
An Example of Interfacing AVS and NetCDF

by

Evelyn L. Wright

U.S. Geological Survey Open File Report #92-332

May 1992
Woods Hole, MA 02543

This report is preliminary and has not been reviewed for conformity with U.S.
Geological Survey editorial standards (or with the North American Stratigraphic
Code). Any use of trade, product, or firm names is for descriptive purposes
only and does not imply endorsement by the U.S. Government.

ABSTRACT

This report describes a prototype software module for interfacing

UCAR/Unidata Network Common Data Form (netCDF) data files with the

Application Visualization System (AVS) from AVS Inc. The module read_netcdf

is specific to netCDF data files created by an ocean circulation model

that has three-dimensional, curvilinear spatial coordinates that vary

with time; however, the module may be useful as a template for developers

with similar needs. The module creates an AVS three-dimensional, irregular

field containing scalar data. The C language source code, Makefile, help

file, and listings of sample input and output data are included.

INTRODUCTION

An ocean circulation and sediment transport model for Massachusetts

Bay produces large data sets of three-dimensional variables such as currents,

salinity, temperature, turbulent intensity, momentum fluxes and dispersion

coefficients computed for a curvilinear, three-dimensional spatial grid

that varies with time. Because of the large quantity of data and the need

for the data to be transportable to multiple computer systems, the data is

stored in netCDF files. NetCDF (UCAR, 1991) is the UCAR/Unidata Network

Common Data Form: a public-domain, hardware-independent, self-describing

binary format. Because visualization of the data is required for interpre­

tation purposes, it is desirable to import the data into AVS. AVS is the

Application Visualization System software environment for scientific

visualization developed by AVS Inc.

Retrieval of data from netCDF files requires use of the netCDF interface,

and this in turn requires a special AVS module to read the data directly

into AVS. Because no such module was available from either AVS Inc. or the

International AVS Center at the North Carolina Supercomputing Center, a

decision was made to write our own module. This report describes the results

of our initial efforts.

The C source code for read_netcdf is listed in Appendix A, and the

Makefile for generating the executable program is shown in Appendix B.

Note that the netCDF software library is required. The module runs

successfully on a DECstation 5000 under Ultrix 4.2 and AVS 3.0. Appendix C

contains a listing of the AVS on-line help file (i.e., "man" file) for the

module.

OVERVIEW

The netCDF data files read by the module read_netcdf are generated by

the regional circulation model described above. All of the data variables

in the files (except sea-surface elevation) are a function of three spatial

dimensions and time. The spatial coordinates are irregular. The X and Y

axes (in the horizontal plane) represent easting and northing geographical

positions. An example of an X-Y coordinate grid for a data set is shown in

Figure 1. The vertical axis represents percentage of total depth that has

been adjusted for sea-surface elevation (i.e., tide).

An example of a netCDF file that can be read by read_netcdf is shown

in Figure 2. Because the actual data file is binary, the netCDF utility

ncdump was used to produce this human-readable listing of the contents of

the file. The data in this file is a very small subset of an actual data

set generated by the model. The variable salt (i.e., salinity) is the

data variable read by module read_netcdf. The X and Y coodinates are the

variables x and y. The Z coordinates are a function of the variables depth,

elev (i.e., sea-surface elevation) and sigma (i.e., fractional portion of

total depth). Notice that the variables elev and salt are declared as short

integers. This is to conserve space since the data files are usually quite

large. These variables have limited dynamic range and therefore can be

scaled down. The actual values are obtained by multiplying the integer

values by the indicated scale_factor and then adding the add_offset value.

The output from read_netcdf is an AVS three-dimensional, irregular field

containing scalar data. The results of reading the example netCDF file

described in Figure 2 are shown in Figures 3 and 4. Figure 3 shows the

contents of the created AVS field as displayed by the AVS module print_field,

and Figure 4 shows the results of running the AVS module volume_bounds (with

all parameters turned on) on the created field. Figure 5 shows the results

of running volume_bounds on a full data set. Once the netCDF data has been

converted into an AVS field, the user is able to do whatever visualizations

he desires using the functionality of AVS.

DETAILED DESCRIPTION

To be able to use the module read_netcdf, the executable program must be

made available to AVS by invoking the AVS Network Editor and then selecting

Module Tools, Read Module, and the filename of the executable program in

the directory in which it resides. Successful importing of the module is

indicated by a rectangular icon box labelled "read netcdf" appearing in the

Data Input column of the Network Editor. To make the on-line help file

listed in Appendix C available to AVS, the file must be named read_netcdf.txt

and the directory in which it resides specified in the HelpPath command in

the user's .avsrc file.

When read_netcdf is invoked by moving its icon box to the Network Editor

workspace, a file browser and a typein widget appear in the control panel on

the screen. The file browser is labelled "Read netCDF File" and displays file

names that have the extension ".cdf". It is assumed that netCDF files to be

read by the module have that extension. The user makes his selection of an

input file from the file browser. The typein widget is labelled "time record"

and indicates which time step of the data is to be read. Only one time step

of the data is read for each invocation of the module. The default time step

record is zero, which means that the first time record is read.

The netCDF files to be read by the module must contain the following

dimension names: xpos, ypos, zpos, and time, where the size of dimension

time is declared as UNLIMITED. The following variables must be in the file:

float variables sigma(zpos), x(ypos,xpos), y(ypos,xpos), and depth(ypos,xpos)

and short variables elev(time,ypos,xpos) and salt(time,zpos,ypos,xpos). The

variables elev and salt must have the following float attributes: scale_factor

and add_offset, where the scale factor is to be multiplied first and then the

offset added to the data.

The data portion of the AVS field to be created is the data from the

variable salt. The coordinates are irregular and therefore an X, Y and Z

coordinate value is required for each data point. All the X's are stored

first, followed by all the Y's and then the Z's. The X and Y coordinates

are scaled in the program by a factor of 1/4000 to change the values to a

reasonable range. The Z locations are calculated as follows:

Z = sigma*(depth + elev) + elev

LIMITATIONS AND FUTURE PLANS

At present, read_netcdf is specific to the ocean circulation model

described in this report. The only generalizations in the program are

specification by the user of the netCDF input file and desired time step,

and automatic determination by the program of the size of the netCDF data

dimensions so that the proper amount of memory for storing the data variables

can be allocated automatically.

The present module does not allow any flexibility on names of dimensions

and variables, dimensionality and type of variables, required attributes

(e.g., add_offset), and method of computing the coordinate values used for

the AVS field data. Also, there is no choice on the type of AVS field

created. The coordinates are assumed to be three-space and irregular (rather

than uniform or rectilinear), and the data is assumed to be of type float,

three-dimensional, and scalar (rather than vector).

Because reading netCDF data into AVS is of more general interest, effort

is being made to make module read_netcdf more flexible and able to process

a more general form of netCDF files. In the meantime, it is hoped that the

source code of the present version will be useful as a template for writing

AVS modules to read other netCDF data files.

REFERENCES

1. Unidata Program Center, 1991, NetCDF User's Guide: An Interface for Data

Access, University Corporation for Atmospheric Research, Boulder, CO.

Figure 1. Example of an X-Y grid for a full data set

netcdf small {
dimensions:

xpos = 4 ;
ypos = 3 ;
zpos = 2 ;
time = UNLIMITED // (1 currently)

variables:
float sigma(zpos) ;
float x(ypos/ xpos) ;
float y(ypos/ xpos) ;
float depth(ypos/ xpos) ;
short elev(time, ypos/ xpos) ;

elev:scale_factor = 0.00012207404f ;
elev:add_offset = O.f ;

short salt(time/ zpos/ ypos/ xpos) ;
salt:scale_factor = 0.00061037019f ;
salt:add_offset = 20.f ;

data:

sigma = -0.5, -0.60000002 ;

x =
664700/ 669700, 674700/ 679700/
664700/ 669700, 674700/ 679700/
664700, 669700, 674700, 679700 ;

Y =
262200/ 262200, 262200/ 262200/
267200/ 267200, 267200, 267200,
272200, 272200, 272200, 272200 ;

depth =
7.5, 7.5/ 7.5, 5/
7.5, 5/ 5/ 5/
5/ 5/ 2.5, 2.5 ;

elev =
400/ 270/ 152, -10/
431/ 280/ 138/ 21,
425/ 307/ 85/ -29 ;

salt =
8127/ 8189/ 8191/ 8191,
8069/ 8168/ 8187/ 8190,
7980/ 8138/ 8181/ 8188,
8127/ 8189/ 8191/ 8191,
8071/ 8169, 8187/ 8190/
7981, 8138/ 8181, 8188 ;

Figure 2. Sample Input. The above summary of the data in sample
netCDF binary input file small.cdf was obtained by running netCDF
program ncdump.

HEADER:
NDim: 3
NSpace: 3
Veclen: 1
Type: 2 (real)
Size: 4
Uniform: 2 (Irregular)
Dims: [432]
Min Extent: [166.175 65.55 -4.49258]
Max Extent: [169.925 68.05 -1.24481]

DATA:
(0,0,0)
(0,0,1)
(0,1,0)
(0,1,1)
(0,2,0)
(0,2,1)
(1,0,0)
(1,0,1)
(1,1,0)
(1,1,1)
(1,2,0)

24.9605
24.9605
24.9251
24.9263
24.8708
24.8714
24.9983
24.9983
24.9855
2^.9861
24.9672

(f,2,l) 24.9672
(2,0,0)
(2,0,1)
(2,1,0)
(2,1,1)
(2,2,0)
(2,2,1)
(3,0,0)
(3,0,1)
(3,1,0)
(3,1,1)
(3,2,0)
(3,2

X-ir

M)

24.9995
24.9995
24.9971
24.9971
24.9934
24.9934
24.9995
24.9995
24.9989
24.9989
24.9977
24. «J977

@(166.
@(166.
@(166.
@(166.
@(166.
@(166.
(§(167.
@(167.
@(167.
(§(167.
(§(167.
(§(167.
@(168.
@(168.
@(168.
@(168.
@(168.
@(168.
@(169.
@(169.
(§(169.
@(169.
@(169.
(§(169.

175,
175,
175,
175,
175,
175,
425,
425,
425,
425,
425,
425,
675,
675,
675,
675,
675,
675,
925,
925,
925,
925,
925,
925,

65.
65.
66.
66.
68.
68.
65.
65.
66.
66.
68.
68.
65.
65.
66.
66.
68.
68.
65.
65.
66.
66.
68.
68.

1

55
55
8,
8,
05
05
55
55
8,
8,
05
05
55
55
8,
8,
05
05
55
55
8,
8,
05
05

,-3
,-4
-3.
-4.
,-2
,-2
,-3
,-4
-2.
-2.
,-2
,-2
,-3
,-4
-2.
-2.
,-1
,-1
,-2
,-3
-2.
-2.
,-1
,-1

.72559)

.48047)
72369)
47895)
.47406)
.97925)
.73352)
.48682)
48291)
98633)
.48126)
.98501)
.74072)
.49258)
49158)
99326)
.24481)
.49585)
.50061)
.00049)
49872)
99897)
.25177)
.50142)

1
X-coordinate, Y-coordinate, Z-coordinate

data-variable

idex , Y-index, Z- index

Figure 3. Sample Output. The above summary of the AVS field created
by module read_netcdf from netCDF file small.cdf was obtained by running
AVS module write field to write the output from module read netcdf to
disc, and then running AVS modules read field and print field on that
disc file.

Figure 4. Volume bounds of the sample netCDF data file of Figure 2

Y

Figure 5. Volume bounds for a full data set

10

APPENDIX A. Source Code (read netcdf.c)

#include <stdio.h>
#include <avs/avs.h>
#include <avs/field.h>
#include <avs/avs_data.h>
/include <netcdf.h>
#define MAXT 1000 /* Maximum time record number */
/* Used for AVS message() */
static char file_version[]="read_netcdf.c Evelyn Wright,USGS,Woods Hole,MA 4/92";

AVSinit_modules() /* Called by main() routine supplied by AVS */
{

int read_netcdf_desc();
AVSmodule_from_desc(read_netcdf_desc);

}
read_netcdf_desc() /* Description function */
{

int netcdf_compute();
int out_port, pi, param;
AVSset_module_name("read netcdf",MODULE_DATA);
out_port=AVScreate_output_port("Output Field",

"field 3D scalar float 3-coord irregular");
/* Create file browser that displays filenames with .cdf extension */
pi = AVSadd_parameter("Read netCDF File","string",0,0,".cdf");
AVSconnect_widget(pi,"browser");
param = AVSadd_parameter("time record","integer",0,0,MAXT);
AVSconnect_widget(param,"typein_integer");
AVSset_compute_proc(netcdf_compute);
AVSautofree_output(out_port);

}
static
netcdf_compute(output,filename,time_rec) /* Computation function */
AVSfield_float **output; /* AVS field output */
char *filename; /* netCDF filename specified by user */
int time_rec; /* time record number specified by user */
{

AVSfield_float *tmp_field;
int dims[3],i, kc, k, j ,cdfid;
int sal_id,sigma_id;
int depth_id, y_id, x_id, elev_id;
int xpos_id, ypos_id, zpos_id;
float tmp;
char *malloc();
static int one_start[]={0}, two_start[]={0,0};
static int elev_start[]={0,0,0}, sal_start[]={0,0,0,0};
static int two_count[2], elev_count[3], sal_count[4];
static int xypos, xyzpos;

int xpos, ypos, zpos;
float *sigma_vals;
float *depth_vals, *y_vals, *x_vals;
short *elev_vals, *sal_vals;

float sal_scale, sal_offset;
float elev scale, elev offset;

A-l

if (Ifilename) return(l); /* no filename yet */
if ((cdfid = ncopen(filename,NC_NOWRITE)) == -1) {

AVSmessage(file_version,AVS_Warning,NULL,"netcdf_compute",
"Ok","Can't open data file %s",filename);

return(O);

/* Get ID # of each netCDF dimension */
xpos_id = ncdimid(cdfid,"xpos");
ypos_id = ncdimid(cdfid,"ypos");
zpos_id = ncdimid(cdfid,"zpos");

/* Get size of each netCDF dimension */
ncdiminq(cdfid,xpos_id,(char *) 0,&xpos);
ncdiminq(cdfid,ypos_id,(char *) 0,&ypos);
ncdiminq(cdfid,zpos_id,(char *) 0,&zpos);

/* Parameters for reading netCDF data for user-specified time step */
xypos = xpos*ypos;
xyzpos = xypos*zpos;
two_count[0] = ypos;
two_count[1] = xpos;
elev_start[0] = time_rec;
elev_count[0] = 1;
elev_count[1] = ypos;
elev_count[2] = xpos;
sal_start[0] = time_rec;
sal_count[0] = 1;
sal_count[1] = zpos;
sal_count[2] = ypos;
sal_count[3] = xpos;

/* Allocate memory for netCDF coordinate variables */
if ((sigma_vals=(float *)malloc(zpos*sizeof(float)))==NULL){

AVSmessage(file_version,AVS_Fatal,NULL,"netcdf_compute",
NULL,"Can't allocate memory for sigma_vals");

return(O);

if ((depth_vals=(float *)malloc(ypos*xpos*sizeof(float)))==NULL){
AVSmessage(file_version,AVS_Fatal,NULL,"netcdf_compute",

NULL,"Can't allocate memory for depth_vals");
return(0);

if ((y_vals=(float *)malloc(ypos*xpos*sizeof(float)))==NULL){
AVSmessage(file_version,AVS_Fatal,NULL,"netcdf_compute",

NULL,"Can't allocate memory for y_vals");
return(O);

if ((x_vals=(float *)malloc(ypos*xpos*sizeof(float)))==NULL){
AVSmessage(file_version,AVS_Fatal,NULL,"netcdf_compute",

NULL,"Can't allocate memory for x_vals");
return(0);

if ((elev_vals=(short *)malloc(ypos*xpos*sizeof(short)))==NULL){
AVSmessage(file_version,AVS_Fatal,NULL,"netcdf_compute",

NULL,"Can't allocate memory for elev_vals");
return(O);

}

A-2

/* Get ID # of each netCDF coordinate variable */
sigma_id = ncvarid(cdf id, "sigma") ;
depth_id = ncvarid(cdf id, "depth");
y_id = ncvarid(cdf id, "y") ;
x_id = ncvarid(cdf id, "x") ;
elev_id= ncvarid(cdf id, "elev") ;

/* Get coordinate data from netCDF file */
ncvarget (cdf id, sigma_id,one_start , &zpos, sigma_vals) ;
ncvarget (cdf id , depth_id , two_start , two_count , depth_vals) ;
ncvarget (cdf id , y_id , two_start , two_count , y_vals) ;
ncvarget (cdf id, x_id, two_start , two_count ,x_vals) ;
ncvarget (cdf id, elev_id,elev_start ,elev_count , elev_vals) ;
ncattget (cdf id, elev_id, "scale_f actor " , &elev_scale) ;
ncattget (cdf id,elev_id, "add_of f set" , &elev_of f set) ;

/* Allocate memory for netCDF data variable salinity */
if ((sal_vals=(short *)malloc(zpos*ypos*xpos*sizeof (short)))==NULL) {

AVSmessage(f ile_vers ion, AVS_Fatal , NULL, "netcdf_compute" ,
NULL, "Can't allocate memory for sal_vals");

return(O) ;
}
sal_id = ncvarid(cdf id, "salt") ; /* Get ID # of salinity data */
ncvarget (cdf id, sal_id, sal_start, sal_count, sal_vals) ; /* Get data */
ncattget (cdf id, sal_id, "scale_f actor" , &sal_scale) ; /* Get attributes */
ncattget (cdf id, sal_id, "add_of f set" , &sal_of f set) ;

ncclose(cdf id) ; /* Close the netCDF file */

/* Allocate space for field data */
dims[0] = xpos;
dims[l] = ypos;
dims [2] = zpos;
tmp_field = (AVSf ield_f loat *) AVSdata_alloc(

"field 3D scalar float 3-coord irregular" , dims) ;
/* Stuff the data into AVS field structure */
for (i=0; i < xyzpos; i++)
tmp_f ield->data[i] = sal_scale * (float)(*sal_vals++) + sal_offset;

/* Stuff the real-world coordinates into AVS field structure */
kc = 0;
for (j=0; j < zpos; j++)

for (i=0; i < xypos; i++)
tmp_f ield->points[kc++] = * (x_vals+i) /4000. ;

for (j=0; j < zpos;
for (i=0; i < xypos;

tmp_field->points[kc++] = * (y_vals+i) /4000. ;

for (j=0; j < zpos; j ++)
for (i=0; i < xypos; i++) {

tmp = elev_scale * (float)(* (elev_vals+i)) + elev_offset;
if (* (depth_vals+i) < 0.) * (depth_vals+i) =0.;
tmp_f ield->points[kc++] = * (sigma_vals+j) *

(* (depth_vals+i) + tmp) + tmp;
}

output = tmp_field; / Set output pointer to new data */
return(l); /* Indicates successful completion */

A-3

APPENDIX B. Makefile

Edit the following for your site

AVS libraries and header directories
AVS_LIBS = $(ROOT)/usr/avs/lib
AVS_INC = -1$(ROOT)/usr/avs/include

netCDF libraries and header directories
CDF_LIBS = $(LOCAL)/lib
CDF_INC = -I$(LOCAL)/include

End of editable site parameters

Select optional compiler
#CC = gcc
CC = cc

CFLAGS = -O $(AVS_INC) $(CDF_INC)
LDFLAGS = -L$(AVS_LIBS) -L$(CDF_LIBS)
BASELIBS = -Igeom -lutil -1m
FLOWLIBS = -lflow_c $(BASELIBS)
LIBS = -Inetcdf $(FLOWLIBS)

read_netcdf: read_netcdf.o
$(CC) -o read_netcdf read_netcdf.o $(LDFLAGS) $(LIBS)

APPENDIX C. On-Line Help File (read_netcdf.txt)

AVS Local Modules read netcdf(6)

NAME
read netcdf - read a netCDF file that follows specific conventions

SUMMARY
Name read netcdf
Type data
Inputs none
Outputs field 3D scalar float 3-coord irregular
Parameters Name Type Default Min Max

Read netCDF File browser *.cdf
time record typein 0 0 1000

DESCRIPTION
The read netcdf module is a working example of a module that can read
netCDF files. This version can only read netCDF files that contain
specific dimension, variable, and attribute names. Also, the coordinate
values for the irregular field output are computed in a way that is data
specific. See LIMITATIONS below for details.

PARAMETERS
Read netCDF File

A file browser that displays filenames with the .cdf extension.

time record
Integer typein that defines which time record of data to read.
By default, time record 0 (i.e., first record) is read. Only
one time record is read. The maximum time record number is
currently set to 1000.

EXAMPLE
The following network converts netCDF data into an AVS field, displays
the contents of the new field, and gives the person the option of
writing the new AVS field permanently to disk.

READ NETCDF

PRINT FIELD WRITE FIELD
LIMITATIONS

The netCDF files to be read by this version of read netcdf must contain
the following dimension names: xpos, ypos, zpos, and time, where the
size of dimension time is declared as UNLIMITED. The following variables
must be in the file: float variables sigma(zpos), x(ypos,xpos),
y(ypos,xpos), and depth(ypos,xpos) and short variables elev(time,ypos,xpos)
and salt(time,zpos,ypos,xpos). Variables elev and salt must have the
following float attributes: scale_factor and add_offset, where the scale
factor is to be multiplied first and then the offset added to the data.

The data portion of the AVS field output is the data from variable salt.
The X and Y coordinates are variables x and y scaled by a factor of 1/4000.
The Z coordinates are calculated from variables sigma, depth and elev as
follows:

Z = sigma*(depth + elev) + elev
SEE ALSO

Unidata Program Center, 1991, NetCDF User's Guide: An Interface for Data
Access, University Corporation for Atmospheric Research, Boulder, CO.

Release 3.0 AVS read netcdf(6)

C-l

