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Prologue

Recently accelerated interest in terrestrial and planetary radar investigations
has revealed the need for a better and more quantitative understanding of radar
backscatter from large areas of natural terrain surfaces. Most early backscatter model
investigations have had to rely heavily on mathematical models and have applied
numerous approximations because of the nearly total lack of natural terrain micro-
relief statistics and the unavailability of calibrated radar cross-section measurements
(Rice, 1951; Beckmann and Spizzichino, 1966; Valenzuela, 1967, 1968; Moore,
1969; Barrick, 1970, 1972). Calibrated radar backscatter data have only recently
become available using multiwavelength, polarimetric SAR sensors. Thus, a resurgence
in studies related to radar backscatter modeling of natural surfaces has been encouraged
(e.g., Schaber and others, 1980, 1986; Ulaby and others, 1981 Elachi, 1987; Engman
and Wang, 1987; Sabins, 1987; van Zyl and others, 1987, 1991; Zebker and others,
1987; van Zyi, 1989, 1991; Campbell and others, 1989; Ulaby and Elachi, 1990;
Avery and Berlin, 1992; Evans and others, 1992; Farr, 1992). Because a "true"
mathematical description of all but the most unique ground surface appears out of the
question, models are necessary to describe the radar return from natural surfaces
(Moore, 1969). Thus, at present, the role of theory should be simply to aid us in
interpreting these measurements, and to suggest how the empirical relationships may be
extrapolated.

A detailed summary of the many methodologies and approaches used to model
backscatter from natural terrains of various roughness scales and types is beyond the
intent of this report. However, a brief summary of major models follows. Originally,
the physical optics (or Kirchhoff-Huygens approach) and related tangent plane method
provided the major theoretical tool and stemmed from use of the Helmholtz integral
(e.g., Davies, 1954; Beckmann and Spizzichino, 1963; Hagfors, 1964; Semonov, 1966;
Kodis, 1966; Barrick and Peake, 1967; Stogryn, 1967; Peake and Barrick, 1968;
Blanchard and Rouse, 1980, and others).

In an attempt to incorporate depolarization effects, noted by experimental
evidence, Rice (1951) introduced the small pertubation method as an incoherent
solution which uses essentially the same method derived by Lord Rayleigh for acoustics.
Various modifications of the pertubation method (e.g., the Bragg-Rice method) were then
pursued in a theoretical manner by Peake (1959), Fung (1967, 1868) and Valenzuela
(1967, 1968), among others. Models for composite surface roughness were introduced
after it was realized that natural terrain surfaces simply cannot be described by any
single theoretical model (e.g., Semenov, 1966; Fuks, 1966; Valenzuela, 1968; Barrick
and Peake, 1968).

The physical mechanism of the interaction of radar waves with natural terrain
surfaces today remains the most poorly known of the parameters necessary for
empirical derivation of backscatter models. Peake and Barrick (1967) have reviewed
the various theories for scattering from surfaces with different roughness scales
(summary in Barrick and Peake, 1968). Experimental and theoretical modeling of the
scattering of radar waves from large areas on the ocean surface using various '
maodifications of the tangent plane, Bragg-Rice, and Rayleigh models has been
considerably more successful than backscatter studies of natural terrain surfaces
because of the systematic (mathematical) nature of sea-state waves and ripple
roughness (Wright, 1966. 1968; Barrick, 1968; Daley, 1973; Valenzuela, 1974,
1978; Thompson and others, 1983; Brown and others, 1975).

What follows is a comprehensive documentation by the authors of the extensive
database of surface micro-roughness statistics and radar scatterometer data acquired of
the Death Valley saitpan and fan gravels between 1973 and 1983. The Death Valley
saltpan and adjacent fan gravel surfaces were selected early as good radar backscatter
test sites because of their diversity of surface roughness types and scales, and the



general absence of vegetation. Problems subsequently recognized with the unique
hydrology of the valley floor, in regard to radar backscatter modeling, are discussed
below. |

INTRODUCTION

Death Valley, California, has long been aa site for the
comparison of a wide range of multispectral remote sensing data,
including investigations of the correlations between radar
backscatter and diverse types of micro-roughness (Schaber and
others, 1976a,b; Dailey and others, 1978a,b, 1979). A resurgence in
the interest in Death Valley within remote sensing communities has
arisen as a result of the (1) availability ofg state-of-the-art
airborne, multispectral (C-, L-, and P bands% and fully polarimetric

synthetic aperture radar (SAR) sensors, (2) selection of the Valley
as a prime study site in NASA's recent Geologic Remote Sensing
Eield Experiment (GRSFE) (Evans and others, in press), and (3) use of
the Valley as a major surface calibration site during the Third
Shuttle Imaging Radar Experiment (SIR-C/X-FAR) (first mission -
April, 1994)(Evans and others, 1993). |

In this report, we make available radar scatterometer data,
terrain microrelief, and surface electrical properties data that were
acquired from Death Valley between 1973 and 1983 as part of a
NASA Planetary Geology (PG) Program|contract to the USGS to
investigate radar backscatter from natural terrain surfaces. Part of
this extensive dataset has been refor atted,‘tabulated and cross-
correlated for this open-file report, but only a limited amount of
interpretation of these data is provided here. | It is our hope that
these previously unpublished databases will provide information
useful to the general remote sensing community in evaluating
contemporary multispectral, polarimetric SAR, and other remote
sensing and ground data collected from Death Valley as part of the
GRSFE and SIR-C/X-SAR Missions. Ta the knowledge of the authors,
no natural terrain site has been so throughly documented for terrain
micro-relief statistics over such a wide range of sampling intervals
(3 mm to ~100 m) for the primary purpose of understanding radar
backscatter. |

The saltpan and adjoining gravel fans within Death Valley
National Monument were first considered as potentially useful sites
for the correlation between radar backscatter and surface micro-
topography following acquisition of experimental L-band (25-cm
wavelength) SAR images of this region by the Jet Propulsion
Laboratory in 1969 and 1970 (Schaber| and others, 1976a) (Figs. 1,
2). Our initial geologic evaluation of these images, as well as



earlier X-band (3-cm wavelength) SAR images obtained by the
Goodyear Aerospace Corporation in 1964 (Schaber and others, 1976b;
Berlin and others, 1980), showed that there is a first order
correlation between the average relief of the surface scatterers on
the saltpan and fan gravel surfaces and the relative density of radar
image film (i.e., backscattered return). In this early investigation,
the Rayleigh criterion (Beckmann and Spizzichino, 1963) that
predicts the size of surface scatterer transition between radar
rough and radar-smooth, was verified from field studies to occur at
L-band between 4 cm (0.16)\) and 7 cm (0.28\). Subsequent papers
(Dailey and others, 1978a,b; 1979; Berlin and others, 1980) describe
the excellent discrimination of Death Valley geologic units using
multipolarization, multifrequency radar images, Multispectral
Scanner (MSS) images, and various combinations of these data sets.
Many X-band, L-band, and three-frequency polarimetric SAR images
have been acquired over Death Valley since the early 1970s. Because
of the limited scope of this Open-File Report, the reader is referred
to Hunt and Mabey (1966), Hunt and others (1966), and Hunt (1975)
for detailed descriptions of the geology, structure, and hydrology of
Death Valley and vicinity (see Fig. 1, Table 2).

Early in our investigation of radar backscatter in Death Valley,
It became clear that detailed micro-topography of the saltpan and
fan gravel surfaces would have to be acquired at a variety of slope
lengths, and then analyzed statistically prior to any serious attempt
to "quantify" the relationship between the radar backscatter cross

section (o°) and microrelief statistics. As a result, the major
objectives of our subsequent radar-geology investigations in Death
Valley were divided into two major tasks: (1) collection of detailed
micro-topography data and the calculation of terrain statistical
data from this topography; and (2) the empirical derivation of one or
more radar backscatter inversion models, from which we hoped to
estimate the surface properties (e.g., dielectric constant,
microrelief) given a knowledge of the radar backscatter cross-
section behavior, and visa versa. In this report, we simply present
the scatterometer database and describe the methodologies that
were successfully developed for (1) collecting detailed micro-
topography information, and (2) statistical analysis of these data.
Earlier relevant reports describing selected aspects of this
methodology are referenced below as appropriate.

The empirical derivation of a unified backscatter inversion
model that would be applicable to the wide range (and diverse types)
of micro-relief in Death Valley was recognized to be a complex and
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difficult task early in our investigation. Our basic approach to this
task during the late 1970s and early 1980s involved the development
of a "modified Bragg-Rice model", summarized in an abstract
presented by Brown and Schaber (1980). In the course of this early
study, we and our JPL collaborator (Walter E.| Brown Jr.) developed
serious concerns as to whether the modified Bragg-Rice model, or
any other "single" backscatter inversion algorithm, could
satisfactorily represent the backscatter that resulted solely from
the surface of the diverse saltpan and| fan gravel terrains in the
valley. Our major concern was (and still is) the degree to which
radar backscatter from the saltpan deposits, and to a lesser degree
from the gravel fans, is influenced by volume scattering, multiple
scattering, and complex dielectric effects.

Additional problems during our early radar-geology studies in
Death Valley included: (1) the dependability (at all incidence angles
and frequencies) and the absolute calibration of radar scatterometer
data obtained in 1977 and 1979 (described bélow) in support of our
NASA investigation; and (2) the unavailability at that time of

calibrated (o0°), multispectral and polarimetric SAR images. The
availability of calibrated multispectrall and fully polarimetric SAR
image data is especially important to enable the researcher to
justify the spatial extrapolation of any inversion model through
follow-up field studies. Fortunately, such databases are now
becoming available. |

Volume scattering and multiple scattering effects (Ulaby et
al., 1982) were found to be most prevalent at the lower frequencies
(L-band and P-band) in both the saltpan and gravel surfaces. Surface
and near-surface dielectric anomalies Jare encountered
predominantly within the saltpan, and |at all radar frequencies
investigated (X-, C-, L- and P-bands). Lenses of damp to wet silts
and clays, hygroscopic salts, and hollow hummocks (near-surface
cavities) are characteristic of the valley floor year round (Fig. 3).
The Death Valley saltpan is dominantly below sea level, reaching a
minimum elevation of -86 m in Badwater Basjn (Figs. 1, 2b).
Excessive near-surface moisture and sand and clay lensing is
especially troublesome within the smoothest (and lowest elevation)
floodplain deposits, which cover about one thlrd of the saltpan. The
slightly rough sulphate and carbonate |units
characterized by near-surface salt he
solution cavities (Fig. 3).

Both the damp zones (salt saturated) and the void spaces act
as complex dielectric inhomogeneities| that produce increased

within the saltpan are
ving and are pitted with




backscatter in both radar scatterometer data and SAR images. The
damp areas of the floodplain, for example, are best delineated on the
VV polarization images (See section - Hydrologic Problems in Death
Valley.) Such returns are extremely difficult, if not impossible, to
separate from backscatter signatures that are entirely the result of
measured "surface" roughness variations.

A state-of-the-art Airborne Synthetic Aperture Radar
(AIRSAR) has become available in recent years for radar-geologic
and radar polarimetric investigations (e.g., van Zyl, 1989, 1990; van
Zyl and others, 1991, 1989, 1987; Nguyen and others, 1990; Sheen
and others, 1989; Evans and others, 1988; Zebker and others, 1987).
This fully digital, calibrated SAR, developed and built at the Jet
Propulsion Laboratory (Pasadena, Calif.), is mounted aboard a DC-8-
72 aircraft which is maintained and operated out of NASA's Moffett
Field (Mountain View, California). This SAR has the capability to
acquire simulataneous C-, L-, and P-band data in four polarizations
(HH-HV, VV-VH), and records both the amplitude and phase of the
returning signals. AIRSAR is a powerful contemporary tool for
investigating the feasibility of deriving radar backscatter inversion
models in Death Valley and elsewhere (e.g., van Zyl and others,
1991).

Researchers interesting in using AIRSAR data to pursue
backscatter inversion modeling within Death Valley are strongly
cautioned about the potential effects of spurious volume scattering
and anomalous dielectrics, especially within the various saltpan
deposits on the valley floor, as described above.

background information on databases collected between
1973 and 1983

Surface Profiles From Stereo Models

Two types of stereo terrain photography (ground level and
helicopter borne) were acquired during the 1970s and early 1980s
for the purpose of documenting terrain micro-topography for a total
of eight saltpan and four fan gravel sites within Death Valley (Figs.
1, 4-13; Tables 1, 2). However, all 12 surface stations are not
always included in each separate tabulation and correlation of the
radar scatterometer and terrain roughness data discussed below
- because of limited coverage of some sites by the available
scatterometer flightlines.

A templet device for obtaining in situ topographic profiles at
low cost was first tested and found to produce satisfactory results
(0.5-m vertical resolution and 1-2 cm horizontal resolution).
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However, this method was abandoned in lieu of photogrammetric

reduction of conventional - stereomodel

desired documentation of the highest

terrain microrelief that may be impo
Sim

(see Schaber and Berlin, 1980).
have been utilized with satisfactory

of radar backscatter from lava flows (

s in order to insure the
frequency component of the
rtant in Bragg-like scattering
ilar templet measuring devices
results| in contemporary studies
e.g., Gaddis and others, 1989).

The ground level Hasselblad (model MK-70 with 60 mm lens)

photographs were taken (handheid) in

above the surface in overlap and conv
models have a ground resolution of 1-

profiles, 1.1 to 2.9 m in length, were
reduction of the stereomodels using

U.S. Geological Survey (Flagstaff Fiel
The profiles were digitized at a 3-mm

input into a terrain analysis software

stereomodel baseline was established

1977 from about 2 to 2.5 m
ergent stereo. The stereo-
2 mm. High resolution surface
obtaintd by photogrammetric
analytical stereoplotters at the
d Cenjgr, Flagstaff, Arizona).
equivalent ground spacing for
program (described below). A
in the ground-level

stereopairs by placing two "leveled" meter sticks at orthogonal

angles in the field of view.

The helicopter-borne Hasselblad

(handheld) on May 9, 1981 from about
surface in overlap and convergent ster
resolution of 2 to 3 cm. The stereom
photogrammetrically reduced to prod
to 94 m in length. The models were
interval of 10 cm for terrain analysis
posterboard targets (45.5 cm on a si
a 10 cm bar scale were spaced 50 m

photographs were taken

100 m above the ground

o, and have a ground

dels were

ce two orthogonal profiles, 50
igitized to an equivalent ground
(Figs. 14-21). Two white

e) with large black circles and
part and leveled on each

geologic calibration surface just prior to the helicopter overflights.

A more sophisticated, boom-mounted
helicopter platform was utilized by
acquire microrelief information in su

tereo camera system on a
all and others (1991) to
port df contemporary studies

of SAR and other remote sensing data! in Death Valley.

The profiles made from the gro
stereo photographs described in thi

nd level and helicopter-borne
Open-File Report statistically

represent both the large-scale variations in the topography and the

terrain micro-structure on the Death

at that time (mid 1970s to early 1980s).

ground level and helicopter based ph
micro-relief calibration were covered

alley saltpan and gravel fans
The locations of the
tography sites for terrain

y one or more of the

footprints of the JSC radar scatterometer, as described below (see

Table 4). The ground level and helic

pter-borne stereo photography




in Death Valley was supplemented between 1977 and 1979 with
NASA airborne radar-scatterometer data (Figs. 22-29, Table 4).

Radar Scatterometer Data

A radar scatterometer is a non-imaging radar system designhed
to measure the radar backscatter cross-section (o©) from radar
reflectivity time-histories as a function of incidence angle (8,) at a

particular wavelength and polarization. Such measurements, when
made with a continuous-wave Doppler radar, have some unique
advantages such as (a) the simultaneity of the received signal from
a long narrow swath of terrain, (b) the capability of receiving
information forward and aft of the nadir, and (c) the capability of
filtering a narrow portion of the Doppler spectrum by analog or
computer methods to yield information from a particular ground cell
of the irradiated terrain (Kennedy and Janza, 1969; Thompson, 1983).
The Doppler frequency shift in the received signals is provided by
the relative motion between the aircraft and the overflown terrain.
The basic scatterometer equation is given by

fq = (2V/\) sin (8)) @)
where fqg = Observed Doppler shift

vV = Aircraft velocity

A = Radar wavelength

8 = Angle of incidence

A particular Doppler frequency is associated with a specific
angle of incidence, whereas the Doppler is zero at nadir. The
scattering area has a footprint which is a parallelogram aligned
with the aircraft's ground track. Thus, the scattering area is the
product of the width (cross track) and a length (along track) of this
footprint. The length of the scattering areas is determined by
Doppler filtering of the echo (Thompson, 1983). Thus:

L = RAg;= HAS;, = __HAf\ )
cos (8) 2V cos2(8;)
where L = Scattering area length (along track)
R = Range
H = Aircraft altitude above the ground
Af = Spectral resolution
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The width (cross-track dimension) of the fo

bandwidth, thus:

w

Ccos

where = Scattering area width
Antenna beamwidth

Radar bandwidth

Scatterometer radar-backscatter

of the type described above were obta

aircraft flying at 460 m above ground

- :

f

Ftprint is determined by antenna
\
|

€)

L track)

r .
cross | section measurements

ined from a Convair-130
level with a forward velocity

G

(acros

of 280 km/hr over selected areas of Death Valley in May and June,

1977 and April and May, 1979 (Figs. 22-29, Table 4).

The radar

antenna footprints over Death Valley from this altitude were 69 m
and 23 m for the L-band and X-band systems, respectively (Fenner
and others, 1978). The radar scatterometer system used in this
investigation was operated by the Johnson Space Center (JSC)
(Experiment System Division-Microwave Section) Houston, Texas,
and transmitted several frequencies: 0.4 Ghz (P-band, 0.75 m), 1.6
Ghz, (L-band, 0.187 m), 4.75 Ghz (C-band, 0.063 m), and 13.3 Ghz (K-
band 0.023 m), though most areas do not have a complete set of

usable observations at all four frequencies (Table 4).

The 13.3 Ghz

scatterometer, which acquired data only in VV polarization,

produced little usable data from Death

dynamic range for the scatterometers i
and others, 1978).

The JSC scatterometer system
one polarization (either horizontal or
like- and cross-polarized components (
simultaneously). Each frequency and
recorded at five-degree increments of
range of 15 to 50 degrees. Five fligh
four in VV-VH polarization and one in
photographs was obtained at 1:3000 st
These data were used to establish a

Valley. The total system
s in excess of 50 dB (Fenner

was capable of transmitting
vertical) and receiving both
H or V, but not both
polarization combination was
incidence angle over a usable
tlines of data were collected,
HH-HV polarization. Color
cale during the data runs.
rcraft flight paths relative to

the selected terrain analysis sites on different geologic surfaces.
The resulting graphs of radar backscatter per unit area (og)

versus incidence angle, shown in Figures 22-29, coarsely delineate

the backscatter "envelope" of nine of the saltpan and fan gravel sites
studied within the valley. The degreg of abFolute calibration of the
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radar backscatter cross-section data reduced from the JSC
scatterometer radar reflectivity time histories was never well
defined, but is estimated to be approximately =3 dB (Steve Reid,
Lockheed Aerospace, Houston TX, personal commun., 1979).

TERRAIN ANALYSIS

Parametric description of natural topography, for practical
applications such as radar-backscatter modeling is a highly complex
subject (Pike, 1963; Pike and Rozema, 1975). Research in this area
is commonly referred to as terrain analysis. Many studies in terrain
analysis were undertaken to develop a classification scheme for a
highly specific set of circumstances. Accordingly, the descriptive
statistics that we have applied to micro-roughness in Death Valley
for the purpose of understanding radar backscatter thus constitute
only one way to address the general problem--modeling the
geometry of natural terrains. The application to radar tends to
restrict descriptive variables to those expressing surface roughness
rather than other, more exotic characteristics of larger scale
terrains (Pike, 1978; Pike and Rozema, 1975). Moreover, the
statistical description of topography at a millimeter to 100 m scale
represents an application of terrain analysis to one extreme of the
scale with which there is still little experience on the part of earth
scientists (Schaber and others, 1980).

The U.S. Geological Survey's Terrain Analysis Software

The terrain statistics presented below were generated using
the U.S. Geological Survey's Terrain Analysis Module (TAM) software,
originally developed under NASA funding for trafficability analysis
for the Apollo Lunar Rover Vehicle (LRV) and for incidental studies
of lunar morphology (Pike and Rozema, 1975; Pike, 1978; Schaber
and others, 1979, 1980). It is important to note here that the TAM
software, as written, cannot presently accept three-dimensional
topographic models as input. Therefore, terrain statistics
performed on the Death Valley terrains described in this report were
computed from orthogonal, linear topographic profiles digitized at
equally-spaced intervals.

The Terrain Analysis Module is written in FORTRAN IV and
consists of seven integrated data analysis and plotting routines.
The program furnishes nearly one hundred individual items of
graphical and tabular data dealing with six major statistical
parameters, including: (1) topographic relief, hypsometric analyses,
(2) topographic grain, (3) power ("variance") spectral density

12



(Rozema, 1969; Pike and Rozema, 1975), and (4) mean slope angles
at various relief profile sampling intervals (Schaber and others,

1979, 1980). Appendix A includes a brief description of the seven
subprograms that comprise TAM, and an example printout from TAM
is included in Schaber and others (1980).

The photogrammetrically generated topographic profiles from
ground level and helicopter-based photography obtained at selected
saltpan and fan gravel sites in Death Valley (Figs. 1,2, 4ab, 14-21;
Tables 1, 2) were digitized at 3-mm and 10-cm ground intervals,
respectively. The resulting elevation profiles were used as input in
the TAM software in order to calculate variqus parameters related
to surface roughness. Selected statigstics on relief, slope,
curvature, and power spectral density functions computed for
selected saltpan and fan gravel calibration sites (shown in Figs. 1,2,
5-13 and Tables 1 and 2) are tabulated in Tables 5-30. Graphical
representations of the probability density of elevation (relief) and
slope, and the power spectral density (PSD) curves (described below)
computed from the helicopter-derived profiles for the selected
saltpan and fan gravel sites, are shown in Figures 30-39. The
parameters for the regression line-fit to the PSD data are shown in
Table 31.
The probability density functions for micro-relief on natural
terrain surfaces are very poorly known because of the rather
specialized need for such information| and the extreme difficulty in
acquiring these data over large uniformly rough areas. Information
of this type is, however, required for proper empirical modeling of
radar backscatter. A totally random set of elevation measurements
on an isotropically rough, natural surface should follow the
"Gaussian" or normal distribution of the probability density
functions. We can test the validity of the normal distribution for
micro-relief within Death Valley by elevation frequency analysis of
the profile data (Figs. 4, 14-21). If a|variable X, representing
- deviation from mean relief, is distributed as

F(x) = 1W2xSx2 * e- X—h)ZIFsz

where Sx = standard deviation of relief and h = mean relief, then X is
said to have the normal distribution of the probability density
functions (Miller and Kahn, 1962). From theilalues of standard
deviation of relief and mean relief listed in Tables 4-13 we can

13




calculate true normal distribution of the probability density for the
selected saltpan and gravel surfaces in Death Valley used in this
study. The measured probability density functions for both relief
and slope are shown in Figures 30-38. For purposes of radar
backscatter model investigations, it is important to know how
closely these surfaces approximate a normal or other distribution of
the probability density functions.

Examples of the correlations between normalized radar
backscatter cross section at L-band (for HH, HV and VvV, VH
polarization, and at various angles of incidence) and mean relief,
relief variance, and mean slope for nine surface calibration sites are
graphically presented in Figures 40-45. Breaks in the slope of the
curves are seen to occur at about 4 cm for mean relief, 4 cm?2 for
relief variance, and about 8° for mean slope (e.g., Fig. 40-41). These
flexures are thought to represent the transition between Rayleigh
(i.e., specular) and diffuse scattering at L-band, as earlier reported
(Schaber and others, 1976). Similar graphs for the remaining
scatterometer frequencies (X-, C- and P-bands) have not been
produced; however, they can be generated in part from the tabular
and graphical data presented in this report.

Mean Slope Versus Profile Sampling Interval

The slope portion of the TAM software calculates the algebraic
and absolute slope statistics for varying profile sampling intervals
and absolute slope statistics for varying profile sampling intervals,
and furnishes a regression line fit equation for these data (See
Appendix A). Figure 46 illustrates a graphical presentation of these
data for the 12 ground-level and helicopter-derived topographic
profiles shown in Figures 4 and 14-21 (Table 2). Note the relative
insensitivity of relief profile sampling interval versus mean slope
angle for the rougher saltpan surfaces characterized by stations A ,B
and C (See Figs. 4, 5, 46a). The extreme smoothness of the
floodplain surface (Stations G,H -see Fig. 9) is shown by its mean .
slope of zero degrees at a rather short sampling interval of about 50
to 60 mm. Similarly for the fine-grained fan gravels on Artist's
Drive (station K, Fig. 12) and the desert pavement surface on Tucki
Wash Fan (station L, Fig. 13), the mean slope goes essentially to zero
at sampling intervals of 100 and 50 mm, respectively. The values of
these statistics lies in the equivalence of the profile sampling
interval and radar wavelength sensitivity to surface irregularities
and relief facets.

14



[Actual and line-fit power spectral density curves for the orthogonal
X and Y profiles computed for the nine saltpan and fan gravel sites
from the ground-level stereo models are compared in Figure 39. The
parameters for the regression line functions for the PSD curves
derived from both the ground-level and helicopter-derived
topographic profiles are given in Table 30.]

Power spectral or time series analysis ‘enables examination of
the frequency content of topographic or surface roughness profiles.
In natural terrain surfaces, profiles are generally statistically
random functions that can be represented by |the continuous variance
spectrum. Elevation amplitudes that contribute to variability of a
random isotropic surface above its mean height value are thus
associated with a continuum of wavelengths. Separating a random
profile into wavelength bands yields the spectral density of the
relief variance which is given as the square of the amplitude per
unit bandwidth of the contributing wavelength| bands (Pike and
Rozema, 1975). This value has been called the power spectral
density (PSD). The actual PSD curves|for the studied Death Valley
surface profiles are shown as parts e and f of Figures 30 through 38
and Figure 39a-d, while the regression line fit curves to these data
are shown in Figure 39e and f. |

The variance spectral density proagram used in this study
derives the autocovariance function and the Fourier transform of the
autocovariance function which is the spectral density function of
the variance, and vice versa (Pike and Rozema, 1975).

lines representing continuous functions of topographic (spatial)
wavelength. Because the greatest relief within a surface profile
(natural terrain) is generally associated with the longer 4
wavelengths, the spectral density decreases rapidly with decreasing
terrain wavelengths. The slopes of the PSD curves describe a
relation between the relief content of the long and short wave
features (Bryson and Dutton, 1967). An overall slope of -3 is
thought to indicate a "uniformity" of topographic slope for all relief
features in the sample area, regardless of their size (Lettan, 1967;
Bekker, 1969). A slope less steep than -3 indicates that small
topographic features (high frequency) are rougher than large (low
frequency) features. This is a common aspect of the surface
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profiles of Death Valley saltpan surfaces. Likewise, a spectrum
slope steeper than -3 suggests more rough, coarse-grained features
and fewer smooth, fine-grained relief forms. The average PSD curve
slopes for the Death Valley saltpan and gravel geologic surfaces
using the ground level topographic profiles (shown in Fig. 4) are
-2.418 and -1.892 respectively, indicating a surplus of high
frequency small-scale relief over large-scale relief (see Fig. 39a-
d).

Digital bandpass filtering of the very low frequency data in the
surface profiles is performed prior to calculation of the PSD
functions. This operation is included since a long-term trend in the
profiles affects the PSD function in two ways: (1) it may result in a
non-stationary profile (i.e., a profile whose statistical properties
are affected by a change in origin), and (2) because the amplitude of
the profile associated with the low frequency of a long trend would
likely be relatively large, enough power would be contributed by the
low frequency to obscure that contributed by higher frequencies
(Rozema, 1969). The overturn on the upper left side of the Death
Valley PSD curves (Fig. 38)is the result of this high pass filtering
of the low frequency trends on the ground-level topographic profiles.

CORRELATION BETWEEN SAR IMAGE FILM DENSITY AND
TERRAIN ANALYSIS DATA FOR SALTPAN AND GRAVEL FAN
SURFACES

Backaround

Between 1964 and the mid-1980s, many dozens of flightlines
of uncalibrated (i.e., for normalized radar backscatter cross-
section) X-band and L-band SAR images of Death Valley were
acquired by aircraft-borne SARs operated by several different
organizations and facilities (e.g., Jet Propulsion Laboratory, Air
Force Systems Command, Goodyear Aerospace, Corp., Motorola
Aerospace Corp., Johnson Space Center). Spaceborne L-band SAR
images of Death Valley were first acquired by Seasat in 1978.
Earlier, digitally-correlated, L-band SAR images (dual polarization,
HH and HV or VV and VH) were acquired by the Planetology and
Oceanography Section of the Jet Propulsion Laboratory (JPL)
utilizing the NASA Convair-990 that was maintained and operated
out of NASA/Ames Research Center (Moffett Field, Calif). The 990
aircraft was destroyed by fire on 17 July 1985 and was replaced by
the current DC-8-72 ("AIRSAR"), described above. For a complete
listing of JPL-acquired SAR data (both aircraft and Seasat) of Death
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Valley and vicinity, the reader is refe

rred to the radar data library

at JPL (Don Harrison, phone 818-35412386).

Methods

Following the technique described in

(1976), several of these uncalibrated

chaber and others
irborne X-band images and

airborne and Seasat L-band SAR images of Death Valley were

scanned at 25 or 50 micrometers in
film density values or digital number
fan gravel surfaces with documented
statistics (described above). To mini

n attempt to correlate relative
DN) from diverse saltpan and
urface relief and slope

ize the effect of varying

incidence angle on returned power (film density) from the surface,

only those SAR images that contain

eologic units of interest within

a limited incidence angle range were selected for digital analysis of

film densities.
study were not calibrated (i.e., they h

between return power and film densit

Given that the SAR images obtained early in our

ve anl unknown relation
y), the film density values,

after correcting for digitizer transformation function and film

gamma were used to show a relative
surface relief and slope statistics.

A computer program ("STAT") (w

correlation with various

ritten by Pat Chavez, U.S.

Geological Survey, Flagstaff, Arizona), originally developed for

analysis of Landsat MSS film density
density analysis of the radar images.

separate "samples" within five saltpan
were measured for the average and standar

density value (DN). The DN samples

geologic unit from which specific cal

for terrain analysis (as described abo
Image picture element ("pixel") a

were used in this analysis. An analy

geologic surfaces, versus changes in

values, was utilized in our
In the STAT program, five
and four fan gravel units
deviation of film
were s}lected from the same
ibration sites were selected
ve). |
rrays of 10 X 10 and 20 X 20
is of film DN for the selected
ngle of incidence across the

central portion of the images, indicated differences were within the

"noise".

Thus, small differences in incidence angle effects (few

tenths to 1 degree) were not taken into consideration in subsequeﬁt

calculations. After correction of the

ean DN values for the

digitizer transformation function, DN values|were "normalized" to
the roughest of the salt pan surfaces|(Station A or B) measured in

each radar image (Figs. 5a, 10).

line-fit graphs correlating normalized

Figures 47-52 show the

resulting
Im DN values on X- and L-

band SAR images with several of the measured surface relief and
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slope parameters described above. The gravel and saltpan surfaces
are clearly distinguishable on the graphs derived from DN analysis of
both the airborne, X-band (HH and VV) and the airborne and Seasat L-
band (HH) images. The gravels show a higher normalized DN relative
to the saltpan units on all of the airborne HH and VV images. On the
1975 airborne L-band HV polarization image, shown in Figure 50, the
saltpan and gravel surfaces are indistinguishable.

For the DN analysis of the Seasat L-band (HH) image (Fig. 52),
however, the saltpan surfaces show a distinctly higher backscatter
relative to the fan gravels. This is just the opposite of that seen on
the analysis of the HH and VV airborne images (Figs. 47-51). This
effect is tentatively attributed as a consequence of the steep 20°
(off nadir) incidence angle at which the Seasat data were acquired.
(compared with the airborne images that are generally acquired with
incidence angles between 45° and 70°). At a 20° incidence angle, the
Seasat SAR returns are characteristic of the steeper part of normal
radar backscatter cross-section curves (versus incidence angle) for
natural terrains (e.g., Ulaby and Dobson, 1989a,b; Ulaby and Elachi,
1990; Ulaby and others, 1981, 1982, 1986).

These overall results suggest the strong possibility that radar
returns from the saltpan and gravel fans result from uniquely
different scattering mechanisms, and that acquisition of a wide
variation in the angle of incidence may be useful for separating
these different radar-scattering mechanisms. Multiple scattering
might be more significant in both the X- and L-band SAR returns
from the fan gravels than the saltpan; thus indicating possible
stronger total return power from the gravels relative to the saltpan
surfaces when each has an equivalent mean relief, or relief variance.

Interestingly, DN analysis of the VH image from the JSC
ANAPQ-102A SAR sensor showed a dramatic steepening of the fan
gravel DN curve relative to that of the saltpan (Fig. 49). The reason
for this effect is not yet well understood. However, the same effect
did not appear on DN curves that were derived from an L-band image
acquired in HV polarization (see Fig. 51a,b,c). The DN curves derived
from analysis of both an aircraft L-band VV and HV images and a
Seasat HH L-band image (Figs. 50-51) show a break-in-slope at the
smoothest end of the roughness scale. The reversal in the relative
positions of the fan gravel and saltpan points on the Seasat image
DN curves was noted at the beginning of this section.

The flexures or breaks-in-slope observed in the DN curves for
the L-band gravel and saltpan units occur in the range of 2 to 8 cm

mean relief, 4 to 6 cm? relief variance, and 4° to 8° mean slope at a
25-cm profile sampling interval. As mentioned above, these breaks-
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in-slope are thought to represent the "Rayleigh breakpoint", or
transition from quasi-specular to dominantly diffuse backscatter
which we showed to be well defined based on density analysis of the
first L-band SAR images obtained of Death Valley (Schaber and
others, 1976). This change in scattering mechanism to Rayleigh
scattering at X-band (higher frequency) is not resolved on Figures
47-49 because it occurs at only a few millimeters surface-relief
scale at the higher radar frequencies (e.g., K- and X-band)(McDonald
and Waite, 1973). |
Because the radar images digitized for film density DN values
were not calibrated for absolute values of return radar power, the
slopes of the curves shown in Figures 47-52 differ slightly for each
sample of X-and L-band image data an should not be taken as
meaningful parameters. The intercept of these curves with the
ordinate (ratio of normalized film DN) is interpreted to be controlled
by differing photographic and image processing procedures used on
the radar image data to maintain maximum dynamic range (number of
film gray levels).
The relative correlation shown between normalized radar film
density and various surface roughness parameters in Death Valley
was expected, based on the results of our earlier studies (Schaber
and others, 1976a,b). However, the pparer%t, distinct separation of
the saltpan and fan gravel surfaces on the digital image data was
unexpected. Verification of this separation was not confirmed
during our analyses of the comparison of terrain relief statistics
with the JSC radar scatterometer data (refer to Figures 40-45).
However, the separation of the saltpan from the gravel surfaces may
have been more pronounced on the SAR images because of the
spatially "more representative" samples of the geologic surfaces
that were analyzed, as compared to the narrow footprint and lower
surface resolution of the JSC scatterometers. The consistently
steeper ground slope of the large gravel fans in Death Valley
relative to the saltpan was taken into consideration during the
selection of the SAR film DN values; however, it could still be an -
~important factor in the observed results thai should be investigated.
Further investigation into possible different| scattering behaviors of
the saltpan and the gravel surfaces in| Death| Valley is now possible
using JPL's calibrated, multispectral radar polarimeter (AIRSAR).

MOISTURE PROBLEMS IN DEATH VALLEY AND THEIR POSSIBLE
ADVERSE EFFECTS ON THE|MODELING OF RADAR
BACKSCATTER
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In terms of direct precipitation, Death Valley is the driest
part of the United States, with rainfall averaging only about 42 mm
per year. However, the paucity of precipitation is misleading
because Death Valley receives more water from springs, seeps, and
streams than most of the surrounding basins (Sharp, 1972). There
are two primary reasons for this. First, the floor of Death Valley,
the saltpan, is the drainage sink or sump for a fairly large
hydrologic basin (about 24,350 km2) in southeastern California and
adjacent parts of Nevada. The saltpan collects the surface-water
and ground-water discharge from (1) the Amargosa River, which
enters the saltpan from the south, (2) Salt Creek, which enters the
saltpan from the north, and (3) numerous side canyons from the
adjoining mountains east (Black and Funeral Mountains) and west
(Panamint Range) of the valley floor. Second, almost 50 percent of
the water entering Death Valley comes via faults that serve as
underground conduits from mountains and valleys lying outside the
hydrologic basin. The principal source for this water is thought to
be the Spring Mountains, the third range east of Death Valley, and
some 80 km away (Hunt, 1975).

Elevated moisture levels in the saltpan, and especially the
floodplain areas, are attributable to both seasonal sheet flooding
and the capillary rise of shallow ground water (See Appendix B.)
When precipitation is above normal in the hydrologic basin, the
floodplain areas in Cottonball, Middle, and Badwater Basins (Fig. 2)
can be covered by standing water. Most of the time, however, the
floodplain deposits are damp and covered with a very thin (often
quite dry) coating of nearly pure salt.

How floodplain moisture influences visible, mid-infrared (IR),
and radar returns is illustrated in Figures 53 And 54. Figure 53
shows Landsat Thematic Mapper (TM) band 3 (0.63-0.69 um, red) and
band 5 (1.55-1.75 pm, mid-IR) images of Death Valley. The band 3
image displays the floodplain areas in bright tones, which is
indicative of strong surface reflectance from the salt coating in the
visible spectrum (Fig. 9). By comparison, the band 5 image shows
the same area in dark tones because it was responding to changes in
the moisture content of the floodplain deposits (reflectance
decreases as moisture content increases).

Figure 54 shows two X-band, VV images of Cottonball Basin
and Badwater Basin. Although the floodplain areas have a very
smooth playa surface (Figs. 2 and 9), note that the image tones are
much brighter than the dark signature one would expect for a

20



specular surface. This is because the VV polarization is extremely
sensitive to changes in the dielectric constant due to moisture
variations (reflectance increases as moisture increases). Figure 26
clearly shows the influence of floodplain moisture in Cottonball
Basin on multifrequency radar scatterometer backscatter cross-
section values. ‘
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FIGURE CAPTIONS

Figure 1 - Geologic map of Death Valley (after Hunt and Mabey,
1966) showing the general location of six saltpan (A through H) and
four fan gravel sites (I through L) selected for micro-terrain
analysis. The Devil's Golf Course (DGC) and Cottonball Basin (CBB)
are indicated. Not all sites (e.g. C and F) are found in all figures and
tables that follow.

Figure 2 -(a) UPD-4, X-band (3-cm wavelength; H-H polarization)
SAR image of part of Death Valley showing the locations of the
surface calibration stations A, H, and K indicated in Figure 1. Areas
labeled include Middle Basin (MB), Artist's Drive Fan (ADF), Devil's
Golf Course (DGC), and Badwater Basin (BB). SAR image (3 m
resolution) obtained in 1976 by the Air Force Systems Command
(Goodyear Aerospace Corp. - Litchfield Park, Ariz.); (b) another part
of the same UPD-4 SAR image strip shown in (@), showing locations
of surface calibration stations B, C, D, E, G, |, J, and L. Areas labeled
include the Furnace Creek Ranch (FCR), Furnace Creek Fan (FCF),
Tucki Wash Fan (TWF), and Cottonball Basin (CBB).

Figur - Schematic geologic cross sections of typical saltpan and
fan gravel deposits in Death Valley.

Figure 4 - (a) Topographic profiles of saltpan stations A through H,
reduced photogrammetrically from ground-level stereo photography
(X-profile). Photos acquired from 2.0-2.5 m height (handheld); (b)
same as (a) but with Y-profile; (c) same as (a) but for fan gravel
stations I-L; (d) same as (b) but for stations I-L.

Figure 5- (a) View across station A, massive halite (rock salt), -
(geologic unit Qh; Hunt and Mabey, 1966), Devil's Golf Course. Note
Lambertian-like, cavernous roughness; (b) helicopter photograph
obtained from approximately 100 m height above the surface of the
Devil's Golf Course, showing the extreme level of surface roughness.
Area shown in image is 72 m X 91 m.

Eigure 6 - Station B, Qhr Massive Rock Salt (halite) in Cottonball
Basin. Meter stick held by person for scale.
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|
|

Figure 7 - Station D, Saline Facies—C}arbonate Zone in Cottonball
Basin. Meter stick shown for scale. |

i
Figure 8 - Station E- Qhs, Silty Rock Salt-Smooth Facies in
Cottonball Basin. :

Figure 9 - Station H, Qf, Floodplain deposit in Badwater Basin; the
smoothest of the five saltpan surfaces investigated. Meter stick
shown for scale.

Figure 10 - Station |, Qg3 - coarse, boulder gravels on Tucki Wash

Fan (located on the west side of the Valley). Orthogonally-placed
meter sticks shown for scale.

Figure 11 - Station J, Qg3 - moderately coJrse gravels on Furnace
Creek Fan near Furnace Creek Ranch.

Figure 12 - Station K, Qg3 . fine gravels on Artist's Drive Fan on
the east side of the Valley. Meter stick shown for scale.

Figure 13 - Station L, Qg2 . Desert Pavement on No. 2 Fan Gravels

on Tucki Wash Fan. Thirty centimeterllong rule with five cm
markings shown for scale.

Figure 14 - (a) Topographic profile across station A on the Devil's
Golf Course. Produced in X-direction across stereo model. Note:
This and all profiles shown in Figures 14-20Ebelow were obtained by
photogrammetric reduction of stereo photographs taken from a
helicopter 100 meters height above surface. Profile is 50.5 m long.;
(b) same as (a) but in Y (orthogonal to X) direction across stereo
model. Profile is 81.4 m long.

Figure 15 - (a) Topographic profile across station B in the
" Cottonball Basin. X-direction across stereo model. Profile is 81.2 m
long; (b) same as (a) but in Y direction. Profile is 101.1 m long.

Figure 16 - (a) Topographic profile across station D in the
Cottonball Basin. X-direction across stereo model. Profile is 92.6 m
long; (b) same as (a) but in Y-direction. Profile is 92.6 m long.



Figure 17 - (a) Topographic profile across station E in Cottonball
Basin. X-direction across stereo model. Profile 47.8 m long; (b)
same as (a) except in Y-direction. Profile is 93.85 m long.

Eigure 18 - (a) Topographic profile across station 1 on Tucki Wash
Fan. X-direction across stereo model. Profile is 50.25 m long.; (b)
same as (a) but in Y-direction. Profile is 81.8 m long.

Figure 19 - (a) Topographic profile across station J on Furnace
Creek Fan. X-direction across stereo model. Profile is 62.3 m long;
(b) same as (a) but in Y-direction. Profile is 59.8 m long.

Eigure 20 - (a) Topographic profile across station K on Artist's
Drive Fan. X-direction across stereo model. Profile is 73.0 m long;
same as (a) but in Y-direction. Profile is 83.0 m long.

Figure 21 - (a) Topographic profile across station L on Tucki Wash
Fan. X-direction across stereo model. Profile is 37.2 m long; (b)
same as (a) but in Y-direction. Profile is 90.0 m long.

Figure 22 - (a) Multifrequency HH-HV (polarization) radar
backscatter cross-section values (o,) versus incidence angle (8;) for

station A surface. Scatterometer wavelength (in meters) given to
right of curves. Data reduced from JSC radar scatterometer data
acquired over Death Valley in 1977 and 1979. See text for details;
(b) same as (a) but giving VV and VH polarization values; (c) same as
(b) but giving the values from a different scatterometer flightline.

Figure 23 - (a) Multifrequency, VV-VH radar backscatter cross-
section values versus incidence angle for station B surface. See
Figure 21 (a) for more details; (b) same as (a) but giving the values
from a different scatterometer flightline.

Figure 24 - Multifrequency, HH-HV radar backscatter cross-section
values versus incidence angle for station D.

Figure 25 - (a) Mutifrequency, HH-HV radar scatterometer cross-
section values versus incidence angle for station E; (b) same as (a)
but giving VV-VH polarization values.

Figure - (a) Multifrequency, HH-HV radar backscatter cross-
section values versus incidence angle for station H; (b) same as (a)
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but giving the values for a different

scatterometer flightline; (c)

same as (a) but giving VV-VH polarization values.

Figure 27 - (a) Multifrequency, HH-HV radar backscatter cross-
section values for station I; (b) same as (a) but giving the values

from a different scatterometer flightline.

Figure 28 - Multifrequency, VV-VH
values for station K.

Figure 29 - Multifrequency, HH-HV
values for station L.

Figure 30 - (a) Probability density g

derived from analysis of the topograp
14a; (b) same as (a) but derived from
(c) probability density of slopes for X

same as (c) but derived from Y-profile

spectral density (PSD) curves for stat

topographic X-profiles acquired from b

|

radar backscatter cross-section

radar backscatter cross-section

L

f relief for station A surface
hic X-profile shown in Figure
Y-profile shown in Figure 14b;
-profile described in (a); (d)
described in (b); (e) power
jon A, computed from

oth ground level and

helicopter platform; (f) same as (e) but for Y-profiles.

Figure 31 -(a-f) Same as for Fig. 30
Figure 32- (a-f) Same as for Fig. 30

Figure 33 - (a-f) Same as Fig. 30 bu

Eigure 34 - PSD curves for station H

curve derived from helicopter-based stereo

computed because of extreme smooth

Eigure 35 - (a-f) Same as Fig. 30 bt

but for station B.

but fo} station D.

t for s;tation E.

(Ground-level data only). PSD
hotography were not

ness af floodplain surface.

ut for station I.

Figure 36 - (a-f) Same as Fig. 30 but for station J.

Figure 37 - (a-f) Same as Fig. 30 bt

it for station K.

Eigure 38 - (a-f) Same as Fig. 30 byt for station L.

Figure 39 - (a) PSD curves for six saltpan stations.

from ground-level topographic profile
using the USGS Terrain Analysis Modu

:

a

Data computed
(X-direction in stereo model)

le (TAM) described above and in



Appendix; (b) same as (a) but computed from Y-direction profile
across stereo model (See ground-level profiles, Fig. 4a,b); (c) same
as (a) but for fan gravel stations; (d) Same as (b) but computed for
fan gravel stations; (e) Same as (a and b) but derived from line-fit
equation; produced by TAM software (See Table 31); (f) Same as (c
and d) but computed from line-fit equations produced by TAM
software (see Table 31.)

Figure 40 - (a) Correlation at five different incidence angles
between L-band (VV polarization) radar backscatter cross-section
values (oy) and mean relief for six saltpan and fan gravel stations.

Values of o, computed derived from radar scatterometer data (See

Figs. 22-29); (b) Same as (a) but correlated with relief variance; (c)
Same as (@) but correlated with mean slope. Surface statistical data
(i.e., mean relief, relief variance, standard deviation and mean slope)
plotted in Figs. 40-45 are taken from Table 4 and derived from
statistical analysis of the ground-level topographic profiles shown
in Fig. 3.

Figure 41 - (a-c) Same as Fig. 40 but computed for VH polarization.

Figure 42 - (a-c) Same as Fig. 40 but computed for stations |, D,
and L, and with HH polarization.

Figure 43- (a-c) Same as Fig. 42 but computed for HV polarization.
Figure 44 - Same as Fig. 40a but for stations K and L.
Figure 45 - Same as Fig. 41a but for stations J and K.

Figure 46 - (a) Absolute slope versus sampling interval derived
from terrain analysis of the ground-level topographic profiles for
six saltpan and four fan gravel surfaces; (b) same as (a) but from the
terrain analysis of helicopter-derived topocraphic profile.

Figure 47 - (a) Ratio of X-band SAR film density (DN values)
versus measured mean relief for five saltpan and three fan gravel
surfaces in Death Valley (HH-polarization). The SAR image used was
acquired over Death Valley by the Goodyear Aerospace Corporation in
1964. Note clear separation of saltpan and fan gravel surfaces; (b)
same as (a) but for relief standard deviation; (c) same as (a) but for
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mean slope at 3 cm sampling interval.

Surface statistics for this

and all following DN plots (through Fig. 52) are taken from Table 4.

Eigure 48 - (a-b) Same as Fig. 47a—tl but using a high resolution (3

m) X-band SAR image acquired in 197
Corp. using a UPD-4 SAR sensor (see
computed for mean slope at 25 cm s

Figure 49 - (a-b) Same as Fig. 47a-

by the Goodyear Aerospace
ig. 2);/ (c) same as (a-b) but
mpling interval.

but using a VV-polarization,

X-band (3-cm) SAR image obtained with the JSC ANAPQ-102X SAR

sensor (VV polarization).

Several flightlines of dual polarization

(simultaneous HH and HV or VV and V only)i X-band image data were

acquired over Death Valley by the Joh
March 16, 1979 at the request of the
54); (c) same as (a) but correlated wi
interval; (d-f) same as (a-c) but usin
steepening of curve for gravel sites c
polarization (See text); (g) same as (
sampling interval.

son Space Center (JSC) on
enior ?uthor (ggs) (See Fig.
h mean slope at 3 cm sampling
VH polarization. Note strong
mpared to HH or VV

but for mean slope at 25 cm

Eigure 50 - (a-b) Same as Fig. 47a,b| but using an L-band (25-cm
wavelength) SAR image (VV polarization) of Death Valley acquired
by JPL in 1976. Note break in slope of curves at about 6 cm mean
relief (See text); (c) same as (a-b) but for mean slope at 25 cm

sampling interval.

Figure 51 - (a-b) Same as Fig. 46a,b

(HV polarization) of Death Valley acquired b
as (a-b) but for mean slope 25-cm samplin

unlike the data shown in Figs. 47-49,

but usjng an L-band SAR image
JPL in 1975; (c) same

interval. [Note that,

the saltpan and gravel surfaces

are not distinguishable from the gravels in the plots, but together

form a smooth curve].

Figure 52 - (a-b) Same as Fig. 47a,b

polarization) image acquired by NASA-
position of the saltpan and gravel points ar\}

position relative to X- and L-band HH
data shown in Figs. 47-50 (see text);
slope at 25 cm sampling interval..

Eigure 53 - Landsat Thematic Mappe
acquired on November 17, 1982; (a) b

but for Seasat L-band (HH
JPL in 1978. Note that the
"reversed" compared
and airborne radar image
(c) same as (a-b) but for mean

in

|
r (TM) images of Death Valley,
and 3 image (0.63-0.69um); (b)




band 5 image (1.55-1.75um). Note that the floodplain areas in
Cottonball, Middle, and Badwater Basins are depicted in bright tones
on the band 3 image and darker tones on the band 5 image.

Figure 54 - VV polarization, X-band SAR image of (a) Cottonball
Basin (CBB) and Tucki Wash Fan (TWF), and (b) Badwater Basin (BB)
and Devil's Golf Course (DGC). The light tones for the floodplain
areas (white arrows) indicate damp playa surfaces; these extremely
smooth surfaces are radar dark when dry. The SAR images were
acquired in 1981 using the ANA/PQ 102A, SAR sensor (RB-57
aircraft) operated by the Johnson Space Center (Houston, Texas).
Incidence angle near image center is about 55 degrees off nadir.

TABLES
Table 1 - Location of surface calibration sites in Death Valley

Table 2 - Quaternary geologic unit descriptions of surface
calibration sites.

Table 3 - Summary of general surface roughness parameters for
various saltpan and fan gravel stations documented in Death Valley.
Data derived from terrain analysis using ground-level topographic
profiles ( Fig. 4).

Table 4 - 1977 and 1979 radar scatterometer data for Death Valley
Table 5- Selected relief statistics for station A derived from TAM
software analysis of topographic profiles derived from ground-level
(GRX, GRY) and helicopter-based (HELX, HELY) stereo photography. X
and Y denote orthogonal profiles produced from stereo models (Figs.
3, 13-20).

Table 6 - Same as Table 5 but for station B

Table 7- Same as Table 5 but for station D.

Table 8 - Same as Table 5 but for station E.

Table 9 - Same as Table 5 but for station H.

Table 10 - Same as Table 5 but for station |.
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Table 11 - Same as Table 5 but for station J.

Table 12 - Same as Table 5 but for station K.

Table 13 - Same as Table 5 but for station

Table 14 - Selected slope and curvature s

derived from TAM software analysis

Ltistics for station A
f topographic profiles (X-

direction only) derived from ground-level stereo models (see Figs.

4a,c.). Statistics for various samplin

intervals indicated. Values

LOG10 (A) and B are parameters in regression line-fit equation for
slope of the form Log10 (cumulative percent frequency) = Log10(A) +

B* (slope angle)].

|
|

|
15- Same as Table 14 but for station B.

Table

Table 16 - Same as Table 14 but for station D.
Table 17 - Same as Table 14 but for‘station E.
Table 18 - Same as Table 14 but for‘station H.
Table 19 - Same as Table 14 but for statiorl .
Table 20 - Same as Table 14 but for statiorl J.
Table 21 - Same as Table 14 but for statiop K.
Table 22 - Same as Table 14 but for station‘ L.

Table 23- (@) Selected slope and ¢
derived from TAM software analysis
direction) derived from topographic p
helicopter-derived stereo models (see
various sampling intervals indicated. \
parameters in regression line-fit equat
Log10 (cumulative percent frequency) :
(b) same as (a) but for Y-profile.

Table 24- (a-b) Same as Fig. 23 but

Table 25 - (a-b) Same as Fig. 23 but

urvature statistics for station A
of topographic profiles (X-
rofiles reduced from

Figs. 5-21). Statistics for
/alues LOG10 (A) and B are

ion for slope of the form
Log10(A) + B* (slope angle)];

for station B.

for station D.




Table 26 - (a-b) Same as Fig. 23 but for station E.
Table 27 - (a-b) Same as Fig. 23 but for station |.
Table 28 - (a-b) Same as Fig. 23 but for station J.
Table 29 - (a-b) Same as Fig. 23 but for station K.

Table 30 - (a-b) Same as Fig. 23 but for station L.
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Table 31 - Regression Line-Fit Pararheters For power spectral
density functions shown in Figure 39

APPENDIX A

THE U.S. GEOLOGICAL SURVEY'S TERRAIN SOFTWARE MODULE

The photogrammetrically-derived topodraphic profiles of the
five saltpan and four fan gravel surfaces described in this report
were digitized and used as input to the U.S. Geological Survey's
Terrain Analysis Module (TAM). TAM, written in FORTRAN IV
language, consists of seven integrated data janalysis and plotting
routines. It furnishes nearly 100 individual pieces of graphical and
tabular data that describe four major aspects of topographic
geometry: (1) relative relief, hypsometry, topographic grain; (2)
power (variance) spectral density of relief, (3) slope angles between
slope reversals; and (4) base length slope angle and curvature. A
sample output from the TAM, including the plotting subroutine
products is given in Schaber and others (1980). The seven major
programs that make up the TAM are briefly ?escribed as follows:

Program 1. - Data Formatting. This initial program of TAM
simply formats the input data in readable form for subsequent
analysis. Input consists of topographic elevations, measured at a
constant horizontal increment (‘delta-L') aloﬁg a continuous profile.

Program 2 - Relief Analysis. Thi part'of the provides
comprehensive data on the statisticall variation of topographic
elevation along a profile. The output|includes relief, mean elevation,
variance, standard deviation, and other standard statistical
parameters of elevation such as skewness, kurtosis, elevation-
relief ratio (E.R.), hypsometric integral (H) (Pike and Wilson, 1971),
and topographic grain (Wood and Snell, 1960). This portion of TAM
also tabulates the frequency and cumulative percent frequency of
elevations within class intervals, so that histograms may be
constructed. Ten of these parameters are recalculated from
decreasing sample sizes (N), at lengthening sampling intervals (l).
This practice reveals the minimum sample dize from which stable
statistics can be calculated from each data set.




the radar. Hypsometry is the distribution of ground surface area, or
horizontal cross-sectional area of a ground surface, with respect to
relief or elevation (Strahler, 1952). Wood and Snell (1960) and Pike
(1963) have shown that topographic samples may resemble one
another with respect to local relief, average slope, or other
geometric aspects, and yet may vary appreciably in appearance as
demonstrated by values of elevation-relief ratio (E.R.):

E.R. = mean elevation -minimum elevation

maximum relief

which was shown by Pike and Wilson (1971) to be equivalent to the
hypsometric integral (H), or the proportionate area below the
hypsometric function curve. The derivation of the hypsometric
function is beyond the scope of this report but has been well
documented by Strahler (1952) and Pike and Wilson (1971). Simply
defined, the hypsometric function is the proportion of the total
surface area of a unit terrain surface containing elevations greater
than a measured elevation. A surface that has exactly equal
proportions of its area above and below the mean height value would
have a hypsometric integral equal to 0.5.

Topographic grain needs to be determined before computing
statistics on roughness or any other aspect of terrain geometry. If
the profile obtained by the ground level or helicopter
photogrammetric technique is of sufficient length to contain most
of the relief elements, or is unnecessarily long, then statistical
errors will enter the calculations for modeling radar backscatter.
Topographic grain of a terrain is essentially the minimum area or
linear sample distance on a surface that contains most of the
important relief structure (Wood and Snell, 1960). If the size of a
progressively larger, nested interval along the horizontal axis of a
profile is plotted against the maximum relief within the intervals,
relief increases rapidly to a point and then levels off. The sampling
interval size corresponding to the point at which relief inflects is:
the "topographic grain." Most of the topographic characteristics of
the sample region will thus be contained within an interval of this
size.

Program 3 - Power Spectral Analysis. The analysis of relief

variance is of significant importance for radar backscatter
modeling, as originally demonstrated by Peak (1959), Valenzuela
(1967), Barrick (1972), who made use of the covariance spectrum of
relief in various perturbations of the Bragg-Rice scattering models.
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Brown and Schaber (1980) found that covariance spectra obtained by
the photogrammetric and statistical techniques described in the
report can be used with a Bragg-Rice scattering model to predict
radar cross-section values to some degree of success for saltpan
and gravels within Death Valley, depending on the complexities
created by volume and multiple scattering in near surface voids, and
dielectric inhomogeneities created by [dampness, as described in this
report (also see van Zyl and others, 1991.)

This power spectral density PSD) subprogram computes the
various frequency components of the relief (Rozema, 1969). Power
spectral or time series analysis examines the frequency content of
topographic or surface-roughness profiles. |For natural terrain
surfaces, most profiles are statistically ranbom functions that can
only be represented by the continuous variance spectrum. Elevation
amplitudes that contribute to variability of a random isotropic
surface above its mean height value thus are associated with a
continuum of wavelengths. Separating a random profile into
wavelength bands yields the spectral density of the relief variance,
which is given as the square of the amplitude per unit bandwidth of
the contributing wavelength bands (Pike and Rozema, 1975). This
value is the power spectral density (PSD). |

The variance spectral density program used in this study
derives the autocovariance function and the|Fourier transform of the
autocovariance function that is the spectral density function of the
variance and vice versa (Pike and Rozema, 1975). Autocorrelation of
relief data enhances any periodicities that may be present in the
topographic profile. ‘

The "variance" or power spectral density graphs are sloping
lines representing continuous functions of topographic (spatial)
wavelengths (see Fig. 38). Because the greatest relief within a
surface profile (natural terrain) is generally associated with the
longer wavelengths, the spectral density decreases rapidly with
decreasing terrain wavelength. The slopes of the PSD curves
describe a relation between the relief content of the long and short
features (Bryson and Dutton, 1967). n overall slope of -3 is
thought to indicate a "uniformity" of topographic slope for all relief
features in the sample area, regardless of their size (Bekker, 1969).
A slope less steep than -3 indicates that small topographic features
(high frequency) are rougher than large (low frequency) features.
Likewise, a spectrum slope steeper than -3 suggests more rough,
coarse-grained features and less smooth, fine-grained relief forms.

Digital bandpass filtering of the| very low frequency data in the
surface profiles is performed prior to calcul?tion of the PSD

39



functions. This operation is included because a long-term trend in
the profiles affects the PSD function in two ways: (1) it may result
in a nonstationary profile, that is, a profile whose statistical
properties are affected by a change in origin; and (2) because the
amplitude of the profile associated with the low frequency of a long
trend would likely be relatively large, enough power would be
contributed by the low frequency to obscure that contributed by
higher frequencies (Rozema, 1969).

Program 4 - Power Spectrum Plots. This subroutine plots the
elevation variance of relief as frequency (cycles per mm) vs. power

spectral density (mm2 per cycle per mm ). Conversion of the PSD
values to m?2 per cycle per meter involves multiplying each
frequency value by 103. Pike and Rozema (1975) have shown that
PSD values are interchangeable with variance [amplitudez, per wave
number (unitsz)], in the same fashion: frequency (in cycles per unit)

is interchangeable with wave number (units‘1). Immediately
following the PSD plot, a least squares regression line fit equation
is given for the PSD data in addition to the total variance of the
integrated spectrum (see Schaber and others, 1980.)

Program 5 - Slope Angle Between Slope Reversals. There are
innumerable ways to characterize topographic slopes. One of them

is to identify terrain segments that occur between reversals in
slope direction along a profile. Both the length and steepness of the
slope are variables. Radar backscatter power is strongly dependent
on the number of reflecting facets on the target area at moderate to
high angles of incidence. This program can furnish quantitative data
on such facets, which are areas between two adjacent slope
reversals. Every reversal of slope from the input topographic profile
is listed, as are the slope angle and slope length between these
reversals. Also given are the three steepest and the three longest
slopes, and the number of slope reversals per meter. A regression -
line is computed for slope length and slope angle.

Program 6 - Slope Angle Against Slope Interval Plots. This
subroutine plots each slope length against its slope angle on semilog
scale. The computer-printed graph is an approximation and may

differ slightly from the actual values. Where more than nine values
occupy the same position, a letter symbol code is printed indicating
the number of points at that location. The steepest slope angle

printed out is 20°. This value is too low a cutoff for microterrain

40



applications, where the slopes are very steep (e.g., the Massive
Halite unit in Death Valley (see Fig. 5a,b)). This graph is only of
minor value in its present format.

Program 7 - B re. This
subprogram is exceptionally comprehensive and flexible, and yields a
large amount of information on surface roughness. Two parameters,
slope angle and the angle of slope curvature, are computed at
different values of the unit cell, or base length (delta-L). Slope
angle at the smallest delta-L, the input sampling interval, is simply
the slope of the line connecting any two adjacent sample elevations.
Curvature is the angle subtended by three adjacent elevations along
the traverse (Fig. A1). Calculations start with a horizontal
sampling interval (delta-L) of X mm (3.0 mm in the example shown in
Schaber and others, 1980). The subroutine then calculates algebraic
and absolute values of statistics for both slope angle and the angle
of curvature, including minimum, maximum, mean, variance,
standard deviation, skewness, kurtosis, and median. Absolute values
are unsigned. Algebraic values are positive (slopes facing the end of
the profile and convex curvatures), and negative (slopes facing the
opposite direction and concave curvatures)(Fig. A1). Algebraic
frequency distributions are symmetric about the zero values and
often approach the Gaussian ideal. bsolute distributions approach
the "half-normal" model (Elandt, 1961) and are skewed strongly to
the right. Slopes and curvatures calculated by both conventions are
necessary and complement one another.

The dispersion coefficient (algebraic standard deviation
divided by absolute mean) is analogous to the usual coefficient of
variation (Croxton and others, 1967, p. 189), and is an excellent
measure of relative dispersion. The "Elandt coefficient" (informal
name by Pike, 1978), defined as absolute mean divided by absolute
standard deviation (Elandt, 1961), can be used as a rapid initial test
for the "half-normality" of an absolute slope frequency distribution
(see Pike, 1978, pp. 14-15). -
‘ Following a listing of the number of negative and positive
values of slope and curvature (and their ratios) are tabulations of
algebraic and absolute frequency-distribution statistics. These are
intended for histograms and other graphic output. The percent (10 to
90) dispersion of the algebraic values is also listed, in addition to
the results of a chi-square test for the normality of the algebraic
frequency distribution of both slope and curvature. Regression line-
fits are calculated relating cumulative percent frequency and slope
angle and cumulative percent frequency and percent mean slope.
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Similar regression equations are given for the curvature statistics.
These equations enable the histograms to be roughly expressed by
only two parameters, slope and coefficient of the fit.

The delta-L value (sampling interval) is then doubled (for
example, from 3.0 mm to 6.0 mm in the example given in Schaber and
others, 1980) and all calculations are rerun. This steepening of the
delta-L value continues until the desired level of sampling interval
is reached or until too few cases remain to calculate good
statistics. The final calculation in the program are linear
regression fits relating delta-L to mean absolute slope and
curvature for all iterations. This valuable equation can be used to
assess the relation of slope and curvature angles for a specific
terrain at various fractions (or multiples) of radar wavelength
scales (where delta-L is equated to roughness sampling-interval of
the radar).

Possible Program Improvements. The Terrain Analysis Module
has been found to be almost ideal for radar backscatter modeling
studies of fine-scale relief, and can be used with topographic
information derived from either in situ templets or
photogrammetric reduction of stereo photographs. Experience with
this software, however, has indicated the need for at least four
additional computations and plotting subroutines of significance to
radar backscatter modeling: (1) height correlation coefficient
(autocorrelation), or statistical association between various pairs
of elevations along a profile; (2) probability density function for
surface elevations; (3) probability density functions for surface
slopes (Pike and Rozema, 1975; Barrick, 1970); and (4) root mean
square (rms) slopes and curvatures for all base lengths. These
additional programs and subroutines could simply be added.
Autocorrelation of surface heights already is performed as part of
the PSD computations (Program 3) and merely needs to be printed
out. The information on relief and slope curvature necessary for
calculating their probability density functions is available in
Programs 2 and 7. Only the rms calculations will require writing an
entirely new subprogram.

APPENDIX A FIGURE

Figure A1 - Diagrammatic representation of slope curvature along
a profile. Dots show ground surface. Circles are sample elevations
measured at a constant horizontal increment (delta-L). Positive
curvature shown by a; negative curvature by p.
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APPENDIX B

LABORATORY DIELECTRIC CONSTANT MEASUREMENTS

surfaces during the JSC scatterometer overflight in 1976 and the
JSC ANAPQ-102 X-band dual-polarization SAR overflight of in 1981
were measured in the laboratory for bpth real and imaginary
component of dielectric constant, and the resultant dielectric
constant (Table B1). The laboratory easur¢ments were performed
by H. F. Gonzalez (Secondary Standards Branch) and James A. Harmon
(Chief, Calibration Division Quality assurance Officer), both of the
U.S. Army White Sands Missile Range, New Mexico. As shown in Table
B1, resultant dielectric constant values (gy) from 2.7 to 16.6 were
measured at 13.3 Ghz for dry to wet samples (1.24 to 24.7% H20, by

weight, respectively) from the Quaternary floodplain deposits (Qf)
(Stations G and H; Figs. 1, 2, 9). Because of this wide diversity in
dielectric properties, the authors suggest that the floodplain
deposits not be used to constrain the low roughness (smooth) end of
empirical-derived radar backscatter inversion. models that may be
developed using the Death Valley saltpan surfaces .

Samples collected from Death Valley sjltpan and fan gravel
|

APPENDIX B FIGURE
Figure B1 - Resultant dielectric constant plotted against weight
percent water for samples listed in Table B1.
}
APPENDIX B TABLE

Table B1 - Laboratory Measured Dielectric Properties for Death
Valley Samples
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TABLE 1 - Death Valley Sample Site Locations (Degrees/Minutes/Seconds)

SITE LOCATION LATITUDE LONGITUDE
Devil's Goilf Course 36/16/54 16/49/39
Cottonball Basi|n 36/31/57 | 116/54/03
Cottonball Bagin 36/33/42 | 116/55/13
Cottonball Basi[n 36/32/36 | 116/59/45
Cottonball Basiln 36/31/45 116/57/45
Cottonball Basi}n 36/31/51 116/55/06
Badwater Basirl 36/13/51 116/46/49
Badwater Basir[ 36/13/57 | 116/46/30
Tucki Wash Fa% 36/27/30 | 116/56/12
Fumace Creek llzan 26/27126 116/51/46
Artist's Drive an 36/21/38 | 115/50/42
Tucki Wash Farl1 36/27/23 | 116/56/09

Table 1
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DV OFR TABLE 30
TABLE 31 - Regression Line-fits For Power Spectral Density Functions*
1 |
STATION [LOG10(A) A B TOTAL VARIANCE
(UNIT) IN INTEGRATED
SPECTRUM
GROUND-LEVEL PROFILES*
Ax (Qh) -0.2641  10.544346 -2.469964  |7.52E+03
Ay 0.6980 4.88506 -2.132259  |5.34E+03
Bx (Qhr) -1.0982 ]0.079767 -2.962868| |2.48E+03
By -1.1500 ]0.070795 -3.033413 |3.23E+03
Dx (Qch) -1.4072  10.03916 -2.579806, |2.13E+02
Dy -1.7142  ]0.019309 -2.736138| |2.47E+02
Ex (Qhs) -1.8855 [0.013017 -2.67874 6.60E+01
Ey -2.0751 [0.008412 -2.76845 8.24E+01
Hx (Qf) -1.5784 10.0264 -1.56253 1.04E+01
Hy -1.8861 10.012997 -1.681062  |1.24E+00
Ix (Qg3 rough){-0.4623 |0.34488 -2.413144  |1.17E+03
ly -0.3040 10.496549 -2.462884  |1.44E+03
Jx (Qg3 mod.)|-0.9022 10.125251 -2.386939 |2.35E+02
Jy -0.5168 {0.304199 -2.199021  |2.75E+02
Kx (Qg3 sm.) {-0.9784 10.10511 -1.863331, |1.56E+01
Ky -0.7352  10.183978 -1.701661] |1.34E+01
Lx (Qg2) 0.5767 3.772731 -1.029388| |1.56E+01
Ly 0.4654 2.920287 -1.07673 1.49E+01
HELICOPTER PROFILES™*
Ax -2.9428 10.001141 -2.093369| |2.05E-02
Ay -3.0851  10.000822 -1.617652  |1.39E-02
Bx -3.5031  |0.000314 -1.513427  |3.35E-03
By -3.5673  |0.000271 -1.569992  |2.18E£-03
Dx -4.2178 10.00006 -1.667845 {1.63E-03
Dy -4.1144  10.000077 -2.035621  |4.35E-03
Ex -4.1487 10.000071 -1.45248 5.34E-04
Ey -4.3136  10.000048 -0.911129  |2.73E-04
Ix -3.0738  10.000844 -2.952064 |1.61E-01
ly -2.5046  10.003129 -2.544404  |8.17E-01
Jx -3.3694  |0.000427 -2.397352] |1.72E-02
Jy -3.4221  10.000378 -2.46453 2.61E-02
Kx -4.2888  [0.000051 -2.412363] |7.54E-03
Ky -3.7641  10.000172 -2.463676, |2.19E-02
*The results of fitting a regression line of the form: ** Ground PSD data high-pass filtered
LOG10(PSD) =log10(A) + B*LOG10(FREQ) *** Helicopter PSD data not filtered
where A=PSD for FREQ=1] [ |
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