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KINEMATIC WAVE THEORY FOR DEBRIS FLOWS

by
M. Arattano and W.Z. Savage

ABSTRACT

We present a mathematical model for debris flows, based on
kinematic wave theory, and apply our model to published data from
two debris flows that occurred in 1981 on Mount St. Helens. The
model, which is based on a relationship originally developed for
water flow in open channels, shows good agreement with the field
data.

INTRODUCTION

Debris flows are mixtures of water and highly concentrated
dispersions of very poorly sorted sediment (up to boulder-sized
particles) that often move at very high speeds and have great
destructive power (Pierson, 1986, Takahashi, 1978). Debris flows
usually appear as waves (surges) with a steep front. The steep
front consists largely of boulders, which can be surprisingly
large and which move as though they were on top of the tread of a
tractor (Johnson, 1970). Behind the bouldery front the number of
boulders gradually decreases and the surge becomes charged with
pebble-sized fragments and then more and more diluted until it
appears as muddy water (Johnson, 1970; Costa and Williams, 1984).

Debris flows have been modeled as dilatant fluids using
Bagnold's (1954) dilatant fluid concept (Takahashi, 1978 and
1980), and as Bingham (1922) plastic fluids (Yano and Daido,
1965; Johnson, 1970; Rodine and Johnson, 1976). Chen (1987 and
1988) has recently reviewed Japanese concepts for modeling debris
flows and has formulated a generalized viscoplastic fluid model
for these flows.

Debris flows have also been described successfully by models
originally developed to simulate surface water flows (Laenen and
Hansen, 1988 ). The water flow models, other than generating
useful information about the possible evolution of debris flows,
allow at the very least comparison between water flow behavior
and the flow behavior of debris.

]

At this time little is known about the details of initiation

of debris flows. For example, debris flows can be triggered by
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volcanic eruptions, by landslides, and by failure of natural dams
(Pierson, 1986). In some cases it has been possible to
reconstruct the conditions for debris flow initiation and to find
a close analogy with dam-break phenomena (Gallino and Pierson,
1984). This, of course, is particularly true if a debris flow
initiates during failure of a natural dam.

Dam-break phenomena have been analyzed using kinematic wave
theory (Hunt, 1982). Kinematic waves are a distinctive type of
wave motion that arises in one-dimensional flow problems.
Kinematic wave properties follow directly from the continuity
equation causing these waves to be distinct from classical wave
motions. Classical wave motions depend on the complete momentum
equation and are, therefore, called dynamic and possess at least
two wave velocities at each point. Kinematic waves possess only
one wave velocity. Therefore dynamic waves can move in two
directions from their source while kinematic waves move only in
one direction (Lighthill and Whitham, 1955).

Kinematic wave theory is presented in detail by Lighthill
and Whitham (1955). They show that, for Froude numbers, F, <2 ,

kinematic waves follow dynamic waves at a lower speed. However,
since dynamic waves rapidly decay, kinematic waves assume the
dominant role in disturbance propagation far from the source.
Also, kinematic waves develop steep shock fronts that are a
consequence of overtaking of slower waves by faster waves
(Lighthill and Whitham, 1955).

Lighthill and Whitham (1955) discuss, in particular, the
asymptotic behavior of a finite volume of water interacting with
an infinite volume of water and show that nonlinear interactions
and shock confluence result in the loss of information concerning
initial conditions. Weir (1982 and 1983) models the asymptotic
behavior of kinematic waves of finite volume in dry channels and
applies his model to lahars. Weir (1983) emphasizes that since
information concerning initial conditions is lost in kinematic
wave theory, this theory can be particularly useful in describing
natural phenomena in which initial conditions may not be known.

In this paper we will show that, regardless of the cause of
initiation, the subsequent behavior of debris flows can be
described by a model similar to a model developed for the
movement of floodwaves resulting from a dam-break. The dam-break
model by Hunt (1982), based on kinematic wave theory, applies at
large distances downstream from a failed dam. We modify this
model, originally developed for flow in wide rectangular
channels, to account for flow in the narrow channels in which
debris flows generally occur.

We also show the analogies between our model and Weir's
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(1982) model for lahars. Weir (1982) uses kinematic wave theory,
with discharge instead of flow height as the dependent variable
in the continuity equation. Thus, Weir's model cannot be used
when only flow height is available and discharge is unknown.
Weir's (1982) model was used by Pierson (Pierson and others,
1990) to reconstruct the propagation of. the catastrophic lahars
triggered by the Nevado del Ruiz eruption of 13 November 1985.

We have applied our model to data collected on October 1,
1981 from two gaging stations along a reach of a stream channel
on Mount St. Helens (Pierson, 1986). The model shows very good
agreement with some of the observed data.

THE MATHEMATICAL MODEL

One-dimensional, unsteady flow in a rectangular channel with
a fixed slope is described by the momentum equation,

uu +u+gh = gi-gif (1)
and the continuity equation (Abbott, 1966),
h+uh +hu = 0 (2).

In these equations (known as De Saint Venant equations) t is
time; g is the gravitational acceleration constant; u is
velocity; x is distance along the channel; i is channel slope; h

is flow height; and y is the bed resistance term. The x and t

subscripts denote partial derivatives.

Equations (1) and (2) are derived for an infinitesimal
element of fluid of unit width. The first two terms in equation
(1) represent the Eulerian acceleration over the element while
the third term represents the potential gradient over the
element. The first term in equation (2) represents the
accumulation within an element and the last two terms the net
inflow into the element.

Dimensionless variables are introduced in the following in
order to put equation (1) into a form involving quantities that
can be neglected. The dimensionless variables we introduce are:

h
h o= 2 3),
*H * ()

1)



u
U = — t = — 4 R
* U * L (4)

where L is a typical length, H is a typical flow height, and U is
a typical velocity in the flow. Using dimensionless variables the
momentum and continuity equations become

—[u ~+ 1+ = l"lf (5),

and

~+h,—+u,— =0 (6).

2
For our problem (see equation 12) the term E%-can also be
. 8

written as 1%; . The term U?%gH , which is the square of the
8

Froude number, F, , is a measure of the relative importance of

kinetic and potential energy in the flow.

In kinematic wave theory it is assumed that the product of
the Froude number and the acceleration terms and the product of
the ratio H/L and the flow height gradient term in equation (5)
are negligible. Equation (5) then becomes simply:

ip=i (7)
and the flow is described by equation (6). Hunt (1982), in his
kinematic wave analysis of the dam-break problem, shows that,

when F<2 , which is almost always true far downstream, the

neglected terms in equation (5) are less than 10 percent of the
channel slope term after the floodwave front has traveled a
distance of 5.2 times the length of the original dammed
reservoir.



In hydraulics we have an empirical relationship between
discharge, Q, and flow height, h,

Q= vh" .

where v and n are constants.

We also know that discharge is the product of velocity and
flow cross-sectional area. Since the data we will use are in
terms of flow height, we assume an analogous relationship between
velocity and flow height. In fact, we show in appendix I that the
velocity u can be written as a function of flow height h
(equation A9). Equation (A9) in dimensionless terms becomes

u "h,k (8)1

As we show in appendix II, the value of k depends on the
width of the flow cross-section. Since R = h for an infinitely
wide rectangular section we have from equation (A5) and (A7b)
that k is 2/3. Fpr a rectangular flow cross-section of zero
width, k is zero. Thus for rectangular channels that have a width

between 0 and « k ranges between 0 and 2/3.

Differentiating equation (8) partially with respect to x,

we obtain

. k-1 aht
%
ox ox

* *

and the second term in equation (6) becomes

u,  ,on o,
h‘ = Hl‘— = h“ (9) .
ox ox ox

* * .

Substituting this expression in equation (6) gives the
continuity equation as



Sh, k+1) Sh, 0 10
—+(K+1)U = .
at, tox (10

*

Equation (10), which governs the propagation of perturbations in
flow height, in dimensional form is

h+(k+Duh, = 0 (11).

In appendix I, by using the reduced form of the momentum
equation (equation 7) and the Manning equation (equation Al), we
have defined a simple relationship between velocity and flow
height given as equations (A9) or (8). Then using this
relationship in the continuity equation we have just derived a
single first order equation governing the propagation of
perturbations in flow height (equation 11). In the next section
we will use equation (11) as the governing equation for modeling
debris flows as kinematic waves.

KINEMATIC WAVE MODEL FOR DEBRIS FLOWS

A possible condition for debris flow initiation is sketched
in"Fig. 1. The debris mass from which the debris flow develops is
represented to be like a water mass behind a dam before collapse.
Again we emphasize that initial conditions like those sketched in
Fig. 1 are not particularly important to the later behavior of
debris flows when these flows are modeled as kinematic waves.
Hence the choice of initial conditions is somewhat arbitrary. We
also show in Fig. 1 the meaning of the parameters H and L that
are used in what follows. The maximum initial (undisturbed)
height of debris in the channel is H. The parameter H is
analogous to the water height immediately behind an unbreached
dam. The initial undisturbed length of the debris mass in the
channel is L. The parameter L is analogous to the reservoir
length behind an unbreached dam. Since a constant channel slope
is assumed, the H and L parameters are linked by the relation

R

(12) .

Referring to Fig. 1, we see that the flow height h(x,t) in
equation (11) is subject to the initial conditions,

!

h(x,0) = -‘;!x for 0<x<L
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h(x0) =0 for —-«<x<0 and L<x< +» (13).

Kinematic theory predicts that a shock front will develop at
the front of the debris flow during its motion. We require, x(f) ,

the location of the shock front, to move with the speed of the
fluid immediately behind the shock, that is,

dx () (
& u xs(t),t) (14),

where
x0) =L (15) .
?gz?tion (15) is the initial condition for differential equation
Omitting the asterisk subscript for notational convenience,

equations (8) and (10) and conditions (13), (14), and (15) can be
rewritten as,

u=h* (16),
h+(k+1)h "hx =0 (17),
where
h(x0 =x for 0 <x <1
h(x,0) =0 for -2 <x<0 and 1 <x< +o (18),
and
dx (9
— - h¥x (5),9) (19),
where ’



20 = 1 (20).

Solving equation (17) by the method of characteristics
(Abbott, 1966) we find that

dh
— =
(21)

along characteristic curves that have the slope given by

%"t- = (k+1)h* (22).

Equations (21) and (22) are both ordinary differential equations
that are integrated to give

h=C, (23)

along the characteristic curves given by

x-(k+Dh% = C, (24).

Here C, and C, are constants of integration and k is constant

along the channel. Note from the Appendices that k is constant
because no abrupt change in cross-sectional form is assumed for
the flow.

Using the initial condition (18), we can calculate the
integration constant for any characteristic curve. In the (x,t)
plane (Fig. 2) a characteristic curve given by equation (24)

intersects the x axis at x = x, ( where 0 < xy < 1) when t = 0.

Thus for t = 0 equation 24 gives the integration constant
x=x,=C,

and equation (24) becomes

!
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x-(k+1)h% = x, (25) .

Recall from equation (18), that the dimensionless flow
height h(x,0), obtains the value

h(x,0) = x for O<x<1 ;
that is,

h = x, . (26).

Eliminating the parameter " x, " from equations (25) and (26) we

find the characteristic curve equation,

x-(k+Dh*%t = h (27) .

Equation (27) represents a straight line in the (x,t) plane.
The -characteristic curves are thus straight lines and along each
curve the flow height, h, has a constant value. They leave the x
axis along the interval 0 < x < 1, as an expansion fan in the
(x,t) plane (Fig. 2). Outside this interval, along the x axis,
the flow height is zero, as we can see from initial conditions
(18) , and the characteristic curves leaving the x axis are
straight lines parallel to the t axis.

The intersection of the two families of characteristic
curves gives the position of the shock, which must be inserted in
the solution to prevent the physically absurd situation of two
different flow height values at the same point. The position of
the shock can be found analytically by assuming that debris
volume is conserved during the process (Weir, 1982, 1983; Hunt,
1982) .

Defining A to be debris volume per unit cross-sectional
width we then have,

fo Opxde = A (28),

for debris-volume conservation. Remembering the meaning of the H
and L parameters (Fig. 1), we can write

11



A= -%HL (29) .

Using equation (29) in equation (28) and writing equation
(28) in dimensionless variables we get

[ nenyx =

1
o -5 (30).

As shown by Hunt (1982), equation (30) is easily integrated
when equation (27) is used to change the integration variable
from x to h; that is,

dx = (1+k(k+1)h*'0)dh (31).

Thus equation (30) takes the simple form,

[ O k(s 1)k )dh = % (32),

in which h(f) is the flow height immediately behind the shock.

Treating the variable t as a parameter, assuming k as
constant, and calculating the integral of (32), we can solve the
result for t giving,

1-h2

s

mk“'l

s

t =

£

(33).

The .x coordinate of the shock can then be found by
eliminating the variable t from equations (27) and (33) to give

kel 1-k
= ——h 34).
* = omm ok (34)

s

Equations (33) and (34) are thus parametric equations of the
shock front in the (x,t) plane. The solution in the region
between the shock front and the t-axis is given by equation (27),
while outside of this region the solution is given by h = 0 (Fig.

12



2). Far from the origin, for large times and behind the forward
shock, the characteristic curves that define the wave appear to
originate approximately from the origin, which shows graphically
the relative lack of importance of initial conditions to
subsequent, late-time, kinematic wave propagation.

ANALOGIES WITH WEIR'S (1982) MATHEMATICAL MODEL
Equation (27) can be rewritten as

_h _ (k+Dh%
X X

1 (35)

for large x fluid height, h, is small, and thus~£ is small so
x

equation (27) can be approximated by

1 1

ho= () E .
(k+1) t (36)

Equation (36) shows that at a fixed point, x, water depth, h,

1
varies as t ¥ .

Weir (1982), using kinematic wave theory and an asymptotic
solution valid for large times, has also shown discharge of
lahars to vary as a negative power of time. Weir (1982) arrives
at the expression

g = L2y (37)

where x is a constant parameter and fix) is a complicated function

x

t x-1

of x. Thus at a fixed point, x, discharge varies as . Weir

(1982) accounts for changing slope in his model by defining slope

as px7 .
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COMPARISON WITH DEBRIS-FLOW DATA

When modeling lahars, eruption time can be determined from
seismic records and the value of the variable t to be used in
equation (36) is then also known. In fact, Weir (1982) uses such
information in his equation describing the change of discharge
with time for lahars.

For debris flows we normally do not know the time of flow
initiation. However this difficulty can be resolved by installing
two gaging stations at a fixed distance along the channel.

Knowing the distance " I " between the two stations and adopting

the same value of k for both cross sections, we can then write
equation (34) in dimensional form for the two stations as the two
equations (the subscript for x has been omitted)

1-kh
i = k+1 _( ) 1 (38)
L h, 2kH
2k—
H
and
1-k
x+l _ k+1 _( Oh, (39)
L h, 2kH
2k—=
H

in which h, and h, are the peak flows at the first and second

stations, respectively, I is the distance between the two gaging

stations, and x is the unknown distance of the first gaging
station from the origin of the flow. We can express the parameter

L in equations (38) and (39) as a function of channel slope, i ,

and initial height, H, by equation (11). Equations (38) and (39)
then give a system of equations for the unknowns H and x. Solving
this system we get the following expressions for H and x as
functions of k:

14



H = (40)

and

1, k+1

X = _.( Hz-lih
]

2kh, 2k

D (41).

If we do not know the cross sectional shape and hence k, we
can choose a trial value for k (for example 2/3, valid for wide
rectangular channels) to get approximate values for H and x from
equations (40) and (41). Equation (33) can then be used to

2
1-h1
Zkhkd

S

obtain t in dimensionless form; that is ¢= , Where hs , the

shock height, is equal to the peak flow height.

- - To express t in dimensional form we use the definition of
nondimensional time (equation 4). This requires that we know U

1
and L, where U is given by U=CH%? (equation A10) and L is given

by i=§§ (equation 12). To calculate C, we use mean values of

peak velocities and flow heights at stations 1 and 2 in equation

1
(A7), u=Ch*? . Then solving for C, and assuming C to be constant

with flow height, we have U and hence dimensional t, which
represents a value for the elapsed time since debris flow

initiation. This value of t gives an estimated time, 7, for the

appearance of the debris flow at the first gaging station.

If equation (36) is plotted with log h(t) as the ordinate
and log t as the abscissa, then, for fixed x, a straight 1line

with slope -% results. If we find that a plot of the logarithm

)
of the hydrograph data collected at the first gaging station,
that is log h(t), against the logarithm of time, log t, (starting

15



from the time ¢, ) can be approximated as a straight line with

negative slope, then we can estimate a value for k. The use of
this value for k in equations (40) and (41) then gives improved
values for H and x and we can repeat the calculations. The
iteration is rapidly convergent and gives final consistent values
for H, ¥, t and k. Finally, having determined the parameters
necessary to predict the hydrograph beyond the first gaging
station, we can predict the hydrograph at the second gaging
station and compare it with the recorded hydrograph at that
station.

To test our model we have used data (Pierson, 1986) recorded
in 1981 in a reach of the Muddy River immediately downstream from
the terminus of the Shoestring Glacier, on the southeast flank of
Mount St. Helens (Fig. 3). Among the many different methods used
for debris-flow monitoring at this site, there are two gaging
stations separated by a distance of 273 m. Between the two
stations (labeled with 1A and 1B in Fig. 4) the channel slope is
approximately constant (about 0.184 radians) except for the 10-m-
high falls shown in Fig. 4.

On 1 October 1981, four debris flows occuring a few minutes
apart were recorded at gaging stations 1A and 1B. The first two
surges had peak flows at the first station of 3.36 m and 2.36 m
(Fig. 5), respectively. Using the original hydrographs and the
data shown in Table 1, we have calculated by the procedure
outlined above values of H, ¥, t and k for these first two

surges. Values of h, and h, used in the calculation are given in

Table 1. These flow heights are peak flow height values above the
channel bottom.

Hydrographs for the first and second debris flows recorded
at the first station (1A) are shown in Figs. 6 and 7 together
with theoretical hydrographs predicted by kinematic wave theory.
The values of k have been calculated by linear regression of the
recorded hydrographs in a bilogarithmic plane. These regressions
also are shown in Figs. 6 and 7, and the values of k are in Table
2. In that table we also show values obtained for x, H and L. In
both cases the x values, which give an estimate of the distance
from the source of the debris flows to the first gaging station,
are large enough to apply kinematic wave theory.

We have calculated two approximate values of the Froude

number ( F, = . ) using the mean front velocity values and the
gh

mean peak flow values between the two stations (Table 1). We see

that both values are less than 2 (F, = 0.67 for the first debris-

16
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- Location of the monitored channel reach of the Muddy
1986) .

Figure 3.
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Figure 5. - Stage hydrographs of multiple surges of Oct. 1, 1981
debris’'flows. Stations are shown in Fig. 4 (After
Pierson, 1986).
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flow and F_ = 0.68 for the second), which is consistent with
Hunt's criteria for omitting the derivative terms in equation

(5) .

Theoretical hydrographs forecast by the model for the first
and second debris flows at the first and second gaging stations
are shown in Figs. 8 and 9. The theoretical hydrographs show good
agreement with recorded data at the gaging stations in both
cases.

DISCUSSION

The agreement between measured and theoretical hydrographs
in Figs. 8 and 9 implies that debris-flow behavior can be
considered to be similar to clear water behavior to which
kinematic wave theory and the Manning equation are usually
applied. In fact, Pierson (1986) has shown that the Manning
equation can be applied to debris flows when sediment
concentration is as much as 76-78 percent by weight. Observing
debris flows one notices that they become more fluid behind a
boulder-laden front and can develop features typical of water
behavior such as the hydraulic jump shown by Costa and Williams
(1984) .

_ . We have no information about channel cross sections at the
two stations and hence have been unable to estimate discharge
hydrographs for them. Of course, if we knew cross sectional areas
we could determine discharge by using equation (A7) to calculate
mean velocities for changing flow heights at both sections 1A and
1B.

The assumption of a constant k value along the channel seems
to be reasonable for flows 1 and 2. We see that at both stations
predicted hydrographs with constant k values show good agreement
with the actual debris flows. However, with no information about
cross-sectional shape, we have been unable to verify the k values
obtained by the procedures outlined above. The k value for the
second debris flow is smaller than the k value for the first
debris flow. This could occur if the flow cross section was
narrowing by deposition, by a reduction in flow height, or a
combination of these effects. However, we need to remember that
we supposed k to be constant for different flow heights in our
theory.

The model allows a prediction of the distance that the
debris flow has traveled from its point of inception to the first
gaging station, x. Values found for x using equation (41) show
that the two debris flows should have started on the Shoestring
Glacier at 415 m and 809 m from the first station, respectively.
We note that Pierson (1986) has postulated that one source of
these flows could be glacier outburst floods.

24



* (umoys
oste axe yi uorjeis je sydexboapdy pepaoosax pue TeoT3alosyl) uorlels aues
8yl 3¢ ydeaboapdiy pspaoosx ayjz yYitm paaedwoo (py °*HTd) T uorjels je

Kxooyy aaem otjewsuty Aq po3zorpaad morj stageap 3Isatl syl jo ydeaboapdy sbeis - °g aanbtra

ED)
g < 2 2 3 2 £ 8 $ 5
8 8 8 8 3 = 8 8 a8

i b s b 2 b s s bl aandlaaaagddlas s aa b o b o 2 a2 1 4 2 2 2 3

e

DJOP pepIod8l — —0—

Aioay} eADM DDLU

&
g
w

00°0

0og°0

09°0

06°'0

ozt

oSt

081

oLz

or-z

0L°T

25



* (umoys
osTe axe yI uotje3s e sydeaboapdAy psproosa pue [eoT3islosyl) uorlels awes
ay3 3je ydeaboapdAy pspaooax 9yl yztm paxedwoo (v *HTd) 91 uorlzels e

Kxo9y3 aaem orjewsautry Aq pajzoipaad MOTJ STIqap puooads aylz jo ydeaboapAy abeizs - °6 aanbid

(009)
}

& g 3

3 S

FYEE WS HEE U W U0 A VAN UIE U AN VO UV GO G W BN A NN SV U (BN WS OOY GO0 UAY BN NAN BN N N NN WA NNN U BN WY N NN U A BN N N O BN

00°09¢
00°9¢S
gotig
00882
00'¥9Z
00912

~N
S
o
o
1

00°Z61

o—
]

DJOpP PepIodal - —0— d

Aoy} eADM DjjowBu

00°0

0g°0

090

26

06°0
oz't
os°t
08"t

(W)
orz c

Illlll]rllllllllllll'lllllllll[llfTTlIlllflllllI



Also recall that our model does not account for changing
slopes. Note in Fig. 4 that the slope in the reach increases
upstream, which could affect the estimated values for t, H, x
and, thus, k. The model could be improved by taking account of
changing slope by using an expression for slope as a function of
distance such as that used by Weir (1982).

Note that the linear regression made on recorded hydrograph
data at the first station (Fig. 6) would allow an estimation of
X, as well as k, from equation (36). However, in both cases, this
estimated x value was less than 50 percent of that calculated
with equation (41).

More data are needed to show the validity of this model. It
would be useful to predict the movement along a stream channel of
a known mass of debris caused by a landslide or a previous debris
flow. Knowing debris volume, the amount of water required for
mobilization, and the mean width of the stream channel, we could
calculate the parameter A in equation (28) by dividing the debris
and water volume by the mean channel width. Knowing the channel
slope, we could then calculate the parameters H and L in equation
(29) . Also, if we have a value for k and for C along the stream
channel we could predict the propagation of the debris flow along
the channel.

Our model does not take into account other features of
debris flows. For example, debris flows do not show a vertical
front but a continuous, rapid rise to peak discharge that may be
imperceptible to recorders. Whitham (1955) and Takahashi (1980)
derived theoretical expressions to account for the lobate profile
of the leading edge of a flow. Actually, Whitham's (1955)
equation has been derived to model the profile of the leading
edge of a mass of water propagating along a stream channel after
a dam failure, while Takahashi's has been derived for debris
flows. We have not used such expressions here because of the
steep front profile shown by the debris flows examined.

Our model does not allow any prediction about how far debris
flows can travel. Theoretically kinematic waves propagate
indefinitely. But shock height does decrease downstream until it
reaches a practically null value after a finite distance from the
starting point.

The model could be improved by using for the term 9 , Which

accounts for bed resistance, a relationship that accounts for a
Bingham behavior (Johnson, 1970) of the debris flow front. This
Bingham behavior would account for the apparent strength of the
slurry, a strength that would keep the boulders in place at the
front of the flow. It would substitute for the relationship we
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have adopted for 9 in equation (7), which comes from open-

channel-flow theory for water.

The model does not explain the effects of deposition or
erosion along the stream channel during flow because it is based
on the hypothesis of constant volume. That hypothesis is made
when we assume A to be a constant to find the parametric equation
of the shock front in the (x,t) plane (equations 33 and 34).

If, because of erosion of deposits along the channel, the
peak flow value gets larger during the flow from the first to the
second gaging station, the model cannot be applied. This could
have happened during the third and fourth debris flows of 1
October 1981 (Fig. 5). Both flows, though much smaller than the
first two, show a higher peak flow value at the second station
(Table 1). The difference between the peak flow values at the
first and second station is particularly large for the fourth
surge.

The higher peak flow value at the second gaging station
could also be due to an abrupt change in cross-sectional form for
small flow heights at that station. If the cross section narrows,
we can get a higher peak flow value like the one recorded. But,
again, our model cannot account for such a circumstance, since we
have supposed the channel cross-sectional form to remain constant
along the channel.

A narrow flow cross section, close to a rectangular form,
would have a small value for the parameter k and, thus, a narrow
hydrograph with a rapid decrease in flow height behind the peak
flow value. Thus, rapid decrease of flow height with time would
be predicted because small values of k give large exponents in
equation (36), causing the flow height, h, to decrease more
rapidly with time. An increase of peak flow height at the second
station due to a narrower flow cross section that is close to a
rectangular form should then show a narrow hydrograph at that
station and, indeed, for the last surge, we observe that the
hydrograph recorded at the second station is narrower than the
one recorded at the first. Kinematic wave theory predicts a
continuous spreading out of the hydrograph proceeding downstream,
if the value of k does not change along the channel and no mass
is added to the flow.

In summary, both erosion and an abrupt change in cross-
sectional form of the flow could explain the higher peak flow at
the second station and the narrow hydrograph recorded for the
last two debris flows. We hope to account for such effects in our
future modeling efgorts.
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CONCLUSIONS

To model debris flows, we have modified a mathematical
approach developed from open channel hydraulic theory. This
approach was originally uséd to predict the behavior of a mass of
water suddenly released in a wide rectangular stream channel
after a dam-break. Our model appears to simulate the form of
stage hydrographs from two debris flows that occurred in the
Muddy River, on Mount St. Helens, on October 1, 1981, reasonably
well. From the hydrographs of these debris flows, recorded by two
gaging stations 273 m apart on the stream, we have been able to
use the first station hydrograph and the peak flow of the second
hydrograph to calculate the model parameters and then forecast
the form of the hydrographs at the second station. These
forecasts have shown good agreement with actual data, and a
behavior of the debris flows examined that is very similar to
that of clear water. We have also demonstrated analogies between
debris flows and dam-break phenomena. The model has allowed an
estimation of the position of the sources of the debris flows and
the time of travel of these flows to the first station. Also k
values for the channel, k being a parameter that accounts for
changes of hydraulic radius with flow depth, have been
calculated. If the initial volume of debris is known our model
could be used to give a rough forecast of propagation along a
stream channel of a debris mass deposited by a landslide or a
previous debris flow.

More research is needed to verify the general applicability
and reliability of this model. At this time the model cannot
include the effects of changing channel slope, nor erosion or
deposition during debris flow movement, and it cannot be used to
predict the distance that a debris flow can travel. Nevertheless
the model provides a quantitative theory that can be useful for
future research on debris flows behavior.

APPENDIX I

The Manning equation, originally developed to describe
uniform flow of water in open channels, is used in the following

to develop an expression for the bed resistance term, y , in the

momentum equation (equation 1). We show that R, the hydraulic
radius, can be expressed in the Manning equation as a function of

flow height, h, so that the bed resistance ternm, y , becomes also

a function of flow height, h, and, as a consequence, u can also
be described in terms of flow height. Expressing the bed
resistance term as a function of flow height is essential to the
integration of equation (2).

29



The Manning equation is (Chow, 1959)

1 21
u=—R%? (A1),
n
where
u = mean velocity of the fluid
n = roughness coefficient
R = hydraulic radius
i = channel slope.

Hydraulic radius R is the ratio of cross-sectional area of
the flow to the wetted perimeter of the channel (Rouse, 1938).
Although hydraulic radius is a function of the cross-sectional
flow geometry, the factor R does not fully describe the geometry
of the flow cross-section. In fact, R may have the same magnitude
for an infinite variety of flow cross-sectional forms (Rouse,
1938).

We now find R as a function of flow height, h. Discharge, Q,
for uniform flow in a channel is expressed as the product of the
mean-velocity of the fluid, u, and water area, S, or, using
equation Al, as

1 21
Q = —SR3i?
n
or
1
Q=Ki? (A2),
where
1 2
K = =SR? (A3).
n

The term K is known as the conveyance of the channel cross-
section, and since K is a function of the depth of flow, h,
through S and R, it may be assumed (Chow, 1959) that

!
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K% = yh® (p4),

where y is a coefficient and & is called the hydraulic exponent

for uniform flow computation (Chow, 1959). For rectangular flow
cross-sections of different width, b, Chow (1959) shows

that & varies within a range of 3.33 to 2 when % varies within a

range of 0 to « .,

However for most channels, except for channels with abrupt
changes in cross-sectional form, a logarithmic plot of K as
ordinate against the depth h as abscissa will appear
approximately as a straight line (Chow, 1959), and

thus § and y may be assumed constant for most flow cross-

sectional areas.

Since we can express the flow area for any cross-sectional
form as a product of a mean width, b, and flow height, h, which
is equivalent to approximating the flow cross section with a
rectangular flow cross section, we substitute bh for S in
equation (A3), and using the resulting expression for K in
equation (A4) we obtain

wlw

-2

x
[}
I:
<2
»lw
-~
»lw

nlw

or as

R = ahh (A5),

which expresses the hydraulic radius R as a function of flow
height. Here,

3
n? 3
a=-—zy and k1=z(6 -2) (A6) .
2
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For rectangular flow cross-sections, as 8 varies from 2 to

3.33, k; varies between 0 and 1, depending on the channel width.
For most flow cross-sectional areas, except for channels with
abrupt changes in cross-sectional form, k; , like 6 , may be

assumed constant.

Substituting equation (A5) in equation (Al) gives:

1
u = Chk? (A7a)

in which
2
k=-§k1 (A7b)
and
1 2
Cm=q?3 (A7c).
n

Solving equation (A7) for the channel slope, i, and recalling

that because of the kinematic wave approximation, i-y ,we have

= u2

Vi C2h%

(A8)
for the bed resistance term g . Rearranging equation (A7) we have

u _ by
== () (A9),

that is, the dimensionless relationship between velocity and flow
height in which the; typical velocity is given by
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1
2

U= CHA (210)

and H is a typical height of flow.

We emphasize that the coefficient C in equation (A7) is
more than a roughness coefficient. In fact, it is given

1
2
by C= 1%— where the roughness coefficient, n, is hidden in the

coefficient y (equation A4). Since the mean flow area width, b,

is generally a function of flow height, C becomes a function of
flow height. Thus assuming C to be constant can be a rough
approximation.

Sometimes debris flows start on unbroken hillsides and cut
V-shaped channels (Varnes, 1978), and in many other cases the
flow cross-sectional form is close to a triangular form. For a
triangular flow cross section the hydraulic radius can be shown
to be given by

R =Lsing k
2

where 2a is the angle of intersection of the channel walls. Thus,

win

in this case (7=-lC§§E) and no approximation is made in
n

assuming a relationship like equation (AS5) for the hydraulic
radius and C is no longer a function of flow height. However,
notice that for triangular cross-sectional forms the continuity
equation (equation 2) changes to

h,+uhx+-;-hux -0 .

APPENDIX II

In order to shpw the dependence of k, and a on flow cross-
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sectional shape, we have calculated the parameters h_and a for

eight different cross sectional forms (Figs. 10 and 11) using
equation (AS) for hydraulic radius in terms of flow height, that

is R =ah™ . We have determined values of the hydraulic radius,

the ratio of flow cross-sectional area to wetted perimeter, for
these eight sections, for values of fluid height ranging from 0.5
to 5 m, a range of fluid height that can reasonably account for
many real cases. For each section one value of R was calculated
every 0.5 m. These were then plotted against h in bilogarithmic

planes and linear regressions were performed for k; and a for

every cross sectional form. Values for the squared correlation
coefficient are also shown in Figs. 10 and 11.

The first four sections are rectangular sections with widths
w of 2, 8, 16 and 32 m, respectively. Linear regressions for
these four sections are shown in Fig. 10. It is easily seen that

the width of the cross section affects both k and a ; the
narrower the rectangular cross section the smaller are the values
fof'h and a . We can show that a ranges between 0, for

rectangular flow cross sections of zero width, and 1, for
rectangular cross sections of infinite width. Notice from Fig. 10
that the correlation coefficient is higher for larger widths: the
larger the rectangular cross section the better equation (AS)
expresses R.

We have also determined the values for h and a for four

different trapezoidal sections (Fig. 11) using equation (AS5).
Observe that equation (AS5) gives better results for trapezoidal
sections than for rectangular sections: the correlation
coefficient is high also for sections with small basal width b
(Figs. 1la and 11b). However, remember that in order to
approximate the cross-sectional form with a trapezium the
continuity equation (equation 2) needs to be changed.

The parameter k, depends on the cross section basal width,
b, in the trapezoidal case. In fact for the same b value a larger

z ( Z=cotge , where a is the slope of the side) gives a

larger k, value (Fiés. 11 a and b). Notice that, on the contrary,
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Figure 10. - Bilogarithmic linear. regressions of hydraulic radius
against flow height for four different rectangular

sections and respective a and k, values.
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against flow height for four different trapezoidal

sections and respective a and k; values.
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the coefficient a does not change significantly with side slope.

Observe also that the k, values in this case are much larger than

for a rectangular section in which the width w is the same value
as b.

The k, value expresses the closeness of the section to a
triangular form. For triangular sections k; =1 . For the same
side slope the k; value for the section of Fig. 11lb is larger

than the k; value for the sections of Fig. 1lc and 11d, despite

the fact that they have larger b values. This can be explained by
observing that the cross section whose linear regression is shown
in Fig. 11b is much closer to a triangular form than the cross
sections of Figs. 11lc and 11d.

The coefficient a is less affected by the closeness of the

section to a triangular form. It increases with b and is not much
influenced by the side slope.
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