U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

To accompany the

Preliminary Geologic Map of the Antler Peak 7.5 Minute Quadrangle,
Lander County, Nevada

by

Jeff L. Doebrich

Open-File Report 92-398

Prepared in cooperation with the Nevada Bureau of Mines and Geology

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

1 U.S. Geological Survey, Reno Field Office, Mackay School of Mines, University of Nevada, Reno, Reno, NV 89557

1992
DESCRIPTION OF MAP UNITS

Qd Mine dump material (Holocene, man-made)—Present around Fortitude Mine open pit

Qp Placer workings (Holocene, man-made)—Present in Copper Canyon

Qya Younger alluvium (Quaternary)—Primarily deposits in active stream channels

Qc Colluvium (Quaternary)—Includes talus, slope wash and other colluvial deposits. Most abundant on hill slopes below outcrops of Caetano tuff (Tc)

Qoa Older alluvium (Quaternary)—silty and sandy gravels of alluvial fans, dissected by stream channels of younger alluvium

Tt Tuff (Tertiary)—very light gray, nonwelded crystal-lithic ash-flow tuff. Contains quartz phenocrysts and lithic clasts of chert and sandstone of the Havallah sequence. Speckled with spots of red-brown iron-oxide after magnetite(?). Exposed only in Buffalo Valley Mine area (secs. 28, 33, and 34, T. 32 N, R. 42 E). Undated but possibly equivalent in age to Tb.

Tb Basalt (Tertiary)—Lower black dense olivine-bearing and upper red-brown scoriaceous flow rock. Present as isolated outcrops in south part of map (sec. 35, T. 31 N, R. 42 E). May be correlative with 3.4-Ma basalt exposed east of Copper Canyon (McKee, 1992)

Tg Gravel (Tertiary)—Poorly sorted with boulders of Pennsylvanian Battle Formation as much as 1 m in diameter. Exposed only in Buffalo Valley Mine area (secs. 28, 33, and 34, T. 32 N, R. 42 E)

Tc Caetano Tuff (Tertiary)—Light-gray crystal-lithic welded ash-flow tuff. Contains glassy quartz phenocrysts, biotite, and lithic clasts of chert, quartzite, and sandstone of the Havallah sequence. Lower units tend to be more lithic rich and less welded. Biotite yields a 33.6 Ma age by K-Ar method (McKee and Silberman, 1970). Crops out as ridge capping unit, primarily in and around upper parts of Rocky Canyon

Tgdc Granodiorite of the Copper Canyon area (Tertiary)—Includes altered granodiorite of Copper Canyon and altered granodiorite of Wilson-Independence Mine area (Theodore and Blake, 1975). Altered medium-to coarse-grained porphyritic biotite granodiorite with smokey gray
quartz phenocrysts, sericitized feldspar phenocrysts, stockwork quartz veining, and secondary copper oxides. Primary biotite yields 38 Ma age by K-Ar method (Theodore and others, 1973)

Tgd15 Granodiorite of section 15 (Tertiary)--Located in sec. 15, T. 31 N, R. 42 E. Fine- to medium-grained seriate to porphyritic granodiorite. Stock tends to be more leucocratic and equigranular in core and more mafic and porphyritic in perimeter areas. Stockwork quartz veining present. Well developed alteration aureole (bleached zone) present in country rock. Biotite and hornblende yield 39 Ma age by K-Ar Method (Theodore and others, 1973)

TKr Rhyolite (Tertiary or Cretaceous?)--Intrusive bodies cropping out as a dike and small plug (sec. 8, T. 31 N, R. 43 E, flow banded; sec. 30, T. 32 N, R. 43 E ?)

TKgp Granodiorite porphyry (Tertiary or Cretaceous?)--Gray to light greenish-gray porphyritic to seriate dikes and small stock-like bodies throughout map area, though most abundant in western part and Buffalo Valley Mine area

TKgd Granodiorite (Tertiary or Cretaceous?)--Equigranular stock-like bodies and large dikes, most abundant in western part of map area and Buffalo Valley Mine area

Kgd1 Granodiorite of Trenton Canyon (Cretaceous)--Large stock exposed in north-central part of map area. Medium-grained, equigranular to weakly porphyritic, biotite-hornblende granodiorite. Hornfels and weak skarn developed in alteration aureole in adjacent country rock. Biotite yields 87 Ma age by K-Ar method (Theodore and others, 1973)

Antler sequence of Roberts (1964)--In this area consists of:

Pem Edna Mountain Formation (Permian)--Poorly exposed at scattered localities below sole of Golconda thrust in northeast and east-central part of area. Consists of 1) pebble conglomerate with well rounded pebbles of chert and quartzite, 2) light-brown sandstone, locally calcareous, and 3)
bluish-gray cherty limestone, in order of relative abundance. Brachiopod fauna yield a Lower Permian (Wolfcampian to Leonardian) age (Roberts, 1964)

PI Pap

Antler Peak Limestone (Permian and Pennsylvanian)--Medium- to thick-bedded, light- to medium-bluish-gray limestone; locally shaly, sandy, and pebbly, and may contain thin discontinuous beds and nodules of chert. Fusulinid and coral fauna yield an Upper Pennsylvanian (late Missourian) to Lower Permian (early Wolfcampian) age (Roberts, 1964)

IPb

Battle Formation (Pennsylvanian)--Thick-bedded immature conglomerate, sandstone, shale and limestone. Conglomerate, sandstone, and shale are commonly a ferruginous reddish brown, and may be variably calcareous. Rests in angular unconformity on rocks of the Roberts Mountains allochthon. Brachiopod and fusulinid faunas yield a Lower to Middle Pennsylvanian (Morrowan to Atokan) age (Roberts, 1964; A.K. Armstrong, written commun., 1992)

ALLOCHTHON OF THE GOLCONDA THRUST

Havallah sequence of Silberling and Roberts (1962), Roberts and Thomasson (1964), Stewart and others (1977), Stewart and others (1986), and Murchey (1990).

WEST OF WILLOW CREEK THRUST--In this area consists of:

hlc

Limestone and chert (Permian and Pennsylvanian?)--Interbedded black sponge-spicule-bearing chert and gray limestone, locally sandy. Uppermost biostratigraphic subunit of lithotectonic unit 2 of Murchey (1990)

hss

Calcareous sandstone (Permian and Pennsylvanian?)--Light-brown to yellow-brown calcareous siltstone, sandstone, pebbly limestone, and chert pebble conglomerate. Corresponds to turbidites and debris flows of lithotectonic unit 2 of Murchey (1990)

hcs

Chert and calcareous siltstone (Pennsylvanian?)--Interbedded black, gray, green, and maroon chert and calcareous siltstone, and locally marble. Thinly bedded to laminated and commonly contains boudinage structures. Host to calc-silicate alteration proximal to granodiorite of Trenton Canyon (Kgdt) and in the Buffalo Valley Mine area
Ribbon chert (Mississippian and Pennsylvanian?)—Interbedded grayish-green radiolarian chert and lesser shale. Corresponds to chert of lithotectonic unit 2 of Murchey (1990). Mound-like diagenetic compaction features on bedding surfaces are diagnostic of this unit [referred to as Monroe structures by Snyder and Brueckner (1983); similar structures in Ordovician Valmy Formation are referred to as Doda structures by Madrid (1987)]. Franciscan-type exhalative manganese deposits (Mno) (SE 1/4, sec.34, T.32 N, R. 42 E), and deep orange-red exhalite bodies (ex) (sec. 1, T. 31 N, R. 42 E) are present within this unit.

Basalt and gabbro (Permian, Pennsylvanian, and Mississippian?)—Dark-green to black amygdaloidal basalt and lesser gabbro. Amygdules commonly filled with pink calcite. Locally a seemingly continuous variation from basalt to coarse-grained gabbro. Present largely as elongated faulted slivers in the upper parts of Mill and Timber Canyons (sec. 1, T. 31 N, R. 42 E and sec. 36, T. 32 N, R. 42 E)

EAST OF WILLOW CREEK THRUST—In this area consists of:

Argillite (Permian and Pennsylvanian?)—Gray-green, maroon, and black argillite and siliceous argillite with lesser amounts of interbedded (< 5 cm) black and gray chert. Corresponds to parts of lithotectonic units 1A, 1B, and 1C of Murchey (1990) and parts of subunits 1 and 2 of Miller and others (1982)

Chert and argillite (Permian and Pennsylvanian?)—Interbedded black and gray sponge-spicule-bearing chert and green, black, and maroon argillite (beds generally ≤ 8 cm thick). This unit displays best examples of east-vergent tightly folded strata. Corresponds largely with lithotectonic unit 1B of Murchey (1990) and is part of subunit 2 of Miller and others (1982)

Chert (Permian and Pennsylvanian?)—Massive to thick-bedded (> 15 cm) black and gray sponge spicule chert with lesser amounts of thin-bedded (< 5 cm) green and black argillite. Crops out as ridge and ledge forming unit capping ridge east of Willow Creek. Corresponds with west part of lithotectonic unit 1A of Murchey (1990) and west part of subunit 1 of Miller and others (1982)

ALLOCHTHON OF THE ROBERTS MOUNTAINS THRUST

Valmy Formation (Ordovician)—Dark-green to black thinly-bedded cherty argillite. Present only in small area on northern margin of map (secs.
20 and 29, T. 32 N, R. 43 E). Correlates with Ovca unit mapped in Cottonwood/Trout Creek area by Madrid (1987), and Ov3ca unit of Theodore (1991)

\(\text{Ch} \) Harmony Formation (Cambrian)—Greenish-brown medium- to coarse-grained micaceous feldspathic sandstone and lesser shale. Crops out along eastern margin of map. Altered to biotite hornfels in Copper Canyon area

SYMBOLS

\[\overline{---} \text{Contact} \]—Dashed where approximately located; dotted where concealed; queried where location uncertain

\[\overline{---} \text{Faults} \]—Dashed where approximately located; dotted where concealed; queried where location uncertain

\[\overline{---} \text{Normal fault} \]—Bar and ball on downdropped block

\[\overline{---} \text{Thrust fault} \]—Sawteeth on upper plate

\[\overline{---} \text{Dike} \]—Rhyolite dike (TKr), granodiorite porphyry dike (TKgp), granodiorite dike (TKgd)

\[\overline{---} \text{Quartz vein} \]

\[\overline{---} \text{Approximate location of outer limit of abundant quartz veins} \]—Hachured in direction of quartz veins

\[\overline{---} \text{Approximate location of outer limit of alteration aureole surrounding intrusive bodies} \]—Dots indicate interior of aureole.

\[\text{Altered area} \]—Silicified (SiO\textsubscript{2}), sericitized (ser), argillized (cly), pyritized (pyr), iron stained (FeOx), skarn (skn)

\[\text{Breccia} \]

Strike and dip of bedding

\[\overline{---} \text{Inclined} \]—Facing not always known with certainty

\[\overline{---} \text{Vertical} \]
Overturned

Horizontal

Strike and dip of compaction foliation

Folds—showing trace of hinge line and plunge of axis; dashed where approximately located; queried where uncertain; dotted where concealed

Anticline

Syncline

Minor anticline, showing trend and plunge

Horizontal minor anticline, showing trend

Minor syncline, showing trend and plunge

Horizontal minor syncline showing trend

Minor coaxial folds, showing trend and plunge

Minor horizontal coaxial folds, showing trend

Perimeter of open pit mine—Hached on excavated side

Mine dump

Portal

Mineshaft

Prospect

Dam-At upper Willow Creek Reservoir
REFERENCES CITED

GENERALIZED PALEOZOIC TECTONOSTRATIGRAPHY

Age relations uncertain. Sections repeated and truncated by imbricate thrusting.

WILLLOW CREEK THRUST

GOLCONDA THRUST

DEWITT THRUST

WILLLOW CREEK THRUST

GOLCONDA THRUST

DEWITT THRUST

ALLOCHTHON OF GOLCONDA THRUST
(Emplaced in the Late Permian to Early Triassic)

PERMIAN, PENNSYLVANIAN, AND MISSISSIPPAN

PERMIAN AND PENNSYLVANIAN

CAMBRIAN

ORDOVICIAN

PERMIAN

PENNSYLVANIAN

DEWITT THRUST

ALLOCHTHON OF ROBERTS MOUNTAINS THRUST
(Emplaced in the Late Devonian to Early Mississippian)
SOURCES OF GEOLOGIC DATA

A) J.L. Doebrich, mapping, 1991-92
B) Modified after R. Luethe, unpubl. mapping, 1989
C) Modified after Madrid (1987)
D) Modified after Theodore and Blake (1975) and Battle Mountain Gold Company, written commun., 1992