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Introduction

The U.S. Geological Survey’s PRISM (Pliocene Research Investigations and Synoptic Mapping)
Project is conducting multi-disciplinary research on paleoclimatic conditions during the middle
Pliocene, the last period of sustained warmth in Earth history. Mapped paleoclimatic data from this
period will be used to validate numerical-model simulations of past climates, and will thus aid in the
improvement of these models’ ability to predict climates substantially different from that of today.
Additionally, these data may provide insights into the nature of regional climatic patterns in a
warmer-than-modern global climate and help determine the nature, amplitude, and timing of
paleoclimatic variations within this warm period.

In an effort to extend the geographic coverage of the PRISM data set and to increase
knowledge of Pliocene paleoclimatic variations in the interior of North America, a 989-ft (301-m)-
long sediment core was obtained from the Bruneau and Glenns Ferry Formations near the town of
Bruneau, Idaho. This report presents basic coring data and palynological counts from this core,
and some preliminary observations on their possible paleoclimatic significance.

Stratigraphic and Temporal Framework

Sedimentary deposits discussed in this report are assigned to the Glenns Ferry and Bruneau
Formations of Malde and Powers (1962). These formations are part of the “Idaho Group” of
lacustrine, fluvial, and flood plain sediments that were deposited from late Miocene through early
Pleistocene time in a subsiding basin on the western Snake River Plain in southwestern Idaho.
Through much of this time, small volcanoes episodically erupted on the western Snake River Plain
and deposited thick sequences of basalt in many areas.

The Pliocene Glenns Ferry Formation deposits occur in sequences up to ~2000 ft (610 m)
thick along the axis of the Snake River from near Twin Falls, Idaho, to easternmost Oregon (Malde
and Powers, 1962; Malde, 1991; fig. 1). The lacustrine facies of this formation contains fish
remains that suggest a deep, cold lake, similar to Lake Baikal and the Upper Great Lakes today
(Smith et al., 1982, Smith, 1987). The ostracode fauna contains many "exotic" (strange, now-
extinct) species that Forester (1991) interpreted as reflecting evolution in a large, long-lived lake.

For parts of its history, the Glenns Ferry lake had a lake margin elevation as high as 3576 ft
(1090 m; Smith, 1987) to 3800 ft (1159 m; Jenks and Bonnichsen, 1989), and the margins have
remained little altered by tectonic activity in the period since the lake desiccated (Jenks and
Bonnichsen, 1989). The elevation of the Bruneau core site (discussed below) is ~2925 ft (892 m)
and thus the shoreline of Glenns Ferry lake at its maximum was 651 to 875 ft (198 to 267m) above
the core site. It is probable that subsidence lowered the elevation of the central basin while
sediments were accumulating, but nevertheless it appears that the Bruneau site was under deep
water for much of Glenns Ferry time.

Biogeographic and chemical data suggest that the Glenns Ferry lake had an outlet (Malde,
1991) and that the outlet river flowed across the northwest Great Basin to California and the Pacific
Ocean. At the same time, the eastern Snake River Plain (which today drains westward into
southwestern Idaho) was apparently not part of the Glenns Ferry drainage, but instead drained
southward into Utah (Taylor and Bright, 1987). Paleomagnetic (Neville et al., 1979) and
vertebrate-paleontological data (Repenning, 1987) indicate that the Glenns Ferry Formation
deposition began prior to ~3.8 Ma and that sediment accumulation continued into the early
Matuyama Chron (< 2.48 Ma) and perhaps to as young as ~2 Ma (Repenning, 1987; Malde,
1991). Deposition in the Glenns Ferry lake apparently ceased ~3 Ma in the eastern portion of this
region (perhaps due to infilling on the margin), but continued for another million years farther west
(Malde, 1991).

A large lake could not exist on the western Snake River Plain today because of the outflow
of the Snake River northward through Hells Canyon. Malde (1991) interpreted the wide-spread
Tuana and Tenmile gravels that overlie the Glenns Ferry Formation as indicative of high-energy
flow through this region, and by extension, of the (earlier?) cutting of the Hells Canyon outlet.
Although poorly dated, the downcutting of this canyon apparently occurred near 2 Ma (Malde,
1991). Smith et al. (1982) noted that earlier lake regressions (such as the one that occurred between
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Figure 1. Map showing the generalized extent of the Glenns Ferry Formation and of modern
Forest and Steppe coverage in Idaho. INEL = Idaho National Engineering Laboratory,
RC = Rattlesnake Cave (Bright and Davis, 1982), GL = Grays Lake (Beiswenger, 1991).
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the Pliocene Glenns Ferry Formation and the underlying Miocene Chalk Hills Formation) were
limited enough in their drawdown that lacustrine fishes survived these events. In contrast, the
regression at the end of the Glenns Ferry lake period led to the extinction of all the Neogene deep-
water lacustrine fish species, and thus the lake habitat appears to have been completely absent in the
time between the Glenns Ferry and Bruneau lakes.

The volcanic and sedimentary deposits of the early Pleistocene Bruneau Formation overlie
the gravel units discussed above (Malde and Powers, 1962). In contrast to the widespread thick
deposits of the large Glenns Ferry lake, the lacustrine deposits of the Bruneau Formation are
scattered and discontinuous. Malde (1991) interpreted this pattern as indicating the presence of
smaller lakes behind lava dams across the Snake River. He identified four statges where canyons
were filled by both lava and lacustrine deposits that occurred between ~1.9 and ~1.0 Ma, based on
paleomagnetic data and K-Ar dates (Amini et al., 1984).

Other workers (e.g. Jenks and Bonnichsen, 1989) do not accept portions of Malde’s
regional stratigraphy (as presented above), and argue that the series of lakes that occupied the same
basin from late Miocene through early Pleistocene time should all be referred to as "Lake Idaho."”
The data in this report have little bearing on this argument, and for convenience Malde’s
stratigraphic terms are used throughout.

Site selection

For Pliocene paleoclimatic studies, I sought to identify a site in the Glenns Ferry Formation
where fossil pollen would be preserved in a quasi-continuous sequence of fine-grained deposits. In
addition, since the drilling rig had a 1000 ft (305 m) depth limit, it was desirable to avoid places
with thick sequences of Pliocene and Quaternary basalts. To meet these criteria, it was necessary to
limit the search for a drilling site to deep-water deposits of the central basin.

Previous coring of "Idaho Group" sediments revealed variable thicknesses of lacustrine
sediments and basalt. West of the Bruneau core site, up to 2320 ft (707 m) of volcanic siltstones
and mudstones were observed in well cuttings from west of Grand View (MclIntyre, 1979), while
north of the Bruneau site, well-cuttings from near Mountain Home (Armey et al., 1984) revealed up
to 4000 ft (1220 m) of lacustrine sedimentary deposits with interspersed basalts. Cores north of the
Snake River (e.g. Whitehead and Lindholm, 1985; Lewis and Stone, 1988) frequently include
hundreds to thousands of feet of basalt with lenses of interspersed lacustrine sediments.

The Bruneau site was suggested by Margi Jenks of the Idaho Geological Survey, based on
regional geologic mapping by the Idaho State Geological Survey. Stratigraphic logs from water
wells drilled at ~2525 ft (770 m) elevation near the town of Bruneau (Littleton and Crosthwaite,
1957) indicated at least 1000 ft (305 m) thickness of lacustrine sediments without major basalt
units. After consultation with the Bureau of Land Management, a site within a gravel pit on the
ridge north of Bruneau (fig. 2) was selected as the drilling location with the least potential for
environmental damage.

Site Background

Location and Geologic Setting. The Bruneau core site is located at ~2925 ft (892 m, figs. 1
and 2) in the NE /4, NE 14, Sec. 18, T.6S., R.6E. (42° 54' 31.5" N, 115° 46' 46.8" W). Malde
(1989) mapped the deposits above 2850 to 2900 ft (869 to 884 m) on this ridge as "gravel-shore
deposits” of the Bruneau Third Canyon Stage. He categorized the sediments between ~2625 -
2650 ft (800 - 808 m) and 2850 - 2900 ft (869 - 884 m) as lake beds of this same stage (except for a
down-faulted block of gravel-shore deposit along a NW/SE trending fault near the town of
Bruneau). Deposits below ~2625 - 2650 ft (800 - 808 m) were mapped as poorly consolidated
lacustrine and fluvial sediments of the Glenns Ferry Formation.

Modern vegetation and climate . The vegetation surrounding the core site has been heavily
disturbed by agricultural and gravel-pit activities. Introduced Eurasian species (primarily Bromus
tectorum [cheatgrass] and Salsola kali [Russian thistle], are abundant at the site. Native species
include Artemisia tridentata (big sagebrush), Chrysothamnus spp. (rabbitbrush), Gutierrezia
sarothrae (snakeweed), and Oryzopsis hymenoides (Indian ricegrass). Overall, the vegetation can



be characterized as semiarid steppe, and the nearest native tree species (excluding riparian trees in
some drainages) are tens of kilometers away in mountains to the north and south of the western
Snake River Plain.

Thirty-year climate normals for Boise, Idaho, at a similar elevation to the coring site (2840 ft
[866 m], Court, 1974) farther west on the Snake River Plain, indicate that the region experiences a
wide range of seasonal temperatures (mean January temperature = -1.9° C [28.5° F], mean July
temperature = 23.7° C [81.1° F]) under a semi-arid precipitation regime (mean annual precipitation =
290 mm [11.42"]) with pronounced summer drought.

Coring and Curation. The sediment core from Bruneau was drilled between August 7 and
September 5, 1991, with a Portadrill 524-3A drilling rig that took a 3” (7.62 cm) diameter core in
10 to 15 £t (3.05 to 4.57 m) increments (Table 1). Core sediments were logged and described in the
field and initial sets of paleomagnetic and paleontological samples were collected. Core segments
were cut into 2 ft (0.61 m) lengths and placed in core boxes. These were shipped to the USGS
Core Research Facility at the Denver Federal Center, where the core now resides. In Denver, the
core sediments were described in greater detail, additional paleomagnetic and paleontological
samples were collected, and magnetic susceptibility was logged. To maintain continuity with the
drillers’ records, all core depths are reported here in feet.

Due to variations in sedimentology and to drilling problems, sediment recovery was uneven
over the length of the core (Table 2). The upper 28.3 ft of sediments were coarse gravels and
cobbles that were not cored (see right-hand column on Table 1), and this accounts for the low core
recovery in the upper 100-ft depth range. Deposits from 28.3 to 156.5 are silty claystones and
clayey siltstones of Malde’s (1989) lacustrine facies of the Bruneau Formation. These sediments
are tan in color, are iron-stained and platey, and do not seem to represent deep-water environments.
Sediments in the 156.5 to 198 ft range were primarily gravels and cobbles, and consequently little
material was recovered here. A thick bed of sand (198.0 to 362.8 ft) underlies this zone of coarse
material, and appears to grade into the Glenns Ferry lacustrine deposits below. These data seem to
suggest that the sand layer may represent the end of the Glenns Ferry lake, and that the overlying
gravel/cobble layer represents an unconformity between the sands and the Bruneau lake beds.
However, Malde (1989) assigns these sand deposits to the Bruneau Formation.

Sediments from 364.3 ft to the base of the core are olive-green silty claystones of
remarkably uniform composition (the “blue shale” of local drilling logs). There is some variation in
induration in this sedimentary unit, which caused difficulties in drilling and accounts for much of
the lack of recovery in the 401 - 500 ft and 801 - 800 ft intervals (Table 2). These claystones are
apparently deep-water sediments deposited in a long-lived Glenns Ferry lake.

Chronology. Although tephras are common in outcrops along the southern margin of the
Glenns Ferry Formation near Bruneau, no non-basaltic tephras were recovered in the Bruneau core.
Smith (1987) attempted to trace some of the regional tephra marker-beds from lake margin to deep-
water deposits near Bruneau, but unfortunately was unsuccessful. Although both diatom and
ostracode assemblages differ markedly between the Bruneau and Glenns Ferry Formations, neither
group yet provides definitive absolute age information in the Glenns Ferry portion of the record
(one diatom taxon does provide information on the age of the Bruneau lake beds — see discussion
below).

Preliminary paleomagnetic data from the Bruneau core (H.J. Rieck, oral communication,
1992) indicate that the sediments assigned to the Glenns Ferry Formation (i.e. those below ~360 ft)
are normally magnetized and (based on their stratigraphic position) presumably fall within the late
Gauss Chron (>2.48 Ma, Mankinen and Dalrymple, 1979). The Bruneau lake beds have reversed
magnetism (as at other Bruneau localities; Malde, 1991) and thus are of Matuyama age (2.48 to
0.73 Ma). These beds contain a diatom species that is not known in deposits older than ~1.7 Ma in
western North America (J.P. Bradbury, oral communication, 1992), and thus the Bruneau lake
beds appear to be younger than the Olduvai Normal Event (1.87 to 1.67 Ma) within the Matuyama
Chron. This interpretation is in good agreement with K-Ar dates of 1.37 to 1.67 Ma that have been
associated with the “Third Canyon Stage” of the Bruneau Formation (Amini et al., 1984; Malde,
1985).



Table 1. Core recovery and sediment description for the Bruneau, Idaho, core.
"Missing (ft)" refers to the length of core missing between the top
of the current drive and the bottom of the preceding drive.

Drive Range (ft) Missing (ft) Dominant
Sediment Type
0 0.0 — 283 n/a gravel, cobbles
1 283 — 329 28.3 "
2 329 — 429 0.0 "
3 458 — 579 29 "
4 647 — 709 6.8 "
5 724 — 820 1.5 "
6 850 — 97.0 3.0 "
7 100.3 — 105.6 33 "
8 1084 — 1156 2.8 "
9 119.1 — 129.8 35 clayey siltstone
10 129.8 — 141.0 0.0 "
11 141.0 — 156.0 0.0 "
12 156.0 — 156.5 0.0 "
13 188.0 — 198.0 31.5 gravel, cobbles
14 198.3 — 212.0 0.3 fine sand
15 2120 — 227.0 0.0 "
16 2270 — 2420 0.0 "
17 2423 — 2540 0.3 "
18 2540 — 269.0 0.0 "
19 269.0 — 284.0 0.0 "
20 284.0 — 299.0 0.0 "
21 299.0 — 3123 0.0 "
22 3123 — 3273 0.0 "
23 3273 — 3349 0.0 "
24 3349 — 3409 0.0 "
25 3420 — 351.8 1.1 "
26 351.8 — 362.8 0.0 "
27 3643 — 3784 1.5 silty claystone
28 3784 — 3844 0.0 "
29 392.7 — 4039 8.3 "
30 4039 — 4103 0.0 "
31 4139 — 428.1 3.7 "
32 438.8 — 4438 10.7 "
33 4438 — 456.5 0.0 "
34 458.8 — 468.5 23 "
35 473.8 — 486.8 53 "
36 486.8 — 499.8 0.0 "
37 499.8 — 510.8 0.0 "



Table 1 (con't)

Drive

38
39
40
41
42
43
44
45
46
47
48A
48B
49
50
51
52
53
54
55
56
57
58
59

61A
61B
61C
62A
62B
63A
63B

65
66A
66B

67

68

69

70

71

72

Range (ft)
5143 521.4
521.4 539.3
539.3 548.6
548.6 559.3
559.3 5733
583.6 594.8
606.3 606.7
606.7 611.5
612.3 625.7
625.8 637.0
643.3 644.4
644.8 655.0
657.5 665.7
667.9 679.3
682.0 693.4
695.2 708.2
708.3 721.8
722.0 735.8
735.8 749.8
751.1 764.5
766.7 778.5
778.7 792.6
792.7 806.7
822.6 824.1
824.1 8243
8243 834.0
834.0 838.3
839.7 840.0
840.0 843.8
850.6 854.3
8543 857.8
860.4 872.8
879.8 886.8
886.8 888.3
889.4 897.9
897.9 9124
913.6 927.1
928.1 941.6
943.1 956.3
968.4 974.1

974.8

988.8

Missing (ft)

35
0.0
0.0
0.0
0.0
103
11.5
0.0
0.8
0.2
6.3
0.4
2.5
23
2.7
1.8
0.1
0.3
0.0
1.3
2.2
0.2
0.1
15.9
0.0
0.0
0.0
1.3
0.0
6.8
0.0
2.6
7.1
0.0
1.2
0.0
1.2
1.0
1.5
12.2
0.8

Dominant
Sediment Type
silty claystone



No paleomagnetic data are available for the sand and gravel/cobble sediments between 362.8
and 156.6 ft, but following the logic presented above, these deposits should fall between 2.48 and
1.67 Ma (or slightly earlier or later, depending on how much of late Gauss and post-Olduvai
Matuyama time is missing from the Glenns Ferry and Bruneau lake beds).

Palynology

Sediment samples were treated with chemical reagents to remove unwanted mineral and
organic materials, and the residues analyzed under 400 to 1000X magnification. A minimum of
300 terrestrial pollen grains was counted in each sample (Appendix 1). Eighty-nine palynological
samples were counted from the Bruneau core (10 Bruneau and 79 Glenns Ferry samples), as well
as two surface samples from the area immediately surrounding the core site. In addition, there were
seven samples that were barren of pollen (at 46.8, 69.2, 80.3, 303.0, 331.3, 340.4, and 753.8 ft).
No attempts were made to recover pollen from the sand, gravel, and cobble zones.

The palynoflora expressed in the Bruneau core assemblages is essentially modern. A small
number grains of “Tertiary relicts” (taxa common in the earlier Tertiary in the western United States,
but extirpated today) were recovered from several samples (Table 3), but none appear to have any
definitive biostratigraphic significance. Indeed, the representations of these taxa are so low (only
84 total grains out of 30685 specimens counted [0.27%]) that it is not possible to dismiss the idea
that they are reworked from earlier deposits. If these grains are not reworked, then these plants
must have been quite rare (and perhaps restricted to riparian habitats [see Leopold and Wright,
1985]), and, with the exception of Ulmus (elm), none appear to have survived into the early
Pleistocene.

Large-scale environmental fluctuations are evident in the changing proportions of steppe and
coniferous forest taxa through the Bruneau core record (figs. 3, 4, and 5). Steppe vegetation is
represented by Artemisia (sagebrush), Ambrosia-type (ragweed and relatives), Tubuliflorae (other
Asteraceae), Chenopodiineae (Chenopodiaceae and related taxa in the Amaranthaceae), Sarcobatus
(greasewood), and Poaceae (grasses). Coniferous forest is represented by Pinus (pine, usually the
dominant forest element), Abies (fir), TCT (Taxaceae-Cupressaceae-Taxodiaceae: junipers, cedars,
and relatives), as well as lesser amounts of Picea (spruce), Pseudotsuga/Larix (Douglas fir and/or
larch), Tsuga (hemlock), and (very rarely) Sequoia. As illustrated in Table 4, Pinus, Abies and
other conifers are positively correlated in the Glenns Ferry portion of the record, and are generally
negatively correlated with the steppe taxa listed above. There are statistical constraints within this
percentage data matrix, but nevertheless it appears that a simple forest vs. steppe model for
vegetational change through the Bruneau record (fig. 3) explains most of the observed variability.

It should be recognized that this palynological record from a large lake system represents the
integration of pollen from a large source area. If Taylor and Bright (1987) are correct, the Glenns
Ferry source area did not include those areas of eastern Idaho, Montana, and Wyoming that today
drain into the Snake River, but nevertheless the Bruneau core record may include inputs from as far
away as the mountains of central Idaho and northern Nevada.

The stratigraphic record of palynological changes in the Bruneau core is reviewed in the
discussion that follows. For convenience, an informal series of zones is placed along the depth
axes in figures 3 and 4, and the discussion is organized along these lines (from core bottom to core
top).

Zone XI. (989 to 910 ft, figs. 3 and 4). Conifers (mainly Pinus) dominant over steppe. These
samples resemble Glenns Ferry assemblages of undetermined age from Vale, Oregon, and (to
a lesser degree) ~4 Ma samples from Oregon near Weiser, Idaho (fig. 1; Thompson,
unpublished data).

Zone X. (910 to 810 ft, figs. 3 and 4). Variable, but steppe taxa generally greater than conifers.
Artemisia and Chenopodiineae higher than below, Pinus and other conifers lower.

Zone IX. (810 to 720 ft, figs. 3 and 4). Conifers dominant over steppe. High Pinus, Abies,
other conifers; moderate Artemisia; low Chenopodiineae and essentially no Quercus (oak).
Zone VIII. (720 to 640 ft, figs. 3 and 4). Steppe dominant over conifers. High Artemisia and

Chenopodiineae, coupled with relatively high Quercus.
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Glenns Ferry Formation: Bruneau, Idaho
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Figure 4. Pollen profile of the Glenns Ferry Formation portion of the Bruneau core.
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Zone VIL (640 to 475 ft, figs. 3 and 4). Conifers dominant over steppe. Pinus dominant or
co-dominant with TCT, Abies sporadically high through this interval. Artemisia dominant in
steppe vegetation with common Tubuliflorae and generally low Chenopodiineae and
Sarcobatus. Quercus relatively high toward bottom.

Zone VI. (475 to 348 ft, figs. 3 and 4) Variable, but steppe generally slightly greater than
forest. Floristic composition similar to above.

Zone V. (348 to 198 ft) fine sand, becoming siltier with depth. No pollen preservation or
paleomagnetic results.

Zone IV, (198 to 157 ft) Zone of cobbles, gravel, and sand (equivalent of Ten Mile and Tuana
Gravels of Malde [1991]?). Bounded by an unconformity at the top?

Zone I11. (157 to 87 ft, figs. 3 and 5) Bruneau lake beds: steppe vegetation (~50 to 90%),
dominated by Artemisia (34 to 74%).

Zone II. (87 to 28 ft) Zone of no pollen recovery in the upper Bruneau lake beds.

Zone 1. (28 to 0 ft) No recovery through the uppermost interval of gravel, cobbles, and
convoluted sands. Surface sediment pinch samples (Appendix 1) are dominated by steppe
taxa (especially Chenopodiineae at 40 to 51%) with very low representations of conifers
(Pinus to 6 to 8%).

The overall pattern of the Glenns Ferry portion of the palynological record is a quasi-sine
wave oscillation of coniferous forest advancing and receding (fig. 3), but with forest percentages
lessening through time (even during the forest periods). A similar-forest-to-steppe-to-forest pattern
is evident in palynological data from older Glenns Ferry sediments farther east (Leopold and
Wright, 1985); in a core of unknown age within the Glenns Ferry Formation near Mountain Home,
Idaho (Thompson, unpublished data); and in a core from the Idaho National Engineering
Laboratory that apparently spans most of the Pliocene (Thompson, 1991). Iinterpret this pattern as
indicative of actual changes in the position of the forest boundary (approaching and receding from
the lake), although transgressions and regressions within the lake system itself could have greatly
influenced the pollen record, particularly as increased habitat space for Chenopodiineae became
exposed during lower lake phases. This may have been an amplification of the signal more than
anything, for a climatic change that caused a lake regression could also lessen the forest
representation in the watershed. Leopold and Denton (1987, p. 844) have drawn a convincing
relationship between the modern forest/steppe boundary in the interior Pacific Northwest and the 15
to 20" (380 to 500 mm) isohyet for mean annual precipitation, and thus fluctuations in precipitation
seem to be the most likely cause of forest/steppe oscillations during the Pliocene.

Palynological data from northern South America (Hoogmeistra, 1989) exhibit what appear
to be orbitally-induced (40 Kyr?) oscillations prior to ~2.5 Ma, while contemporaneous data from
the Netherlands (Zagwijn, 1992) and northern California (Adam et al., 1989) show vegetation
varying on much longer time-scales (hundreds of thousands of years). As the Glenns Ferry portion
of the Bruneau core does not yet have a precise age-model, I cannot assess whether the timing of
the forest-steppe oscillations matches either of these records.

The palynological assemblages of the Bruneau Formation resemble late Wisconsinan Full
Glacial samples from southeastern Idaho (e.g. Bright and Davis, 1982; Beiswenger, 1991),
implying cold-dry (glacial?) conditions during portions of the early Pleistocene.
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