequency bands in Peninsula
Cities. Left bar = vertical component, middle = parallel (N40 W)
and right = normal (N50 E) to the general trend of geological
division in the peninsula area, respectively.
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AMPLITUDE AT LOE (0.25 - 0.5 HZ)
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Fig.

SANTA CRUZ (0.25-0.5 HZ)
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2.8. Mean spectral ratios in the given frequency bands
City. Left bar = UD, middle = NS, right = EW.
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Fig. 2.9. Vertical cross section based on borehole data near renlnsuia uities
sites (after Atwater et al., 1977). ‘

Qhe : Estuarine deposits (Holocene).

Qha : Alluvial deposits (Holocene).

Qpha: Alluvial deposits (late Pleistocene and Holocene).

Qphw: Eolian deposits (late Pleistocene and Holocene).

Qpht: Terreatrial deposits, undivided (Pleistocene and Holocene).
Qpe : Estuarine deposits (late pleistocene).

Qpa : Alluvial deposits (late Pleistocene).

TMz : Bedrock (Mesozoic and Tertiary).
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3. STRONG-MOTION RECORDINGS FROM THE LOMA PRIETA EARTHQUAKE

3.1 General Remarks

The Loma Prieta earthquake provided one of the largest strong-motion data sets yet
obtained for a damaging earthquake in a region underlain by a variety of geologic deposits
in close proximity (Shakal et al., 1989; Maley et al., 1989). This new data set provides an
important opportunity to compare the response of various geologic deposits to potentially
damaging levels of motion with those observed using microtremors and comparative low-
strain observations from distant man-made sources.

Analyses of the strong-motion data at various stages of data availability have been
presented previously (Borcherdt, 1990; Borcherdt and Glassmoyer, 1990; Borcherdt and
Glassmoyer, in press). Data compilations and analyses pertinent to comparing the var-
ious methodologies for ground response determinations are reproduced here to facilitate
comparisons. Locations for the combined set of 34 free-field stations analyzed in the San
Francisco Bay region are shown in Figure 3.1. Geologic deposits in the San Francisco
Bay region are generalized into 6 units (Figure 3.1). These six units include: Creta-
ceous granitic rocks (Kg), Jurassic and Cretaceous rocks of the Franciscan assemblage
(KJf), Mesozoic and Tertiary sedimentary rocks (TMzs), Tertiary and Quaternary sedi-
ments (QTs), Quaternary alluvium (Qal), and Quaternary (Holocene) bay mud (Qhbm).
A detailed description of the units is provided by Lajoie (Borcherdt et al., 1975).

To develop a uniform data set to quantify the influence of various geologic deposits on
recorded strong motions, the horizontal recordings at each site were resolved into radial and
transverse components. These components are parallel and perpendicular, respectively, to
the direction from source to receiver. Peak amplitudes inferred for the vertical, radial, and
transverse components of acceleration, velocity and displacement are summarized, together
with site identifications, shear velocity (Fumal, 1990), and distances in Table 3.1.

To quantify the influence of local geologic deposits on recorded motions, ratios of peak
amplitude for each measure of motion were first computed with respect to “local” rock sites
(RIN, PIE, CSH, AP7, WOD) and normalized by the ratios of corresponding hypocentral
distance. Sites in San Francisco and rock sites used as normalization sites were further
normalized to the corresponding near value for Franciscan sites. These ratios together with
statistics for each geologic sample are summarized in Table 3.2. Corresponding charts are
provided in Borcherdt and Glassmoyer (1990).

3.2 Amplification Ratios Calculated from Strong Motions

These ratios of peak amplitude show that in general ratios of peak horizontal motion
exceed those for peak vertical motion. They show that for horizontal motion ratios of peak
acceleration, velocity and displacement increase with decreasing firmness or shear velocity
at the site. They show that on the average the largest amplifications of horizontal motion
occur for the radial component of motion for sites on fill, bay mud. They show that in
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general maximum amplifications for peak accelerations on “soil” (Qal, Qhbm) are often
comparable to and in some cases exceed those for velocity and displacement.

To further quantify the response of the various deposits, spectral ratios were com-
puted for each site with respect to local “rock” sites, RIN, PIE, CSH, AP7, WOD and
normalized by corresponding ratios of hypocentral distance (Table 3.3). The ratios are
computed as the ratio of the modulus of the discrete Fourier transforms from time series
40.96 seconds in length. A leakage correction corresponding to 10 percent cosine taper and
triangular smoothing windows of 7 and 15 points have been applied, respectively, to the
numerator and denominator. To facilitate comparisons with microtremor data, geomet-
ric averages of the spectral ratios were computed for the period bands (0.1-0.5, 0.5-1.5,
1.5-5.0, 0.1-5.0 and 0.4-2.0 seconds; Table 3.3). Values for the short-, intermediate-, and
long-period bands are charted (Figures 3.2, 3.3, and 3.4).

The charted average ratios show that, in general, fo‘;r vertical motion the larger ampli-
fications often occur in the short-period band consistent with the observation that ratios
of peak vertical acceleration often exceed corresponding ratios of peak vertical velocity
and displacement. For horizontal motion they show ﬂhat the larger amplifications fre-
quently occur for the intermediate- and long-period bands for radial motion at fill, bay
mud sites. Greater response for horizontal motion in the intermediate- and long-period
bands is consistent with observations of larger ratios of $eak velocity and displacement for
corresponding components of motion.

Average spectral ratios for the period band 0.4-2.0'sec provide a useful parameter to
summarize variations in ground response of interest for earthquake engineering. Mean val-
ues computed for averages over this period band for each geologic unit (Table 3.3) indicate
that average amplification levels, in general, increase with decreasing mean shear velocity
for the units. The “soil” site amplifications implied for the radial direction consistently
exceed those in the transverse direction for sites in each area, with the exception of those
in the west bay near Foster City normalized by AP7. For sites in this area, the larger
amplifications in the transverse direction are thought to be more indicative of the response
characteristics of the normalization site than of directional amplification characteristics of
the “soil” sites.

3.3 Comparison with Past Low-Strain Motions

Previous measurements of ground response in the San Francisco Bay region at 99 sites
using low-strain motions generated by distant man-made explosions permit a comparison
of average response estimates determined at low-strain levels with those determined at
significantly higher strain levels associated with the Loma Prieta earthquake.

Mean vlaues computed for each geologic unit are shown for the low-strain and strong-
motion data sets in Figures 3.5 and 3.6. (Those shown for horizontal motion represent the
average of the east-west and north-south components for the low-strain data set and the
average of the radial and transverse components for the strong-motion data set.) Testing
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the null hypothesis that the means for the data sets corresponding to each geologic sample
are equal shows that the null hypothesis can be rejected at the 5% level of significance only
for the horizontal responses determined for the fill, bay mud sample. This difference for the
fill, bay mud sample is due in part to the nonlinear response associated with liquefaction at
the Treasure Island site and possibly the AP2 site. Another factor contributing to smaller
values for the smaller Loma Prieta sample is due to the need to normalize the sites in
the Foster City-Redwood Shores area to site AP7, thought to have a somewhat higher
response than the mean value for sites on the Franciscan assemblage used to normalize the
low-strain data. Comparison of the mean values determined from the two data sets with
those derived from microtremors are provided in a subsequent chapter.
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Table 3.2 -- Ratios of peak acceleration, velocity, and displacement with respect to local rock station
(RIN,AP7,CSH,PIE,YBI, or WOD) or mean value for sites on unit KJf {(normalized by hypocentra! distances).

...................................................

Station H.Dist. Avg. & norm.sta. Acc-Z Vel-Z Disp-Z AccR Vel-R Disp-R Acc-T Vel-T Disp-T
km 30m
South 8an Francisco---CSMIP 85 910 SSF/KJH 092 088 082 053 1.10 097 108 059 0.60
Rincon Hill—CSMIP 96 710 RINXM 094 089 127 131 080 116 1.13 1.00 1.26
Yerba Busne—CSMIP 27 710 YBIKJ 090 095 078 076 088 120 0.79 1.09 1.00
Pecific Heights—CSMIP 96 710 PACAKM 103 136 1657 074 092 060 0.81 1.32 128
Dismond Helights—CSMIP 84 710 DIAKH 138 146 091 179 139 068 108 109 1.16
Piedmont Jr. High—CSMIP 94 710 PIEXM 082 046 066 087 0984 139 1.10 091 0.69
‘MEAN { K ) 743 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
STANDARD DEVIATION 82 020 036 0.34 047 022 031 0.16 0.24 0.29
CSUH Stadium Grounde—CSMIP 73 525 CSHAXKJ 111 078 118 064 069 201 067 041 044
Woodside Fire Station-—CSMIP 67 440WODXJ 097 092 085 056 098 176 0.72 064 1.02
APEEL 7 (Pulgas Temple]—CSMIP 85 435 AP7/KJ 134 091 106 167 177 243 089 0.88 0.98
MEAN ( norm. sta.~ south ) 467 1.14 087 1.03 082 1.16 207 0.76 071 0.82
STANDARD DEVIATION 51 019 008 0.17 056 056 034 0.12 0.26 0.32
Cliff House—CEMIP 101 710 CUMXM 211 176 113 172 238 1.8 109 1.74 174
Bonita Point—CSMIP 105 710 BON/KJf .24 178 162 071 197 188 076 1.00 1.07
MEAN 710 .67 1.77 1.37 1.21 2.17 1.87 093 1.37 1.40
Presido—CSMIP 99 5165 PREXJf 193 262 215 231 257 186 185 251 179
Golden Gate Bridge—USGS 101 515 GGB/KJf 192 274 189 269 393 344 249 257 1863
MEAN (sp ) 516 1.92 2.68 2.02 250 3.25 265 2.22 2.64 1.66
Berkeley (Lawrenoce Lab.}—CSMIP 100 610 BKL/PIE 169 221 158 086 189 144 123 181 1.21
APEEL 10 (Skyline Bivd.|—CSMIP___ 65 406 AP10/AP7 061 129 1.09 056 083 129 084 115 113
"MEAN ( TMzs ) 508 1.10 1.76 1.33 0.71 1.36 1.36 1.08 1.48 1.17
APEEL 9 (Crys.Spr. Res.}—USGS 64 4BOAPS/AP? 083 109 087 084 226 1.31 0.84 098 1.70
Richmond City Hali—CSMIP 109 440 RCHPIE 139 252 127 075 272 119 1656 1.66 1.14
Sarstoga—CSMIP 33 440 BAR/WOD 4.12 219 4256 B5.35 262 158 163 1.68 244
SLAC—USGS 64 420 SLAWOD 172 126 132 411221 108 219 231 135
‘MEAN (QTs ) 438 2.02 1.76 1.93 2.9 2.45 1.289 1.58 1.84 1.66
STANDARD DEVIATION 13 146 070 156 230 026 021 056 055 057
MEAN { “ROCK" ) 596 141 148 1.38 153 121 .34 1.24
STANDARD DEVIATION 160 _078 063 _0.80 052 0.62 0.46
T BT bt T 50 T e o e R TR R T
Oskiand Office 8idg.—CSMIP 305 OOFPIE 551 2984 130 245 2.756 2.66
Fremont—USGS 58 285 FRE/CSH 1.22 0.80 0.45 1.89 115 0.81
Mission San Jose—CEMIP B7 265 MSJ/ICSH 145 144 157 1.06 0.86 1.39
Muir School (APEEL 2E}—CSMIP 73 280 MUR/CSH 2.06 083 0.94 164 176 136
MEAN ( Gpa ) 304 242 1.41 1.01 191 1.62 164
STANDARD DEVIATION 35 1.76 0.89 044 0.60 0.73 0.68
Sunnyvale—USGS 46 240 SVL/WOD 128 0.86 1.12 1.71 1.62 1.68
Agnew State Hosp —CSMIP 44 240 ASH/WOD 129 108 1.81 1.24 071 1.32
MEAN ( Qhef | 240 128 097. 147 148 1.17 150
‘MEAN(Qal ) 286 2.10 1.29 1.14 1.99 1.49 183
STANDARD DEVIATION 43 154 0.76 0.47 055 0.69 056
Emeryvilie Towers—USGS 96 240 EMT/PIE 235 244 077 254 3.08 2.66
Oskland Harbor Wharf—CSMIP 96 230 OMWMPIE 262 65.13 1.88 3.37 398 4.27
San Francisco Airport—CSMIP 81 180 SFIXM .77 100 1.02 3.69 220 1.04
Maley Residence (F. City)—USGS 68 150 MAL/AP? 1.29 0.63 0.35 0.82 1.11 0.98
APEEL 2—-USGS 86 130 AP2/AP7 1.39 130 0.46 2.37 3.21 175
Tressure lsland—CSMIP $9 130 TRIYBI 080 0.28 1.04 2.06 2.38 2.83
Redwood Bhores [F. City)—CSMI 67 116 RSH/AP? 174 144 158 267 257 2.24
MEAN ( Qaf/Ghbm | 168 1.68 1.74 1.02 2.49 2.64 2.2
STANDARD DEVIATION 50 0 1 5
MEAN ( "8OIL" ) 156 183 152 1.08 2.14 2.07 1.89
STANDARD DEVIATION 76 116 125 082 098 o 95

......................................
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: i
Figure 1. Location map for free-field stations in thei San Francisco Bey region, California,
which recorded the Loma Prieta earthquake of October 17, 1989.
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Figure 3.2 — Average spectral ratios for shori-, intermediate-, and long-period bands for vertical motion.
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4. LOMA PRIETA AFTERSHOCK RECORDS
4.1 General Remarks

Following the main shock of the 17 October 1989 Loma Prieta earthquake [M, = 7.1],
several organizations attempted and successfully recorded many aftershocks at tempo-
rary stations with deployments of a variety of portable instruments. Some of these tem-
porary deployments were co-located with permanent strong-motion stations of both the

United States Geological Survey (USGS) and the California Division of Mines and Geology
(CDMG) of the State of California.

The major organizations that deployed temporary aftershock recording instru-
ments were: .

(1) United States Geological Survey (USGS),

(2) Lamont-Doherty Geological Observatory (LDGO), Columbia University,
New York,

(3) Lawrence Livermore National Laboratory (LLNL), Livermore, CA.

These organizations coordinated with each other to prevent duplication and comple-
mented the various deployment schemes. However, each organization used a different type
of recording system; thus providing an opportunity to compare their performances.

The purpose of this section is to describe the general objectives of aftershock recordings
and the general deployment schemes. The reasoning behind inclusion of this section in this
report is to provide the background information of the aftershock recording efforts that
form the basis for comparison with the microtremor recording results.

4.2 Description of Deployments
The deployments by key organizations are summarized in Table 4.1.

Table 4.1 Summary of Deployments

Organization No. of Stations No. of Records References

USGS
Menlo Park 94 15621 10
Golden, CO 101 8216 4
LDGO 22 144 7
LLNL 7 1455 8

USGS Deployments—The aftershock recording deployments executed by USGS were
carried out in several stages by different groups. However, in general, the efforts will be
categorized into two:
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(1) San Francisco Peninsula and South Bay Deployment (Menlo Park Office),
(2) Santa Cruz and Vicinity Deployment (Golden, CO, office).

Menlo Park Deployment—The deployments consisted of various arrays with defini-
tive objectives. A general overall layout of the USGS-Menlo Park (Branch of Engineering
Seismology and Geology) deployments is seen in Figure 4.1. The area covered extends
from San Francisco to south of Santa Cruz. The boxes in the figure outline Figures 4.2-4.6
that show the deployments in different regions. The Menlo Park effort consisted of de-
ployment of only GEOS recording systems with one or both of the triaxial velocity (Mark
Products L-22) transducers or triaxial force-balance acc#lerometers (Kinemetrics FBA-3).
The GEOS units recorded the aftershocks at 200 sps. |

Golden Deployment—The Branch of Geologic RisF Assessment of USGS at Golden,

Colorado deployed Sprengnether DR-200 portable ders and S-6000 triaxial velocity
transducers particularly in the Santa Cruz area. General description of the Golden deploy-
ments is provided in Figure 4.7. These deployments consisted of several arrays in different
study areas including the city of Santa Cruz, the city of Los Gatos, Rebecca Ridge and
Robinwood Lane study areas. These deployments and locations of the stations are shown

in Figures 4.8-4.12.

LDGO Deployments—LDGO deployment was limited to a special purpose dense ar-
ray consisting of 5 stations in the vicinity of the Cypress Structure in the East San Francisco
Bay (Hough, 1990). The array deployment used dual-gain, 2 Hz sensors (Mark Products
1-22s) with IRIS/PASCAL digital Reftek recorders. 'ﬁie stations covered by LDGO de-
ployments fall outside the study area of this report. |

4 co-located with CDMG stations (Jarpe and others, 1989). Qutside of Livermore, the
stations were scattered mainly to different sites such as Treasure Island (fill), Redwood
Shores (alluvium and fill), Yerba Buena Island (rock site) and Mission San Jose (an al-
luvium site). The objective was to determine spectral relations from pairs of aftershock
records (soil and rock) and compare them with those from strong-motion records. The
only station that falls within the study area of this report is the Redwood Shores station.

|
LLNL Deployments—LLNL deployments consistelof 7 stations, 3 at Livermore and

4.3 Discussion of Results

As summarized in Table 4.1, thousands of (velocity and/or acceleration) seismograms
have been recorded by the organizations which attempted to do so. These seismograms
have been processed and have been incorporated in data bases of each respective organi-
zation. The USGS data is compiled in CD-ROMs and are distributed along with open-file
reports that summarize the data.

The aftershock recording stations were re-occupied (as much as possible) to record
micro-tremor measurements to be used for comparison d)f the characteristics derived from
both methods (aftershocks versus microtremors).
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Selected data has been processed to derive spectral ratios. In processing the records,
computer software by Mueller was used. These were done mainly for stations in the
peninsula. Similar processing will be performed for the Santa Cruz stations in a revised
volume of this report.

The figures below are from four aftershocks (event 3090130 [M = 3.8)], event 3091337
[M = 3.8], event 3112342 [M = 4.0}, and event 3121345 [M = 2.4]). Data available for
those stations which recorded these events are processed.

Figure 4.13 shows for event 3090310 the three-component velocity seismograms of
FOX and AP7 as well as their Fourier amplitude spectra superimposed for each compo-
nent and the spectral ratios (FOX/AP7). FOX is located on fill and bay mud (Qm).

Figure 4.14 shows for event 3091337 the three-component velocity seismograms of
FOX and AP7 as well as their Fourier amplitude spectra superimposed for each compo-
nent and the spectral ratios (FOX/APT).

Figure 4.15 shows for event 3112342 the three-component velocity seismograms of
FOX and AP7 as well as their Fourier amplitude spectra superimposed for each compo-
nent and the spectral ratios (FOX/AP7).

These figures show that for the events 1090130 and 3112342, the Fourier amplitude
spectra shapes are very similar. The FOX and AP7 amplitudes diverge above approxi-
maely 1 Hz. The ratios are significantly high for frequency bands at 1 Hz, 1.2-1.3 Hz and
1.8 and 2.2 Hz. Event 3091337 on the other hand shows higher amplitudes for FOX and
higher ratios for the 0.1-0.3 Hz band in addition to those bands up to 2.8 Hz.

Figure 4.16 shows for event 3091337 the three-component velocity seismograms of
MAL and AP7 as well as their Fourier amplitude spectra superimposed for each compo-
nent and the spectral ratios (MAL/AP7). MAL is located on fill and bay mud (Qm).

Figure 4.17 shows for event 3121345 the three-component velocity seismograms of
MAL and AP7 as well as their Fourier amplitude spectra superimposed for each compo-
nent and the spectral ratios ( MAL/APT).

The above two figures distinctly show an order of magnitude variation in amplitude
spectra particularly for the horizontal components (higher for event 3091337). This is
attributable to the higher magnitude of the 3091337 ‘event. The ratios on the other hand
are consistent for the N-S components and present ratios similar in frequency band of
0.3-0.7 Hz and at approximately 1.3 Hz. The E-W components are not very comparable.

Figure 4.18 shows for event 3112342 the three-component velocity seismograms of
AP2 and AP7 as well as their Fourier amplitude spectra superimposed for each component
and the spectral ratios (AP2/AP7). AP2 is located on fill and bay mud (Qm).

This event shows almost the same order of amplitude for all three components. For
the horizontal component, amplitudes of AP2 start to be larger at 0.6-0.7 Hz. We note
significant ratio peaks at 1 Hz and around 2 Hz.
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Figure 4.1. GEOS station locations (dots) superimposed on a map of central
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rupture area
shown in Figures 2, 3, 4, and 5 (from Ref. 10).
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Figure 4.7. Map of central California showing coastline,
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Santa Cruz Flood Plain Array
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Figure 4.8. Map of tixe Santa Cruz, California, gtudy area showing seismograph
station locations, and general surficial geology (adapted from
Clark, 1981) (from Refs. 4 and 5).
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Los Gatos Study Area
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5. COMPARATIVE OBSERVATION OF THE RESULTS FROM LONG-PERIOD
MICROTREMOR AND EARTHQUAKE RECORDINGS

5.1 Comparison of Microtremors with Strong Motions

In section 2, it was shown that soil amplification for long-period microtremors ex-
hibits systematic variation with site location, reflecting site geological setting. Frequency
characteristics in amplification appear to depend not only on soil properties and depth to
bedrock but also on configuration of bedrock. In section 3, soil amplifications determined
from Loma Prieta strong motions and low-strain motions generated by distant explosions
were discussed in terms of surface geology and surface shear-wave velocity. Average ampli-
fications for strong motions are nearly the same as those for low-strain motions with the
exception of sites where some liquefactions were suggested. They increase with decreasing
mean shear-wave velocity. Overall characteristics of soil amplifications for microtremors
and strong motions and their variation with geological units seem consistent to each other.

Table 5.1 compares means of average spectral ratios in the frequency band of 0.2-
0.667 Hz (i.e., 1.5-5 s) from microtremors (MT) and Loma Prieta strong motions (SM).
Means are calculated using all sites in the Bay area. Averaged spectral ratios for MT in
the Santa Clara Valley are taken from those calculated for the assumed attenuating wave
field. Soil amplifications for SM are apparently larger than those for MT at sites on units
Qal and Qm. The apparent discrepancy in mean amplification between SM and MT is
attributable partly to the difference of site locations between SM and MT and consequently
to the difference in depth to bedrock. As seen from Figure 4 in section 2, depth to bedrock
should affect strongly on seismic amplification in the low frequency range.

Table 5.2 shows comparison of soil amplifications for SM and MT at the same sites. In
this case, amplifications for SM are generally smaller than those for M T, especially at sites
on unit Qm such as MAL and RSH(RWS). However, at site AP2 on unit Qm, where
possible liquefaction is suggested during the Loma Prieta earthquake, the amplifications
for SM are larger than those for MT.

The apparent reduction of amplification for SM shown in Table 5.2 should be at-
tributed to the following factors: (1) Possibility of the difference in wave mode between
earthquake ground motions and microtremors analyzed. The strong motion data used
herein include both surface and S waves within a processing time-window of 40 seconds.
Therefore, it is necessary to examine the similarity of site response due to S waves com-
pared with that from surface waves. (2) Possibility of secondary-generated surface waves.
It has been suggested that incident S waves produce surface waves at the boundary of sed-
imentary basin and the secondary-generated surface waves proagate and cause interference
in the basin (Bard and Bouchon, 1984). Long durations with large amplitudes during the
Loma Prieta earthquake at sites on unit Qal such as SVL (Borcherdt and Glassmoyer,
1990) might suggest the importance of the phenomena. In this connection, it is interesting
to note that, in the aftershock records at alluvial sites in Santa Cruz (King et al., 1990),
there are remarkable later-phases following S phases, which might suggest the secondary
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surface waves generated at the boundary. (3) Possible nonlinear effect of soil response.
Possible nonlinear response associated with liquefaction at the AP2 site is suggested from
the difference in soil amplification between the Loma Prieta strong motions and the low-
strain motions from explosions. At AP2, however, difference in amplification between SM
and MT are contrary to the feature expected from nonlinear soil response. The evaluation
of the nonlinear effects should be made for each wave group separately after decomposing

the strong motion seismograms into various wave modej as mentioned above.

It is interesting to note similar studies performed for the Kyoto basin, Japan. Exten-
sive long-period microtremor measurements were carried out for microzoning the basin.
Comparative studies with earthquake ground motions 1ave also been made to verify the
applicability of microtremor measurement to microzoni:?g. The strong motion event is the
1984 Western Nagano Prefecture earthquake (M = 6.8). The main results from compar-
ative studies for different surface wave groups identified from earthquake and long-period
microtremors are: Although peak frequencies and peak values of spectral ratios (ground
site/rock site) from earthquake ground motions vary from event to event depending on the
frequency contents of incident surface waves and directioEf of wave propagation, each peak
value is similar to the spectral ratios determined from microtremors both in vertical and
horizontal components (Akamatsu, 1984). In the case df the Western Nagano Prefecture
earthquake, ratios of maximum amplitudes for band-pass/filtered surface-wave seismograms
exhibit similar amplification characteristics to those from microtremors, however, ratios for
S-wave seismograms show the different frequency characteristics than those from surface
waves and microtremors (Akamatsu et al., 1991). These observations show the impor-
tance of decomposition of wave modes for evaluation of soil responses and limitations on
applicability of microtremor measurements for mirozoning. However, this result is encour-
aging, because long-period components in strong motion seismograms are considered to be
composed of surface waves (Mamura et al., 1984).

P
\

5.2 Comparison of Microtremors with Aftershock Recordings

Comparative study of aftershock recordings (AS) versus microtremors (MT) are also
made. Although extensive aftershock recordings are provided, six recordings obtained at
sites on unit Qm in Foster City have so far been analyzed. At FOX, soil amplification for
the horizontal components occurs in the frequeny range higher than 0.8 Hz, and 1.5 Hz
resonance is suggested from MT. In this frequency range, large amplifications for AS are
also observed (events 3090130, 3091337, and 3112342)g1r although there are many other
peaks. At MAL, soil amplification for horizontal MT occurs from 0.5 Hz and peaks
around 0.6-1.0 Hz. These features are very similar ta those of NS component for AS
(events 3091337 and 3121345), whereas EW amplifications show different characteristics.
At AP2, horizontal amplification for MT increases from 0.7 Hz to 1.0 Hz rapidly. Spectral
ratios of AS have peaks around 1.0 Hz both in NS and EW components, showing the
similar amplification characteristics to those for MS. The processing time-window for AS
include P-, S- and surface-wave groups, which could cause additional peaks when compared
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with those determined by MT. In general terms, however, frequency characteristics of soil
amplifications determined from AS in the frequency range of 0.5-1.5 Hz appear similar to
those from MT at these sites. Since the frequency contents of AS are weak in this low
frequency range and microtremor measurements are focused on the frequency range lower
than 1 Hz, direct comparison should be made carefully with a larger data set.

From microtremor measurements directional soil amplifications are observed in the
marginal area in the sedimentary basin/valley. This is considered very important for
engineering seismology and earthquake engineering, because directional site responses were
observed from the 1989 Loma Prieta earthquake (Borcherdt and Glassmoyer, 1990) and
the 1987 Whittier Narrows earthquake and its aftershock (Vidale et al., 1991).

REFERENCES

Akamatsu, J. (1984). Seismic amplification by soil deposits inferred from vibrational char-
acteristics of microseisms, Bull. Disas. Prev. Res. Inst., Kyoto Univ., 34, 105-127.

Akamatsu, J., M. Fujita, and K. Nishimura (1991). Vibrational characteristics of micro-
seisms and their applicability to microzoning in a sedimentary basin, J. Phys. Earth,
in press.

Bard, P. Y. and M. Bouchon (1984). The two-dimensional response of sediment-filled valley,
Bull. Setsm. Soc. Am., 75, 519-541.

Borcherdt, R. D. and G. Glassmoyer (1990). On the influence of local geologic deposits
and crustal structure on ground motions generated by the Loma Prieta earthquake
in the San Francisco Bay region, California, Bull. Seism. Soc. Am., submitted.

King, K., D. Carver, R. Williams, D. Worley, E. Cranswick, and M. Meremonte (1990).
Santa Cruz seismic investigations following the October 17, 1989 Loma Prieta earth-
quake, U.S. Geol. Surv. Open-File Rep. 90-307.

Mamura, L., K. Kudo, and E. Shima (1984). Distribution of ground-motion amplification
factors as a function of period (3-15 sec), in Japan, Bull. Earthq. Res. Inst., Univ.
of Tokyo, 59, 467-500.

Vidale, J. E., O. Bonamassa, and H. Houston (1991). Directional site resonances observed
from the 1 October 1987 Whittier Narrows, California, earthquake and the 4 October
aftershock, Farthq. Spectra, 7, 107-125.

67



Table 5.1 Comparison of soil amplifications for the Lon Prieta strong motions (SK)
and microtremors (MT) in the Bay ares. The values are means of averaged
spectral ratios for the frequency band of 0.2 - 0.667 Kz (i.e. 1.5 - 5 5).
The values for KT in the Santa Clara Valley are from those for the attenu-
ating vave field.

Qa1 SK
1)
Qe SK
M1

Table 5.2 Comparison of soil asplifications for the
and microtremors (MT) at the saxe sites

uD

1.66+0.67
0.87+0.22

1.70£1.72

1.021+0.30 -

Radial/N4OW

2.84%1.84
1.76+0.886

4.49%2.98
2.8611.66

‘#

n the Bay ares. The values are

TransverseINFOE Sites
1.88+1.03 HWB OOF FRE MSJ MUR SVL ASH
1.86%+1.15 SYL CHE OT2 SNV AGN SJ}
4.09%2.70 EMT OH¥ SF1 MAL AP2 TRI RSH
2.22+1.29 OTA FOX AP2 ARG CHA MAL LON RFS

xe Prieta strong motions (SN)

averaged spectral ratios for the frequency band of 0.2 - 0.667 Hz (i.e. 1.5

Qal SM
MT

SM/ MT

SM
MT

SK/ M1

Qe SM
NI

SM/KT

SM
M1

SM/MT

S
MT

SM/MT

Site
SNV
SNY

ASH
AGN

AP2
AP2

MAL
MAL

RSH
R¥S

ub

2.0
0.82
2.23

1.47
0.70
2.10

0.78
0.81

0.86

1.00
1.28
0.78

0.83
1.66
0.60

- 5 8). The values for KT in the Santa Cl#a Valley are from those for the
asttenuating wave field.

Radial/le Transverse/NSOE

3.43
1.78

1.97
1.81
2.13

0.85

}.B
l.l

1.‘2

2.4
4“
0.5

4.3
5.7
0.76
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1.98
3.38
0.60

1.32
2.33
0.57

2.13 -
0.88
2.42

1.75
3.85
0.48

3.29
6.52
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6. CONCLUSIONS

The objective of this study was to compile field data recordings of long-period mi-
crotremors in the San Francisco Bay area and Santa Cruz, the areas affected by the Loma
Prieta earthquake of October 17, 1989 (M, = 7.1). The data set was recorded with long-
period seismometers at 38 locations. In all cases, reference rock sites were used to calculate
spectral ratios. Such results from microtremors have been compared with those spectral ra-
tios calculated from the main event strong motion records and aftershock records whenever
applicable.

The results permit us to make the following conclusions:

1) Microtremor measurements are useful in identifying significant frequency
bands of low-frequency surface waves that cause amplification of soft soil
sites.

2) The frequency bands of low-frequency strong motions contain contribu-
tions from both S-waves and surface waves. Only spectral ratios from
those portions due to surface waves compare well with those from mi-
crotremor measurements.

3) Low amplification in the low-frequency region in the Santa Cruz area com-
pared to Peninsula cities and Santa Clara Valley is attributable to the
shallow depth to bedrock and small dimension of geography as well.

4) The study confirms once again that all other conditions are the same,
depth to bedrock and the geological material usually defined by shear-wave
velocities are key variables in defining the frequency bands of resonance
(and therefore amplification).

5) Directional amplification demonstrated for strong motion recordings of the
Loma Prieta earthquake is once again demonstrated for the microtremor
measurement in this study.

6) Difference in amplification calculated from strong motions and from mi-
crotremors is attributed to difference in wave modes, generation of sec-
ondary surface waves and possible nonlinear soil effects. The nonlinear
soil effects should be carefully evaluated for same wave groups.

7) We have accumulated experiences in the United States and in Japan. In order to
extrapolate to other areas without strong motion data, we should establish the
reliability of the method.

69



Appendix

Velocity seismograms, amplitude spectra and spectral ratios (soil
site/rock site) of microtremors at each site are shown.

Peninsula Cities N
Figure No. Site Geology Page

A. 1 BIS KJf 75
A. 2 AP6 TMzs 76
A. 3 NTR KJf 17
A. 4 SYL Qal 78
A. § CHE Qal 79
A. 6 0T2 Qal 80
A. 7 OTA Qm 81
A. 8 FOX Qm 82
A. 9 AP2 Qm 83
A.10 ARG Qm 84
A.l1 CHA Qm 85
A.12 MAL Qnm 86
A.13 LON Qm 87
A.14 RWS Qm 88
Santa Clara Valley
Figure No. Site Geology Page
A.15 KIR QTs 89
A.16 PAR QTs 80
A.17 SNV Qal 91
A.18 AGN Qal 92
A.19 SJI Qal 93
A.20 ARP TMzs 94
Santa Cruz City
Figure XNo. Site Geology Page
A.21 LOE sch 95
A.22 BAR m 96
A.23 KAL Qt 97
A.24 SHE Qt 98
A.25 TRE Qt 99
A.26 SBR Qt 100
A.27 EFF Qt 101
A.28 WAL Qal 102
A.29 BLA Qal 103
A.30 WAS Qal 104
A.31 CED Qal 105
A.32 CE2 Qal 106
A.33 CEW Qal 107
A.34 PGM Qal 108
A.35 FNT Qal 109
A.36 LAU Qal 110
A.37 LAV Qal 111
A.38 BAS Qal 112
Geologic = KJf = Cretaceous and Jurassic Franciscan assemblage
Unit: TMzs = Tertiary and Mesozoic sedimentary rocks
QTs = Quaternary and Tertiary sedimentary rocks
Qal = Quaternary alluvium
Qm = Holocene estuarine mud (fill on bay mud)
sch = Metasedimentary rocks
m = Marble
Qt = Marine terrace deposits
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Fig. A.1 Velocity seismograms at BIS, amplitude spectra and their ratios (LP sys-
tem/SP system), showing the same responses of the two systems. Seismogram
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(KJf).
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Fig. A.2 Velocity seismograms at AP6 and BIS, amplitude spectra and their ratios
(AP6/BIS). Seismogram scale is in 108 m/s and spectra in 10~® m. Horizontal
components are rotated to longitudinal and transverse directions to the general
trend of geological divisions. AP6 is the Franciscan assemblage (KJf).

72



MTR.LP FILE NO.S [D=1 152129 THETR=-57

.....................

MTR BIS uD MTR BIS N4DH MTR BIS NSOE
3 3 3 V\
3 >\
.| sl €, g .
§o §o §o:
b1 05 3w oo 0.3 1 32 0.1 0.3 1 3 HZ
s MTR/BIS ub s MTR/BIS N4OW s MTR/BIS NSOE
o (=] (=]
=2 =2 o4
& g | E‘ .
1 1 —
8 g 8
o [t o ; © [
"o 03 Y 3w "o o3 1 3wz 0.1 0.3 1 3 HZ

Fig. A.3 Velocity seismograms at MTR and BIS, amplitude spectra and their ratios
(MTR/BIS). Seismogram scale is in 10~ m/s and spectra in 10~® m. Horizontal
components are rotated to longitudinal and transverse directions to the general
trend of geological divisions. MTR is the Franciscan assemblage (KJf).
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Fig. A4 Velocity seismograms at SYL and BIS, amplitude spectra and their ratios
(SYL/BIS). Seismogram scale is in 10~% m/s and spectra in 10~ m. Horizontal
components are rotated to longitudinal and transverse directions to the general
trend of geological divisions. SYL is alluvium (Qal).
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Fig. A.10 Velocity seismograms at ARG and BIS, amplitude spectra and their
ratios (ARG/BIS). Seismogram scale is in 10~® m/s and spectra in 107% m
Horizontal components are rotated to longitudinal and transverse directions to
the general trend of geological divisions. ARG is located on fill and bay mud
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Fig. A.16 Velocity seismograms at PAH and KIR, amplitude spectra (1: PAH, 2:
KIR, 3: ARP) and their ratios (1: PAH/KIR, 2: PAH/ARP). Seismogram
scale is in 10™® m/s and spectra in 10~® m. Horizontal components are rotated
to longitudinal and transverse directions to the long axis of the valley. PAH is
located on sedimentary rocks (QTs).
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Fig. A.17 Velocity seismograms at SNV and KIR, amplitude spectra (1: SNV, 2:
KIR, 3: ARP) and their ratios (1: SNV/KIR, 2: SNV/ARP). Seismogram
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Fig. A.18 Velocity seismograms at AGN and KIR, amplitude spectra (1: AGN, 2:
KIR, 3: ARP) and their ratios (1: AGN/KIR, 2: AGN/ARP). Seismogram
scale is in 10~% m/s and spectra in 10™® m. Horizontal components are rotated
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Fig. A.19 Velocity seismograms at SJI and KIR, amplitude spectra (1: SJI, 2:
KIR, 3: ARP) and their ratios (1: SJI/KIR, 2: SJI/ARP). Seismogram
scale is in 10~ m/s and spectra in 10~% m. Horizontal components are rotated
to longitudinal and transverse directions to the long axis of the valley. SJI is
located on thick deposits of alluvium (Qal).
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Fig. A.20 Velocity seismograms at ARP and KIR, amplitude spectra (thick: ARP,
thin: KIR) and their ratios (ARP/KIR). Seismogram scale is in 107% m/s
and spectra in 1078 m. Horizontal components are rotated to longitudinal and
transverse directions to the long axis of the valley. ARP is located on sedimentary

rocks (TMzs).
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Fig. A.22 Velocity seismograms at BAR and LOE, amplitude spectra and their
ratios (BAR/LOE). Seismogram scale is in 10~% m/s and spectra in 1078 m.
BAR is located on marble (m).
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Fig. A.23 Velocity seismograms at KAL and LOE, amplitude spectra and their

ratios (KAL/LOE). Seismogram scale is in 1 -8 m/s and spectra in 107% m.
KAL is located on marine terrace deposits (Qt).
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Fig. A.24 Velocity seismograms at SHE and LOE, amplitude spectra and their
ratios (SHE/LOE). Seismogram scale is in 10~ m/s and spectra in 10% m.
SHE is located on marine terrace deposits (Qt).
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ratios (TRE/LOE). Seismogram scale is in 108
TRE is located on marine terrace deposits (Qt).
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Fig. A.26 Velocity seismograms at SBR and LOE, amplitude spectra and their
ratios (SBR/LOE). Seismogram scale is in 10~® m/s and spectra in 10~% m
SBR is located on marine terrace deposits (Qt).
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Fig. A.27 Velocity seismograms at EFF and LOE, amplitude spectra and their
ratios (EFF/LOE). Seismogram scale is in 10® m/s and spectra in 10~° m.
EFF is located on marine terrace deposits (Qt).
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Fig. A.28 Velocity seismograms at WAL and LOE, amplitude Spectra and then'
ratios (WAL/LOE). Seismogram scale is in 107 m/s and spectra in 1078 m.
WAL is located on alluvium (Qal).
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Fig. A.30 Velocity seismograms at WAS and LOE, amplitude spectra and their
ratios (WAS/LOE). Seismogram scale is in 10~® m/s and spectra in 107% m.
WAS is located on alluvium (Qal).
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Fig. A.31 Velocity seismograms at CED and LdE, amplitude spectra and their
ratios (CED/LOE). Seismogram scale is in 10~8 m/s and spectra in 10~% m.
CED is located on alluvium (Qal).
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Fig. A.32 Velocity seismograms at CE2 and LOE, amplitude spectra and thelr
ratios (CE2/LOE). Seismogram scale is in 10~ = m/s and spectra in 1078 m.
CE?2 is located on alluvium (Qal).
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Fig. A.33 Velocity seismograms at CEW and LOE, amplitude spectra and their
ratios (CEW /LOE). Seismogram scale is in 10~® m/s and spectra in 10~% m.
CEW is located on alluvium (Qal). |
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Fig. A.3¢ Velocity seismograms at PGM and LOE, amplitude spectra and their
ratios (PGM/LOE). Seismogram scale is in 10~% m/s and spectra in 10~% m
PGM is located on alluvium (Qal).
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Fig. A35 Velocity seismograms at FNT and LOE, amplitude spectra and their
ratios (FNT/LOE). Seismogram scale is in 10~% m/s and spectra in 107% m.
FNT is located on alluvium (Qal).
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Fig. A.36 Velocity seismograms at LAU and LOE, amplitude spectra and their
ratios (LAU/LOE). Seismogram scale is in 10~® m/s and spectra in 10~% m.
LAU is located on marble (m).
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Fig. A.37 Velocity seismograms at LAV and LdE, amplitude spectra and their
ratios (LAV/LOE). Seismogram scale is in 1d“8 m/s and spectra in 107® m
LAV is located on alluvium (Qal).
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Fig. A.38 Velocity seismograms at BAS and LOE, amplitude spectra and their
ratios (BAS/LOE). Seismogram scale is in 107 m/s and spectra in 10~° m.
BAS is located on alluvium (Qal).
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