

Open-File Report 92-45

HYDROGEOLOGIC, WATER-QUALITY, STREAMFLOW, BOTTOM-SEDIMENT ANALYSES, AND BIOLOGICAL DATA NEAR THE WAYNE COUNTY LANDFILL, WAYNE COUNTY, TENNESSEE

Prepared by the U.S. GEOLOGICAL SURVEY

in cooperation with the TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION, DIVISION OF SUPERFUND

HYDROGEOLOGIC, WATER-QUALITY, STREAMFLOW, BOTTOM-SEDIMENT ANALYSES, AND BIOLOGICAL DATA NEAR THE WAYNE COUNTY LANDFILL, WAYNE COUNTY, TENNESSEE

By Ferdinand Quiñones, A.D. Bradfield, and J.B. Wescott

U.S. GEOLOGICAL SURVEY

Open-File Report 92-45

Prepared in cooperation with the TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION, DIVISION OF SUPERFUND

Nashville, Tennessee 1992

U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 810 Broadway, Suite 500 Nashville, Tennessee 37203 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center Box 25425 Denver, Colorado 80225

CONTENTS

1

Abstract

Test w Geoph Water- W	tion activities 3 vell construction 3 ysical data 3 -quality data 10 Vells and seeps 10 urface-water sites 10	
Stream		
Botton	n-sediment analyses 10	
_	ical data 11	
Selected ref	ferences 11	
ILLUSTR	ATIONS	
Figure 1-6.	Maps showing location of:	
	1. Wayne County landfill 2	
	2. Test wells near the Wayne County landfill 4	_
	3. Test wells near the Wayne County landfill from which samples were collected	5
	4. Sites from which samples were collected and continuous-record gaging station at Banjo Branch 6	
	5. Sites from which bottom-sediment samples were collected 7	
	6. Sites from which biological samples were collected 8	
7.	Geophysical logs showing formations encountered near the Wayne County landfill	9
TABLES		
Table 1.	Identification data for wells and surface-water sampling sites near the Wayne County landfill 12	

2. Construction and water-level data for wells near the Wayne County

3. Water-quality data for selected wells near the Wayne County landfill

4. Water-quality data for selected surface-water sites near the Wayne County

6. Analyses of bottom-sediment samples collected from two sites near the

13

5. Daily mean discharge of Banjo Branch near Waynesboro, Tennessee (03594164)

landfill, September 13, 1988

landfill, June 1988 and July 1989

Wayne County landfill, July 1989

14

- 7. Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989 22
- 8. Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989 28
- Species of fish, number of organisms, and species richness from six sites near the Wayne County landfill, July 1989
 32

CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATED WATER-QUALITY UNITS

Multiply	By	To obtain
foot (ft) cubic foot per second (ft ³ /s) square mile (mi ²) gallon per minute (gal/min)	0.3048 0.02832 2.590 0.06309	meter cubic meter per second square kilometer liter per second

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F=1.8 \times ^{\circ}C + 32$

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

ABBREVIATED WATER-QUALITY UNITS USED ON TABLES

deg C	degrees Celsius
mg/L	milligrams per liter
μ g/L	micrograms per liter
μg/kg	micrograms per kilogram
μS/cm	microsiemens per centimeter

HYDROGEOLOGIC, WATER-QUALITY, STREAMFLOW, BOTTOM-SEDIMENT ANALYSES, AND BIOLOGICAL DATA NEAR THE WAYNE COUNTY LANDFILL, WAYNE COUNTY, TENNESSEE

By Ferdinand Quiñones, A.D. Bradfield, and J.B. Wescott

ABSTRACT

This report summarizes the data collected as part of a hydrogeologic investigation to determine the effects of the Wayne County landfill on local water quality. The investigation was conducted from 1988 through 1989 by the U.S. Geological Survey in cooperation with the Tennessee Department of Health and Environment, Division of Superfund.

The landfill was closed in November 1984 after allegations that contaminants from the landfill were affecting the quality of water from domestic wells in the Banjo Branch-Hardin Hollow valley. Test well construction data; water-quality data for selected wells, seeps, and surface-water sites; streamflow data from Banjo Branch; analyses of bottom-sediment samples; and biological data for the study area are documented in this report.

INTRODUCTION

The Wayne County landfill (fig. 1) is located on a ridgetop about 6 miles southwest of the city of Waynesboro (Wayne County) in south-central Tennessee. The landfill operated from August 1976 through November 1984. It was closed by the Tennessee Department of Health and Environment (TDHE) (Tennessee Department of Environment and Conservation as of 1991) because of allegations that contaminants from the landfill were affecting the quality of water from domestic wells in the Banjo Branch-Hardin Hollow valley. A preliminary study conducted by TDHE in 1987 showed that barium and methylethyl ketones were present in leachate discharging from the landfill (Moss, 1987). A further study conducted by Garman and Fischer (1988) showed that shallow domestic wells in the valley are hydraulically connected to the landfill. On October 19, 1988, the landfill was classified as an "inactive hazardous-substances site" by the Solid Waste Control Board of TDHE (T. Moss, oral commun., 1988).

The preliminary studies conducted in 1987 and 1988 included only surface-soil and water samples. The migration of contaminated leachate from the landfill to streams in the valley and to the shallow and deep ground-water systems in the area was not defined. Landfills and other waste sites containing toxic materials

Figure 1.—Location of the Wayne County landfill.

occur throughout Tennessee (Broshears, 1988) in areas such as Wayne County, where limestone rocks, sinkholes, and other karst features predominate. Federal, State, and local agencies were interested in further studies that could provide data essential for future regulatory activities.

The U.S. Geological Survey (USGS), as part of its water-resources investigations programs in Tennessee, conducts studies designed to define the hydrogeology of karst areas. The data from these studies can be used to better understand the processes governing surface-water and ground-water-flow systems at similar hydrologic settings in other states. Accordingly, in 1988, the USGS, in cooperation with the TDHE, Division of Superfund, initiated a comprehensive investigation of the hydrogeology near the Wayne County landfill. This report summarizes the data collected during the study.

DATA-COLLECTION ACTIVITIES

Data-collection activities during the project included the following:

- 1. Drilling of 16 shallow and deep wells.
- 2. Geophysical testing of the boreholes.
- 3. Development and testing of each well for determination of specific capacity and other aquifer properties.
- 4. Collection and analyses of water samples from each well drilled during the project, and from streams and seeps near the landfill.
- 5. Collection and analyses of samples of fish, benthic macroinvertebrates, and algae from the streams receiving leachate from the landfill.
- 6. Measurement of continuous discharge at a site on Banjo Branch downgradient from the landfill.
- 7. Collection and analyses of bottom-sediment samples at two sites.

The sites at which data were collected are shown in figures 1 through 6 and described in tables 1 through 9 (in back of report).

Test Well Construction

Sixteen test wells were drilled from March through June 1988. The wells were located on the ridge near the landfill and in Hardin Hollow (fig. 2). An air-rotary rig was used to drill a 9.25-inch-diameter borehole to within 10 feet of the target depth interval. After installation of nominal 6-inch-diameter galvanized steel casing, the annular space was cemented to land surface. The wells were completed by drilling a 5.75-inch-diameter borehole to total depth, and were left as open holes below the bottom of the casing. Well development was completed with air lifting, and water levels were measured as soon as hydraulic heads achieved equilibrium. The total depth, depth to water upon completion, the formations at which screens were installed, and other characteristics of each well are summarized in table 2.

Geophysical Data

Geophysical logs were obtained from each well using a borehole geophysical logger. Logs were obtained to determine natural gamma, fluid resistivity, temperature, and caliper. A sample plot from one

Figure 2.—Location of test wells near the Wayne County landfill.

Figure 3.—Location of test wells near the Wayne County landfill from which samples were collected.

Figure 4.—Location of sites from which samples were collected and continuous—record gaging station at Banjo Branch.

Figure 5.—Location of sites from which bottom—sediment samples were collected.

Figure 6.—Location of sites from which biological samples were collected.

Figure 7.—Geophysical logs showing formations encountered near the Wayne County landfill. (From Miller, 1974.)

of the logs is shown in figure 7. The geophysical data are not published in this report because of its volume; the data can be inspected at the USGS offices in Nashville.

Water-Quality Data

Water samples were collected from selected test wells with submersible pumps and bailers according to methods described by Wershaw and others (1987). Surface-water grab samples were collected at selected sites on creeks and seeps draining the ridge according to methods described by Skougstad and others (1979). Field determinations were made of the pH, specific conductance, temperature, and alkalinity of each sample. The samples were analyzed at the USGS National Water Quality laboratory in Arvada, Colorado, using methods described by Skougstad and others (1979), and Britton and Greeson (1987). Determinations were made for principal anions and cations, nutrients, trace metals, and selected organic compounds.

Wells and Seeps

Water samples were collected from wells drilled on the ridge (wells 1-5), and selected wells in the valley downgradient from the landfill (wells 6, 7, 10, 11, 13, and 16) (fig. 3). However, because of relatively low specific-capacity values and extreme depth to water of wells on the ridge, only one casing volume was removed before the samples were collected. At least three casing volumes were removed before collection of samples from wells in the valley. The results of the chemical and physical analyses of the samples are summarized in table 3.

Surface-water Sites

Surface-water samples were collected from sites 17 through 20 and 22 through 29 (fig. 4) during June 1988 and July 1989. Samples were collected twice at most of the sites. Results of the analyses are summarized in table 4.

Streamflow

Continuous-streamflow data were collected from May 1988 to December 1988, and from April 1989 to September 1989 at Banjo Branch just upstream from its confluence with Hog Creek (fig. 4). The streamflow data are summarized in table 5.

Bottom-Sediment Analyses

Bottom-sediment samples were collected from a seep that forms Moser Branch (site 18, fig. 5), and from the sediment-retention pond downslope from the landfill (site 24, fig. 5). The sediment samples were analyzed for organic compounds, including chlorinated pesticides and polychlorinated biphenyls (PCB's). The results of the analyses are summarized in table 6.

Biological Data

Benthic invertebrate samples were collected in June 1988 from eight sites and in July 1989 from six of the previous sites (fig. 6). Samples of fish and algal communities were collected in July 1989 at six of the eight sites. The benthic invertebrate samples were collected with a 210-micron mesh according to methods described by Britton and Greeson (1987). The fish samples were collected using a backpack electric fishing unit. The benthic macroinvertebrate and the algae samples were analyzed at Austin Peay State University. The fish tissue analyses were performed by the Mississippi State Chemical Laboratory. Tissue samples from whole fish were analyzed for occurrence and concentration of organochlorine pesticides and gross PCB's. Non-quantitative algal samples were collected by scrapping rocks from streambeds. All organisms were identified to species whenever possible.

The results of the benthic invertebrate analyses, including species determinations and the Shannon-Weaver diversity index (Shannon and Weaver, 1949) are summarized in table 7. The results of the analyses of the algal populations, including species and percent of relative abundance, are summarized in table 8. The results of the fish sampling and analyses are summarized in table 9.

REFERENCES CITED

- Britton, L.J., and Greeson, P.E., eds., 1987, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, chapt. A4, p. 53-67.
- Broshears, R.E., 1988, Ground-water quality: Tennessee, in National Water Summary 1986: U.S. Geological Survey Water-Supply Paper 2325, p. 465-472.
- Garman, P.M., and Fischer, F.T., 1988, A landfill/ground-water contamination case study, *in* Proceedings of the Second Conference on Environmental Problems in Karst Terranes and Their Solutions: Dublin, Ohio, Association of Ground-Water Scientists and Engineers, p. 143-158.
- Miller, R.A., 1974, The geologic history of Tennessee: Tennessee Division of Geology Bulletin 74, 63 p. Moss, T.A., 1987, Site inspection report/hazard ranking, Wayne County landfill/Hardin Hollow, Waynesboro, Tennessee: Tennessee Department of Health and Environment, Division of Superfund.
- Shannon, C.E., and Weaver, W., 1949, The mathematical theory of communication: Urbana, Ill., University of Illinois Press, 125 p.
- Skougstad, M.W., Fishman, M.J., Freidman, L.C., Erdmann, D.E., and Duncan, S.S., eds., 1979, Methods for determination of inorganic substances in water and fluvial sediment: Techniques of Water Resources Investigations of the U.S. Geological Survey, Book 5, chapt. A1, 626 p.
- Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe, L.E., eds., 1987, Methods for the determination of organic substances in water and fluvial sediments: Techniques of Water Resources Investigations of the U.S. Geological Survey, Book 5, chapt. A3, 80 p.

Table 1.--Identification data for wells and surface-water sampling sites near the Wayne County landfill

Test well number (see fig. 2) or stream name and site number (see fig. 4)	U.S. Geological Survey identification number
1	*351408087474001
2 3	351407087474101
3	351420087474001
4	351420087474101
5	351420087474201
6	351526087490601
7	351526087490701
8	351512087472701
10	351525087490901
11	351527087490701
15	351527087482301
9	351512087472701
16	351310087492401
12	351522087480701
13	351521087480901
14	351520087481101
Downing Branch, site 17	⁶ 035941368
Moser Branch (at headwaters), site 18	035941378
Moser Branch, site 19	03594138
Moser Branch, site 20	035941386
Hog Creek, site 22	035941634
Mill Branch, site 23	035941635
Sediment-retention pond, site 24	035941636
Banjo Branch tributary, site 25	035941637
Banjo Branch tributary, site 26	035941638
Banjo Branch, site 27	035941639
Banjo Branch near Waynesboro, site 28	03594164
Moser Branch (at county road bridge), site 29	03594139

^a Station numbers provide a unique 15-digit number for each well, based on geographic location. The first 6 digits denote degrees, minutes, and seconds of latitude; the next 7 digits denote degrees, minutes, and seconds of longitude; and the last 2 digits, assigned sequentially, identify the well within a 1-second grid.

^b A "downstream order" system is used to identify surface-water stations. The complete number of each station such as 03594139...., which appears just to the left of the station name, includes the 2-digit part number "03" plus the multi-digit downstream order number "594139...." This downstream numbering system is used in most cases; however, in some cases latitude and longitude numbers are assigned to hydrologic stations and partial-record stations as a means of identification.

Table 2.--Construction and water-level data for wells near the Wayne County landfill, September 13, 1988

[-, elevation of water above land surface; gal/min/ft, gallons per minute per foot; --, no data available]

Test well number	Depth of well, in feet below land surface	Depth of casing, in feet below land surface	Column of open hole, in feet	Depth to water, in feet below land surface	Approximate specific capacity, in gal/min/ft	Formations to which well is open (Miller, 1974)
1	320	230	90	214.09		Decatur Limestone, Brownsport Formation, Dixson Formation, Lego Limestone
2	195	108	87	95.64	0.03	Fort Payne Formation (upper and lower members)
3	400	246	154	202.20		Brownsport Formation to Hermitage Formation
4	203	157	46	96.78	0.02	Fort Payne Formation (lower member only)
5	140	93	47	64.26	3.0	Fort Payne Formation (upper member only)
6	40	23	17	3.02	0.03	Laurel Limestone, Osgood Formation
7	105	71	34	-4.30	0.10	Mannie Shale, Fernvale Limestone, Hermitage Formation
8	70	45	25	-4.16	1.6	Brassfield Limestone
10	70	45	25	-2.78	36.0	Brassfield limestone
11	70	45	25	2.13	••	Osgood Formation, Brassfield Limestone
15	70	39	31	8.07		Osgood Formation, Brassfield Limestone
9	32	24	8	13.68		Laurel Limestone
16	66	49	17	14.49	0.90	Laurel Limestone, Osgood Formation
12	100	70	30	25.84	0.01	Brassfield Limestone, Mannie Shale, Fernvale Limestone
13	51	40	11	12.80	0.68	Laurel Limestone, Osgood Formation
14	39	19	20	12.52		Laurel Limestone

Table 3.--Water-quality data for selected wells near the Wayne County landfill

[deg C, degrees Celsius; μ S/cm, microsiemens per centimeter; IT, incremental titration; mg/L, milligrams per liter; μ g/L, micrograms per liter; *, measurement affected by water of hydration from grout around casing; <, below the level of detection, if present; noncarb, noncarbonate; fld., fluid]

	Test well number	Date	Temper- ature water (deg C)	Color (plat- inum- cobalt) (units)	duct- ance f	mg/L as	as	(stand-	pH, lab (stand-	deg. C dis-		_
	2 3 4	06-21-89 06-23-89 06-21-89 06-23-89 06-22-89	16.5 15.5 16.5 16.0 15.5	5 5 5 5	448 322 683 818 70	123 130 69 196* 26	113 124 66 90 27	8.85 8.44 7.76 11.37* 6.23	8.40 8.70 8.10 10.80* 6.60	286 179 512 365 28	274 187 474 395 43	
	7 10 11 13	06-21-89 06-21-89 06-20-89 06-20-89 06-21-89 06-22-89	16.0 16.0 16.0 15.0 14.5 15.0	5 15 5 5 5	298 1,500 369 244 501 1,070	116 280 112 100 178 81	103 230 116 100 175 83	8.35 8.62 7.83 8.04 7.60 8.11	8.30 8.70 7.90 8.10 7.70 8.00	178 929 229 137 274 787	162 958 214 138 285 735	
Test well number	Hard- ness total (mg/L as CaCO ₃)	noncarb dissolve fld. as CaCO ₃	d dis-	dis- I solved (mg/L	Sodium dis- solved (mg/L as Na)	dis- solved (mg/L	ride, dis-	Sulfate dis- solved (mg/L	dis- solved (mg/L	Silica, dis- solved d (mg/L as SiO ₂)	Manga- nese, dis- solved (μg/L as Mn)	Mercury total recov- erable (µg/L as Hg)
1 2 3 4 5	150 100 350 110 30	26 0 0 0 4	30 23 120 41 8.1	18 11 11 1.7 2.3	32 28 4.1 100 1.9	13	3.9 5.6 1.7 140 3.8	110 34 290 36 2	0.40 .30 .10 .20	6.3 8.1 6.3 8.8 8.4	5 13 27 <1 28	<0.10 < .10 < .10 < .10 < .10
6 7 10 11 13 16	120 89 170 120 230 350	4 0 62 19 220 270	30 16 50 36 66 68	11 12 12 7 17 44	10 280 4.4 1.7 10 85	_	10 58 2.9 2.1 11 2	31 440 66 23 66 450	.20 2.7 .20 .10 .10	6.4 7.9 8 7.2 7.7	25 4 8 1 15 13	< .10 < .10 < .10 < .10 < .10 < .10
Test well number	(μg/L	total	total recov- erable (µg/L	total (μg/L	liu tot rsenic red total era (µg/L (µg/L)	ov- reco able erab a/L (#g/	al tota ov- reco ole eral /L (μg/	m, Copperal total ov- recov ble erab /L (#g/)	l Iron, v- dis- le solved L (#9/L	(49/L	Sele- nium, total	Di- chloro- bromo- methane total recov- able (µg/L)
1 2 3 4 5	2 5 <1 3 3	<1 <1 <1 <1 <1	3,300 170 360 6,100 130	1 <1	<1 <10 1 <10 <1 <10 1 <10 <1 <10) <1) <1) <1	<1 <1 <1 11 <1	6 6 2 18 4	5 4 110 4 9	29 6 1 300 2	<1 17 <1 1	ও ও ও ও
6 7 10 11 13 16	<1 <1 <1 3 <1 1	<1 <1 <1 <1 <1	2,400 9,800 90 20 30 790	<1 .	1 <10 2 <10 <1 <10 <1 <10 <1 <10 <1 <10) <1) <1) <1	<1 <1 <1 <1 <1	2 4 2 4 2 4	7 9 67 11 280 8	8 8 2 3 1 4	<1 <1 <1 <1 <1	ও ও ও ও ও

Table 3.--Water-quality data for selected wells near the Wayne County landfill--Continued

Test well number	chlo- ride total recov- able	abl e	Bromo- form total recov- able	Chloro- di- bromo- methane total recov- erable (µg/L)	Chloro-	Toluene total		total recover erable	tota recov e erabl	ne ethar l tota - recov e erabl	ne benze al tota /- recov le erabl	ne bromide l total - recov- e erable
1 2 3 4 5	<3 <3 <3 <3 <3	<3 <3 <3 <3	<3 <3 <3 <3 <3	ব ব ব ব	<3 <3 <3 <3	22 <3 <3 5.5 <3	उ उ उ उ	<3 5.3 <3 8.1 11	<3 <3 <3 <3	<3 <3 <3 <3	4 <3 <3 3.6 <3	ব্য ব্য ব্য ব্য
6 7 10 11 13 16	<3 <3 <3 <3 <3	3 3 3 3 3 3	<3 <3 <3 <3 <3	ব ব ব ব ব	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3	उ उ उ उ उ	उ उ उ उ उ	<3 <3 <3 <3 <3	3 3 3 3 3 3 3	ও ও ও ও ও	ব ব ব ব ব ব ব
Test well number	Methyl- chlo- ride total	chlo- ride total recov- erable	chloro- ethyl- ene total recov-	recov- erable	1,1-Di- chloro- ethane total recov- erable	chioro- ethyl- ene total	Tri- chloro- ethane total recov- erable	Tri-		1,2-Di- chloro- benzene total recov- erable	1,2-Di- chloro- propane total recov- erable (µg/L)	1,2- Transdi- chloro- ethene total recov- erable (µg/L)
1 2 3 4 5	ও ও ও ও	उ उ उ उ	<3 <3 <3 <3	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	ও ও ও ও	ও ও ও ও	ও ও ও ও	ও ও ও ও	<3 <3 <3 <3 <3	ব ব ব ব ব	उ उ उ उ
6 7 10 11 13 16	ও ও ও ও	ব্য ব্য ব্য ব্য ব্য	3 3 3 3 3 3 3 3	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3 <3 <3 <3	ও ও ও ও ও	ও ও ও ও ও	उ उ उ उ उ	ব ব ব ব ব	<3 <3 <3 <3 <3	ও ও ও ও ও	उ उ उ उ उ उ
Test well number	chloro.	2- Chloro 1,3-Di - chloro - benzen total recov- erable (#g/L)	- 1,4-0 - chlor	oi- ethy ro- viny ene ethe tota /- reco le erab	l- di l- fluo r methan l tota v- reco le erab	- 1,3 ro- chi ne pro l to v- rec le era	tal t ov- re ble er		Per- thane total recov- erable (µg/L)	ride total recov- erable	Tri- chloro- ethyl- ene total recov- erable (µg/L)	
1 2 3 4 5	্ব ব্ব ব্ব ব্ব	্ড	্ব ব্য ব্য ব্য	ব ব ব ব	<3 <3 <3	< < <	3 3 3	ও ও ও ও	<0.1 < .1 < .1 < .1	<1 <1 <3 <1 <1	<3 <3 <3 <3 <3 <3	
6 7 10 11 13 16		उ उ उ उ उ	<3 <3 <3 <3 <3 <3	उ उ उ उ उ	उ उ उ उ उ	< <	3 3 3	্ত্র <্তর <্তর <্তর <্তর	< .1 < .5 < .1 < .1 < .1	<3 <1 <1 <1 <1 <1	ব্য ব্য ব্য ব্য ব্য	

Table 3.--Water-quality data for selected wells near the Wayne County landfill--Continued

Test well number	Naph- tha- lenes poly, chlor- total recov- erable (µg/L)	Aldrin, total recov- erable (#g/L)	Lindane total recov- erable (µg/L)	Dane, total recov- erable (µg/L)	DDD, total recov- erable (µg/L)	DDE, total recov- erable (#g/L)	DDT, total recov- erable (#g/L)	Di- eldrin total recov- erable (#g/L)	Endo- sulfan, total recov- erable (µg/L)	Endrin, total recov- erable (µg/L)	Tox- aphene, total recov- erable (µg/L)	Hepta- chlor, total recov- erable (µg/L)
1	<0.10	<0.010	<0.010	<0.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<1	<0.010
2 3	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
3	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
4 5	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
5	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
6 7	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
7	< .50	< .050	< .050	< .5	< .050	< .050	< .050	< .050	< .050	< .050	<5	< .050
10	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
11	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
13	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010
16	< .10	< .010	< .010	< .1	< .010	< .010	< .010	< .010	< .010	< .010	<1	< .010

Test well number	Hepta- chlor epoxide total recov- erable (µg/L)	Meth- oxy- chlor, total (μg/L)	PCB, total (μg/L)	Mirex, total (μg/L)	Styrene total recov- erable (µg/L)	1,2- Dibromo ethane total recov- erable (µg/L)
1 2 3 4 5	<0.010 < .010 < .010 < .010 < .010	<0.01 < .01 < .01 < .01 < .01	<0.1 < .1 < .1 < .1 < .1	<0.01 < .01 < .01 < .01 < .01	<3 <3 <3 <3 <3	্র ব্র ব্র ব্র
6 7 10 11 13	< .010 < .050 < .010 < .010 < .010 < .010	< .01 < .05 < .01 < .01 < .01 < .01	< .1 < .5 < .1 < .1 < .1	< .01 < .05 < .01 < .01 < .01	ব ব ব ব ব ব	<3 <3 <3 <3 <3

Table 4.--Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989

[--, indicates no data; <, less than detection limit, if present; μ S/cm microsiemens per centimeter; deg C, degrees Celsius; mg/L, milligrams per liter; μ g/L, micrograms per liter; IT, incremental titration]

Site number	Date	Streamflow instantan- eous, in feet per second	duct- ance, field	con- duct-	pH, field (stan ard	d- (stan ard		Hard- ness, total (mg/L as) CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	dis-	Sodium, dis- solved (mg/L as Na)	dis- solved (mg/L	Alka- linity, field, I' (mg/L as CaCO ₃)
17	07-13-89		120	145	7.31			69	23	2.7	1.2	0.80	62
18	07-11-89		380	392	7.27			110	37	4.7	25	9.2	134
19 20	06-29-88 06-29-88	<0.01 .08		51 61	7.10			19	5.2	1.4	1.8	.80	16
22	06-29-88	.52		84	7.60 7.40			26 38	7.3 11	1.8 2.4	1.4 1.1	.60 .80	23 35
22	07-12-89			68	7.33			28	7.9	1.9	1.1	2.0	27
23	06-30-88	.93		83	8.10			39	12	2.2	1.0	.40	37
23	07-12-89		50	51	7.55			21	6.0	1.4	.90	.50	19
24	06-30-88		••	62	7.40	6.70	0 26.5	23	6.1	1.9	1.5	1.8	19
24	07-13-89		50	48	6.22			16	4.6	1.2	1.4	1.5	14
25	06-29-88	.20		70	7.90			30	8.4	2.2	1.1	.30	29
26 26	06-30-88 07-12-89	.24	50	82 49	7.65			36	10	2.6	1.2	.40	37
27	06-28-88	.27		140	7.34 7.10			21 69	6.0	1.5	1.3	.90	18 67
27	07-12-89		121	118	7.56			57	22 19	3.4 2.2	1.1 1.1	.70 1.0	
28	06-28-88	.32		102	8.05			65	21	3.0	1.3	.60	66
29	07-13-89		70	86	7.65			38	12	1.9	1.1	.50	34
Site number	Date	(mg/L se as (i	lfate, dis- dis- olved se	ride, r dis- o olved so mg/L (m	ide,	Silica, dis- solved (mg/L as SiO ₂)	Solids, residue at 180 deg. C dis- solved (mg/L)	Solids, sum of consti- tuents dis- solved (mg/L)	Color (plat- inum- cobalt units)	gen, nitrite plus nitrate total recov- erable (mg/L as N)	total recov-	ammonia total recov-	erable (mg/L
17 18	07-13-89 07-11-89	63 128	8.0	1.0	0.10	8.3	85		10				
19	06-29-88	16	6.0 3 3.0	32 3.3 ·	.10	6.0 8.3	236 34	33	75 <5	0.070	0.020	0.03	0.020
20	06-29-88	22	3.0		< .10	8.3	38	38	5	.040	.020	.03	.020
22	06-30-88	32	5.0		< .10	7.7	48	50	5	.220	.020	.03	.030
22	07-12-89	22	7.0	1.3	.10	8.2	38	••	18				••
23	06-30-88	35	3.0		< .10	8.1	52	50	5	.100	.020	.03	.100
23	07-12-89	17	6.0	1.0	.10	8.0	41		10		••	••	••
24 24	06-30-88 07-13-89	17 14	6.0		< .10	1.1	44	31	5 <		.010	.01	.030
24 25	06-29-88	14 28	5.0 2.0	1.0 2.3	.10	7.1 7.9	31 46	41	380 5	.050	.020	.03	.030
26	06-30-88	34	3.0		< .10	8.1	46 54	41	5	.060	.020	.03	.030
26	07-12-89	13	7.0	1.2	.10	8.0	35		15		.030	.04	.070
27	06-28-88	62	5.0		< .10	7.7	106	79	· · ·	.020	.030	.04	.080
27	07-12-89	49	9.0	0.80	.10	8.0	79		32				
28	06-28-88	47	3.0		.10	7.5	114	69	5 <	.020	.010	.01	.260
29	07-13-89	32	8.0	0.70	< .10	8.4	58		20				

Table 4.--Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989--Continued

Site number	Date	total recov-	total recov- erable (mg/L	Arsenic, total recov- recov- (µg/L as As)	Barium, dis- solved (µg/L as Ba)	Boron, dis- solved (µg/L as B)	dis- solved (µg/L	Lead, dis- solved (µg/L as Pb)	Lithium, dis- solved (µg/L as Li)	Manga- nese, dis- solved (#g/L as Mn)	Stron- tium, dis- solved (µg/L as Sr)	Mercury, dis- solved (µg/L as Hg)	Beryl- lium, total recov- erable (µg/L as Be)
17	07-13-89			<1			24			12			<10
18	07-11-89			<1			50			670			<10
19	06-29-88		1.6	••	<100	<20	30	<5	<10	<10	10	0.3	
20	06-29-88		1.9		<100	<20	30	<5	<10	<10	10	.2 .3	
22 22	06-30-88 07-12-89		2.8		<100	<20	30 30	<5	<10	<10	130		
23	06-30-88		1.2	<1 	<100	<20	32 30	 <5	<10	7 <10	90	.3	<10
23	07-12-89			<1		~20	30 32	••		4	70		<10
24	06-30-88		6.2		<100	30	50	<5	<10	<10	30	.2	
24	07-13-89			1			380			500			<10
25	06-29-88				<100	<20	<10	<5	<10	10	50	< .1	
26	06-30-88	.21	1.5		<100	<20	10	<5	<10	10	80	.4	
26 27	07-12-89			<1	.400		32			16			<10
27 27	06-28-88 07-12-89		8.2	 <1	<100	<20	<10	<5 	<10	30	140	.4 	-10
28	06-28-88		••		<100	<20	33 30	 <5	<10	31 30	130	.2	<10
29	07-13-89			<1			68	••		21	130		<10
			Chro-					- 4 1 4 2			Ant	i	lenes
Site number	Date	Cadmid total recoverabl (µg/L as Co	/- recov le erabl . (μg/L	Copper total r- recov e erable (µg/L	total - recov- e erable (µg/L	Mercury, total recov- erable (µg/L as Hg)	Nickel total recov erabl (µg/L as Ni	total recove erabl (#g/L	Silve tota - recov e erab	l totai v- recov le erabl L (μg/l	tota /- reco le eral . (#g/	y, Peral control contr	e, chlor. l total v- recov- le erable
number 17	07-13-89	total recoverable (µg/L as Co	total /- recov le erabl - (µg/L d) as Cr	Copper total recover erable (µg/L) as Cu	total - recov- e erable (µg/L) as Pb)	total recov- erable (µg/L as Hg)	total recov erabl (µg/L as Ni	, nium, total - recov e erabl (μg/L) as Se	Silver tota - recor e erab (µg/I) as Ag	total v- recov le erabl (\(\mu g \) as Zr	, mony l tota /- reco le eral _ (#g, n) as s	y, Peral than ov- tota ble record (μg/l sb) (μg/l sc)	poly- e, chlor. l total v- recov- le erable L) (μg/L)
number ———		total recoverabl (µg/l as Co	total /- recov le erabl - (µg/L d) as Cr	Copper total recov e erable (µg/L r) as Cu	total - recov- e erable (µg/L) as Pb)	total recov- erable (µg/L as Hg)	total recov erabl (µg/L as Ni	, nium, total - recov e erabl (μg/L) as Se	Silver tota - recove e erab (µg/I	l total v- recov le erabl L (µg/l g) as Zr	totale reconstruction (#g/n) as S	y, Peral thancov- tota ble recov/L erab (#g/l	- poly- e, chlor. l total v- recov- le erable (μg/L) 1 <0.10
17 18	07-13-89 07-11-89	total recoverabl (µg/L as Co	total /- recov le erabl - (#g/L d) as Cr <1 2	Copper total recove e erable (µg/L) as Cu	total recov- e erable (µg/L) as Pb) <1 7	total recov- erable (µg/L as Hg) <0.10 < .10	total recov erabl (µg/L as Ni <1 2	, nium, total - recove e erabl (μg/L)) as Se	Silve tota - recove e erab (µg/l) as Aq	t total γ- recov le erabl μ(μg/l g) as Zr <10 220	, mony l tota /- reco le eral _ (#g, n) as !	y, Peral thancov-tota ble recov/L erab (μg/l	- poly- e, chlor. l total v- recov- le erable L) (µg/L)
17 18 19 20 22	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88	total recoverabl (µg/l as Co	total /- recov le erabl _ (μg/L d) as Cr <1 _ 2	Copper total recove erable (µg/L) as Cu 3 20	total - recov- e erable (µg/L) as Pb) <1 7	total recoverable (µg/L as Hg)	total recoverabl (µg/L as Ni <1 2	, nium, total - recove e erabl (μg/L) as Se	Silve tota - recove e erab (µg/I)) as Ag	t total v- recov le erabl (µg/l g) as Zr <10 220	mony tota - reco le eral - (#g/ n) as !	y, Peral thancov-tota ble recov/L erab Sb) (μg/l	- poly- e, chlor. l total v- recov- le erable -) (μg/L) 1 <0.10
17 18 19 20 22 22	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89	total recoverabl (µg/l as Co	total /- recov ie erabl - (#g/L d) as Cr <1 2 1	Copper total - recove erable (\mu g/L -) as Cu 3	total - recov- e erable (µg/L) as Pb) <1 7 4	total recoverable (μg/L as Hg) <0.10 < .10 < .10	total recoverabl (µg/L as Ni 2 3	, nium, total - recove e erabl (μg/L) as Se <1 <1 	Silve tota - recor e erab (µg/l)) as Ag	t total v- recov le erabl (μg/t g) as Zr <10 220	mony tota - reco le eral - (#g, -) as !	y, Peral thancov-tota ble recov/L erab Sb) (μg/l	- poly- e, chlor. l total v- recov- le erable -) (μg/L) 1 <0.10
17 18 19 20 22 22 23	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88	total recoverabl (µg/l as Co	total /- recov ie erabl - (µg/L d) as Cr	Copper total (recove erable) (\mu g/L) as Cu 3 20 3 3	total - recov- e erable (µg/L) as Pb) <1 7 4	total recoverable (μg/L as Hg) <0.10 < .10 < .10	total recoverabl (µg/L as Ni 2 3 3	, nium, total - recove e erabl (μg/L)) as Se <1 <1 <1	Silver tota - recover e erab (μg/l)) as Ag <1 <1 <1	t total v- recov le erabl (µg/l g) as Zr <10 220 40	, mony l tota / reccle eral - (μg, h) as (' - · · · · · · · · · · · · · · · · · ·	y, Peral thancov-tota ble recov/L erab SSb) (μg/l l l l l l l l l l l l l l l l l l l	poly- e, chlor. l total v- recov- le erable L) (µg/L) 1 <0.10 1 < .10 1 < .10
17 18 19 20 22 22 22 23 23	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89	total recoverabl (µg/l as Co	total /- recov ie erabl - (#g/L d) as Cr	Copper total (recove erable (µg/L)) as Cu	total - recov- e erable (µg/L) as Pb) <1 7 4 1	total recoverable (μg/L as Hg) <0.10 < .10 < .10 < .10	total recoverabl (µg/L as Ni 2 3 3 5	, nium, total - recove e erabl (μg/L)) as Se <1 <1 <1 <1	Silver tota - recover e erab (μg/l)) as Ag <1 <1 <1	t total γ- recov le erabl μ (μg/l g) as Zr <10 220 40 <10	, mony l tota / reccle eral / reccle eral / reccle eral / reccle / reccle eral / reccle / re	y, Peral thancov-tota ble recov/L erab SSb) (μg/l l l l l l l l l l l l l l l l l l l	poly- e, chlor. l total v- recov- le erable L) (µg/L) 1 <0.10 1 < .10 1 < .10
17 18 19 20 22 22 23 23 24	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89	total recoverabl (µg/L as Co	total /- recovered for the covered for the co	Copper total recove erable (/#g/L recove erable) as Cu 3 20 3 2	total - recov- e erable (µg/L) as Pb) <1 7 4 1	total recoverable (μg/L as Hg) <0.10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 -	total recoverabl (µg/L as Ni 2 5	, nium, total - recove e erabl (μg/L)) as Se	Silver tota - recover e erab (μg/l) as As <1 <1 	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 <10	mony rective eral e eral e eral (µg) n) as '	y, Per al than ov- tota ble recor/L erab (μg/l 1 < 0.1 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	- poly- e, chlor. l total recov- le erable (μg/L) 1 <0.10
17 18 19 20 22 22 23 23 24 24	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89 06-30-88	total recoverabl (µg/l as Co	total /- recov ie erabl - (#g/L d) as Cr	Copper total (recove erable (µg/L)) as Cu	total - recov- e erable (µg/L) as Pb) <1 7 4 4	total recoverable (μg/L as Hg) <0.10 < .10 < .10 < .10 < .10 < .10 < .10	total recoverabl (µg/L as Ni 2 3 7	, nium, total - recove erabl (μg/L)) as Se <1 <1 <1 <1	Silver tota - recover e erab (μg/l) as As <1 <1 	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 <10 70	, mony l tota / reccle eral / reccle eral / reccle eral / reccle / reccle eral / reccle / re	y, Per al than ov- tota ble records (μg/l) 1 <0.11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 < 11 <	- poly- e, chlor. l total recov- le erable -) (μg/L) 1 <0.10
17 18 19 20 22 22 23 23 24	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89	total recoverabl (µg/L as Co	total /- recov le erabl (// // // // // // // // // // // // //	Copper total recove erable (/#g/L recove erable 20 3 2	total - recov- e erable (µg/L) as Pb) <1 7 4 1	total recoverable (μg/L as Hg) <0.10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 < .10 -	total recoverabl (µg/L as Ni 2 5	, nium, total - recove e erabl (μg/L)) as Se	Silver tota - recover e erab (μg/l) as As <1 <1 	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 <10	mony creckee eral ceera	y, Per al than ov- tota ble record (μg/l 1 < 0.1 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	- poly- e, chlor. l total recov- le erable -) (μg/L) 1 <0.10
17 18 19 20 22 22 23 23 24 24 24 26 26	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89 06-30-88 07-13-89 06-29-88	total recoverabl (µg/L as Co	total /- recov ie erabl - (#g/L d) as Cr <1 2 1 6	Copper total recove erable (µg/L) as Cu 3 20 3 2 2	total - recov- e erable (µg/L) as Pb) <1 7 7 4 4 4 4	total recoverable (μg/L as Hg) <0.10 <.10 <.10 <.10 <.10 <.10 <.10	total recoverabl (µg/L as Ni 2 3 5 7	, nium, total - recove erabl (μg/L)) as Se <1 <1 <1 <1 <1 <1 <1 <1 <1	Silver tota - recover e erab (μg/l) as As <	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 <10 70	mony l total le eral le eral le eral '(µg/ ') as !	y, Per al thancov- tota ble recov/L erab (μg/l - 1 < 0.1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	- poly- e, chlor. l total v- recov- le erable L) (μg/L) 1 <0.10
17 18 19 20 22 23 23 24 24 25 26 26 27	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-13-89 06-29-88 06-30-88 07-12-89	total recoverabl (µg/L as Co	total /- recovered erable /- (μg/L) as Cr /	Copper total recover e erablic (µg/L) as Cu	total - recov- e erable (µg/L) as Pb) <1 7 4 1 4 2 2	total recoverable (μg/L as Hg) <0.10 <.10 <.10 <.10 <.10 <.10	total recoverabl (µg/L as Ni 2 3 5 7	, nium, total - recove erabl (μg/L)) as Se <1 <1 <1 <1 <1 <1 <1	Silver tota - recover e erab (μg/l)) as A(1)	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 410	, mony l total (/- reccle eral l (/- /- /- /- /- /- /- /- /- /- /- /- /- /	y, Per al thancov- tota ble recov/L erab (μg/l - 1 < 0.1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	- poly- e, chlor. l total v- recov- le erable L) (μg/L) 1 <0.10
17 18 19 20 22 23 23 24 24 25 26 26 27 27	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-13-89 06-30-88 07-13-89 06-30-88 07-12-89	total recoverabl (µg/l as Co	total recover	Copper total recove erable (/// // // // // // // // // // // // //	total - recov- e erable (µg/L) as Pb) <1 7 4 1 2	total recoverable (μg/L as Hg) <0.10 < .10	total recoverabl (µg/L as Ni 2 3 5 1	, nium, total - recove erabl (μg/L)) as Se <1 <1 <1 <1	Silver tota - recover e erab (μg/l)) as A(<1 <1 <1 <1 <1 <1	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 40 40 40 40 40	, mony l tota /- reccle eral - (µg, h) as \(\frac{\pi}{2} \)	y, Per al thancov- tota ble recov/L erab Sb) (μg/l - 1 < 0.1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	poly- e, chlor. total recov- le erable (μg/L) 1 <0.10
17 18 19 20 22 23 23 24 24 25 26 26 27	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-13-89 06-29-88 06-30-88 07-12-89	total recoverabl (µg/leas Co	total /- recovered erable /- (μg/L) as Cr /	Copper total recover e erablic (µg/L) as Cu	total - recov- e erable (µg/L) as Pb) <1 7 4 1 4 2 2	total recoverable (μg/L as Hg) <0.10 < .10	total recoverabl (µg/L as Ni 2 3 7 1 1	, nium, total - recove erabl (μg/L) as Se	Silver tota - recover e erab (μg/l)) as Ag <1 <1 <1 <1 <1 <1 <1 <1 <1	t total γ- recov le erabl (μg/l g) as Zr <10 220 40 <10 40 40 40	, mony l tota / reccle eral - (μg, h) as \(\frac{\pi}{2} \)	y, Per al than ov- tota ble records (μg/l than ov)	- poly- e, chlor. l total recov- le erable -) (μg/L) 1 <0.10

Table 4.--Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989--Continued

Site number	Date	Aldrin, total recov- erable (µg/L)	Lindane, total recov- erable (µg/L)	Chlor- dane, total recov- erable (#g/L)	DDD, total recov- erable (µg/L)	e erable	DDT, total recov- erable (µg/L)	total recov- erable	Endo- sulfan, total recov- erable (µg/L)	total recov- erable	total recov-	Hepta- chlor, total recov- erable (µg/L)	epoxide total recov- erable
17 18 19 20 22 22 23 23 24 24 24 25 26 26 27 27 28 29	07-13-89 07-11-89 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89 06-30-88 07-13-89 06-29-88 07-12-89 06-28-88 07-12-89 06-28-88 07-12-89	<0.010 < .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010	<0.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	<0.1 < .1 < .1 < .1 < .1 < .1 < .1 < .1 < .1 < .1	< .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010	0 < .010 0 < .010 0 < .010 0 < .010	<0.010 < .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010	< .010 < .010 < .010 < .010 < .010 < .010 < .010	0 < .010	<0.010 < .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010 < .010	<1 <1 <	< .010 < .010 < .010 < .010 < .010 < .010	< .010 < .010 < .010 < .010
					Site number	Date	Meth- oxy- chlor, total recov- erable (μg/L)	PCB, total recov erable		-	•		
					18 19 20 22 22 23 23 24 24 24	07-13-89 07-11-89 06-29-88 06-29-88 06-30-88 07-12-89 06-30-88 07-12-89 06-30-88 07-13-89 06-29-88	<0.01 <.01 <.01 <.01	<0.1 < .1 < .1 < .1 < .1	<0.01 <.01 <.01 <.01 <.01	_			
					26 27 27 28	07-12-89 06-28-88 07-12-89 06-28-88 07-13-89	< .01 < .01 < .01	< .1 < .1 < .1	< .01 < .01 < .01				

Table 5.--Daily mean discharge of Banjo Branch near Waynesboro, Tenn. (03594164)

[MAX, maximum; MIN, minimum; CFSM, cubic feet per square mile of drainage area; IN., inches; WY, water year]

DAY	MAY	JUNE	JULY	1988 AUG	SEPT	OCT	NOV	DEC	APR	MAY	JUNE	1989 JULY	AUG	SEPT
1 2 3 4 5	0.66 .60 .57 .65	0.50 .51 .49 .46 .47	0.30 .36 .33 .29	0.24 .26 .33 .23	0.22 .21 .23 .29	0.56 .40 .28 .25	0.26 .26 .23 .81	0.51 .49 .48 .46 .43	1.1 1.0 2.2 44 9.7	0.84 .67 .66 1.2 2.8	0.50 .57 .53 .52 .58	2.8 14 7.5 3.7 2.1	0.89 .77 .61 .58	4.2 5.2 2.1 1.2 .87
6 7 8 9 10	.52 .53 .52 .53 .48	.48 .50 .40 .41 .42	.24 .15 .17 .17	.25 .28 .26 .24 .25	.23 .19 .17 .16 .17	.23 .24 .23 .22	.40 .33 .34 .30	.43 .45 .44 .44	5.4 5.8 4.7 3.4 2.4	1.5 .96 .86 1.0	.55 .50 .54 .57	1.4 3.6 4.0 1.8 2.2	.93 .73 .57 .52 .52	.71 .67 .67 .67
11 12 13 14 15	.47 .47 .42 .42	.39 .39 .37 .37	.21 .36 .72 .26 .18	.26 .26 .29 .27 .26	.25 .23 .22 .21 .20	.27 .26 .28 .28	.46 .44 .59 .39	.41 .40 .42	1.8 1.5 1.4 1.3	.81 .73 .71 .92	.78 .71 2.9 4.2 22	7.5 8.8 4.4 2.2 1.4	.52 .50 .50 .51	.67 .65 1.0 1.4 .74
16 17 18 19 20	.56 .79 .49 .46	.35 .36 .33 .32	.17 .17 .17 .18	.24 .19 .14 .15	.88 .53 .26 .25	.39 .36 .46 .53	1.0 .57 .41 .4		1.1 1.1 1.0 .98 .91	.76 .69 .64 .65	5.6 2.1 1.2 1.3	1.2 1.0 .83 1.2 .87	.50 1.2 .71 .57	.71 .68 .67 .63
21 22 23 24 25	.48 .90 2.0 3.8 2.0	.43 .45 .38 .36 .34	.60 .26 .23 .21 .24	.18 .17 .18 .18	.23 .22 .24 .45	.62 .59 .72 .74	.94 .50 .41 .36		.88 .86 .84 .79	.70 .63 .74 .59	.81 .69 .60 .56	.75 .68 .66 .78	.51 .52 .56 .58 .64	.64 .89 .88 .66
26 27 28 29 30 31	1.0 .72 .67 .59 .57	.33 .30 .30 .30 .27	.24 .23 .21 .21 .22 .24	.15 .16 .46 .34 .24	.25 .24 .24 .31 .28	.86 .93 .3 .35 .26	15 6.8 2.0 .94 .68		.74 .73 .72 .68 .74	.56 1.7 .66 .58 .53	.49 .47 4.4 3.1 3.1	.62 .58 .58 .57 .55	.77 .62 .54 .53 3.4 2.0	.90 .72 .89 1.6 7.9
TOTALS MEAN MAX MIN CFSM IN.	23.92 .77 3.8 .42 .36 .42	11.66 .39 .51 .27 .18	7.93 .26 .72 .15 .12	7.24 .23 .46 .14 .11	8.18 .27 .88 .16 .13	13.96 .45 1.3 .22 .21	45.03 1.50 15 .23 .70	5.77 .44 .51 .40 .21	99.84 3.33 44 .68 1.56 1.74	27.07 .87 2.8 .51 .41	61.86 2.06 22 .47 .96 1.08	79.65 2.57 14 .55 1.20 1.38	23.40 .75 3.4 .50 .35	40.95 1.36 7.9 .63 .64
				STATIST	CS OF M	ONTHLY N	MEAN DATA	A WATER	YEAR (WY) 1	988-89				
MEAN MAX (WY) MIN (WY)	.77 .77 1988 .77 1988	.39 .39 1988 .39 1988	.26 .26 1988 .26 1988	.23 .23 1988 .23 1988	.27 .27 1988 .27 1988	.45 .45 1989 .45 1989	1.50 1.50 1989 1.50 1989	.44 .44 1989 .44 1989	3.33 3.33 1989 3.33 1989	.82 .87 1989 .77 1988	1.23 2.06 1989 .39 1988	1.41 2.57 1989 .26 1988	.49 .75 1989 .23 1988	.82 1.36 1989 .27 1988
SUMMAR	Y STATIS	TICS	1988 CAI	ENDAR YEA	AR 1	988 WATE	R YEAR	1989	WATER YEAR	ł	WATER	RYEARS	1988 - 19	89
LOWEST HIGHES LOWEST ANNUAL ANNUAL 10 PERI 50 PERI		MEAN MEAN EAN INIMUM (CFSM) (INCHES) EEDS	15	3.69 .54 .14 (Aug .17 (Aug .25 .215 .75 .34	18)	3.	.93 .39 .8 (May .14 (Aug .17 (Aug .18 .02	18)	399.23 1.55 44 (Ap .22 (Oc .24 (Oc .72 6.94 3.1 .70 .36			1.11 1.55 .39 44 .17 .52 7.08 2.0 .54		3) 1988

Table 6.--Analyses of bottom-sediment samples collected from two sites near the Wayne County landfill, July 1989

[µg/kg, micrograms per kilograms]

Site number	Date	PCN, total recov- erable in bot tom ma terial (µg/kg	erable in bot tom ma terial	total recov- rec	total recov- erable in bot tom ma terial	DDD, total recov- erable in bot- tom ma- terial	DDE, total recov- erable in bot- tom ma- terial (µg/kg)	DDT, total recov- erable in bot- tom ma- terial (µg/kg)	Di- eldrin, total recov- erable in bot- tom ma- terial (µg/kg)	Endo- sulfan, total recov- erable in bot- tom ma- terial (µg/kg)	Endrin, total recov- erable in bot- tom ma- terial (µg/kg)
18 24 24	7-11-89 7-13-89 7-13-89	<1.0 <1.0 <1.0	<0.1 < .1 < .1	<0.1 < .1 < .1	<1.0 <1.0 <1.0	<0.1 .1 .3	<0.1 .1 .2	0.3 < .1 < .1	<0.1 < .1 .1	<0.1 .1 < .1	<0.1 .1 < .1
		ite mber		phene, total recoverable in bottom material	recov- erable in bot-	Hepta- chlor epoxide, total recov- erable in bottom material (µg/kg)	Meth- oxy- chlor, total recov- erable in bottom material (µg/kg)	PCB, total recov- erable in bot- tom ma- terial (µg/kg)	Mirex total recov- erable in bot- tom ma- terial (µg/kg)	Per- thane in bot- tom ma- terial (µg/kg)	
		24 7	-11-89 -13-89 -13-89	<10 <10 <10	<0.1 < .1 < .1	<0.1 < .1 < .1	<0.1 < .1 .1	9 13 57	<0.1 .1 .1	<1.00 <1.00 <1.00	-

This page was re-typed since it was not on disk.

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989

[--, species not present]

	June 2	8, 1988		June 29, 1988	
TAXA	Banjo Branch Site 27	Banjo Branch Site 28	Moser Branch Site 19	Moser Branch Site 20	Banjo Branch tributary Site 25
INSECTA					
Ephemeroptera (mayflies)					
Baetis amplus			4		
Baetis tricaudatus	20	••			
Caenis species	16	4	4		
Stenonema species		12	4		
Tricorythodes species		4			
Plecoptera (stoneflies)					
Acroneuria species	4	2			
Paraleuctra species	20	20	92	32	20
Trichoptera (caddisflies)					
Cheumatopsyche species	56	24			
Chimarra species		8			
Hydropsyche species		4			
Rhyacophila vagrita		4	4		
Trichoptera pupae			4	••	
Diptera (true flies)					
Antocha species		4			
Bezzia species	4	••			
Chironomus species	16				
Cryptochironomus species	20		28	32	20
Eukiefferiella species 1	12		4		
Eukiefferiella species 2	44	4		32	
Glyptotendipes species	32	· 			
Micropsectra species	8				
Microtendipes species	36	28			16
Orthocladius species	28		••		10
Paralauterborniella species		••	4	••	
Polypedilum species 1				48	
Stictochironomus species 1	4		**		4
Stictochironomus species 2	· 		12	32	
Thienemanniella species	68				
Thienemannimyia species group		48	48	80	12
Tipula species		**			4
Tribelos species	8	12	12	128	4
Trissopelopia species	16	16	4	120	
Zavrelimyia species	88		8	48	4
Chironomidae pupae	12	4			
Coleoptera (beetles)					
Bidessini species	20		8		
Dubiraphia species		4	• 		
Optioservus species	16	120			
Psephenus herricki		20			4
Stenelmis species	••		4		
atomormo opodios			4		

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

	June 2	8, 1988	June 29, 1988			
TAXA	Banjo Branch Site 27	Banjo Branch Site 28		Moser Branch Site 20	Banjo Branch tributary Site 25	
Hemiptera (true bugs)						
Trepobates species	2		4			
Odonata (dragonflies and damselflies)						
Argia species	**	1	••		••	
Gomphus species	-	••		16		
Ophiogomphus species	4	12	••	••		
Stylogomphus species	8	**	16		4	
Megloptera (alderflies and dobson flies)						
Nigronia species	28	55	4			
HYDRACARINA (water mites)		4				
CRUSTACEA						
Isopoda (sow bugs)						
Lirceus species	4	20			4	
Amphipoda (sideswimmers)						
Gammarus minus	132	5				
Decapoda (crayfish)						
Orconectes compressus	3	11	9	3	5	
MOLLUSCA						
Gastropoda (snails)						
Somatogyrus species	12		4			
DLIGOCHAETA (worms)				•		
Tubificidae	36	5				
FOTAL NUMBER OF ORGANISMS NUMBER OF TAXA	825 31	455 26	281 20	451 10	101 12	
SHANNON-WEAVER DIVERSITY VALUES	4.31	3.80	3.36	2.95	3.22	

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

		June 30, 198	8	July 12, 1988		
TAXA	Hog Creek Site 22	Mill Branch Site 23	Banjo Branch tributary Site 26	Downing Branch Site 17	Moser Branch (at county road bridge) Site 29	
INSECTA					7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Ephemeroptera (mayflies)						
Baetis amplus	8		8		1	
Baetis pygmaeus	64			29	·	
Baetis tricaudatus					5	
Caenis species	32			6		
Ephemera species				••	1	
Isonychia species		8		3	6	
Stenonema species	8	20	8	24	12	
Tricorythodes species		8		4	-	
Plecoptera (stoneflies)		0	••	4		
riecoptera (stonemes)						
Acroneuria species	24	24	18		4	
Paraleuctra species	288	20	48	28	1	
Trichoptera (caddisflies)						
Cheumatopsyche species	24	32	16	7	4	
Chimarra species	24	12		<u></u>	3	
Hydropsyche frisoni	8	4				
Hydropsyche species					1	
Diptera (true flies)						
Antocha species	8	4	••	10		
Atherix species	48	••		13		
Bezzia species	8	**				
Chironomus species		4				
Cricotopus species		••	••	3	2	
Cryptochironomus species	16	4			2	
Eukiefferiella species 1		4		4	3	
Eukiefferiella species 2	16	, 		15		
Hemerodromia species	40					
Micropsectra species				1		
Microtendipes species	16	4		<u>'</u> 		
Orthocladius species				4	3	
Polypedilum species 1	24	60	32	9	3 24	
Polypedilum species 2	'	4			44	
Prosimulium species				2		
Simulium species					2	
Stictochironomus species 2		4			2	
Thienemannimyia species group	400	- 60	64	 5	16	
Tipula species	1	1	2	2	1	
Tribelos species	40	28	16	3	1	
Trissopelopia species	64	4	32	3 		
Zavrelimyia species	16	12	32	2		
Chironomidae pupae	8	4	32 	3		

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

	June 30, 1988	July 12, 1988		
Hog Creek Site 22	Mill Branch Site 23	Banjo Branch tributary Site 26	Downing Branch Site 17	Moser Branch (at county road bridge) Site 29
				1
	44			3
24		24		11
8				2
8	20	8		2
8				
	4		2	1
	8	••		6
8				
		9	7	
				1
9	5	7	5	3
 32	 		5 2	
16	••		*	
	454			121
32	27	16	27	27
3.77	4.08	3.61	4.22	4.04
	Site 22 208 72 24 8 8 8 8 8 1,578 32	Hog Creek Site 23	Hog Creek Site 23	Hog Creek Site 23

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

	July 12, 1989							
AXA	Hog Creek Site 22	Mill Branch Site 23	Banjo Branch tributary Site 26	Banjo Branch Site 27				
NSECTA		*						
Ephemeroptera (mayflies)								
Baetis amplus		160		••				
Baetis tricaudatus	20	544	4					
Caenis species		192						
Ephemera species			16					
Heptagenia species	•-		4					
Isonychia species	10	96						
Stenonema species	50	576	24	4				
Tricorythodes species		32						
Plecoptera (stoneflies)								
Acroneuria species	20	128	52	16				
Paraleuctra species	310	416	72					
Trichoptera (caddisflies)								
Cheumatopsyche species			4					
Chimarra species	40	32	••	••				
Hydropsyche elissoma		••	8					
Hydropsyche frisoni	20	64	••					
Potamyia species		64						
Diptera (true flies)								
Antocha species	30	144		2				
Atrichopogon species		16		2				
Atherix species	30	48						
Bezzia species	••	••	4	2				
Cryptochironomus species	20	••	4					
Eukiefferiella species 1	10	320	16	••				
Eukiefferiella species 2	40	32	12					
Hemerodromia species	30	32	4					
Hexatoma species	10		· 	••				
Micropsectra species		16						
Microtendipes species	••			2				
Orthocladius species	10	112	8					
Polypedilum species 1	510	1,280	84	4				
Simulium species	40	64						
Stitochironomus species 1		••		2				
Thienemannimyia species group	140	128	124	16				
Tipula species		16	68					
Tribelos species	30		16					
Trissopelopia species		16	8					
Chironomidae pupae		48		4				
Coleoptera (beetles)								
Optioservus species	40	160		4				
Psephenus herricki	10	64	12	14				
Stenelmis species		32	8					

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

	July 12, 1989						
TAXA	Hog Creek Site 22	Mill Branch Site 23	Banjo Branch tributary Site 26	Banjo Branch Site 27			
Odonata (dragonflies and damselflies)							
Argia species Ophiogomphus species	10 10	 64		 12			
Megaloptera (alderflies and dobson flies)							
Corydalus cornutus Nigronia species Sialis species	34 	32 	 4	 2 			
CRUSTACEA							
Isopoda (sow bugs)							
Lirceus species			8	44			
Amphipoda (sideswimmers)							
Gammarus minus		16		20			
Decapoda (crayfish)							
Orconectes compressus	10	10	12				
DLIGOCHAETA (worms)							
Tubificidae	20	••	24	18			
TOTAL NUMBER OF ORGANISMS NUMBER OF TAXA SHANNON-WEAVER DIVERSITY VALUES	1,504 26 3.41	4,954 31 3.87	600 25 3.77	168 16 3.32			

Table 8.--Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989

[?, species identification not definite]

Downing Branch (site 17)

Moser Branch (at headwaters) (site 18)

Organisms	Relative abundance, in percent	Organisms	Relative abundance
BACILLARIOPHYTA (Diatoms)		BACILLARIOPHYTA (Diatoms)	
Order Centrales		Order Centrales	
Melosira varians	0.2	Melosira varians	0.8
Order Pennales		Order Pennales	
Achnanthes lanceolata	.2	Achnanthes linearis	2.4
Achnanthes linearis	7.9	Achnanthes minutissima	7.1
Achnanthes minutissima	1.9	Cymbella minuta	1.5
Cocconeis placentula var, euglypta	.2	Cymbella tumida	.3
Cymbella tumida	.2	Cymbella turgidula	2.4
Gomphonema parvulum	.3	Cymbella species	.3
Navicula arvensis	.3	Gomphonema parvulum	7.1
Navicula gottlandica	.3 .2	Gomphonema species	.6
Navicula rhynchocephala	.2	Navicula rhynchocephala	.8
Navicula species	.2 .3	Navicula species	.3
Nitzschia dissipata	.2	Nitzschia palea	.6
Nitzschia frustulum	.3	Nitzschia species	.3
Nitzschia palea	.4	Reimeria sinuata	.3
Nitzschia paleacea	.3	Rhoicosphenia curvata	.3
Reimeria sinuata	1.9	Synedra species	.3
CHLOROPHYTA (Green algae)		CHLOROPHYTA (Green algae)	
Gongrosira species?	.2	Chlorococcum species	1.5
Mesotaenium species	.1	Microspora species	3.2
Scenedesmus dimorphus	.9		
		CYANOPHYTA (Blue-green algae)	
CYANOPHYTA (Blue-green algae)			
		Chroococcus species	3.2
Anabaena species	18.3	Lyngbya species	6.3
Lyngbya nana	25.4	Oscillatoria limosa	4
Lyngbya species	3.4	Oscillatoria species	56.4
Oscillatoria angustissima	3		
Oscillatoria limosa	18.9		
Oscillatoria species	14.5		
Synechococcus lineare	.3		

Table 8.--Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989--Continued

Hog Creek (site 22) Mill Branch (site 23)

Organisms	Relative abundance, in percent	Organisms	Relative abundance, in percent
BACILLARIOPHYTA (Diatoms)		BACILLARIOPHYTA (Diatoms)	
Order Pennales		Order Centrales	
Achnanthes lanceolata	0.4	Melosira varians	0.2
Achnanthes linearis	3.6		
Achnanthes minutissima	2.3	Order Pennales	
Cymbella minuta	.8		
Cymbella tumida	.2	Achnanthes affinis	.2
Cymbella turgidula	.7	Achnanthes linearis ?	.8
Gomphonema parvulum	.2 .2 .7	Achnanthes minutissima	1.3
Gomphonema species	.2	Cymbella minuta	1.1
Navicula arvensis	.7	Cymbella tumida	.1
Navicula decussis	.2	Cymbella turgidula	3.2
Navicula rhyncocephala	.4	Epithemia smithii ?	.5
Nitzschia fonticola	.2	Epithemia species	.1
Nitzschia frustulum	.2	Eunotia species	.1
Nitzschia palea	1.5	Gomphonema species	.1
Nitzschia paleacea	.8	Navicula arvensis	.1
Reimeria sinuata	3.5	Navicula biconica	.3
		Nitzschia acicularis	.1
CYANOPHYTA (Blue-green algae)		Nitzschia frustulum	.3
		. Nitzschia palea	.2
Lyngbya digueti	12.7	Reimeria sinuata	1.1
Lyngbya nana	33.1	Synedra species	.2
Oscillatoria limosa	13.5		
Oscillatoria species	24.6	CYANOPHYTA (Blue-green algae)	
Synechococcus species	.4		
·		Calothrix species	1.8
		Lyngbya digueti	35.4
		Lyngbya nana	12.7
		Oscillatoria limosa	17.5
		Oscillatoria ochracea ?	21.3
		Oscillatoria species	.6

Table 8.--Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989--Continued

Banjo Branch tributary (site 26)

Banjo Branch (site 27)

Organisms	Relative abundance, in percent	Organisms R	elative abundance in percent
BACILLARIOPHYTA (Diatoms)		BACILLARIOPHYTA (Diatoms)	
Order Centrales		Order Centrales	
Melosira varians	2.6	Melosira varians	0.7
Order Pennales		Order Pennales	
Achnanthes affinis	0.5	Achnanthes linearis ?	.4
Achnanthes lanceolata	1	Achnanthes minutissima	4.5
Achnanthes linearis	6.2	Cocconeis placentula var. euglypta	.2
Achnanthes minutissima	3.2	Cymbella cymbiformis var. nonpuncta	
Epithemia species	.7	Cymbella turgidula	.2
Gomphonema parvulum	.5	Gomphonema parvulum	1.1
Gomphonema species	.7	Gomphonema species	.2
Navicula arvensis	.3	Navicula arvensis	.4
Nitzschia acuta ?	.3	Navicula atomus	ġ
Nitzschia amphibia	.7	Navicula notha	.9 .7
Nitzschia frustulum	.3	Navicula minuta	.2
Nitzschia palea	.7	Nitzschia fonticola	.9
Nitzschia paleacea	1	Nitzschia frustulum	.4
Rhoicosphenia curvata	.7	Nitzschia palea	2.6
Stauroneis anceps	.3	Nitzschia paleacea	1.3
Surirella angustata	.3	TWIZSOMA PAICACCA	1.5
Synedra species	.3	CHLOROPHYTA (Green algae)	
CHLOROPHYTA (Green algae)		Closterium species 1	.2
Chlorococcum species	.7	CYANOPHYTA (Blue-green algae)	
Coleochaetae species	7.3		
Cosmarium species	.5	Lyngbya digueti	31.8
Gongrosira species?	1	Lyngbya nana	3.3
		Oscillatoria limosa	49.8
CYANOPHYTA (Blue-green algae)			
Anabaena species	20.2		
Lyngbya species	1.7		
Oscillatoria angustiisima	1.5		
Oscillatoria limosa	17.3		
Oscillatoria species	21.7		
Phormidium species	7.8		

Table 8.--Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989--Continued

Moser Branch (at county road bridge) (site 29)

Organisms	Relative abundance, in percent	Organisms	Relative abundance in percent
SACILLARIOPHYTA (Diatoms)		CHLOROPHYTA (Green algae)	***************************************
Order Centrales		Chlorococcum species 1	.1
		Cosmarium species 1	.1 .1
Melosira varians	0.1	• • • • • • • • • • • • • • • • • • • •	
		CYANOPHYTA (Blue-green algae)	
Order Pennales		, , ,	
		Lyngbya nana	21.7
Achnanthes linearis	.4	Lyngbya ochracea ?	6.7
Achnanthes minutissima	3.8	Lyngbya species	.9
Cymbella minuta ?	.6	Oscillatoria geminata	2.1
Cymbella tumidula	.2	Oscillatoria limosa	50.8
Cymbella turgidula	.9	Phormidium species	4.6
Epithemia species	.4	·	
Gomphonema parvulum	.7		
Gomphonema species	.2		
Navicula atomus	1.5		
Navicula gottlandica	.2		
Navicula rhyncocephala	1.1		
Nitzschia frustulum	.6		
Nitzschia palea	1.5		
Nitzschia species	.4		
Reimeria sinuata	.2 .2		
Synedra species	.2		

Table 9.--Species of fish, number of organisms, and species richness from six sites near the Wayne County landfill, July 1989

[--, species not present]

Common name and species	Number of organisms by site					
	Downing Branch site 17	Hog Creek site 22	Mill Branch site 23	Banjo Branch tributary site 26	Banjo Branch site 27	Moser Branch site 29
Central stone roller Campostoma anomalum		18	24	28	17	8
Rosy side dace <i>Clinostomus funduloides</i>	44	7	14	15	26	5
Rose fin shiner <i>Notropi</i> s <i>ardens</i>						1
Striped shiner <i>Notropi</i> s <i>chrysocephalus</i>		5				5
White tail shiner <i>Notropi</i> s <i>galacturus</i>						3
Red belly dace <i>Phoxinum erythrogaster</i>	16			15	26	
Fathead minnow <i>Pimephales notatus</i>	••		2	••		8
Black-nose dace Rhinichthys atratulus	24			3	9	
Creek chub <i>Semotilus atromaculatus</i>	26	10	15	6	6	3
Mad tom <i>Noturus exili</i> s		1	4	**		8
Northern hog sucker Hypentalium nigricans		6	7			2
Rock bass A <i>mbloplites rupestri</i> s		10	9	4		4
Green sunfish <i>Lipomis cyanellus</i>						2
Longear sunfish Lepomis megalotis						4
Small mouth bass Micropterus dolomieui		1				
Rainbow darter Etheostoma caeruleum				3		
Slabrock darter Etheostoma squamiceps	7		3	2	4	2
Rod nose darter Etheostoma zonistium		1	5	10	3	3
Nottled sculpin Cottus carolinae		3	8	7	2	
Species richness	5	10	10	10	8	14

نه