U. S. DEPARTMENT OF THE INTERIOR

U. S. GEOLOGICAL SURVEY

DESCRIPTIONS OF SEISMIC ARRAY COMPONENTS:
PART 2. SOFTWARE MODULES FOR DATA ACQUISITION/PROCESSING

Compiled by

W. H. K. Lee
MS 977, 345 Middlefield Road
Menlo Park, CA 94025

Open-File Report 92-597 -
August, 1992

This report is preliminary and has not been reviewed for conformity with U. S. Geological
Survey editorial standards. Any use of trade, firm, or product names is for descriptive

purposes only and does not imply endorsement by the U. S. Government.

Although these programs have been used by the U.S. Geological Survey, no warranty,
expressed or implied, is made by the USGS as to the accuracy and functioning of the
programs and related program material, nor shall the fact of distribution constitute any

such warranty. and no responsibility is assumed by the USGS in connection therewith.

INTRODdCTION

" In the summer of 1990, funding was available to design and implement two portable

seismic arrays for the volcano program. The

approach was based on Lee et al. (1989).

Several contracts were awarded to commercial companies to design and implement various

components needed to build the portable arrays. The purpose of this report to present the
software modules for data acquisition and processing - SUDSPICK, SUDSPLOT, SUD-

SPROC/SUDSMAN, SUDSSQZ, PC-QMAP,

AND XDETECT - in detail as submitted

by the contractors. Source code on PC-DOS/MS-DOS diskette for this report is presented
in U. S. Geological Survey Open-File Report 92—597-?.

SUDSPICK (p. 4 - 41)

SUDSPICK is a computer program for automatic picking of the first P-arrival from

waveform files created by the XDETECT realtime data acquisition program.

SUDSPLOT (p. 42 - 77)

SUDSPLOT is a computer program for plotting séismic waveform files created by the

XDETECT realtime data acquisition progranT.

SUDSPROC/SUDSMAN (p. 78 - 119)

SUDSPROC/SUDSMAN are two computer

programs for managing the data processing

tasks of the waveform files created by the XDETECT realtime data acquisition program.

SUDSSQZ (p

. 120 -131)

SUDSSQZ is a computer program to "squeeze” out insignificant data in a waveform file
created by the XDETECT rcaltime data acquisition Frogram.

PC-QMAP (p. 132 - 188)

PC-QMAP consists of two computer programs to plot earthquake hypocenter data on
a map. QMAPHP is for using the HP Laserjet printers, and QMAPPS is for using a

Postscript laser printer.

XDETECT (p. 189 - 313)

XDETECT (version 2.04) is a computer program for realtime data acquisition and
processing. It is an updated version of the XDETECT program released previously in
Tottingham and Lee (1989).

REFERENCES

Lee, W. H. K., D. M. Tottingham, and J. O. Ellis (1989). Design and implementation of a
PC-based seismic data acquisition, processing, and analysis system, JASPEI Software
Library, 1, 21-46.

Tottingham, D. M., and W. H. K. Lee (1989). XDETECT: A fast seismic data acquisition
and processing program, U.S. Geol. Surv. Open-File Report 89-205.

SUDSPICK

A Program to pick P Phase Arrivals in
Seismic Data in SUDS Format

Version 1.2
May 1992

!
)

)

Robert Banfill

Small Systems Support

2 Boston Harbor Place
Big Water, UT 84741-0205

SUDSPICK Version 1.22

introduction

This program is used to pick phase arrivals from SUDS data files. The program
offers two modes of operation; Batch and Interactive. Batch mode operation is
initiated from the DOS command line so that SUDSPICK may be called from within
DOS batch files to automate data processing. Interactive mode allows the user to view
traces on screen and pick phases using a mouse or the keyboard.

Command line syntax

SUDSPICK is executed using the following DOS command line syntax:
SUDSPICK [switches] inputfile <return>

switches:
/Ddriver = Driver filename. (SCREEN.DRVS$)
/B = Batch mode.

inputfile = SUDS format data file. (SUDSPICK.DMX)

() indicates the default value, arguments may be placed in any order, and
are not case sensitive.

The /D option is used to specify the Geograf device driver to be used to drive the
display. By default, SUDSPICK will look in its home directory for a driver named
SCREEN.DRV. The file SCREEN.DRV that is provided on the distribution diskette will
drive a VGA display adapter and is equivalent to VGA.DRV. If you have a different
display adapter on your system, you should copy the appropriate driver to SCREEN.DRV
so that the program will use that driver by default (e.g., if you have a Hercules Graphics
Card, you should issue the following command at the DOS command line: COPY
HGC.DRV SCREEN.DRV <return>, assumning that the current working directory is
where you installed SUDSPICK).

The /B option initiates batch mode.

Inputfile is the SUDS data file specification. The input file must be demultiplexed
and is assumed to have the extension .DMX if an explicit extension is not provided on
the command line. It is worthwhile to note that SUDSPICK expands all input file specs
to fully qualified file specifications, ie, if the current working directoryis C:\DATA and
you enter SUDSPICK 90122105 <return>, SUDSPICK expands the input file spec to
C:\DATA\90122105.DMX. Any DOS legal partial file spec may be used as well, the
input file spec ..\OLDDATA\TEST, would be expanded to C:\OLDDATA\TEST.DMX.

~

005

| L
((1ST=10/21/90 13:05 30.879 SPS=100.160| D:\WIG\SUDS\SQZD.OMX

.....

h'; o " A To & e A " " A n ﬁ. .% *
PEAK=1170 BS%\/ ‘ 1.75X

] 3 '
LP TIME=IST+2.885 WEICHT=0 ONSET=MPULSMVE 1ST MOTION=DOWN m)

While the trace is displayed on screen, the following keys are used:

Up Arrow, Down Arrow, Left Arrow, Right Ahow or Mouse click moves the
crosshair. Hold the main (left) mouse button to drag the crosshair.

Spacebar P pick if the crosshair is in the lower portion of the screen.
Moves the window if the crosshair is above the time axis.

S key S pick.

U key First motion is UP.

D key First motion is DOWN.

I key Onset is IMPULSIVE

E key Onset is EMERGENT.

W key followed by 0,1,2,3 or 4. Pick WEIGHT.

C key Clear picks.

+ or - key Increase or decrease amplitude magnification.

Enter or Return Save the picks, move to next trace.

Page Up key Move to previous trace, current picks are not saved.
Page Down keyMove to next trace, ent/ picks are not saved.

Home key Move to first trace, ent picks are not saved.

End key Move to last trace, ent picks are not saved.
Escape key Exit the program, pi sa\}ed in inputbasename.PHA.

SUDSPICK tries to pick the P phase for ypu, if it was successful, the P Phase arrival
will be displayed on the screen. Please ngte that picks displayed on screen are not
saved to the phase file until the Enter or Return key is pressed.

{\ aN

SRS R

There are six parameters that may be adjusted by the user. These parameters are
set in an ASCII text file named SUDSPICK.INI and may be changed using your favorite
text editor. SUDSPICK looks for this file in its home directory, so this file should be
kept in the same directory as the executable files.

Sample initialization file SUDSPICK.EXE version 1.11 or later
Lines beginning with #, ! or a space are ignored
Statements in this file are not case sensitive

skipsamples=50

cl=0.4

c2=1.0 .

c3=0.3 (NOTE: cl to c5 are parameters to be set

c4=0.01 by users; they have been extended

€5=10.0 later and became part of SUDSUTIL.INI
file -- see page 10.)

The skipsamples entry directly corresponds to the nskip variable, and the cl
through c5 entries directly correspond to the variables with the same name in the
source code. If the SUDSPICK.INI file does not exist, the values shown in the sample
NI file are used as default valwes.

Batch mode operation

When SUDSPICK is executed with the /B option, the program will open the input
file and analyze each trace. If a P phase pick was made, an entry will be made in the
phase file. The phase file is a HYPO71PC phase file given the same base name as the

input file and the extension .PHA (e.g., input file: D:\DATA\90122103.DMX, phase

file: D:\DATA\90122103.PHA), and stored in the same directory as the input file,
regardless of the current working directory. When SUDSPICK is ran in batch mode,
only P phase arrival times are written to the phase file.

interactive operation

When SUDSPICK is executed without the /B option, the program will pause
momentarily, displaying the picking parameters to be used, while it opens files and
builds internal data structures and then it will display the first trace.

The SUDSPICK display is made up of the upper portion, which displays the entire
trace, and the lower portion that displays a window on the trace with a one sample
per pixel resolution on the time axis. The window is marked on the upper trace with
brackets and any picks that are not within the window are displayed on the upper
trace.

P phase picking ailgorithm

SUDSPLOT implements a P phase pt
Rex Allen of the USGS. Below is a fragment of FORTRAN source code that contains
the algorithm.

s s tB Ve tw S e e S S B Sk S Sem Sem sam

INT
INT

EGER*2 idata, nskip, ni, n
EGER*4 nsamp, pick, J

REAL*4 alil, beil, ri, ali,
REAL*8 ¢1, ¢2, ¢3, ¢4, ¢c5
DIMENSION idata (*)

algorithm that was originally written by

1, idif

i, dri, ei, gai, ril

nsamp = Number of samples \

pick = returns 0 if no pick, otherwise, index of pick
idata = Data buffer

nskip = Number of samples to| skip fore picking
ali = Short-term average of ei

alil = Previous value of shprt-te average of ei
bei = Long-term average of ei

beil = Previous value of long-term average of ei
dri = Weighted derivative pf integer data

ei = Characteristic function

gai = Weighted value of long-term average of E
idif = 1st difference ‘

3 = Do loop counter over samples

ni = Value of current data sample

nil = Value of previous digital sample

ri = Present value of real data'

ril = Previous value of real data

Pick P Phase

DO j=1, nsamp

END

Prepare one sample
ni = idata(3j)

Store present value of real data

ril = ri

Compute first difference
idif = ni-nil

Filter toc produce updated
ri = cl*ril+REAL(ni)

Compute weighted derivative

dri = c2*REAL(idif)

Store present value of digital d%ta

nil = ni

Compute characteristic fun

el = ri**2+dri**2

Compute short~term averagL

ali = alil+c3*(ei-alil)

alil = ali

Compute long-term average

bei = beil+c4* (ei-beil)

beil = bei

gai = c5*bei

Do we have a pick?

IF (j .GT. nskip .AND. alj
pick = 9
EXIT

ENDIF

DO

value of real data

ction

of el

of ei

.GT. gai) THEN

o

Sun 16-Aug-1992 15:43, RB
>>> Notes concerning source code for SUDS utilities <<<

Most of the programs included search for SUDSUTIL.INI in their "home"
directory (i.e., the directory where the executable file is located).

This file contains initialization information for the various programs.

A sample SUDSUTIL.INI is included in the root directory of the diskette as
well as in the printed documentation.

Please see the README.TXT file in each subdirectory for specific requirements
of each individual porgram.

009

SUDSUTILS.INI

Last edit: Fri 10-Jul-1992 16:33, RB |

This file contains initialization data fok the various SUDS utilities.
This file is arranged in sections. Each ‘ection is marked with a
"Section Header" inside square brakets (e.g., [SUDSPICK]). Each program
will look for its section and then read the entrjes following its
section header. None of these entries a case-gsensitive. Comments
are delimited by a pound-sign (#) or a semi-colon (;). Blank lines

are ignored.

A At AN W % *

+—

[S

[PLOTX]
This section contains entries for the PldtX graphics library.
All of the programs that use the graphlcd library will

use these as default settings. }

Default display mode:
= 2 color 720x348 Hercules Graphics Card

1

2 = 16 color 640x350 EGA

3 = 16 color 640x480 VGA

4 = 16 color 800x600 SVGA

5 = 16 color 1024x768 SVGA <- ChipSet 1 or 2| only
7 = 256 color 640x350 SVGA <~ ChipSet 1 or 2| only
8 = 256 color 640x480 SVGA <- ChipSet 1 or 2| only
9 = 256 color 800x600 SVGA <- ChipSet 1 or 2| only
10 = 256 color 1024x768 SVGA <- ChipSet 2 only

isplayMode = 5

Default chip set:
1 = Tseng Labs ET_3000 (older 512kb cards, Prodesigner, 2 the MAX ..
2 = Tseng Labs ET_ ~4000 (newer 1Mb cards, ProDesigner II, SpeedSTAR ..
ChipSet = 2

E O 4 3 3 4 3 3k W % e

Prompt before sav1ng the current plot to the gueue
PromptBeforeSaving =

Command used to produce hardcopy

HardCopy = PSPLOT /Pd:\plots\plot.eps
HardCopy = PSFLOT /Plptl

HardCopy = LJPLOT /Plpt2 /M3

Hardcopy = SAVEPLOT c:\plots

Font vectors filespec
Font = C:\SUDS\SIMPLEX.VEC

Plot queue directory
PlotQueue = D:\PLOTS

Directory for temporary files. Should b% on a disk if possikle
TempDir = D:\

——
[SUDSMAN]
This section contains entries for SUDSMAN 1.01 or later.

Run in verbose mode
Verbose

Source directory mask
Mask=* _PRE

Source and destination directories
Source=D:\CODE\SHELL\TEST
Destination=D:\CODE\SHELL\DEST

Time in seconds after which a file is t¢ be consided inactive
Inactive=0

Time in seconds to wait between checks for new files

€10

Wait=15

——
{SUDSPICK]
This section contains entries for SUDSPICK 1.10 or later.

Lines beginning with Pnn= represent params 1 - 25, all other line are
ingnored. SUDSPICK uses the comment at the end the label to display
the value at startup. This comment must start with a # and must follow
the value on the same line separated by a least one space.

ke

P10=10.0 #ABS Threshold (sample amplitude)
P3=2.5 #2ero window size (seconds)
P12=6.0 #Additional # of windows to search
P11=3.5 4#Signal/noise ratio

Barthquake wave period criteria

P4=3.0 #Low period limit (seconds)
P13=0.05 #High period limit (seconds)
P1=100. #’'Before’ window size (samples)

P2=250. #’After’ window size (samples) BN

Pick classification criteria (Rmax normalized by BW/AW)

P5=2.0 ¥Weight 5 rmax
P6=4.0 #Weight 4 rmax
P7=€.0 #Weight 3 rmax
P8=8.0 #Weight 2 rmax
P9=10.0 #Weight 1 rmax
¥ —— -

[SUDSPROC]
¥ This section contains entries for SUDSPROC 1.01 or later.

Path to data files
SourceDir = D:\Data

Path to working directory
WorkingDir = D:\Temp

Filename extension of raw data files
RawExtension = WVM

Preferred text editor
Editor = CEDIT.EXE

61z

Sun 16-Aug-1992 15:48, RB

>>> Notes on SUDSPICK 1.23 <<«

SUDSPICK was written using Microsoft C/C++

Libraries required:
HSUDS.LIB - SUDS data file library
Available from:

Small Systems Sup
2 Boston Harbor P
8
(801) 675-5827 Vo

Big wWater, UT
(801) 675-3730 F

L PLOTX.LIB - PlotX graphics library
Available from:

Small Systems Sup
2 Boston Harbor P
8
(801) 675-5827 Vo

Big wWater, UT
(801) 675-3730 F

The following files are included:

SUDSPICK C 13743 04-22-92 11:27p
INIFILE FOR 2670 04-28-92 3:04p
PICKLIST FOR 7141 12-19-91 5:05p
PLTPICK FCR 17197 01-20-92 11:38p
P_PICK FOR 16177 04-22-92 11:23p
SUDSPICK MAK 728 04-28-92 3:19%

Y o S

>

741-0205
ce

1.12.

SUDSPICK - P Phase picker
Filespec: c:\code\sudspick\sudspick.c

Last edit: Wed 22-Apr-1992 23:25, RB

* % % % ¥ % %

Version 0.00 - 0.03 May 1991
Started with SUDSPICK 1.30. Rebuilt P picking algorithm.
Version 0.04 29-Jun-1991, RB
Major changes to P picker, added Jump.
Version 1.00 04-Jul-1991, RB
Fixed problem with SUDS error on last trace
Version 1.00.01 05-Jul-1991, RB
weight 5 added
Version 1.00.02 05-Jul-1991, RB
Added coda duration and first motion
Version 1.01.00 14-Jul-1991, RB
Added 16bit support
Version 1.10.00 27-Jul-1991, RB
Major structural changes: pass FI struct to FORTRAN modules.
Rebuilt picklist & inifile modules, added all motions, and S weight.
Changed annotation, ini file supports up to 25 params with labels
taken from comments.
Version 1.20.00 10-Aug-1991
Changed to PlotX graphics library. Fixed small bug in jump.
Version 1.21.00 15-Sep-1991
When interactive, no weight 5. Add /N switch.
Version 1.22.00 09-Nov-1891 23:37, RB
Huge addressing (HSUDS.LIB).
Version 1.23.00 12-Dec-1991 11:08, RB
Updated Plotx library 1.10, added S phase parameters
Version 1.23.01 Mon 20-Jan-1992 23:30, RB
Added component to plot annotation
*/

char version(] = "1.23.01";

/* Standard include files */
#include <malloc.h>

#include <stdio.h>

#include <process.h>
#include <string.h>

#include <stdlib.h>

/* SUDS include files */
#include <suds.h>

// Graphics
#include <plotx.h>

/* Prototypes */

void sudspick(char[128], int, int);
int builddb(char([128] };

void upper(char{128]);

extern int _fortran pplot(long *, int _huge *, char *, char *, float *,
MS_TIME *, int *, void *);
extern void _fortran picklist(int *, void *, char *, int *);
extern int _fortran done(void):
extern void _fortran p_pick(long *, long *, int _huge *, float *, int *,
float *, int *, int *, int *, int *);
extern int _fortran inifile(char *, float *);

extern char *progname:;

struct FI { /* =-— SUDS file index --- */
int type:; /* Structure type */
int pos; /* Position index */
char stn[5]; /* Station name */

MS_TIME ptime;
MS_TIME stime; /* Pick time */
int pweight:;

oo
[PN
()

int sweight; /* Pick weight =*/
int ponset:
int sonset; /* Onset ~1 = impulsive, (0 = none, 1 = emergent, */
int pmotion;
int smotion: /* First motion, -3 = Noisy, -2 = - poor D,
-1 = Down or dilatatipn, 0 = none,
1 = Up or compression, 2 = + poor U orC */
int fmp; /* Coda duration in seconds */
} £4[128]};
int dmode, chip;
char font{128];

/* Main Routine */

main{(int argc, char *argv({]) {
int i, batch, autop;
char *j, *k;
char buffer[128], infile([128];

progname = argv([0];

/* Setup defaults */

strepy(infile, "SUDSPICK.DMX")
batch = 0;

autop = 1;

dmode = 0;

font[0] = "\0';

chip = 0;

printf("SUDSPICK Version %.4s — W. Lee & R. Banfill\n\n", version);

/* Deal with command-line arguments */
if(argv([1l]([0] == ’2’ || argv[1l][1l] == 727 || &rgc < 2)
{

printf("Usage: SUDSPICK [switches];inputfi{e <™ \n"):
printf("switches:\n");

printf(" /B = Batch mode. [(OFF}\n");

printf(" /N = No auto pick when interactive. (AUTO)\n");
printf(" /Mmode = Display modé:\n");

printf(" 1 = 2 color 720x348 Hercules Graphics Card\n”);
printf(" 2 = 16 color 640x350 EGA\n");

printf(" (3)= 16 color 640x4BC VGA\n");

printf(* 4 = 16 colox B800x6D0 SVGA\n™);

printf(" 5 = 16 coloxr 1024x768 SVGA < Tseng only\n"):;
printf(" /Cchip = VGA Chipseti\n");

printf(" (1)= Tseng Labs ET3000\n"):

printf(™ 2 = Tseng Labs ET4000\a");

printf(" /Ffont = font filename. (%s)\n", font);

printf(* inputfile = SUDS format |wavefo file. (%s)\n\n", infile);

printf("() indicates the default value.\n"):

printf("Arguments may be placed in|any order, and are not case sensitive.\n"):
exit(1);

}

for(i=1; i<argc; i++) {
if (argv([i][0] == "=’ || argv([i]l[0] == "/") {
switch(argv({i]l (1]) {
case "f’:
case 'F':
strcpy(buffer, &argv[i][2]):
3 = buffer+strlen(buffer)-4;
if (*x3 =7,)
strcat { buffer, ".vec"):
strcpy(font, buffer):; |
break; i
case 'b’: }
case 'B’: |
batch {
break: /
case 'n’:)

1;

case 'N’:
autop
batch

on
[e R e]

break:;
case ‘m’:
case 'M’:
if((dmode = atoi(&axrgviil{2])) == 0)
fprintf(stderr, "\nERROR: Invalid switch: %s\n\n", &argv[i][0])~
if(dmode < 1 || dmode > 10) {
fprintf(stderxr, "\nWARNING: Mode value out of range: %s\n", &argv([i][0]):
fprintf(stderr, "Defaulting to Mode 3 (VGA, 640x480)\n\n");
dmode = 3;
}
break:
case ’'c’:
case 'C’:
if((chip = atoi(&argv([i][2])) == 0)
fprintf(stderr, "\nERROR: Invalid switch: %s\n\n", &argv([i][0]);
if(chip <1 || chip > 2) {
fprintf(stderr, "\nWARNING: Chipset out of range: %s\n", &argv([i][0]):
fprintf(stderr, "Defaulting to ET3000\n\n");

chip = 1;
}
break;
default:
fprintf(stderr, "\nWARNING: Unrecognized switch: %s\n", &argv([i] (0]):
break;

}

}

else
strcpy(infile, axrgv(i] }:
3 = infile+strlen(infile)-4;
if(*j 1= ¢ ¢)

strcat(infile, ".dmx");
}

// 1f batch, auto pick
if(batch == 1)
autop = 1;

/* Get the full pathname */

if(_fullpath(buffer, infile, 128) != NULL)
memcpy(infile, buffer, 128);

else {
fprintf(stderr, "Invalid input filespec!");
exit(1);

}

/* Convert everything to upper case */

upper{ infile);

upper (font);

sudspick(infile, batch, autop):
exit(0);
}

/* SUDSPICK ~%/
void sudspick(char infile[128], int batch, int autop) {
FILE *infil;
register i, j:
char samtime([34], stime[34], ptime[34], stn(5], buffer([32],
inif [MAX PATH], *p, comp;
int typ, ponset, pmotion, weight, flag, fii, isk,
ikey, maxsam, motval, fmp, avenoi, sweight;
long inp, len, leng, ppick, plen, spick;
float rate, params[25], s2n;
MS_TIME ist;

char _huge *ptr;
SUDS_DESCRIPTRACE _huge *dt;

printf("Waveform file: %s\n\n", infile);
if(batch == 1)

printf("Batch Mode!\n");
else

printf("Interactive Mode!\n");

~
‘ O 3

Jot
n

if(autop == 0)
printf("Auto picking is DISABLED!\n"):
printf("\n");

// Get picking parameters
strcpy(inif, progname);
p = strrchr(inif, "\’);

pt++;
strcpy(p, "SUDSUTIL.INI");
if(inifile(inif, params) != 0){

fprintf(stderr, "\nERROR: Reading initialization file: %s\n", inif);

exit(1);
}

/* Build index */
fii = builddb(infile);
switch(£ii) {

case -1:

fprintf(stderr, "\nERROR: File contains no data: %s\n",

exit(1);
break:;
case —2:

infile);

fprintf(stderr, "\nERROR: Unable to opeﬁ: $s\n", infile);

exit(1):;
break;
case -3:

>

fprintf(stderr, "\nERROR: Data in multiplexed form: %s\n", infile);
fprintf(stderr, " Run D X and|/try again.\n");

exit(1);
break:;
}

/* Open the WaveForm file */
infil = st_open(infile, "r+b");

/* Initialize plot software */
if(batch == 0) {
if(iniplt(inif, dmode, chip, font, 0) !'=
exit(1);
if(plots(1) !=0)
exit(1);
}

i=0;
while (i<=fii) {
isk=st_seek(infil, (long)fili}.postl, 0);
if((inp = st_get(&ptr, &typ, &lem, infil
break:;

dt = (SUDS_DESCRIPTRACE _huge *)ptr
// leng = dt->length - (len/sizeof (int));
leng = dt->length;

rate = dt->rate+dt->rate_correct;
ist = dt->begintime+dt->time_correct;
maxsam = dt->maxdata-dt->avenoise;
avenoi = dt->avenoise;

sprintf(samtime, "%s", list_mstime(ist, 4
strcpy(stn, dt->dt_name.st_name);
comp = (char)toupper(dt->dt_name.component
ppick = 0;
spick = 0;

/* Let the computer try to pick the| P phase
plen = leng;
p_pick(&plen, &ppick, (int _huge *)ptr+(le

&weight, &rate, &motval, &fmp, &ave
if(ppick == -1) {
if(batch == 0)
done();

fprint£(stderr, "Not enouch memory!\n"
st_free(ptr, (int)inp):

0)

))

*/

noi,

g —
o7
jot
D)

== EOF)

n/sizeof (int)),

&autop)

params,

st_close(infil);
exit(1);
}

if(ppick !'= 0 && fi[i).ptime == 0.) {

fi[i].ptime = ist+((float)ppick/rate);

fi[i) .pweight = weight;

fi[i].pmotion = motval;

£i[i).fmp = fmp;

sprintf(ptime, "%s", list_mstime(fi[i].ptime, 4)):
}

/* if in batch mode... */
if(batch != 0) {
if(batch == 1)
printf("Initial Sample Time = %s\n\n", samtime);
batch = 2;
if(ppick !'= 0)
printf("Station: $%s, Component: %c, P arrival: %s, Weight: %d\n", stn, comp, ptir
i+=1;
}
/* Let the user try it */
else {
ikey = pplot(&leng, (int _huge *)ptr+(len/sizeof(int)),
infile, &comp, &rate, &ist, &maxsam, &fi[i]):
st_free(ptr, ({(int)inp);

switch(ikey) {
/* Navigation keys */
case 0x011B: /* ESCAPE */
ppick = -1;
break:;
case 0x4900: /* PGUP */
if(i>0)
i-=;
else
i=0;
break;
case 0x5100: /* PGDN */
if(i < £ii)
i++;
else
i = f£fii;
break;
case 0x4£00: /* END */
i = f£ii;
break;
case 0x4700: /* HOME x*/
i=0;
break;
case 0x246A:
case 0x244A:
plot(0., 0., 999);
while(1) |
printf ("\nEnter station to jump to -> ");
gets (buffer);
upper (buffer):
for(j=0; j<=£fii; j++) {
if(strcmp(£fi[j).stn, buffer) == 0) {
i=3;
break;
}
}
if(i == 3)
break:;
else
printf("\nStation %s not found!\n", buffer);
}

plots(1);
break;
/* Save the pick */
case 0x1COD: /* RETURN */

(o)
[
- 1

i++;
break;
default:
break:;
}
} ‘
st_free(ptr, (int)inp):
if(ppick == -1)
break;

/* Any other key *

}

st_close(infil):

if(batch == 0)
done():

/* Save the picklist */
picklist(&fii, &fi, infile,
return;

&batch);

}

/* BuildDB
int builddb{(char infile[128]) {

FILE *infil;

register i;

char _huge *ptx;

int typ, fii;

long inp, len:

static SUDS_DESCRIPTRACE _huge *dt;

/* Build index of input file */

if({ infil = st_open{ infile, "r+b"))

return{ -2);
fii = ~1;

while((inp = st_get(&ptr, &typ, &len, infil.))

switch(typ) |
case MUXDATA:
return(-3);
break;
case DESCRIFTRACE:
dt =

(SUDS_DESCRIPTRACE _huge |*)ptr;

it */

if(strncmp(dt->dt_name.st_name, "IR

£ii += 1;
fi[fii].type = typ:

fi{fii].pos = st_tell(infil):
strcpy(f£i(fii].stn, dt->dt_name.s

}
break;
}
st_free(ptx, (int)inp);
}
st_close(infil)

for(i=0;
£i[i]
£i[i]
£i[i)]
£i[i]
£i11]
£i(4i]
£i[i]
£fi[i}

.ptime = 0.
.stime =
.pweight
.sweight
.ponset = 0
.ponset = 0;
.pmotion
.smotion

1i<=127; i++) {

o
.

QO s U, e
~ o~

~e ~a

fi[i].fmp = O;

}
return(fii);

!= EOF) {

IG", 4) '=0) {

t_name);

/* Die

long die(int in) {
exit(1)7

}

/* Upper
void upper(char buffer(128])
char *p:;

-_'k/

for(p = buffer; *p; p++)
*p = toupper(*p);

$TITLE: ‘Filespec: c:\code\sudspick\inifile.for’

[——
[p—
[—

!

Last edit: 28-Apr-1992 15:04, RB

Get picking parameters from INI file

J

10000
1

10010

10020

INTEGER*2 FUNCTION INIFILE (inifil, |params)
IMPLICIT NONE

|
|
CHARACTER inifil*128 J
INTEGER*2 line, i, j, k
REAL*4 params (25)

CHARACTER buffer*128, cbuf*128
INTEGER*2 LTRIM

line = 0
inifile = =1

OPEN (UNIT=10,FILE=inifil,STATUS='o#d’,ERR= 9999)

WRITE (*,’ (A,A,/)’) " Initialization file: ",
+ inifil(:INDEX(inifil, CHAR(0))-1)

buffer = * '

Look for our section

DO WHILE (buffer(l:10) .NE. ’[SUDSPiCK]')
READ (UNIT=10,FMT=’ (A)’,ERR=99999,END=9000C) buffer
CALL UPPER(buffer)
line = line+l

ENDDO

READ (UNIT=10,FMT='(A)',ERR=99999,E&D=90000) buffer
CALL UPPER (buffer)
line = line+l

| |
Ignore everything that doesnt start | with P
IF (buffer(l:1) .EQ. 'P’) THEN 1
j = INDEX(buffer,’=’) :
READ (buffer(2:j-1), FMT=’(I2)’,ERR=10010) 3
IF (i .GT. 25) THEN ‘
WRITE (*,’ (A)’) ’ ERROR: To many parameters: Max=25’
GOTC 10010
ELSE
GOTO 10020
ENDIF

Error

WRITE (*,’(A,I2,A,A,A,A,/)")
’* ERROR: Unrecognized entry at line ’,line,
' in ’, inifil (:LEN_TRIM(inifil)),’: ',
buffer (:LEN_TRIM(buffer))

+ + +

RETURN

k = INDEX(buffer (j+1:),'#’)+]
IF (k .LE. j+2) k = LEN_TRIM(buffer)+1l
READ (buffer(j+1:k-1), FMT=’ (F16/.8)’, ERR=10030) params(i)
IF (params (i) - INT(params(i)) .EQ. 0.) THEN
WRITE (cbuf,FMT=’(I10)’) INT(params(i))
ELSE
WRITE (cbuf,FMT=’ (F10.1)’) paframs(i)
ENDIF
IF (INDEX (buffer,’#’) .EQ. O) THEN
WRITE (*,’ (A,I2,A,A)') ' Param ',i,'|= "',
+ cbuf (LTRIM (cbuf) : LEN_TRIM (cbuf))
ELSE
WRITE (*,' (A,A,A,A)") ' ',
+ buffer (INDEX (buffer, #’)+1:LEN_TRIM(buffer}),

+ * = ¢, cbuf (LTRIM(cbuf) :LEN_TRIM(cbuf))
ENDIF
GOTO 10000

! Error
10030 WRITE (*,’(A,I2,A,A,A,A7,/)")

+ * ERROR: Invalid entry at line ’,line,
+ * in ’, inifil (:LEN_TRIM(inifil)),’': ',
+ buffer (:LEN_TRIM(buffer))

RETURN
ENDIF
GOTO 10000

90000 inifile = 0

99999 WRITE (*,’ (A)’)
RETURN
END

I
|
|

$TITLE: 'Filespec: d: \ccde\sudsplck\plckllsL for’
e Last edit: 19~-Dec-1991 16:59, RB

!=--- Write out the phase file

| Jp——

tew= 27-Jul~1991, RB.

!=--- I completely rebuilt this routine because of the problem of the
!=-= hour needing to be the same for all picks (see VOL 1, pp.218).

{ —— ;
: |

[pp— PR I 4

INTERFACE TO CHARACTER*128 FUNCTION list_mstime [C]
+ { mstime, form)
REAL*8 mstime
INTEGER*2 form
END

[— ——— -

INTEGER*2 FUNCTION picklist (n, pha, wvm, batch)

\
IMPLICIT NONE (

STRUCTURE /phaselist/
INTEGER*2 type
INTEGER*2 position
CHARACTER*5 stn
REAL*8 ptime
REAL*8 stime
INTEGER*2 pweight
INTEGER*2 sweight
INTEGER*2 ponset
INTEGER*2 sonset
INTEGER*2 pmotion
INTEGER*2 smotion
INTEGER*2 fmp

END STRUCTURE

RECORD /phaselist/ pha(*)
INTEGER*2 n, batch
CHARACTER wvm*12§

CHARACTER*128 list_mstime

INTEGER*2 hr, mn, mhr, i, mnd, mns, picks
REAL*4 fsec
CHARACTER time*32, buf*128, phafil*128

picklist = =1 |
n = n+l

picks = 0
mhr = 99

! Open the phase file
phafil = wvm(:INDEX(wvm,’."))//'PHA'|//" '
OPEN (UNIT=10, FILE=phafil, STATUS='unknown!)

!=-- time MM/DD/YY HH:MM SS.HHH
P 123456789a123456789bl1 (form 4)

=== Find the earliest hour
DO i=1, n |
IF (pha(i).ptime .NE. 0.) THEN
time = list _mstime (pha(i).ptime, 4)
READ (time(10:11), ' (I2)’) hr
IF (hr .LE. mhr) THEN
mhr = hr
ENDIF
ENDIF
ENDDO

Al

~

!~~~ Phase list output line format ’

s
LA
r

{=—- STN OPM0 YYMMDDHHMMSS.HH SS.HH S 0 00000
le—= 123456789a123456789b123456789c123456789d123456789e123456789£123456789g123456789
!==- STN=Station, O=Onset, M=Motion.

'-—— note: see IASPEI Vol 1, Chp 9, Sec 5.9 (HYPO71PC phase list) pp. 218

DO i=1, n

! If we have a P-pick
IF (pha(i).ptime .NE. 0.) THEN

! Cycle if in interactive mode with weight 5
IF (batch .EQ. 0 .AND. pha(i).pweight .EQ. 5) CYCLE

! Station
buf(l:4) = pha(i).stn(l:4)

! P Onset
SELECT CASE (pha(i) .ponset)
CASE (-1)
buf(5:5) = 1’
CASE (1)
buf (5:5) = 'E’
CASE DEFAULT
buf (5:5) = * ¢
END SELECT

! P mark
buf(6:) = 'p’

! P Motion
SELECT CASE (pha(i).pmoticn)
CASE (-3) !Noise
buf(7:7) = ’N’
CASE (-~2) !'Pocor Down
buf (7:7) = '-¢
CASE (-1) !Down
buf(7:7) = 'D’
CASE (1) !Up
buf(7:7) = 'u’
CASE (2) !Poor Up
buf (7:7) = "+’
CASE DEFAULT !Blank
buf(7:7) =" '
END SELECT

! P weight
WRITE (buf(8:8), ‘(Il)’) pha(i).pweight

! time yymmddhhmmss.hhh
! 123456789a123456 (form 0)

! Year, month, day
mnd = 0
time = LIST MSTIME (pha(i).ptime, 0)
buf (10:15) = time(1:6)

! Hour
READ (time(7:8), ‘(I2)') hr
IF (hr .EQ. mhr) THEN
buf (16:17) = time(7:8)
ELSEIF (hr .EQ. mhr+1l) THEN
mnd = 60
WRITE (buf(16:17), ’(I2.2)') mhr
ELSE
WRITE (*,’(A,A)’) ' Phase time out of range: Phour: ',
+ pha(i).stn(:4)
CYCLE
ENDIF

! Minute
READ (time(9:10), ’(I2)’) mn
IF (mnd .EQ. 0) THEN

buf (18:19) = time(9:10)
ELSE

mn = mn+mnd

IF (mn .GE. 100) THEN

\
I
|
|
|
|
i

WRITE (*,’ (A,A)*) * Phade time out of range:

pha(i).stn(:4)
CYCLE
ENDIF
WRITE (buf(18:19), ' (I2. 2)ﬂ) mn
ENDIF !

Second
buf(20:24) = time(11:15)

S pick
IF (pha(i).stime .NE. 0.) THEN

ymmddhhmmss . hhh
123456789%9a123456
time = LIST_MSTIME (pha(i).stime,

READ (time(9:10), '(I2)’) nns r
IF (mns .EQ. mn) THEN
buf (32:36) = time(11:15})
ELSEIF (mns .EQ. mn+l) THE
READ (time(11:15), f(FS5.2)’') fsec
IF (fsec+60. .GE. 100.) THEN
WRITE (%, (A,A)7)
’ Phase time out of range: Ssec: ',
pha (i) .stn(:4)
CYCLE
ENDIF
WRITE (buf(32:36), ' (F5.2)') fsec+60.
ELSE :
WRITE (*,’ (A,R)’")
! Phase time out of range: SFec: ’,
pha (i) .stn(:4)
CYCLE |
ENDIF

S Onset
SELECT CASE (pha (i) .sonset
CASE (~1)
buf(37:37) = 1’
CASE (1)
buf (37:37) = 'E’
CASE DEFAULT
buf (37:37) = ' '
END SELECT

S mark
buf(38:38) = 'S’

S Motion
SELECT CASE (pha(i).smotion)
CASE (-3) !Noise

buf (39:39) = 'N’
CASE (~2) !Poor Down

buf (39:39) = -’ !
CASE (-1) !'Down !

buf (39:39) = ‘D’
CASE (1) !Up

buf (39:39) = 'y’
CASE (2) !Poor Up

buf (39:39) = +/
CASE DEFAULT !Blank

buf (39:39) = * '

END SELECT

S weight
WRITE (buf(40:40), ’(I1)’) pha(i) /sweight

Pmin:

’

4

ENDIF

Coda duration
IF (pha(i).fmp .NE. 0) THEN

WRITE (buf(71:75), ’(I5.5)’) pha(i).fmp
ENDIF

Write out the line
WRITE (10, ‘(A)’) buf (:LEN_TRIM(buf))
picks = picks+l

ENDIF
ENDDO
IF (picks .NE. 0) THEN
123456789012345678
WRITE (10,'(A)’') ' 1’

CLOSE (10)
WRITE (*,’(A,I3,A,4)’) ' ’,picks,’ pick(s) written to: ',
phafil(:LEN_TRIM(phafil))
ENDIF

picklist = 0

RETURN
END

*

STITLE: 'Filespec: d:\code\sudspick\pltpicq.for’
low- Last edit: 19-Dec-1991 16:29, RB }
|

!

!==-- Plot routines for SUDSPICK

[

=== Heavily modified 28-Jul-1991, RB
1

$STORAGE: 2 |
INTERFACE TO CHARACTER*128 FUNCTION Jist_mstkme [C]
+ (mstime, form)
REAL*8 mstime
INTEGER*2 form
END

|
|

INCLUDE ‘plotx.fi’

=== C(Close up shop
INTEGER*2 FUNCTION DONE ()
IMPLICIT INTEGER*2 (a-z)

CALL PLOT (0.,0.,999)

done = 0 !
RETURN ‘

END

f -

'«-— Plot wiggles for to pick them

+ istime, maksam,

IMPLICIT NONE

STRUCTURE /phaselist/
INTEGER*2 type
INTEGER*2 position
CHARACTER*S stn
REAL*8 ptime
REAL*8 stime
INTEGER*2 pweight
INTEGER*2 sweight
INTEGER*2 ponset
INTEGER*2 sonset
INTEGER*2 pmotion
INTEGER*2 smotion
INTEGER*2 fmp

END STRUCTURE

INTEGER*2 FUNCTION PPLOT (len, sam [BUGE], #vm, comp, rate,
l«e=- Param’s and local variables (/

RECORD /phaselist/ pha

CHARACTER buffer*128, wvm*128, maxtxt*5,

+ srate*8, ist*26, sec*6, comp*l

INTEGER*2 sam, peaksam, newsam, ikey, maxsam, ierr,
+ dec, pen, xmax, ymax, xmin, ymin, tic, secs
INTEGER*4 len, endsam, begsam, ibeg$am, iendsam, ipick, ppick,
+ spick, 1

REAL*4 rate, x, y, ystep, xstep, ybase, sfac, slfac, r,
+ rymin, rymax, rxmax, rxmin, z, mx, my

REAL*8 istime
DIMENSION sam (*)

{—~==~ Functions
INTEGER*2 LTRIM, KCHARIN, GCURSOR, KPIXELS, YPIXELS

CHARACTER*128 LIST_MSTIME
DATA mx, my /5., 4./

pplot = 1

ist = LIST MSTIME (istime, 4)

!--—- Get maximum sample value
peaksam = 1
DO i=1,len
newsam = IABS (sam(i))
IF (peaksam .LT. newsam) peaksam = newsam
ENDDO
WRITE (maxtxt,’ (I5.5)’) peaksam
CLOSE (20)

9000 1IF (pha.ptime .NE. 0) ppick = INT4((pha.ptime-istime)*rate)
IF (ppick .LT. 0) ppick =0
IF (pna.stime .NE. 0) spick = INT4((pha.stime-istime)*rate)
IF (spick .LT. 0) spick = 0

IF (pha.pweight .EQ. 5) THEN
ipick = 0

ELSE

. ipick = ppick

ENDIF

'-—- Default scale for lower portion
slfac = REAL (maxsam)/REAL (peaksam)
IF (slfac .LT. 1.) slfac = 1.
IF (slfac .GT. 100.) slfac = 100.

!--~- Establish plotting constants
10000 sfac = 25,

rymin = 0.
rxmin = 0.
rymax = 8.
rxmax = 10.

begsam = 1
endsam = len

xmax = XPIXELS()-1

ymax = YPIXELS()-1

xmin = 0

ymin = 0

IF (ipick .LE. (xmax-xmin)/2+1) ipick = (xmax-xmin)/2+1
IF (ipick .GE. endsam-((xmax-xmin)/2+1))
+ ipick = endsam-((xmax-xmin) /2+1)

ibegsam = ipick~-{(xmax-xmin) /2)
iendsam = ipick+((xmax~-xmin)/2)+1

dec = REAL(endsam-begsam) /REAL (xmax-xmin+1)
IF (dec .LT. 1) dec =1

6.975
rxmax/REAL (endsam-begsam)

ybase
xstep

IF (sfac .LT. maxsam/REAL(peaksam)) THEN
ystep = 1.25/((REAL(maxsam)*2.) /sfac)
ELSE
ystep = 1.25/(REAL(peaksam) *2.)
ENDIF

=== C(Clear screen
CALL GFILL (0.,0.,10.,8.,0)

!=-=- Upper portion =—=—m-—-—cecemec—cm e me e -
'=--— Plot upper title

CALL NEWPEN (7)
buffer = 'FILE=’//wvm(:INDEX(wvm,’.’)+3)

>
l\\)
-

-

CALL SYMBOL (rxmin,7.75,.175,buffer,{.,LEN_TRIM(buffer))
CALL SYMBOL (9.,.27,.125,'PRESS F1l
CALL SYMBOL (9.,.03,.125,7FOR HELP’,0.,8)

Plot upper time axis
secs = INT2 (REAL(endsam) /rate)

Ir

ELSEIF (secs

tic = 100
ELSEIF (secs
ELSEIF (secs

ELSEIF

(secs .GE. 1500) THEN
tiec = 250

.GE. 750) THEN

.GE. 300) THEN
tic = 50

.GE. 150) THEN
tic = 20
(secs
tic = 10

.GE. 50) THEN

ELSE

tic =5

ENDIF
CALL NEWPEN (7)

CALL SYMBOL (rxmin,6.005,.12,70/,0.,

CALL NEWPEN (3)
CALL PLOT (rxmin,6.25,3)
CALL PLOT (rxmin,6.15,2)

DO

+0., -(LEN_TRIM(sec)~-(LTR
CALL NEWPEN (3)
ELSE
CALL PLOT (2,6.20,2)
ENDIF
CALL PLOT (2,6.15,3)
ENDDO

i=0, endsam/rate

2z = REAL(i) * (xstep*rate)

CALL PLOT (z,6.15,2)

IF (MOD(i,tic) .EQ. 0 .AND.
CALL PLOT (z,6.25,2)
CALL NEWPEN (7)

WRITE (sec,’(I6)") i

CALL SYMBOL (z, 6.065, .10,

CALL PLOT (rxmax,6.15,2)
CALL PLOT (rxmax,6.25,2)

Flct upper trace

CALL NEWPEN (7)

CAL

! White

L TRACE (rxmin, 6.4, rxmax,

indicate picks on upper trace

IF

(pha.pweight .NE. 5) THEN
CALL NEWPEN (12)

CALL
CALL
CALL
CALL
CALL

PLOT (ppick*xzstep,6.625,2)
SYMBOL (ppick*xstep,6.5625,
PLOT (ppick*xstep,6.50,3)
PLOT (ppick*xstep,6.15,2)

ENDIF

IF

(spick .NE. 0) THEN
CALL NEWPEN (12)

CALL
CaLL
CALL
CALL
CALL

PLOT (spick*xstep,6.625,2)
SYMBCL (spick*xstep,6.5625,
PLOT (spick*xstep,6.50,3)
PLOT (spick*xstep,6.15,2)

ENDIF

IF

(pha.fmp .NE. 0) THEN

CALL NEWPEN (12)

z = xstep* (REAL (ppick)+ (REAL (pha

pen = 3

DO r=6.35, 7.6,
CALL PLOT (z,
IF (pen .EQ. 3)

pen = 2

0.1
r, pen)
THEN

7.55

r,0.,8)

i .NE. 0) THEN

M(sec)-1)})

{

|

7
sec(LTRIMhsec):LEN_TRIM(sec))

|

[

0, len, sam)

PLCT (ppick*xstep,ybase+(ystep*sam{ppick)),3)

,'p,0.,-1)

PLOT (spick*xstep,ybase+(ystep*sam(spick)),3)

11,787,0.,-1)

.fmp) *rate))

o)

l\\)

o

| .
.

ELSE
pen = 3
ENDIF
ENDDO
ENDIF

indicate window on upper trace

CALL NEWPEN (14)

CALL PLOT (ibegsam*xstep+.05,6.35,3)
CALL PLOT (ibegsam*xstep, 6.35,2)
CALL PLOT (ibegsam*xstep,7.6,2)

CALL PLOT (ibegsam*xstep+.05,7.6,2)

CALL PLOT (iendsam*xstep-.05,6.35,3)
CALL PLOT (iendsam*xstep,6.35,2)
CALL PLOT (iendsam*xstep,7.6,2)

CALL PLOT (iendsam*xstep-.05,7.6,2)

Lower portion -

Draw lower amplitude axes
CALL NEWPEN (14)

CALL PLOT (rxmin+.1,.5,3)
CALL PLOT (rxmin,.5,2)
CALL PLOT (rxmin,3.,2)
CALL PLOT (rxmin+.05,3.,2)
CALL PLOT (rxmin,3.,3)
CALL PLOT (rxmin,5.5,2)
CALL PLOT (rxmin+.1,5.5,2)

CALL PLOT (rxmax-.1l,.5,3)
CALL PLOT (rxmax,.5,2)
CALL PLOT (rxmax,3.,2)
CALL PLOT (xrxmax-.05,3.,2)
CALL PLOT (rxmax,3.,3)
CALL PLOT (rxmax,5.5,2)
CALL PLOT (rxmax-.1,5.5,2)

Xxstep = rxmax/REAL ((xmax-xmin)+1)
ybase = 3.
ystep = 5./ ((REAL (maxsam)*2.)/slfac)

Annotate Peak Magnification and Station name

CALL NEWPEN (15)

buffer = pha.stn(:LEN_TRIM(pha.stn(:4)))

CALL SYMBOL (5.,5.725,.4,buffer,0.,-LEN_TRIM(buffer))

CALL NEWPEN (7)

buffer = ‘PEAK='//maxtxt//’ COMPONENT='//comp

CALL SYMBOL (0., 5.78, .15, buffer, 0., LEN_TRIM(buffer))
WRITE (buffer,’ (F6.2)') slfac

CALL SYMBOL (0., 5.57, .15,

+ 'MAG='//buffer (LTRIM (buffer):6)//'X', 0.,

+ 5+ (7-LTRIM(buffer)))

CALL SYMBOL (6.25, 5.78, .15, 7IST='//ist(:21), 0., 25)
WRITE (srate,’ (F8.3)’) rate

buffer = 'SPS=’//srate(LTRIM(srate) :8)

CALL SYMBOL (6.25, 5.57, .15, buffer, 0., LEN_TRIM(buffer))

CALL ANNOT (pha, istime, rate, ppick, spick)

Plot the trace
CALL PLOT (rxmin,ybase+(ystep*sam(ibegsam)),3)
DO i=ibegsam+l, iendsam
x = (i-ibegsam) *xstep
y = ybase+(ystep*sam(i))
IF(y .GT. 5.5) y = 5.5
IF(y .LT. .5) y = .5
CALL PLOT (Xry'Z)
ENDDO

© 629

!=-= Plot the pick
IF (pha.pweight .NE. § .AND.
+ (ppick .GE. ibegsam .AND. ppick .LE. iendsam)) THEN
CALL NEWPEN (12) ‘
y = ybase+(ystep*sam(ppick)) ‘
IF(y .GT. 5.5) y = 5.5 A
IF(y .LT. .5) y = .5 |
CALL PLOT (REAL(ppick-ibegsam+l) *xstep,y, 3)
CALL PLOT (REAL(ppick-ibegsam+1l) *xmstep,.75,2
CALL SYMBOL (REAL(ppick-ibegsam+l)*xstep,|63,.12,P/,0.,-1)
CALL PLOT (REAL(ppick-ibegsam+l) *xstep, .54, 3)
CALL PLOT (REAL (ppick-ibegsam+l) *xstep, .5,2)
CALL PLOT (REAL(ppick-ibegsam+1l) *xstep~-.05,.5,3)
CALL PLOT (REAL(ppick-ibegsam+l) *ystep+.05,.5,2)
ENDIF

IF (spick .NE. 0 .AND.
+ (spick .GE. ibegsam .AND. spick .LE. iendskam)) THEN
CALL NEWPEN (12)
y = ybase+(ystep*sam(spick))
IF(y .GT. 5.5) y = 5.5
IF(y .LT. .5) y = .5
CALL PLOT (REAL(spick-ibegsam+l)* step,y.P)
CALL PLOT (REAL(spick-ibegsam+1l) *xstep, .75,2)
CALL SYMBOL (REAL(spick-ibegsam+1l}*xstep,.63,.12,’S’,0.,-1)
CALL PLOT (REAL(spick-ibegsam+l) *xstep, .54, 3)
CALL PLOT (REAL(spick-ibegsam+l) *xstep, .5, 2)
CALL PLOT (REAL(spick-ibegsam+1)*tstep-.os,.5,3)
CALL PLOT (REAL(spick-ibegsam+l) *xstep+.95,.5,2)
ENDIF

80010 ikey = GCURSOR (mx, my) J
SELECT CASE (ikey) ‘
CASE (16#1970, 16#01) ! P - p phase pick w/pweight
IF (my .GE. 6.0) THEN
ipick = INT4(mx/(rxmax/REAL(endsam)))
GOTO 10000 |
ELSE ! }
ipick = ibegsam+INT4 (mz/xstep)
ppick = ipick
CALL GFILL (0., 0., 9., .48, 0}
CALL NEWPEN (15) |
CALL SYMBOL (S5.,.25,.15,'Enter P Weight {(0-4)7,0., -20)
80012 ikey = KCHARIN ()
IF (ikey .LT. 48 .OR. ikey |.GT. 52) GOTO 80012
pha.pweight = ikey-48
¢aLL GFILL (0., 0., 9., .48, 0)
CALL SYMBOL (5.,.25,.153,
+ 'Enter P First Moticen (U,D,+,-,N)‘,
+ 0., -32)
ikey = KCHARIN ()
SELECT CASE (CHAR({ikey))
CASE ('U’, 'u'")
pha.pmotion = 1
CASE ('D’, 'd’)
pha.pmotion = -1
CASE ('+')
pha.pmotion = 2
CASE ('-')
pha.pmotion = -2
CASE ('N’, 'n’)
pha.pmotion = -3
CASE DEFAULT
pha.pmotion = 0
END SELECT
CALL GFILL (0., 0., 9., .48, 0)
CALL SYMBOL (5.,.25,.15,’Enter P set (E,I)’,0., -19)
ikey = KCHARIN ()
SELECT CASE (CHAR(ikey))
CASE ('E’, 'e')
pha.ponset = 1
CASE ('1', 'i’)

80011

pha.ponset = -1
CASE DEFAULT
pha.ponset = 0
END SELECT
CALL ANNOT (pha, istime, rate, ppick, spick)
GOTO 10000
ENDIF
CASE (1l6#1F73, 16#02) ! S - S phase pick
IF (my .GE. 6.0) THEN
ipick = INT4 (mx/ (rxmax/REAL (endsam)))
GOTO 10000
ELSE
ipick = ibegsam+INT4 (mx/xstep)
spick = ipick
CALL GFILL (0., 0., 9., .48, 0)
CALL NEWPEN (15)
CALL SYMBOL (5.,.25,.15,’Enter S Weight (0-4)’,0., -20)
ikey = KCHARIN ()
IF (ikey .LT. 48 .OR. ikey .GT. 52) GOTO 80011
pha.sweight = ikey-48
CALL GFILL (0., 0., 9., .48, 0)
CALL SYMBOL (S5.,.25,.15,
'Enter S§ First Motion (U,D,+,-,N)’,
0., =-32)
ikey = KCHARIN ()
SELECT CASE (CHAR(ikey))
CASE ('U’, 'u’)
pha.smotion = 1
CASE ('D’', 'd’)
pha.smotion = -1
CASE ('+'")
pha.smotion = 2
CASE ('-')
pha.smotion = -2
CASE ('N’, ’'n’')
pha.smotion = -3
CASE DEFAULT
pha.smotion = 0
END SELECT
CALL GFILL (0., 0., 9., .48, 0)
CALL SYMBOL (5.,.25,.15,’Enter S Onset (E,I)’,0., -19)
ikey = KCHARIN ()
SELECT CASE (CHAR(ikey))
CASE ('E’, 'e')
pha.sonset = 1
CASE ('1', 'i")
pha.sonset = -1
CASE DEFAULT
pha.sonset = 0
END SELECT
CALL ANNOT (pha, istime, rate, ppick, spick)
GOTO 10000
ENDIF
CASE (16#2E63) ! C - Coda
IF (my .GE. 6.0) THEN
ipick = INT4 (mx/ (rxmax/REAL(endsam)))
IF (ipick .LE. ppick) GOTO 80010
pha.fmp = INT(REAL(ipick-ppick)/rate)
GOTO 10000
ELSE
ipick = ibegsam+INT4 (mx/xstep)
IF (ipick .LE. ppick) GOTO 80010
pha.fmp = INT(REAL(ipick-ppick)/rate)
GOTO 10000
ENDIF
CASE DEFAULT
pplot = ikey
IF (ppick .NE. 0)
pha.ptime = istime+ (DFLOAT (ppick) /DFLOAT (rate))
IF (spick .NE. 0)
pha.stime = istime+(DFLOAT (spick)}/DFLOAT (rate))
ppick = 0

90000
99999

spick = 0
GOTO 380000
END SELECT
CONTINUE
RETURN

END

SUBROUTINE ANNOT (pha, istime, rate

IMPLICIT NONE

STRUCTURE /phaselist/
INTEGER*2 type
INTEGER*2 position
CHARACTER*S stn
REAL*8 ptime
REAL*8 stime
INTEGER*2 pweight
INTEGER*2 sweight
INTEGER*2 ponset
INTEGER*2 sonset
INTEGER*2 pmotion
INTEGER*2 smotion
INTEGER*2 fmp

END STRUCTURE

RECORD /phaselist/ pha
REAL*8 istime

REAL*4 rate

INTEGER*4 ppick, spick

INTEGER*2 LTRIM
CHARACTER*128 LIST_MSTIME

CHARACTER*128 buf, bufl, buf2
bufl = 7 ¢
CALL GFILL (0., 0., 9., .48, 0)

CALL NEWPEN (7)

IF (ppick .NE. 0) THEN
bufl = 'p: !
buf = LIST MSTIME (istime+ (DFLOA
bufl(4:23) = buf(1:20)
bufl(24:) ="' '
SELECT CASE (pha.ponset)
CASE (-1)
bufl (LEN_TRIM(bufl)+1l:)
CASE (1)
bufl (LEN_TRIM(bufl)+1l:)
END SELECT
SELECT CASE
CASE (=3)
bufl (LEN_TRIM(bufl)+1:)
CASE (-2)
bufl (LEN_TRIM(bufl)+1:)
CASE (-1)
bufl (LEN_TRIM(bufl)+l:)
CASE (1)
bufl (LEN_TRIM(bufl)+1l:)
CASE (2)

It

(pha.pmotion)

it

, | ppick, [spick)

(ppick)/DFLOAT (rate)), 4)
|
|

’ IMPUﬂSIVE'

, EMERGENT’

’, NCISE'
’, POOR DOWN’
*, DOWN1

I' UPI

bufl (LEN_TRIM(bufl)+1:)
END SELECT
WRITE (bufl(LEN_TRIM(bufl)+l:),
IF (pha.fmp .NE. 0) THEN
WRITE (buf, ’(IS)’) pha.fmp

‘, POOR| UP'

*(A,I1)!) ', WHT=', pha.pweight

o
&D

!

bufl (LEN_TRIM(bufl)+l:) = ', FMP='//

buf (LTRIM(buf) : LEN_TRIM(buf})
ENDIF
CALL SYMBOL (0., .27, .15, bufl, 0., LEN_TRIM(bufl))
ENDIF

IF (spick .NE. 0) THEN
buf2 = ’s: '

buf = LIST MSTIME (istime+(DFLOAT (spick)/DFLOAT (rate)), 4)

buf2(4:23) = buf(1:20)
buf2(24:) = " *
SELECT CASE (pha.sonset)
CASE (-1)
buf2 (LEN_TRIM (buf2)+1:) =
CASE (1)
buf2 (LEN_TRIM(buf2)+1:) =
END SELECT
SELECT CASE (pha.smotion)
CASE (-3)
buf2 (LEN_TRIM(buf2)+1l:) =
CASE (-2)
buf2 (LEN_TRIM(buf2)+1l:) =
CASE (-1)
buf2 (LEN_TRIM(buf2)+1:) =
CASE (1)
buf2 (LEN_TRIM(buf2)+1l:) =
CASE (2)
buf2 (LEN_TRIM(buf2)+1l:) =
END SELECT

WRITE (buf2(LEN_TRIM(buf2)+l:), ’(A,I1)’)

r

r

IMPULSIVE'

EMERGENT'

NOISE’
POOR DOWN’

DOWN'

UP'

POOR UP'

r

, WHT=’, pha.sweight

CALL SyMBOL (0., .03, .15, buf2, 0., LEN_TRIM(buf2))

ENDIF

RETURN
END

C..0

o

S$STITLE: ’'Filespec: d:\code\pickl\p_pick.for’

e Last edit: 02-Aug-1991 19:39, RB

tmme take out first-motion 5/3/91 WL

o Major work 29-Jun-1991, RB, WL

femme Added coda duration & first motion/ 7/5/91, RB & WL

e Fooling around with Leif 7/11/91, WL
tome Fix debug output & pick point 7/14/91, WL
tomem Fix zero crossing bug 7/16/91, WL
e Fine~tune pick 1 7/17/91, WL
{ e Fine-tune pick by fitting lines 7/18/91, WL
Ve Try different points for lines ©7/21/91, WL
Vo Fix centerning of lines 7/22/91, WL

[Added up to 25 picking parameters 26~Jul-1991 RB

!

!

! A P phase picker designed by W. H. K. lLee and
! Robert Banfill - April 1991.

1

1

.

!=~~ Params array contains the following parameteérs, see PICK.INI for
! actual values. Up to 25 parameter be sp%cified in the .INI

t file using this form: Pnn=pppp.pppp, where nn is the array

! subscript and pppp.pppp is the parameter value. All params are
! read from the .INI file as reals.

Params (1) - Before window (samples)
Params (2) - After window (samples)
Params (3) - Windows size (seconds)
Params (4) - Wave period lower limit |(seconds)
Params(5) - Rmax < W5, pick is discarded
Params{6) - Rmax < W4, pick is weighted 4
Params(7) - Rmax < W3, pick is weighted 3
Params (8) - Rmax < W2, pick is weighted 2
Params (9) - Rmax < W1, pick is weighted 1
Rmax >= Wl, pick is weighted 0
Params (10) - ABS thershold (sample amplitude)
r

Params (11) - Signal/ncise ratio
Params (12) - Number of additional windows to be searched
Params (13) - Wave period upper limit (seconds)

\)

————— o

INCLUDE ’plotx.fi’

SUBRCUTINE P_PICK(leng, pick, data |[HUGE], params,
+ weight, rate, mofjion, fmp, avenoi, autop)

IMPLICIT INTEGER*2 (a-z)
c IMPLICIT NONE

==~ This INCLUDE contains the paramater |structure definition
INCLUDE ’‘plotx.inc’

INTEGER*2 weight, motion, fmp, avenoi, autop
INTEGER*4 leng, pick
REAL*4 params, rate
INTEGER*2 data (¥*)
DIMENSION params(*)

!=~-=- Local vars L
INTEGER*2 jmax, smax, weightl, weight2, xdata(5000)
INTEGER*2 ierr, bwsize, awsize, countsw(100},

+ zwsamp, zwcut, count, ilimit

a
ﬁ

INTEGER*4 i, j, sum, suml, sum2, average, eabs, aw, bw,

+ irmax, istart, iend, imax, imin, |jstart, itemp,
+ bwzr, awzr, idmax, istep, |kmax,

+ istartl, istart2, npointl, npoint?2

REAL*4 rmax, loperiod, hiperiod, absw(100),

+ abswmax, periodsw(100), abswmin, jabswcut, rw,

UJi

| .

|

I>>>>

! e

.

| IR—

! ———

1>5>>

| J——

!

+ signal, noise, picksn, sumdr, summin, yl, y2, ry,
+ bl, b2, sbl, sb2, bmax, bdiff, b2save, sumysgl, sumysq2

Dynamically allocated arrays

REAL*4 r [ALLOCATABLE, HUGE] (:)
REAL*4 dr [ALLOCATABLE, HUGE] (:)
INTEGER*1 zerocr [ALLOCATABLE, HUGE] (:)

This declares the actual parameter Structure
RECORD /XYPARAMS/ xy

Generate hardcopy when in plot mode 1 or 2
CALL HARDCOPY(1)

Plot in open coming in <<<<<<<<<<
Set graphics, 0 = prompt for plotting mode
ierr = PLOTS(0)

We have no pick going in
pick = 0

motion = 0

weight = 5

fmp = 0

Normalize the data & and compute the average
sum = 0
DO i=1, leng
data (i) = data(i) - avenoi
sum = sum + data (i)
ENDDO
average = NINT (REAL(sum)/REAL(leng))

Subtract the average
ilimit = HUGE (ilimit)
DO i=1, leng
itemp = INT4(data(i))-average
IF(itemp .GT. ilimit) THEN
data (i) = ilimit
ELSEIF(itemp .LT. -ilimit) THEN
data (i) = -ilimit
ELSE
data (i) = INT2(itemp)
ENDIF
ENDDO

Simple plot - -

Make sure we dont run off the end of xdata
IF(leng .GT. 5000) THEN

j = 5000
ELSE
j = leng
ENDIF
DO i=1, 3
xdata(i) = i - 1
ENDDO

CALL GFILL(O., 0., 10., 8., 0)

xy.xaxis = 1 ! l=plot X axis, 0=no X axis
xXy.yaxis = 1 ! l=plot Y axis, 0=no Y axis
CALL XYPLOT(xdata, data, j, LOC(xy))

Wait for a keypress
ierr = KCHARIN()

Rather than close, clear screen to return to called state

Close the plot
CALL PLOT(0.,0.,999)

LI

! e

cxx

cxx
cx*

CALL GFILL(O., 0., 10., 8., 0) 1

Bail out if autopick is off -
IF (autop .EQ. 0) GOTO 99999 ;

ALLOCATE (r(leng), STAT=ierr)
IF (ierr .NE. 0) GOTO 50000

ALLOCATE (dr(leng), STAT=ierr)
IF (ierr .NE. 0) GOTO 50000

ALLOCATE (zerocr(leng), STAT=ierr) i
IF (ierr .NE. 0) GOTO 50000

Check Absolute value of entire trace
sum = 0
DO i=1, leng
sum = sum + IABS (data(i))
ENDDO
aveabs = NINT(REAL (sum) /REAL(leng))

IF (aveabs .LT. INT(params(10))) gote 80000

r

Locate zero-crossings +
DO i=1, leng-1
IF (data(i) .GE. 0) THEN
IF (data(i+l) .GE. 0) THEN
zerocr(i) = 0
ELSE
zerocr(i) = 1
ENDIF
ELSE
IF (data(i+l) .GE. 0) THEN
zerocr(i) = 1
ELSE
zerocr(i) = 0
ENDIF
ENDIF
ENDDO i

I

Determine where to start -
zwsamp = params(3) * rate |
loperiod = params (4) |
hiperiod = params(13)

zwcut = INT (2. * params(3) / lopeJiod)

- -

Compute period and absolute amplitude for each window

OPEN(20, FILE='debug.dat’)

abswmin = 9959359,

jmax = leng/zwsamp

DO j=1, jmax
imin = (j-1)*zwsamp + 1
imax = imin + zwsamp - 1

suml = 0
sum2 = 0
DO i=imin, imax
suml = suml + zerocr (i)
sum2 = sum2 + IABS(data(i))
ENDDO

periodsw(j) = 2. * (REAL(zwsamp)/ (REAL(suml)+0.000001))

absw(j) = REAL(sum2)/REAL (zwsamp

|
= absw(3)

IF (abswmin .GT. absw(j)) abswmin
WRITE(20, FMT=’ (3I5,2F12.4)’) {j, suml, zwsamp,
+ periodsw(j), absw(J)

ENDDO

jstart = 0

B

e

A\

|

Count number of windows that meet FFeq. and ABS requirments

/ rate

Cck*x

c**

e

.

Cck%x
-

R

40000

+

count = 0
abswmax = 0.
abswmin = params(11) *abswmin
DO j=1, leng/zwsamp
countsw(j) = 0
IF (((periodsw(j) .LT. loperiod) .AND.

(periodsw(j) .GE. hiperiod)) .AND.
(absw(j) .GE. abswmin)) THEN

countsw(j) =1

count = count + 1

IF (abswmax .LT. absw(Jj)) THEN
jstart = j
abswmax = absw(j)

ENDIF

ENDIF
ENDDO

WRITE(20, FMT=' (IS5,F12.4)') jstart, abswmax

No windows pass
IF (count .eq. 0) GOTO 80000

Look backward from the strongest window for starting window

Require 2 failed windows
DO j=jstart-l, 2, -1

WRITE(20, FMT=' (3I5)‘) Jj, countsw(j), countsw(i-1)

IF ((countsw(j) .EQ. 0) .AND. (countsw(j-1)

ENDDO

Look forward from the starting window

.EQ. 0)) EXIT

sum = countsw(j+l) + countsw(j+2) + countsw(j+3) +
countsw(j+4) + countsw(j+5) + countsw(j+6)

4 out of 6 windows must meet Freq. and ABS requirments

IF (sum .LT. 4) GOTO 80000

Start picking in previous 2 windows
jstart = j-2

IF (jstart .LT. 1) jstart = 1

WRITE(20, FMT=’'(IS)’') Jjstart

Sliding windows -—

Set up window parameters
bwsize = params (1)
awsize = params(2)

bw =0
aw = 0
bwzr = 0
awzr = 0

rw = REAL(bwsize) /REAL(awsize)

imin = (jstart-1) *zwsamp + 1

istart = imin - zwsamp

IF (istart .LT. 1) istart =1

iend = imin + INT (params (12)) *zwsamp
IF (iend .GT. leng) iend = leng

Compute ABS and Zerocrossings for the bw
DO i=istart, istart+bwsize

bw = bw + IABS(data(i))

bwzr = bwzr + zerocr(i)
ENDDO

Compute ABS and Zerocrossings for the aw
DO i=istart+bwsize, istart+bwsize+awsize-1l
aw = aw + IABS(data(i))
awzr = awzr + zerocr (i)
ENDDO

Establish other initial values

r, A

(e
C

o

lom—

IF (bw .LT. 1) bw = aw
r(istart+bwsize) = REAL(aw) /REAL (bw)

rmax = r(istart+bwsize) |

irmax = istart + bwsize

i = istart + bwsize |

Slide to the right
DO i=istart+bwsize+l, iend-awsize

Adjust the bw and aw ABS
bw = bw + IABS (data(i)) - IABS{(data(i-bwsize))
bwzr = bwzr + zerocr(i) - zerocr(i-bwsize)

aw = aw + IABS (data(i+awsize-l)) IABS (data(i~1))
awzr = awzr + zerocr (it+awsize-l) + zeroc (i-1)

IF (bw .LT. 1) bw = aw

r(i) = REAL (aw) /REAL (bw)
dr(i) = r(i) - r(i-1)

c** WRITE(20, FMT=' (316,218,2F12.4,13)') i,data(i),zerocr(i),
c** + bw,aw, r(i), dr(i)
oo Keep track of rmax and index
IF (r(i) .GT. rmax) THEN
rmax = r(i)
irmax = i
ENDIF
ENDDO |
C---- Search for the biggest drop in r(i) f***********************
istep = 8
sumdr = 0.
DO i=irmax,irmax+istep-1
sumdr = sumdr + dr(i)
ENDDO
imin = irmax
imax = imin + awsize/2
summin = sumdr ‘
idmax = imin
DO i=imin, imax
sumdr = sumdr ~ dr(i) + dr(i+istep)
IF (sumdr .LT. summin) THEN
summin = sumdr
idmax = i
ENDIF
[
cxx* WRITE(20, FMT=' (2I16,4F12.4,15)") i, datb(i), r(i), dr(i),
cx* 4+ sumdzr, summin, idmax

!-—- Normalize rmax [

!--~ Pick based on rmax & classify

!~~~ Case for weight <= 2

ENDDO \

rmax = rmax* (params(l)/params(2)) .
)

pick = irmax

IF (rmax .LT. params(S5)) THEN
pick = 0

ELSEIF (rmax .LT. params(6)) THEN
weight = 4

ELSEIF (rmax .LT. params(7)) THEN
weight = 3

ELSEIF (rmax .LT. params(8)) THEN
weight = 2

ELSEIF (rmax .LT. params(9)) THEN
weight = 1

ELSE
weight = 0

ENDIF

IF (weight .LE. 2) THEN

ckx

weightl = weight
IF (pick .LT. idmax) pick = idmax

WRITE(20, FMT=’(3I6)’) irmax, idmax, pick

!--- Fine-tune pick by fitting straight lines

cx*x
cx%x

10

20

+

bmax = 0.
b2save = 0.

imin = irmax - §
imax = idmax + 5

DO i=imin, imax
npointl = 21
istartl = i - npointl + 1

CALL LINE(data, istartl, npointl, bl, sbl, sumysql)

npoint2 = S
istart2 = i - (npoint2/2)

CALL LINE(data, istart2, npoint2, b2,

IF (ABS(bl) .LT. 1.) bl = 1.
bdiff = ABS(b2/bl)
IF (bmax .LT. bdiff) THEN
bmax = bdiff
kmax = istart2
b2save = b2
ENDIF

yl = SQRT(sumysql/REAL{(npointl))
y2 = SQRT (sumysqg2/REAL (npoint2))
ry = y2/yl

WRITE(20, FMT=’(316,I3,F7.1,16,I3,5F7.1)') i,data(i),istartl,
npointl, bl, istart2, npoint2, b2, bdiff, yl, y2, ry

IF (bdiff .GE. 30.) GOTO 10
IF (ry .GE. params(l1l)) GOTO 10

ENDDO

pick = kmax
GOTO 20

pick = istart2
b2save = b2

smax = 0

j=20

DO i = pick+l, pick+awsize
j=3+1

IF (smax .LT. IABS(data(i))) smax = IABS{(data(i))

IF ((zerocr{i) .EQ. 1) .and. (j .GT.
ENDDO
signal = REAL (smax)

sum = 0

DO i = pick=-1l, pick-bwsize, -1
sum = sum + IABS(data(i))

ENDDO

noise = REAL(sum) / REAL(bwsize)

picksn = signal/noise
IF (picksn .LT. (params(5)*0.5)) THEN

pick = 0
weight2 = 5

sb2, sumysqg2)

3))

ELSEIF (picksn .LT. (params(6)*0.5)) THEN

weight2 = 4

ELSEIF (picksn .LT. (params(7)*0.5)) THEN

weight2 = 3

ELSEIF (picksn .LT. (params(8)*0.5)) THEN

S

EXIT

folodd
c*x* +

e

e

80000

[——

50000
99999

cxx

weight2 = 2

|

ELSEIF (picksn .LT. (params(Q)*O.ﬂ)) THEN,

weight2 = 1
ELSE

weight2 = 0
ENDIF

weight = (weightl+weight2+1)/2

WRITE(20, FMT=' (2I6,3F12.4,3I3)’) j, pic

f

picksn, weightl,

Do first motion
IF (weight .LE. 2) THEN
IF (b2save .GT. l.) motion = 1

IF (b2save .LT. -1.) motion = =1

ENDIF
ENDIF

, signal,noise,
eight2, weight

\
\
I

Do coda duration for weight <= 1 trage only

Reject any fmp < 5 sec as unreliable
IF (weight .LE. 1) THEN
jstart = pick / zwsamp
IF (jstart .LE. 1) GOTO 8000C
abswcut = 2.* absw(jstart-1)

DO j = jstart, jmax-2

o

IF (absw(j) .GE. abswcut) CYCLE
IF (absw(j+l) .GE. abswcut) CYCLE
IF (absw(j+2) .GE. abswcut) CYCLE

IF (absw(j+3) .GE. abswcut) CYCL

fmp = INT(REAL(]j - jstart + 1
IF (fmp .L7. 5) fmp = 0
EXIT
ENDDO
ENDIF

DEALLOCATE (r)
DEALLOCATE (dr)
DEALLOCATE (zerocr)

GOTO 99939

Memory allocation error

pick = -1

IF (pick .EQ. C) THEN
pick = leng/2

weight = 5
ENDIF

CLOSE(20)

RETURN
END

E

} * params (3))

A simple straight line fit
July, 19;

1.

SUBROUTINE LINE(data, istart, npocint
IMPLICIT NONE

INTEGER*2 data

INTEGER*4 istart, npoint, iend
DIMENSION data (¥*)

REAL*4 b, sb

14 bl

sb

2

%_---

ubroutine by W. H. K. Lee

sumysq)

Cxx
Cxx
Cx*
Cx*

Local vars
INTEGER*4 i, 3
REAL*4 sumx, sumy, sumxy, Sumxsq, Sumysq, SxXsq, sysq, syxsq,n

iend = istart + npoint - 1
n = REAL (npoint)
sumx = (.,
sumy = 0.
sumxy = 0.
sumxsg = 0.
sumysq = 0.
j=0
DO i=istart, iend
j=3+1
sumx = sumx + REAL(jJ)
sumy = sumy + REAL(data(i))
sumxy = sumxy + (REAL(j * data(i)))
sumxsq = sumxsq + (REAL(j))**2
sumysq = sumysq + (REAL(data(i)))**2
ENDDO
b = (n*sumxy - sumx*sumy)/(n*sumxsqg - sumx**2)
sxsqg = (n*sumxsqg - sumx**2)/(n*(n-1)) + 0.000001
sysg = (n*sumysq - sumy**2)/(n*(n-1)) + 0.000001
syxsq = ({(n~1)/(n-2)) * (sysq = (b**2)*(sxsq))
sb = SQRT (ABS (syxsq))/ (SQRT (ABS (sxsq)) *SORT (ABS (n-1.)))

WRITE(20, FMT='(/,8F10.2)') sumx,sumy, sumxy, Sumxsq, Sumysq, Sxsq,
+ sysq, syxsq

WRITE(20, FMT='(716,2F10.2)’) 3j,i,data(istart),

+data(istart+l), data(istart+2),data(istart+3),data(istart+4),b,sb

RETURN
END

SUDSPLOT

A program to plot pseudo Record-Section Plots of
Seismic Data Stored in SUDS Format

Version 2.0
Ma 1992

Robert Banfill

Small Systems Support

2 Boston Harbor Place
Big Water, Utah 84741-0205

~
e

SUDSPLOT 2.0 - May 1992

Contents

Getting Started 3
T.0 OVOIVIEW ... s s ssnes e sae e s s aeasessaen s 3
1.1 System ReqQUIr@mEentscccceetiimmuneiirireeinrerieerennsceneerrennseseseennnes 4
1.2 INStAlationcccciviiiririeiiiniccrcrnnrree e 5
1.3 Performance Considerations............cocccevvrnnnnnmnenennennneneneenennnn. 7

Using SUDSPLOT 9
2.0 Command line SYNTAXc..ceerreereemreieinineeneneeeneeeensreensesssessnseenss 9
2.1 Exclude phase arrivals by pick weight option.......................... 9
2.2 Baseline OPtioN..........uueeeeieeemmmmmimeemmenreiereerrerreresereseenrrenes e neesas 10
2.3 Jump and length OPLioNSeeeciiiiiiiiiecrcccrree e eee e 10
2.4 Plot mode OPtIoNccooevreiiiiieeieeeceeeeeee e eereeeeeeeeeeeaenenes 10
2.5 Prompt before saving plot optionccoooiiiiiiiiiiiiiriiciee 10
2.6 Traces per page OptioN.........ceuuucceieiieiiiiiieiieinesssesasseresesereennnne 11
2.7 Amplitude axis scaling magnification optioncccccecuuueeeen. 11
2.8 Decimation OPtioNccoiiiiiiiiiitiiiiie i ererneeserriaeee e seresnsecsensans 11
2.9 Alternate .INI file OPtionc..viieeeeniiiiiieiice et reecee e eeeees 12
2.10 Input file specificationccccccceveeiiiiiiiiiciiiccrce e 12
2.11 .PRT file specification........cccceuuuieiiieiiiiiiiiiiiecccccceenreereereeeeeene 12

Examples 13
3.0 Plot @nNOtatioN........ccccceeiiiiiiceiieeecceereee e e s e s e e 13
3.1 Sample PIOtSocoeieiieieee e e 13
3.3 Batch processing..........cceeeiiiiiiiiiiiiciciieir e 16

(43

‘ SUDSPLOT 2.0 - May 1992

|
Gettin? Started

!
1.0 Overview |

SUDSPLOT is a component of the IASPEI software libraries. It is one of many
programs in the library that are designed to process seismic data stored in SUDS
(Seismic Unified Data System) 1.x format. SUDSPLOT generates pseudo record-
section plots of digital timeseries data on a variety of graphic displays and hardcopy
devices. When used in conjunction withl HYPO71PC, it can also mark phase arrival
information and coda duration's on the timeseries' and include hypocenter
information in the plot annotation.

‘ |
This program expects input data files to conform to SUDS format as defined in
SUDS Version 1.31, R. Banfill, 8 March 1992 and SUDS: Seismic Unified Data
System, Peter L. Ward, U.S.G.S. Open-file report 89-188, 29 March 1989.

SUDSPLOT is controlled from the DOS command-line through various
"switches". This method of control was chosen because it lends itself to batch
processing. Below I will outline a generic data acquisition and processing system:

1) A program such as RTP (real-time processor) or XDETECT is used to record
seismic waveforms in SUDS 1.3x format. The file naming convention used
for seismic network data is: DDNN.WVM, where, YY is the year,
MM is the month, DD is the day, NN is the event number for this day, WV
identifies the file as a SUDS waveform file in multiplexed form and M is the
agency code (M = Menlo Park, A = Alaska, etc.). For data recorded on
portable autonomous digital seismographs (PADS) such as the RefTek
IRIS/PASSCAL instrument, we generally need more accurate time
information as well as a station name in the filename. We have established
the following naming convention for this type of data: TTTTTTTT.SSN,
where, TTTTTTTT is the initial sample time (number of seconds since 1-1-
70 00:00:00) of the earliest waveform in the file represented as a 32 bit
integer in hexadecimal notation, SS is a two alpha-numeric character
station identifier and N is the data stream number. A utility program
named STTIME is provided to convert the hex time filename to/from year,
month, day, hour, minute, second and day of year.

2) One of these data files would usually be moved to a working directory on a
different machine and possibly archived to tape or optical disk. For
network data with IRIG time code recorded on one channel, the file would
be processed with FIXTIME to correct the initial sample time and sampling
rate. The file would then be demultiplexed with DEMUX. Once the file is
demultiplexed, the filename extension is usually changed to .DMX.

3) Phase arrivals and coda duration's would then be picked using SUDSPICK.
This information is written to disk in a HYPO71PC compatible phase file
with the same name as the data file an | a .PHA extension.

~ r [}

/
I 3

SUDSPLOT 2.0 - May 1992

4) HYPO71PC would then be used to locate the hypocenter. This program
generates a "printer output file" named HYPO71PC.PRT. This file should
be renamed to the same name as the data file with a .PRT extension. This
file contains the hypocenter solution, various statistics and station
information.

5) Finally, SUDSPLOT is used to create plots of the waveforms and optionally
mark phase arrivals and coda duration's on them. These plots may be
printed on most popular laser printers at 300 dot per inch (dpi) and may be
displayed on most display adapter / monitor combinations.

Several example batch files will be given in chapter 3 that illustrate this type of
processing.

1.1 _System Requirements

SUDSPLOT requires an IBM compatible personal computer running PC-DOS or
MS-DOS version 3.2 or later. A 80x87 co-processor is not required, but is strongly
recommended. Although SUDSPLOT does not directly use extended memory, it
does greatly benefit from disk caches and the use of virtual disks (RAM disks) and so
several megabytes (Mb) of extended (or less beneficial, expanded) memory is
recommended.

SUDSPLOT uses the PlotX graphics library for graphics display and hardcopy.

The PlotX library currently supports the following display adapter / monitor
combinations of graphics display:

e Hercules Graphics Card (HGC) / TTL Monochrome Monitor.
e IBM Enhanced Graphics Adapter (EGA) / Enhanced Color Monitor
e IBM Video Graphics Array (VGA) / Analog Color Monitor

e Orchid Prodesigner and other "Super VGA" display adapter using the
Tseng Labs ET3000 chipset at resolutions of 800 x 600 in 16 or 256 colors
and 1024 x 768 in 16 colors with the appropriate monitor.

e Orchid Prodesigner II, SpeedStar VGA and other "Super VGA" display
adapter using the Tseng Labs ET4000 chipset at resolutions of 800 x 600 in
16 or 256 colors and 1024 x 768 in 16 or 256 colors with the appropriate
monitor.

The PlotX library produces device independent binary plot files (PLX files) which
are processed by post processing software to generate high resolution hardcopy.
SUDSPLOT calls these programs automatically to produce hardcopy. Currently, the
following post-processors are provided:

LJPLOT - This program generates 300 dpi plots on the Hewlett Packard Laserjet
family of laser printers. This program generates plots only at 300 dpi, therefore,
your printer must contain at least 1.5 megabytes on memory. This program
incorporates several data compression schemes that are implemented in the Laserjet
family. Below is a summary of the various models that are supported by LJPLOT:

- (4

it
'

SUDSPLOT 2.0 - May 1992
|

e Laserjet, Laserjet Plus and Laserjet Eries II - These printers, with

additional memory may be used, but they do not support any form of data
compression. On a typical 386 based machine with the printer connected
with the parallel interface, plots will take three to four minutes per page to
print.

e Laserjet IIp - This printer implements "PackBits" data compression in the
printer. LJPLOT reduces that amount of data that must be transmitted to
the printer by a factor of two to five dépending on the complexity of the
image and print times will be reduced accordingly.

o Laserjet III, IIIp and IIlsi - These printers implement PackBits and a new
compression scheme called "Delta” compression. LJPLOT uses both
methods of compression to reduce the amount of data transmitted to the
printer by a factor of 20 or more. |Print times will be dramatically reduced.

PSPLOT - This program generates PostScript page descriptions for use with
PostScript devices. The plot vectors are stored in the .PLX file with a granularity of
300 dpi and therefore accuracy is limited to 300 dpi even if the PostScript device is
capable of higher resolution. |

Other post-processors are under deve opmend at this time and will be available in
the near future. If you have a specific gutput device that is not supported and need
a post-processor, contact me at the address on the cover and we can either develop
the post-processor or provide you with the plot file specification.

1.2 Installation

All files on the distribution disk should be placed in a single directory on your
hard disk. This directory should be added the your PATH. SUDSPLOT looks in its
"home" directory (i.e., the directory where SUDSPLOT.EXE is located) for various
support files such as the SUDSUTIL.INI, all of these files should be kept in the
same directory. SUDSUTIL.INI contains initialization information that is needed
by SUDSPLOT at start-up. 1

Below is a general installation procefiure: ‘
Insert the distribution disk into drive A: and close the door.

Issue the following commands at the DOS prompt:

C:

MD \SUDS

CD \SuDS |
XCOPY A:*.* ‘

C:\SUDS in your PATH statement. Your PATH statement should look something
like this:
PATH C:\;C:\DOS;C:\UTILS;C:\SUDS

|
When copying is complete, you should edit %(;;lr AUTOEXEC.BAT file to include

|
i C‘igz 5

SUDSPLOT 2.0 - May 1992

If you placed the distribution diskette into a drive other than A:, substitute that
drive letter for A: in the above commands. If you want to install SUDSPLOT on a
drive other than C:, substitute that drive letter for C: in the above commands.
Finally, if you want to install SUDSPLOT in a directory other than \SUDS,
substitute that directory name for \SUDS in the above commands.

Before using SUDSPLOT, you should reset your computer (press CTRL-ALT-
DEL) so that changes to your configuration will take effect.

As mentioned above, at start-up SUDSPLOT looks for a file named
SUDSUTIL.INI. This file contains initialization data for several different programs.
The file is separated into "sections”. Each section starts with a “"section header"
delimited by square brackets (e.g., [PLOTX] marks the PLOTX section). This is a
simple ASCII text file and you may edit it with your favorite text editor.

Because SUDSPLOT uses the PlotX graphics library, it looks at the PLOTX
section to find out about your display adapter, where to put plot files, where to find
the font file and which post-processor to use. Below is an example of the PLOTX
section of SUDSUTIL.INI:

[PLOTX]
This section contains entries for the PlotX graphics library.

All of the programs that use the graphics library will
use these as default settings.

Default display mode:

1= 2 color 720x348 Hercules Graphics Card

2 = 16 color 640x350 EGA

3 = 16 color 640x480 VGA

4 = 16 color 800x600 SVGA

5 = 16 color 1024x768 SVGA <~ ChipSet 1 or 2 only
7 = 256 color 640x350 SVGA <~ ChipSet 1 or 2 only
8 = 256 color 640x480 SVGA <- ChipSet 1 or 2 only
9 = 256 color 800x600 SVGA <~ ChipSet 1 or 2 only
10 = 256 color 1024x768 SVGA <~ ChipSet 2 only

DisplayMode = 3

Default chip set:

1 = Tseng Labs ET 3000 (older 512kb cards, ProDesigner)
2 = Tseng Labs ET 4000 (newer 1Mb cards, ProDesigner II)
ChipSet = 2

Prompt before saving the current plot to the queue
PromptBeforeSaving = Y

Command used to produce hardcopy
HardCopy = PSPLOT /Plptl
HardCopy = LJPLOT /Plptl /M3

Hardcopy = SAVEPLOT C:\PLOTS

Font vectors filespec
Font = C:\SUDS\SIMPLEX.VEC

Plot queue directory
PlotQueue = C:\PLOTS

Directory for temporary files.
TempDir = D:\

C:

e
‘

|

SUDSPLOT 2.0 - May 1992
o

Most of these settings are pretty rstralghﬁ forward, but a few need further
explanation. The Hardcopy entry specifies the command line used to invoke the
post-processor. This particular entry specifies that there is a Laserjet III connected
to LPT1. If you need to change these settings, type LJPLOT at the DOS prompt to
see help and adjust this entry as needed. If you are going to use PSPLOT, again
type PSPLOT at the DOS prompt for help. The commented line Hardcopy =
SAVEPLOT C:\PLOTS calls a batch file es SAVEPLOT.BAT which simply
copies the current plot file to C:\PLOTS and gives it the name PLOT.PLX. You may
then process this plot file manually with LJ or PSPLOT. This is handy if you wish
to create a Encapsulated PostScript (.EPS) file to include in a publication.

The PlotQueue entry simply points to the directory where plot files will be stored.
The TempDir entry points to the directory where temporary files will be created.
This should be a Virtual disk or RAM disk if possible, but be sure that there is
enough room on this drive for the files. A rule is that there should be enough

space on the temporary drive to hold the SUDS file that you are processing,
although sometimes even more is need |

Take a minute and read though the top portion of SUDSUTIL.INI and carefully
adjust the appropriate entries to match your system. I recommend that you use
comments to annotate changes that you have made so that you will understand
them in the future. After you have done this, you should be ready to run.

/

|
1.3 _ Performance Considerati gn#

As mentioned above, SUDSPLOT e use of a virtual disk for holding
temporary files. If you have at se of extended memory, and will be
processing small to medium sized SUD ﬁles, the following line can be added to your
CONFIG.SYS file:

DEVICE=C:\DOS\VDISK.SYS 2048 /E
Memory

This will create a two Mb virtual disk in e nded/and assign the next available
drive letter on your system. If you have one hard disk named C:, the virtual disk
will be D:.

You may have other software that would like to access the extended memory in
your computer such as Microsoft Windows and/or any of the Microsoft Language
products. You may need to use HIMEM.SYS or some other Extended Memory
Specification (XMS) memory manager and then load RAMDRIVE.SYS instead of the
VDISK.SYS driver. An XMS memory manager lets several pieces of software (e.g., a
virtual disk and a disk cache, see below) use extended memory simultaneously
without conflict, while VDISK.SYS assumes it is the only one using extended
memory and will step on any other software that gets in its way. The entries in
your CONFIG.SYS file might look like this.

DEVICE=C:\DOS\HIMEM. SYS
DEVICE=C:\DOS\RAMDRIVE.SYS 2048

- (048 .

SUDSPLOT 2.0 - May 1992

The pathnames in the above commands should be modified to match your system,
for example, if the HIMEM.SYS device driver is in a directory other than C:\DOS,
that directory name should be substituted for C:\DOS in the above commands.

Note that starting with DOS version 5.00, HIMEM.SYS is installed by default.

If you have more extended memory available, you may wish to install a disk
cache. A disk cache increases hard disk performance by retaining or "caching” a
large amount of data in memory after it has been read from the disk. The next time
data is needed from the disk, the software checks the cache first, if it is there it can
be accessed very quickly, if it is not, it reads it from the disk, again caching this new
data while discarding the oldest data in the cache. Some caching software tries to
"look ahead" and anticipate the data that will be requested next. Caching software
can bring significant performance increases but this depends on the way that the
application program will access the data. Caches generally show the largest
performance increases with applications that perform random access searches for
small records in moderate to large data files. SUDSPLOT accesses SUDS data files
in this way when stations will be ordered by epicentral distance and a large disk
cache can speed things up quite a bit. The only drawback to using a disk cache with
SUDSPLOT is that SUDS files can grow to be rather large (5 to 8 megabytes) and as
such require a very large cache to see significant perform increases. If you will be
generating very large SUDS files, I would suggest a minimum of 4 megabytes for a
disk cache.

The use of a virtual disk for temporary files will yield the biggest performance
boost, so don't sacrifice it for a disk cache. If you want both, I would recommend
that you use an XMS memory manager such as HIMEM.SYS from Microsoft or
QEMM386.SYS from Quarterdeck Office Systems to manage your extended memory
and then install a well behaved virtual disk driver such as RAMDRIVE.SYS and a
disk cache such as SMARTDRV.SYS or SMARTDRV.EXE.

One last note about memory. XMS memory is extended memory that is managed
by a XMS memory manager. This should not be confused with EMS (expanded
memory specification) memory, known simply as "expanded memory”. Extended
memory is available only on machines that use a 80286 or later processor and is just
linear addressable memory beyond 1 megabyte. The processor addresses this
memory with 32 bit addresses and the XMS memory manager basically deals with
avoiding conflicts between software that access this memory. Expanded memory
uses a paging scheme to map 64 kb chunks of extended memory to a page frame
below 1 megabyte allowing the processor access to it with 20 bit addresses, but EMS
memory is significantly slower to access than extended memory because in addition
to managing conflicts, the EMS memory manager must manage this paging process.
Although most virtual disk drivers and disk caches can use expanded memory, I
strongly recommend that you use extended memory wherever possible.

- (G490

SUDSPLOT 2.0 - May 1992

Using SUDSPLOT

2.0 Command line syntax |
|
SUDSPLOT is controlled from the DOS comn*and line using the following syntax:

Usage: SUDSPLOT [switches] SUDSfile [hkpofile] [switches]

Switches:
/An - Plot phase arrivals with weight <= n. (5)

/Bn - Baseline, subtract n sample averiage from trace. (OFF)

/Jdn - Jump, start plotting n segonds into trace. (0)

/ln - Length, plot n seconds of| trace. (ALL)

/Pn*~ Plot mode; l=screen only, (2)=screen&hardcopy, 3=hardcopy only.

/S - Prompt before saving plots. (OFF)
/Tn - Plot n traces per page. (AUTO)

/Mn - Maximum amplitude magnifigcation. (1X)
/X - Windowing decimation. (OFF)

|
/¥Xn - Simple decimation, plot every nth sample. (OFF)
/Ifilespec - Alternate .INI file (SUDSUTIL.INI)

SUDSfile - SUDS 1.x data file. ‘
hypofile - HYPO71lx output file. (same name as SUDSfile w/.PRT ext.)

See also: [PLOTX] and [SUDSPLOT] sections in SUDSUTIL.INI.
() indicates default wvalue, arduments are not case sensitive.

SUDSPLOT requires at least a SUD pecification on the command line. It
will look for a .PRT file with the same base name as the SUDS input file
by default. It this file is found, the program will extract event and station

ear in the file.

n = Arrivals with pick weights greaﬂer than n will be excluded from the

plot ‘
This option is used to filter out traces with pick weights greater than n. n should
be an integer between 0 and 5. Traditionally, pick weights range from 0 to 4. A
weight of 4 meaning that you have no confidence in the pick. A weight of 5 is used

by SUDSPICK to mark the trace as unpicked but keep it listed in the phase file so
that HYPO71PC will calculate the P phase arrival and epicentral distance.

SUDSPLOT 2.0 - May 1992

22 B l .
Form: /Bn

n = Subtract the mean of the first n samples from each sample in each
trace.

This option is used to remove a DC offset from the trace. n should be a positive
integer. A simple average of the first n samples in the trace (starting from the
initial sample time, not the first sample plotted when using the /J option) is
subtracted from all samples in the trace before plotting.

2.3 lump and length options
Form: /Jn and /Ln

n = Number of seconds to jump or plot, a positive real number.

The /J option allows you to specify in seconds from the initial sample time (IST)
where the plot will begin. If no jump value is specified, plotting begins at the IST.

The /L option allows you to specify the number of seconds to plot. If no length
value is specified, the entire trace will be plotted.

2.4 Plot mode option
Form: /Pn

n = Plot mode.

The /P option allows you to specify which method SUDSPLOT will use to
generate plots. n = 1 means the plots will be generated on the display only. This is
the fastest mode, but no hardcopy is generated. n = 2, which is the default mode,
means that plots will be generated on the display and hardcopy will be generated. n
= 3 is "batch" mode, hardcopy only will be generated.

2.5 Prompt before saving plot option

Form: /S
/S = Prompt before save or hardcopy of plot.

This simply causes SUDSPLOT to pause once the plot is generated and prompt
you as to whether or not you wish to save the plot.

10

SUDSPLOT 2.0 - May 1992

Tra r e opti

Form: /Tn

n = Number of trace to be plotted per page.

This option specifies the number of traces that will be plotted per page. By
default, SUDSPLOT will look at the data file|and if available, the .PRT file and
automatically determine the optim number for youu SUDSPLOT can plot
between 1 and 32 traces per page. i |

mpli axis scali aghnificati ti
Form: /Mn
n = Maximum amplitude scale factor |

By default, SUDSPLOT will plot each trace with absolute amplitude, i.e., full
scale is equal to the maximum possible sample value. This option allows you to
specify a maximum magnification of amplitude to be performed as each trace is
plotted. Suppose you wish plot traces where full scale equals the peak sample value
in the trace, but you do not want dead traces (traces with very low peak values) to
be magnified to full scale. If you spe%ﬁ' /M10 on the command line, SUDSPLOT
will magnify the amplitude of each trace so that full scale equals peak sample value
so long as the magnification does not exceed 10x, no trace will be magnified more
than 10x.

2.8 Decimation option
Form: /X1 or Xn

/X1 = No decimation.
/Xn = Simple decimation, plot/every nth sample.

By default, SUDSPLOT will automatically determine the best decimation factor
and perform windowing decimation (minimum and maximum preserved) to increase
plotting performance. The program determines the factor based on the resolution of
the output device and the number of samples to plot. This option can bring dramatic
performance increases, particularly on large da#a files.

If /Xn is specified, n must be a positive integer. SUDSPLOT will perform simple
decimation by a factor on n as it plots the traces. For example, if you specify /X3, the
program will simply plot every third sample.

o)
()
3

11

SUDSPLOT 2.0 - May 1992

2.9 Alternate .INI file option

Form: /Ifilespec

filespec = The file specification of the .INI that SUDSPLOT should use
instead of SUDSUTIL.INTI.

By default, SUDSPLOT will look in its "home" directory (i.e.,the directory where
SUDSPLOT.EXE is located) for a file name SUDSUTIL.INI. This option allows you
to specify a different .INI. See also, section 1.2 for more about SUDSUTIL.INIL.

210 1 il ificati

Inputfile is the SUDS data file specification. The input file must be
demultiplexed and is assumed to have the extension .DMX if an explicit extension is
not provided on the command line. It is worthwhile to note that SUDSPLOT
expands all input file specs to fully qualified file specifications, for example, if the
current working directory is C:\DATA and you enter SUDSPLOT 90122105
<return>, SUDSPLOT expands the input filespec to C:\DATA\90122105.DMX.
Any DOS legal partial filespec may be used as well, the input filespec
..\OLDDATA\TEST, would be expanded to C\OLDDATA\TEST.DMX.

.1 RT file specification

Form: inputfile hypofile
hypofile = The station list file specification.

By default, SUDSPLOT will look for a file with the same path and base name as
the input SUDS file with an extension of .PRT. This file is created by HYPO71PC
and should contain hypocenter and event information and a list of stations ordered
by distance from the hypocenter. SUDSPLOT uses the information in this file to
plot only these stations in this order and plot phase arrivals and coda duration's. If
this file does not exist, waveforms for all stations contained in the data file will be
plotted in the order that they appear in the file. This option allows the user to
specify a different station list file.

i
98 4
<3

12

SUDSPLOT 2.0 - May 1992

ot tatio

SUDSPLOT generates plots in "portrait” orientation, i.e., plots are viewed with
the page upright. The top line of the plot consists of the time of the first sample on
the plot followed by the fully qualified file specification of the input data file.

If SUDSPLOT found the .PRT file for the data, a second line will be added just
below the top line that contains "event information". This line starts with the origin
time, then latitude, longitude and depth of the hypocenter, magnitude, number of
stations used in the hypocenter solution, folloﬁved by various statistics concerning
the solution. |

Figure 1 shows the marking of phase arrival‘ and coda duration on the traces. It
also explains the notation used for station related information.

Epicentral distance (km)
Onset, I=impulsive, E=emergent ;
1st motion, U=up, D=Down, +=poor uiepoor d&wn N=noise
Pick weight, 0=100%, 4=0%, 5=no ‘

Y Coda duration (seconds) r

BVLV
1002

[Sampling rate Observed P phase
\Station identifier Calculated P phase |
Peak sample value ;

3.1 ngg!e Q!OtS |
The plots on the following pages Fere ated using many different plotting
1

options. Figure 2 was generated from a data file that contains a 128 station subset
of CalNet. This event was a fairly small local earthquake. The data file was picked
automatically using SUDSPICK and then located using HYPO71X. See figure 2 for
the actual command line options used to create the plot.

Figure 3 was generated from a data file that was built up from three component
records of a small aftershock of the|Loma Prieta earthquake. This data was
recorded on portable instruments. s plot is simply the raw data from this file.
See figure 3 for the actual command line options used to create the plot.

<
(91
bow

13

40 T 1334S

2/50

1 N wusxavs

ey Ll 26/E

[
]
4
‘»
—TL
2l

SUDSPLOT 2.0 - May 1992

06/22/91 ©3:01 16.079 D:i\DATA\S10E2203. DMX
ORG-08/22/91 03:01 21,380 LAT-35-35. 34 LON:12-15.23 DEP-5.00 WAG-2.3 STh-22 GAP+46 RMS:0.21 ERN-0.6 ERZ-3.2

BVL v
18,2

2008
Bvyv
.2

2000
BSRY
100,2

-2
HORV
108.2

BLMv
100.2

1560
BRVV
-2

8PCY
1.2

418
PBWY
100.2
2048
100.2

1167

1092

848
PHRY
100.2

BPRv

1.2

124
i00.2
128

PILY
1.2

2 S 1T T A RO f

WAL BRIALN At psostrmmsnct

%MMMMMUMNMMMWWW
: TR s

<+

‘l—.—l—l —J_

At Adonry

.

’.9.‘ 08 37 3
Wﬁmw .
p—

33.4 Pul S5

%2
3
T

s P &

d2.5 vop @

4.4 rm 37

7.2 e]
[._.4

47.8 A %

.1 DI 27 _
r .
o~ 4
NI t
L. - A I i L i A 7

e.o

-
&
5
f,
1<%
™
8»
W]
)y
N
©
IS
o
&

Figure 2 - The command used to create this plot was:
SUDSPLOT /M10 /T16 /S 91062203 91062203.PRT

(o’
Cl
it

14

30 T 133WS

10°2 10W30ns

BE LT 26/80/50 1

SUDSPLOT 2.0 - May 1992

10/28/89 13:10 54.504 D: \DATA\2549A55£.Dmxj
'_ T T L] 1 “

278
WAS

208.8
270 L

WAS
0.0 hd

2787
WAS - T;.A.
080

32787

TRE

200.9
32787
TRE Y -
8.0 N

32787
TRE
208.8

9
2787

SBR
.0

Ly . -

12787

SBK B adnt

2787 .
aé:.v. - i

b
32787
LAV e
2008
2707

‘
|
!
?
i (T
LAV e e e e 3 -
|
.
\

v
pb—d—1
'y

AZ787
KAL -
0.8 L
8287
KA ———— - - — - - - B IRl T e et I e —

0.0
32787

wAL B - - -— 7

32787

BA {——— e

o707

BLA —— B .W‘,‘M.\].__vm_

200.8

%67
BAS — C e
200.0

il
I
ke
82767
BAS — [, TV R
2000
b

32767
BAS ———— e e i ———m\w—m<
200.8

L

IT

\ |

B st ‘I
0.0 A -l
N

L2 %3
BAR - -
200. ¢

L
30767 l
AR - o -
200.8 ‘[

12787 o
BaK -
200.0 e 4

s2re7
WAL — "
) v T

|
i

2787 |

WAL - % NN ~ —— e

0.0)

32767

WAL PEUUENUSE U, A_W

0.8
52787

|
Y - ~ - l .
.0 p
$2167 ‘}7
B2 | —————— -———————M.‘r— i
|

wre?

k2 - - g J
Soe T ™]

0.2 g) TS k”) 2" %) 35 Y}

Figure 3 - The command used to create this plot was:
SUDSPLOT 2549AS5SE

15

SUDSPLOT 2.0 - May 1992

3.3 Batch processing

SUDSPLOT returns exit codes to the calling program. From the DOS command
line, the calling program will be COMMAND.COM, but if SUDSPLOT is called from
within a batch file, these exit codes can be checked by using the IF ERRORLEVEL
construct. This lets the batch file exit gracefully if an error occurred while
processing. An exit code of 0 indicates successful execution, an exit code of 1
indicates an error has occurred (SUDSPLOT will display a message describing the
error before it exits). Below are a few simple batch file that illustrate this
technique:

QECHO OFF
REM - PLOT.BAT, R.Banfill, 3 May 92

REM - Make sure we have a file to process
:START
IF "%1" == "" GOTO END

REM - Call SUDSPLOT to process the file
SUDSPLOT /M10 %1

REM - If we had an error, bail out
IF ERRORLEVEL 1 GOTO ERROR

REM - Get the next filename from the command line and do it again
SHIFT
GOTO START

:ERROR
ECHO An error has OCCURRED!

:END
ECHO Done!

This batch file accepts multiple .DMX files as command line arguments. It checks
that the replaceable parameter %1 is not NULL and then proceeds to process the
files one after another. If an error occurs while processing a file, it stops and reports
that an error has occurred, otherwise it SHIFTs to make the next argument become
%1 and starts again, and repeats this until there are no more files.

Another advantage of calling SUDSPLOT from a batch file is that this provides a
convenient way to define default behavior. In the above example the SUDSPLOT
command line specifies scaling to 10X max.

Another example of these techniques is a batch file that will create a plot from
every file that matches a wildcard file specification:

@ECHO OFF
REM - PLOT1.BAT, R.Banfill, 3 May 92

REM - Make sure we have something to do
IF "%1" == "" GOTO END

REM - Let's get to it
FOR %%f IN (%1) DO CALL XPLOT %%f %2 33 %4 %5 %6 %7 %8 %9

"
€57

16

| SUDSPLOT 2.0 - May 1992
I

:END

The line containing CALL XPLOT passes the name of the current file
and any additional options you may have specified to the following
little batch file which actually calls SUDSPLOT and traps any
errors the may occur.

@ECHO OFF
REM - XPLOT.BAT, R.Banfill, 3 May 92
|

IF "%1" == "" GOTO END

REM - Call SUDSPLOT

SUDSPLOT /P3 /M10 %1 %2 %3 % %5 %6 %7 %8 %9
REM - If no error occurred, eturn(

IF NOT ERRORLEVEL 1 GOTO END ‘

ECHO An ERROR has occurred while pjocessing %1
ECHO Press CTRL-BREAK to aboxrt processing!
PAUSE

:END

!
\

These two batch files work together to process the files. The command, PLOT1
* DMX /B200 <return> will plot every file in the current working directory that has
a filename extension of .DMX and the /B200 option will be passed on to SUDSPLOT
with each file.

One of the primary purposes of SUDSPLOT is to provide fully automatic
processing of data as it is acquired. The following batch file is used in conjunction
with SUDSMAN (SUDS File Manager) and other programs from the IASPEI
library. SUDSMAN is a small program that looks across a network and retrieves
data files from the machine that recorded it. e data file is placed in a working
directory and a batch file named PROC.BAT is called to process the file. Once the
file has been processed, control is returned to SUDSMAN and it continues looking
for files to process. This batch file lets you define any type of processing that you
wish, the sample below will simply locate the event and create a hardcopy record
using SUDSPLOT.

@ECHO OFF !

REM - PROC.BAT, R.Banfill, 3 May 9

REM - This batch file is called by| SUDSMAN

REM - Just the filename (no |path or extension) is passed

REM - Make sure we have a file!
IF "$1" == "" GOTO END

REM - Fix the time
FIXTIME 0 %1.WVM

REM - Archive the file
COPY %1.WVM C:\ARCDATA |

REM - Demultiplex the file
DEMUX %1.WVM %1.DMX

o
A
1

17

SUDSPLOT 2.0 - May 1992

REM - Plot raw data
SUDSPLOT %1
IF ERRORLEVEL 1 GOTO ploterr

REM - Pick phases
SUDSPICK %1 /B
IF ERRORLEVEL 1 GOTO pickerr

REM - Preliminary location
CALL GOHYPO %1

REM - Plot phases and coda
SUDSPLOT /M10 /B200 /A2 %1
IF ERRORLEVEL 1 GOTO ploterr

REM - We're done, cleanup the working directory and return
ECHO y | DEL *.* > NUL
GOTO END

REM - Handle er®ors
:ploterr

ECHO ERROR: Plotting %1
PAUSE

GOTO END

:pickerr
ECHO ERROR: Picking %1
PAUSE

:END

This batch file creates 2 plots, one is just the raw data similar to the plot in figure
3, the other contains phase data, coda duration, and additional annotation similar to
the plot in figure 2.

o)
<A
3

18

Sun 16-Aug-1992 15:48, RB

>>> Notes on SUDSPLOT 2.0 <<«

SUDSPLOT was written using Microsoft C/C++| 7.00.
The makefile provided is for use with the PWB. |

Libraries required:
HSUDS.LIB

L_PLOTX.LIB

- SUDS data file library version 1.31.
Available from:

Small Systems Support

2 Boston Harbor Place

Big Water, UT 84741-0205

(801) 675-5827 Voice

(801) 675-3730 FAX| |
\

- PlotX graphics library v#rsion .12,
Available from:

Small Systems Support

2 Boston Harbor Place
Big Water, UT 84(741-020
(801) 675-5827 Voice
(801) 675~3730 FAX

The following files are included:

SUDSPLOT C
SUDS_DB C
SUDSPLOT H

SUDSPLOT MAK

22325 04-28-92 1:37p
10545 04-27-92 1:56p
2168 04-21-92 2:42p

3044 04-27-92 3:38p

// SUDSPLOT.H
// Copyright (c) Robert Banfill 1992. All rights reserved.

#include <suds.h>

// Data base record definition
typedef struct {

CHAR
MS_TIME
FLOAT
LG_INT
LG_INT
LG_INT
FLOAT
SH_INT
MS_TIME
MS_TIME
MS_TIME
MS_TIME
SH_INT
SH_INT
CHAR
CHAR
CHAR
CHAR
} REC;

// Control

stn[51;
ist;
rate;
leng:;
offset;
peak;
delta;
fmp;
p_obs;
s_obs;
p_cal;
s_cal;
p_wht;
s_wht;
p_mot;
s_mot;
p_ons;
s_ons;

params

typedef struct {
SH_INT mode;
SH_INT range;
SH_INT arr;
SH_INT dec;
SH_INT tpp;
FLOAT Jjump;
FLOAT len;
FLOAT mag;
SH_INT samp_max;

SH_INT samp_bias;

LG_INT baseline;
SH_INT dump;

} PRMS;

//

// Hypocenter solution
typedef struct {

SH_INT
MS_TIME
SH_INT
FLOAT
SH_INT
FLOAT
FLOAT
FLOAT
SH_INT
SH_INT
FLOAT
FLOAT
FLOAT

} SOLUTION;

located:
origin;
lat_d:;
lat_m;
lon_d;
lon_m;
depth:;
mag;
stns;
gap/
rms;
err h;
err_z;

#define MAX TPP 32

//
//
//

Station name

Initial sample time

Sampling rate (SPS)

Samples in trace

Struct offset in file

Peak ABRS sample value
Epicentral distance (km)

Coda duration

Observed P phase arrival time
Observed S phase arrival time
Calculated P phase arrival time
Calculated S phase arrival time
pick weight

pick weight

phase first motion

phase first motion

phase onset

phase onset

wmruTwnumnu

Plotting mode

Range switch

Phase arrivals with weight < arr
Decimation switch

Traces per page

Jump seconds

Length seconds

Maximum magnifaction factor
Maximum sample value

Sample bias (add to sample)

of samples to a average of baseline
Dump DB flag

Flag

Origin time
Latitude degrees
Latitude minutes
Longitude degrees
Longitude minutes
Focal depth
Magnitude

of stations used in solution
Gap

Residual
Horizontal error
Vertical error

SUDSPLOT 2

Revision history:
Versions 0.00 - 1.38
See old source code

NN ~ NS

//
/!
//

#define VERSION "2.01"

Major rebuild.

// =-- Standard includes ---
#include <malloc.h>

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <plotx.h>

#include

/] ===

"sudsplot.h"

Prototypes, Local =---~

/
/
/ True record-sections from SUDS data
/
/

SH_INT
SH_INT
void
void
SH_INT
SH INT

sudsplot (SH_INT num_recs);
plot_trace(SH_INT rec_num, FLOAT
time axes(FLOAT x1, FLOAT x2, FLO
compute_times(SH_INT num recs);
snumf (CHAR *buf, FLOAT val);
snumi (CHAR *buf, SH_INT val);

Copyright (C) Robert Banfill 1992. All rights

Version 2.00 Fri 03-Apr-1992 18:19, RB
Started over.

reserved.

void display status(void);
/] ===
extern
extern
extern
extern
extern

/] ===
#define
#define
#define
#define
#define
#define
#define
#define

Prototypes, External ---
SH _INT build db{(void);

void
void
void

init_rec(void);

Defines =--
X_MIN 0.0
Y _MIN -0.3
X_MAX 10.0
Y MAX 8.0
SPACING 0.015
LEFT_MARGIN 0.5
TOP_MARGIN 0.25
BOT_MARGIN 0.17

TRACE_COLOR 7
PICK_COLOR 10
AMP_AXIS_COLOR 4
TIME_AXIS_COLOR 7
TIME_ANNOT COLOR 14
ANNOT_COLOR 7

#define
#define
#define
#define
#define
#define

/] ===
extern
extern

Global data =---
REC *db, *rec;
SOLUTION event;

CHAR
FILE
FILE
FILE

extern
extern
extern
extern

*progname;
*sudsfil;
*inifil;
*hypofil;
extern SH_INT _pbs;
PRMS prms;

CHAR sudsfspec[MAX PATH];

SH_INT add_rec(SH_INT num_recs);

‘
|

)

¥P]

1, FLOAT yl, FLOAT x2, FLOAT y2);
T yl, FLOAT y2);

print_recs(SH_INT num recs');
s_upper (CHAR *buffer);

O

CHAR inifspec[MAX PATHI];
CHAR hypofspec| MAX PATH];

FLOAT xbase,

xwid,

insec;

MS_TIME early, late, start, end;

//

main(int argc, char *argv{]) {

register i;
CHAR *p;

SH_INT num recs = 0, pbs = 0;

progname = argv[0];

// Defaults
prms.mode = 2;
prms.arr = 5;
prms.range = 0;
prms.dec = 0;
prms.tpp = 0;
prms.jump = 0.0;
prms.len = 99999.0;
prms.mag = 1.0;
prms.baseline = 0L;
prms.dump = 0;

sudsfspec (0] = ’\0'";
inifspec(0] = "\0’;
hypofspec([0] = "\0’;

pbs =

0;

// Sign on flag

fprintf(stderr,
fprintf(stderr,

// Help

if(argv([1][0] == '2’ ||

Interactive

Plot phase arrivals if
Pseudo Record-Sections

Windowing decimation
Auto traces per page
Start at beginning
Plot all

Absolute amplitude
No baseline

r o

argv[1][1l] ==

I

available

"SUDSPLOT - Version %.4s\n", VERSION):;
"Copyright (c) Robert

arge == 1) {

Banfill 1992. All rights reserved.\n\n");

printf("Usage: SUDSPLOT [switches] SUDSfile [hypofile] [switches]\n"):
printf("\n"):

printf("Switches:\n"):

printf(" /An - Plot phase arrivals with weight <= n. (3)\n");

printf(" /Bn - Baseline, subtract n sample average from trace. (OFF)\n" };
printf(" /Jdn - Jump, start plotting n seconds into trace. (0)\n"):;
printf(" /Ln - Length, plot n seconds of trace. (ALL)\n");

printf(" /Pn - Plot mode; l=screen only, (2)=screen & hardcopy, 3=hardcopy only.\n"
printf(" /S = Prompt before saving plots. (OFF)\n");

printf(* /Tn - Plot n traces per page. (AUTO)\n");

printf(" /Mn - Maximum amplitude magnifacation. (1X)\n"):

printf(" /X = Windowing decimation. (OFF)\n")

printf(" /¥n - Simple decimation, plot every nth sample. (OFF)\n"):;
printf(* /Ifilespec - Alternate .INI file (SUDSUTIL.INI)\n");

printf("\n");

printf(" SUDSfile = SUDS 1l.x data file.\n");

printf(" hypofile - HYPO71lx output file. (same name as SUDSfile w/.PRT ext.) \n"):
printf£("\n");

printf("See also: [PLOTX] and [SUDSPLOT] sections in SUDSUTIL.INI.\n");
printf("() indicates default value, arguments are not case sensitive."):
exit(1);

}

// Parse the command-line

for(i=1;

1£¢(

i<argc; i++)

argv[i] [0] == 7/’
switch(argv([i] [1]
case ‘A’: //

case ’'a’:

prms.arr = atoi(&argv([i][2]
if(prms.arr < 0

fprint£(
prms.arr

{
I
) |

Arrivals

argv[i] [0] ==

)
i1

stderr, "ERROR: /A switch:
-.:5;
(63
PR

.

)

prms.mode > 5)

{

{

value out of range:

0-5\n");:

}
break:

o
f
|

case 'P’': // Plot mode
case 'p’:
prms.mode = atoi(&argv[i] [

1))
if(prms.mode < 1 || prms. m?d >
fprintf(stderr, "ERROR: |/P h value out of range: 1-3\a");
prms.mode = 2;
}
break;
case 'J': // Jump
case 'j’: [
prms.jump = (FLOAT)atof(&argv([i][2]);
if(prms.jump < 0.0) {
fprintf(stderr, "ERROR: /J switch: value must be positive\n");
prms.jump = 0.0;

break; ‘
case 'L’': // Length |
case '1': !
prms.len = (FLOAT)atof(&argv[xl[ZL)
if(prms.len < 0.0) {
fprintf(stderr, "ERROR: /L switich: value must be positive\n" };
prms.len = 0.0; *
}
break;
case ’S’: // Prompt before s%ving
case 's’:
pbs = 1;
break;
case 'T’: // Traces per pagﬂ
case 't':
prms.tpp = atoi(&argv(i][2])
if(prms.tpp < 1 || prms.tpp > 32 } {
fprintf(stderr, "ERROR: /T switch: value ocut of range: 1-32\n");
prms.tpp = 07
} |
break; J !
case 'M’: // Magnification |

{

case 'm’:
prms.mag = (FLOAT)atof(&a?gv[;][ZE)i

)
value out of range: 1.0-100.%\n");

if(prms.mag < 1.0 || prms mag > 100.0
fprintf (stderr, "ERRORI /M swikch:
prms.mag = 1.0; g

} 1 ‘

break; j |

case ’'X': // Decimation

case ’'x’: (
prms.dec = atoi(&argv[i][i})2
break; i

case 'R': // Range

case 'r’: |
prms.range = 1; ﬁ
break:;

case 'D': // Dump

case ‘d’:
prms.dump = 1;
break;

case ’'B’': // Baseline

case 'b':

prms.baseline = atoi(&argv[i][Z]i)

if(prms.baseline < 1) {
fprintf(stderr, "ERROR: /B sw%tch: value must be positive\n");
prms.baseline = 0; i

} I

break; |

case 'I': i
case 'i’: !

_fullpath(inifspec, &arg#[;][Z],(_MAX PATH);

break;

L
(O

else {
if(sudsfspec(0] == "\0’) {
_fullpath(sudsfspec, argv([i], _MAX PATH);
if(strrchr(sudsfspec, ‘.’) == NULL)
strcat(sudsfspec, ".DMX");
s_upper (sudsfspec);

else if(hypofspec([0] == *\0’) {
_fullpath(hypofspec, argv(i], _MAX PATH);
s_upper (hypofspec);

}

if(sudsfspec[0] == "\0") {
fprintf(stderr, "ERROR: no SUDS data input file specified\n");
exit(1);

}

// If no hypo file specified, use sudsfile with .PRT extension
if (hypofspec(0] == ’'\0’) {

strcpy(hypofspec, sudsfspec);

p = strrchr(hypofspec, ‘.’) + 1:

strepy(p, "PRT")
}

if(inifspec(0] == "\0") {
strcpy(inifspec, progname);
p = strrchr(inifspec, ‘\\’) + 1;
strcpy(p, "SUDSUTIL.INI");

s_upper(inifspec):

// Init the graphics library

if(iniplt(inifspec, 0, 0, "\O", 0) != 0)
exit(1):

_pbs = pbs;

hardcopy(1):

window(X_MIN, Y MIN, X MAX, Y MAX);

// Build the database
if((num _recs = build db()) < 0)
exit(1)

display_status();

// Let’s plot

if(! sudsplot(num_recs))
exit(1);

exit(0)
}

// -— -
SH_INT sudsplot(SH_INT num _recs) {

register i;

CHAR buf([128];

SH_INT nchar, pages, page:

static FLOAT x1, yl, x2, y2, space, tmarg;

MS_TIME mtime;

// Compute earliest and latest times
compute_times(num_recs);

if(prms.tpp == 0) {
prms.tpp = num_recs;
for(pages=1l; pages<999; pages++) {
if(num_recs/pages <= MAX TPP) {
prms.tpp = num_recs / pages;
if(prms.tpp*pages < num_recs)
prms.tpp++;
break;

il

! |
}
else !
pages = ((num recs - 1) / prms.tpp) + 1;
|
// Jump and length
start = early:;
end = late;
if(prms.jump > 0.0) {
if(start + (MS_TIME)prms.jump < end|)
start += (MS_TIME)prms.jump; |

}
if(prms.len != 99999.0) {
if (start + (MS_TIME)prms.len < end
end = start + (MS_TIME)prms.len;
}

mtime = get_mstime();

// Plot each page
for(page=1; page<=pages; page++) {
if(plots(prms.mode) != 0)
exit(1);

space = SPACING;
tmarg = TOP_MARGIN;

if(event.located) {
tmarg += .1;
space += .07;

}

// %2 = tmarg + (space / 2.0);
x2 = tmarg + space;

yl = LEFT MARGIN;

y2Z = Y MAX - 0.03;

zxwid = ((X_MAX - X_MIN - tmarg - BOT_MARGIN|) / prms.tpp) - space;
xl = x2 + xwid; !

newpen (ANNOT_COLOR) ; |
sprintf(buf, "%s %s", list_mstime(Jearly, 4), sudsfspec);
symbol(X_MIN+.101, 0.0, .1, buf, $90.0, strlen(buf));
if(event.located) {
sprintf(buf, "ORG=%s LAT=%02d-%05.2f LON=%02d-%05.2f DEP=%.2f MAG=%.1lf STN=3%d GAP=%
list _mstime(event.origin, 4)/, event.lat_d, event.lat m,
event.lon_d, event.lon_m, event.depth, event.mag, event.stns,
event.gap, event.rms, event.exr h, event.err z);
symbol(X_MIN+.21, 0.0, .07, buf, 90.0, strlen(buf));
}

sprintf(buf, "SHEET %d OF %d %.14sY, page,| pages, list_mstime(mtime, 4))
symbol(2.875, -0.15, .08, buf, 0.0, -strlen(buf));

sprintf(buf, "SUDSPLOT %.4s™, VERSION);

symbol(2.875, -0.24, .05, buf, 0.0, -strlen(buf));

time_axes(X_MAX, tmarg-0.07, yl, y2):

for(i=0; i<prms.tpp; i++) {
if(i+ ((page-1)*prms.tpp) >= num recs)
break:

if (prms.mode == 3)
printf("Processing sheet 3d r, page |):

i£(! plot_trace(i+((page-1)*prms.tpp), x1, yl, x2, y2))
return(0):

newpen (ANNOT_COLOR) ;
nchar = snumi(buf, (SH_INT)rec-Pppeak)

symbol (xbase-0.085, LEFT_MARGIN/Z2.0, .045, buf, 90.0, -nchar);
symbol({ xbase, LEFT MARGIN/2.0, |.06, re¢->stn, 90.0, -4);

nchar = snumf(buf, rec->rate):;
symbol (xbase+0.085, LEFT_MARGIN/2.0, .045, buf, 90.0, -nchar):;

if (event.located) {
sprintf(buf, "%.lf %cP%c%d %d", rec->delta, rec->p_ons,
rec->p_mot, rec->p_wht, rec->fmp):;
symbol (x2-.02, LEFT_MARGIN, .045, buf, 90.0, strlen(buf)):
}

x1l += xwid + space;
x2 += xwid + space;

}

if (prms.mode == 1 || (prms.mode == 2 && _pbs))
getch();

plot(0.0, 0.0, 999);
}

return(1);
}

// - -

SH_INT plot_trace(SH_INT rec_num, FLOAT x1, FLOAT yl, FLOAT x2, FLOAT y2) {
register i;
FLOAT xstep, ystep, ybase, secs, ywid, ipp, spp, t, %, y, o_in, c_in, f_in;
SH_INT type, pixels, maxs, mins, offset, clip;
LG_INT 1, n, length, t_length, t_sam, sum, sam, s_sam, e_sam, sStop’

CHAR _huge *ptr;
SH_INT _huge *data;
SUDS_DESCRIPTRACE _huge *dt;

// Get the current record from database
rec = db + rec_num;

// Find the trace data in SUDS file
st_seek(sudsfil, rec->offset, 0);
t_length = st_get(&ptr, &type, &length, sudsfil):

if(type != DESCRIPTRACE) {
plot(0.0, 0.0, 8999);
forintf(stderr, "\nERROR: input file out cf sync: %s\n", sudsfspec);
return(0):
}
dt = (SUDS_DESCRIPTRACE _huge *)ptr;
if((rec->ist != dt->begintime+dt->time_correct) ||
(strncmp (rec->stn, dt->dt_name.st_name, 4) != 0) ||
(rec->leng != dt->length) } {
plot(0.0, 0.0, 999);
fprintf(stderr, "\nERROR: database out of sync with input file: %s\n", sudsfspec):;
return(0);
}
data = (SH_INT _huge *) (dt+l):

if(prms.mode == 3)
printf("station %s \r", rec->stn);

// Baseline
if (prms.baseline !'= 0) {

sum = Q0L;

for(1=0; l<prms.baseline; 1l++)

sum += *(data+l)+prms.samp_bias;

offset = prms.samp_bias - (SH_INT) (sum / prms.baseline);
}
else

offset = prms.samp_ bias;

// Remove offset and recalc peak value
if(offset != 0){
rec->peak = 0;
for(1=0; l<rec->leng; 1l++) {
sam = (LG_INT) *(data+l) + (LG_INT)offset;

Cev

}

if(sam > 32767L)
* (data+l) = 32767;
else if(sam < -32767L)
* (data+l) = =32767;
else
*(data+l) = (SH_INT)sam;

if (abs(*(data+l)) > rec->peak)

rec->peak = abs(*(data+l)):

// Magnifacation

if ((FLOAT)prms.samp max / (FLOAT) (rec-

bpeak > |0 ? rec~>peak : 1) > prms.mag)

rec->peak = prms.samp_max / (SH_INT)prms.mag;

// Plotting constants
ywid = y2 - yl;
if(prms.mode > 1)

pixels = (SH_INT) (ywid * 300.0);

else

ystep = (y2 - yl) / (FLOAT)t_sam;

s_sam = (LG_INT) (((start-rec->ist) < 0
e_sam = (LG_INT) {((end-rec->ist) > lat
e_sam = (e_sam > rec->leng ? rec->leng :
ybase = yl + { ((rec->ist~start) < 0.0
spp = (FLOAT)t_sam / pixels;

pixels = video_vpixels:;
t_sam = (LG_INT) ((end ~ start) * rec->
xbase = x2 + (xwid / 2.0):
xstep = (xwid / 2.0) / (rec->peak ==

if(prms.dec == 0 && spp < 2.0)
prms.dec = 1;

// Plot the trace
newpen (TRACE_COLOR) ;
plot (xbase- (xstep* (FLOAT) *data), ybase, 3):;
if(prms.dec > 0) {

n=0;

for(l=s_sam; l<e_sam; l+=prms.dec

}

}

plot (xbase-(xstep* (FLOAT) * (data

else {
ipp = ywid / (FLOAT)pixels;

}

// Free the trace buffer

t

= (FLOAT) (s_sam-1);

n = s_sam;
stop = e_sam- (LG_INT)spp-1;
for(y=0.0; y<=ywid; y+=ipp) {

if(n >= stop)
break;
mins = 32767;
maxs = -32767;
t += spp:
while(n < (LG_INT)t) |
if(mins > *(data+n))
mins = *(data+n);
if(maxs < *(data+n))
maxs = *(data+n);
n++;
}
n--;
plot (xbase- (xstep* (FLOAT)mins),
plot (xbase- (xstep* (FLOAT)maxs),

te):
0 2 1.0 (FLOAT) rec->peak)
Y
J0 2?2 0.0 : (start—-rec~>ist)) * rec->rate);
? late (end-rec->ist)) * rec->rate):
e_sam|);
2 0.0 ((rec->ist-start) * rec->rate) * ystep)):

1)), ybase+(ystep* (FLOAT) (n++)), 2);

f
¥

st_free(ptr, t_length):

// Plot amplitude axes

if(

! prms.range) {

’\.f\
SRRV

newpen (AMP_AXIS COLOR);

// Left amplitude axis
plot(x1, y1+0.05, 3);
plot(x1, y1, 2);

plot (xbase, yl, 2);
plot (xbase, y1-0.02, 2):
plot (xbase, yl, 3):
plot(x2, yl, 2);

plot(x2, yl+0.05, 2):

// Right amplitude axis
plot(x2, y2-0.05, 3);
plot(%2, y2, 2):
plot (xbase, y2, 2):
plot (xbase, y2+0.02, 2);
plot (xbase, y2, 3):
plot (x1, y2, 2):
plot(x1, y2-0.05, 2);

}

// Plot picks
if (event.located) {
newpen(PICK_COLOR):

c_in = yl + ((FLOAT) (rec->p_cal-start) * insec):
if(rec->p_obs == 0.0) {
if(c_in > yl && c_in < y2) {
i=0;
for(x=x2-0.03; x<=x1+0.03; x+=((xl-x2)/11)) {
i++;
plot{ x, c_in, (i%2 == 0 2 2 : 3));
}
}
}
else {
o_in = yl + ((FLOAT) (rec->p_obs-start) * insec);
if(o_in > yl && o_in < y2) {
plot(x2-.03, o_in, 3);
plot (x2-.005, o_in, 2);
plot(x1+4.03, o_in, 3);
plot (x1+.005, o_in, 2);
}

if(c_in > yl && c_in < y2) {

plot(x2-.03, c_in, 3);

plot (x1+4.03, c_in, 2);
}
plot(x2-0.03, (c_in < yl ? y1 : (c_in > y2 ? y2 : c_in)), 3);
plot(x2-0.03, (o_in < yl ? yl : (o_in > y2 ? y2 o_in)), 2);
plot (x1+40.03, (c_in <yl ? yl : (c_in > y2 ? y2 : c_in)), 3):
plot(x1+0.03, (o_in < yl 2?2 y1 : (o_in > y2 ? y2 o_in)), 2):

1

if(rec->fmp !'= 0) {
f in = yl + ((FLOAT) ((rec->p_obs+(DOUBLE) rec~>fmp)~start) * insec);
if(£_in > yl && f_in < y2) {
plot(x2+.1, f_in, 3):
plot(x1-.1, £ in, 2);
1
}
1
return(1);
}

/7 —-—
void time_axes(FLOAT x1l, FLOAT x2, FLOAT yl, FLOAT y2) |
register i;
FLOAT x, z, taxbeg, taxend, taxlen;
SH_INT taxtic, nchar;
CHAR taxstr(l6];

X = x1;

o

(J

taxlen = (FLOAT) (end - start):
taxbeg = (FLOAT) (start - early):;
taxend = taxbeg + taxlen;

insec = (y2 - yl) / (taxlen < 1.0 2 1.0 : taxlen);

if(taxlen > 180.0)
taxtic = 25;
else if(taxlen
taxtic = 10;
else if(taxlen
taxtic = 5;
else
taxtic = 1;

> 60.0)
> 12.0)

newpen (TIME_ANNOT_COLOR);
nchar = snumf(taxstr, taxbeg);
symbol(x-0.04, yl1l, 0.07, taxstr,

newpen (TIME_AXIS_COLOR);
plot(x-0.15, y1, 3);
plot(x-0.1, yi, 2):

90.0,

-nchar):

for(i=(SH_INT)taxbeg+l; i<=(SH_INT)taxend+l; i++) |
z = (((FLOAT)i - taxbeg) * insec) +

if(z >= y2) {
plot(x-0.1, y2, 2):
plot(x-0.15, y2, 2);
break:;

}

plot(x-0.1, 2z, 2);

if(i % taxtic == 0) {
plot(x-0.15, z, 2)
newpen (TIME_ANNOT_COLOR);
nchar = snumi(taxstr, 1);
symbol(x-0.04, z,
newpen (TIME_AXIS COLOR);

}

else {

plot(x-0.125, z, 2);
}
plot(x-0.2, z, 3);

}
newpen({ TIME_ AXIS COLCR);

X = x2;
plot(x+0.05, y1, 3);
plot(x, y1, 2);

for(i=(SH_INT)taxbeg+l;
z = (((FLOAT)i - taxbeg)
if(z >= y2) {
plot(x, y2, 2)
plot (x+0.05, y2, 2);

break;
}
plot(%, 2z, 2):
1f(i % taxtic == 0)
plot(x+0.05, =z, 2);
else {
plot(x+0.025, z, 2);
}
plot(x, 2z, 3):
}
return;

CHAR *buf, FLOAT val)

SH_INT snumf (
register 1i;
CHAR *p;

val):

sprintf(buf, “%-6.1f",

0;

0.07, taxstr,

+

{

1;

|

90.0,

yvil;:

|

-nchar):

i<=(SH_INT)ta4end+1; it+) |
* insec)

for(p = buf; *p; p++) {
if(*pggl l)
break;
it++;
}

return(i);

}

// ==
SH_INT snumi(CHAR *buf, SH INT val) {

register i;

CHAR *p;

sprintf (buf, "%d", val):;

i=20;
for(p = buf; *p; p++)
i++;

return{ i);

7/ -—=
void compute_ times(SH_INT num recs) ({
register 1;
MS_TIME time;

early = 2147472000.0;
late = =-2147472000.0;

for(i=0; i<num_recs; i++) |{
rec = db+i;
if(rec->ist < early)
early = rec->ist;
time = rec->ist + ((DOUBLE)rec->leng / (DOUBLE)rec->rate);
if(time > late)
late = time;
}

return;
}
// —_—
void display_status(void) {
printf("\nDecimation: Ty
switch(prms.dec) {
case 0:
printf("Windowing, min & max preserved\n");
break;
case 1:
printf("None\n");
break;
default:
printf("Simple decimation, factor = %d.\n", prms.dec);
break;

}
printf("Jump seconds: %.1f\n", prms.jump):;
printf("Plot seconds: ");
if(prms.len == 99999.0)
printf("All\n");
else
printf("%.1f\n", prms.len);
printf("Scaling: ")
if(prms.mag == 1.0)
printf("Absolute amplitude\n™);
else
printf("Up to %.1fX magnifacation on amplitude axis\n", prms.mag);
printf("Baseline: ")
if (prms.baseline == (0L)
printf("None\n");

else
printf("%1d samples\n", prms.baseline);
printf("Plot mode:)i
switch(prms.mode) {
case 1:
printf("Display only\n");
break;
case 2:
printf("Display and hardcopy\n” };
break; !
case 3:
printf("Hardcopy only\n"): |
break;
}
printf("Traces/page: "):
if(prms.tpp == 0)
printf("Best fit\n");
else
printf("%d\n", prms.tpp)
if (event.located) \
printf("Phase arrivals with weight <= %d will be plotted\n", prms.arr);

printf("\n");

return;

/ i
LG_INT die(SH_INT in) | ,

exit(in); r

ey

o

// SUDS_DB.C
// Copyright (C) Robert Banfill 1992. All rights reserved.

// SUDS Database routines for SUDSPLOT 2.00

#include <malloc.h>
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "sudsplot.h"

// ==-=- Prototypes, Local ---

SH_INT build db(void);

SH_INT hypo_extract (SH_INT num_recs);

SH_INT add rec(SH_INT num_recs);

void init_rec(void);

void dump_db(SH_INT num recs);

void s_upper (CHAR *buffer);

void decode (CHAR *string, SH_INT pos, CHAR *fmt, void *val);
SH_INT compare(REC *recl, REC *rec2);

SH_INT pack db(SH_INT num recs);

// =-- Global data ---

extern CHAR sudsfspec[_MAX PATH]; *
extern CHAR inifspec(_MAX PATH]:;

extern CHAR hypofspec[MAX PATH]:;

extern PRMS prms;
extern MS_TIME evn_time;

FILE *sudsfil;
FILE *inifil;
FILE *hypofil;

REC *db, *rec;
SOLUTION event;

// mmommmmemesem—emee - -
SH_INT build db(void) {

SH_INT typ, num_recs, sample;

LG_INT 1, inp, len;

CHAR _huge *ptr;
SH_INT _huge *data;
SUDS_DESCRIPTRACE _huge *dt;

sudsfil = st_open(sudsfspec, “r+b™):
printf("Building database -> %s", sudsfspec):
num_recs = 0;

while((inp = st_get(&ptr, &typ, &len, sudsfil)) != EOF) {
switch(typ) {

case MUXDATA:
fprintf(stderr, "\nERROR: %s contains multiplexed data'!\n", sudsfspec);
return(-1);
break:;

case DESCRIPTRACE:
dt = (SUDS_DESCRIPTRACE _huge *)ptr;
num recs = add_rec(num_recs);

strncpy(rec->stn, dt->dt_name.st_name, 4);
rec->stn{4] = "\0’;

rec->offset = st_tell(sudsfil)-1;

rec->ist = dt->begintime+dt->time_correct:
rec->rate = dt->rate+dt->rate_correct;
rec->leng dt->length;

switch(dt->datatype) {

73

case ’s’:
prms.samp_bias = -2048;
prms.samp_max = 2048;
break;
case 'u':
prms.samp_bias = -32767;
prms.samp_max = 32767;
break;
case 'q’:
prms.samp_max = 2048;
break;
case ’'i’:
prms.samp_max = 32767;
break;
default:
fprintf(stderr, "\nERROR{ unsupported data type: %c in %s\n",
dt->datatype, sudsfspec):
exit(1); !
break; |
}
data = (SH_INT _huge *) (dt+1l):;
for(1=0; l<dt->length; l++) {
sample = abs(*(data+l) + p .samp_bias);
if(sample > rec->peak)}
rec->peak = sample;
} |
break; ‘
}
st_free(ptr, inp);
}
printf("\rInput SUDS data file: %s\n", Fudsfspec);

if (hypofspec([0] != 7\0') ({ ‘
if((hypofil = fopen(hypofspec, "r"™)) ==|NULL) {
printf("No hypocenter data found.\n" };
}
else { L ‘

printf("Extracting hypocenter dat‘ -> %s*, hypofspec)

|
num_recs = hypo_extract(num_recs |);

printf("\rHypocenter data file: %s \n", hypofspec);
fclose(hypofil);

}

if(prms.dump)
dump_db(num_recs);

return(num_recs);

}

e ——— —a-
SH_INT hypo_extract(SH_INT num_recs) {
register i;
SH_INT d_flag = 0, s_flag = 0;
SH_INT yr, mn, dy, hr, mi;
FLOAT sc;
LG_INT line;
CHAR buf[256];

line = 1;
event.located = 0;
while(fgets(buf, 255, hypofil) != NULL) |

if(! d_flag) |
if (strncmp(buf, " DATE", 6) == 0) {
d flag = 1:
if(fgets(buf, 255, hypofil)| != NULL) {
decode(buf, 1, "%24", &yr):
decode(buf, 3, "%2d"”, &mn);
decode(buf, 5, "%2d4d", &dy)

(S
c{‘u

decode (buf, 8, "%24", &hr);

decode(buf, 10, "%2d4", &mi);

decode (buf, 13, "%5f", &sc):

event .origin = make_mstime(yr+1900, mn, dy, hr, mi, (DOUBLE)sc);
decode(buf, 19, "%2d", é&event.lat_d):

decode (buf, 22, "%5f", &event.lat_m);

decode (buf, 28, "%2d", &event.lon d):

decode(buf, 32, "%5f", &event.lon m);

decode(buf, 38, "%6f", &event.depth):

decode(buf, 46, "%5f", &event.mag);

decode(buf, 52, "%2d", &event.stns);

decode(buf, 58, "%3d", &event.gap)
decode (buf, 63, "%5f", &event.rms)
decode(buf, 69, "%4f", &event.err_h)
decode(buf, 74, "%4f", &event.err_z)
event.located = 1;

.
7
.
.

.
.

.
.

}
else
return(0);
}
else
continue;

}

else if(! s_flag && strncmp(buf, ™ STN", 5) == 0) {
s_flag = 1;
continue;

}
else if (s_flag) {
for(i=0; i<num recs; i++) {
rec = db+i;
if(strncmp(&buf[l), rec->stn, 4) == 0) {
decode(buf, 6, "%5f", &rec->delta):;
decode(buf, 23, "%1d", &rec->p_wht);
decode (buf, 25, "%24", &hr):
decode(buf, 27, "%24", &mi);
if(rec->p_wht < 5) {
rec->p_ons = buf [20];
rec->p_mot = buf[22]:;
decode(buf, 36, "%5f", &sc);
rec->p_obs = event.origin + (DOUBLE)sc;

}

decode (buf, 42, "%5f", &sc):
rec->p_cal = event.origin + (DOUBLE)sc;
decode(buf, 71, "%3d", &rec->fmp):;

break;

}

// Pack the database

if((num recs = pack _db(num_recs)) == 0) {
exit(1);

}

// Sort database by epicentral distance
gsort ((void *)db, (size_t)num recs, sizeof (REC), compare);

return(num recs):

}

!/
SH_INT pack_db(SH_INT num recs) {
register i:;
REC *pack, *prec;
SH_INT pack_recs;

// Squeeze the database based on p weight
pack _recs = 0;
pack = NULL;

© 675

for(i=0; i<num_recs; i++) {
rec = db+i;
if(rec->p_wht <= prms.arr) {
if((pack = (REC *)realloc(pack, (pack_recs+l)*sizeocf(REC))) != NULL) {
prec = pack+pack_recs;
memcpy(prec, rec, sizeof (REC));
pack_recs += 1;
}
else {
fprintf(stderr, "\nERROR: Unable to allocate memory in pack_db()!\n"):
return(0);

}

memcpy(db, pack, pack_recs*sizeof (REC));
free(pack):

return(pack_recs);
}

// -—
SH_INT compare(REC *recl, REC *rec2) ({
if(recl->delta > rec2->delta)
return(1);
else if(recl->delta < rec2->delta)
return(-1);
else
return(0);
}

/1 —-——

void decode(CHAR *string, SH_INT pos, CHAR *fmt, void *val) {
CHAR buf[256];
SH_INT wid;

sscanf(fmt, "%%%1d", &wid):;
memset (buf, ’\0’, 255);

strncpy (buf, string+pos, wid);
sscanf(buf, fmt, val);

return;

}

// - --
SH_INT add rec(SH_INT num recs) {

// Add a new record to the end of the database
// return number of records in db if successful, -1 if not

if((db = (REC *)realloc(db, (num_recs+l)*sizeof(REC))) != NULL) {
rec = db+num_recs;
init_rec():
num_recs += 1;

else {
fprintf(stderr, "\nERROR: Unable to allocate memory in add _rec()!\n");
num recs = -1;
}
return(num recs);
}

// -— -—-

void init_rec(void) {
rec->stn (0] = '\0’;
rec->ist = 0.0;
rec->rate = 0.0;
rec->leng = 0;
rec->offset = -1;
rec->peak = 0;

}
//

rec~>delta
rec->fmp

rec->p_obs
rec->s_obs
rec->p_cal
rec->s_cal
rec->p_wht
rec~>s_wht
rec->p mot
rec->s_mot
rec->p_ons
rec->s_ons

return;

void dump_db(SH_INT num_recs) {

1
//

register i;

FILE *dumpfil;

dumpfil = fopen("SUDSPLOT.DB",

printf("Database dumped tc:

for(i=0;

i<num_recs;

rec = db+i;

fprintf (
fprintf£ (
fprintf(
fprintf (
fprintf (
fprintf (
fprintf (
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (
fprintf£ (
fprintf (
fprintf (
fprintf (
fprint £ (
fprintf(
fprintf (
}

dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,
dumpfil,

fclose(dumpfil);

return;

i++4

"Record #3d\n",

)

"w")

{

Station:
" IST:
" Length:
" Offset:
" Peak:
" Delta:
" FMP:

2
momomhywnuno

"\nll

) .

observed:
observed:
calculated:
calculated:
weight:
weight:

1st moticon:
1st motion:
Onset:
Onset:

’

i

SUDSPLOT.DB\n");

Y
$s\n",
$s\n",
$1d\n",
%1d\n",
$1d\n",

%.1£\n",

%d\n",
%s\n",
$s\n",
$s\n",
$s\n",
$d\n",
%d\n",
$c\n",
$c\n",
$c\n",
$c\n",

rec=->stn);

list_mstime(rec->ist, 4

rec->leng

y:

rec->offset);

rec->peak

rec->fmp);

)i
rec->delta);

list_mstime(
list_mstime(
list_mstime(
list_mstime (

rec->p wht
rec->s_ “wht
rec->p mot
rec->s_mot
xec—)p_ons
rec->s_ons

|
)y
) :
|
)
)l

rec->p_obs,
rec->s_obs,
rec->p_cal,
rec->s_cal,

void s_upper(CHAR *buffer)

CHAR *p:

for(p = buffer;

*p=

*p;

p++)

toupper(*p);

{

G)n Y

)

PN

—

—~— -

e Ne e e

SUDSPROC & SUDSMAN

Programs to Manage the Processing of
Seismic Data Stored in SUDS Format

Version 1.0
May 1992

Robert Banfill
Small Systems Support
2 Boston Harbor Place
Big Water, Utah 84741-0205

|
SUDSPROC & SUDSMAN 1.0 - May 1992

I
'

\
Contents
Getting Started | 3
1.0 Overviewccovevucceeiirnnene fererererernteaseeetteetenerrannreatataaeatetrrnnnas 3
1.1 System ReqUIrements......ccccceeiiieeuiieimiminiiieireneeeeeersreesesnnnananans S
1.2 INStallation.......ccoeenieiieecccce e s 5
SUDSPROC 6
2.0 OVEIVIEW ...ciiiiiiiiicccciriecee s srereceseaceee e e sareaean s aaas s ssseeaeesenannenns 6
2.1 SUDSPROC & SUDSUTIL.INIL....cooiiiiiiiiiicimtreeeeeee e nnneeen s eens 7
2.2 Command-line syntaxi..c..c..... feteereererrrennaniaeeterererareanarrannnnns 8
2.3 Process batch files....................... eeeeereeesetatebes st sesrensbetstesasarane 8
SUDSMAN | 10
0 I 0 1V7-Y oV YOO B SO 10
3.1 SUDSMAN & SUDSUTIL.UNIL. ..ot 10
3.2 Command-line syntax P RS 11
3.3 PROC.BAT ...oooreireereneeesbirerinnns vssmenemsareasossasssssamseasostasnsseens 1
1
\
B s ,

SUDSPROC & SUDSMAN 1.0 - May 1992

Getting Started

1.0 Overview

SUDSPROC and SUDSMAN are components of the IASPEI software libraries.
These programs are designed to automate the processing of data stored in SUDS
format as defined in SUDS Version 1.31, R. Banfill, 8 March 1992 and SUDS:
Seismic Unified Data System, Peter L. Ward, U.S.G.S. Open-file report 89-188, 29
March 1989.

SUDSPROC or the SUDS processing manager is an interactive tool that displays
SUDS and related files on screen and allows the user to process them using a mouse.

This "point and click” method is very intuitive and allows you work closely with the
data.

SUDSMAN or the SUDS data file manager is designed to manage data
acquisition and automated processing. This program is generally used in a
networking environment and manages the movement of files from one machine to
another and spawns batch files to perform processing.

Below I will outline a generic data acquisition and processing system. Note that
several other programs from the IASPEI library are called by this software to
perform the actual processing.

1) A program such as RTP (real-time processor) or XDETECT is used to record
seismic waveforms in SUDS 1.3x format. The file naming convention used
for seismic network data is: YYMMDDNN.WVM, where, YY is the year,
MM is the month, DD is the day, NN is the event number for this day, WV
identifies the file as a SUDS waveform file in multiplexed form and M is the
agency code (M = Menlo Park, A = Alaska, etc.). For data recorded on
portable autonomous digital seismographs (PADS) such as the RefTek
IRIS/PASSCAL instrument, we generally need more accurate time
information as well as a station name in the filename. We have established
the following naming convention for this type of data: TTTTTTTT.SSN,
where, TTTTTTTT is the initial sample time (number of seconds since 1-1-
70 00:00:00) of the earliest waveform in the file represented as a 32 bit
integer in hexadecimal notation, SS is a two alpha-numeric character
station identifier and N is the data stream number. A utility program
named STTIME is provided to convert the hex time filename to/from year,
month, day, hour, minute, second and day of year.

Other naming conventions may be used but these programs expect that
when a list of file specification are sorted in ASCII order, they are in
chronological order as well.

2) SUDSMAN would manage the data files and oversee first order processing
once they are created. Typically, the program would move the file off of the
machine that actually created it (on-line machine) to a working directory on

| |

SUDSPROC & SUDSMAN 1.0 - May 1992

a different machine (off-line machine) for processing. At this point,
SUDSMAN would also copy the original file to tape or optical disk for
archive purposes. SUDSMAN would then call a user supplied batch file
called PROC.BAT to perform automated processing. Below is a outline of a
system that would give a prelimi hypocenter solution and generate
hardcopy records of the data: !

a) Typically network data has IRI%&lme Jode recorded on one channel,
the file would be processed with FIXTIME to correct the initial sample
time and sampling rate. The file would then be demultiplexed with
DEMUX. Once the file is demultiplexed, the filename extension is
usually changed to .DMX.

b) Phase arrivals and coda duration's would then be picked using
SUDSPICK. This information is written to disk in a HYPO71PC
compatible phase file with the same name as the data file and a .PHA
extension.

¢) HYPO71PC would then be d to locate the hypocenter. This
program generates a 'printer output file" named HYPO71PC.PRT.
This file would be renamed to the same name as the data file with a
.PRT extension. This file contai th% hypocenter solution, various
statistics and station information.

d) Finally, SUDSPLOT would be d to create plots of the waveforms
and optionally mark phase ivals and coda duration's on them.
These plots may be printed on most popular laser printers at 300 dot
per inch (dpi) and may be displayed on most display adapter / monitor
combinations.

3) SUDSMAN would check for more data files on the on-line machine. If
another file exists, the process would repeat, otherwise the program will
sleep for a user specified time and then check again. SUDSMAN keeps an
extensive log of all activities will wquing.

4) SUDSPROC can then be ran and jyou peruse the dataset. You might
want to manually re-pick phase, refine the hypocenter solution and re-plot the data
with the updated phase arrivals and solution ‘

Several example batch files will be given to ﬂludtrate this type of processing.

|

i

'\ .1 !
{(;

SUDSPROC & SUDSMAN 1.0 - May 1992

1.1 __ System Requirements

SUDSPROC and SUDSMAN require an IBM compatible personal computer
running PC-DOS or MS-DOS version 3.2 or later. A 80x87 co-processor is not
required. Although these programs do not directly use extended memory, they does
greatly benefit from disk caches and the use of virtual disks (RAM disks) and so
several megabytes (Mb) of extended (or less beneficial, expanded) memory is
recommended.

SUDSPROC requires a Microsoft compatible mouse and driver.
SUDSMAN assumes that your network drives appear as regular DOS drives

Instal

All files on the distribution disk should be placed in a single directory on your
hard disk. This directory should be added the your PATH. These programs look in
their "home" directory (i.e., the directory where SUDSPROC.EXE or
SUDSMAN.EXE are located) for various support files such as the SUDSUTIL.INI,
all of these files should be kept in the same directory. SUDSUTIL.INI contains
initialization information that is needed by both of these programs at start-up.

Below is a general installation procedure:
Insert the distribution disk into drive A: and close the door.

Issue the following commands at the DOS prompt:

C:

MD \SUDS

CD \SUDS
XCOPY A:* *

When copying is complete, you should edit your AUTOEXEC.BAT file to include
C:\SUDS in your PATH statement. Your PATH statement should look something
like this:

PATH C:\;C:\DOS;C:\UTILS;C:\SUDS

If you placed the distribution diskette into a drive other than A:, substitute that
drive letter for A: in the above commands. If you want to install SUDSPLOT on a
drive other than C:, substitute that drive letter for C: in the above commands.
Finally, if you want to install SUDSPLOT in a directory other than \SUDS,
substitute that directory name for \SUDS in the above commands.

Before using these programs, you should reset your computer (press CTRL-ALT-
DEL) so that changes to your configuration will take effect.

-~
ol

I

SUDSPROC & SUDSMAN 1.0 - May 1992

SUDSPROC

2.0 Overview

SUDSPROC looks at data files in a speci

the screen. You may perform various p.

mouse pointer. In order to use SUDSPROC
files to suit your needs. It you are not fami]

your DOS user reference.

During processing, several intermediate
say that RTP generated a SUDS data file n;
discussion of naming conventions). First
creates a new data file named 92040100.D]
and phase list for input to HYPO71PC and

ed directory and displays the files on
sing to these files by simply clicking the
) effectively, you need to edit DOS batch
liar with DOS batch files, please refer to

data files are created. For example, lets
amed 92040100.WVM (see 1.0 for a brief
we would demultiplex the file which
MX. We then pick phases and generate
name it 92040100.PHA. We then locate

the event and create a "printer outpuf
92040100.PRT. SUDSPROC displays the
left is the original data file (92040100.
demultiplexed data file (92040100.D
(92040100.PHA). The next column is for

simply buttons that allow two produce two di

If you have just the .WVM files, they a;
in the next column, SUDSPROC will invo
to perform the processing necessary to
works the same way for each of the other

P file" with HYPO71PC and name it
files in columns on the screen. On the
). In the next column to the right, the
). In the next, the phase list
he .PRT file. The last two columns are
erent types of plots.

pear in the left column. When you click
a batch file (DMX.BAT for this column)

ate the demultiplexed data file. This
umns. |

The menu bar across the top of the screen has two menus on it, the FILE menu

and the EDIT menu. The FILE menu has
the working directory, the filename extens

to use for editing the batch files which brings
menu lists the five batch files and allows you to m:

processing needs and also allows you to edit

options for changing the source directory,
jon for raw data files and the text editor

 to the EDIT menu. The EDIT
ify them on the fly to suit your

SUDSUTIL.INL

It is recommended that you study these batch files closely. The default batch files

provided on the disk are profusely commented

d you should be careful when

modifying them for your particular needs. Each batch file has a comment - rem user
specified processing follows - all of the commands above that point should not be

modified.

SUDSPROC & SUDSMAN 1.0 - May 1992

1 R T

SUDSPROC looks in its "home" directory for SUDSUTIL.INI. This file contains
initialization information for the various SUDS utilities. Each program has a
"section” in SUDSUTIL.INI. SUDSPROC looks for the [SUDSPROC] section and
read the information following the section header. You should read the top portion
of this file for information about structure and comments and should comment
changes thoroughly for future reference. Below is a sample SUDSPROC section
from SUDSUTIL.INI:

[SUDSPROC]
This section contains entries for SUDSPROC 1.01 or later.

Path to data files
SourceDir = D:\Data

Path to working directory
WorkingDir = E:\

Filename extension of raw data files
RawExtension = WVM

Preferred text editor
Editor = QEDIT.EXE

These settings specify the defaults for SUDSPROC. You can override these
settings on the command-line when you invoke SUDSPROC or you may change
them with the options on the FILE menu.

SourceDir specifies the directory that contains the data files that you wish to
process. WorkingDir specifies a temporary working directory. This is so that you
may have SUDSPROC copy the files to a large RAM disk to speed processing.
RawExtension specifies the filename extension used for raw data files. Editor
specifies the name of the editor that you wish to use when editing batch files or
SUDSUTIL.INI from inside SUDSPROC. QEDIT.EXE is simple text editor that is
provided on the distribution diskette.

(o) nd-li tax

' SUDSPROC & SUDSMAN 1.0 - May 1992

SUDSPROC is controlled for the DOS command-line using the following syntax:

SUDSPROC - SUDS - R. Banfill
Usage: SUDSPROC [switches]
Switches:
/Eext - ext = Raw SUDS data file
/Wdir - dir Working directory.

source dir

{1 = optional,

Returns exit code 1 if an error oc
Arguments are not case-sensitive a

These options are equivalent to the settings i

[source dir]

() = default value.

[switches]

name extension.

(WVM)

| (current dir)

Directory containibg files to be processed. (cur dir)

curred, otherwise O.
nd may appear in any order.

SUDSUTIL.INI. Any settings

passed on the command-line will override settings in SUDSUTIL.INI.

2.3 Process batch files

|
|
|
]
|

When SUDSPROC spawns a batch file to perform processing, it passes each
component part of the data file specification separately. This is so that the batch file

call have access to each piece individually
have a fully qualified file specification.

replaceable parameters in batch files, yod

section of your DOS user reference manual.

or may put the pieces back together to
If you are not familiar with using
should| refer to the batch programming

The following batch file is the default

PHA.BAT file provided on the diskette.

Each of the other batch files are very similtT.r to this one.

@Echo off
rem - PHA,BAT
rem - This batch file should accept a demux'ed (.DMX) SUDS file
rem and produce a phase file (.PHA).

|
rem - SUDSPROC passes each componént part of the filespec for the
rem data file separatly so that|you hawve access to each part.
rem $1 = Path to source directory with| trailing backslash
rem $2 = Name of data file without extension
rem $3 = Filename extension of the raw data file
rem $4 = Path to working directory with trailing backslash
rem Additional parameters will be passed if another batch file
rem neededthis batch file to execute before it could do its work,
rem if %5 contains anything, this batch file will not re-invoke
rem SUDSPROC, thus controlwill be returned to the calling batch
rem file.

LR 4

)

Y

.l

'

SUDSPROC & SUDSMAN 1.0 - May 1992

rem - Make sure that we have a .DMX file

if not exist %1%2.DMX call DMX.BAT %1 %2 %3 %4 *

rem - If DMX.BAT did not succesfully execute, bailout
if not exist %1%2.DMX goto error

rem - If we dont have a copy of the DMX file in working dir, get one
echo.

if not exist %4%2.DMX echo Copying %1%2.DMX to %4%2.DMX

if not exist %4%2.DMX copy %1%2.DMX %$4%2.DMX > nul

rem *** Start of user specified processing ***
rem - Pick it

echo.

SUDSPICK %4%2 /B

if errorlevel 1 goto error

rem *** End of user specified processing ***

rem - Copy the phase file back to the source dir

echo.
if not %1 == %4 echo Copying %4%2.PHA to %1%2.PHA
if not %1 == %4 copy %4%2.PHA %1%2.PHA > nul

rem - Delete the phase file from the working directory

if not %1 == %4 echo Deleting %4%2.PHA

if not %1 == %4 del %4%2.PHA

goto end

:error

echo An ERROR occured while processing $%$4%2.DMX
pause

rem - Re-invoke SUDSPROC if it was the calling process
:end
if ™%5" == "" SUDSPROC %1 /E%3 /W%4

The batch files provided on the diskette perform chaining to do catch-up
processing in a situation, for example, where you click in the .PRT column to locate
an event but the file has not been picked yet. In this situation, PRT.BAT would see
that the .PHA does not exist and so it would call PHA.BAT to perform this
processing before it continues. When one batch file calls another it passes a fifth
argument on the command-line, an asterisk (*). This tells the called batch file that
it was called from another batch file and so it should return control to the calling
batch file rather than re-invoking SUDSPROC.

‘
™
(D]
~3

 SUDSPROC & SUDSMAN 1.0 - May 1992

SUDSMAN

3.0 Overview |
SUDSMAN watches for data files to appear

in a specified directory (source

directory). When a file appears, it moves the file to a working directory and spawns
a user supplied batch file named PROC.BAT to process it. This program sleeps

when no files are available in the source directory

and checks at a specified interval

for new files to appear. If several files exist in the source directory, they are

processed from oldest to newest.

3.1 SUDSMAN & SUDSUTIL.INI

Like SUDSPROC, SUDSMAN looks in its home directory for SUDSUTIL.INI. If

found, the program read the entries following

e [SUDSMAN] section header.

Below is a sample [SUDSMAN] section from the default .INI file on the diskette:

[SUDSMAN]

This section contains entrieﬂ for SUDSMAN 1.01 or later.

Run in verbose mode
Verbose

Source directory mask
Mask=* . WVM

Source and destination directiories
Source=D:\CODE\SHELL\TEST
Destination=D:\CODE\SHELL\DEST

Time in seconds after which file

Inactive=120

1s to be considered inactive

Time in seconds to wait between checks for new files

Wait=15

The Verbose entry tells SUDSMAN to display
while it is running. The Mask entry specifies the
directory. This particular entry specifies that all fil
be processed. The Source entry specifies the dire
processed. This is usually on the on-line i
the directory (usually on the off-line mac
processing.

achine.
ine) where the files should be moved to for

status information on the screen
ild card mask used on the source
les with a .WVM extension should
ctory that contains the file to be
The Destination entry specifies

The Inactive entry specifies the time that the program should wait after the
appearance of a file before trying to move it. The purpose of this is to prevent

t longer that the longest possible

data file. The wait entry specifies how often SUDSMAN should check for new data

10

SUDSPROC & SUDSMAN 1.0 - May 1992

3.2 Command-line syntax
SUDSMAN is controlled from the DOS command-line using the following syntax:

SUDSMAN - SUDS file manager, Version 1.01, R.Banfill

Usage: SUDSMAN [switches] source_dir dest_dir

Switches:
/M=mask File name mask for source directory (*.WVM).
/I=n Seconds to wait before a file is inactive.
/W=n Seconds between checks for new files.
/v Verbose mode.
/8 Safety, Copy and process first file only.

Source file will not be deleted.

Argumegts are not case sensitive.
All of these settings can be made in the .INI file.
Command-line setting override settings in the .INI file.

These settings, with the exception of the /S switch are equivalent to the settings
in SUDSUTIL.INI and if specified on the command-line will override the settings in
the .INI file.

The /S switch is provided for debugging purposes. After changing PROC.BAT,
you can use this switch while testing so that you do not lose any data.

PROC.BAT

The following batch file is just an example of what PROC.BAT might look like.
This particular file will archive the original file and then demultiplex, pick, locate
and plot the event before returning to SUDSMAN.

@ECHO OFF

rem This file is shelled to by SUDSMAN every time it copies a file
rem from it's source directory. The filename without the

rem extension is passed as %1.

rem

rem Make sure we have somthing to do.
IF "s1" == "" GOTO END

rem *** All user processing follows ***,

rem - Archive the original file to F:
COPY %1.WVM F:\DATA

rem - Corrent the time
FIXTIME 0 %1.WVM

rem - Copy the file to the RAM disk

coe o

SUDSPROC & SUDSMAN 1.0 - May 1992

COPY %1.wvm D:\ > NUL

rem - Log into the RAM disk
D:

rem - Demultiplex
DEMUX %1.WVM %1.DMX

rem - Pick phases and locate the event
SUDSPICK %1 /b ‘

IF ERRORLEVEL 1 GOTO ERROR

CALL GOHYPO %1 |

rem - Make a plot with everything on it
SUDSPLOT /ml10 %1

IF ERRORLEVEL 1 GOTO ERROR

rem - Archive the phase list and .PRT [file
COPY %1.PHA F:\DATA > NUL ‘
COPY %1.PRT F:\DATA > NUL

|
rem - Clean up the RAM disk for next file
ECHO Y | DEL D:*.* > NUL

rem - Log back into C:
C:

GOTO END
:ERROR
ECHO.
ECHO An Error has occured while proce$sing %1
PAUSE

:END

(o)
O
[

12

Sun 16-Aug-1982 15:48, RB

>>> Notes on SUDSPROC 1.00 <<<

SUDSPROC was written using Microsoft C 6.00AX.
The makefile provided is for use with the PWB.

Libraries required:

UWINMS.LIB

- UltraWin library.

Available from:

Small Systems Support

2 Boston Harbor Place

Big Water, UT 84741-0205
(801) 675-5827 Voice

(801) 675-3730 FAX

The following files are included:

SUDSPROC C

SUDSPRCC MAK

DMX BAT
GCHYPO BAT
PHA BAT
PLOT1 BAT
PLOT2 BAT
PRT BAT

24638

2593

1809

671
1827
1547
1689
1345

12-30-91 5:18p
04-28-92 2:06p
12-31-91 5:16p

12-30-91 4:46p
01-17-92 12:15a

04-28-92 2:16p
04-28-92 2:15p
12-31-91 5:17p

'an)
(D)
)

@Echo off
rem - DMX.BAT

rem - This batch file should take a raw SUDS file, correct the timing,
rem and demultiplex the data creating a |.DMX file.

rem - SUDSPROC passes each component part‘of the filespec for the data file
rem separatly so that you have access td each part.

rem %1 = Path to source directory with trailing backslash, e.g., C:\DATA\
rem %2 = Name of data file without extension, e.g., 91122800
rem %3 Filename extension of the raw data file, e.g., WVM
rem %4 Path to working directory with trailing backslash, e.g., D:\

i |
rem Additional parameters will be passed if another batch file needed
rem this batch file to execute before it could do its work, if %5 contains
rem anything, this batch file will not ze-invoke SUDSPROC, thus control
rem will be returned to the calling batch file.

rem -~ Make sure we have the data file
if not exist %1%2.%3 goto end

rem *** Start of user specified processing ***

rem - Fix the time

echo.

echo Fixing time %1%2.%3

FIXTIME 0 %1%2.%3 ‘

rem - Copy the time corrected raw data file to the working directory
echo.

if not %1 == %4 echo Copying %1%2.%3 to %4%2.%3

if not %1 == %4 copy %1%2.%3 %4%2.%3 > nul

rem - Demux the file

echo.

echo Demuxing %4%2.%3

DEMUX %4%2.%3 %4%2.DMX

rem DEMUX16 %1%2.%3 %4%2.DMX

rem - Copy the DMX file back to the source dlrec&ory, but leave a copy
rem in the working directory

echo. Mi

if not %1 == %4 echo Copying %4%2.DMX to &1%2.0

if not %1 == %4 copy %43%2.DMX %1%2.DMX > nul

rem - Delete the raw data file from the working %irectory
if not %1 == %4 echo Deleting %4%2.%3

if not %1 == %4 del %4%2.%3

rem *** End of user specified processing |x**

rem - Re-invoke SUDSPROC if it was the chling process

:rend
if "%5" == "" SUDSPROC %1 /E%3 /W%4 [

moA

. ¢
o aite

Recho off
REM - GOHYPO.BAT 28-Dec~1991 01:59, RB

REM - This is the directory were hypo7lpc.hdr is located
REM - This must have the trailing backslash
set hdr_dir=C:\SUDS\

if not exist %l.pha goto errorl
if not exist %hdr_dirthypo7lpc.hdr goto error2

copy %thdr_dirthypo7lpc.hdr+%l.pha hypo7ix.inp > nul
hypo71x

if not exist hypo7l1x.prt goto error3
copy hypo7lx.prt %l.prt > nul

del hypo71x.inp

del hypo71x.prt

goto end

ierrorl

echo ERROR: %1.PHA does not exist!
pause

goto end

:errox2

echo ERROR: %$hdr_ dir%HYPO71PC.HDR does not exist!
pause

goto end

:error3
echo ERROR: Hypo71 did not process %1.PHA!
pause

cend
set hdr_dir=

@Echo
rem -

rem -
rem

rem -
rem

rem
rem
rem
rem

rem
rem
rem
rem

rem =

off
PHA.BAT
This batch file should accept a demux’ed (.DMX) SUDS file and produce

a phase file (.PHA).

SUDSPROC passes each component part of the filespec for the data file
separatly so that you have access to each part.

%1 = Path to source directory with trailing|backslash, e.g., C:\DATA\
$2 = Name of data file without extension, e,g., 91122800

$3 = Filename extension of the raw data file, e.g., WVM

%4 = Path to working directory with [trailing backslash, e.g., D:\

Additional parameters will be passed if another batch file needed
this batch file to execute before it could do its work, if %5 contains
anything, this batch file will not re-invoke SUDSPROC, thus control
will be returned to the calling batch file.

Make sure that we have a .DMX file

if not exist %1%2.DMX call DMX.BAT %1 %2 %3 %4 *

rem -

If DMX.BAT did not succesfully execute, bailout

if not exist %1%2.DMX goto error

rem *** Start of user specified processing ***

rem -
echo.

o

If we dont have a copy of the DMX file in the working dir, get one

if not exist %4%2.DMX echo Copying %1%2.DMX to %4%2.DMX
if not exist %4%2.DMX copy %1%2.DMX %4%2.DMX > nul
|

rem -
echo.

SUDSPICK %4%2
if errorlevel 1 goto error

rem -
echo.

Pick it [

Copy the phase file back to the source dir

if not %1 == %4 echo Copying %4%2.PHA to E1%2.PHA
if not %1 == %4 copy %4%2.PHA %1%2.PHA > nul

rem - Delete the phase file frcm the workgng directory
if not %1 == %4 echo Deleting %4%2.PHA
if not %1 == %4 del %4%2.PHA

rem *** End of user specified processing ***

goto end

exror

echo An ERROR occured while processing %4%2.DMX

pause

rem - Re-invoke SUDSPROC if it was the chling process

cend

if "35" == mv SUDSPROC %1 /E%3 /W%4 [

@Echo off
rem - PLOT1.BAT

rem - This batch file should produce the first type of plot, e.g. just
rem the raw data.

rem - SUDSPROC passes each component part of the filespec for the data file
rem separatly so that you have access to each part.

rem %1 = Path to source directory with trailing backslash, e.g., C:\DATA\
rem %2 = Name of data file without extension, e.g., 91122800

rem %3 = Filename extension of the raw data file, e.g., WVM

rem %4 = Path to working directory with trailing backslash, e.g., D:\

rem Additional parameters will be passed if another batch file needed

rem this batch file tc execute before it coculd do its work, if %5 contains
rem anything, this batch file will not re-invoke SUDSPROC, thus control
rem will be returned to the calling batch file.

rem - Make sure that we have a .DMX file

if not exist %1%2.DMX call DMX.BAT %1 %2 %3 %4 *

rem - If DMX.BAT did not succesfully execute, bailout
if not exist %1%2.DMX goto error

rem *** Start of user specified processing **=*

rem - If we dont have a copy of the DMX file in the working dir, get one
echo.

echo Checking for %2.DMX in %4, copying if required

if not exist %4%2.DMX copy %1%2.DMX %4%2.DMX > nul

rem SUDSPLOT /X /M10 /T* %4%2
SUDSPLOT /M10 %4%2 /Pl
if errorlevel 1 goto error

rem *** End of user specified processing ***

goto end

:error

echo An ERRCR occured while processing %4%2.DMX

pause

rem - Re-invoke SUDSPROC if it was the calling process

:end
if "%5" == "" SUDSPROC %1 /E%3 /W%4

|
|
|
@Echo off /
rem - PLOT2.BAT :

rem - This batch file should produce a second type of plot, e.g. by
rem epicentral distance with phase arrivals marked, and so on.

rem - SUDSPROC passes each component part of the filespec for the data file
rem separatly so that you have access to each part.

Path to source directory with t‘ailing backslash, e.g., C:\DATA\

rem %1 =

rem $2 = Name of data file without extension, e.g., 91122800

rem %3 = Filename extension of the raw ta filge, e.g., WVM

rem %4 = Path to working directory with trailing backslash, e.g., D:\

|
rem Additional parameters will be passed| if another batch file needed
rem this batch file to execute before it| could do its work, if %5 contains
rem anything, this batch file will not re-invoke SUDSPROC, thus control
rem will be returned to the calling batch file.

rem - Make sure that we have a .PRT file
if not exist %1%2.PRT call PRT.BAT %1 %2 %3 %4 * |

rem - If PRT.BAT did not succesfully execute, bailout
if not exist %1%2.PRT goto error

rem *** Start of user specified processing ***

rem - If we dont have a copy of the DMX fille in the working dir, get one
echo.
echo Checking for %2.DMX in %4, copying if| required
if not exist %4%2.DMX copy %1%2.DMX %4%2.DMX > nul

rem - Plot it
echo.

rem SUDSPLOT /X /T* /M10 /A /W3 /S%1%2.prt %1
SUDSPLOT /M10 /A2 %4%2
if errorlevel 1 error

rem Cleanup the working directory i |
if not %1 == %4 del %4%2.DMX |

rem *** End of user specified processing *** f
goto end

:error

echo An ERROR occured while processing %4%2.DMX
pause

|
rem - Re-invoke SUDSPROC if it was the ca‘ling prLcess
:end
if "%5" == "" SUDSPROC %1 /E%3 /W%4 f

@Echo off
rem -~ PRT.BAT

rem - This batch file should take a phase file (.PHA) and locate the
rem earthquake, producing a .PRT file.

rem - SUDSPROC passes each component part of the filespec for the data file
rem separatly so that you have access to each part.

rem %1 = Path to source directory with trailing backslash, e.g., C:\DATA\
rem $2 = Name of data file without extension, e.g., 91122800

rem $3 = Filename extension of the raw data file, e.g., WVM

rem $4 = Path to working directory with trailing backslash, e.g., D:\

rem Additional parameters will be passed if another batch file needed

rem this batch file to execute before it could do its work, if %5 contains
rem anything, this batch file will not re-invoke SUDSPROC, thus control
rem will be returned to the calling batch file.

rem - Make sure that we have a .PHA file

if not exist %1%2.PHA call PHA.BAT %1 %2 %3 %4 *

rem - If PHA.BAT did not succesfully execute, bailout
if not exist %1%2.PHA goto error

rem *** Start of user specified processing **x

call GOHYPO %1%2
if not exist %1%2.PRT goto error

rem *** End of user specified processing **x*

goto end

error

echo An ERROR occured while processing %1%2.PHA

pause

rem - Re-invoke SUDSPROC if it was the calling process

:end
if "%5" == " SUDSPROC %1 /E%3 /W%4

C.

(@]
*
]

D:\CODE\SUDSPROC\sudsproc.c
20-Dec-1991 15:57, RB
/

* % A N % ¥ ¥ *

char version([] = "SUDSPROC Version 1.01";

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <dos.h>
#include <io.h>
#include <errno.h>
#include <direct.h>
#include <stdarg.h>
#include <process.h>

#include <uw.h>
#include <uw_globxz.h>
#include <uw_keys.h>

void build menus(void);
void build window(void):
int build dir(void):

int display dir(void)
void write line(int, int):
int handle event(void);
void handle_menu(int);
void dialog_box(char *, char *, int);
void first_screen(void)
void error(char *, ...);
void 5_upper(char *);

int comp(char *, char * });
void invoke(char *, int);
void edit(char *);

void ini(void);

typedef struct {
char name({9];
char raw(4];
char dmx(4];
char pha{4];
char prt{4];
} INDEX;

struct {
char raw(4];
char dmx([4];
char pha(4];
char prt(41];
} ext;

char s_dir{ MAX DIR];

char w_dir[_MAX DIR]:

char editor{_MAX PATH];
char prog_path[_MAX PATH];
char ini_file[_ MAX PATH];

INDEX *files;
int entries = 0;

WINDOW main_wn, *wnp = &main_wn;
WINDOW dialog_wn, *dnp = &dialog_wn;

int t_row, b_row, t_rec;
int wins = 0;

|

SUDSPROC.C - SUDS data file processing manager

~ e

S

MENU top_menu, *top_mnp = &top_menu;
MENU file menu, edit_menu;

MENU *drop_mnps[2]:

// Pull-down menu item ID’s
#define SOURCE_DIR 10
#define RAW EXT 11

#define EDITOR 12
#define ABOUT 13
#define EXIT 14
#define WORK_DIR 15
#define DMX 20
#define PHA 21
#define PRT 22
#define PLOT1 23
#define PLOT2 24
#define INI 25

//***
main(int argc, char *argv(]) {

register 1i;

char *j, buf [MAX PATH];

strepy(prog_path, argv{0]);
j = strrchr(prog_path, "\\’)+1;
*3 = "\0";

// Defaults

strepy(ext.raw, "WVM"
strcpy(ext.dmx, "DMX"
strcpy(ext.pha, "PHA"
strcpy(ext.prt, "PRT"
s_dir[0] = "\0';
w_dir[0] = "\0’;
strcpy (editor, "QEDIT.EXE");

e Se e N

strcpy(ini_file, prog path):
strcat(ini_file, “SUDSUTIL.INI"):;
ini()

if(argv(11([0] == 2" || argv[l][1] == "2’)
printf("SUDSPROC - %.4s - R. Banfill\n\n", version }:;
printf("Usage: SUDSPROC [switches] [source_dir] [switches]\n\n");
printf("Switches:\n");

printf(" /Eext - ext = Raw SUDS data filename extension. (%s)\n\n", ext.raw);
printf(" /Wdir - dir = Working directory. (current dir)\n");
printf(" source_dir = Directory containing files to be processed. (current dir)\n\:

printf("[] = optional, () = default value.\n\n");
printf ("Returns exit code 1 if an error occurred, otherwise 0.\n");
printf("Arguments are not case-sensitive and may appear in any order.\n");
exit(1);
}
for({ i=1; i<argc: i++) {
if(argv([i]([0] == 7/’ || argv[i][0] == "=) {
switch(argv({i] (1]) {
// Raw extension
case 'e’:
case 'E’:
strncpy(ext.raw, &argv[i][2], 3):
s_upper(ext.raw);
break;
// Working directory
case ’‘w’:
case 'W':
strncpy(w_dir, &argv[il[2], 3):
break;
}
}
else
// Source directory
strcpy({ s_dir, argv(i]):

if(s_dirx[0] == ’\0’)

getcwd(s_dir, _MAX PATH)
if(w_dir{0] == "\0’)

getcwd(w_dir, _MAX PATH);

_fullpath(buf, s_dir, _MAX PATH);
strepy(s_dir, buf);

s_upper(s_dir)

_fullpath(buf, w_dir, _MAX PATH); ‘
strcpy(w_dir, buf); J
s_upper(w_dir);

j = s_dir+strlen(s_dir)-1;
if(*3 = "\\")

strcat(s_dir, "\\"):
j = w_ dir+strlen(w_dir)-1;
if(*3 !'= "\\/

strcat(w_dir, "\\");

if(build_dir() != 0)
exit(1);

if (display dir() != 0)
exit(1)

exit(0);
}
//*************************************** Kk kdkkhkhkkkdkkdkkdkdkhhkkdkhkkkkkkkrk
int display_dir(void) {

register i, 3:

int key: ’

build_window();
build menus():

’
’

I O
ho

e

(a2 S
[Ba I BN

_row = 0;
ow 21;

|
|
. |
|

o

first_screen()

// Navigation loop
while(key != KEY ESC) {
key = handle_event();

switch(key) {
case(KEY_ DN): // Scroll down
if(t_rec < entries-1) {
t_rec++;
3 = t_row;
for(i=t_rec; i<entries; i++) {
write_line(j, i)
if(3 < b_row) {
J4+;
else (
break:
}
if(j < b_row) {
mv_cs(1, j, wnp)
wn_cleos(wnp);

case(KEY_UP): // Scroll up
if(t_rec >= 1) {
t_rec——;
j = t_row;
for(i=t_rec; i<entries; i++) {

ol

|
}
} f
break;

write_line(j, i)
if(j < b_row)
J++;
else
break;

}
if(j < b_row) {
mv_cs{ 1, j+1, wnp):;
wn_cleos(wnp };
}
}
break:
case(KEY_PGDN): // Page down
if(t_rec < entries-1) |{
t_rec += 20;
if(t_rec >= entries-1l)
t_rec = entries-1;
j = t_row;
for(I=t_rec; i<entries; i++) {
write_ line(j, i):
if(3 < b_row)
J++;
else
break;

}
if(j < b_row) {
mv_cs(1, j, wnp);
wn_cleos(wnp)
}
}
break;
case(KEY_PGUP): // Page up
if(t_rec >= 1) {
t_rec -= 20;
if(t_rec < 0)
t_rec = 0;
j = t_row;
for(i=t_rec; i<entries; i++) {
write_line(Jj, i):
if(jJ < b_row)
J++;
else
break;
}
if(j < b_row) {
mv_cs(1, j+1, wnp)
wn_cleos(wnp);
}
}

break:;
case(KEY _HOME): // Home
if(t_rec !'= 0) {
t_rec = 0;

j = t_row;
for(i=t_rec; i<entries; i++) {
write line(j, i)
if(j < b_row)
J++;
else
break;

}

if(j < b_row) {
mv_cs{ 1, j+1, wnp);
wn_cleos(wnp);

}

}

break;
case(KEY_END): // End
if(t_rec != entries-22) {

t_rec = entries-22;
if(t_rec < 0)
t_rec = 0;

S

NIV RV

}

//*******t'k**'k**'k**’k*********tt*******t***
int handle_event(void) {

j = t_row;

write_line(j, i);
if(j < b_row)
J++;
else
break;

}
if(j < b_row) {
mv_cs(1, j+1, wnp);
wn_cleos(wnp);
} |
) |
break;

I

remove_window(wnp);

wn_destroy(wnp);

end_mouse();
end_video():

return(0); ‘

register i;
int elevator, file, id;
char str[80];

wn_vline(14, SGL_BDR, wnp);
wn_vline(29, SGL_BDR, wnp);
wn_vline(44, SGL_BDR, wnp);
wn_vline(59, SGL _BDR, wnp);
wn_vline(68, SGL_BDR, wnp);
sprintf(str,
wn_name (str, wnp);

wn_border(wnp); ‘

mv_cs(78, 0, wnp)

for(I=t_rec; i<entries; i+T)

wn_ch("\x18',
mv_cs(78, 1,
wn_co(20,
mv_cs{ 78, 21,

wnp)¢
wnp);

‘\xBl’, wnp):

wnp);

wn_ch(“\x19’, wnp);

LS SR EE SRR SRR EREREEEE

" %s %d Events ", s_dir, entries|);

elevator = (int) ((20.0/(float)entries)*(float)t_rec)+l;

if(elevator > 20)
elevator = 20;

mv_cs(78, elevator, wnp):

wn_ch("\xDB’, wnp);

// Event loop

while(1) {
Event .key = 0;
menu_set (top_mnp);

m_show()7

id = menu_system(top_mnp, drop_mnp%, 0);

m_hide()

if(id !'= 0) {
handle_menu{(id);
Event .key = 0;

break:
}
else {
if(Event.is_mouse) |
if (Event.m x == 79) |

if(Event.m y == 23)
return(KEY DN);

else if(Event.m y == 2)
return(KEY UP);
else if(Event.m_y > elevator+2 && Event.m y < 23)
return(KEY_PGDN)
else if(Event.m y < elevator+2 && Event.m y > 2)
return(KEY_PGUP);
}
else if(Event.m_x > 15 && Event.m x < 30) {
file = t_rec+(Event.m y-2);
if(file < entries)
invoke ("DMX.BAT", file);
}
else if(Event.m_x > 30 && Event.m x < 45) {
file = t_rec+(Event.m y-2);
if(file < entries)
invoke ("PHA.BAT", file):

else if(Event.m x > 45 && Event.m x < 60) {
file = t_rec+(Event.m y-2);
if(file < entries)
invoke ("PRT.BAT", file):

else if(Event.m_x > 60 && Event.m x < 69) {
file = t_rec+(Event.m _y-2);
if(file < entries)
invoke("PLOT1.BAT", file):;
]
else if(Event.m_x > 69 && Event.m x < 78) {
file = t_rec+(Event.m y-2);
if(file < entries)
invoke ("PLOT2.BAT", file):

}
else
break;

}

return(Event.key):
}

//***********)\"k**

void handle_menu(int i) {
char *3j, buf[_MAX PATH]:

switch(i) {

case EXIT:
wn_destroy(wnp):
end_mouse();
end_video();
exit(0);

case ABOUT:
wn_create(20, 5, 60, 16, DBL_BDR, WN_NORMAL, dnp };
wn_color(BLACK, LIGHTGRAY, dnp):
wn_bdr_color({ BLACK, LIGHTGRAY, dnp);
add_window(dnp)
wn_plst (CENTERED, 1, version, dnp);
wn_plst (CENTERED, 3, "SUDS Data Processing Manager™, dnp);
wn_plst (CENTERED, 5, "Robert Banfill", dnp);
wn_plst (CENTERED, 6, "Small Systems Support"”, dnp):
wn_plst (CENTERED, 7, "Big Water, UT 84741", dnp);
wn_plst (CENTERED, 8, " (801) 675-5827", dnp);
wait_event ();
Event.key = 0;
remove_window(dnp);
wn_destroy(dnp)’
break;

case SOURCE_DIR:
dialog_box(" Enter path to new source directory ", s_dir, 64);
_fullpath(buf, s_dir, _MAX PATH);
strcpy(s_dir, buf):

s_upper(s_dir):

if(s_dir(0] == "\0’) {
getcwd(s_dir, _MAX_PATH);
strcat(s_dir, "\\");

else {
j = s_dir+strlen(s_dir)-1;
if(*3 1= "\\/

strcat(s_dir, "\\");

}
build dir();
first_screen():
break;
case WORK_DIR:
dialog_box({ ™ Enter path to new
_fullpath(buf, w_dir,
strepy(w_dir, buf);
if(w_dir[0] == '\0") {
getcwd(w_dir, _MAX PATH);
strcat(w_dix, "\\");
}
else {
j = w_dir+strlen(w_dir)-1;
iIf(*F 1= "\\")
strcat(w_dir, "\\"):;
}
s_upper(w_dir);
build dir();
first_screen();
break:;
case EDITOR:
dialog_box(" Enter name of text
break;
case RAW_EXT:
dialog _box{ " Enter filename exté
s_upper(ext.raw);
build_dir()
first_screen():
break:;
case DMX:
edit ("DMX.BAT");
break;
case PHA:
edit ("PHA.BAT"™):
break;
case PRT:
edit ("PRT.BAT");
break:;
case PLOTIL:
edit ("PLOT1.BAT"
break;
case PLOT2:
edit ("PLOT2.BAT");
break:;
case INI:
edit (ini_file);

)

-

‘ |
orking #irectory ", w_dir, 64);

_MAX_PATH ‘) ;

editor ™, editor, 64);

tnsion of raw data files ", ext.raw,

wn_create{ 10, 5, 70, 11, DBL_BDR, WN_NORMAL, dnp);

wn_color(BLACK, LIGHTGRAY, dnp
wn_bdr_color(BLACK, LIGHTGRAY,
add_window(dnp)’
wn_plst(CENTERED, 1, "Do you w
wn_plst (CENTERED, 3, "[Yes] [
m_show();
wait_event ();
m_hide();
Event .key = 0;
remove_window(dnp };
wn_destroy(dnp)’
if((Event.m_y == 9)
ini()
build dir()
first_screen():

&&

)i
dnp):

sh for
O] ",d.np

”)
A

);

((Event. m_x > 34) && (Event.m x < 40))) |

|

/

)
J

o

3)

thanges to take effect?”,dnp);

}
break;
}

return;
}

//***‘k*****************‘k*******

void dialog_box(char *title, char *str, int len) {
char mask{65], temp[65), new[65];

memset (mask, ’'_’, 64);
mask([64] = "\0‘;
memset (temp, '*', 64):
temp([64] = '\0’;
memset (new, '\0’, 64);
newl[64] = "\0';

wn_create(6, 5, 73, 8, DBL_BDR, WN_NORMAL, dnp);
wn_color(BLACK, LIGHTGRAY, dnp):

wn_bdr_ color(BLACK, LIGHTGRAY, dnp);

wn_name(title, dnp):

add_window(dnp)

mv_cs(1, 0, dnp):
wn_printf(dnp, “"Current: %s", str);
mv_cs(1, 1, dnp)
if(wn_gets(new, mask, temp, ((CYAN<<4) |BLACK),
STRIP_ON, dnp) == KEY_ ENTER)
strncpy(str, new, len);

remove_window(dnp)
wn_destroy(dnp);

Event .key = 0;

return;

}

//***

void first_screen(void) {
register i;

wn_clear(wnp);
t_rec = 0;

// Write out entries
for(i=0; i<entries; i++) {
if(i <= b_row)
write_line(t_row+i, i);
else
break;
}
return;
}

//***
void write_line(int line, int rec) {
mv_cs(1, line, wnp);
wn_printf(wnp, "%-8s%c%3s %-B8s%c%3s ¥-8s%c%3s $-8s%c%3s Plot 1 Plot 2",
(files{rec].raw[0] ? files[rec].name : " "),
(files[rec].raw(0] r.f 7 7y, files[rec].raw,
(files[rec] .dmx (0] files[rec] .name : "Demux"),
(files{rec) .dmx (0] r.r . 7y, files[rec] .dmx,
(files{rec].pha[0] files([rec] .name : "Pick"),
(files [rec] .pha (0] r.f 7y, files[rec].pha,
(files[rec] .prt[0] files[rec] .name : “Locate"),
(files[rec] .prt[0] r.t 7 ")y, files[recl.prt);
return;

PRI ISR IO RS RPN)

|

//********t******************************4***********************2*****
void invoke{ char *batch, int i) {

wn_destroy(wnp);
end_mouse():
end_video():

if(spawnlp(P_OVERLAY, batch, batch, §_dir, files[i].name, ext.raw,
w dlr, NULL) == ~1)
error("Unable to spawn process: %s", batch|);

return; ' {
}

//***

void edit(char *file) {
char buf{_ MAX PATH];

if(file([l] != ’:') { !
strcpy(buf, prog_path):
strcat(buf, file):;
}
else
strepy(buf, file);

if (spawnlp(P_WAIT, editor, editor, buf, NULL) == -1)
error("Unable to spawn task: 3%s", editor)

refresh_desktop();

return;

}

//*********************************ttt*t*****t**i*2********************
void build window(void) {

wins = 1;

init_video(80, 25);

init_mouse();

if (!'Mouse_exists) |
error("This program requires a Microsoft ¢r compatible mouse!™);

wn_create(0, 1, 79, 24, DBL_BDR, WN_NORMAL, wnp);

wn_color (LIGHTGRAY, BLUE, wnp }: Nr

wn bdr _colox(WHITE, BLUE, wnp);

add w1ndow(wnp)

return;

}

//*****************t*****tt*tt*t*i*xt***t******************************

void build_menus(veoid) {
int id, i,

back_att = (LIGHTGRAY << 4) | BLACK,
bdr_att = (LIGHTGRAY << 4) | BLACK, !
csr_att = (CYAN << 4) | WHITE,

first_att = (LIGHTGRAY << 4) | DARKGRAY;

// Menu bar

menu_create(0, 0, 79, 0, M _HORIZONTAL, back_att, bdr_att, csr_att,
first_att, NO_BDR, WN_NORMAL t"jp mnp) ;

item add(" File ", 1, 1, &top_menu);

item_add(" Edit ", 2, 1, &top_menu)

|

drop_mnps (0] = &file_menu;

drop_mnps (1] = &edit_menu; }

// File menu }

menu_create(0, 1, 20, 10, M_VERTICAL, back_att, bdr_att, csr_att,
first_att, DBL_BDR, WN_NORMAL, drop_mnps[0]);

item_add(" Source Dir... ", 10, 1 &flle menu),

item_add(" Working Dir... v, 15, &file menu

1

’

item _add(" Raw extension... ™, 11, 1, &file menu
, 12, 1 menu

~— —

item_add(" Text editor... * &file ;

item add(" ~~~~"°~ TEssemmms ", 98, 0, &file_menu

')
item_add(" About SUDSPROC...", 13, 1, &file menu);
item add(™ ~~TTTTTTTeTeTesss ", 99, 0, &file_menu):;
item add(" Exit ", 14, 1, &file_menu):

// Edit menu
menu_create(6, 1, 21, 9, M_VERTICAL, back_att, bdr_att, csr_att,
first_att, DBL_BDR, WN_NORMAL, drop_mnps([l]):

item add(" DMX.BAT ", 20, 1, &edit_menu);
item add(" PHA.BAT ", 21, 2, &edit_menu
item_add(" PRT.BAT ", 22, 2, &edit_menu
item_add("™ PLOT1.BAT ", 23, 5, &edit_menu

”

item add(" PLOTZ2.BAT
item add(™ ~--- = oo "

87, 0, &edit_menu
item add("™ SUDSUTIL.INI"

25, 1, &edit_menu

L T R Y

4
14
14
, 24, 5, &edit_menu
’
’

return;
}

//*******i***
int build dir(void) !

register j:

int miss;

struct find t fi;

char *ex, *p, name[9], buf[_MAX PATH];

entries = 0;

strcpy(buf, s_dir):
strcat (buf, "*.*");

// Get RAW and .DMX files
if(_dos_findfirst(buf, _A NORMAL, &fi) != 0)
error("No files in source directory: %s", s_dir);

do {
// Separate name and extension
ex = &fi.name{0];
p = &name[0];

while(*ex != 7.7)
*p++ = *ex++

*» = '\0';

ex++;

// Get RAW and .DMX files
if((strncmp(ex, ext.raw, 3) == 0) ||
(strncmp(ex, ext.dmx, 3) == 0)) {

// Look up this name
jo=0;
while(strcmp(name, files([j).name) != 0) {
if(j >= entries) {
entries++;
if((files = (INDEX *)realloc(files, entries*sizeof (INDEX))) == NULL)
error("Not enough memory!"):
memset (&files([j]l, O, sizeof (INDEX)):;
strcpy(files[j].name, name);
break;
}
J++7
}
if(strncmp(ex, ext.raw, 3) == 0)
strcpy(files([jl.raw, ex);
else if(strncmp(ex, ext.dmx, 3) == 0)
strepy(files(j]l.dmx, ex);
}
} while(_dos_findnext(&fi) == 0):

// Get other files
if(_dos_findfirst(buf, _A NORMAL, &fi) != 0)
error{ "No files in source directory: %s", s_dir);

)

N I
\

bos

do {
// Separate name and extension
ex = &fi.name{0];
p = &name(0];
while(*ex != *.’)
*p++ = *ex++ ;
*p = \07;
ex++;

// Get PHA and PRT files
if((strncmp(ex, ext.pha, 3) == 0
(strncmp(ex, ext.prt, 3) == 0
// Look up this name
= 0; |
while(strcmp(name, files([j].name) != 0) {
if(j >= entries)
break;
else
J++;
}
if(strncmp(ex, ext.pha, 3) == 0)
strcpy{ files[j].pha, ex);
else if(strncmp(ex, ext.prt, 3 |) == 0
strcpy(files{j]l.prt, ex); #

}
} while(_dos_findnext(&fi) == 0);

if(entries == J)
error("No data files in source dir%ctory: ks", s_dir);

// Sort
gsort ((void *)files, (size_t)entries, sizeof (INDEX), comp)

return(0);
}

int comp(char *strl, char *str2) |{
return(strcmp(strl, str2));

}

|
//’********************t********************x*****1**********************

// Report error and shut down
void error(char *fmt, ...) {
char err_label(128] = "\nERROR: ";

va_list marker;
va_start(marker, fmt);

if(wins) {
remove_window(wnp)
wn_destroy(wnp);
end_mouse();
end_video()

}

strcat(err_label, "\n");

// Report the error

\
strcat (err_label, fmt);
viprintf(stderr, err_label, marker); (

va_end(marker); (

// Bail out
exit(1); 0
}

//****X*t'k***x***********k********‘k***** *******Lk******r**********rx*‘k*
'

void s_upper(char *buffer) {

char *p;
for(p = buffer; *p; p++)
*p = toupper(*p);
}

//***
void ini(void) {

register i;

FILE *inifil;

char buf([256], *p, *j;

if((inifil = fopen(ini_file, "r")) == NULL) {
fprintf(stderr, "\nWARNING: Unable to open initialization file: $s\n", ini_file):
return;

}

buf{0] = "\0’;

// Find the [SUDSPROC] section
do {
if(feof(inifil))
break:;
fgets(buf, 255, inifil): .
s_upper(buf);
} while(strncmp(buf, "[SUDSPROC]", 7) != 0);

// Read entries
do {
if(feof(inifil))
break;
fgets(buf, 255, inifil);
s_upper(buf);

// Strip trailing line-~feeds
if((p = strchr(buf, 10)) != NULL)
*p = '\0’;

if(strncmp(buf, "SQURCEDIR", 9) ==
if((p = strchr(buf, =")) !=
p++i
while(*p == ¢ 7)
p++;
strepy(s_dir, p)
if(s_dir[0] == "\0’)
getcwd(s_dir, _MAX_PATH);
_fullpath(buf, s_dir, _MAX PATH);
strcpy(s_dir, buf);
s_upper(s_dir);
j = s_dir+strlen(s_dir)=~1;
IE(*3 1= '\\")
strcat(s_dir, "\\");
}
continue;
}
if(strncmp(buf, "WORKINGDIR", 10) == 0) {
if((p = strchr(buf, "=’)) != NULL) {
p++;
while(*p == ' 7)
pt+;
strepy(w_dir, p);
if(w_dir([0] == "\0’)
getcwd(w_dir, _MAX PATH);
_fullpath(buf, w_dir, _MAX PATH);
strcpy(w_dir, buf);
s_upper(w_dir);
j = w_dir+strlen(w_dir)-1;
if(*3 = '\\’)
strcat (w_dir, "\\");
}
continue;
}
if£(strncmp(buf, "RAWEXTENSION", 12) =

0)

D

-
d—'\‘

pt+:
while(*p == ' 7)
p++;
strncpy(ext.raw, p, 3)
s_upper(ext.raw); i

continue;
}
if(strncmp(buf, "EDITOR", 4) == 0
if((p = strchr(buf, ’'=")) !=
pt+:
while(*p == ' ')
pt+t;

strcpy(editor, p):
s_upper(editor):

continue;

}
} while(buf[0] != [’);

fclose(inifil);
return;

) |
NULL)

|
|
|
|

[

|
if((p = strchr(buf, ‘=)) !=]NU<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>