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GRI DISCLAIMER

LEGAL NOTICE: This report was prepared by the U.S. Geological Survey as an
account of work sponsored by the Gas Research Institute (GRI). Neither GRI,
members of GRI, nor any person acting on behalf of either:

(a) makes any warranty or representation, express or implied, with respect to
the accuracy, completeness, or usefulness of the information contained in this
report, or that the use of any apparatus, method, or process disclosed in this
report may not infringe privately owned rights; or

(b) assumes any liability with respect to the use of, or for damages resulting
from use of, any information, apparatus, method, or process disclosed in this
report.
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RESEARCH SUMMARY

Geologic controls and resource potential of natural gas in deep
sedimentary basins in the United States.

U.S. Geological Survey
GRI Contract Number 5090-260-2040

T.S. Dyman

November 1, 1990 - May 1, 1992
Final Report

The purpose of the research is to determine the geologic
factors that control deep gas accumulations in sedimentary
basins as a means of locating exploration targets and to
develop methodologies that improve the accuracy of assessing
the resource potential of deep gas accumulations.

Deep sedimentary basins in the U.S. are known to contain large
accumulations of natural gas but the distribution and character
of potential deep gas accumulations needs to more accurately
defined. In order to achieve this understanding, the geological
and geochemical variables controlling deep gas accumulations
are defined and quantified, and methodologies by which
accumulations can be assessed are evaluated. Deep natural gas
accumulations are defined arbitrarily for this report as those
occuring below 4,270 m (14,000 ft).

An empirical framework for predicting the porosity range of
sandstones in Rocky Mountain basins was developed and broadly
applied to deeply buried sandstone in general. The presence of
hydrocarbons (HC's) flattens the porosity-Re curve and is the

fundamental reason for porosity preservation at depth and. an
important factor in the presence of deep natural gas resources.

For Ro >1.1%, the rate of porosity decrease as thermal
maturity increases for Anadarko basin non-reservoir sandstones
is less rapid than that of sandstones in general. Similar
slopes of the porosity trends of reservoir and non-reservoir
sandstones suggest that sandstones of the central and southern
Anadarko basin may retain sufficient porosity for economic
accumulations of HC's, even at high thermal maturities.

Small pore throats (<0.lum), common in fine to very fine
grained clastic rocks, are very sensitive to confining stress,
and probably act as limiting factors controlling the flow of
gas to the well bore. Small pore throats are also very
sensative to the presence of formation fluids, which reduce
their effective diameter. Measurement of capillary pressure
under confining stress suggests that constriction of pore
throats is the controlling mechanism effecting fluid flow at
reservoir conditions in the samples examined.



Technical
Approach:

iv

Three hundred sixty three significant reservoirs (reservoirs
with cumulative production greater than 6 Bcf of gas) in the
U.S. produce from depths greater than 4,270 m (14,000 ft).

Most deep significant reservoirs (249) are classified as gas
producers (66%). Of the total cumulative natural gas production
in the U.S. (698 Tcf, 1989), deep reservoirs account for 8% (50
Tcf) of the total, and significant deep reservoirs account for
nearly half (21.5 Tcf) of the deep reservoir total.

In the Rocky Mountain region, structural partitioning prior to
thrusting in selected basins, and sequential northeastward
partitioning of the Rocky Mountain foreland during Late
Cretaceous may be critical to the entrapment of natural gas.
Undiscovered structurally-trapped deep gas may still be found
in parts of the Wind River and Hanna basins.

The presence of Middle Proterozoic source rocks, active HC
seeps, and favorable thermal maturities for generating and
preserving natural gas, indicate a potential for economic gas
accumulations in flanking basins of the Midcontinent Rift
System and in the Grand Canyon region.

High-rank methane generation (from thermal decomposition of
Ci15+ HC's) takes place at higher maturation ranks than

previously thought.

The occurrence of significant non-HC gases in deep carbonate
reservoirs and the presence of H3S indicates that
thermochemical sulfate reduction and simultaneous oxidation of
HC's to CO2 may be the dominant control on non-HC gas
composition in these reservoirs. Giant quartz-vein systems in
convergent, transpressive plate margin basins may be associated
with major gas accumulations as in the deep Anadarko and Arkoma
basins.

Where sufficient information is available concerning the
geologic characteristics of known or suspected deposits of deep
gas, a deposit simulation based on a geologic model of
reservoir volumes is the most appropriate assessment
methodology. This method is based on measurement of known or
estimated physical properties of traps, reservoir rocks and
fluids, and the host environment in terms of temperatures,
pressures and fluid dynamics.

Data for significant reservoirs were retrieved from the NRG-
Associates Significant Field File of field and reservoir data.
Topical and areal research studies were carried out on the
geochemistry of source rocks, diagenesis of deep reservoirs,
and structural geology of deep natural gas traps. An analysis
of the geological factors controlling the origin and
distribution of deep natural gas accumulations was conducted in
order to evaluate appropriate methodologies used to assess this
resource.



Project
Implications:

This report concludes an avenue of research initiated by GRI
four years ago. Funding and a portion of the original
objectives are being abandoned at the stage of development
presented in this report. Since starting this research, GRI has
gained the perception that high accuracy resource assessments
only occur in hindsight. Some guantitative arguments are
presented in this report that show why reserve potential
estimates must range through orders of magnitude until real
data from drilling and production are available. Consistent
with this view, the new knowledge and quantitative tools gained
through this research are expected to have greater application
for exploration and production purposes than for improving
total gas-in-place assessment predictions. The multiple avenues
of research conducted at the U.S. Geological Survey include:
porosity prediction, time/ temperature and pressure effects on
maturation, and some preliminary evaluations of good prospects
for deep gas plays within the U.S.
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INTRODUCTION
Objective

The purpose of the research is to determine the geologic factors that
control deep natural gas accumulations in sedimentary basins as a means of
locating exploration targets and to develop methodologies that improve the
accuracy of assessing the resource potential of deep gas accumulations. The
ongoing work is subdivided into eight tasks. The first seven are related to
understanding the geologic factors controlling deep gas. The eighth task is
related to developing methodologies to assess resource potential of deep gas
accumulations.

Project Description
The basic tasks to be performed were to:

(1) Develop and quantify rules-of-thumb for estimating the distribution
of porosity in sedimentary rocks as a function of time-temperature exposure,
and extrapolate these findings as predictive equations for deep portions of
sedimentary basins.

(2) Determine pore-throat entry size, as well as porosity and
permeability, and capillary pressure response, under ambient and in situ
conditions in order to better understand the behavior of deep clastic
reservoirs, and determine generalized petrophysical properties of deep
reservoirs.

(3) Analyze the relation between geclogic characteristics and drilling
and production data for deep wells and reservoirs in order to (a) describe
success of deep drilling, and (b) identify conditions favorable for deep gas
accumulations and production.

(4) Determine the structural setting and trapping mechanisms of deep gas
accumulations in different types of sedimentary basins in order to relate the
structural setting and trapping mechanisms to modern tectonic concepts and
styles.

(5) Determine the source-rock potential of Precambrian sedimentary rocks
which floor many deep basins. Precambrian outcrop and well samples from the
Midcontinent Rift System, the Grand Canyon, and the Uinta Mountains will be
collected, and analyzed to determine amounts, type, and thermal maturity of
organic matter.

(6) Describe the thermal destruction of Cjig+ HC's by conversion to high-
rank methane, and investigate the loss of HC-generating potential with
increasing thermal maturity for different types of organic matter.

(7) Investigate the occurrence, geologic setting, and geochemical
controls of non-HC gases, such as carbon dioxide, hydrogen sulfide, and
nitrogen, which can dilute and destroy deep natural gas accumulations.

(8) Develop quantitative methods and assessment models for resource
estimation of deep gas accumulations based on geologic models of occurrence.
Assessment methodology development and testing will be based on stochastic,
probabilistic, and statistical approaches using geologic information developed
by tasks 1-7 of this project.



Rationale for undertaking project

This project evolved as an outgrowth of work in part funded by Gas
Research Institute (contract 5087-260-1607) entitled *Distribution of Natural
Gas and Reservoir Properties in the Continental Crust of the U.S" (Rice,
1989). During this work, problem areas were identified that were not
addressed by the initial research including (1) identifying geologic
characteristics responsible for the distribution of natural gas in deep
basins, (2) compiling geologic and production data summaries for large,
significant reservoirs in the U.S., (3) analyzing and interpreting well data
(including location, identification, test, and production data) in order to
define the spatial distribution of deep drilling and the distribution of
pressure data from deep wells, (4) identifying the geochemical controls and
geologic setting of non-HC gases, (5) defining the occurrence and controls of
unusually high porosity in deeply buried clastic and carbonate rocks, and (6)
conducting laboratory simulation experiments from deeply-buried source rocks
to define the range of generating potential of kerogen at high levels of
maturation.

The problem of assessing volumes of natural gas in deep sedimentary
basins was considered as the next phase of work after the geologic parameters
controlling the distribution of gas were defined and analyzed. Assessment
here is based on natural gas "plays" that define unique geologic
characteristics and often are basin-wide as compared to "prospects" which are
identified for exploration. Assessment methodologies are evaluated,
assessments are presented for hypothetical plays, and geologic parameters are
modelled in order to show the range of results under different conditions.

Acknowledgements

We wish to acknowledge the careful and critical reviews of this
manuscript by Paul A. Westcott, Gas Research Institute, and Dudley D. Rice,
Mahlon M. Ball, Jerry L. Clayton, and Michael D. Lewan, U.S. Geological
Survey.

Ronald R. Charpentier retrieved reservoir data from the NRG Associates
file of all fields having both pressure data and a depth to the top of the
reservoir of 4,270 m (14,000 ft) or deeper.

RESULTsS

Major results of contract work are subdivided into (1) identification
and explanation of major deep natural gas resources based on comprehensive
retrievals of published well and reservoir data bases, (2) a detailed
discussion of the major geologic controls affecting the distribution of
natural gas in deep sedimentary basins, and (3) an evaluation of resource
assessment methodologies which can be used to assess deep natural gas
resources. The following discussion of results is based on detailed
discussions of Task results (Tasks 1 through 8) in Appendices 1 through 8 of
this report.

Identification of known resources--significant reservoirs
Deep natural gas resources are distributed throughout many U.S. basins

and occur in widely different geologic environments. Three hundred seventy
eight significant reservoirs (reservoirs with total cumulative production



greater than 1 million barrels of equivalent--BOE or 6 Bcf) in the U.S.
produce from depths greater than 4,270 m (14,000 ft) according to NRG
Associates (1988). Of these 378, 256 produce from depths greater than 4,572 m
(15,000 ft). These reservoirs occur primarily in the Gulf Coast, Permian,
Anadarko, Williston, and Rocky Mountain basins (Fig. 1). Table 1 contains a
brief summary of the main geologic and production characteristics of these
regions. Appendix 3a contains tables of geologic and production data and a
list of the geologic factors controlling deep natural gas production derived
from the NRG Associates field file, Petroleum Information Corporation's Well
History Control System (Petroleum Information Corporation, 1988, 1991), and
the published literature. Other U.S. sedimentary basins contain additional
deep gas reservoirs below 4,270 m (14,000 ft), but these reservoirs do not
meet the minimum qualifications for entry into the NRG Associates data base.

According to Dwight's Energy Data (1985) 1,998 total reservoirs occurred
below 4,572 m (15,000 ft) in the U.S. at the end of 1985. Of the total
cumulative natural gas production in the U.S. (698 Tcf; Mast and others,
1989), deep reservoirs account for 8% (50 Tcf) of the total, and significant
deep reservoirs (NRG reservoirs) account for nearly half (21.5 Tcf; Fig. 3) of
the deep reservoir total (Dyman and others, 1989). When the Nation is taken
as a whole, deep gas reservoirs account for only a small portion of the total
production. The percentage rises when recent production is considered, but
the total cumulative production is still low. Based on work presented in this
report and previous work by Rice and others (1989), additional significant
quantities of deep natural gas remain to be found in U.S. sedimentary basins.
One goal of this contract is to identify geologic conditions which may help to
identify these resources.

Deep reservoirs are defined arbitrarily as those occurring below 4,572 m
(15,000 ft). However, a single producing horizon may extend both above and
below 4,572 m (15,000 ft). For this reason, NRG retrievals were selected for
all reservoirs below 4,270 m (14,000 ft) in order to capture all reservoirs
occurring at approximately 4,572 m (15,000) ft depth.

Most deep significant reservoirs (249) are classified as gas producers
(66%). An additional 25 reservoirs are classified as oil and gas producers.
Sixty eight percent of the reservoirs are classified as structural or
combination (combined structural and stratigraphic) traps. Fifty percent of
these reservoirs (188 reservoirs) produce from Mesozoic or younger rocks, and
58% (221 reservoirs) produce from clastic rocks of any age. As expected, the
number of reservoirs decreases with increasing depth, but more than one
quarter (26%) of the total significant deep reservoirs occur below 5,180 m
(17,000 ft).

Of the 378 deep reservoirs, 174 (or 46%) occur in the Gulf Coast basin.
More than 6 Tcf of natural gas have been produced from significant reservoirs
in the Gulf Coast basin. Reservoirs occur primarily in Tertiary clastic rocks
and deeper mixed carbonate-clastic rocks of Mesozoic age. Forty percent of
the known recoverable natural gas resources (13.7 Tcf; Table 1; Fig. 3) in
deep significant (NRG) reservoirs occurs in the Gulf Coast basin.

The Permian basin contains 24% of the deep reservoirs (89 of 378) in the
U.S. with more than 12.4 Tcf of natural gas produced. Reservoirs occur in
Silurian and Devonian carbonate rocks. Seventy five percent of the Permian
basin reservoirs are developed in Devonian or older rocks. Forty five percent
of the known recoverable natural gas resources (15.1 Tcf; Table 1; Fig. 3) in
the U.S. occurs in the Permian basin.



The Anadarko basin contains 22% of the deep reservoirs (85 of 378) in the
U.S. with 2.4 Tcf of natural gas produced (Table 1; Fig. 3). Deep reservoirs
in the Anadarko basin are primarily clastic (65% of the total reservoirs in
the basin) with subordinate production from Cambrian through Silurian
carbonate rocks.

Rocky Mountain basins are grouped together because of their similar
origin and geographic distribution (Table 1; Fig. 3). These basins have
produced 0.4 Tcf of gas from Jurassic and Cretaceous clastic reservoirs and
Paleozoic mixed clastic-carbonate reservoirs. Variations in the thermal
histories and the Late Cretaceous through Tertiary deformational sequence
resulting in basin evolution (Appendices 3 and 4) control the distribution of
and tendency toward natural gas or oil in the basins.

The above 4 regions account for 355 of the 378 significant reservoirs.
Only two deep significant reservoirs occur in California in the Ventura and
San Joachin basins; they produce primarily oil from Tertiary clastic rocks.
Only one reservoir occurs in Alaska in the Cook Inlet area; it produces
primarily gas from Tertiary clastic rocks at approximately 4,510 m (14,800
ft). Five deep significant reservoirs occur in the Williston basin. They
produce oil and gas from the Ordovician Red River Formation.

Large volumes of deeply buried sedimentary rocks occur in other basins in
the U.S. where no significant gas production now exists. Recent work by
Palacas (Appendix 5) indicates that portions of the Midcontinent rift system
may contain source rocks capable of generating natural gas below 4,572 m
(15,000 ft). Other deep Rocky Mountain basins (Fig. 1) including the Raton,
Albuquerque, and Crazy Mountains basins have been sparsely drilled and the
recoverable natural gas resource is unknown. Furthermore, drilling data
analyzed by Wandrey and Vaughan (Plates 1 through 9) show that many deeper
parts of productive basins have not been adequately drilled even where source-
and reservoir-rock conditions are appropriate. For the last U.S. Geological
Survey national petroleum assessment, 59 of approximately 250 petroleum plays
assessed contained reservoir rocks at least in part buried below 4,572 m
(15,000 ft) (Mast and others, 1989).

Identification of known significant deep natural gas resources--
deep well distribution

A series of maps showing wells drilled deeper than 4,572 m (15,000 ft)
was created using Petroleum Information Corporation's Well History Control
System (WHCS) current to December 1991 (Petroleum Information Corporation,
1991). These maps can be used in conjunction with discussions in this report
to identify the distribution of deep wells in the U.S. See Appendix 3¢, for
detailed discussion of work of Wandrey and Vaughan.

Four maps showing non-producing wells grouped by the age of the oldest
rocks penetrated (Plates 1-4). Non-producing means that HC's could not be
economically recovered at the time drilling was completed. Shows of oil
and/or gas may have been recorded but were insufficient to warrant production,
or completion problems may have precluded production. Four additional maps
show wells that have produced HC's grouped by the age of the producing rocks
(Plates 5-9).

Of the 6,178 wells that produce or have produced HC's from depths greater
than 4,572 m (15,000 ft), 4,547 are gas or gas and condensate wells. Only two
areas contain significant numbers of deep 0il wells (Uinta and Gulf Coast
basins); wells are producing from relatively young rocks. It is likely that



source rocks, which are still producing oil at these depths, have been buried
deeply for only a short period of time.

Geologic controls affecting the distribution of natural gas in
deep basins:

Task la. Distribution of porosity in sedimentary rocks as a
function of time-temperature exposure--Rocky Mountain basins

One of the factors that has limited deep drilling for sandstone
reservoirs is the knowledge that porosity and permeability can be too low to
sustain economic HC production. Better predictive relationships for
determining the porosity and porosity range of sandstones are presented by
J.W. Schmoker (Appendix la) for risk evaluation and reduction in deep-drilling
programs based on an empirical approach to porosity trends as related to
thermal maturity.

Porosity trends are developed as functions of thermal maturity, as
represented by vitrinite reflectance (R,). In this context, R, serves as a

generalized index of burial history. The porosity range at a given level of
thermal maturity is predicted also, and is investigated as a function of rock
properties such as clay content, carbonate cementation, grain size, and HC
generation. Examples are drawn from Cretaceous sandstones of the Rocky
Mountain region, with emphasis on the Lower Cretaceous J sandstone (Muddy
Sandstone) of the Denver basin, Colorado and Upper Cretaceous sandstones of
the Mesaverde Group of the Piceance and Uinta basins, Colorado and Utah.
Figure 1-11 (Appendix la, Schmoker) illustrates the range of depths
encountered for a particular thermal maturity value based on the data from
this study.

The range of porosity at a given level of thermal maturity is not
obscured by averaging but is depicted by porosity—RO trends representing the

10th, 25th, 50th, 75th, and 90th porosity percentiles. Effects upon porosity
of variations in rock properties are thus taken into account.

An empirical approach for estimating the porosity and the porosity range
of Cretaceous sandstones in Rocky Mountain basins is shown (Figs. 1-18A and 1-
18B, Appendix la) where the predictive porosity framework is composed of two
elements (or models A and B), in an effort to represent the porosity—RO data

better than regression lines fit to the entire R, range. For R, less than

0.9%, trend lines of A and B are identical and represent all data. Model A
applies to strata in which porosity continues to decrease at a uniform rate as

R, increases above 0.9%. Model B applies to strata in which the rate of

porosity loss becomes more gradual as R, increases above 0.9%. Models A and B

do not directly reflect variability in rock properties such as grain size and
sorting, shale content, and composition of framework grains. The effects upon
porosity of these factors are already incorporated in the porosity range
defined by the 10th through 90th porosity percentiles. Rather, models A and B
are interpreted as representing sandstones in which porosity evolution follows
one of two fundamentally different pathways. Models A and B are derived from
observation of porosity-R, crossplot patterns and represent a working

hypothesis that, because of a paucity of data, is at present supported only by
circumstantial evidence.



The line segments of Figure 1-18B change slope as R, increases. Such

porosity models implicitly assume that the net effect upon porosity of various
diagenetic processes varies as different processes wax and wane during burial.

The choice of diagenetic pathway (model A versus model B) is important
for sandstone porosity prediction in deep portions of Rocky Mountain basins.
At R,= 2.0%, for example, model A predicts median porosities of about 2% and

90th-percentile porosities of only 4%; in contrast, model B predicts median
porosities of about 5% and 90th-percentile porosities of 8%. Extrapolating
beyond the data to R, =3.0%, model A predicts 10th- through 90th-percentile

porosities to all be less than 3%, whereas model B predicts some porosities of
6-7%. Maximum depths of economic production predicted by model A in a given
area of a basin would be thousands of feet less than those predicted by model
B.

The particular strata of the data set which conform to model B are from
the Almond Formation in the Green River basin and the Mesaverde Group (marine
and nonmarine) in the Piceance basin. Low-permeability sandstones in both
formations are commonly overpressured, at R, greater than 0.9%, due to HC

generation. It 1is thus possible that some Cretaceous sandstones of Rocky
Mountain basins do not follow "normal* diagenetic pathways (Fig. 1-18A)
because of the effects upon diagenesis of HC generation from adjacent and
intercalated coals and organic-rich shales.

As 1s apparent from the porosity comparisons, the hypothesis that
porosity evolution can follow distinctly different pathways as R, increases

above 0.9% has significant implications for the economic production of deeply
buried HC's. An understanding as to which sandstones follow models analogous
to A and which follow models analogous to B is important. However, such
understanding is uncertain, and a discussion of cause and effect is
speculative.

Hydrocarbon generation in overpressured non-subsiding basins of the Rocky
Mountain region has the potential to retard porosity loss as R, increases in

at least three ways: (1) HC's can inhibit cementation by displacing pore
water, (2) carbon dioxide and organic acids produced by the thermal breakdown
of kerogen can create secondary porosity by dissolving cements and framework
grains, and (3) overpressuring can slow pressure solution and associated
porosity decrease by reducing the lithostatic load on grain contacts.
Overpressuring can also reduce cementation by developing a fluid-flow system
characterized by expulsion, rather than exchange, of liquids. Although the
relative importance of these three reasons is difficult to define, the
presence of HC's flattens the porosity-Rs curve and is the fundamental reason
for porosity preservation at depth and an important factor in the presence of
deep natural gas resources.

If HC generation is indeed the primary underlying process causing some
sandstones to deviate from porosity-R, trends similar to those of Figure 1-18A

and follow instead trends similar to those of Figure 1-18B, then the results
and discussion of this section are not restricted to Rocky Mountain Cretaceous
sandstones but are applicable to other deep sedimentary basins in the U.S.

Task 1b. Distribution of porosity in sandstones as a function of
time-temperature exposure--Anadarko basin



The goal of Task 1lb (see T.C. Hester, Appendix lb) was to characterize
Anadarko basin sandstone-porosity trends with respect to thermal maturity in
order to predict locations for new future reservoirs based on porosity
prediction models. Three Ry data sets were compiled-- two data sets
representing Anadarko basin reservoir and non reservoir sandstones, and one
composite data set from many basins (excluding the Anadarko basin)
representing sandstones in general. The first data set provides a porosity-Ro
trend typical of Anadarko basin HC-bearing sandstone reservoirs. Non-
reservoir sandstones in the second data set are defined as those typical of
the Anadarko basin and may be reservoir sandstones at other locations. Non-
reservoir sandstones provide a background by which to compare other
sandstones. The third data set represents a sample of sandstones of diverse
ages, diagenetic facies, and thermal histories exclusive of the Anadarko
basin.

Non-reservoir sandstones
A least-squares fit to the porosity-R, data for non-reservoir sandstones

of the central and southern Anadarko basin shows that sandstone porosity
generally declines with increasing thermal maturity. However, the data appear
to consist of two separate populations--a less thermally mature population
represented by Ry, <1.1% and a more thermally mature population represented by

Ry >1.1%. Correlation coefficients of the least-squares fit to each

population shows a much stronger dependence of porosity on R, for the less

mature trend of non-reservoir sandstones than for these sandstones taken as a
whole. The improved correlation of the less mature trend over that of the
data set taken as a whole suggests that the two data populations might best be
considered as separate trends. The two trends probably overlap to some extent
as the more mature diverges from the less mature. Nevertheless, for the
purposes of this report, a single preliminary boundary separating the two
trends is placed at about R, =1.1%. Additional porosity data might show the

rapid porosity loss of the less mature trend continuing beyond R,=1.1%. Ro of

1.1% approximately corresponds to a depth of 3,444 m (11,300 ft) based on an
Ro-depth curve for measurements from wells throughout the Anadarko basin
within Pennsylvanian rocks (T.C. Hester, unpublished data).

In both populations, porosity generally declines as a power function of
increasing thermal maturity. The least-squares fit to the data show that for

R, <1.1%, the rate of porosity decrease with increasing R, for non-reservoir

sandstones is more rapid than that of the average trend of the porosity-Rg
framework representing sandstones in general. For R >1.1%, the rate of

porosity decrease for non-reservoir sandstones is less rapid than that of
sandstones in general.

Sufficient data to substantiate a probable cause for the change of slope
of the porosity trend of Anadarko basin non-reservoir sandstones are not yvet
available. However, the two populations of non-reservoir sandstone-porosity
data (apparent in Fig. 1-21, Appendix 1lb) may represent sandstones from
different geographic areas, depositional environments, or subsurface pressure
regimes, or sandstones with different burial or cementation histories.
Identification and stratigraphic correlation of the non-reservoir sandstones,
with the addition of petrographic information, are suggested here as a first
approach to examining the nature of the two populations of Anadarko basin non-
reservoir sandstones.

Reservoir sandstones



The porosity-Ro trend of Anadarko basin HC-reservoir sandstones follows a

different pattern. Their least-squares fit shows that the rate of porosity
loss for reservoir sandstones is much slower than that of both non-reservoir
sandstones of the central and southern Anadarko basin, and sandstones in
general (Fig. 1-22, 2Appendix 1b). This relatively slow rate of porosity
decline with increasing R, could be due to geologic factors such as

overpressuring or the inhibiting effects of early HC emplacement on sandstone
diagenesis, and/or to economic factors such as the bias inherent in the
selection of sandstone HC reservoirs.

As R, increases from low levels to about 1.1%, the porosity trends of

Anadarko basin reservoir and non-reservoir sandstones cross. Thus, as thermal
maturity increases, the porosity of reservoir sandstones becomes increasingly
restricted to the upper range of porosity percentiles of non-reservoir
sandstones. If these trends were to continue diverging, porosity sufficient
for commercial sandstone HC reservoirs would become extremely rare at only
moderate levels of thermal maturity. At about Ry =1.1%, however, the slope of

the porosity trend for Anadarko basin non-reservoir sandstones levels off.

The average porosity of Anadarko basin reservoir sandstones then remains
within about the upper 10% of the porosity range of non-reservoir sandstones.
As thermal maturity levels increase above about 1.1% Ry, the similar slopes of

the porosity trends of reservoir and non-reservoir sandstones suggest that
sandstones of the central and southern Anadarko basin may retain sufficient
porosity for economic accumulations of HC's, even at high thermal maturities.

Task 2. Pore throats, capillary pressures, porosity, and
permeability of clastic reservoirs in the Uinta, Wind River, and
Anadarko basins

The primary goal of Task 2 was to document the effects of confining
stress on pore geometry, as well as on porosity and permeability in clastic
reservoirs at various depths (C.W. Keighin, Appendix 2). We wish to
understand pore structures and how these structures are generated and modified
with depth and burial history. Almost no data are available documenting the
effects of confining stress on pore-throat size distribution based on mercury
injection/capillary pressure when the sample is under confining stress.
Nineteen samples from three basins (Uinta, Wind River, and Anadarko basins;
Fig. 1), from different depths, and with different diagenetic histories, were
examined. The samples vary primarily in the relative abundance of quartz,
feldspar, and rock fragments; carbonate cements are locally abundant.

Porosity and permeability of these samples show a wide range of values,
although porosity is typically less than 8% and Klinkenberg permeability below
0.1lmd for all samples examined. Cross plots of these data indicate a
generally close correlation between porosity and permeability. As expected,
there is a general decrease in porosity and permeability with depth, but depth
is not the only factor affecting the decrease of both. Nor is the decrease in
porosity with depth uniform. Examination of thin sections indicates that
while compaction due to increasing depth of burial appears to be a factor, the
degree of compaction is greatly influenced by lithology, especially the
presence and quantity of labile rock fragments. Cementation, either by silica
or carbonate minerals, acts to reduce both porosity and permeability, as well
as significantly modifying pore structure.

The relative abundance of rock fragments may have a significant effect
on both macro and micro porosity, both macro and micro, and permeability.
Compression of labile rock fragments reduces intergranular porosity and



creates intergranular pseudomatrix porosity; both reduce effective
permeability. Partial dissolution of rock fragments commonly creates
microporosity; micropores introduce micro-pore-throats which restrict fluid
migration.

Data show that confining stress has a varying effect on permeability.
Relationships between capillary pressure and wetting phase saturation (i.e.,
air), and pore-size distribution for a range of porosity and permeability
values suggest that some samples are very porous and have large visible pores.
Plots of pore size frequency versus pore entry/throat diameter, however,
reveal that pore throats in these samples are most frequently in the 10um
range, significantly smaller than the pores visible in thin section. The
plots also show that pore throats are constricted by increased confining
stress, although not as dramatically as in samples with lower initial porosity
and permeability, and smaller measured pore throats. Data indicate that for
samples more typically fitting the "tight" sand designation, pore throats are
more typically in the <0.lum size range, and that these already small pores
are further reduced by confining stress. Thus, even though pores visible in
thin section may be relatively large, all pores must be accessed through pore
throats, which are smaller - often much smaller - than the pores. The data
also suggest that pore throats, rather than stress-relief micro fractures, are
indeed being closed with increasing confining stress for the samples studied.

As more data become available, contoured maps quantifying the pore-throat
character and resulting variations in permeability could be used to define
"sweet spots" targeting exploration strategies.

Task 3. Summary of deep natural gas reservoir pressures and
initial-potential test data in U.s.

A study of available deep (4,572 m-->15,000 ft) reservoir pressures was
conducted as a part of Task 3 (C.W. Spencer and C.J. Wandrey, Appendix 3b)
because: (1) abnormally high pore pressure may reduce the rate of porosity and
permeability loss with increasing burial depth, and (2) gas reservoirs with
high pore pressure will have more gas-in-place than low-pressure reservoirs at
the same temperature and porosity owing to the high compressibility of natural
gas. An important aspect of this work was to define the aerial distribution
of major pressure regimes from computer data files and to summarize reasons
for overpressuring in different regions.

Pressure data for this study were obtained from two sources: (1) the
drillstem test (DST) reports in Petroleum Information's Well History Control
System and (2) reservoir-pressure data compiled in the NRG Associates
Significant 0il and Gas Fields of the U.S. file (NRG Associates, 1991). The
NRG file is updated to July 1991 and contains data on about 10,000 fields of
which about 250 are deeper than 4,270 m (14,000 ft) and have some form of
reservoir pressure data recorded.

Shallow (2,440 m--<8,000 ft) reservoirs are usually normally pressured
or underpressured, whereas deep (4,572 m-->15,000 ft) hot reservoirs may have
normal to above normal pressures. In order to determine the general
distribution of abnormally high pressures and predict their distribution in
undrilled areas, it is helpful to consider possible causes of high pore
pressure and the distribution of pressure regimes in the geologic environment
based on available data.
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There is no single cause that can adequately explain all occurrences of
above normal pressures. However, most proposed mechanisms require that semi-
isolated or fairly well sealed reservoirs be present in order to maintain
abnormal pressure. Some of the more commonly accepted causes of
overpressuring are dewatering of shales owing to compaction, clay mineral
transformations that release water, active hydrocarbon generation, and
agquathermal pressuring caused by thermal expansion of water.

Normal pressures range from 0.43 to 0.465 psi/ft depending on reservoir
salinity and other factors. Overpressured deep "significant" gas reservoirs
are present in the Rocky Mountain region in the Wind River and Greater Green
River basins (Fig. 2). This region also contains overpressured shallower
reservoirs in the depth range from 3,200 m (10,500 ft) to more than 3,960 m
(13,000 ft). Most of the overpressured gas-bearing rocks are of Tertiary and
Cretaceous age and the overpressuring is caused by active HC generation.

The Anadarko basin contains overpressured Permian, Pennsylvanian,
Mississippian-Devonian, and Ordovician sandstones, carbonates, and shales in
the deep parts of the basin. This overpressuring may be related to HC
generation.

The Permian basin has overpressuring in about 35% of the >4,270 m-deep
(>14,000 ft-deep_ significant reservoirs in the NRG Associates Significant
Field File. Most of the overpressuring occurs in rocks of Wolfcampian,
Morrowan, Atokan, and Mississippian age. Dominant reservoir lithologies are
sandstone, limestone, and dolostone. Minor overpressuring occurs in Devenian
limestone. The origin of this overpressuring is not well defined at the
present time but may be caused by the thermal conversion of previously
migrated o0il to gas plus some active generation of gas from deep basin source
beds.

The Gulf Coast region has extensive overpressured reservoirs. The
overpressuring in younger Miocene and Oligocene sandstones and shales is part
caused by undercompaction. Overpressuring in Cretaceous and Jurassic
sandstones and carbonates in the eastern Gulf may be caused by several
mechanisms, and more study needs to be done to allow better prediction of the
overpressuring because its distribution is highly variable.

An additional study was made of the initial potential tests (IP's) of
all wells completed in the U.S. at depths greater 4,572 m (15,000 ft) using
Petroleum Information Corporation's Well History Control System (WHCS).
Preliminary plots of initial-potential gas versus depth do not identify
specific trends and several factors may be responsible for the distribution of
these data (Figs. 3-2A through 3-2H, Appendix 3b). Deep wells tend to have
lower matrix permeabilities and the degree and openness of natural fractures
is a controlling factor influencing individual well productivity. Second,
many of the wells were artificially stimulated with acid and/or hydraulic
fracturing. It is well known that the success of these techniques varies
considerably throughout the U.S. Through time, completion techniques can
improve in a given basin, and in some basins, rocks of similar ages and
lithologies dominate the data set, whereas in other areas, diverse ages and
lithologies are combined in a single plot.

The Uinta basin shows a wide range of IP values at all depths but none
of the wells are very high volume (maximum IP equals about 2.75 million cubic
ft/day at about 16,000 ft--4,870 m). A nearly random scatter occurs but the
majority of data points are less than 1 MMcf. These reservoirs are dominantly
sandstone and are Early Tertiary in age. Natural fractures are causing the



11

variability of these low permeability reservoirs (Spencer, 1989). Wind River
basin deep IP tests are all from Cretaceous sandstones except for IP's at
about 7,310 m (24,000 ft) which represent completions in Mississippian
dolomite; they are high COp gas. The Anadarko basin shows a wide range in
variability of IP results. Data show some very high volume wells (above 200
MMcf) but most are in the less than 5 MMcf range.

Task 4. Deep gas-prone basins of the Rocky Mountain region

The purpose of Task 4 (W.J. Perry, Jr., Appendix 4) was to identify the
structural setting and trapping mechanisms of deep gas accumulations in
different sedimentary basins in the Rocky Mountain region in order to relate
these factors to undiscovered natural gas resources. Selected deep basins
were studied in detail and used as models from which to compare the structural
characteristics of other deep basins. Also, the timing and structural style
of Rocky Mountain basins was studied in order to determine the evolution of
deformation and subsequent entrapment of gas.

Several sedimentary basins in the central Rocky Mountains have
substantial volumes of sedimentary rock at depths greater than 4,572 m (15,000
ft); the largest being the Green River and Uinta basins, respectively north
and south of the Uinta uplift (Figs 1 and 2). These basins initially
developed during Cretaceous time as foredeeps in front of the eastward
prograding Wyoming and Utah salients of the Cordilleran thrust belt. A
southeastward progression of major uplift and consequent basin development in
the Rocky Mountain foreland began in extreme southwestern Montana during
Cenomanian-Turonian time (Fig. 2).

The Late Cretaceous eastward progradation of the Laramide deformation
front reached the Colorado Front Range (central Colorado, Fig. 2) by 69 Ma.
In support of this contention, no evidence of Campanian or older Cretaceous
Laramide-style deformation is present in the Rocky Mountain foreland east or
southeast of the Blacktail-Snowcrest and Wind River uplifts (Fig. 4-1), based
on available palynostratigraphic dating of preorogenic and synorogenic
sediments. Such dating reveals that growth of the Front Range uplift
culminated in exposure of the crystalline basement by early Paleocene time.
Subsequent Laramide deformation spread northeastward from the Granite
Mountains-Shirley Mountains uplift in south-central Wyoming; the Laramide
deformation front reachied the Black Hills by late Paleocene time, creating
first, the Wind River and then the Powder River basins, partitioning these
basins from an earlier continuous foreland basin with minor welts. These
broad structural welts of low relief, such as the San Rafael swell in eastern
Utah, had begun to grow in the Rocky Mountain foreland by mid-Cretaceous time.

South of the major east-west crustal discontinuity along the Wyoming-
Colorado border, which separates Archean basement rocks on the north from
Proterozoic basement rocks to the south, Laramide deformation proceeded from
east to west, culminating along and defining the eastern boundary of the
Colorado Plateau in late Eocene, chiefly Green River time.

Economic implications of this new model of deformation of the Rocky
Mountain foreland include progressive opening and subsequent blockage of
migration paths for HC's generated from source rocks in southeastern Idaho,
southwestern Montana, Wyoming, Colorado, and eastern Utah.

Hanna basin
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The Hanna basin in southern Wyoming contains more than 9,140 m (30,000
ft) of Phanerozoic sedimentary rocks of which more than 4,572 m (15,000 ft)
are Upper Cretaceous and predominantly marine. Latest Cretaceous (?) and
Paleocene nonmarine rocks (the Ferris and Hanna Formations) are nearly 4,572 m
(15,000 ft) thick. The nonmarine formations penetrated are gas-prone, and
these shallow rocks are being exploited for coal-bed methane.

The sequence of structural events in the Hanna basin in southern Wyoming
region are: first, development of the Hanna trough sequence of thick marine
Upper Cretaceous rocks which trends east-west across southern Wyoming;
second, isolation of the Hanna basin by early Paleocene growth of the
Granite Mountains-Shirley Mountains transpressive zone to the north and
Rawlins uplift to the west; third, southward tilting, probably in mid-
Paleocene time concurrent with early growth of the Sweetwater uplift and then
development of the Shirley thrust along the northern margin of the basin
subsequent to Hanna deposition. The last phase of structural growth, uplift
of the Medicine Bow Mountains concurrent with development of the Arlington
thrust, appears to have been initiated in late Paleocene time. The geometry
suggests major gas possibilities in the undrilled northern part of the basin
beneath the Shirley thrust provided that gas generation continued during and
after thrusting.

It would appear that much deep gas remains to be found in deep Rocky
Mountain foreland basins if the scenario shown in the Hanna basin is found to
be correct and this type of tilting prior to thrusting can be demonstrated in
other areas. Because of the high vitrinite reflectance values at depths of
greater than 3,050 m (10,000 ft), discussed above, the deeper Cretaceous units
should also yield natural gas. However, only one small gas field has been
developed -- on the northwest flank of the basin. Very few deep wells have
been drilled in the Hanna Basin, unlike other basins to the west and north.
Substantial amounts of deep gas may yet be found in this basin.

Wind River basin

The Wind River basin, northwest of the Hanna basin, is separated from the
latter by the Granite Mountains-Sweetwater uplift which may have begun to grow
during the mid-Cretaceous and was a positive element in the Campanian. Late
Cretaceous rocks thicken southeastward in the Wind River basin to greater than
5,490 m (18,000 ft). The Bull Frog field developed in Cretaceous Frontier
sandstones (>5,700 m-->18,700 ft) in this part of the basin contains the
deepest producing Cretaceous gas reservoir in the Rocky Mountain region.
Other significant nearby fields include West Poison Spider and Tepee Flats,
the latter beneath the lip of the Casper arch, from which it is separated by a
major basement-involved thrust system which dips northeastward beneath and is
responsible for the arch.

The Deep Madden gas field, in the northern part of the Wind River basin
lies in front of (south of) the Owl Creek thrust which bounds the northern
margin of the basin and is likely continuous with that under the 1lip of the
Casper arch. The Madden anticline, the locus of this growing giant gas field,
is cored by a thrust wedge, and the north-bounding Owl Creek thrust has more
than 10,670 m (35,000 ft) of structural relief, comparable in size to the
Wichita frontal fault system along the southern margin of the Anadarko basin.

The Wind River basin is bounded on two sides by thrust faults whereas the
Hanna basin is bounded on all four sides by inward facing thrusts. The Wind
River basin was partitioned from the remainder of the Rocky Mountain foreland
in the late Paleocene by growth of the Casper arch which led to internal
drainage as represented by Lake Walton and isolation from long-distance
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migration of HC's from previously down-dip areas to the west and southwest.
The Wind River basin occupies a critical position with respect to the
sequential development of Laramide structure in Wyoming because cessation of
major Laramide deformation in the area occurred during early Eocene.
Sedimentation rates are consistent with relatively late Laramide strike-slip
dominated transpressional deformation along the northern margin of the Wind
River basin, similar to the earlier Laramide transpressional boundary along
the northern margin of the Hanna basin to the south. Undiscovered
structurally trapped deep gas may still be found north and northwest of the
Madden anticline in the northern part of the Wind River basin.

Task 5. Source-rock potential of Precambrian rocks in selected
basins of the U.S

The goal of Task 6 (J.G. Palacas, Appendix 5) was to determine the
source-rock potential of Proterozoic unmetamorphosed sedimentary rocks in
selected basins of the U.S. Proterozoic rocks are widely distributed in the
U.S. and commonly occur in the deeper parts of basins. Their petroleum
source-rock potential, however, is poorly known. These rocks may have
generated and expelled petroleum which was subsequently trapped in Precambrian
and/or younger overlying Phanerozoic rocks.

The reason for assigning a petroleum potential to Precambrian rocks in
the U.S. is influenced by the actual production of commercial oil and gas
derived from Precambrian rocks in other parts of the world. This report
emphasizes the source rock evaluation of Proterozoic rocks in two regions of
the U.S., the Midcontinent Rift System (MRS) and the Grand Canyon area,
northern Arizona and vicinity.

Midcontinent Rift System

Rocks of the Midcontinent Rift System (MRS), delineated by strong
gravimetric and magnetic anomalies, are exposed in the Lake Superior district
of Michigan, northern Wisconsin, and Minnesota and extend in the subsurface
into Minnesota, Iowa, Nebraska and northeastern Kansas (Fig. 5-1). The 1,570-
km-long (940-mile-long) MRS is a failed rift characterized by a series of
asymmetric basins filled with clastic rocks, in places up to 9,750 m (32,000
ft) in thickness. The rocks belong to the Middle Proterozoic, Keweenawan
Supergroup, comprised of the Bayfield Group above and the Oronto Group below.
The MRS is conveniently divided into four geographically identifiable
segments: Lake Superior, Minnesota, Iowa, and Kansas.

Lake Superior region

The potential for petroleum reserves in the Midcontinent Rift System has
long been recognized because of the active crude o0il seeps emanating from the
~1.1 billion-year-old Nonesuch Formation at the White Pine Mine locality, Lake
Superior region (Fig. 5-1). In this region, the Nonesuch Formation consists
of interbedded dark grayish to greenish sandstones, siltstones and silty
shales with poor source-rock potential. However, for finely laminated
calcareous and noncalcareous silty shales that occur in thin intervals, TOC
contents range from 0.25 to 2.8%. Should thicker sections of these HC-
generating shales occur downdip from the outcrop belt and be subjected to
higher levels of thermal maturation (but still within the wet gas to dry gas
window; Rice, 1989), the gas source potential for the Lake Superior and the
adjoining area in northern Wisconsin should be considered good.

Minnesota segment



14

The source rock potential of the Minnesota segment of the MRS is
evaluated from examination of Keweenawan Solor Church Formation rocks as
sampled in the Lonsdale 65-1 borehole, Rice county, Minnesota. The formation
consists principally of interbedded conglomerate, sandstone, siltstone, and
shale or mudstone. Analyses of core samples, mainly from the bottom 20% of
the core, show TOC contents ranging from 0.01 to 1.77% and averaging 0.24%,
indicating an overall poor source rock potential for oil or gas for the entire
formation. A very low average genetic potential is largely attributed to the
advanced level of thermal maturation. Based on maturity evaluations of basins
worldwide, the Solor Church organic matter at the Lonsdale 65-1 locality has
advanced to the transition stage between the wet gas and dry gas generating
zones. The gas source potential of the Precambrian Solor Church Formation
rocks, in the vicinity of the Lonsdale well and presumably in the neighboring
areas, 1s poor.

Iowa segment

The Iowa segment of the MRS is unique in that the HC source rock
assessment has been made of the thickest section (4,541 m--14,898 ft) of
Precambrian sedimentary rock sampled by drilling from anywhere throughout the
940-mile-long structure. Assessment is based on analysis of core and cuttings
samples from the 5,441-m-deep (17,851-ft-deep) Amoco M. G. Eischeid #1 well,
drilled in 1987 in an asymmetric half-graben-like basin northwest of the Iowa
Horst, Carroll County, Iowa (Fig. 5-1). Most of the Keweenawan sedimentary
rocks, composed of red and red-brown sandstones, siltstones, and silty shales,
are oxidized and have no source rock potential. However, at depths between
4,572 m (15,000 ft) and 5,006 m (16,425 ft), a conspicuous darker colored
section of rock, possibly equivalent to the Nonesuch Formation of the Lake
Superior region, contains a cumulative thickness of 60 to 90 m (200 to 300 ft)
of gray to black, pyrite-bearing, organic-rich laminated shales. Tpax values
strongly indicate that the shales are thermally overmature and in the
transitional zone between wet gas and dry gas, similar to the findings for the
Solor Church Formation in southeastern Minnesota. The laminated shales have
little remaining capacity for HC generation but may have generated significant
amounts of gas in the geologic past. Equivalent laminated shale facies, as
those observed in the Eischeid well, might have fair to good HC source
potential if present at shallower depths of burial, under lower levels of
thermal stress, along basin flanks, away from the frontal fault zone of the
medial horst.

Kansas segment

The Kansas segment of the MRS is evaluated on the basis of examination of
cuttings samples from two boreholes in northeastern Kansas: the Texas Poersche
#1 well and the Producers Engineering Finn #1 well (Fig. 5-1). The two wells
exhibit remarkably different lithologies, probably reflecting different
structural, stratigraphic, and/or depositional regimes. Hence, the two
sections of rock may belong to two different subbasins. This is in agreement
with the findings provided by geophysical and borehole data that the MRS
segment in northeastern Kansas is divided into small subbasins that probably
are only a few tens of square miles in extent.

The Poersche well, drilled to a total depth of 3,440 m (11,300 ft),
penetrated 2,846 ft of Phanerozoic rock and 2,580 m (8,454 ft) of Precambrian
(Keweenawan) rock, the latter of which is comprised of nearly equal
successions of highly oxidized arkosic sandstones and siltstones and mafic
volcanic and intrusive rocks. No organic matter was noted in any of the
oxidized sedimentary rocks, unequivocally indicating no source rock potential.
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The Producers Engineering Finn #1 well showed some minor gas source
potential in a 91-m (300-ft) section of gray siltstones directly beneath the
Paleozoic-Precambrian unconformity. Thermal maturity values contrast
dramatically with the much higher maturity values observed in the Minnesota
and Iowa segments of the MRS, but demonstrate that some gas source potential
is present. Because of the structural complexity and abrupt facies changes,
it appears that individual subbasins need to be examined before complete
source rock evaluation be made of the Kansas portion of the rift system.

Grand Canyon area, northern Arizona

The Late Proterozoic Chuar Group is exposed in the eastern portion of the
Grand Canyon. It is composed of a 1,640-m-thick (5,370-ft-thick) succession
of predominantly very fine grained siliciclastic rocks that contains thin
sequences of sandstone and stromatolitic and cryptalgal carbonate rocks. More
than half the succession consists of organic-rich gray to black mudstone (or
shale) and siltstone.

Geochemical analyses indicate that the 280-m-thick (922-ft-thick) Walcott
Member, the uppermost unit of the Kwagunt Formation, has good to excellent
petroleum source rock potential. The lower half of the Walcott is
characterized by total organic carbon (TOC) contents as much as 10.0%, ,
hydrogen indices as much as 204 mgHC/g TOC, genetic potentials (S; + S2) of
nearly 16,000 ppm, and extractable organic matter (EOM) as much as 4,000 ppm.
Preliminary ata for the upper Walcott suggest that these rocks are as rich or
richer than the lower Walcott. Maturity assessment indicates that source
rocks of the Walcott are within the oil generation window.

Strata of the underlying thermally mature Awatubi Member of the Kwagunt
and the thermally mature to overmature Galeros Formation are, in general,
rated as poor oil sources with genetic potentials generally less than 1,000
ppm, but they appear to be acceptable to good source rocks for gas generation.

Chuar Group strata may be potential sources for economic accumulations
of gas and oil in upper Proterozoic or lower Paleozoic reservoir rocks in
northwest Arizona and Utah. The relative proportion of gas or oil in any one
area will depend in-large part upon the degree of thermal maturation.

Task 6. Cl1l5+ Hydrocarbon Thermal Destruction as Related to high-
rank, deep-basin gas resource bases

The purpose of Task 6 (L.C. Price, Appendix 6) was to describe the
thermal destruction of Cig+ HC's by conversion to high-rank methane, and
investigate the loss of HC-generating potential with increasing thermal
maturity for different types of organic matter.

The data from this study demonstrate that Cyg+ HC's are thermally stable
to very high maturation ranks. 1In fact: (1) Cis+ HC's are thermally stable
to ranks as high as Rg = 7.0-8.0% in deep, unsheared petroleum basins. (2)
Co+ HC's are thermally stable to even higher ranks, well into true rock
metamorphism. (3) Methane is stable probably into mantle conditions.

The evidence for Cjis+ HC thermal stability comes from: (1) petroleum-
geochemical analyses of ultra-deep (4-6 mi), high-rank (Rg = 2.0-8.0%), fine-
grained rocks, analyses which demonstrate that moderate to high concentrations
of Cis5+ HC's survive to these ranks; (2) compositional changes in both the
saturated and aromatic HC's in the approach to and during Ci5+ HC thermal
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destruction, changes which have been only occasionally observed in the deepest
rocks of sedimentary basins; (3) long-established physical-chemical laws which
demonstrate that Ci5+ saturated, and especially aromatic, HC's are thermally
stable species with high bond energies; (4) published data which demonstrate
that low concentrations of Cjig+ HC's persist into conditions of true rock
metamorphism and other high temperature settings; (5) “oils” of normal
(moderate) maturities (as determined by biomarker analyses) entrained in very
low concentrations (by gas solution) in dry “high-rank” gas accumulations; (6)
a lack of high-temperature assemblages of saturated and aromatic HC's in
“high-rank” gas accumulations; (7) the rare occurrences of high-rank oil
accumulations that do exist, and (8) the lack of the expected methane carbon-
isotopic compositions versus depth in the high-rank, dry gas deposits of the
Anadarko basin, if such gas deposits indeed originated by thermal destruction
of C15+ HC's.

The controlling parameters of organic matter (OM) metamorphism are
considered to be burial temperature and geologic time (e.g. - first-order
reaction kinetics). These controlling parameters predict Cis+ HC thermal
destruction by Ro = 1.35%. This prediction is in strong contrast with
observed Cis5+ HC thermal stability to Rg = 7.0-8.0%. Furthermore, no solid
evidence exists which indicates that OM metamorphism follows first-order
reaction kinetics. Thus it is concluded that the controlling parameters of OM
metamorphism, according to present-day petroleum-geochemical paradigms, must
be at least partially in error.

Increase in burial temperature is the principal cause for OM metamorphic
reactions. Other controlling parameters and characteristics of OM metamorphic
reactions are hypothesized to be: (1) increases in static fluid pressures
retard all aspects of OM metamorphism; (2) the presence of water enriches
(hydrogenates) kerogen and suppresses HC thermal destruction; (3) open or
closed reaction sites: open reaction sites (product escape) promotes OM
metamorphism, closed reaction sites (product retention) retards OM
metamorphism; (4) OM metamorphic reactions are not first-order reactions, but
are higher-ordered reactions; and (5) the reactivities of the different
kerogen (OM) types vary, increasing with increase in sulphur content and
decreasing with increase in hydrogen content. Thus Type II-S OM reacts before
Type III OM which reacts before Type II OM which reacts before Type I OM.

Evidence for deep-basin HC destruction has been attributed to the lack
of deep-basin o0il accumulations and strong basinal HC zonations: dry gas only
in the deep basin, o0il on the shelves with both gas-oil-ratios and API
gravities decreasing with decreasing burial. However, these two HC
distribution patterns (no deep-basin 0il and strong basinal HC zonations) can
also be explained by: (1) emplacement processes during migration (oil emplaced
mostly at shallow depths during vertical migration); and (2) condensation,
buoyancy, migration, and “flushing” processes (Gussow, 1954) which also apply
to the C2-C4 HC gases in the deep basin).

Because of their high aqueous solubilities, both CO3 and H3S are quickly

(104—105 yvears) dissolved in water-bearing deep gas accumulations. Thus the
presence of either of these two gases in deep-basin gas accumulations dictates
that such gas accumulations: (1) contain no water; and (2) are closed systems
with regard to fluid migration. The probability of water-free, deep-basin gas
reservoirs carry strong implications for: (1) enhanced thermal destruction of
Cis+ HC's; and (2) possible formation (skin) damage around the wellbore during
drilling, completion, and stimulation procedures.
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Some gas accumulations show by methane-isotopic, compositional, and
geologic evidence that they have had a high temperature (400°-1200°C?) origin,
involving C15+ HC thermal destruction. However, such gas deposits appear to
be unusual, based on existing data. Most high-rank, deep-basin, dry gas
accumulations have probably not originated by an in-reservoir thermal
destruction of Ci5+ HC’s. Such methane accumulations are believed to largely
be made up of methane cogenerated with Ci5+ HC's during both the intense and
late stages of C1s5+ HC generation from kerogen. Condensation and buoyancy
processes combined with Gussow's (1954) principal of differential entrapment,
are believed to lead to an expulsion of all Cy+ HC's (and perhaps water) from
deep-basin gas traps.

Faulting and fracturing are probably necessary for highly efficient
primary migration of gases from source rocks. Thus deep-basin gas
accumulations should nearly always be associated with faulting. Normal and
extensional faulting would be most favorable for migration because of voids
along the fault zones. Later evolution to compressional (high-angle reverse)
faulting (such as occurred in the Anadarko basin in southern Oklahoma) would
be favorable for preservation of deep-basin gas deposits over geologic time.
The existence of cracks, fractures, parting laminae and other such voids in
deep-basin rocks may help offset a general trend of decreasing porosity with
increase in maturation rank in deep petroleum basins. Basinal structural
styles evolve through geologic time. For example, the depocenter and
southernmost margin of the Anadarko basin, although previously an extensional
wrench fault regime, later evolved into a compressional tectonic regime,
characterized by numerous, large, high-angle reverse faults. Migration of HC
fluids could occur during periods of normal or extensional faulting and later
evolution to a compressional tectonic regime might be quite favorable to
preserving deep, high-rank gas deposits over geologic time by minimizing loss
by leakage up these “tight” compressional systems.

Very large, in-place, non-conventional gas-resource bases exist, among
which are: basin-centered gas deposits, coal-gas, tight-gas, black-shale gas,
and Gulf Coast overpressured-geothermal gas. It is hypothesized that the
existence of such unconventional gas-resource bases are primarily due to, and
are direct evidence of, highly restricted fluid flow and inefficient primary
HC migration in deep sedimentary basins. Much of the rock volume of deep
sedimentary basins is perceived to be an essentially closed system with
respect to significant fluid flow once basinal evolution goes beyond the
youthful stage to the mature stage with a corresponding decline in geothermal
gradients.

Task 7. Migration of 10's to 100's of TCF of Hydrocarbon and
non-Hydrocarbon Gases from the Deep Crust: Composition, Flux,
and Tectonic Setting

The purpose of Task 7 (R.C. Burruss, Appendix 7) was to investigate the
occurrence, geologic setting, and geochemical controls of non-HC gases (NHCG),
such as carbon dioxide, hydrogen sulfide, and nitrogen, which dilute and can
contribute to the destruction of deep gas accumulations.

Comparison of gas compositions in deep reservoirs with the compositions
of gases generated in the deep crust yields three types of information: (1)
similarities between the gases in the two crustal regimes; (2) evidence for
volumetric fluxes of non-HC and HC gases in metamorphic rocks presently
exposed at the surface that can be used to estimate the potential flux of
gases to shallow crustal levels accessible to the drill; and (3)
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identification of crustal environments (tectonic and metamorphic terranes)
that generate significant quantities of gas that can be coupled with analysis
of basin structural style and setting to identify basins where deep crustal
sources may have contributed to the HC resource base.

Analysis of trends in gas composition versus depth and reservoir
lithology were performed on available gas data in the NRG Associates
Significant Field File for 120 U.S. reservoirs at depths of 4,270 m (14,000
ft) or greater. When the fraction of total NHCG is plotted as a function of
reservoir temperature (to eliminate significant variations in geothermal
gradient) two trends are apparent. One trend of gradually increasing NHCG
with depth up to about 10% is common to both carbonate and sandstone
reservoirs from all basins. The first trend is due to fluid-rock interactions
involving organic matter and dissolution and reprecipitation of carbonate
cements. A second trend, of rapidly increasing NHCG with depth is present in
a small number of reservoirs, all but two of which are in carbonate rocks.

The second trend occurs in carbonate reservoirs of the Permian basin
(Ellenberger Formation) and carbonate and sandstone reservoirs in the
Smackover Formation and related strata (Norphlet Formation) of the Gulf Coast.
Although the dominant NCHG in these reservoirs is COp, H2S is also important
(up to 25%). The occurrence of these high NHCG gases in carbonate reservoirs
and the presence of H3S indicates that thermochemical sulfate reduction and
simultaneous oxidation of HC's to CO2 may be the dominant control on gas
composition in these reservoirs.

Most of the evidence for the composition of fluids in the deep crust
comes from observations on fluid inclusions in metamorphic and igneous rocks.
Metasedimentary rocks which contain graphitic carbon and carbonate minerals
can act as a source of carbon bearing gas components, CH4 and C0O2. An
additional source of information on fluids in crustal rocks is fluid
inclusions in quartz veins associated with ore mineralization. Recent
information from ore deposits is important because it records the flux of
fluids from deep to shallower levels of the crust and provides a basis for
quantitative estimates of the flux of gases to shallow crustal levels as
discussed in the following section.

The trends in NHCG content of natural gases shown in deep sedimentary
basins can be extended to deeper crustal levels by including data from fluid
inclusions in rocks of well constrained depth of burial. Individual
localities may show a significant range in composition, but even the highest
temperature rocks still contain some methane and the compositions tend to lie
along the extension of the first trend identified above for sedimentary
basins. Clearly, the "early burnout" of HC gases that one would predict from
the second trend of rapidly increasing NHCG's, for carbonate reservoirs, does
not occur in all crustal rocks. Work on a siliceous marble that equilibrated

at 800°C documents the occurrence of about 1 mole % methane in carbon dioxide
at this temperature showing that methane is stable to great depths in the
crust.

Metamorphic rocks that contain more than about 10 mole percent methane
in fluid inclusions tend to be graphite bearing. The compositions of the
inclusions tend to be generally consistent with calculated compositions of
agueous fluids in equilibrium with graphite , especially when the possibility
of hydrogen diffusion from inclusions is taken into account. This observation
plus the textural evidence for precipitation of graphite from fluids clearly
documents the generation and migration of methane and carbon dioxide bearing
fluids in the deep crust. This also suggests that identification of geologic
environments where carbon-rich sediments have been incorporated into
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metamorphic rocks will help define areas where there is the greatest
probability of deep crustal sources contributing to shallower natural gas
resources.

Estimates of the flux of gases from the deep crust are based on the
measured solubility of quartz in water as a function of temperature, pressure,
and salinity which can be translated into a quantity of quartz precipitated
per volume of water in a vein system at a given depth. From the volume of
quartz veins that can be measured in the field, we can estimate the volume of
water necessary to form the vein system. The ratio of HC and non-HC gases to
water can be determined from fluid inclusion measurements. Therefore we can
estimate the volume of gases transported with the water necessary to form
quartz veins at depth in a given tectonic setting.

Studies have documented the geochemical processes and tectonic setting
of formation of "giant quartz-vein systems" which in many cases have
associated gold mineralization (Kerrick and Feng, 1992; Appendix 7). In one
example of a giant vein system, it has been estimated that 6 X 1018 g of
aqueous fluid (6 X103 km3) deposited about 6 X 1015 g of quartz and in the
process transported 3 X 1015 g of CO2. This is 1,500 trillion cubic feet
(Tcf) of CO2. Based on the range of methane/carbon dioxide ratios observed in
fluid inclusions in quartz from one of these giant vein systems (1:3 to 1:40),
a single giant vein system may transport on the order of 50 to 500
TCF of CH4 to shallow crustal levels. Twelve giant vein systems have
been documented in the Canadian, European, and Australian shields (Kerrick and
Feng, 1992).

Giant quartz-vein systems are an important component of any
consideration of deep crustal sources of HC and non-HC gases for several
reasons. First, quartz veins are direct evidence of focused flow of fluids
from deep to shallow crustal levels. Second, the systems occur at convergent
plate margins, especially those associated with transpressive tectonic
regimes, a geologic environment with major HC accumulations. Giant vein
systems may be the best evidence to support earlier suggestions of natural gas
accumulations in *accretionary" terranes.

On the negative side, convergent, transpressive tectonic regimes tend to
have a component of very active vertical tectonics. This can lead to rapid
erosional exhumation of potential reservoir rocks and loss of accumulations.
For example, there is a large amount of fluid inclusion evidence for methane
generation and transport through the European quartz veins, but any
sedimentary cover that could have provided reservoirs has been stripped off
this young terrane.

Task 8. Resource assessment methodology for deep natural gas
resources

The primary goal of Task 8 (G.L. Dolton and R.A. Crovelli, Appendix 8)
was to identify and develop quantitative resource assessment methods and
models for evaluation of undiscovered deep gas resources, based on geologic
models of occurrence and information developed by Tasks 1-7 of this project.

Review and analysis of resource appraisal methodologies and approaches
allow identification of methods for dealing with deep gas accumulations.
These methods are ultimately dependent upon the level of geclogic and
engineering data available and understanding of the geologic model for the
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specific deep gas occurrence. One or more may be appropriate in a given case,
and multiple approaches are desirable as independent checks. The methods of
assessment which appear most appropriate to assessment of undiscovered
resources of deep gas are: (1) deposit simulation, (2) reservoir performance,
(3) analog, (4) discovery process and finding rate models, (5) mass balance
calculations, and (6) volumetric and areal yield determinations.

Geologic information in our companion studies indicates that many deep
gas occurrences should be treated at a play level (see Mast and others, 1989
and Appendix 8) and with a method that will provide information on the size of
the accumulations and their geologic characteristics, as well as a total
resource value, so that economic and supply studies can be made. Several of
the preceding methods meet criterion for evaluation of undiscovered deep gas
resources. Where sufficient information is available concerning the geologic
characteristics of known or suspected deposits of deep gas, a volumetric
calculation of resources is appropriate. This method is based on
measurement of known or estimated physical properties of the traps, reservoir
rocks and fluids and of the host environment in terms of temperatures,
pressures and fluid dynamics. It has the advantage of working with the basic
geologic properties of the accumulations and dealing with them in a rigorous,
quantitative mode and allows for simulation of the HC deposit(s) through
estimation of properties where data are lacking or incomplete.

The calculation of gas resources is based on a fundamental reservoir
volume engineering formula. Simulation of properties of the accumulation or
an aggregate of accumulations requires that reservoir volume parameters are
represented as estimates expressed as ranges of values, accompanied by
probabilities of occurrence, representing the natural geologic variability of
geologic characteristics and our uncertainty about them. The model can be
used both at the scale of a single prospect or for an aggregate of prospects
within a common geologic setting or play.

A hypothetical case of deep gas occurrence is applied for a population of
drillable prospects, which have been identified geologically or geophysically
or are hypothesized to exist, and which bear common geologic characteristics.
For instance, we may estimate that we are dealing with a sandstone reservoir
lying in structural traps at depths ranging from 18,000 to 22,000 ft. 1In this
case, we assume that the various play attributes for HC occurrence have been
met, hence no risk has been assigned.

Results from calculation of the modeled play are shown in Table 8-1
(Appendix 8). Several interesting relationships emerge from this calculation.
First, is the relatively modest amount of gas calculated, considering the
prospect areal size. This is largely the function of small amounts of
effective matrix porosity. Should porosity of less than 5% contribute gas to
the reservoir, then the cut-off value should reflect this so that it is
included. In any case, the diminished pore space is viewed as a significant

factor in many deep gas reservoirs. It effects not only the amount of
resource present but also production. In many cases, the presence of natural
fractures is necessary for economic production. In such instances, adjustment

of reservoir porosity values must be made to accommodate fracture porosity.
Special situations do occur, where porosity is retained at great depth, as in
some overpressured reservoirs, and need to be considered in exploration,
development and assessment scenarios.



21

Alternatively, if we assume better reservoir conditions as occur in many
of the clastic reservoirs of the Gulf Coast, and overpressuring, and use these
variables in place of the original data set (Table 8-1, Appendix 8),
recoverable resources increase significantly. For this more optimistic case,
we assumed a average reservoir porosity of 18%, and a pressure gradient of
0.75 psi/ft (clearly an overpressured reservoir as is commonly associated with
deep natural gas accumulations). In the first case, the mean resource value
in these prospects contained 298 Bcf. In the second, more optimistic case,
the prospects contained 1,017 Bcf of gas, a three-fold increase. In this
instance, the increase in recoverable gas was due to the increase in porosity
and pressure. Other variables which particularly affect the overall reservoir
volume include reservoir thickness and size of prospects

This volumetric method is flexible in that it permits the geologist to model
the geologic conditions controlling the resource. This allows for a wide
range of resource values for a wide range of geologic conditions.

CONCLUSIONS

(1) An empirical framework for predicting the porosity range of sandstones in
Rocky Mountain basins is developed. The concept is broadly applied to
deeply buried sandstone in general. For vitrinite reflectance (Ro) >1.1%,
the rate of porosity decrease as thermal maturity increases for Anadarko
basin reservoir and non-reservoir sandstones is less rapid than that of
sandstones in general. The similar slopes of porosity trends suggest
that sandstones of the central and southern Anadarko basin may retain
sufficient porosity for economic accumulations of HC's, even at high
thermal maturities.

(2) Pore throats are controlling factors in the flow of fluids through pore
networks. Data show that they are typically smaller than pores visible
in thin section, or apparent in hand specimen. Pore throats, especially
small (<0.lum) pore throats, common in fine to very fine grained clastic
rocks, are very sensitive to confining stress, and probably act as
limiting factors controlling the flow of gas to the well bore. Small
pore throats are also very sensitive to the presence of formation fluids,
which reduce their effective diameter. Measurement of capillary pressure
under confining stress suggests that constriction of pore throats is the
controlling mechanism effecting fluid flow at reservoir conditions in the
samples examined.

These data aid in defining reservoir properties under in situ conditions,
and are valuable for reservoir descriptions and in simulation studies.

(3) Three sixty three significant deep reservoirs occur primarily in the Gulf
Coast, Permian, Anadarko, Williston, and Rocky Mountain basins;
California and Alaska basins together contribute three reservoirs.
Analysis of drilling, geologic, and production data for significant
reservoirs indicates that a complex interplay of geological and
geochemical factors controls the distribution of deep natural gas in
sedimentary basins.

(4) In the Rocky Mountain region, structural partitioning prior to thrusting
in selected basins, and sequential southeastward and later northeastward
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partitioning of the Rocky Mountain foreland during Late Cretaceous may be
critical to the entrapment of natural gas resources. Economic
implications of this new model of deformation of the Rocky Mountain
foreland include progressive opening and subsequent blockage of migration
paths for HC's generated from source rocks in southeastern Idaho,
southwestern Montana, Wyoming, Colorado, and eastern Utah.

(5) The presence of geochemically identified source beds of Middle Proterozoic
age, active (HC) seeps, and favorable thermal maturities for generating
and preserving natural gas, indicate a source rock potential adequate for
economic gas accumulations in flanking basins of the Midcontinent Rift
System and the Grand Canyon region.

(6) High-rank methane generation (from thermal decomposition of Cjs5+ HC's)
takes place at very high maturation ranks. Data demonstrate that Cqig+
HC's (HC's) are thermally stable to very high maturation ranks. In fact:
(1) Ci15+ HC's are thermally stable to ranks as high as Ro = 7.0-8.0% in
deep, unsheared petroleum basins. (2) Cz+ HC's are thermally stable to
even higher ranks, well into true rock metamorphism. (3) Methane is
stable probably into mantle conditions.

(7) The occurrence of significant nonhydrocarbon gases in carbonate reservoirs
and the presence of H3S indicates that thermochemical sulfate reduction
and simultaneous oxidation of HC's to CO may be the dominant control on
gas composition in these reservoirs.

Giant quartz-vein systems in convergent, transpressive plate margin basin
systems may be associated with major deep gas accumulations such as in
the deep Anadarko and Arkoma basins. Based on the range of methane/
carbon dioxide ratios observed in fluid inclusions in quartz from one of
these giant vein systems (1:3 to 1:40), a single giant vein system may
transport on the order of 50 to 500 Tcf of CH4 to shallow crustal levels.

(8) Review and analysis of resource appraisal methodologies and approaches has .
allowed identification of methodologies for dealing with deep gas
occurrences. Modelling of assessment methodologies supports the
possibility of large volumes of natural gas resources in deep sedimentary
basins. Where sufficient information is available concerning the
geologic characteristics of known or suspected deposits of deep gas, a
volumetric calculation of resources is appropriate. This method is based
on measurement of known or estimated physical properties of the traps,
reservoir rocks and fluids and of the host environment in terms of
temperatures, pressures and fluid dynamics. It has the advantage of
working with the basic geologic properties of the accumulations and
dealing with them in a rigorous, quantitative mode and allows for
simulation of the HC deposit(s) through estimation of properties where
data are lacking or incomplete.

RECOMMENDATIONS FOR FUTURE RESEARCH

In any scientific investigation, many new problems and opportunities for
research are identified. Much of the following research could be conducted by
the U.S. Geological Survey in part because of ongoing research objectives and
because of state-of-the-art laboratory facilities and experience. The U.S.
Geological Survey routinely assesses both conventional and unconventional
petroleum resources as mandated by Congress.
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The following new scientific investigations could add greatly to our

knowledge of deep natural gas resources:

(1) Create additional thermal maturation profiles of deep basins in the U.S.

(3)

(4)

(5)

to add to the existing models developed for Task 1 of this report.
Further investigate the geological and geochemical variables controlling
the porosity variations at depth under specific thermal maturity regimes.
Determine how far the model proposed for Rocky Mountain basins extends in
other parts of the U.S.? Determine why the thermal profiles for the
Rocky Mountain basins and the Anadarko basin change at different
reflectance values? What are the controlling mechanisms behind this
change? How is permeability related to these trends?

Investigate initial potential (IP) volume data from available data bases
more thoroughly to determine the controlling mechanisms behind the
expected IP volumes under different conditions. Determine how the
volumes can be improved by fracture enhancement on a regional basis and
can these improvements be predicted? More clearly define pressure
compartments and determine their role in this change?

More precisely determine the role of diagenesis in pore-throat character
under different compositional conditions for clastic reservoir rocks and
analyze additional samples using Hg-injection capillary-pressure
measurements to determine the role of pore-throats in fluid migration.
What are the roles of pore throats in pressure compartment systems?

Investigate the role of fracture systems in leaky reservoirs and in
production of deep natural gas in different basins. Answer how these
fracture systems relate to major faults (which may be the pathways for
fluid migration and loss)? What are the spatial configuration systems by
which these fracture systems are developed? Model the distribution of
fracture systems using fractal functions.

Investigate the recovery technologies available for deep natural gas
reservoirs and further model the assessment procedures to better define
the range of recoverable resources under different geological and
geochemical conditions.

Conduct geochemical studies of quartz-vein systems in different regimes
in basement rocks of deep sedimentary basins Can we clearly identify a
crustal component of the dry gas in old (mature) sedimentary basins?
Analyze carbon-isotope data from fluid inclusions to more precisely
define the origin of methane and carbon dioxide. Can the isotopic
signature of methane and carbon dioxide from both sedimentary and crustal
regimes be identified?

It is suggested in this study that non-conventional gas-resource
accumulations may be both larger and of a higher grade than previously
believed. Research to identify these accumulations should include
geologically-based engineering studies to determine appropriate recovery
techniques. A further need also exists for more extensive chemical
analyses and characterization of high-rank methane to better understand
the origin of these gases in order to predict recovery.
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Figure 1. Map of continuous U.S. showing basins containing sediments greater
than 15,000 ft deep.
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Figure 2. Map of Rocky Mountain region showing basins where deep (greater than
15,000 ft) natural gas is interpreted to occur on the basis of gas shows,
formation tests, geology, and known production. Deep gas is being
produced in the Wind River basin and from a few structural traps in the
Greater Green river basin and the thrust belt in southwest Wyoming and
northern Utah.
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Figure 3. Pie chart illustrating the percent distribution of total cumulative
production by region in the U.S. from significant reservoirs deeper than

14,000 ft. Total deep significant production equals 21.2 Tcf. Based on
data from NRG Associates Inc. (1988).
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Appendix 1la--Distribution of porosity in sedimentary rocks as a
function of time-temperature exposure
by J.W. Schmoker

INTRODUCTION

The first goal of Task 1 was to develop "rules of thumb" to use as
empirical predictive models for the modification of sandstone porosity during
burial. To this end, a generalized framework data set of sandstone porosity-
vitrinite reflectance (Rp) data was developed. The Rocky Mountain Cretaceous
porosity-Ro, data set is now prepared as a digital data base.

The second goal of Task 1 was to develop approaches to treating the
effects upon porosity of the petrographic variability of particular
formations, within an overall thermal maturity framework. The Lower Cretaceous
J (Muddy) sandstone of the Denver basin and the Upper Cretaceous sandstones of
the Mesaverde Group of the Piceance and Uinta basins, Colorado and Utah, have
been used as a case history.

The technology for drilling below 4,572 m (15,000 ft) ("deep") is well
developed, and the ability to detect traps at these depths has improved
steadily over the years. Nevertheless, in some deep basins of the U.S.,
relatively few wells penetrate below 4,572 m (15,000 £ft), and deeply buried
sandstones in these basins are sparsely explored.

One of the factors that has limited deep drilling for sandstone
reservoirs is the knowledge that porosity can be too low to sustain economic
HC production. Better predictive methods for the porosity and porosity range
of sandstones are needed for risk evaluation and reduction in deep-drilling
programs, as well as for regional assessment of deep HC resources.

An empirical approach to porosity prediction in deeply-buried sandstones
is discussed here. Porosity trends are developed as functions of thermal
maturity, as represented by vitrinite reflectance (Rg) - The porosity range at

a given level of thermal maturity is predicted also, and is investigated as a
function of rock properties such as clay content, carbonate cementation,” and
grain size, and as a possible function of HC generation.

Examples are drawn from Cretaceous sandstones of the Rocky Mountain
region, with emphasis on the Lower Cretaceous J sandstone (Muddy Sandstone) of
the Denver basin, Colorado, and Upper Cretaceous sandstones of the Mesaverde
Group of the Piceance and Uinta basins, Colorado and Utah. This paper is not
intended as a report on the geology of these units. Rather, the J and
Mesaverde sandstones serve to illustrate an approach to porosity prediction
that has broad applicability to deeply buried sandstones. Cretaceous
sandstones of Rocky Mountain basins are themselves not deeply buried in many
of the areas studied, but are chosen as analogs because of the availability of
porosity, vitrinite-reflectance, and petrographic data.

APPROACH TO POROSITY PREDICTION

Predictive sandstone porosity models should account for effects of both
rock properties and burial history upon porosity. Relating porosity to rock
properties alone, as is sometimes done in petrographic and core studies, may
yield descriptive data that are difficult to generalize into regional
predictive models.
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The influence of burial history upon porosity has commonly been
represented by plots of porosity versus depth (e.g., Athy, 1930; Maxwell,
1964; Baldwin and Butler, 1985). However, apparent relations between porosity
and depth have come under critical review in recent years (van de Kamp, 1976;
Lyons, 1978, 1979; Cassan and others, 1981; Siever, 1983; Scherer, 1987;
Schmoker and Gautier, 1988, 1989; Keighin and others, 1989; Bloch, 1991). The
point made in many of these papers is that processes of porosity modification
during burial are strongly influenced by time and temperature.

By plotting porosity against vitrinite reflectance, which is a measure of
time-temperature exposure, effects of temporal and spatial variations in
thermal gradient, subsidence, uplift, and erosion are normalized. Also, the
duration of a given set of burial conditions is empirically taken into
account.

Porosity-maturity relations, like porosity-depth curves, do not provide
much insight into the actual processes causing porosity change in the
subsurface. The influence upon porosity of factors such as grain size and
sorting, clay matrix, framework composition, early cementation,
overpressuring, proximity to unconformities, dissolution (secondary porosity),
and coating of framework grains is empirically taken into account by
developing porosity—RO trends that represent the 10th, 25th, 50th, 75th, and

90th porosity percentiles of data sets (Fig. 1-1).

The 90th porosity percentile, for example, represents strata of the data
set that have rock properties relatively favorable for porosity preservation
or development; in contrast, the 10th porosity percentile represents intervals
of the data set with properties that result in low poreosities at similar
levels of thermal maturity. By depicting porosity using the 10th through 90th
porosity percentiles (Fig. 1-1), the porosity range at a given R, is taken

into account. If porosity was reported only as an average, information
significant for risk assessment, reservoir-engineering models, and volumetric
calculations would be lost.

Schmoker and Gautier (1988, 1989) found that the dependence of sandstone
porosity upon vitrinite reflectance can often be represented by a power

function of the form =A(RO)B, where A and B (a negative number) are
constants. Such trends graph as straight-line segments on log-log plots.

PREDICTIVE POROSITY TRENDS FOR J SANDSTONE
Introduction

The Lower Cretaceous J sandstone of the Denver basin (Fig. 1-2) was
deposited in nearshore-marine, deltaic, and fluvial-estuarine (valley-fill)
settings. The J is correlative to other Lower Cretaceous Dakota Group
sandstones of the Rocky Mountain region (Cocalson, 1989). Approximately 90
percent of the oil and gas extracted from the Denver basin has been produced
from the J sandstone (Land and Weimer, 1978; Tainter, 1984).

The maximum depth of the J sandstone in the wells of this study (Fig. 1-
2) is only 2,665 m (8,745 ft), which at first consideration seems insufficient
for the development of deep-sandstone porosity models. However, a good suite
of porosity, vitrinite-reflectance, and thin-section data (Schmoker and
Higley, 1991) makes the J sandstone a useful formation for developing
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approaches to porosity prediction. Such approaches might then be applied to
sandstones in general.

This section focusing on the J sandstone is based upon work of Schmoker
and Higley (1991), who presented complete tables of the data used here.

Porosity-Maturity Trends

Core-plug porosity data from productive and nonproductive sandstones from
31 wells in the Denver basin (Fig. 1-2) are used for the porosity-vitrinite
reflectance plots of Figures 1-3 and 1-4. R_ values were measured in each

well by M.J. Pawlewicz, U.S. Geological Survey, using material from shales
within and adjacent to the J sandstone. Because formation thickness does not
exceed 45 m (150 ft) and is generally less than 30 m (100 ft), the thermal
maturity of the J sandstone interval in an individual well does not vary
significantly.

For the J sandstone, as well as for the other examples of this report,
the porosity data of a given measurement suite (such as data from a particular
well) are grouped into a histogram and represented by the 10th, 25th, 50th,
75th, and 90th porosity percentiles, as previously discussed (Fig. 1-1). The
porosity of the J sandstone is characterized by 31 such histograms.

Figure 1-3 shows the 50th (median) percentiles of the 31 J sandstone
porosity histograms, plotted as a function of vitrinite reflectance. A least-
squares power-law regression line with R, as the independent variable is fit

to the data of this figure. Similar plots have been made for the 10th, 25th,
75th, and 90th porosity percentiles. The porosity-R, regression lines of

these five plots are assembled in Figure 1-4 and documented in Table 1-1.
Correlation coefficients range between -0.76 and -0.88. For 31 data points, a
correlation coefficient of -0.42 would be significant at the one-percent level
(Till, 1974).

A power-function relation of porosity to R, explains roughly three-

fourths of the porosity variance of the 50th, 75th, and 90th J sandstone
porosity percentiles (Table 1-1). For these sandstones, the effect of thermal
maturity upon porosity change in the subsurface is considerably larger than
that of all other factors combined.

The five regression lines of Figure 1-4 each show a decrease of porosity
with increasing thermal maturity. Although the 10th through 90th porosity-
percentile trends represent different combinations of diagenetic processes and
geologic factors, the negative correlation between porosity and time-
temperature exposure is characteristic of each case.

The trend lines of Figure 1-4 provide an empirical framework for
estimating both the porosity and the porosity range of the J sandstone within
the Denver basin. It is important to note, however, that the concept behind
Figure 1-4 is broader than a study of a particular sandstone in a particular
basin. Figure 1-4 illustrates a sound general approach to empirical porosity
prediction in sandstones.

Porosity Range at a Given R

The predictive porosity model of Figure 1-4 incorporates the porosity
range at a given level of thermal maturity. Although a substantial porosity
range at a given Ro is typical of sandstones in general, the particular causal
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factors are varied and cannot be specified independently of observation.
Examination of thin sections reveals that the petrographic factors that most
affect J sandstone porosity variability at a given R, are carbonate

cementation and clay content. These two factors are discussed briefly in the
following paragraphs, as examples of the links between empirical porosity
percentiles and causal geologic elements.

Carbonate cement, where present, reduces porosity. In addition, corroded
and embayed quartz edges show that carbonate cement was formerly more
widespread. Such cement, prior to its dissolution, could protect the pore
network from burial diagenesis, relative to uncemented intervals. Thus,
direct and indirect effects of carbonate cementation are responsible for a
portion of the porosity range at a given R, shown in Figure 1-4.

Abundant clay reduces J sandstone porosity by occupying pores and
deforming during burial to fill pore networks. Low clay content is also
observed to reduce porosity of the J sandstone probably because inhibiting
effects of clay upon quartz cementation are largely absent. Thus, the higher
J sandstone porosities at a given R, tend to be associated with intervals of

intermediate clay content: that is, a clay content sufficient to retard quartz
cementation, yet low enough to minimize the mechanical clogging of pores (Fig.
1-5). The clay content associated with maximum porosity percentile is roughly
12% in the J sandstone (Fig. 1-5).

An important aspect of Figure 1-5 that extends beyond the
characterization of the J sandstone, is that the vertical axis (porosity
percentile) represents porosity adjusted for the level of thermal maturity,
rather than porosity on an absolute scale. This technique permits the
crossplotting of porosity and petrographic measurements from rocks of
different thermal-maturity levels. The influence of geologic elements upon
porosity evolution in the subsurface can thus be isolated from the influence
of burial history as represented by time-temperature exposure.

PREDICTIVE POROSITY TRENDS FOR MESAVERDE GROUP SANDSTONES
Introduction

Upper Cretaceous, undifferentiated, predominantly nonmarine sandstones of
the Mesaverde Group in the Piceance and Uinta basins contain large volumes of
natural gas. Economically successful exploration in these low permeability
rocks has proven difficult, however. 1In large portions of the two basins, the
Cretaceous section is sparsely drilled, and patterns of deposition,
fracturing, and reservoir quality are not well known.

The maximum depth of Mesaverde sandstones in the wells of this study
(Fig. 1-6) in the Piceance basin is 2,225 m (7,300 ft). 1In the Uinta basin,
the Mesaverde is deeper than 4,572 m (15,000 ft) in one well. As in the
preceding J sandstone example, the exercise of developing predictive porosity
models for Mesaverde sandstones is intended to illustrate approaches that can
be applied to sandstones in general.

This section focusing on Mesaverde sandstones is based upon work of
Schmoker and others (1992), who documented more fully the data used here.

Porosity-Maturity Trends

Core-plug porosity data from 14 wells (11 locations) in the Piceance and
Uinta basins (Fig. 1-6) are used for the porosity-vitrinite reflectance plots
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of Figures 1-7 and 1-8. R, values were estimated in each well, based on core-

plug depths, by interpolating from a variety of published and unpublished
sources (Schmoker and others, 1992). The merging of data from the Piceance
and Uinta basins is rationalized on the basis that Mesaverde rocks of both
basins are temporally and depositionally similar (Keighin and Fouch, 1981).
As in the case of the J sandstone, the porosity distribution of a given
measurement suite is represented by porosity percentiles (Fig. 1-1). The
porosity of predominantly nonmarine Mesaverde sandstones is characterized by
31 such histograms.

Figure 1-7 shows the 25th and 75th percentiles (connected by vertical
lines) of the 31 Mesaverde porosity histograms, plotted as a function of
vitrinite reflectance. These data depict the middle range of porosity
measurements and thus define an envelope of typical or normal porosities.

Porosity-R, trend lines representing composites of other formations are

also shown in Figure 1-7. The dashed line labeled “type curve" was presented
by Schmoker and Gautier (1989) as a typical porosity-thermal maturity curve
for clastic rocks. The dashed lines labeled "10th percentile* and *“90th
percentile* are from Schmoker and Hester (1990) and form an envelope which
encompasses 80% of their porosity data from various basins and formations.
These three trend lines provide a reference framework against which to compare
Mesaverde porosities.

Porosities of predominantly nonmarine Mesaverde sandstones are sometimes
subjectively described as low. However, comparison to the reference lines of
Figure 1-7 demonstrates that this is not the general case if levels of time-
temperature exposure (RO) are taken into consideration. In sharp contrast to

J sandstone porosities, which decrease systematically as R, increases (Figs.

1-3, 1-4), the middle porosity range of Mesaverde sandstones does not show an
overall porosity decrease between Ro of 0.7% and 1.8% (Fig. 1-7). These Ro

levels approximate the window of active HC generation (Tissot and Welte, 1984)
for the type III kerogen present in nonmarine portions of the Mesaverde Group.
Between R of 0.7% and 1.8%, Mesaverde sandstones have typical porosities in

the 5% to 8% range (Fig. 1-7).

Figure 1-8 shows the 75th percentiles and the single highest measurements
(connected by vertical lines) of the 31 Mesaverde porosity histograms, plotted
as a function of R,. These data depict the upper quartile of porosity

measurements and thus define an envelope of above-average porosities. Two
reference lines (dashed) are also shown in Figure 1-8. One marks the 8%
porosity level, which is sometimes taken as an arbitrary lower cutoff for
sandstone reservoirs. The other approximates the high-porosity limit of the
data set.

The trends of above-average porosities (Fig. 1-8) parallel those of
typical porosities (Fig. 1-7). For Ry between 0.7% and 1.8%, Mesaverde

sandstones are likely to have some intervals in which porosity is greater than
8%; the maximum porosity in this thermal-maturity range is about 13% (Fig. 1-
8).

Models for the porosity and porosity range of the J and Mesaverde
sandstones predict quite different responses of porosity to increasing thermal
maturity (Figs. 1-4, 1-7, and 1-8). However, both models result from the same
empirical method of porosity prediction. This method is robust and offers a
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sound general approach to the problem of porosity prediction in deeply buried
sandstones.

Porosity Range at a Given Ry

The predictive porosity model of Figures 1-7 and 1-8 incorporates the
porosity range at a given level of thermal maturity. Petrographic data reveal
that factors favoring higher porosities in Mesaverde sandstones include
proximity to the unconformity at the top of the Mesaverde Group, dissolution
of early carbonate cement, larger grain size, and lower clay-matrix content.
These factors are discussed as additional examples of the links between
empirical porosity percentiles and causal geologic elements.

Hansley and Johnson (1980) noted that secondary porosity appears best
developed immediately below the Tertiary-Cretaceous unconformity at the top of
the Mesaverde Group. They associated enhanced dissolution with surface
weathering. The unconformity might also have enhanced later-stage
dissolution, in the subsurface, by focusing the flow of basin waters.

Porosities of Mesaverde sandstones greater than a few percent are
unlikely if carbonate-cement percentage (as determined from point counts of
thin sections) exceeds about 12%. As in the case of the J sandstone,
carbonate cement might formerly have been widespread in intervals that have
little such cement at present. Early carbonate cement could preserve the pore
network from mechanical and chemical compaction during burial, compared to
uncemented intervals; subsequent carbonate-cement dissolution could then
create relatively high, secondary porosity.

Grain size can influence the rate and extent of burial diagenesis
(Houseknecht, 1984, and references therein). Data to test for a relation
between grain size and porosity in Mesaverde sandstones are plotted in Figure
1-9. The porosity ranges associated with the different grain-size categories
are large and overlap. However, the midpoint porosity of each porosity range
increases as grain size increases. These data (Fig. 1-9) indicate a weak
relation between grain size and porosity, with porosity tending to be higher
in sandstones of larger grain size.

Data to test for a relation between clay-matrix content and porosity in
Mesaverde sandstones are plotted in Figure 1-10. Pseudomatrix and authigenic
clays resulting from matrix recrystallization are included, to some extent, in
the category of clay-matrix content. In direct contrast to the J sandstone
(Fig. 1-5), Figure 1-10 shows no evidence of an association between optimum
porosities and intermediate clay content. Although a predictive relation
between clay-matrix content and porosity cannot be proposed, maximum porosity
decreases systematically as matrix content increases (Fig. 1-10). Porosities
greater than a few percent are improbable if clay-matrix content exceeds 8%.

The examples of the J and Mesaverde sandstones show how effects of
geologic factors upon porosity range can be incorporated within a thermal-

maturity framework.

PREDICTIVE POROSITY TRENDS FOR UNDIFFERENTIATED CRETACEOUS
SANDSTONES OF ROCKY MOUNTAIN REGION

Introduction

In this section, porosity and vitrinite-reflectance data from Cretaceous
sandstones of Rocky Mountain basins are combined in order to develop generic,
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regional models for porosity as a function of R,. As in the examples of

preceding sections, the development of a predictive porosity model for
Cretaceous sandstones of the Rocky Mountain region is intended primarily to
illustrate approaches that can be applied to sandstones in general and deeply
buried sandstones in particular.

The Cretaceous data set described in Table 1-2 represents formations in
five different basins, a variety of geologic settings, and a wide range of
thermal maturities and depths. The J sandstone and Mesaverde Group
measurement suites of the preceding sections make up 57% of the combined data
set.

Ideally, the measurement suites assembled here would represent a
comprehensive sampling of all Rocky Mountain Cretaceous sandstones. In
reality, the data set is limited (Table 1-2). Furthermore, wells in these
basins are drilled according to specific selection criteria and do not provide
an unbiased sampling of the subsurface. Nevertheless, the data set is thought
to be sufficient to illustrate characteristics of generic, regional models for
porosity and porosity range, in which porosity is based on the level of time-
temperature exposure.

Porosity-Maturity Trends

Because R, is proportional to integrated time-temperature history, which

strongly influences burial diagenesis (Siever, 1983), porosity data from
basins with different thermal and burial histories can be combined using R, as

the independent variable of comparison. Depth is sometimes used as the
comparison variable, on the implicit assumption that depth is a direct measure
of thermal and burial history. Although this assumption is valid for some
geologic settings, it is invalid for Rocky Mountain basins. As shown in
Figure 1-11, time-temperature exposure (RO) cannot be accurately predicted on

the basis of present depth within and between Rocky Mountain basins. Present
depth is not a good measure of thermal and burial history in these basins and
is therefore not a good parameter for combining the diverse Cretaceous
sandstone porosity data of this study.

The 10th, 25th, 50th, 75th, and 90th percentiles (Fig. 1-1) of 107
porosity histograms, representing Cretaceous sandstones in the Denver, Green
River, Powder River, Uinta, and Piceance basins (Table 1-2), are plotted
against R, in Figures 1-12 through 1-16. For each porosity percentile, an

overall decrease of porosity with increasing RO is apparent. Least-squares
power-law regression lines with R, as the independent variable are fit to the

data of Figures 1-12 through 1-16 (Table 1-3). Correlation coefficients range
between -0.60 and -0.76. These correlation coefficients (Table 1-3) are
somewhat lower than those for the J sandstone data set (Table 1-1), as might
be expected because of the greater geologic diversity and thermal-maturity
range of the regional Cretaceous data set. For 107 data points, a correlation
coefficient of -0.22 would be significant at the one-percent level (Till,
1974).

The fraction of the total variance explained by the regression lines of
Figures 1-12 through 1-16 increases from 0.36 for the 10th porosity percentile
to 0.58 for the 90th percentile (Table 1-3). The higher porosity percentiles
are thus modeled with more confidence than the lower percentiles. A power-
function relation of porosity to R, explains slightly more than one-half of

the porosity variance of the 50th, 75th, and 90th percentiles (Table 1-3).
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For these diverse Rocky Mountain Cretaceous sandstones, the effect of time-
temperature history upon porosity change in the subsurface is at least equal
to that of all other factors combined.

The porosity-—Ro regression lines of Figures 1-12 through 1-16 together

provide a possible empirical framework for estimating the porosity and the
porosity range of Cretaceous sandstones in Rocky Mountain basins. The
Cretaceous sandstone porosity model (Fig. 1-17) is analogous in concept and
similar in overall appearance to the J sandstone porosity model (Fig. 1-4).
However, the two porosity models differ in detail.

First, the five regression-line slopes of the Cretaceous sandstone
porosity model are equal, within error limits, whereas those of the J
sandstone porosity model decrease systematically as porosity percentile
increases. Second, the 50th-percentile regression-line slope of the
Cretaceous sandstone porosity model is less steep than that of the J sandstone
porosity model. As illustrated by comparison to a "type curve" (Fig. 1-17),
this slope is also less steep than is typical of other sandstone data sets.

Examination of the relation between the regression lines of Figures 1-12
through 1-16 and the data points from which they are derived reveals the
principal reason for the differences between the J sandstone (Fig. 1-4) and
Rocky Mountain Cretaceous sandstone (Fig. 1-17) porosity models. For R, less

than about 0.7% and greater than about 1.2%, the regression lines
systematically underestimate the actual porosity values; between R, of roughly

0.7 and 1.2%, the regression lines systematically overestimate the actual
porosity values. Thus, variations about the regression lines are not random.
Although the correlation coefficients are fairly high, single regression lines
fit to the entire R, range do not reflect the internal structure of the Rocky

Mountain Cretaceous sandstone data set.
Alternative Porosity Model

A second possible empirical approach for estimating the porosity and the
porosity range of Cretaceous sandstones in Rocky Mountain basins is shown in
Figure 1-18. This alternative predictive porosity framework is composed of
two elements, in an effort to represent the porosity-R, data better than

regression lines fit to the entire R, range (Fig. 1-17). The trend lines of

models A (Fig. 1-18A) and B (Fig. 18B) are subjectively drawn to fit the data
of Figures 1-12 through 1-16.

Model A applies to strata in which porosity continues to decrease at a
uniform rate as Ry increases above 0.9%. Model B applies to strata in which

the rate of porosity loss becomes more gradual as Ry increases above 0.9%.

(The change in slope may be more gradational than is shown in Figure 1-18B.)
For R, less than 0.9%, models A and B are identical.

Models A and B do not directly reflect variability in rock properties
such as grain size and sorting, shale content and composition of framework
grains. The effects upon porosity of these factors are already incorporated
in the porosity range defined by the 10th through 90th porosity percentiles.
Rather, models A and B are interpreted as representing sandstones in which
porosity evolution follows one of two fundamentally different pathways.
Models A and B are derived from observation of porosity-R, crossplot patterns

and represent a working hypothesis that, because of a paucity of data, is at
present supported only by circumstantial evidence.
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The predictive porosity models of Figure 1-17 and Figure 1-18A are
conceptually similar in that each line segment spans the entire thermal-
maturity range. Such models implicitly assume that the net effect upon
porosity of various diagenetic processes, operative at different levels of
thermal maturity, can be approximated by single power functions over a large
R, range. This assumption does not seem obvious, but is empirically supported

by a number of published data sets (Schmoker and Gautier, 1988, 1989; Schmoker
and Hester, 1990; Schmoker and Higley, 1991). A single porosity-R, power

function spanning a large R, range is analogous to a single porosity-depth

exponential function spanning a large depth range (Schmoker and Gautier,
1988). Such porosity-depth exponential curves are common in the literature,
although the underlying assumptions are rarely discussed.

The line segments of Figure 1-18B change slope as R increases. Such

porosity models implicitly assume that the net effect upon porosity of various
diagenetic processes varies as different processes wax and wane during burial.
Figure 1-18B could not be depicted by a single exponential curve in the
porosity-depth domain.

The choice of diagenetic pathway (model A versus model B) is important
for sandstone porosity prediction in deep portions of Rocky Mountain basins.
At R = 2.0%, for example, model A predicts median porosities of about 2% and

90th-percentile porosities of only 4%; in contrast, model B predicts median
porosities of about 5% and 90th-percentile porosities of 8%. Extrapolating
beyond the data to R,=3.0%, model A predicts 10th- through 90th-percentile

porosities to all be less than 3%, whereas model B predicts some porosities of
6-7%. Reference to Figure 1-11 shows that maximum depths of economic
production predicted by model A in a given area of a basin would be thousands
of ft less than those predicted by model B.

As is apparent from the foregoing porosity comparisons, the hypothesis
that porosity evolution can follow distinctly different pathways as Ry

increases above 0.9% has significant implications for the economic production
of deeply buried HC's. An understanding as to which sandstones follow models
analogous to A and which follow models analogous to B is important. At this
point, however, such understanding is uncertain, and the following discussion
of cause and effect is speculative.

The particular strata of the data set which conform to model B are from
the Almond Formation in the Green River basin and the Mesaverde Group (marine
and nonmarine) in the Piceance basin (Table 1-2). Low-permeability sandstones
in both formations are commonly overpressured at R, greater than 0.9% due to

HC generation (Spencer, 1987). It is thus possible that some Cretaceous
sandstones of Rocky Mountain basins do not follow *normal" diagenetic pathways
(Fig. 1-18A) because of the effects upon diagenesis of HC generation from
adjacent and intercalated coals and organic-rich shales.

Hydrocarbon generation, of which overpressuring in the non-subsiding
basins of the Rocky Mountain region is evidential (Spencer, 1987), might
retard porosity loss as R, increases (Fig. 1-18B) in at least three ways.

First, HC's can inhibit cementation by displacing pore water. Second, carbon
dioxide (Schmidt and McDonald, 1979) and organic acids (Surdam and others,
1989) produced by the thermal breakdown of kerogen can create secondary
porosity by dissolving cements and framework grains. Third, overpressuring
can slow pressure solution and associated porosity decrease by reducing the
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lithostatic load; overpressuring can also reduce cementation by developing a
fluid-flow system characterized by expulsion, rather than exchange, of
liquids.

If HC generation is indeed the primary underlying process causing some
sandstones to deviate from porosity-Ro trends similar to those of Figure 1-18A

and follow instead trends similar to those of Figure 1-18B, then the results
and discussion of this section are not restricted to Rocky Mountain Cretaceous
sandstones.

SUMMARY AND CONCLUSIONS

This paper describes empirical porosity trends in sandstones. Empirical
descriptions are of limited value, however, if progress is not made toward
predictive models. Sandstone porosity is linked here with thermal maturity,
rock properties, and HC generation. These parameters are useful in predictive
porosity models because they can often be anticipated in advance of the drill.

The overall decrease of sandstone porosity during burial is treated as a
function of thermal maturity as represented by vitrinite reflectance. In this

context, R, serves as a generalized index of burial history rather than as a

specialized indicator of kerogen decomposition. Complicating the picture,
however, the data show that the response of sandstone porosity to increasing
thermal maturity may depend in part on the presence or absence of HC
generation and overpressuring.

The range of porosity at a given level of thermal maturity is not
obscured by averaging but is depicted by porosity-RO trends representing the

10th, 25th, 50th, 75th, and 90th porosity percentiles. Effects upon porosity
of variations in rock properties are thus taken into account.

Data from Cretaceous sandstones of Rocky Mountain basins are used to
illustrate and test methods for predicting the porosity and porosity range of
sandstones. Most of these Cretaceous sandstones are not deeply buried, but
the availability of porosity, vitrinite-reflectance, and rock-property data
makes them useful formations for developing approaches to porosity prediction.
These approaches can be applied to deeply buried sandstones in general.

REFERENCES CITED

Athy, L.F., 1930, Density, porosity, and compaction of sedimentary rocks:
American Association of Petroleum Geologists Bulletin, v. 14, no. 1, p.
1-24.

Baldwin, Brewster, and Butler, C.O0., 1985, Compaction curves: American
Association of Petroleum Geologists Bulletin, v. 69, no. 4, p. 622-626.

Bloch, S., 1991, Empirical prediction of porosity and permeability in
sandstones: American Association of Petroleum Geologists Bulletin, v.
75, no. 7, p. 1145-1160.

Cassan, J.P., Garcia-Palacios, M.C., Fritz, Bertrand, and Tardy, Yves, 1981,
Diagenesis of sandstone reservoirs as shown by petrographical and
geochemical analysis of oil bearing formations in the Gabon basin:
Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine,
Pau, France, v. 5, no. 1, p. 113-135.

Cleveland, W.S., 1985, The elements of graphing data: Monterey, California,
Wadsworth Advanced Books and Software, 323 p.



39

Coalson, E.B., ed., 1989, Petrogenesis and petrophysics of selected sandstone
reservoirs of the Rocky Mountain region: Rocky Mountain Association of
Geologists, Denver, 353 p.

Hansley, P.L., and Johnson, R.C., 1980, Mineralogy and diagenesis of low-
permeability sandstones of Late Cretaceous age, Piceance Creek basin,
northwestern Colorado: The Mountain Geologist, v. 17, no. 4, p. 88-106.

Higley, D.K., and Schmoker, J.W., 1989, Influence of depositional environment
and diagenesis on regional porosity trends in the Lower Cretaceous *“J*"
sandstone, Denver basin, Colorado, in Coalson, E.B., ed., Petrogenesis
and petrophysics of selected sandstone reservoirs of the Rocky Mountain
region: Rocky Mountain Association of Geologists, Denver, p. 183-196,
334-335.

Houseknecht, D.W., 1984, Influence of grain size and temperature on
intergranular pressure solution, quartz cementation, and porosity in a
quartzose sandstone: Journal of Sedimentary Petrology, v. 54, no. 2, p.
348-361.

Keighin, C.W., and Fouch, T.D., 1981, Depositional environments and diagenesis
of some nonmarine Upper Cretaceous reservoir rocks, Uinta basin, Utah, in
Ethridge, F.G., and Flores, R.M., eds., Recent and ancient nonmarine
depositional environments: Models for exploration: Society of Economic
Paleontologists and Mineralogists Special Publication No. 31, p. 109-125.

Keighin, C.W., Law, B.E., and Pollastro, R.M., 1989, Petrology and reservoir
characteristics of the Almond Formation, greater Green River basin,
Wyoming, in Coalson, E.B., ed., Petrogenesis and petrophysics of
selected sandstone reservoirs of the Rocky Mountain region: Rocky
Mountain Association of Geologists, Denver, p. 281-298, 344-347.

Land, C.B., and Weimer, R.J., 1978, Peoria field, Denver basin, Colorado--J
sandstone distributary channel reservoir, in Pruit, J.D., and Coffin,
P.E., eds., Energy resources of the Denver basin: Rocky Mountain
Association of Geologists, Denver, p. 81-104.

Lyons, D.J., 1978, Sandstone reservoirs: Petrography, porosity-permeability
relationship, and burial diagenesis: Report 8, Technology Research
Center, Japan National 0il Corporation, Tokyo, December, p. 1-69.

Lyons, D.J., 1979, Organic metamorphism and sandstone porosity prediction from
acoustic data: Report 9, Technology Research Center, Japan National 0il
Corporation, Tokyo, March, p. 1-51.

Maxwell, J.C., 1964, Influence of depth, temperature, and geologic age on
porosity of quartzose sandstone: American Association of Petroleum
Geologists Bulletin, v. 48, no. 5, p. 697-709.

Pitman, J.K., Anders, D.E., Fouch, T.D., and Nichols, D.J., 1986, Hydrocarbon
potential of nonmarine Upper Cretaceous and Lower Tertiary rocks,
eastern Uinta basin, Utah, in Spencer, C.W., and Mast, R.F., eds.,
Geology of tight gas reservoirs: American Association of Petroleum
Geologists Studies in Geology No. 24, p. 235-252.

Pitman, J.K., Franczyk, K.J., and Anders, D.E., 1987, Marine and nonmarine
gas-bearing rocks in Upper Cretaceous Blackhawk and Neslen Formations,



40

eastern Uinta basin, Utah: Sedimentology, diagenesis, and source rock
potential: American Association of Petroleum Geologists Bulletin,
v. 71, no. 1, p. 76-94.

Pitman, J.K., Franczyk, K.J., and Anders, D.E., 1988, Diagenesis and burial
history of nonmarine Upper Cretaceous rocks in the central Uinta basin,
Utah: U.S. Geological Survey Bulletin 1787-D, 24 p.

Scherer, M., 1987, Parameters influencing porosity in sandstones: A model for
sandstone porosity prediction: American Association of Petroleum
Geologists Bulletin, v. 71, no. 5, p. 485-491.

Schmidt, Volkmar, and McDonald, D.A., 1979, The role of secondary porosity in
the course of sandstone diagenesis, in Scholle, P.A., and Schluger,
P.R., eds., Aspects of diagenesis: Society of Economic Paleontologists
and Mineralogists Special Publication No. 26, p. 175-207.

Schmoker, J.W., and Gautier, D.L., 1988, Sandstone porosity as a function of
thermal maturity: Geology, v. 16, no. 11, p. 1007-1010.

Schmoker, J.W., and Gautier, D.L., 1989, Compaction of basin sediments:
Modeling based on time-temperature history: Journal of Geophysical
Research, v. 94(B), no. 6, p. 7379-7386.

Schmoker, J.S., and Hester, T.C., 1990, Regional trends of sandstone porosity
versus vitrinite reflectance--a preliminary framework, in Nuccio, V.F.,
and Barker, C.E., eds., Applications of thermal maturity studies to
energy exploration: Rocky Mountain Section-SEPM, Denver, p. 53-60.

Schmoker, J.W., and Higley, D.K., 1991, Porosity trends of the Lower
Cretaceous J sandstone, Denver basin, Colorado: Journal of Sedimentary
Petrology, v. 61, no. 6, p. 909-920.

Schmoker, J.W., Nuccio, V.F., and Pitman, J.K., 1992, Porosity trends in
predominantly nonmarine sandstones of the Upper Cretaceous Mesaverde
Group, Uinta and Piceance basins, Utah and Colorado, in Fouch, T.D.,
Nuccio, V.F., and Chidsey, T.C., eds., Hydrocarbon and mineral resources
of the Uinta basin, Utah and Colorado: Utah Geological Association
Guidebook 21, in press.

Siever, Raymond, 1983, Burial history and diagenetic reaction kinetics:
American Association of Petroleum Geologists Bulletin, v. 67, no. 4, p.
684-691.

Spencer, C.W., 1987, Hydrocarbon generation as a mechanism for overpressuring
in Rocky Mountain region: American Association of Petroleum Geologists
Bulletin, v. 71, no. 4, p. 368-388.

Spencer, C.W., and Keighin, C.W., eds., 1984, Geologic studies in support of
the U.S. Department of Energy Multiwell Experiment, Garfield County,
Colorado: U.S. Geological Survey Open-File Report 84-757, 134 p.

Surdam, R.C., Crossey, L.J., Hagen, E.S., and Heasler, H.P., 1989, Organic-
inorganic interactions and sandstone diagenesis: American Association of
Petroleum Geologists Bulletin, v. 73, no. 1, p. 1-23.

Tainter, P.A., 1984, Stratigraphic and paleostructural controls on hydrocarbon
migration in Cretaceous D and J sandstones of the Denver basin, in



41

Woodward, Jane, Meissner, F.F., and Clayton, J.L., eds., Hydrocarbon
source rocks of the greater Rocky Mountain region: Rocky Mountain
Association of Geologists, Denver, p. 339-354.

Till, Roger, 1974, Statistical methods for the earth scientist: New York, John
Wiley and Sons, 154 p.

Tissot, B.P., and Welte, D.H., 1984, Petroleum formation and occurrence,
second edition: New York, Springer-Verlag, 699 p.

van de Kamp, P.C., 1976, Inorganic and organic metamorphism in siliciclastic
rocks (abs): American Association of Petroleum Geologists Bulletin, v.
60, no. 4, p. 729.



42

@ H|GHEST

T 90th

75th

50th

25th

' INCREASING POROSITY

—— 10th PERCENTILE

Figure 1-1. Box diagram (described by Cleveland, 1985) illustrating data
format used to develop porosity—Ro trends. Porosity distribution of each
measurement suite is represented by 10th, 25th, 50th, 75th, and 90th
porosity percentiles, as well as by single highest porosity measurement.
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Figure 1-2. Map of study area in Denver basin showing location of wells from
which J sandstone porosity and vitrinite-reflectance data were obtained.
Contours map structure on top of J sandstone using sea-level datum (after
Higley and Schmoker, 1989). Contour interval is 1,000 ft (300 m).
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Figure 1-3. Example showing porosity versus vitrinite reflectance for 50th
percentile of J sandstone porosity distributions, 31 wells (Fig. 2) of
Denver basin. Coefficients for least-squares fit to data (line) are
given in Table 1-1.
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Figure 1-4. Porosity-vitrinite reflectance regression lines (as illustrated by
example of Figure 3) representing 10th, 25th, 50th, 75th, and 90th
porosity percentiles, J sandstone, Denver basin. Regression lines are
documented in Table 1-1. These trend lines constitute an empirical,
predictive porosity model for the J sandstone.
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Figure 1~-5. Point-count porosity, expressed relative to porosity-percentile
trend lines of Figure 1-4, versus clay content, J sandstone, Denver
basin. Interpretation of basic trend is shaded. For purposes of this
figure, clay is defined as mudstone clasts, detrital clay, and authigenic
illite/smectite and chlorite.
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Figure 1-6. Map of study area in Piceance and Uinta basins showing location of
wells from which porosity data representing sandstones of Mesaverde Group
are obtained.
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Figure 1-7. Porosity versus vitrinite reflectance for 25th and 75th
percentiles (connected by vertical lines) of Mesaverde porosity
distributions, 11 locations (Fig. 1-6) in Piceance and Uinta basins.
"Type curve", "10th percentile", and "90th percentile" dashed lines
provide a reference framework that represents sandstones in general
(Schmoker and Gautier, 1989; Schmoker and Hester, 1990).
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Figure 1-8. Porosity versus vitrinite reflectance for 75th percentiles and
single highest measurements (connected by vertical lines) of Mesaverde
porosity distributions, 11 locations (Fig. 1-6) in Piceance and Uinta
basins.
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Figure 1-9. Core-plug porosity and visible pore space (determined from point
counts) as a function of grain size, Mesaverde sandstones. Data are
from Colorado Interstate Gas Exploration Natural Buttes 21 well, 15-T10S-
R22E, Uintah Co., Utah (number 5 of Fig. 1-6) (Pitman and others, 1986,
1987). Very fine (VF) = 62-125 microns; fine (F) = 125-250 microns;
medium (M) = 250~500 microns.
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Figure 1-10. Point-count data showing visible pore space as a function of
clay-matrix content, Mesaverde sandstones. Data are from Natural Buttes
21 well (see Figure 9 caption) and Exxon Wilkin Ridge 1 well, 29-T10S-
R17E, Duchesne Co., Utah (number 2 of Fig. 1-6) (Pitman and others,

1988) .

Mesaverde R, values in these two wells are similar (0.75-0.95%).
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Figure 1-11. Present depth versus vitrinite reflectance for rocks of
Cretaceous sandstone data set, Rocky Mountain basins (Table 1-2). Trend
labeled "MWX wells" refers to U.S. Department of Energy Multiwell
Experiment, Garfield County, Colorado (Spencer and Keighin, 1984).
Present depth of rocks at a given R, can vary by many thousands of feet

because of intra- and interbasinal variations in thermal and burial
histories.
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Figure 1-12. Porosity versus vitrinite reflectance for 10th percentile of
Cretaceous sandstone data set, Rocky Mountain basins (Table 1-2). For
Figures 1-12 through 1-16, parameters for least-squares fit to data

(line) are given in Table 1-3.
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Figure 1-13. Porosity versus vitrinite reflectance for 25th percentile of
Cretaceous sandstone data set, Rocky Mountain basins (Table 1-2).
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Figure 1-14. Porosity versus vitrinite reflectance for 50th percentile of
Cretaceous sandstone data set, Rocky Mountain basins (Table 1-2).
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Figure 1-15. Porosity versus vitrinite reflectance for 75th percentile of
Cretaceous sandstone data set, Rocky Mountain basins (Table 1-2).
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Figure 1-16. Porosity versus vitrinite reflectance for 90th percentile of
Cretaceous sandstone data set, Rocky Mountain basins (Table 1-2).
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Figure 1-17. Summary figure showing regression lines representing 10th, 25th,
50th, 75th, and 90th porosity percentiles (Figs. 1-12 thropugh 1-16),
Cretaceous sandstone data set, Rocky Mountain basins. These trend lines
constitute a possible empirical, predictive porosity model for Cretaceous
sandstones of the Rocky Mountain region. An alternative model is
presented in Figure 1-18. Dashed "type curve” (also shown in Figures 1-7
and 1-18) provides a reference line that represents sandstones in general

(Schmoker and Gautier, 1989).
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Figure 1-18. Subjectively drawn trend lines representing 10th, 25th, 50th,
75th, and 90th porosity percentiles, Cretaceous sandstone data set, Rocky
Mountain basins. These trend lines constitute an alternative predictive
porosity model to the set of regression lines of Figure 1-17. Dashed
"type curve" (also shown in Figures 1-7 and 1-17) provides a reference
line that represents sandstones in general (Schmoker and Gautier, 1989).
For R, less than 0.9%, trend lines of A and B are identical and represent

all data (Figs. 1-12 through 1-16). For R, greater than 0.9%, trend

lines of A represent strata in which porosity continues to decrease at a
uniform rate; trend lines of B represent strata in which the rate of
porosity loss becomes more gradual as R, increases above 0.9%.
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Table 1-1. Power-law regression lines fit to J sandstone porosity-
vitrinite reflectance data (Fig. 4). 68-percent confidence intervals
are shown for A and B.

Porosity = A(RO)B Correlation Variance

percentile A B coefficient (r) (rz)
10th 4.6 + 0.5 -1.46 1+ 0.23 -0.76 0.58
25th 6.4 + 0.5 -1.23 + 0.17 -0.81 0.66
50th 8.1 + 0.5 -1.18 1 0.12 -0.88 0.77
75th 9.9 + 0.5 -1.05 + 0.12 -0.86 0.75

90th 11.4 + 0.6 -0.94 + 0.12 -0.83 0.69




Table 1-2. Description of Cretaceous
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sandstone data set,

Rocky Mountain basins.

Basin Identification, No. of core- No. of Vitrinite- Depth
source plug porosity measurement reflectance, 1000'
measurements suites percent of ft
Denver J sandstone (Schmoker 963 31* 0.41-1.14 4.3-8
and Higley, 1991)
Green River Dakota Sandstone of Bridger 326 1 0.59 15.5
Lake field (Ben E. Law,
pers. comm., 1987)
Undifferentiated Cretaceous 442 7 0.66-1.78 8.1-1
strata of El Paso Wagon
Wheel #1 well (author's data)
Almond Formation (Ben E. 811 24 0.57-1.64 4.5-1
Law, pers. comm., 1988)
Powder River Sussex Sandstone Member of 632 3 0.52-0.76 7.2-1
Cody Shale (Debra K. Higley,
pers. comm., 1991)
Uinta Predominantly nonmarine 318 13* 0.56-2.40 0.7-1
sandstones of Mesaverde Group
(Schmoker and others, 1992)
Piceance Predominantly nonmarine 741 18%* 0.54-1.80 1.1-7
sandstones of Mesaverde Group
(Schmoker and others, 1992)
Predominantly marine 162 6 1.33-2.16 7.5-8
sandstones of Mesaverde Group
(author's data; Schmoker and
others, 1992)
"B* zone of Mancos Shale 67 4 1.80 11.8
(author's data)
4,462 107

*Data used in sections on porosity trends for J or Mesaverde Group sandstones.
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Table 1-3. Power-law regression lines fit to combined Rocky Mountain
porosity-vitrinite reflectance data (Figs. 12-16). 68-percent confidence
intervals are shown for A and B.

Porosity = A(Ro)B Correlation Variance

percentile A B coefficient (r) (rz)
10th 5.0 £ 0.3 -0.92 + 0.12 -0.60 0.36
25th 6.5 + 0.3 -0.90 + 0.10 -0.66 0.44
50th 7.9 + 0.3 -0.93 + 0.09 -0.72 0.52
75th 9.3 + 0.3 -0.88 + 0.08 -0.74 0.55

90th 10.5 £ 0.3 -0.85 .07 -0.76 0.58

I+
=)
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Appendix 1b: Trends of sandstone porosity in the Anadarko basin
by T.C. Hester

The goal of Task 1 was to characterize Anadarko basin sandstone-porosity
trends with respect to thermal maturity in order to predict locations for new
future reservoirs based on porosity prediction models. Three Ry data sets
were compiled-- two data sets representing Anadarko basin reservoir and non
reservoir sandstones, and one composite data set from many basins (excluding
the Anadarko basin) representing sandstones in general. The first data set
provides a porosity-Ro trend typical of Anadarko basin HC-bearing sandstone
reservoirs. Non-reservoir sandstones in the second data set are defined as
those typical of the Anadarko basin and may be reservoir sandstones at other
locations. Non-reservoir sandstones provide a background by which to compare
other sandstones. The third data set represents a sample of sandstones of
diverse ages, diagenetic facies, and thermal histories exclusive of the
Anadarko basin.

INTRODUCTION

This report relates porosity and thermal maturity for sandstones of the
Anadarko basin, Oklahoma (Hester and Schmoker, 1990). Treating porosity as a
function of thermal maturity normalizes the overprint of burial history on
porosity evolution, allowing porosity data from basins with different thermal
histories to be merged and/or compared in the same context (Schmoker and
Hester, 1990).

To best characterize sandstone-porosity trends in the Anadarko basin,
three data sets have been compiled--two data sets representing Anadarko basin
reservoir and non-reservoir sandstones, and one composite data set of
sandstones from numerous basins exclusive of the Anadarko representing
sandstones in general. Each data set consists of many sandstone porosity-
vitrinite reflectance (RO) pairs that provide trends representative of that

particular subset of sandstones. Porosity-R, trends of Anadarko basin

reservoir and non-reservoir sandstones are each compared to a set of porosity-
R, trends representing sandstones from basins other than the Anadarko, and the

two are also compared to each other. Anadarko basin sandstone-porosity trends
are thus evaluated relative to a framework of sandstones in general (Schmoker
and Hester, 1990).

The data presented here are useful in the following ways: (1) They
provide a means of estimating sandstone porosity in the deep relatively
unexplored parts of the Anadarko basin; (2) they provide comparative insights
into porosity trends of reservoir and non-reservoir sandstones; and (3) they
provide a standard with which to identify Anadarko basin sandstones of
anomalously high or low porosity for further study.

DATA SETS

The first data set provides a porosity-R, trend typical of Anadarko basin

non-reservoir sandstones, that is, Anadarko basin sandstones in general. The
porosity data consist of about 800 measurements representing more than 2,130
net m (7,000 net ft) of Paleozoic-age sandstone from 33 well locations (Fig.
1-19; Table 1-4) in the central and southern Anadarko basin. Sandstones are
identified in each well, using compensated-neutron and formation-density logs
run on limestone matrix, and are then subdivided into intervals of uniform log
character. The neutron and density porosities of each interval (1.2 or more m
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thick--4 or more ft) are averaged and the true porosity determined using
standard neutron-density crossplots. Ro values for Anadarko basin non-

reservoir sandstone intervals are calculated using an empirical Ro-depth

relationship developed for the Anadarko basin by Schmoker (1986). In this
report, the term "non-reservoir" indicates only that the porosity data were
taken directly from well logs, and thus represent a sampling of Anadarko basin
sandstones as a whole; the term does not necessarily preclude the presence of
HC's.

The second data set provides a porosity-R, trend typical of Anadarko

basin HC-bearing sandstone reservoirs. The porosity data consist of averaged
measurements of 104 Paleozoic-age sandstone oil and gas reservoirs of the
Anadarko basin (Fig. 1-19; Table 1-5) from published oil- and gas-field
compilations (Cramer and others, 1963; Berg and others, 1974; Pipes, 1980;
Harrison and Routh, 1981). The term "reservoir" indicates only that R, values

are calculated as in the previous data set (Schmoker, 1986). Porosity data
were taken from published descriptions of known reservoirs, and thus represent
a sampling of Anadarko basin reservoir sandstones.

The third data set represents a sampling of sandstones of diverse ages,
geologic settings, diagenetic facies, and thermal histories, and provides a
framework of porosity-R, trends typical of sandstones in general (Schmoker and

Hester, 1990) with which to compare both Anadarko basin non-reservoir and
reservoir sandstone-porosity data. The framework data consist of many
thousands of individual porosity and R, measurements from Cenozoic and

Mesozoic sandstones in 27 locations in the Northern Hemisphere, exclusive of
the Anadarko basin. The framework data presented in this report incorporate
published core-plug porosity and R, measurements in addition to those of

Schmoker and Hester (1990), and are represented here by least-squares
regression lines fit to the 10th, 25th, 50th, 75th, and 90th porosity
percentiles of the framework data set.

POROSITY—RO TRENDS

A least-squares fit to the porosity-R, data for non-reservoir sandstones

of the central and southern Anadarko basin shows that non-reservoir sandstone
porosity generally declines with increasing thermal maturity (Fig. 1-20).
However, the data appear to consist of two separate populations--a less
thermally mature population represented by Ry <1.1% and a more thermally

mature population represented by R, >1.1%. Correlation coefficients (rz) of

the least-squares fit to each of the two data populations (Fig. 1-21) show a
much stronger dependence of porosity on R, for the less mature trend of non-

2

reservoir sandstones (where Ry <1.1%, r© =.40) than for non-reservoir

sandstones taken as a whole (Fig. 1-20, r2 =.15). The improved correlation of
the less mature trend over that of the data set taken as a whole suggests that
the two data populations might best be considered, as two separate trends.

The two trends probably overlap to some extent as the more mature diverges
from the less mature trend. Nevertheless, for the purposes of this report, a
single preliminary boundary separating the two trends is placed at about Ry

=1.1%. Additional porosity data might show the rapid porosity loss of the
less mature trend continuing beyond Ro =1.1% (Fig. 1-21).

In both populations of points shown in Figure 1-21, porosity generally
declines as a power function (Schmoker and Hester, 1990, eqg. 1) of increasing
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thermal maturity. The least-squares fit to the data shows that for Ry <1.1%,
the rate of porosity decrease with increasing R, for non-reservoir sandstones
is more rapid than that of the average trend of the porosity—Ro framework
representing sandstones in general. For RO >1.1%, the rate of porosity

decrease for Anadarko basin non-reservoir sandstones is less rapid than that
of sandstones in general.

For this report, sufficient data to substantiate a probable cause for the
change of slope of the porosity trend of Anadarko basin non-reservoir
sandstones are not yet available. To speculate, the two populations of non-
reservoir sandstone-porosity data (apparent in Figures 1-20 through 1-23) may
represent sandstones from different depositional environments, or subsurface
pressure regimes, or sandstones with different burial or cementation
histories. Identification and stratigraphic correlation of the non-reservoir
sandstones, with the addition of petrographic information, are suggested here’
as a first approach to examining the nature of the two populations of Anadarko
basin non-reservoir sandstones.

The porosity-RO trend of Anadarko basin HC-reservoir sandstones (Fig. 1-

22) follows a different pattern. Their least-squares line shows that the rate
of porosity loss for reservoir sandstones is much slower than that of both
non-reservoir sandstones of the central and southern Anadarko basin (for RO

<1.1%, Fig. 1-22), and sandstones in general (Fig. 1-23). This relatively
slow rate of porosity decline with increasing Ry could be due to geologic

factors such as overpressuring, the inhibiting effects of early HC emplacement
on sandstone diagenesis, and/or to economic factors inherent in the selection
of sandstone HC reservoirs.

As R, increases from to about 1.1%, the porosity trends of Anadarkc basin

reservoir and non-reservoir sandstones cross (Fig. 1-22). Thus, as thermal
maturity increases, the porosity of reservoir sandstones becomes increasingly
restricted to the upper range of porosity percentiles of non-reservoir
sandstones. If these trends were to continue diverging, porosity sufficient
for commercial sandstone HC reservoirs would become extremely rare at only
moderate levels of thermal maturity. At about Ry =1.1%, however, the slope of
the porosity trend for Anadarko basin non-teservoir sandstones levels off
(Figs. 1-21 through 1-23). The average porosity of Anadarko basin reservoir
sandstones then remains within about the upper 10% of the porosity range of
non-reservoir sandstones. As thermal maturity levels increase above about
1.1% Ry the similar slopes of the porosity trends of Anadarko basin reservoir
and non-reservoir sandstones suggest that sandstones of the central and
southern Anadarko basin may retain sufficient porosity for economic
accumulations of HC's, even at high thermal maturities and great depths.
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DATA LOCATIONS

RESERVOIR SANDSTONES @
NON-RESERVOIR SANDSTONES A

100 MILES

100 KILOMETERS

Figure 1-19. Map showing Anadarko basin total-sediment isopachs (ft), and
data locations.
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Table 1-4. List of wells used in this study. [Location (section,
township, and range), operator, and well name are as shown on well-log
headers.]

Location Operator Well Name
Sec.21,T.8N.,R.12W. Sohio Petroleum 1-21 Stockton
Sec.l,T.7N.,R.12W. Sohio Petroleum 1-1 Cay
Sec.24,T.10N.,R.13W. Helmerich and Payne 1 Phifer
Sec.32,T.8N.,R.9W. Sohio Petroleum 1-32 Harper
Sec.29,T.7N.,R.9W. Shell 0il 1-29 Bruer
Sec.25,T.7N.,R.11W. Helmerich and Payne 1-25 C. Adams
Sec.18,T.9N.,R.13W. L.G. Williams Inc 1-18 Allred
Sec.19,T.10N.,R.13W. Hadson Petroleum Corp 1-19 Adams
Sec.10,T.8N.,R.13W. Dyco Petroleum Corp 1-10 M. Caley
Sec.6,T.7N.,R.9W. Cotton Petroleum Corp 1 Mary
Sec.18,T.8N.,R.9W. Cotton Petroleum Corp 1-A Cox
Sec.28,T.8N.,R.11W. GHK 1-28 Didier
Sec.33,T.8N.,R.10W. Sanguine LTD 1 Griffitis
Sec.13,T.7N.,R.10W. Shell 0il 1-13 Moore
Sec.26,T.7N.,R.9W. Sanguine LTD 1 Mae West
Sec.4,T.7N.,R.11W. Sohio Petroleum 1-4 Nikkel

Sec
Sec
Sec
Sec

Sec
Sec
Sec
Sec
Sec

Sec
Sec
Sec
Sec
Sec

Sec
Sec
Sec

.10, T.7N.,R.9W.
.26,T.7N.,R.10W.

.19,T.11N.,R.13W.
.25,T.11N.,R.12W.

.10,T.16N.,R.12W.

.7,T.16N.,R.10W.
.4,T.18N.,R.11W.
.34, T.22N.,R.9W.
.3,T.21N.,R.9W.

.19, T.
.16, T.
.31, T.
.25,T.
.36,T.

.28, T.
.21,T.
.16, T.

20N.,
21N.,
20N.,
20N.,
20N.,

m ™™™ n

20N.,R.
22N.,R.
20N.,R.

L9W.

L11W.
.13W.
.10W.
.10wW.

10W.
16W.
16W.

Cotton Petroleum Corp
Davis 0Oil

Lear Pet. Expl. Inc
Cotton Petroleum Corp

Davis 0il

Bogert 0Oil

Bogert 0il
Arapaho Petroleum
Berry Petroleum

Western Pacific Pet.
Ladd Petroleum Corp
Nobel Operating Inc
Bogert 0Oil

Cuesta Energy Corp

Prime Energy Corp
Shell 0il
TXO Production Corp

1-10 Kvasnica
1-26 J.D.Miles
1-19 Horn
1-A Dorsey

1 Pickett
1-7 Bernhardt
1-4 Henry
2-34 Cottons
1-3 Perry

1-1 Patterson
4 Shiddell

2 Sholters
1-25 Frank
1-36 Seelke

1-28 Bierig
2-21 Foster
1-A Hoskins
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Table 1-5. List of oil and/or gas reservoirs used in this study.
[Field and reservoir-formation names are from oil- and gas-field compilations

cited in this report.]

Approximate Field Reservoir
Location Name Formation
T.27N.,R.18W. Avard, N.W. Tonkawa
T.27N.,R.18W. Avard, N.W. Des Moinesian

T.10N.,R.10W.
T.10N.,R.10W.
T.10N.,R.10W.

T.17N.,R.26W.
T.16N.,R.26W.
T.1N.,R.22ECM
T.12N.,R.21W.
T.5N.,R.11ECM

T.5N.R.11ECM
T.23N.,R.17W.
T.22N.,R.17W.

T.5N.,R.9W.
T.5N.,R.9W.
T.6N.,R.9W.
T.5N.,R.9W.
T.S5N.,R.9W.
T.5N.,R.9W.
T.5N.,R.9W.
T.5N.,R.9W.
T.6N.,R.9W.
T.6N.,R.9W.

T.13N.,R.10W.
T.18N.,R.14W.

T.18N.,R.12W.
T.18N.,R.12W.
T.23N.,R.25W.
T.27N.,R.9W.

T.27N.,R.10W.

T.23N.,R.13W.
T.21N.,R.15W.
T.13N.,R.24W.

T.8N.,R.8W.
T.S5N.,R.3W.
T.7N.,R.3W.

T.10N.,R.21W.
T.2N.,R.23ECM
T.4N.,R.10ECM
T.5N.,R.23ECM

Binger, East Binger
Binger-Cogar
Binger, East

Bishop
Bishop
Camrick Area
Carpenter

Carthage Dist., N.E.

Carthage Gas Area
Cedardale, N.E.
Cedardale

Cement (all areas)
Cement (all areas)

Cement (all areas)
Cement (all areas)
Cement (all areas)
Cement (all areas)
Cement (all areas)

Cement (all areas)
Cement (all areas)
Cement (all areas)
Calumet

Canton, S.W.

Carleton, N.E.
Carleton, N.E.
Catesby-Chaney
Cherokita Trend
Cherokee, N.E.

Cheyenne Valley
Cheyenne Valley
Cheyenne, West
Chickasha, N.W.
Criner-Payne
Dribble, North
Elk City
Elmwood

Eva, N.W.
Forgan, South

Middle Marchand
Lower Marchand
Upper Marchand

Tonkawa
Tonkawa
Morrow
Morrow
Morrow

Morrow
Missouri
Cottage Grove
Fortuna

Noble Olson

Fortuna
Hoxbar Group
Fortuna
Noble Olson
Wade

Medrano
Wolfcamp
Missouri
Morrow
Morrow

Atoka-Morrow
Morrow
Morrow
Cherokee
Cherokee

Des Moinesian
Red Fork
Upper Morrow
Missouri
Bromide

Red Fork
Missouri
Morrow
Cherokee
Morrow
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Table 1-5. (continued)

Approximate Field Reservoir
Location Name Formation
T.21N.,R.24W. Gage, South Morrow
T.20N.,R.24W. Gage, South Morrow
T.13N.,R.10W. Geary Morrow
T.8N.,R.17W. Gotebo Area, North Springer

T.6N.,R.21ECM

T.3N.,R.17ECM
T.18N.,R.26W.
T.17N.,R.11W.
T.24N.,R.4W.
T.24N.,R.4W.

T.5N.,R.9ECM
T.5N.,R.9ECM
T.26N.,R.25W.
T.26N.,R.25W.
T.26N.,R.25W.

T.18N.,R.18W.
T.5N.,R.21ECM
T.5N.,R.21ECM
T.1N.,R.26ECM
T.1N.,R.26ECM

T.28N.,R.21W.
T.28N.,R.21W.
T.24N.,R.24W.
T.24N.,R.24W.
T.28N.,R.3W.

T.8N.,R.7W.
T.27N.,R.24W.
T.5N.,R.15ECM
T.7N.,R.8W.
T.24N.,R.13W.

T.17N.,R.14W.
T.18N.,R.14W.
T.15N.,R.7W.

T.20N.,R.11W.
T.19N.,R.11W.

T.11N.,R.2W.
T.11N.,R.2W.
T.5N.,R.13ECM
T.5N.,R.13ECM
T.4N.,R.13ECM

Greenough, West

Hardest, North
Higgins, South
Hitchcock

Hunter, South
Hunter, South

Keys Area
Keys
Laverne
Laverne
Laverne

Lenora

Light Gas Area
Light Gas Area
Logan, South
Logan, South

Lovedale
Lovedale
Luther Hill
Luther Hill
Mayflower, N.W.

Minco, S.W.
Mocane-Laverne
Mouser

Norge and Verden,
Oakdale, N.W.

Oakwood, North
Oakwood, N.W.
Okarche, North
Okeene, N.W.
Okeene, N.W.

Oklahoma City
Oklahoma City
Postle
Postle
Postle-Hough

N.W.

Des Moinesian

Morrow
Morrow
Atoka
Layton
Misener

Morrow
Keys
Hoover
Tonkawa
Morrow

Morrow
Upper Morrow
Basal Morrow
Morrow
Tonkawa

Morrow
Tonkawa

Lower Tonkawa
Lower Morrow
Red Fork

Springer
Morrow
Morrow
Marchand
Redfork

Morrow
Morrow
Manning
Redfork
Redfork

Prue

Wilcox

Morrow
Cherockee

Upper Cherokee
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Table 1-5. (continued)
Approximate Field Reservoir
Location Name Formation

T.5N.,R.13ECM
T.4N.,R.14ECM
T.4N.,R.14ECM
T.16N.,R.16W.
T.13N.,R.26W.

T.25N.,R.4W.
T.25N.,R.4W.
T.5N.,R.12ECM
T.25N.,R.3W.
T.20N.,R.16W.

T.8N.,R.20W.
T.21N.,R.21W.
T.21N.,R.21W.
T.20N.,R.8W.
T.5N.,R.10ECM

T.23N.,R.22W.
T.28N.,R.8W.
T.8N.,R.4W.
T.14N.,R.10W.
T.14N.,R.10W.

T.14N.,R.10W.
T.25N.,R.16W.
T.22N.,R.19W.
T.29N.,R.17W.

Postle-Hough
Postle-Hough
Postle-Hough
Putnam

Reydon, W. and N.W.

Rich Valley

Rich Valley Area

Richland, Central, N.

Saltfork, S.E.
Seiling, N.E.

Sentinel, West
Sharon, West
Sharon, West
Sooner Trend
Sturgis, East

Tangier
Wakita Trend
Washington, E.

Watonga-Chickasha
Watonga-Chickasha

Watonga-Chickasha

Waynoka, N.E.
Woodward, S.E.
Yellowstone

Upper Morrow
Upper Morrow
Morrow Group
Des Moinesian
Upper Morrow

Simpson
Wilcox
Morrow
Skinner
Cottage Grove

Granite Wash
Morrow
Sharon
Des Moinesian
Morrow

Morrow
Cherockee
Osborne
Morrow
Springer

Atoka

Cottage Grove
Morrow
Simpson
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Appendix 2: Pore throats, capillary pressures, porosity, and
permeability, by C.W. Keighin

INTRODUCTION

The primary goal of Task 2 is to document the effects of confining stress on
pore geometry, as well as on porosity and permeability in clastic rocks at
various depths. Although studies documenting the effects of confining stress
on porosity and permeability in clastic rocks are available, almost no data
exist documenting the effects of confining stress on pore-throat size
distribution determined by mercury injection/capillary pressure with the
sample under confining stress. Nineteen samples from three basins, from
different depth ranges, and with different diagenetic histories, were
examined. General geographic sample locations are given in Table 2-1; sample
depths and a summary of modal analyses and porosity/permeability values are
listed in Table 2-2.

DATA INTERPRETATION

The data in Table 2-2 show a wide range in porosity and permeability
values, although porosity is typically below 8% and Klinkenberg permeability
below 0.1 md. Klinkenberg (1941), showed that, especially in low-permeability
media, permeability to a gas is a function of the mean free path of the gas
molecules. When gas flows through capillaries with diameters small enough to
be comparable to the mean free path of the gas, as is typically the case in
low-permeability media, discrepancies appear between gas and liquid
permeabilities in the porous media. He introduced the concept of "slip", and
the following equation to correct apparent gas permeability (Kg), of a gas
flowing at a mean pore pressure (P), to the true permeability of the porous
medium (see also Sampath and Keighin, 1982).

K =K (1=b/P)
g [0 0}

Cross plots of these data are shown in Figure 2-1, and indicate a
generally close correlation between porosity and permeability. As expected,
there is a general decrease in porosity and permeability with depth, but depth
is not the only factor to consider in the decrease of either porosity or
permeability. Schmoker (1988; and Schmoker, Appendix la this wvolume)
considered porosity-reducing diagenetic reactions in the subsurface to be
dependent on time-temperature exposure of the formation, and further, that
depth may or may not be a good measure of thermal exposure. Nor is decrease
in porosity with depth uniform (Atkins and McBride, 1992, their Fig. 9).
Examination of thin sections indicates that while compaction due to increasing
depth of burial sometimes appears to be a factor, the degree of compaction is
greatly influenced by lithology, especially the presence and quantity of
labile rock fragments (Dutton and Diggs, 1992). Cementation, either by silica
or carbonate minerals, acts to reduce both porosity and permeability, as well
as significantly modifying pore structure.

In this report we are particularly interested in pore structure, and,
necessarily in how these structures are generated and modified. It would be
especially useful to be able to accurately predict porosity and pore-throat
structure, and the various mechanisms responsible for modifying porosity, and
pore structure. An important aspect of the overall pore structure is the
interconnection between pores--the pore throat. Pore throats control fluid
flow between pores, and are typically smaller than pores. In part because of
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their size, they are more sensitive to diagenetic modifications, whether
physical compaction or chemical reactions (dissolution or precipitation of
newly formed minerals). Research to date has not completely answered these
questions {(Bloch, 1991; Bachu and Underschultz, 1992; Harrison, 1989; Surdam
and others, 1989). The samples examined in this investigation vary primarily
in the relative abundance of quartz, feldspar, and rock fragments (Table 2-2);
carbonate cements are locally abundant. Appearance of selected samples is
shown in Figure 2-2; petrologic data related to additional samples from the
Anadarko basin may be found in Keighin and Flores, 1989. The relative
abundance of rock fragments may have a significant effect on porosity, both
macro and micro, and permeability. Compression of labile rock fragments
reduces intergranular porosity and creates intergranular pseudomatrix; both
reduce effective permeability (McBride and others, 1991). Partial dissolution
of rock fragments often creates microporosity; micropores introduce micro-
pore-throats which may restrict or improve fluid migration depending on the
overall history of the rock environment.

Examination of the porosity and permeability data in Table 2-2 shows a
wide variation in measured values; the data also show wide variations in the
effects of confining stress on permeability. Relationships between capillary
pressure and wetting phase (e.g. air) saturation, and pore-size distribution
for a range of porosity and permeability values are shown in Figure 2-3 (see
also McCreesh and others, 1991). The samples illustrated in Figure 2-3, A and
B, are among the most porous of the samples investigated, and, in thin
section, have the largest visible pores. Plots of pore-size frequency versus
pore entry/throat diameter, however, reveal that pore throats in these samples
are most frequently in the 10um range, significantly smaller than the pores
visible in thin section. The plots also show that pore throats are
constricted by increased confining stress, although not as dramatically as in
samples with lower initial porosity and permeability, and smaller measured
pore throats. Data plotted in Figure 2-3C and 2-3D, indicate that for samples
more typically fitting the "tight" (i.e permeability <0.1lmd) sand designation,
pore throats are more typically in the <0.1 pm size range, and that these
already small pore throats are further reduced by confining stress. Thus,
even though pores visible in thin section may be relatively large, all pores
must be accessed through pore throats, which are smaller (often much smaller)
than the pores themselves. The data also suggest that pore throats, rather
than stress-relief micro fractures, are indeed being closed.

These data show that pore throats, controlling factors in flow of fluids
through a pore network, are typically smaller than pores visible in thin
section, or apparent in hand specimen. Pore throats, especially small
(<0.1lyum) pore throats, common in fine to very fine grained clastic rocks, are
very sensitive to confining stress, and probably act as limiting factors
controlling the flow of gas to the well bore. Small pore throats are also
very sensitive to the presence of formation fluids, which reduce their
effective diameter. Measurement of capillary pressure under confining stress
suggests that constriction of pore throats is the controlling mechanism
effecting fluid flow at reservoir conditions in the samples examined. These
data aid in defining reservoir properties under in situ conditions, and are
valuable for reservoir description and in simulation studies. .More accurate
predictions will be possible when additional data become available.
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Figure 2-1. Cross plots of insitu Klinkenberg permeability versus insitu
helium porosity and insitu Klinkenberg permeability versus routine air
permeability for samples from core samples from the Anadarko, Uinta, and
Wind River basins.
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Figure 2-2 Photomicrographs of thin sections prepared from plugs on which
porosity-permeability and mercury-injection determinations were
made. Geographic location of samples is given in Table 1; porosity,
permeability, and modal analysis results are listed in Table 2. All
photos are taken in plane polarized light. (A). Sample OK-7, depth
- 7,096 ft (2,163 m); ¢ : 16%; k : 330 md. Good porosity and
permeability created byhlarge, opé% pores [P]; pores are generally
clay-free, but are typically lined by wheat-grain siderite [S].
Neither porosity nor permeability have been reduced by compaction or
chemical cementation in this sample. (B). Sample OK-8, depth -
7,198 ft (2,194 m); ¢ : 14.1%; k  : 47.7 md. Sample is poorly
sorted, but clean (fe% rock fragﬁgnts): pores are relatively clean
and open, although some are filled with kaolinite [K]. Authigenic
quartz overgrowths [0O] and carbonate cement [C] occur, but neither
porosity nor permeability have been significantly reduced by
chemical cementation. (C). Sample OK-3, depth - 11,960 ft
(3,645m); ¢ :14.3%; k_: 86.6 md. Sandstone is moderately sorted,
fine graineg, and relﬁ%ively clean; pores are typically open and
clay-free, although iron-bearing carbonate cement [C] is sometimes
present. (D). Sample OK-1, depth - 18,076 ft (5,510 m); ¢ : 2.1% ;
k., : 0.0010 md. Sandstone is well sorted and clean, but porosity
and permeability have been significantly reduced by compaction,
quartz overgrowths [0] (silica cementation), and pore-filling
carbonate [C]. Intergranular pores [P] exist, but are typically
very thin [< S5um]. (E). Sample WY-8, depth - 12,097.5 ft (3,687
m; ¢ : 6.9%; k, : 0.0022 md. Moderately sorted medium gained
sands%one contaiﬁing both compacted and partially dissolved rocks
fragments [R]; some porosity is microporosity due to partial
dissolution of rock fragments; few pores are clean (i.e., free from
clays or authigenic cements). Authigenic cements include silica
overgrowths and intergranular carbonates. (F). Sample WY-35, depth
- 13,631 ft (4,155 m); ¢ :7%; k,  : 0.0024 md. Medium grained,
moderately sorted sandst%ne ricﬁsin rock fragments [R]. Most pores
are lined with authigenic chlorite [Ch], and many are filled with
other authigenic clays. Porosity has also been reduced by
precipitation of intergranular carbonate [C].

¢h = helium porosity k = insitu permeability
is
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Figure 2-3. Plots illustrating capillary pressure versus wetting phase (i.e.,
air) saturation and pore size distribution for samples at ambient and
under insitu stress conditions. Measurements under ambient conditions
are represented by [ m]:; insitu measurements are represented by [A].
The values of porosity and permeability which follow are insitu values.
(A) . Sample OK-8; porosity - 12.8%; permeability 47.65 md; depth
7197.5 ft. Shape and configuration of the capillary pressure Vs.
saturation curve indicates that mercury entered pores at relatively low
pressure, and essentially complete saturation occurred at approximately
7,000 psia. Although the larger pores visible in figure 2B are
approximately 50 x 100pum, measured pore-size distribution shows the
majority of pore throats to be smaller than approximately 15um. (B).
Sample OK-3; porosity - 13.3%; permeability - 89.6md; depth 11,960 ft.
Measured porosity and visible pores in figure 2C suggest properties very
similar to those of sample OK-8. The capillary pressure vs. saturation
curve indicates that more pore throats are being constricted by
application of confining stress. The pore size distribution curves
reveal a slightly higher proportion of larger pores (although still in
the 20um size range) in this sample compared to OK-8; pore throats under
confining stress are typically smaller than 15um. (C). Sample WY-21;
porosity - 5.9%; permeability - 0.0010md; depth 13,483 ft. Capillary
pressure vs. saturation curves show that mercury saturation of pore
space is not accomplished, even at 10,000 psia, and that entry into
pores is significantly restricted with increasing confining stress.

Pore size distribution curves reveal that unconfined pore throats are
typically smaller than approximately 1pm; when under confining stress,
pore throats are reduced significantly in size and are typically less
than 0.05um. (D). Sample OK-1l; porosity - 2.0%; permeability -
0.0010md; depth 18,076 ft. Physical appearance of the sample (see
figure 2D) suggests very low porosity and permeability (due, at least in
part, to compaction and cementation by carbonate and silica overgrows).
Examination of the thin section illustrated in figure 2D suggests that
the "thin-film' intergranular pores may be 1-2um across. Pore size
distribution curves, however, show that pore throats are most often <0.2
um (unconfined) to 0.04 - 0.1lpm (confined),
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Appendix 3. Geologic characteristics of deep natural gas resources
Introduction

The primary objective of this task was to identify geologic conditions or
variables (lithology, structure, pressure, etc.) favorable for natural gas
accumulations in deep sedimentary basins. In order to meet this goal, deep
basins were studied in terms of their geologic characteristics and comparisons
were made between basins. Geologic data were taken primarily from computerized
data bases including the NRG Associates Inc. Field File (NRG) (NRG Associates
Inc., 1988) and the Petroleum Information Corporation's Well History Control
System (WHCS) (Petroleum Information Corporation, 1988). NRG contains
geologic, production, and engineering data for all reservoirs (or fields) with
one million barrels of equivalent (BOE) or 6 Bcf of gas ultimate recoverable.
WHCS contains geologic and drilling information for approximately 2 million
wells drilled in the U.S.; of these, 16,500 wells were drilled deeper than
4,572 m (15,000 ft). Experts in the U.S. Geological Survey were consulted on
specific problems in basins and for their knowledge about the geologic history
of appropriate regions. We wish to acknowledge the help of Christopher Schenk,
Mahlon Ball, Keith Robinson, and Richard Powers for their help.

Deep reservoirs and wells are defined arbitrarily as those occurring
below 4,572 m (15,000 ft). However, a single producing horizon may extend
both above and below 4,572 m (15,000 ft). For this reason, NRG retrievals were
selected for all reservoirs below 4,270 m (14,000 ft) in order to capture all
reservoirs occurring at approximately 4,572 m (15,000 ft) depth.

During the project, three separate subtasks were undertaken for Task 3:
(1) tabulation and interpretation of NRG summaries of significant reservoirs
in each deep sedimentary basin in the U.S., (2) preparation of maps
illustrating the distribution of deep wells in the U.S. by geologic age, and
(3) compilation of formation test data for deep producing wells in the U.S. in
order to determine pressure regimes by depth for key reservoirs. The purpose
of the regional compilations is to examine relationships in the distribution
of deep producing wells and reservoirs in order to define geologic factors
which control the distribution of deep natural gas resources in each region.
Data for each region are compiled in a national summary (see RESULTS section
above) in order to determine controlling factors for deep basin gas that are
common to all deep producing areas.



87

Appendix 3, Subtask 1l: Geologic characteristics of deep natural
gas resources based on data from significant fields and reservoirs
by T.S. Dyman, C.W. Spencer, J. Baird, R. Obuch, and D. Nielsen.

Data summaries from the NRG file and interpretations are presented for
the Midcontinent, Rocky Mountain, Gulf Coast, and Permian basin regions. Data
summaries are listed for the Williston basin and West Coast region but only 8
total reservoirs are identified as deep and no geologic controls are listed.
Geologic and production data for all NRG-included reservoirs in the U.S.
deeper than 4,270 m (14,000 ft) (see Introduction above for discussion) were
extracted from the data base. Numbers of deep significant fields and
reservoirs in the entire U.S. are as follows:

Rocky Mountains-- 19 fields, 22 reservoirs
Permian basin-- 68 filelds, 89 reservoirs
Midcontinent-- 76 fields, 85 reservoirs
West Coast-- 3 fields, 3 reservoirs
Gulf Coast-- 160 fields, 174 reservoirs
Williston basin-- 5 fields, 5 reservoirs
Total-- 331 fields, 378 reservoirs

Reservoir data are presented below by region beginning with the
Midcontinent (Data Set 1). Geologic conditions or variables favorable for deep
gas accumulations are presented following each data set. English units used
in table where one meter equals 3.28 ft.
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Data Set 1-- Summary of significant fields and reservoirs occurring below
4,270 m (14,000 ft) in the Midcontinent region U.S. from The Significant
0il and Gas Fields of the U.S. (NRG Associates Inc., 1988). All deep fields
and reservoirs occur in the Anadarko basin of Oklahoma and Texas. Refer
also to Hugman and Vidas (1988) for field and reservoir data for the
Midcontinent region. English units used in table where one meter equals 3.28
ft.

Numbers of deep fields/reservoirs in Anadarko basin of Oklahoma
and Texas:
76 fields, 85 reservoirs.

Numbers of deep fields/reservoirs by state in Anadarko basin:

Texas-- 19 fields, 22 reservoirs.
Oklahoma-- 57 fields, 63 reservoirs.
»

Numbers of deep fields in Anadarko basin by discovery year:
1926-1959-- 6

1960-- 1 1974-- 5
1961-- 1 1975-- 3
1962-- 4 1976-~- 4
1963-- 1 1977-- 7
1964-- 2 1978-- 3
1966-- 2 1979-- 5
1967-- 2 1980-- 7
1969~-- 2 1981-- 10
1970-- 4

1971-- 2 TOTAL-- 76
1972-- 2

1973-- 2

Field classification in Anadarko basin:
Of 76 fields, 22 gas, and 54 blank (unknown).

Trapping mechanisms in Anadarko basin:
Of 85 reservoirs, 11 are structurally trapped, 14 are stratigraphically
trapped, 16 are combination structural and stratigraphic, and 44 are unknown.
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Data Set 1 (Anadarko basin) continued:

Numbers of deep reservoirs in Anadarko basin by 1location and
depth:
Location by county
and state

Depth in intervals of 1000 ft (14= 14,000-15,000 ft)

14 15 16 17 18 19 20 21 22 23

Cooke County, TX 1
Hemphill County, TX 2 2 1 1 2 1
Wheeler County, TX 4 2 2 2 1 1
Carter County, OK 1
Comanche County, OK 1 1
Grady County, OK 1 3 3
Beckham County, OK 1 2 3 3 2 1 1 1
Caddo County, OK 1 2 1 4 1 1
Custer County, OK 5 4 1
Washita County, OK 1 1 2
Roger Mills Co., OK 3 3 2 2 1
Dewey County, OK 1 1

TOTALS 19 20 17 10 6 3 3 1 3 1

Deep reservoirs in Anadarko basin by formation and 1lithology
(names are taken directly from NRG and may or may not represent

formal stratigraphic wunits):

Unit Age Litholoagy Numbery
0il Creek Ordovician clastic 1
Goddard Mississippian clastic 2
Simpson Ordovician clastic 1
Bromide Ordovician clastic 1
Morrow Pennsylvanian clastic 28
Arbuckle Cambrian carbonate 2
Springer Mississippian clastic 13
Hunton Silurian carbonate 14
Morrow-Springer Miss-Penn clastic 1
Cottingham Pennsylvanian clastic 2
Atoka Pennsylvanian clastic 8
Ellenberger Ordovician carbonate 1
Henrvhouse Silurian carbonate 1
Red Fork Pennsylvanian clastic 1
Boatwright Pennsylvanian 1
Puryear Pennsylvanian 1
Unknown 4
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Data Set 1 (Anadarko basin) continued:

Deepest reservoir in Anadarko basin :
New Liberty Southwest, Hunton reservoir
Depth to production equals 23,920 ft

No production data reported in NRG file

Total cumulative production, proven reserves, and known

recoverable gas and o1l for reservoirs in Anadarko basin. Data
represent maximum values because production totals are only available for
fields in the state of Oklahoma. Some fields contain no data. 0il in thousands
of barrels. Gas in millions of cubic ft. Cum prod= cumulative production;
proven res= proven reserves; known res= known recovery.

cum prod proven res known reg
0il fields 2,332 253 2,585
Gas fields 2,378,997 418,933 2,784,300

Distribution of non-HC gases in the deep Anadarko basin:
Methane values in the Anadarko basin are high when compared to other deep
basins in the U.S. (range 80.4 to 97.3%). He, H3S, and CO3 values are low.

Distribution of porosity in the the deep Anadarko basin:

Porosity values exhibit a wide range of distribution in the Anadarko basin
(Fig. 3-1). The highest porosity values generally occur in clastic
reservoirs. All significant reservoirs below 18,000 ft are fractured
carbonate reservoirs and have porosities of less than 12%.

Geologic controls of deep gas production based on reservoir and
published data for Anadarko basin:

(1) The Anadarko basin accounts for all of the deep gas (and oil)
production in the Midcontinent region. Other Midcontinent petroleum-
producing basins such as the Arkoma basin contain deep reservoirs, but
significant production as defined in the NRG file (at least one million
barrels of equivalent--BOE ultimate recoverable oil, or 6 Bcf of gas)
does not occur yet. The deep Anadarko basin contains significant reserves
of natural gas. The largest reservoirs occur in structural and
combination traps along the southern margin of the basin in Oklahoma and
the Texas panhandle.

(2) Structural traps within the Anadarko basin are generally thrust-bounded
anticlinal closures in an overall transpressional setting. Anticlines
are generally northwest- or west-trending and evolved through time such
that updip stratigraphic pinchouts created combination structural and
stratigraphic traps (Note: The recent Arbuckle discovery in the Criner
Hills area of Oklahoma by Consolidated Natural Gas is a thrust-closure
trap) .

(3) Lower than normal thermal gradients may occur locally along the thrust-
faulted margins of the Anadarko basin. 0il might then occur at deeper-
than-normal conditions due to inferred downward flow of meteoric water
along faults and fracture systems associated with the deep basin margin.
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Mills Ranch and Eola Fields possibly illustrate these thermal conditions.
An analog in the Rocky Mountain region occurs at Bridger Lake Field,
located just north of the Uinta Mountains in Utah.

(4) The Morrow-Springer interval in the deep Anadarko basin is internally
sourced and overpressured where rocks lower in the stratigraphic column
such, as the Hunton, are normally pressured. The Morrow-Springer high-
pressure compartmentalization is enigmatic. It seemingly could not be due
to undercompaction as a result of burial. Near-maximum burial depths
were reached in the basin at the end of the Permian. Thermogenic
reactions involving HC generation are the most likely cause of
overpressuring today.

(5) The Woodford Shale of the Anadarko basin is not significantly
overpressured, in contrast to the similar Bakken Shale of the Williston
basin. HC's are no longer being generated from kerogen at rates which
exceed leakage rates in the deeper parts of the Anadarko basin. If gas
is now being generated in the deep Woodford, and if the Woodford is not
overpressured, the natural gas may be migrating into the Hunton.

(6) Two opposing views are suggested about the quality of source rocks in
the Arbuckle Group:

(a) The Arbuckle Group may prove to be disappointing as a major, deep,
natural gas producer in the Anadarko basin because it lacks suitable
internal source rocks. Additionally, anhydrite in the Arbuckle reacts
with methane to produce significant amounts of non-HC gases such as
carbon dioxide (from the thermal degradation of carbonates--dilutes
methane) and hydrogen sulfide (from thermochemical sulfate reduction of
anhydrite--destroys methane). The Hunton contains less anhydrite,
allowing methane to be stable at depth.

(b) The Arbuckle has undergone high thermal stress and for the most part
displays minimum TOC values. However, higher TOC values in the geologic
past, combined with the oil-prone nature of the organic matter (type II-
I), could have enabled at least portions of the Arbuckle to generate
petroleum. Smackover carbonates, which are also very mature to
overmature in the deeper portions of the basin, also exhibit generally
low TOC content-- an average of 0.5% (Palacas, in press). Yet, these
carbonates are known to be the source of giant oil and gas accumulations.
Alternatively, the Arbuckle problem may be simply a matter of not
locating and analyzing the right organic-rich sections of rock. Palacas
(in press), in summarizing Trask and Patnode's (1942) studies, showed
that out of 178 subsurface Arbuckle samples from 18 wells in the Anadarko
basin, approximately 46% contained TOC contents ranging from 0.4 to 1.4%.
Carbonate rocks with such values can be considered adequate source beds
for petroleum.

(7) Large volumes of gas in Pennsylvanian clastic reservoirs were sourced
by Upper Mississippian and Pennsylvanian shales. The high percentage of
Pennsylvanian stratigraphic traps in clastic reservoirs suggests
generation and entrapment close to source.

(8) The Anadarko basin is unlike other deep basins in that HC's have been
generated in an unusually long and continuous history that has
contributed to the o0il and gas productivity in this Paleozoic province.
Time-Temperature Index computations indicate that the oil window has
migrated upward through time (Schmoker, 1986). 0il may have been
generated in the deepest parts of the southern Oklahoma aulacogen as long
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as 350 m.y. during the Pennsylvanian and Permian when large voclumes of
sediment entered the zone of o0il generation. Natural gas is very hard to
trap. Known discoveries may have been generated during the last 60
million years.
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Data Set 2-- Summary of significant fields and reservoirs occurring
below 14,000 ft in the Rocky Mountain region U.S. from The Significant 0il
and Gas Fields of the U.S. (NRG Associates Inc., 1988). English units used in
table where one meter equals 3.28 ft.

Numbers of significant fields/reservoirs in deep basins of the
Rocky Mountain region:
19 fields, 22 reservoirs.

Numbers of significant fields/reservoirs in deep basins of the
Rocky Mountain region by state:

Wyoming-- 16 fields, 19 reservoirs.
Utah-- 1 field, 1l reservoir.
Colorado-- 2 fields, 2 reservoirs.

Numbers of significant fields in deep basins of the the Rocky
Mountain region by discovery year:

1926-1959-- 5 1980-- 1
1965-- 1 1981-- 1
1966-- 3 1982-- 3
1972-- 1 1985-- 1
1977-- 1 TOTAL-- 19
1979-- 2

Field classification for significant deep reservoirs in the Rocky
Mountain region:
Of 22 reservoirs, 6 oil, 13 gas, and 3 o0il and gas.

Trapping mechanisms for significant deep reservoirs in the Rocky
Mountain region:

Of 22 reservoirs, 8 are structurally trapped, 9 are combination structural and
stratigraphic, and 5 are unknown. .

Structurally trapped significant deep reservoirs in the Rocky
Mountain region:

Reno, Johnson Co., WY 0il Powder River basin
Reno east, Johnson Co. WY 0il Powder River basin
Poison Spider West, Natrona Co., WY 0il Wind River basin
Butcher Knife Springs, Uinta Co., WY Gas Thrust belt
Whitney Canyon, Uinta Co., WY Gas Thrust belt
Anschutz Ranch east, Uinta Co., WY Gas/oil Thrust belt
Session Mountain, Uinta Co., WY Gas Thrust belt
Chicken Creek, Uinta Co., WY Gas/oil Thrust belt

Geographic distribution, reservoir c¢lassification, and API gravity
of significant deep reservoirs in the Rocky Mountain region:

Powder River basin 4 res (0il) API grav= 35
Moxa arch 2 res (oil/gas) API grav= 40
Wind River basin 2 res (oil/gas) API grav= 46
Sand Wash basin 2 res (gas)
WY thrust belt 7 res (oil/gas) API grav= 51
Washakie basin 5 res (gas)
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Data Set 2 (Rocky Mountain region) continued:

Significant deep reservoirs in the Rocky Mountain region bdy
formation and 1lithology:

Minnelusa-- 4 res (mixed) Penn-Perm Madison-- 2 res (carb) Miss.
Nugget-- 6 res (clastic) Jurassic Bighorn-- 3 res (carb) Ordov.
Dakota-- 3 res (clastic) Cretaceous Weber-- 1 res (clastic) Penn-Perm
Frontier-- 2 res (clastic) Cretaceous Morgan-- 1 res (carb) Penn

Significant reservoirs in the Rocky Mountain region by depth:
14,000-15,000 ft 9 reservoirs

15,000-16,000 ft
16,000-17,000 ft
17,000-18,000 ft
18,000-19,000 ft

wNn oo

Deepest significant reservoir in the Rocky Mountain region:
Bull Frog Field, Natrona County, WY with 18,792 ft reservoir

Gas from Frontier Formation; 2,320 proven acres

Field discovered in 1979

Total cumulative production, proven reserves, and known

recoverable gas and oil for deep significant reservoirs in the
Rocky Mountain region. Data represent minimum values. Some fields contain
no data. 0il in thousands of barrels. Gas in millions of cubic ft. Cum prod=
cumulative production; proven res= proven reserves; known res= known recovery;
blank equals no data.

0il Total Clastic Carbonate Chert Blank
Known rec 45,100 45,100 -— - -
Proven res 14,400 14,400 -— - -
cum prod 30,400 30,400 -- - -
Gas Total Clastic Carbonate Chert Blank
Known rec 2,192,600 836,000 1,356,600 - -
Proven res 1,782,900 595,200 1,187,700 -—— -——-
cum prod 436,400 300,600 135,800 -—- -——

Distribution of non-HC for significant deep reservoirs in the

Rocky Mountain region:

Methane ranges from 22.0 to 94.7%. The lowest value (22.0%) occurs at the
LaBarge deep Madison Limestone reservoir in Lincoln County, Wyoming. All Rocky
Mountain reservoirs have He values less than 0.5%. Generally the highest H3S
values occur in fields with high COz content. The highest CO2 values occur in
limestone reservoirs.

Distribution of porosity for significant deep reservoirs in the
Rocky Mountain region:

Only sparse porosity-depth data are available from the NRG file for the Rocky
Mountain region (Fig. 3-1). Of the few reservoirs represented, clastic
reservoirs generally exhibit the highest porosities.
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Geologic controls of deep gas production based on reservoir data
for Rocky Mountain basins:

(1) Of the 22 significant reservoirs in the Rocky Mountain region, 19 are
in Wyoming. The total (22) includes 7 in the Wyoming thrust belt; 2 each
in the Wind River basin, Moxa arch, and Sand Wash basins; 4 in the Powder
River basin; and 5 in the Washakie basin. Deep production in the Rocky
Mountain region is dominantly natural gas, gas condensate, and high-
gravity oil in the Utah-Wyoming thrust belt. Significant reservoirs in
the thrust belt produce primarily from Cretaceous, Jurassic, and Triassic
sandstones (Frontier and Nugget) and Permian-Pennsylvanian mixed
clastic/carbonate sequences (Weber and Minnelusa) in primarily structural
traps. Source rocks for deep reservoirs are primarily organic-rich
Cretaceous shales in fault contact with older reservoir rocks.

(2) Significant deep oil production occurs in conventional reservoirs in
Rocky Mountain basins. Reservoir rocks are primarily Cretaceous
sandstones and Permian-Pennsylvanian sandstones and carbonates. These
reservoirs are located in deep areas of abnormally low subsurface
temperatures and low thermal maturation, probably caused by cool meteoric
water penetrating deep into the basin along bounding faults (Law and
Clayton, 1988). The deep western part of the Powder River basin has
below normal temperatures, possibly as a result of meteoric waters
recharged from outcrops along the western margin of the basin.

(3) Significant deep Mississippian production in the Rocky Mountain region
is from limestones and dolomites. These reservoirs have a high
productive capacity (> 20 MMcf per day per well) and commonly contain
significant amounts of non-HC gases such as H2S and COp. Reservoirs are
primarily found in large structures.

(4) Most significant deep reservoirs in the Rocky Mountain region are
associated with structural or combination structural and stratigraphic
trapping mechanisms. Structural traps in Rocky Mountain basins are
directly related to the tectonic evolution of the Rocky Mountain foreland
province. According to W.J. Perry, Jr. (Appendix 4, this volume),
initial southeastward progression of uplift and basin development from
southwest Montana southeastward during the mid Cretaceous established
timing limits on petroleum migration and trapping trends. Rocky Mountain
foreland development reached the position of the Colorado Front Range by
latest Maastrichtian time. Subsequent Laramide deformation spread
northeastward during the latest Cretaceous and Paleocene establishing
first the Wind River basin and then the Powder River basin. The Laramide
deformation front reached the Black Hills by late Paleocene time..

Economic implications of this new model of deformation of the Rocky
Mountain foreland include progressive opening and subsequent blockage of
migration paths for HC's generated from Paleozoic source rocks in
southeastern Idaho, southwestern Montana, Wyoming, Colorado, and eastern
Utah. Deep natural gas, generated during the Tertiary, has likely
migrated from the deeper parts of these foreland basins into structural
traps formed during Laramide deformation.
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Data Set 3-- Summary of significant fields and reservoirs occurring
below 14,000 ft in the deep Permian basin regiom U.S.. From The
Significant 0il and Gas Fields of the U.S. (NRG Associates Inc., 1988). Deep
Permian basin here includes primarily reservoirs in the Delaware basin of west
Texas and southeast New Mexico. English units used in table where one meter
equals 3.28 ft.

Numbers of significant fields/reservoirs in the deep Permian
basin:
68 fields, 89 reservoirs.

Number of significant fields in the deep Permian basin by
discovery Yyear:

1948 - 1 1963 - 1 1970 - 2 1977 - 5
1955 -1 1964 - 1 1971 - 3 1978 - 1
1956 - 1 1965 - 2 1972 - 2 1979 - 4
1958 - 2 1966 - 4 1973 - 7 1980 - 1
1960 - 3 1967 - 1 1974 - 1 1981 - 3
1961 - 2 1968 - S 1975 - 5 1982 - 1
1962 - 2 1969 - 3 1976 - 1 1983 -1
Total- 68

Field classification for all significant reservoirs in the deep
Permian basin by state and county:

0il and Gas Gas Total

New Mexico

Eddy 3 3

Lea 1 8 9
Texas

Culberson 1 1

Loving 11 11

Pecos 16 16

Reeves 14 14

Terrel 1 1

Ward 20 20

Winkler 14 14

TOTAL 1 88 89
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Data Set 3 (Permian basin) continued:

Classification of significant reservoirs in the deep Permian basin
by depth and county:
Depth (ft X 1000)

County 14 15 16 17 18 19 20 21 22
Eddy Co., NM 3
Lea Co., NM 8 1
Culberson Co., TX 1
Loving Co., TX 1 4 2 1 1 2
Pecos Co., TX 2 5 1 2 1 2 3
Reeves Co., TX 1 1 6 1 2 1 2
Terrel Co., TX 1
Ward Co., TX 2 2 3 6 3 4
Winkler Co., TX 3 1 1 2 2 2 1 2

TOTAL 21 15 12 10 10 8 6 7
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Data Set 3 (Permian basin) continued:

Numbers of significant reservoirs in the deep Permian basin by
geologic age, formation, and 1lithology:

2 . { on/uni ] ¢ ; .

Permian Wolfcampian 2 (blank)
Pennsylvanian Pennsylvanian 1 (blank)
Pennsylvanian Strawn 3 carbonate
Pennsylvanian Atoka 5 clastic/carb
Pennsylvanian Morrow 10 clastic
Mississippian Mississippian 1 carbonate
Devonian Lower Devonian 5 chert
Siluro-Devonian Siluro-Devonian 3 carbonate
Silurian Silurian 4 carbonate
Silurian Fusselman 10 carbonate
Silurian Fusselman Dol 12 carbonate
Ordovician Ellenberger 33 carbonate
TOTAL 89

Number of significant reservoirs in the deep Permian basin by trap
type and depth (blank indicates no trap identified):
Depth Trap tvype

14-15 3 7 8 3
15-16 1 6 4 4
16-17 1 7 3 1
17-18 5 5 1
18-19 6 2 1
19-20 2 4 2
20-21 4 1 1
21-22 3 3 1
TOTAL 5 40 30 14

Total cumulative production, proven reserves, and known

recoverable gas and oil for significant reservoirs in the deep
Permian basin. Data represent minimum values. Some fields contain no data.
0il in thousands of barrels. Gas in millions of cubic ft. Cum prod= cumulative
production; proven res= proven reserves; known res= known recovery.

Oil == Total = Clastic = Carbopnate Chert = Blank

Known rec 8,075 - 8,075 - _——
Proven res 939 - 939 —_— _——
cum prod 7,136 - 7,136 . -
Gas Total Clastic Carbonate Chert Blank
Known rec 15,127,180 566,030 13,766,982 709,530 84,638
Proven res 2,713,874 157,053 2,481,937 49,970 24,914

cum prod 12,413,306 408,977 11,285,045 659,560 59,724
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Data Set 3 (Permian basin) continued:

Distribution of non-HC gases for significant reservoirs in the
Permian basin:

Methane ranges from 47.0 to 97.7% in the deep Permian basin but averages
approximately 90%. The 3 lowest methane values occur in Ellenberger
(carbonate) reservoirs (Brown Bassett, Mi Vida, and Moore-Hooper-Vermejo
fields) in the Texas part of the deep basin. Each of these reservoirs have

high CO3 values (34.8 to 53.8%). He and H2S values are very low in the deep

Permian basin.

Distribution of porosity for significant deep reservoirs in the
deep Permian basin:
Reservoir porosity systematically decreases with depth in the Permian basin

(Fig. 3-1). Generally, significant reservoirs below 16,000 ft are carbonate

reservoirs. Below 19,000 ft these reservoirs exhibit porosities below 5%.
the shallower reservoirs (less than 16,000 ft), clastic reservoirs average
higher porosities than carbonate reservoirs.

Geologic controls of deep gas production based on reservoir data
for Permian basin:

(1) Deep production in the Permian basin is predominantly gas from
carbonate reservoirs in the western and southern parts of the greater
Permian basin in what is commonly referred to as the Delaware basin.
Some deep gas was generated directly from mature source rocks, while

additional gas has been generated by the conversion of oil to gas. Most

0il fields in equivalent rocks occur on the periphery of the greater

Permian basin, on the north and east margins, supporting this theory of a

thermal conversion process.

(2) The volume of available reservoir rocks decreases with depth in the

greater Permian basin because the basin area decreases with depth. As a

result, finding new, good quality, deep gas reservoirs increases with

depth. However, increased pressures with depth result in an increase in

gas stored within a given volume of reservoir rock.

(3) Lithologically, shallower reservoirs in the Delaware basin (14,000 to

17,000 ft) are mixed carbonate and clastic reservoirs (but mostly

carbonate) including some Pennsylvanian- and Permian-aged rocks. They are
located in Lea County, NM and Loving County, TX on the margin of the deep
basin. The deepest reservoirs are composed predominantly of carbonate
rocks of lower Paleozoic age from the central part of the Delaware basin.
Thirty-three deep reservoirs occur in the Ordovician Ellenberger alone.

The deep Ellenberger of the Permian basin is similar to the Arbuckle of
the Anadarko basin in that it may not be internally sourced (see item 6,
Anadarko basin; and Palacas, in press). Ellenberger HC's are
predominantly derived from younger rocks including the Woodford Shale
where these rocks have been down-faulted during compression or extension.
Gas was probably emplaced in Ellenberger reservoirs after structures were
established during Pennsylvanian and Permian time. These Upper Paleozoic
collisional structures were formed prior to peak gas generation.
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(5) All of the deep stratigraphically trapped reservoirs (five in the NRG
data file) occur at shallower depths (14,000 to 17,000 ft) in the
youngest reservoir strata of Permian age. The post Wolfcampian Permian
basin is a sedimentary rather than a structural basin and traps are
facies-controlled in these younger rocks.

(6) The total gas column in Ellenberger reservoirs is very thick reaching
more than 3,500 ft in the Gomez Field. Vertical, interconnected fractures
occur in some areas. These fracture systems are associated with huge
transpressional structures along the eastern margin of the Delaware
basin.

(7) Matrix porosity is as high as 5% at depths greater than 19,000 ft (Fig.
3-1) in the deep Permian basin. Fractures are common and result in
greatly enhanced permeability and increased deliverability from
prospective reservoirs. Poor porosities can result at any depth, but the
best porosities decrease with depth at a predictable rate. Limestone
reservoirs tend to produce economic volumes of HC's at lower porosities
than dolomite. The highest porosities at these depths occur in dolomite
reservoirs although NRG data are limited.

(8) Source-rock type becomes less important with respect to the presence of
0il and gas with increasing depth because thermal cracking converts oil
to gas and condensate at depth. Normal pressure gradients typify deep
reservoirs in large fields in the Permian basin. No evidence exists for
overpressurized compartments in the significant fields of the NRG data
file (published field data).
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Data Set 4-- Summary of significant fields and reservoirs occurring
below 14,000 ft in the Pacific region U.S. from The Significant 0il and Gas
Fields of the U.S. (NRG Associates Inc., 1988). Data for the Pacific region
in NRG are summarized briefly because only three significant fields with deep
reservoirs occur there. English units used in table where one meter equals
3.28 ft.

Number of significant deep filields and reservoirs 1in Pacific
region:
3 reservoirs and 3 fields; 2 in California and one in Alaska.

Field discovery year for significant filelds with deep reservoirs
in the Pacific region:

Fillmore field discovered 1954, Ventura Co., CA

Rio Viejo field discovered 1975, Kern Co., CA

Beaver Creek field discovered 1967, Kenai Quad, AK

Final field classification for all significant deep reservoirs by
State 1n the Pacific region:

Both California fields have multiple reservoirs and are classified as oil
fields. Beaver Creek field, Alaska is classified as a gas field.

Reservoilr classification by depth for significant deep reservoirs
in the Pacific region:
Rio Viejo field occurs at 14,100 ft and Fillmore field occurs at 14,250 ft.

Beaver Creek field occurs at 14,800 ft.

Significant reservoir summary by primary reservoir 1lithology and
depth for Pacific region:
All 3 reservoirs produce from sandstone between 14,000 and 15,000 ft.

Numbers of significant deep reservoirs by rock unit and geologic
age, and primary 1lithology for the Pacific region:

Rio Viejo field 654 Stevens Sandstone

Fillmore field 655 Pico Sandstone

Beaver Creek field 654 Tyonek Sandstone

Numbers of significant deep reservoirs by trap type and depth 1in
Pacific region:

Both California reservoirs are defined as stratigraphic. The Alaska reservoir
is classified as structurally trapped.
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Data Set 4 (Pacific region) continued:

Known recovery, proven reserves, and cumulative production for
significant deep reservoirs 1inm the Pacific region by major
lithology:

Known recov.= known recoverable resources; proven res.= proven reserves; and
cum. prod.= cumulative production. Gas in millions of cubic ft (MMcf); oil in
millions of barrels (MMbls).

Major reservoir 1lithology

Total Clastic Carbonate

Gas (MMcf)

Known recov. 264,900 264,900 -
Proven res. 179,912 179,912 --
Cum. prod. 84,988 84,988 --
Qil (MMbls)

Known recov. 27,650 27,650 -—
Proven res. 5,067 5,067 --
Cum. prod. 22,583 22,583 --

Distribution of porosity for significant Qeep reservoirs in the in
the Pacific region:

Both California reservoirs have average reservoir porosities of 31% (Fig. 3-
1) . The Alaska reservoir has an average porosity of 28%.

Distribution of non-HC gases for significant deep reservoirs in
the Pacific region:
Data not available of Pacific region reservoirs.

Geologic controls not presented for Pacific region because only three
reservoirs identified.
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Data Set 5-- Summary of significant fields and reservoirs occurring
below 14,000 ft in the Williston basin region U.S. from The Significant
0il and Gas Fields of the U.S. (NRG Associates Inc., 1988). Data for the
Williston basin in NRG are summarized briefly because only five significant
fields with deep reservoirs occur in the region. These data are listed
separately because significant differences exist with data from the Rocky
Mountain and Midcontinent regions. English units used in table where one meter
equals 3.28 ft.

Number of significant deep fields and reservoirs in the Williston
basin:
Five fields containing 5 deep reservoirs. All are located in McKenzie Co., ND.

Field discovery Yyear for significant fields with deep reservoirs
in the wWilliston basin:
Discovery years for fields range from 1952 (Croff field) to 1981 (Poe field).

Final field classification for all significant deep reservoirs by
State in the Williston basin:

Croff and Bear Den fields are oil fields and North Fork, Cherry Creek, and Poe
fields are classified as o0il and gas fields.

Field classification by depth for significant deep reservoirs 1in
the Williston Dbasin:
All reservoirs are located between 14,003 and 14,188 ft.

Summary of significant deep reservoirs by primary reservoir
lithology and depth for Williston basin:

All reservoirs produce from the dolomites in the Ordovician Red River
Formation.

Numbers of significant deep reservoirs by trap type and depth in
williston Dbasin:

All reservoirs are classified as structural or combination structural and
stratigraphic trap types.

Known recovery, proven reserves, and cumulative production for
significant deep reservoirs in the Williston basin by major
lithology:

Known recov.= known recoverable resources; proven res.= proven reserves; and
cum. prod.= cumulative production. Gas in millions of cubic ft (MMcf); oil in
millions of barrels (MMbls).

Major reservoir 1lithology

Total Clastic Carbonate
Gas (MMcf
Known recov. 38,142 -- 38,142
Proven res. 25,334 -- 25,334

Cum. prod. 12,808 -- 12,808
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Data Set 5 (williston basin) continued:

Major reservoir 1lithology

Total Clastic Carbonate
0il (MMbls)
Known recov. 1,945 -- 1,945
Proven res. 1,014 -- 1,014
Cum. prod. 931 - 931

Distribution of porosity for significant deep reservoirs in the
Williston basin:

Only one porosity value (10% for Cherry Creek field-- Red River reservoir;
Fig. 3-1) was recorded in the NRG file for Williston basin significant
reservoirs.

Distribution of non-HC gases for significant deep reservoirs in
the wWilliston basin:

Ordovician, Pennsylvanian, and Triassic reservoirs have tested high
percentages of Nitrogen from several wells in the basin.

Geologic controls not identified for Williston basin because only three
reservoirs identified.
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Data Set 6-- Summary of significant fields and reservoirs occurring
below 14,000 ft in the Gulf Coast basin, U.S. from the Significant 0il and
Gas Fields of the U.S. (NRG Associates Inc., 1988). For Texas and Louisiana,
deep natural gas production is a maximum value because shallower reservoirs
are included in production totals. English units used in table where one meter
equals 3.28 ft.

Number of significant deep fields and reservoirs Gulf Coast basin:
160 fields, 174 reservoirs (total Gulf Coast basin); 14 fields and 16
reservoirs offshore Texas and Louisiana; 45 fields and 48 reservoirs Tertiary
onshore; and 101 fields and 110 reservoirs Mesozoic onshore.

Field discovery Yyear for significant fields with deep reservoirs
in the Gulf Coast basin.

Year-~- Number

1942-- 2 1961-- 2 1976-- 8
1943-- 1 1962-- 2 1977-- 8
1944-- 1 1964-- 2 1978-- 8
1945-- 1 1965-- 3 1979-- 12
1948-- 1 1966-- 4 1980-- 7
1949-- 1 1967-- 2 1981-- 8
1951-- 1 1968-- 6 1982-- 6
1952-- 1 1969-- 8 1983-- 4
1954-- 2 1970-- 12 1984-- 10
1956-- 1 1971-- 5 1985-- 1
1957-- 4 1972-- 7 TOTAL~-- 160 fields
1958-- 2 1973-- 4

1959-- 3 1974-- 4

1960-- 2 1975-- 4

Final field classification for significant deep reservoirs by
state in the Gulf Coast basin:

Classification
State 0il Gag oil and gas
Louisiana ) 49 11
Texas - 22 1
Mississippi 21 40 3
Alabama 11 5 3

Florida 3 - -

Total 40 116 18 = 174 reservoirs
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Data Set 6 (Gulf cCocast basin) continued:

Classification of significant deep reservoirs by depth for in the
Gulf Coast basin:

Depth in intervals of 1,000 ft; LA= Louisiana; TX= Texas; MS= Mississippi; AL=
Alabama; FL= Florida.

Classification
oil Gas 0il and gas
Depth
LATX MS AL FL LA TX MS AL FL LA TX MS AL FL
14-15 1 12 2 19 12 14 2 1 1
15-16 3 4 3 13 5 13 1 4 2 2
16-17 2 3 2 7 4 6 1 4 1
17-18 1 1 4 1 2 1
18-19 1 1 3 3 1
19-20 1 3 2
20-21 2
21-22 1
22-23 1
23-24 1
Total ) 21 11 3 49 22 40 S5 11 3 3 1

Reservoir summary by primary reservoir 1lithology and depth for
significant deep reservoirs in the Gulf Coast basin:
Depth in intervals of 1,000 ft; C= carbonate reservoirs; Cl= clastic
reservoirs.

Lithology by state

Louisiana Texas Mississippi Alabama Florida
C Cl C Cl C Ccl C Cl C Cl
Depth
14-15 22 3 10 6 20 1 1
15-16 17 2 3 2 16 5 2 2 1
16-17 1 12 3 1 1 8 4
17-18 6 1 1 3
18-19 4 2 3
19-20 3 2 1
20-21 2
21-22 1
22-23 1
23-24 1

Total 1 64 8 15 14 50 13 6 2 1
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Data Set 6 (Gulf Coast basgsin) continued:

Numbers of significant deep reservoirs by rock unit and geoclogic
age, and primary 1lithology for Gulf Coast basin:

Lithology may vary locally due to facies and depositional variations.
Stratigraphic names as used in this chart are taken directly from the NRG data
file. No attempt is made to differentiate between (a) formal stratigraphic
nomenclature and informal drillers terms, (b) and the use of stratigraphic
hierarchy such as group versus formation names. Unless rock names are labelled
with a (¢) = carbonate or (c-cl) = mixed carbonate and clastic, they are
considered clastic reservoirs.

Reservoir depth interval
(14= 14,000-15,000 ft interval)

Rock unit 14 15 16 17 18 19 20 21 22 23 24

Tertiary
Robulus
Frio
Miocene
Anahuac 3 1
Bolivina mex.
Discorbis B
Wilcox
Textularia
Yegu
Planulina 1

Camerina 1

Woodburn 1

Pliocene 1 1 1
Pleistocene 1

Bigerina hum. 1

[
U'I\]N

RN R e
[
[y

Cretaceous
Austin (c¢)
Tuscaloosa
Edwards (c)
Hosston
Sligo(c-cl)
James (c)
Mooringsport
Paluxy

Red

WHRRFPRFRBWR PR
’—I
MRS
W

Jurassic
Buckner (c) 1

Black River 1
Cotton Valley 8 1 3 1 1
Norphlet
Smackover (c)

"y w
o w
o
NN
=
o

N

=
[y
o

Total (=174) 64 51 28 11 9 6 2 1 1 1
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Data Set 6 (Gulf Coast basin) continued:

Numbers of significant deep reservoirs by trap type and depth in
Gulf Coast basin:

R= structural trap; S= stratigraphic trap; C= combination structural and
stratigraphic trap; B= Blank and indicates no trap type identified in NRG
file. Depth in intervals of 1,000 ft.

Trap type by State

Mississippi Florida Texas Louisiana Alabama

Rs ¢ B R S CDBUR S CBUR S C B R s C B

Depth

14-15 21 1 3 1 4 4 3 41]18 211 1
15-16 13 4 112 1 2 3 119 1 712 2 3
16-17 6 3 1 1 117 1 513 1
17-18 3 1 1 4 2

18-19 2 2 1 1 2 1
19-20 2 1 1 1 1

20-21 2

21-22 1

22-23 1

23-24 1

24-25

Total 49 2 11 2 2 1 8 7 4 6 41 4 18 9 5 65
(=174)

Known recovery, proven reserves, and cumulative production for
significant deep reservoirs and fields in the Gulf Coast basin by
major 1lithology:

Known recov.= known recoverable resources; proven res.= proven reserves; and
cunm. prod.= cumulative production. Gas in millions of cubic ft (MMcf); oil in
millions of barrels (MMbls).

Major reservoir 1lithology

Total Clastic Carbonate Mixed
Gas (MMcf)
Known recov. 13,262,291 11,110,291 1,679,000 473,000
Proven res. 6,628,587 5,676,587 719,000 233,000
Cum. prod. 6,192,094 4,993,094 960,000 239,000
0il (Mmbls)
Known recov. 881, 805 330,805 551,000 --
Proven res. 128,226 56,226 72,000 -

Cum. prod. 590,579 111,579 479,000 -
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Data Set 6 (Gulf Coast basin) continued:

Distribution of non-HC gases for significant deep reservoirs in
the Gulf Coast basin:

Methane ranges from 35-94% for Mesozoic gas reservoirs. The lowest value
(35%) occurs at Flomation field, Escambia County, Alabama, in the Norphlet
reservoir, which contains 45% carbon dioxide. Methane ranges from 79 to 94%
and averages about 90% for Tertiary reservoirs. Carbon dioxide is low (less
than 9%) for other reservoirs. The highest hydrogen sulfide value (26%) for
significant deep Gulf Coast basin reservoirs occurs at Johns Field, Rankin
County, Mississippi, in the Smackover reservoir.

Distribution of porosity for significant d4deep reservoirs in the
Gulf Coast:

A systematic decrease in average porosity occurs with increasing depth for all
significant deep reservoirs, although the range of porosity values at a
particular depth varies significantly (Fig. 3-1). The approximate rate of
decrease in porosity with increasing depth appears to change at about 17,000
ft. Although exceptions exist, porosity values below 17,000 ft appear higher
than expected based on the distribution of points above 17,000 ft (Norphlet
and Tuscaloosa reservoirs included here). An explanation for this change in
rate of porosity decrease is not established here, but the data suggest that
porosities high enough for commercial production of gas may occur at depths
greater than expected. No significant difference exists between the range of
clastic versus carbonate porosities using the NRG data set.

Geologic controls of deep gas production based on reservoir data
for Gulf Coast basin:

(1) The two oldest fields containing deep reservoirs are the Lake de Cade
field in Terrebonne Parish, Louisiana and the Thornwell South field in
Jefferson Davis Parish Louisiana. The fields were discovered in 1942
although the deeper reservoirs were discovered later. The deep
reservoirs produce from immediately below 14,000 ft in Tertiary
sandstones. Generally, the oldest fields occur in Louisiana and
Mississippi. Fields in Texas were discovered from the 1940'‘s through the
1980's. Fields in Florida were discovered in the early 1970's, and fields
in Alabama were discovered in the 1960's. More fields with deep
reservoirs were discovered during the 1970's (72) than in any other
decade. The number of field discoveries in this category approximately
doubled with each succeeding decade (1940's= 7; 1950's= 14; 1960's= 31;
1970's= 72; data for 1980's incomplete).

(3) Sixty-seven percent of the significant deep reservoirs are classified as
gas producing. More than 40% of the gas (49) reservoirs are located in
Louisiana. Of all of the Gulf Coast states, Louisiana, Texas, and
Mississippi contain more gas than oil reservoirs (Sassen, 1990). Of the
16 significant deep offshore reservoirs, 15 are gas producers. Of the 110
significant deep Mesozoic reservoirs onshore, 64 are gas producers and an
additional 9 are classified as o0il and gas producing.

(4) For all states combined, the number of significant deep reservoirs
decreases with increasing depth. The deepest reservoirs occur in Alabama
and Mississippi. The Jurassic Smackover gas reservoir in the Harrisville
field in Simpson County Mississippi is the deepest significant reservoir
in the Gulf Coast basin. The reservoir has an average producing depth of
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23,007 ft and an average reservoir thickness of 618 ft. Only two other
reservoirs listed in the NRG file have greater average thicknesses. The
shallower nature of Florida and Texas deep reservoirs is due to the
shallow depth of equivalent Mesozoic reservoir rocks. Of the 16
significant reservoirs in offshore Texas and Louisiana, the deepest is
18,895 ft. Most offshore reservoirs produce from less than 16,000 ft.

(S) For all depths together, 79% of the reservoirs are clastic reservoirs.
By depth interval, (1) only 16% of the total reservoirs are carbonate
reservoirs in the 14,000 to 15,000 ft depth interval, and (2) 30% of the
total reservoirs are carbonate reservoirs in the 16,000 to 17,000 ft
depth interval. The representation of carbonate reservoirs in the 14,000
to 15,000 ft depth interval is low, and correspondingly more clastic
lithologies of the Tertiary sequence are present. In both Florida and
Texas, all significant Mesozoic reservoirs are in carbonate rocks. In
Louisiana, nearly all significant Mesozoic reservoirs are in clastic
rocks. Alabama and Mississippi display more intermediate reservoir
facies. All of the offshore Texas and Louisiana reservoirs are classified
as sandstone.

(6) The distribution of reservoirs by geologic age is approximately equal
with 65 Tertiary, 53 Cretaceous reservoirs, and 56 Jurassic reservoirs
present. The largest number of reservoirs occur in the Tertiary Miocene
(34), Jurassic Smackover Formation (29), and Cretaceous Hosston Formation
(20). All Tertiary reservoirs occur in clastic rocks; whereas, 54% of
Jurassic reservoirs (30 reservoirs of 56 total) occur in carbonate rocks
(primarily Smackover Formation). Although not identified in this table,
approximately 50% of the carbonate reservoirs are defined as dolomite in
the NRG data file. Jurassic reservoirs are generally found deeper than
Cretaceous and Tertiary reservoirs in the Gulf Coast basin. All offshore
Texas and Loulsiana reservoir rocks are Tertiary.

(7) Reservoirs in the Gulf Coast Mesozoic basin are primarily structurally
trapped. Only 9 reservoirs are identified as stratigraphically trapped, 5
of which occur in Upper Cretaceous or Tertiary rocks. Stratigraphically-
trapped reservoirs and reservoirs classified as combination trapped
appear to be relatively shallow (less than 20,000 ft).
Stratigraphically-trapped reservoirs are controlled by facies variations
in marine and nonmarine Upper Cretaceous and Tertiary clastic rocks. All
offshore Texas and Louisiana reservoirs are structurally trapped.

(8) More than 6.1 Tcf of gas have been produced from significant deep
reservoirs in the Gulf Coast basin. Of this, 2.6 Tcf of gas have been
produced from Tertiary reserveoirs, and 0.6 MMcf of gas have been produced
from offshore Texas and Louisiana Tertiary reservoirs. Clastic reservoirs
have produced approximately 5 times as much gas as carbonate reservoirs.
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Appendix 3, Subtask 2: Maps illustrating the distribution of deep
wells in the U.S. by geologic age, by C.J. Wandrey and D. Vaughan

A series of maps showing wells drilled deeper than 4,572 m (15,000 ft)
was created using Petroleum Information Corporation's Well History Control
System (WHCS) files current to June 1991. While these files are current they
are not always complete or entirely accurate. Various methods were used to
ensure accuracy and completeness. Some of these methods are discussed below.

The first part of this series consists of four maps showing wells that
have produced HCs from depths of 4,572 m (15,000) ft or greater, grouped by
geologic age of the producing rocks (Plates 1-4). Since various parts of the
WHCS files are incomplete, several cross checks were made to ensure that these
wells did in fact produce from depths greater than 4,572 m (15,000 ft). Often
the records show that a well produced and was drilled to greater than 4,572 m
(15,000 ft) but the depth of production was not indentified in the file. 1In
these cases, the wells are cross checked against subsurface geologic maps and
formation top depth and initial-potential files. Information on individual
wells in the Gulf Coast region was particularly misleading or lacking. 1In
many cases these wells were drilled to salt domes created by flowage of salt
from older deeper salt beds up into younger rocks and the age of the salt
rather than the surrounding rocks was identified.

Of the 6,178 wells that produce or have produced HCs from depths greater
than 4,572 m (15,000 ft) 4,547 are gas or gas and condensate wells (Table 3-
1) . The Uinta basin and the Gulf Coast basin, the two areas where there are
significant numbers of deep oil wells, are producing from relatively young
rocks. It is likely that source rocks which are still producing oil at these
depths have been buried deeply for only a short duration or have been
overpressured for the greater portion of the time spent in the o0il and gas
windows. The most likely scenario is a combination of these influences.

The success ratio of approximately 46% for these deep wells is high and
may be due to a variety of factors including: (1) greater investment is likely
made in preparatory exploration of the prospect to reduce the financial risk,
and (2) there appear to be fewer true wildcats (most wells are production
wells drilled in proven areas resulting in a better success rate).

The total wells column does not always equal the sum of the other three
columns because some wells produced both 0il and gas and were therefore listed
twice. Some wells lacked final well class information indicating the type of
production and in still other cases there was insufficient location
information to determine the correct basin. More than two hundred of these
wells were not posted on the maps because the well class and location problems
could not be resolved. No age was recorded for many offshore wells in the
Gulf of Mexico, but their approximate ages were determined by comparing the
total depths to neighboring wells with age information. Wells outside the
shaded areas (areas with sedimentary rocks at depths of 4,572 m--15,000 ft or
greater) may have inaccurate location data or the shaded area may not have
been extended far enough due to lack of data.

The second part of the series consists of 5 maps showing non-producing
wells grouped by the age of the oldest rocks penetrated (Plates 5-9). Non-
producing means that hydrocarbons could not be economically produced at the
time drilling was completed. Shows of oil and/or gas may have been present
but were insufficient to warrant production, or completion problems may have
precluded production. Some of these wells may not be truly “dry" holes in the
conventional sense of the term. Since the WHCS file uses the same code for
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dry holes and abandoned producers there may be a few wells displayed as dry
holes that in fact produced in the past or are temporarily shut-in until
pipelines or production facilities are completed. While the number of wells
that produced at one time or are still producing is relatively accurate, dry-
hole estimates may be high.

The shaded portions of the maps identify areas with sedimentary rocks at
depths of 4,572 m (15,000 ft) or greater. Sedimentary thickness data were
compiled using a sedimentary rock depth contour map of the continental U.S.
(Frezon and Finn, 1983), an unpublished basement map of the southwestern U.S.
(W.C. Butler, personal communication, 1992), and well log and seismic data for
the Midcontinent Rift system (Anderson, 1990).
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Table 3-1. Total wells, producing wells by production category (oil, gas,
and oil and gas), and tectonic regime by basin for selected basins in the U.S.
Data from Well History Control System (Petroleum Information Corporation,
1991).

Basin or Total oil gas oil and gas Basin type
province

Anadarko 1258 41 1231 1 foreland
Ardmore 10 0 10 0 foreland
Arkoma 6 1 10 0 foreland
Bighorn 4 0 4 0 foreland
Green River 107 24 81 0 foreland
Gulf region 3465 999 2411 35 passive margin
Marietta 14 3 11 0 foreland
Permian 873 22 793 2 cont. marg., rift
Piceance 2 1 1 0 foreland
Powder River 32 31 0 0 foreland
San Joaquin 6 5 0 0 foreland
Uinta 154 152 2 0 foreland
Ventura 6 4 2 0 transpressive
Wind River 72 6 65 0 foreland

Note that the total wells column does not always equal the sum of the
other three columns because some wells produced both oil and gas and were
therefore listed twice. Note also that the total wells column does not equal
the the 6,178 wells discussed in the text. Some wells lacked final well-class
information indicating the type of production, and in still other cases,
location information was insufficient to determine the correct basin.
Approximately 169 of these wells were not posted on the maps because well
classification and location problems could not be resolved.
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Appendix 3, Subtask 3: Deep gas reservoir pressure and initial
potential test data, U.S., by C.W. Spencer and C.J. Wandrey

INTRODUCTION

A study of available deep (> 4,572 m--15,000 ft) reservoir pressures was
conducted because: (1) abnormally high pore pressure (>0.55 psi/ft) may reduce
the rate of porosity and permeability loss with increasing burial depths and
(2) gas reservoirs with high pore pressure will have more gas-in-place than
low-pressure reservoirs at the same temperature and porosity owing to the high
compressability of natural gas. Shallow (< 2,40 m--8,000 ft) reservoirs are
usually normally pressured (0.465 psi/ft) or underpressured (<0.43 psi/ft) ,
whereas deep (> 4,572 m--15,000 ft) hot reservoirs may have normal to above
normal pressures. In order to determine the general distribution of
abnormally high pressures and predict their occurrence in undrilled areas, it
is helpful to consider possible causes of high pore pressures.

There is no single cause that can adequately explain all occurrences of
above normal pressures. However, most proposed mechanisms require that semi-
isolated or fairly well sealed reservoirs be present in order to maintain
abnormal pressure. Some of the more commonly accepted causes of
overpressuring are dewatering of shales owing to compaction, clay mineral
transformations that release water, and aquathermal pressuring caused by
thermal expansion of water.

The physical dewatering of clayey sediments and shales by compaction
caused by weight of overburden is a widely accepted mechanism (Dickenson,
1953; Morgan and others, 1968; Chapman, 1980; Chiarelli and Duffaud, 1980).
This origin of overpressuring is most likely in depocenters characterized by
geologically young, rapidly deposited sediments.

Diagenetic alteration of smectite-bearing shales and claystones to a
more stable mixed-layer illite/smectite or illitic shale releases water. This
is a popular mechanism to explain overpressuring in the U.S. Gulf Coast basin
(Powers, 1967; Burst, 1969; Bruce, 1984).

Aquathermal pressuring was proposed by Barker (1972) as the cause of
some of the high pore pressure present along the northern coast of the Gulf of
Mexico. In his model, the reservoirs must be essentially isolated from
pressure bleed-off. If the temperature of a reservoir rock enclosed in
excellent seals is increased, the thermal expansion of pore water will cause
an increase in reservoir pressure. Magara (1975) suggested that agquathermal
pressuring is responsible for reservoir pressures in the Gulf Coast that
exceed the weight of overburden. Daines (1982) concluded that aquathermal
pressuring could occur at shallow depth in impermeable sediments in areas of
high geothermal gradients. However, he concluded that even good clay shales
will, over geologic time, bleed off the pressure caused by the relatively
small water volume increase caused by thermal expansion. Barker (1972, p.
2068) noted that aquathermal pressuring might not be the only mechanism for
abnormal pressure in a given area, but could add to the reservoir pressure
caused by other mechanisms.

Other mechanisms for overpressuring are discussed by Fertl (1976) and
Gretner (1981). They noted additional proposed causes of abnormally high
pressure such as tectonic loading (stress), osmosis, chemical changes such as
conversion of gypsum to anhydrite, pressure transfer up faults, salt
diapirism, secondary cementation of pores, long HC columns, and thermal
conversion of organic matter to oil and gas.
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Active or recently active (last few million years) HC generation is a
likely explanation for overpressuring in basins where (1) rich source beds are
present at high temperature (generally >100° C), (2) the pressuring phase is
0il or gas, and (3) the sediments are well compacted (Spencer, 1987).

DATA ANALYSIS

Pressure data for this study were obtained from two main sources: (1)
the drillstem test (DST) reports in Petroleum Information's Well History
Control System computer files and (2) reservoir-pressure data compiled in the
NRG Associates Significant 0il and Gas Fields of the U.S. file (NRG
Associates, 1991). The NRG file is updated to July 1991 and contains data on
about 10,000 fields of which about 250 are deeper than 4,270 m (14,000 ft) and
have some form of reservoir pressure data recorded. A "significant" field is
one that has more than 1 million barrels of recoverable o0il or more than 6
billion cubic ft (6 Bcf) of recoverable gas.

NRG Associates Significant Field File

The definition of normal pressure varies somewhat among different basins
but usyally ranges from 0.43 to 0.465 psi/ft depending on reservoir salinity
and other factors. Overpressured deep "significant" gas reservoirs are
present in the Rocky Mountain region in the Wind River and Greater Green River
basins (Figs. 1 and 2, RESULTS section). This region also contains
overpressured shallower reservoirs in the depth range from 3,200 m (10,500 ft)
to more than 3,960 m (13,000 ft), but are not part of this study. Most of the
overpressured gas-bearing rocks are of Tertiary and Cretaceous age and the
overpressuring is caused by active HC generation (Spencer, 1987).

The Anadarko basin (Fig. 1, RESULTS section) contains overpressured
Permian, Pennsylvanian, Mississippian-Devonian, and Ordovician sandstones,
carbonates, and shales in the deep parts of the basin. The origin of this
overpressuring is not known at this time, but may be related to HC generation.

The Permian basin (Fig. 1, see Results section above) has overpressuring
in about 35% of ‘the >4,270-m-deep (>14,000 ft-deep) significant reservoirs in
the NRG Associates Significant Field File. Most of the overpressuring occurs
in rocks of Permian Wolfcampian, Pennsylvanian Morrowan and Atokan, and
Mississippian age. Dominant reservoir lithologies are sandstone, limestone,
and dolostone. Minor overpressuring occurs in Devonian limestone. The origin
of the overpressuring is not well defined but may be caused by the thermal
conversion of previously migrated oil to gas plus some active generation of
gas from deep basin source beds. More research in this area is needed.

The Gulf Coast region (Fig. 1, RESULTS section) has extensive
overpressured, or overpressured reservoirs. The geopressuring in younger
Miocene and Oligocene sandstones and shales is probably caused mostly by
undercompaction (Dickenson, 1953; Chapman, 1980). These undercompacted,
geopressured gas areas have been studied in recent years as part of the U.S.
Department of Energy's Geopressured-Geothermal Energy program. Overpressuring
in Cretaceous and Jurassic sandstones and carbonates in the eastern Gulf may
be caused by several mechanisms, and more study needs to be done to allow
better prediction of the overpressuring because its distribution is highly
variable.

Well History Control System--initial potentials
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Even though initial potentials (IP) of wells cannot be used to define
overpressuring, a study was made to analyze expected deep well productivity
using (IP's) of all wells completed in the U.S. at depths greater than or
equal to 4,572 m (15,000 ft) using Petroleum Information Corporation's Well
History Control System (WHCS). Table 3-2 contains drillstem test summaries
for deep wells from the WHCS file. Preliminary plots of initial-potential gas
production versus depth do not permit a delineation of discrete trends (Figs.
3-2A through 3-2G). Several factors may affect the distribution of data on
these plots. Foremost, deep wells tend to have lower matrix permeabilities
and the degree and openness of natural fractures is a controlling factor
influencing individual well productivity. Second, many of the wells were
artificially stimulated with acid and/or hydraulic fracturing. The success of
these techniques varies considerably throughout the U.S. Third, is some
basins, rocks of similar ages and lithologies dominate the data set, while in
other areas, diverse ages and lithologies are combined on a single plot.

Four examples of initial-potential production versus depth (Figs. 3-2A
through 3-2D) illustrate the variability of initial potentials at depths of
4,572 m (15,000 ft) or greater across the U.S.

The Uinta basin data set (Figs. 3-2A) shows a wide range of IP values at
all depths but none of the wells are very high volume (maximum IP equals about
2.75 million cubic ft/day at about 4,880 m--16,000 ft). Nearly random scatter
occurs but the majority of data points are less than 1 MMcf. These reservoirs
are dominantly sandstone and Tertiary in age. Natural fractures are causing
the variability (scatter) of these low permeability reservoirs. This anlaysis
indicates that the deep Uinta basin is not a good place to drill high-volume
gas wells.

The Wind River basin data set (Figs. 3-2B) are all from Cretaceous
sandstones with the exception of the IP's at about 7,315 m (24,000 f£ft) which
are completions in Mississippian dolomite and are high CO2 gas.

Figures 3-2C illustrates the wide range in variability of Anadarko basin
IP's. Data show some very high volume wells (above 200 MMcf) but most are in
the less than 5 MMcf range (Fig. 3-2G). Some of the very high values may be
due to data errors in the WHCS data file.

Figure 3-2D illustrates the variability of IP test results in the Gulf
Coast basin for the Smackover Formation excluding Texas. The log plots
cluster the data by field. The cluster of data at 4,720 to 4,880 m (15,500 to
16,000 ft) represents wells predominantly in Big Escambia, Jay, and Blackjack
Creek fields. The cluster of wells from 5,490 to 5,640 m (18,000 to 18,5000
ft) represents wells mostly in Chunchula, Hatters Pond, and Cold Creek fields.

More refinements in these cross plots are necessary to define subtle
variations in IP data with depth of test. Data need to be correlated with
artificial fracturing techniques in new studies.
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Uinta Basin Initial Gas Potentials versus Depth
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Figure 3-2A. Plot of initial-potential tests and depths for deep wells in

Uinta basin. Data from Petroleum Information Corporation (1991).
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Wind River Initial Gas Potentials versus Depth
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Anadarko Basin Initial Gas Potentials versus Depth
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Figure 3-2C. Plot of initial-potential tests and depths for deep wells in
Anadarko basin, Oklahoma. Data from Petroleum Information Corporation
(1991).
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100000

10000 =—m

1000 + %

&
3]
[oacgl &2

®
©

100 -

Q@

10

1
15000 16000 17000 18000 19000 20000 21000 22000

Depth in Feet
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scale. Data from Petroleum Information Corporation (1991).
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Table 3-2. Drill-stem test summary data for deep wells in U.S. from
Petroleum Information Corporation (1991). Key to abbreviations used in table:

API #

DST #

PROD FM

WELL #

LEASE NAME

DST TOP DEPTH

DST BASE DEPTH

FM TESTED

FLUID VOL

NARRATIVE

BHT

ISIp

FSIP

ACCES GAS

GVTY

SALINITY

The API number is a 14 character well identification
number consisting of a 2 character state code, 3
character county code, 5 character unique well number
(unique within a given county), 2 character side track
number, and a 2 character hole change number.

The drill stem test number indicates the number of the
test for a particular well.

The producing formation code is an abbreviated form
the formation name. The code lists are from Petroleum
Informations (PI) Well History Control System files
and are available through them. The codes are fairly
predictable, for instance SMKV is Smackover.

Well number assigned by the operator in most cases.

The well number should be used in conjunction with the
lease name to uniquely identify a well.

The drill stem top depth is the depth in feet
(measured in most cases from the kelley bushing) to
the top of the tested zone.

The drill stem base depth is the depth in feet to the
bottom of the tested zone.

The formation tested is a PI formation code preceded

by a 2-character system and 1 character series code.

More than one formation may be included in a test but
only the highest formation in the test is listed.

The fluid volume includes the units of the fluid or an
abbreviated comment.

This column may contain a continuation of the previous
abbreviated comments, choke size, or other comments.

The bottom hole temperature is generally displayed in
degrees fahrenheit and is measured at the depth of the
drill-stem test.

The initial shut in pressure of the test is
accompanied by a shut in time in hours and minutes.

Is the final shut in pressure measured.
Accessory gases indicated where information availible.

The gravity (density) of the fluid is indicated where
that information is availible.

The salinity of associated waters and the units of
measure are indicated where availible.
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Appendix 4: Deep gas-prone basins of the Rocky Mountain region,
by W.J. Perry, dJr.

INTRODUCTION

The goals of Task 4 include identifying the structural settings and
trapping mechanisms of deep gas accumulations in different sedimentary basins
in order to relate these factors to undiscovered resources. This effort
involves studying selected deep basins in the Rocky Mountain region in detail
and using them as models from which to compare the structural characteristics
of other deep basins. Also, the timing and structural style of many Rocky
Mountain basins will be identified in order to determine the evolution of
deformation and subsequent generation, migration, and entrapment of 0il and
gas. Some results of structural studies are presented in the Task 3 (Dyman and
others, Appendix 3) discussion section.

Perry, 1989 summarized the structural settings of deep natural gas
occurrences in the conterminous U.S. and showed that such occurrences are
associated primarily with (1) passive continental margin basins and (2) basins
associated with and inland from active continental margins. This latter group
of basins (Type 2 basins of Perry, 1989) were subdivided into forearc basins,
seaward of the magmatic arc above a continentward-dipping subduction zone,
foreland basins, beneath and cratonward of the frontal zone of fold and thrust
belts, and extensional or transtensional basins, associated chiefly with
transform margins. 1In this report, deep gas-prone Late Cretaceous and early
Tertiary Laramide basins of the Rocky Mountain foreland will be explored.

Several sedimentary basins in the central Rocky Mountains have
substantial volumes of sedimentary rock at depths greater than 15,000 ft; the
largest being the Green River and Uinta basins, respectively north and south
of the Uinta uplift (Fig. 4-1). These initially developed during Cretaceous
time, as foredeeps in front of the eastward prograding Wyoming and Utah
salients of the Cordilleran thrust belt. A southeastward progression of major
uplift and consequent basin development in the Rocky Mountain foreland began
in extreme southwestern Montana west of the Neogene Yellowstone Volcanic area
(Fig. 4-1) during Cenomanian-Turonian time (Haley and others, 1991; Perry and
others, 1990). Investigation of the sequence of Laramide deformation and
relative timing of Rocky Mountain foreland basin development (Perry and
others, 1990, 1991 and in press) has begun to revolutionize our understanding
of the Late Cretaceous and early Tertiary history of the Rocky Mountain region
(Flores and others, 1991; Keighin and others, 1991; Nichols and others, 1991;
Roberts and others, 1991).

The Late Cretaceous eastward progradation of the Laramide deformation
front reached the Colorado Front Range by 69 Ma (Kluth and Nelson, 1988;
Wallace, 1988). No evidence of Campanian or older Cretaceous Laramide-style
deformation is present in the Rocky Mountain foreland east or southeast of the
Blacktail-Snowcrest and Wind River uplifts, based on available
palynostratigraphic dating of preorogenic and synorogenic sediments, with the
exception of gravels of unknown origin in the Frontier Formation in the
northwestern Bighorn basin. Such dating reveals that growth of the Front
Range uplift culminated in exposure of the crystalline basement by early
Paleocene time (Kluth and Nelson, 1988; D.J. Nichols, oral communication,
1991). Subsequent Laramide deformation spread northeastward from the Granite
Mountains-Shirley Mountains uplift (Fig. 4-1) in south-central Wyoming. The
Laramide deformation front reached the Black Hills by late Paleocene time,
creating first the Wind River and then the Powder River basins, partitioning
these basins from an earlier continuous foreland basin with minor welts
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(Merewether and Cobban, 1986). These broad structural welts of low relief,
such as the San Rafael swell in eastern Utah, had begun to grow in the Rocky
Mountain foreland by mid-Cretaceous time (about 90 Ma).

A major east-west crustal discontinuity along the Wyoming-Colorado
border separates Archean basement rocks on the north from Proterozoic basement
rocks to the south. South of this discontinuity, Laramide deformation appears
to have proceeded from east to west, culminating along and defining the
eastern boundary of the Colorade Plateau in late Eocene, chiefly Green River
time (Fig. 4-2).

Economic implications of this new model of deformation of the Rocky
Mountain foreland include progressive opening and subsequent blockage of
migration paths for HC's generated from Paleozoic source rocks in southeastern
Idaho, southwestern Montana, Wyoming, Colorado, and eastern Utah. Deep
natural gas, generated during the Tertiary, has likely migrated from the
deeper parts of these foreland basins into structural traps formed during
Laramide deformation.

DISCUSSION

Within the Rocky Mountain foreland, the Laramide Green River and Uinta
basins are followed in order of size of area deeper than 4,572 m (15,000 ft)
by the Wind River basin, the Great Divide and Washakie basins, and perhaps the
deepest of all, the Hanna basin, all in Wyoming (Fig. 4-1). These latter four
basins began to subside 'in Late Cretaceous time as part of the Hanna trough
(Thomas, 1949; LeFebre, 1988). This trough extended from the front of the
Cordilleran thrust belt, in northeastern Utah and southeastern Idaho, eastward
across southern Wyoming. Southward thinning of the upper Maastrichtian
siliciclastic sequence along the southern margin of this trough along the
eastern flank of the late Laramide Washakie basin is shown in great detail by
Hettinger and others (1991). The region of the Great Divide, Hanna, and
Washakie basins were partitioned from the Green River basin to the west in
latest Cretaceous time by growth of the Rock Springs uplift (Kirschbaum and
Nelson, 1988; Hettinger and Kirschbaum, 1991) following Late Cretaceous
development of the Wind River-ancestral Teton-Granite Mountains uplift (Perry
and others, 1990). The Rawlins uplift finally isolated the Hanna basin from
the rest most likely in latest Paleocene to Eocene time, subsequent to
deposition of early Paleocene coals (of P2 age according to R.D. Hettinger,
oral commun., 1992).

HANNA BASIN

The Hanna basin (Fig. 4-3) contains more than 9,150 m (30,000 ft) of
Phanerozoic sedimentary rocks of which more than 4,572 m (15,000 ft) are Upper
Cretaceous and predominantly marine origin. Less than 760 m (2,500 ft) of
pre-Cretaceous Phanerozoic sedimentary rocks are present (from sections by
Blackstone, 1983). Latest Cretaceous (?) and Paleocene nonmarine rocks (the
Ferris and Hanna Formations) are more than 4,270 m (14,000 ft) thick. The
nonmarine formations penetrated are gas-prone, and these more shallowly buried
rocks are being exploited for coal-bed methane.

The major compressional structural framework along the southern margin of
the basin was defined by Beckwith (1941). Gill and others (1970) discuss the
stratigraphy and nomenclature of Upper Cretaceous and Lower Tertiary rocks in
the area, and they indicate that a major unconformity is present between the
Upper Paleocene and Eocene(?) Hanna Formation and Cretaceous rocks in the
northern Hanna basin, although a deep drill hole to the south of the surface
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expression of this major unconformity shows that at least 1,980 m (6,500 ft)
of intervening rocks are present within the basin (Fig. 4-3). The basin
contains numerous Late Cretaceous(?) to Paleocene coals (Glass, 1975, 1984)
for which precise palynologic dates have not been previously reported. Eight
carefully selected samples from these formations, provided by Dr. G.B. Glass,
State Geologist of Wyoming, have been processed for pollen by D.J. Nichols,
U.S Geological Survey. The results indicate that virtually the entire coal-
bearing section of the Hanna basin, a more than 2,480 m (8,150 ft) thick
sequence primarily composed of nonmarine siliciclastics, is Paleocene in age
(Table 4-1).

Twenty-five vitrinite samples have been analysed by Ben Law, U.S.
Geological Survey from the #1 Hanna Unit well (Fig. 4-3). This dry hole was
drilled to a depth of 3,809 m (12,496 ft), but did not reach the base of the
Ferris Formation. To a depth of nearly 3,048 m (10,000 ft), wvitrinite
reflectance values were less than 0.7 Ro. Below 3,048 m (10,000 ft) the
vitrinite values rose rapidly to a value of 1.23 Ry near the bottom of the
hole 3,805 m (12,485 ft). Because of the high reflectance values near the
base of the #1 Hanna Unit drill hole, the more deeply buried marine Cretaceous
rocks should yield thermogenic natural gas. However, only one small gas field
has been developed -- on the northwest flank of the basin.

Structural and economic implications

The Hanna basin is surrounded by Laramide thrust faults which are
imprecisely dated. The coal-bearing nonmarine sequence represented by the
Hanna and Ferris Formations may represent the time of maximum thrust-related
subsidence. This more than 8,150 ft thick sequence (Glass, 1975, 1976) now
appears to be entirely Paleocene (palynologic results summarized in Table 4-
1). Assuming an original mean porosity of 45% and a present mean porosity of
25% (both ball-park estimates), results in a simple decompaction coefficient
of 1.36. Using this coefficient to expand the presently known conservative
thickness of at least 2,484 m (8,150 ft), more than 3,353 m (11,000 ft) of
subsidence may have occurred during the Paleocene in the north-central part of

the Hanna basin over a period of about 8.6 m.y., or roughly 1.3 ft/lO3 years

decompacted, or 0.95 ft/lO3 years uncorrected for compaction. This is a
minimum estimate. These data compare to Cenozoic subsidence rates in southern

California of 2.3 ft/lO3 year in the Eocene-Miocene and 3.3 ft/lO3 post-
Miocene in small pull-apart basins (Yeats, 1978), in which the extreme
subsidence rates are driven by major strike-slip faulting. Representative
tectonic subsidence histories are given for various types of basins by
Angevine and others (1990, Fig. 6.1). They show that maximum subsidence rates

for foreland basins range from 0.085 to 0.57 ft/lO3 years (0.02 to 0.17 m/103
years), whereas strike-slip basins range from 0.5 to 2.18 ft/lO3 years (0.15

to 0.66 m/103 years). Clearly anomalously high subsidence rates occurred in
the Hanna basin, well outside the norm for foreland basins, but well within
the range of rates typical of strike-slip related basins. The northern margin
of the Hanna basin is interpreted to represent the locus of a significant zone
of latest Cretaceous to Paleocene strike slip/accommodation faulting as the
northern boundary of the zone of Colorado Front Range-Laramie Range Laramide
shortening.

The sequence of structural events in the Hanna basin region are: first,
development of the Hanna trough sequence of thick marine Upper Cretaceous
rocks which trends east-west across southern Wyoming; second, partial
isolation of the Hanna basin as a subarea of the Greater Green River basin by
early Paleocene growth of the Granite Mountains-Shirley Mountains
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transpressive zone to the north; third, southward tilting, probably in mid-
Paleocene time concurrent with growth of the Sweetwater uplift and initial
development of the Shirley thrust along the northern margin of the basin. The
last phase of structural growth, uplift of the Medicine Bow Mountains and
Rawlins uplift concurrent with development of the Arlington thrust appears to
have been initiated in late Paleocene time. The geometry (Fig. 4-4) of the
northern margin of the basin, suggests major gas possibilities in the
undrilled northern part of the basin beneath the Shirley thrust provided that
gas generation continued during and after thrusting. Published seismic data
(Kaplan and Skeen, 1985) do not adequately define the structure of the
northern margin of the Hanna basin. It would appear that much deep gas
remains to be found in deep Rocky Mountain foreland basins if the scenario
shown here is found to be correct and this type of tilting prior to thrusting
can be demonstrated in other areas. Because of the high vitrinite reflectance
values at depths of greater than 3,048 m (10,000 ft), the deeper Cretaceous
units should alsc yield natural gas. However, only one small gas field has
been developed -- on the northwest flank of the basin. Very little deep
drilling has been conducted in the Hanna basin, unlike other basins to the
west and north, a substantial amounts of deep gas may yet be found in this
basin.

WIND RIVER BASIN

The Wind River basin, northwest of the Hanna basin, is separated from the
latter by the Granite Mountains-Sweetwater uplift which may have begun to grow
in mid-Cretaceous time (Merewether and Cobban, 1986) and was a positive
element in Campanian time (Reynolds, 1976). Late Cretaceous rocks thicken
southeastward in the Wind River basin to greater than 5,486 m (18,000 ft).
The Bull Frog field developed in Cretaceous Frontier sandstones in this part
of the basin contains the deepest producing Cretaceous gas reservoir in the
Rocky Mountain region (more than 5,700 m--18,700 ft deep). Other significant
nearby fields include West Poison Spider, and Tepee Flats, the latter beneath
the 1lip of the Casper arch, from which it is separated by a major blind
basement-involved thrust system which dips northeastward beneath and is
responsible for the arch.

The deep Madden gas field, in the northern part of the Wind River basin,
(with Madison and Big Horn gas reservoirs as deep as 7,162 to 7,284 m--23,500
to 23,900 ft) lies in front of (south of) the Owl Creek thrust which bounds
the northern margin of the basin and is likely continuocus with that under the
lip of the Casper arch. The Madden anticline, the locus of this growing giant
gas field, is cored by a thrust wedge and the north-bounding Owl Creek thrust
has more than 10,668 m (35,000 ft) of structural relief (Dunleavy and
Gilbertson, 1986), comparable to the Wichita frontal fault system along the
southern margin of the Anadarko basin (Perry, 1989). The Wind River basin is
thus bounded on two sides by thrust faults whereas the Hanna basin is nearly
surrounded by thrust faults (Fig. 4-3).

The Wind River basin was partitioned from the remainder of the Rocky
Mountain foreland in late Paleocene time by growth of the Casper arch which
led to internal drainage as represented by Lake Walton (Keefer, 1965) and
isolation from long-distance migration of HC's from previously down-dip areas
to the west and southwest.

The Wind River basin occupies a critical position with respect to the
sequential development of Laramide structure in Wyoming. Conglomerate in the
Late Cretaceous Lance Formation in the northwestern part of the Wind River
basin, nearest the Wind River uplift, contains granule-size fragments and
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scattered pebbles of chert, silicious shale, and porcellanite (Keefer, 1965).
Here the Lance is about 351 m (1,150 ft) thick (Keefer, 1965, p. Al7), and
only the lower part is conglomeratic. Keefer found no definite evidence for
uplift of the Wind River Range during Cretaceous time, but his control was
inadequate along the southwestern margin of the basin (contours dashed, no
control points within 50 km (30 mi) of the northeast flank of the Wind River
Mountains, see his Fig. 9). The above described conglomerate in the lower
part of the Lance was probably eroded from Frontier and older Mesozoic rocks
exposed on the growing Wind River uplift.

Murphy and Love (1958) inferred that a broad, domal uplift occurred in
latest Cretaceous time on the southeastern flank of the Wind River basin in
the area of the present Granite Mountains. Keefer (1965) reached similar
conclusions. In a summary of the Laramide history of the Granite Mountains
area, Love (1971) indicated that uplift of this area did not begin until
latest Cretaceous time and culminated in the earliest Eocene time. He
suggested that the early phase of this uplift may have been coextensive with
that of the south-central part of the Wind River Range.

Keefer (1965) concluded that the Cretaceous-Tertiary boundary in the Wind
River basin is generally conformable, but that extensive downwarping occurred
at this time along the present-day northern margin of the basin. Along the
northeastern margin of the Wind River basin, Keefer (1965) observed that the
oldest conglomerate zones are in the lower Eocene Indian Meadows Formation.
The oldest arkosic conglomerate in this part of the basin is at the base of
the Lost Cabin Member of the overlying Eocene Wind River Formation. The
presence of extensive lacustrine sediments, which first appeared in the Wind
River Basin in late Paleocene time (Nichols and Ott, 1978; Phillips, 1983), is
indicative of internal drainage that likely reflects initial growth of the
Casper arch and Owl Creek uplift (Fig. 4-1) that closed the outlets of the
basin.

Keefer (1965) estimated more than 2,682 m (8,800 ft) of middle to late
Paleocene uplift in the Owl Creek Mountains and nearly 3,200 m (10,500 ft) of
subsidence in the adjacent Wind River basin; these amounts indicate a
cumulative vertical separation (uplift + subsidence) rate of slightly more

than 1.2 m/103 years (4 ft/lO3 years). Keefer estimated an additional 2,591 m
(8,500 ft) of uplift and an additional 1,707 m (5,600 ft) of subsidence in the

early Eocene, a cumulative vertical separation rate of about nearly 1.2 m/103

vears (4 ft/lO3 years). He showed that Casper arch thrust faults cut the
lower Eocene Indian Meadows Formation and that the rocks deformed by this
thrusting are erosionally truncated by the overlying lower Eocene Wind River
Formation. These relations date the cessation of major Laramide deformation
in the area as early Eocene. These rates are consistent with relatively late
Laramide strike-slip dominated transpressional deformation along the northern
margin of the Wind River basin, similar to the earlier Laramide
transpressional boundary along the northern margin of the Hanna basin to the
south. Undiscovered structurally trapped deep gas may still be found north
and northwest of the Madden anticline in the northern part of the Wind River
basin.
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Figure 4-1. Map of Rocky Mountain foreland province showing principal Laramide
basins and uplifts. Major uplifts are shown in closely spaced dot
pattern; broad positive areas in more widely spaced dot pattern. Sawteeth
on thrust faults point into upper plates. AU, Axial uplift; BB, Bighorn
Basin; BHU, Black Hills uplift; BSU, Blacktail-Snowcrest uplift; BU,
Bighorn uplift; CA, Casper arch; CMB, Crazy Mountains basin; FRU, Front
Range uplift; GDB, Great Divide basin; GHB, Grand Hogback uplift; GRB,
Green River Basin; GR-SU, Granite Mountains-Shirley Mountains
(Sweetwater) uplift; HB, Hanna Basin; HU, Hartville uplift; LB, Laramie
Basin; LU, Laramie uplift; MA, Moxa arch; MBU, Medicine Bow uplift; OCU,
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