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JOINT-HISTORY SUMMARY AND ORIENTATION DATA FOR UPPER CRETACEOUS SANDSTONES,
RAWLINS AND ROCK SPRINGS UPLIFTS, WASHAKIE BASIN, SOUTHERN WYOMING

By Marilyn A. Grout and Earl R. Verbeek
ABSTRACT

Upper Cretaceous sandstones on the Rawlins and Rock Springs uplifts, along
the eastern and western margins, respectively, of the Washakie basin in southern
Wyoming, record a complex history of Laramide and post-Laramide fracture events.
Seven sets of extension joints are present in these rocks on the Rawlins uplift,
whereas six sets have been recognized in the Rock Springs area. The fracture
histories of the two uplifts are similar only in part. The oldest set known, a
well-formed set of extension joints striking N. 24° E. (median) on the Rawlins
uplift, has no known counterpart on the Rock Springs uplift, suggesting that
fracture began earlier along the eastern border of the Washakie basin than in
areas farther west. Two additional, much younger sets likewise appear unique to
one uplift or the other. The remaining ten sets, however--five on each uplift--
formed in identical sequence and have comparable orientations in both areas; thus
we interpret them in terms of five regional fracture events. Properties of the
joints within each set are strongly related to lithology (particularly degree of
cementation), layer thickness, and previous fracture history.

INTRODUCTION

This report summarizes results from a reconnaissance study of the fracture
network of Upper Cretaceous clastic rocks on the Rawlins and Rock Springs uplifts
along the eastern and western margins, respectively, of the Washakie basin in
southern Wyoming (fig. 1). The Upper Cretaceous strata of these and nearby areas
in Wyoming, Colorado, and Utah are of current interest for their large reserves
of natural gas in low-permeability sandstone reservoirs and of methane in
coalbeds. Production from both types of reservoir is strongly dependent on
fractures, yet little is known about properties of the fracture network in these
rocks at the outcrop to reservoir scale. Our work, conducted during the summer
of 1988, concentrated on well-exposed sandstone strata of both uplifts; no work
was initiated on coal. Documentation of fractures at 42 sites, 21 on each
uplift, disclosed a complex fracture history of seven sets of extension joints
on the Rawlins uplift and six sets on the Rock Springs uplift. Joint formation
began earlier along the eastern margin of the Washakie basin than farther west,
as shown by the absence of the earliest set on the Rock Springs uplift. Most of
the other joint sets can be correlated from one uplift to the other, suggesting
that the sets are of regional extent and that study of their properties in
outcrop can provide a guide to predicting and interpreting network properties in
correlative reservoir strata at depth.

PRESENT-DAY STRUCTURAL CONFIGURATION

The Washakie basin is one of several structural subbasins of the Greater
Green River basin complex that occupies parts of Wyoming, Utah, and Colorado
(fig. 1). Upper Cretacecus strata in this region were deposited in a broad
structural depression that once stretched north to south across the entire North
American Continent (Kauffman, 1985). The subbasins and intervening uplifts
present today resulted from structural segmentation of that depression during the
Laramide orogeny. Although the term "Laramide" has a controversial history, and
both the style and timing of Laramide deformation are much debated in the region,
neither of these issues will be explored here; for a summary see Brown (1988).

The Rawlins uplift, a sinuous feature of overall north-to-south trend more
than 120 km long, forms the eastern border of the Washakie and Great Divide
basins (fig. 1). North of the city of Rawlins, which lies on the west edge of
the uplift at the approximate boundary between the two basins, Upper Cretaceous
strata dip moderately steeply into the Great Divide basin and overlie a large,
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Rocky Mountain foreland, showing location of Rawlins and Rock Springs uplifts
relative to Washakie basin in eastern part of Greater Green River basin complex.
Inferred traces of major thrust faults (dashed lines, sawteeth on upper plate)
are shown only for areas in and near Washakie basin; faults farther south and

northeast are omitted. RA, Rawlins; RS, Rock Springs. Modified from Stearns
(1978), Love and Christiansen (1985), Bader (1987), Hamilton (1988), and Lickus
and Law (1988).
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west- to southwest-directed thrust fault at depth (Gries, 1983; Lickus and Law,
1988). South of Rawlins, along the eastern margin of the Washakie basin, the
strata dip less steeply, generally 20° or less. Upper Cretaceous strata along
this portion of the Rawlins uplift appear relatively little deformed other than
by the pervasive network of joints described here and by a few small, high-angle
faults of east to northeast trend (Love and Christiansen, 1985).

The Rock Springs uplift, which borders the Washakie and Great Divide basins
on the west (fig. 1), brings pre-basin Cretaceous and older strata to the surface
over a roughly ovoid area measuring 90 km north to south and 50 km east to west.
The uplift is underlain along its western flank by a 64-km long, north-trending,
subsurface thrust fault (McDonald, 1975). Joints in Upper Cretaceous strata were
measured only along the southeastern flank of the uplift, where the beds dip
gently (15° or less) southeastward into the Washakie basin. East-northeast-
trending, high-angle normal faults as much as 32 km long are common in this area
(Love and Christiansen, 1985; Lickus and Law, 1988).

The other two uplifts bordering the Washakie basin, the Wamsutter arch on
the north and the Cherokee Ridge arch on the south (fig. 1), are of lesser
amplitude than the Rawlins and Rock Springs uplifts, and no pre-Tertiary rocks
crop out along them. Their subsurface configuration is shown on the structure-
contour map of Lickus and Law (1988).

STRATIGRAPHY

Upper Cretaceous strata of the Mesaverde Group and overlying Fox Hills
Sandstone crop out extensively on both the Rawlins and Rock Springs uplifts. On
the Rawlins uplift, these strata extend for 65 km south from Rawlins in a band
that varies in width from 3 km to 16 km (fig. 2). From stratigraphically lowest
to highest, the Mesaverde Group rocks (table 1) include: (1) the Haystack
Mountains Formation, (2) the Allen Ridge Formation, (3) the Pine Ridge Sandstone,
and (4) the Almond Formation. These units were combined by Love and Christiansen
(1985) and appear as one unit on our base map (fig. 2) and on our tabulated joint
data for this area (table 2). Thickness of the Mesaverde Group averages 785 m
(Bader, 1987) and of the Fox Hills Sandstone ranges from 46 m to 137 m (Bader,
1987, 1990; Hettinger and Kirschbaum, 1991; Hettinger and others, 1991).

Oon the Rock Springs uplift, the Upper Cretaceous rocks extend south from
the Wamsutter arch for 55 km in a band 8-19 km wide (fig. 3). The Mesaverde
Group rocks on the Rock Springs uplift also consist of four formations (table 1);
in ascending order, they are: (1) the Blair Formation, (2) the Rock Springs
Formation, (3) the Ericson Sandstone, and (4) the Almond Formation. The Blair
and the Rock Springs Formations are not present on the Rawlins uplift; the
Ericson Sandstone of the Rock Springs area is equivalent to the Haystack
Mountains, Allen Ridge, and Pine Ridge Formations farther east. Formations of
the Mesaverde Group on the Rock Springs uplift were mapped separately by Love and
Christiansen (1985) and are also separated on our tabulated joint data for this
area (table 3), but we show only the outcrop belt of the combined Mesaverde Group
on the base map of figure 3. Thicknesses for the Mesaverde Group on the Rock
Springs uplift range from 1,365 m to 1,705 m and for the Fox Hills Sandstone from
Omto 75 m (Roehler, 1985).

JOINT STUDY METHODS

Joints in Upper Cretaceous strata of the Rawlins and Rocks Springs uplifts
were studied using techniques developed in the Piceance basin farther south
(Grout and Verbeek, 1983) and successfully applied to the interpretation of
fracture histories there and elsewhere on the Colorade Plateau. The techniques
identify each joint set on the basis of its collective characteristics, not just
orientation alone, because joint sets of different age commonly have coincident
or overlapping orientations in areas of complex fracture history. Moreover, it
is rare for any given outcrop to contain all joint sets that developed in a
region, and so each 1locality provides only a partial record of the total
deformation history. Accurate interpretation of the evolution of regional
fracture systems thus necessitates determination of the sequence in which joint
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Figure 2. Generalized map of Rawlins uplift along the eastern rim of the
Washakie basin, showing outcrop area of the Upper Cretaceous Mesaverde Group
(Kmv) and locations of stations (numbered) where joint data were collected.
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Table 1. Correlations of Upper Cretaceous strata, listed from stratigraphically
highest to lowest, exposed on Rawlins and Rock Springs uplifts along the eastern
and western margins, respectively, of the Washakie basin (from Bader and others,
1983; Love and Christiansen, 1985; Lickus and Law, 1988). (X) = formation in
which joints were studied.

Rawlins uplift Rock Springs uplift
Lance Formation Lance Formation
Fox Hills Sandstone Fox Hills Sandstone (X)
Lewis Shale Lewis Shale
Mesaverde Group (X) Mesaverde Group (X)
Almond Formation (X) Almond Formation (X)
Pine Ridge Sandstone (X)
Allen Ridge Formation (X) Ericson Sandstone (X)

Haystack Mountains Formation (X)
Rock Springs Formation (X)
Blair Formation (X)

Steele Shale Baxter Shale

Table 2. Station number and set designation for joints in Upper Cretaceous
Mesaverde Group rocks on the Rawlins uplift, listed in approximate order from
stratigraphically highest to lowest units. (R) = Orientations of joints in
tilted beds have been rotated to original bed-horizontal attitudes; (G) = Joint
set in Great Divide basin; (C) = Joint set in Cambrian quartzite.

Station no. Joint-set designation

oldest youngest

o |
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F1 F2 F3 F4 Fé6 F7

L]

(R)

10 (R)
40 (R)
4 (R)
12 (R)
14 (R)
11 (R)
17 (R,G)
16 (R,G)
41 (R,G)
7 (R)
6 (R)
5 (R)
15 (R)
39 (R)
38 (G,C)
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(Kmv) and locations of stations (numbered) where joint data were collected.
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Table 3. Station number, formation name, and set designation for joints in Upper
Cretaceous Fox Hills Sandstone and Mesaverde Group strata on the Rock Springs
uplift. Formation names are listed from stratigraphically highest to lowest. (R)
= orientations of joints of the oldest sets (Fa, Fb, Fd, and Fc) have been
rotated to original bed-horizontal orientations. (Note that Fd and Fc sets,
though not in alphabetical order, are here listed in probable correct sequence
of formation.)

Station no. Formation name Joint-gset designation

oldest youngest

Fa Fb Fd Fc Fe Ff

(R) 18 Fox Hills Ss
(R) 20

Ll
L]

Mesaverde Group

28 Almond Fm
(R) 19

R ]
t]

(R) 31 X

o

(R) 22 X

(R) 21 Ericson Ss X

>

23 Rock Springs Fm X X

(R) 32 X X

27 Blair Fm

w
o
LR
L]

(R) 37

sets developed at each outcrop and accurate correlation of sets from one outcrop
to another. Determination of the mode of failure--by extension or shear--is
likewise fundamental to interpretation of the mechanical significance of each
joint set.

The detailed morphology of fracture surfaces often furnishes the most
reliable clue to failure mode. The significance of features such as plumose
structure, twist hackle, and arrest lines is treated fully in other papers
(Kulander and others, 1979; Pollard and Aydin, 1988) and need not be repeated
here, other than to note that all of these features are common on joints of the
Rawlins and Rock Springs uplifts and that collectively they are diagnostic of
extensile failure of the rock. Slickensided joints are common in a few places
as well, but it is important to recognize that these are sheared extension joints



and that they did not originate as small faults. The slickenside striations are
secondary, a result of thrusting and tilting of beds along the basin margins.

Relative ages of extension-joint sets are determined from the general rule
that younger extension joints either terminate against or cut across older ones.
Well-developed terminations are common in many places because the tensile stress
driving an advancing crack cannot cross the cohesionless boundary represented by
an older, open joint. A younger joint can crosscut an older one only where the
walls of the pre-existing fracture are bonded together in stress-transmitting
contact, generally by minerals precipitated within the intervening open space;
however, the mechanical contrast between the wall rock and mineral fill may be
sufficient to stop the propagation of the younger joint. Differing proportions
of terminating versus crosscutting relations are common among different sets of
extension joints in many regions and furnish clues to the mineralization history
of an evolving fracture system.

At each study site (joint station), properties measured or described for
each joint set include joint orientation, dimensions (length and height),
spacing, overall shape, surface features (plumose structure, twist hackle, arrest
lines, origin point, slickenside striations), abutting relations with fractures
of other sets, mineral filling(s) or coating(s), geometric relation to bedding,
and structural relation to dikes and faults. A given set might thus be described
as composed of large joints striking N. 10°-25° W., with typical lengths of 3-6
m, heights of 1.5-2 m, spacings of 0.5-1.5 m, well-developed plumose structure
and arrest lines, planar surfaces heavily coated with limonite and later calcite,
and whose abutting relations with other fractures show them to be the second-
oldest of three sets present. The properties and relative ages of the other two
sets would be described similarly. 1In this way a local fracture chronology--a
part of the overall, more complex regional chronology--is built for each outcrop.
Careful correlation of sets, based on the known sequence of set formation at each
locality and consistent with the overall style of each set, then leads to a full
interpretation of the evolution of the regional fracture system.

For the purposes of this report, only the orientation of the joints at each
outcrop and their relative age on each uplift are listed in the appendix.
Orientations of joints in each set are also depicted on Schmidt equal-area plots
of poles to joint planes. The joints of all sets originally were nearly
vertical, but gentle to moderate basinward tilting of the Cretaceous beds along
the basin flanks has rotated the joints of some sets to new attitudes. Actual,
present-day orientations of the joints are tabulated in the appendix, but average
strikes as shown in the tables are based on original, pre-tilt attitudes for
comparison purposes and correlation of sets. Other noteworthy characteristics
of the joint sets are summarized in the text. Surficial joints, those that
formed during weathering of the rock mass, are not discussed here.

JOINT SETS, RAWLINS UPLIFT

Twenty-one joint stations were established on the Rawlins uplift (fig. 2),
twenty in the Upper Cretaceous Mesaverde Group sandstones and one (fig. 2, sta.
no. 38) in Cambrian quartzite. Three of the 20 stations in the sandstones (fig.
2, sta. nos. 16, 17, and 41) are located on the southern end of the exposed
thrust sheet that borders the southeastern end of the Great Divide basin. 1In
this area, the Upper Cretaceous strata dip between 50° and 60°.

Joints in Upper Cretaceous strata on the Rawlins uplift comprise seven
distinct sets, here designated Fl1 (the oldest) though F7 (the youngest) (table
4). The sets vary widely both in relative abundance and in areal distribution;
hence no one outcrop contains joints of all seven sets. Rather, two to four sets
are typical of most localities, but the sets are present in sufficiently diverse
combinations that an overall fracture chronology can be established and a
provisional history interpreted.

Fl set: N. 10°-30° E. Joints of the F1l set are present in more than two-thirds
of the outcrops studied (table 2). Several of their properties are a direct
consequence of unimpeded joint growth within a rock unit not previously

8



Table 4. Median strikes and possible correlations between joint sets in the
Upper Cretaceous Mesaverde Group on the Rawlins and Rock Springs uplifts. * =
Joint set occurring in >1/3 of the outcrops studied.

Rawlins uplift Rock Springs uplift

oldest F1 N24E * ----

F2 N2SW Fa N32W »

F3 N61wW * Fb N60OW

F4 N79W - - - -

F5 N67E * Fd N66E *

- - Fc N37E »*

F6 N29W Fe N29W
youngest F7 N61W Ff N71W

fractured: the Fl joints are large and prominent, their surfaces are more nearly
planar than those of later joint sets, and they die out laterally as hairline
cracks within the body of the rock instead of terminating against other
fractures. Limonite in many places forms dark coatings on Fl joint surfaces and
impregnates the adjacent wall rock for distances of a few millimeters to several
centimeters; liesegang banding parallel to F1l joint walls is common. Replacement
pseudomorphs of limonite after tiny euhedral crystals of a mineral no longer
present, but probably pyrite, occur on some Fl joints. The filling of some F1
joints with limonite-cemented sand, coarser than the wall rock, is suggestive of
an early phase of wall-rock decementation and particle transport (by gravity?)
through the fracture set, but we observed such fillings at only one locality
(sta. 11, fig. 2). Many of the Fl joints were later filled with calcite and have
remained cemented. Few joint-surface structures are preserved on these joints,
but hooks of Fl1l joints intoc adjacent, nearby members of the same set are common.

F2 set: N. 05°-30° W. Joints of the F2 set are sparsely distributed on the
Rawlins uplift and were found at only three outcrops studied (table 2), all
relatively high in the Upper Cretaceous section. In general appearance these
joints resemble those of the F1 set; they are large, fairly planar, visually
prominent fractures. Observed differences include a lack of calcite and only
moderate to light limonite staining of F2 joint walls, but F2 joints were
observed at so few localities that these properties should not be taken as
characteristic. Terminations of F2 joints against members of the Fl1 set at the
single outcrop where both sets were observed together (fig. 2, sta. no. 13)
establishes the F2 set as the younger of the two.

F3 set: N. 45°-65° W. Joints of the F3 set are present in 2/5 of the outcrops
studied on the Rawlins uplift (table 2). Lateral terminations of F3 joints
against F1l joints are common and amply demonstrate the relative age of the two
sets, whose joints generally meet at angles of 60° to 90°. Relative ages of the
F3 and F2 sets are less certain because of the comparative rarity of the F2 set,
but multiple terminations of F3 against F2 joints at the single study site where
both sets are prominently developed (fig. 2, sta. no. 1) supports the chronology
given here.



The F3 joints at most localities are markedly shorter than joints of the
two earlier sets because their lengths were controlled by the spacings between
adjacent Fl joints. In some places, however, a few members of the F3 set cut
across calcite-cemented Fl joints and have lengths comparable to those of the
earlier joints. Relative to joints of the F1 set, the F3 joints generally are
noticeably more irregular in shape, more erratically distributed across the
outcrop, and show a greater tendency to terminate vertically against contacts
between beds of contrasting lithology. Mineral coatings are not preserved on
most F3 joints, but some are calcite-filled and moderately limonite-stained where
their surfaces are most protected from weathering. Surface features such as
plumose structure and arrest lines are more common on F3 joints than on those of
earlier sets. Overall, joints of the F3 set are most abundant in the well-
cemented, fine-grained sandstones that in many places form caprocks on thicker,
and often somewhat coarser grained, sandstone layers.

F4 set: N. 75°-80° W. Joints of the F4 set are sparsely distributed on the
Rawlins uplift. They are present in abundance at only two of the outcrops
studied (table 2), both high in the Upper Cretaceous section, and at other
localities are either absent or too few in number to warrant designation as a set
and inclusion in Table 2. Abundant abutting relations clearly establish the
young age of the F4 joints relative to the Fl and F2 sets, but their age relative
to the F3 set could not be established with certainty. Many F4 joints are short,
only 0.2-2 m in length, because they terminate at both ends against pre-existing
Fl and F2 joints. Some, however, cut across the older joints and attain lengths
of 3-4 m, implying that the earlier joints were mineralized by the time the F4
set formed. Heights vary with bed thickness and generally are 2 m or less,
rarely as much as 3 m. Most F4 joints are gently undulatory along strike and
have lightly limonite-stained surfaces; mineral fillings were not observed.
Arrest lines (the only surface structures found) and common hooks of F4 joints
into F2 joints establish the F4 joints as extension fractures.

F5 set: N. 50°-75° E. Joints of the F5 set are present in more than 3/4 of the
outcrops studied (table 2) and constitute by far the dominant joints of the
Rawlins uplift in terms of numbers and areal extent. Well-formed plumose
structure is common on F5 joint walls and shows that they propagated as extension
fractures. Abundant terminations of F5 joints against members of the F1l, F2, and
F3 sets underscore the relatively young age of this set; numerous examples were
documented at more than 1/3 of the outcrops studied. Suggestion that the F5 set
is younger than the F4 set, however, is based only on indirect evidence: at
station no. 1, one of only two localities where these sets coexist, the F5 joints
are absent from those parts of the outcrop where the F4 set is best expressed.
Suppression of one joint set by the presence of another not far removed from it
in strike (30° at this locality) is a common effect among extension joints but
cannot often be used as a reliable discriminator of relative age.

The style of the FS5 joint set is strongly dependent on the previous
fracture history of the rock. Where older joints are abundant the F5 joints
typically are short, subplanar in shape, and few in number. Where older sets
are absent, however, and the F5 joints were the first set to form, they are
present in great numbers as large, planar, visually prominent fractures much like
those of the early Fl and F2 sets. This too is a common effect among extension
joints and necessitates care in the use of joint style in correlating sets from
one locality to another.

F5 joint surfaces exhibit moderate to locally heavy limonite staining and
in some places are dotted with tiny (0.5-2 mm), cube-shaped pseudomorphs of
limonite after pyrite. Diffusion bands of limonite impregnate the wall rock for
distances of 2-5 cm from F5 joints at several localities. Fillings 1-3 mm thick
of limonite-cemented sand were observed within F5 joints in the same roadcut
(sta. no. 11) where similar material fills joints of the Fl set. Calcite coating
F5 joint walls was observed at several localities and is of later deposition than
the limonite; so too are the tiny, botryoidal aggregates of a translucent mineral
resembling opal at station 11. The seemingly greater diversity of fracture-
filling minerals in F5 joints relative to those of other sets probably is an
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artifact of their great numbers; further studies of older sets doubtless would
reveal more of their mineralization history than that reported here.

F6 set: N. 25°-45° W. The F6 joint set is a minor one on the Rawlins uplift and
is well expressed at only 1/7 of the stations studied. Orientations of the Fé
joints overlap those of the much older F2 set (table 2), but abundant and clear
abutting relations of F6 against F5 joints at three localities amply demonstrate
the young age of the Fé6 set. Plumose structure on some F6 joint surfaces
indicates they are extension joints.

Joints of the F6 set, like those of the earlier F5 set, differ in style
depending in part on what joints were already present at the time of the Fé6
fracture episode. In the four outcrops where the F6 set is well developed, for
example, it is one of only two sets present. The F6 set, however, is barely
recognizable or is absent at all other localities where two or more older sets
had formed. Spacings thus vary widely, from 2-10 cm (sta. 40) to many meters,
but spacings of 1-3 m are the norm at three of the five localities where the set
was recognized. The lengths of F6 joints are equally variable because of their
tendency to terminate against whatever earlier joints were present; the small
(20-50 cm long) F6 joints at station 40, for example, are wholly unlike the large
(as much as 5 m long) F6 joints at station 17. Such widely varying properties
are characteristic of young joint sets in complexly fractured areas.

The F6 joint surfaces in some places are limonite-stained, but generally
not to the same degree as those of the F5 set in the same outcrops. Coatings of
calcite were not observed on F6 joints.

F7 set: N. 55°-65° W. Joints of this late set on the Rawlins uplift are present
in only two outcrops studied (table 2), in fine-grained sandstones in the lower
part of the Upper Cretaceous section. At both localities they terminate against
joints of the F5 set and are the youngest fractures present. They are similar
in most respects to joints of the F6 set but have not yet been found with them;
their identity as the youngest set thus is somewhat conjectural and is based
principally on correlation to a similar set of known relative age on the Rock
Springs uplift farther west. Surfaces of the F7 joints are lightly limonite-
stained or not at all and at one locality (sta. 14) are coated with thin films
of amber calcite.

JOINT SETS, ROCK SPRINGS UPLIFT

Twenty-one stations were established in Upper Cretaceous sandstones on the
Rock Springs uplift (fig. 3), 19 in Mesaverde Group sandstone and two (fig. 3,
sta. nos. 18 and 20) in the younger Fox Hills Sandstone. Six sets of joints,
here designated Fa through Ff (table 4), were documented in this area; their
possible correlation to sets on the Rawlins uplift farther east is discussed in
a later section.

As on the Rawlins uplift, no outcrop observed on the Rock Springs uplift
contains all six joint sets; most contain only two sets, and a few contain three
(table 3). Opportunity to document relative ages among coexisting sets thus was
limited at each outcrop studied by the small number of sets present, and for two
sets their exact placement in the fracture sequence is uncertain. Field-observed
properties of the joints in each set are fairly consistent from place to place
within similar rock types throughout the stratigraphic section, but these
properties differ markedly from one rock type to another, especially in response
to variations in degree of cementation. Previous fracture history also exerted
a strong influence on the character of later sets, as described below.

Fa set: N. 30°-40° W. Joints of the Fa set, the earliest set recognized on the
Rock Springs uplift, were documented at more than 2/5 of the outcrops studied
(table 3) and at all of them are the longest, most nearly planar, and most
visually prominent joints present. The set is best developed in thinly bedded,
firmly indurated, very fine grained sandstone beds interlayered with thick
sequences of sandy shale in the Almond and Blair Formations, and also in a
similar sandstone horizon near the base of the Rock Springs Formation.
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The Fa joints are limonite-stained and cemented with calcite. On pavement
exposures the joints commonly weather out as ridges, some as much as 1 cm wide,
due to enhanced cementation of the wall rock by fluids circulating through the
joints. Surface features indicative of extensile failure are common: delicately
shaped arrest lines and plumose structures are exposed beneath the calcite
fillings of many joints, and sharply formed twist-hackle fringes along the top
and base of Fa joints were noted at several 1localities. Narrow zones of
overlapping, closely spaced Fa joints are not uncommon and appear from a distance
to be single, calcite-filled fractures of extraordinary length.

Fb set: N. 55°-65° W. Joints of the Fb set were found at only three localities
on the Rock Springs uplift (table 3), all in well-cemented, very fine grained
sandstones of the Almond and Rock Springs Formations. Their age relative to the
Fa set is uncertain because the two sets were nowhere found to coexist. We have
listed the Fb set as younger only because of its subordinate expression, a
questionable criterion at best.

Joints of the Fb set, though seemingly sparsely distributed on the Rock
Springs uplift, nevertheless are superbly developed wherever we have found them.
Most are large, visually prominent fractures, commonly more than 2 m high and §
m long, whose broad surfaces are either planar or undulate only gently along
strike. Plumose structure, twist hackle, and arrest lines are common features.
Zones of overlapping Fb joints, 5-20 cm wide and containing 3-10 joints along
much of their length, were noted in several places, particularly within weakly
cemented sandstone beds. Limonite forms dense coatings on many Fb joints and
impregnates the adjacent wall rock for distances of 0.5-5 cm; the additional
cement locally causes the joints to weather out in relief. Calcite, of later
formation than the limonite, locally further cemented the wall rock and is
preserved as small white patches on the faces of some Fb joints. A third
mineral, probably barite, was observed at one locality as flattened rosettes of
radiating crystals (sta. no. 31) on the faces of several Fb joints. In all these
characteristics, save for details of mineralization, the Fb joints much resemble
those of the more common Fa set.

Fc set: N. 20°-45° E. Joints of the Fc set occur at all stratigraphic levels
within the Upper Cretaceous sandstones and are present in more than 3/5 of the
outcrops studied on the Rock Springs uplift (table 3). In half of these they are
the second-oldest set and form a crude set of subplanar cross joints with respect
to the earlier Fa or Fb joints. Most Fc joints in such places terminate against
the older joints and thus have lengths delimited by the spacings between them;
lengths of only 0.5-2 m are typical. Where the older sets are absent and growth
of the Fc joints was unconstrained, however, the Fc joints tend to be much longer
(exposed lengths of 5 m or more are common), more nearly planar in shape, and in
some places more abundant.

Walls of Fc joints are variably stained by limonite, in some places only
lightly but in others so thoroughly that the rock is stained dark brown to nearly
black. Impregnation of the adjacent wallrock by limonite is likewise common,
locally in the form of diffusion bands extending up to 8 cm from each joint
surface. Calcite is present on some Fc joints as white films and, like limonite,
has indurated the joint walls so that Fc joints commonly weather into relief on
pavement surfaces. Surface structures on Fc joints include arrest lines, twist
hackle, and plumose structure, all common. Some Fc joints also show well-defined
hooks into other Fc joints where these are closely spaced.

Fd set: N. 60°-80° E. Joints of the Fd set are among the most common joints on
the Rock Springs uplift and are present at more than 1/3 (8 of 21) of the
localities studied in detail (table 3). At three of these localities they form
a set of cross joints with respect to the older Fa set; at four other localities
none of the older sets are present and the Fd joints were the first to form. As
with some of the other sets already discussed, the style of the Fd set is
strongly linked to the previous fracture history of the rock.

The Fd joints form a visually prominent and superbly developed set in those
places where they were the earliest joints to form. Typically they are very
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large fractures, among the largest on the uplift: exposed (partial) lengths of
5-7 m are common, and many are suspected of being considerably longer but cannot
be traced throughout their full extent because of outcrop limitations. These
large Fd joints are nearly planar or show only gentle sinuosity along strike
except near their extremities, where some of them abruptly hook into adjacent
members of the same set. In other areas where older Fa joints were already
present, however, the Fd joints are of far different character. In shape, for
example, they are notably more irregular and crudely formed; few are planar.
Most are short, in some places only 30-45 cm long, because the pre-existing Fa
joints presented effective barriers to fracture propagation. Many Fd joints
terminate at both ends against the much-longer Fa joints. Long Fd joints in such
places are the exception rather than the rule, but some cut across several Fa
joints in succession and attain lengths as much as 3 m.

Limonite is common on Fd joints, locally as a light stain but more commonly
as a dense precipitate that colors the joint walls dark brown and cements the
adjacent rock. Diffusion bands parallel to the joint walls and extending as much
as 8 cm into the rock were noted at one 1locality; they much resemble those
asgsociated with Fc joints. cCalcite, though not commonly preserved on Fd joints,
is present on some of them as coatings as much as 2 mm thick. Large, coarse
plumose structure, arrest lines, and twist hackle are present on many Fd surfaces
beneath the mineral fillings.

The age of the Fd joints relative to the Fc joints is uncertain. Though
both sets are common, to date we have found them together at only a single
locality. Even there, however, they occupy different parts of the outcrop, and
no abutting relations were observed. Though the presence of the one set obvicus-
ly inhibited development of the other--a common effect among joints not much
different in strike--there is nothing in this relationship to indicate which set
is the older of the two. 1In tables 3 and 4 the Fd set is provisionally listed
as older than the Fc set based on analogy to the known relative ages of two sets
of cleat in Cretaceous coals in the same area (Tyler and others, in press).

Fe gset: N. 20°-45° W. Joints of the Fe set are present in only six of the
outcrops studied (table 3), generally as a set of cross joints that terminate
laterally against members of the Fc set (two localities) or Fd set (three
localities). Most Fe joints thus are of only modest length, commonly 1-3 m, but
some attain lengths of 5-6 m in those parts of the outcrops where the older
joints are sparse. At the single locality where Fe joints were the first to
form--in a thick, poorly indurated sandstone of the Rock Springs Formation (sta.
no. 42)--they are longer still, 3-10 m. The shapes of Fe joints are as variable
as their size and range from subplanar (and commonly undulatory along strike)
where older joints are abundant, to nearly planar where the older fractures are
sparse to absent. Surface structures, including arrest lines, twist hackle,
plumose structure, and also hooks of Fe joints against other Fe joints, are
common at most localities. Limonite coats many Fe joints and cements the
adjacent wall rock, but generally to a much lesser extent than is common among
the older joints. Most Fe surfaces are stained only pale orange to medium brown.
Calcite, in remnant patches as much as 2 mm thick, was noted on Fe joints at only
one locality (sta. no. 33).

Ff set: N. 55°-85° W. Joints of this late and sparsely distributed set (table
3) exhibit all the expected characteristics of a late-formed set in a complexly
fractured area. Almost invariably they are short--commonly only 10-50 cm--
because they terminate against whatever older fractures are present; it is only
where the older joints are widely spaced (or a rare Ff joint cuts across them)
that some members of the Ff set attain lengths of 1-2 m. The Ff joints, more so
than those of any other set, are irregular in shape. Nearly all curve
perceptibly, some markedly, along both strike and dip, and some split along
bedding surfaces partway along their length to form two subsidiary fractures of
lesser height. Mineral coatings are almost wholly lacking on Ff joints except
at one locality, where several joints are lightly limonite-stained. Proof of
their young age is shown by terminations of Ff joints against members of the Fe
set at the single locality where the two sets coexist.
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DISCUSSION
Correlation of Joint Sets Between Uplifts

Median strikes and possible correlations between joint sets on the Rawlins
and Rock Springs uplifts are shown in table 4. Some observations:

(a) The Fl joint set, a particularly well expressed set on the Rawlins uplift,
is missing from the Rock Springs area. The fracture history of the Upper
Cretaceous rocks along the east side of the Washakie basin began before that of
correlative rocks 100 km farther west.

(b) O0f the six remaining joint sets found on the Rawlins uplift, five of them
have probable counterparts on the Rock Springs uplift; the sets in both areas
have comparable orientations and formed in the same sequence. Though of regional
extent, most sets differ markedly in prominence from one uplift to the other.
Oonly one joint set, the F5-Fd set, is a major set on both uplifts. The differing
prominence from one area to another is a common feature of regional joint sets
and is hardly surprising in view of the distances involved.

(c) The strong fracture event recorded by the prominent Fc joint set on the
Rock Springs uplift did not result in joint formation on the Rawlins uplift.

Thus, of the thirteen total sets identified, ten of them can be matched
between the two areas to define five regional joint events. The remaining three
sets appear to be unique to one uplift or the other. These latter are of
particular interest in defining differences in tectonic history between the two
uplifts, but interpretation of their significance must await work in younger
units to establish upper bounds on the age of each fracture set.

CONCLUSIONS

Upper Cretaceous sandstones bordering the Washakie basin in southern
Wyoming are cut by a complex network of extension joints. Preliminary
interpretation of fracture data from the Rawlins uplift along the eastern basin
margin suggests that seven episodes of fracture affected these rocks. Six sets
of joints cut correlative strata on the Rock Springs uplift along the western
basin margin 100 km distant. The earliest set of joints is missing from the Rock
Springs area, showing that brittle deformation of the Cretaceous strata began
earlier in the eastern part of the basin than farther west. Most of the later
joint sets, however, can be matched from one uplift to the other to define five
episodes of fracture of regional extent. All but the youngest joints at each
locality are nearly perpendicular to bedding, regardless of present bed dip,
showing that most of the joint sets predate the final phases of tilting along the
basin margins.

The character of the fracture network shows wide variation from one
locality to another and even within different beds at the same outcrop, but much
of the variation is systematic. For any given joint set, the three factors that
most affect several key joint properties (length, height, spacing, shape) are
lithology (particularly degree of cementation), bed thickness, and previous joint
history. Stratigraphic position within the Upper Cretaceous section had only a
minimal effect; we have noted no major changes in the overall fracture network
from the base of the Mesaverde Group to the top of the Fox Hills Sandstone. The
close correlation between fracture style and lithology, and the similarity in
fracture history between the two uplifts, suggest that several properties of the
fracture network in correlative reservoir strata beneath the intervening basin
are potentially predictable from detailed outcrop studies.

The sequence in which the sets formed (table 4) is potentially interpre-
table in terms of a counterclockwise rotation of the stress field over time. At
present, however, we know only the relative but not the absolute ages of the
joint sets and thus lack information on which sets are related genetically across
the basin. Tracing of the fracture network upward through the Tertiary basin
strata will be necessary to interpret the fracture history in terms of the
tectonic and paleostress evolution of the region. A continuous record of post-
Laramide counterclockwise stress rotation through an angle of at least 60°,
however, has been documented for other areas to the south, including the Piceance
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basin (Verbeek and Grout, 1986), the Uinta basin (Verbeek and Grout, 1992), and
the Paradox basin (Grout and Verbeek, in press).
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APPENDIX: JOINT-ORIENTATION DATA. Joint-orientation data (unrotated) collected
at each locality (station) in the Upper Cretaceous sandstones on the Rawlins and
Rock Springs uplifts, Washakie basin, are depicted on Schmidt lower hemisphere
equal-area plots using the MicroNET program of Guth (1987). Each plot contains
joint data from one station and has been given an identification number according
to the sequence in which data were collected. These numbers correspond to the
station numbers on the maps of the study area (figs. 2, 3). The orientation data
also are tabulated by joint set (table 4) and listed below each equal-area plot.
Bedding attitudes (So) also are listed.
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