RECONNAISSANCE DATA FOR SELECTED HERBICIDES, TWO ATRAZINE METABOLITES, AND NITRATE IN SURFACE WATER OF THE MIDWESTERN UNITED STATES, 1989-90

By Elisabeth A. Scribner, E. Michael Thurman, Donald A. Goolsby, Michael T. Meyer, Margaret S. Mills, and Michael L. Pomes

U.S. GEOLOGICAL SURVEY

Open-File Report 93-457

Lawrence, Kansas 1993

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Robert M. Hirsch, Acting Director

For additional information write to:

District Chief U.S. Geological Survey 4821 Quail Crest Place Lawrence, Kansas 66049-3839 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Box 25425 Denver, Colorado 80225

CONTENTS

		Page
Abstract.		1
Introduct	ion	1
Methods.	••••	3
Sa	am	pling design3
Da	ata	-collection techniques3
		ytical procedures
(A)	uaı	ity assurance10
		11
Reference	s c	ited17
		ILLUSTRATIONS
Figures 1	-5.	Map showing:
	1.	Location of study area, hydrologic units, and sites sampled during 1989 and 1990 in the midwestern United States
	2.	Location of sites sampled in South Dakota, Nebraska, and Kansas, map numbers 1 through 308
	3.	Location of sites sampled in Minnesota, Iowa, and Missouri, map numbers 31 through 789
	4.	Location of sites sampled in Wisconsin and Illinois, map numbers 79 through 115
	5.	Location of sites sampled in Indiana and Ohio, map numbers 116 through 147
Figures 6-	9.	Graph showing:
	6.	Concentrations of alachlor during 1989-90 reconnaissance study
	7.	Concentrations of atrazine during 1989-90 reconnaissance study
	8.	Concentrations of cyanazine during 1989-90 reconnaissance study
	9.	Concentrations of metolachlor during 1989-90 reconnaissance study
		TABLES
Table	1.	Quantities of four major herbicides applied in 10 agricultural Midwestern States 1987-89
	2.	Sampling-site names, locations, and drainage areas4
	3.	Concentrations of selected herbicides and two atrazine metabolites in quality-assurance samples, 1989-90

TABLES--Continued

			Pag
Table	4.	Herbicide compounds analyzed and percentage of detections in pre-application, post-application, and fall low-flow samples during 1989-90	16
	5.	Comparison of herbicide samples collected during 1989-90 with Maximum Contaminant Levels and Health Advisory Levels for drinking water in effect at the time of this study	17
	6.	Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90	23
	7.	Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90	51

CONVERSION FACTORS AND ABBREVIATED WATER-QUALITY UNITS

Multiply	By	To Obtain
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
mile (mi)	1.609	kilometer
pound (lb)	453.6	gram
square mile (mi ²)	2.590	square kilometer

Temperature can be converted to degrees Celsius (°C) or degrees Fahrenheit (°F) by the equations:

°C=5/9 (°F-32) °F-9/5 (°C) + 32.

Abbreviated Water-Quality Units

microgram per liter (µg/L) microsiemens per centimeter at 25 degrees Celsius (µS/cm) milligram (mg) milligram per liter (mg/L) milliliter (mL) milliliter per minute (mL/min) nanogram per microliter (ng/µL)

RECONNAISSANCE DATA FOR SELECTED HERBICIDES, TWO ATRAZINE METABOLITES, AND NITRATE IN SURFACE WATER OF THE MIDWESTERN UNITED STATES, 1989-90

By Elisabeth A. Scribner, E. Michael Thurman, Donald A. Goolsby, Michael T. Meyer, Margaret S. Mills, and Michael L. Pomes

ABSTRACT

Water-quality data were collected from 147 rivers and streams during 1989-90 to determine the temporal and geographic distribution of selected preemergent herbicides, two atrazine metabolites, and nitrate in 10 Midwestern States. This report includes a description of the sampling design, data-collection techniques, laboratory and analytical methods, and a compilation of constituent concentrations and quality-assurance data. All water samples were collected by depth-integrating techniques at three to five locations across the wetted perimeter of each stream. Sites were sampled three times in 1989--before application of herbicides, during the first major runoff after application of herbicides, and in the fall during a low-flow period when most of the streamflow was derived from ground water. About 50 sites were selected by a stratified random procedure and resampled for both pre- and post-application herbicide concentrations in 1990 to verify the 1989 results. Laboratory analyses consisted of immunosorbent both enzyme-linked (ELISA) and confirmation by gas chromatography/mass spectrometry (GC/MS). have been useful in studying herbicide transport, in comparison of the spatial distribution of the post-application concentrations of 11 herbicides and 2 atrazine metabolites (deethylatrazine and deisopropylatrazine) in streams and rivers at a regional scale, in examination of the annual persistence of herbicides and two atrazine metabolites in surface water, and in assessment of atrazine metabolites as indicators of surface- and ground-water interaction.

INTRODUCTION

This is one of several water-quality reports intended to present the results of a reconnaissance study of preemergent herbicides, two atrazine metabolites, and nitrite plus nitrate in surface water of a 10-state region in the midwestern United States (fig. 1). The reconnaissance study was conducted during

1989-90 by the U.S. Geological Survey as part of the Toxic Substances Hydrology Program.

During 1987-89, about 136 million pounds per year of four major herbicides were applied in the 10-state region (table 1). The herbicides alachlor, atrazine, cyanazine, and metolachlor accounted for about 73 percent of the pesticides applied (Gianessi and Puffer, 1990). intense use of herbicides, their moderate water solubility, and mobility can cause them to leach into ground water, to run off in surface water, as well as to be transported in air and in precipitation (Goolsby and others, 1990). Goolsby and others (1991a) identified substantial increases in herbicide concentrations in streams and rivers and in runoff from fields immediately after herbicide application. Nonpoint-source contamination of surface- and ground-water supplies may be associated with the intense use of agricultural chemicals. Drinking-water quality also may be affected because conventional water-treatment practices do not remove these moderately soluble herbicides (Goolsby and others, 1990).

This report presents the water-quality data collected during a reconnaissance study of surface water in the midwestern United States. The data are being used in subsequent reports to document the occurrence, distribution, and concentrations of selected preemergent herbicides, two atrazine metabolites, and nitrite plus nitrate, to understand the geographic and seasonal distribution of nitrite plus nitrate and commonly used herbicides in streams of different size throughout the 10-state area, and to examine the usefulness of a low-cost immunoassay analysis technique for determining atrazine concentrations in a regional-scale reconnaissance (Goolsby and others, 1990). The scope of this report includes a discussion of the sampling design, data-collection techniques. analytical procedures, and a compilation of surface-water quality and quality-assurance data.

Figure 1. Location of study area, hydrologic units, and sites sampled during 1989 and 1990 in the midwestern United States.

Table 1. Quantities of four major herbicides applied in 10 agricultural Midwestern States, 1987-89 [From Gianessi and Puffer, 1990; values shown are in millions of pounds of active ingredient per year]

State	Alachlor	Atrazine	Cyanazine	Metolachlor
Illinois	8.0	8.5	3.1	8.1
Indiana	6.9	5.7	1.7	3.5
Iowa	6.4	5.6	3.7	8.5
Kansas	1.9	4.7	.2	2.2
Minnesota	4.0	1.5	2.8	2.4
Missouri	1.8	3.1	1.2	1.6
Nebraska	3.8	7.1	1.8	1.9
Ohio	3.7	3.8	1.6	4.0
South Dakota	1.9	.5	.3	1.0
Wisconsin	1.3	2.7	1.7	1.4
Total	39.7	43.2	18.1	34.6

The study area includes the following states: Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio, South Dakota, and Wisconsin. Sampling-site names and locations are given in table 2, and the corresponding map locations are shown in figures 2 through 5. Also, included in table 2 is the drainage area of each sampling site.

METHODS

Sampling sites were geographically distributed throughout the study area and represented streams and rivers of all sizes. A sampling schedule was established for each calendar year. Sampling techniques, including data-collection methods, processing, packaging, and shipping, were established. Laboratory methods were developed for enzyme-linked immunosorbent assay (ELISA) and gas chromatography/mass spectrometry (GC/MS).

Sampling Design

Sampling sites were selected at 147 U.S. Geological Survey streamflow-gaging stations by a stratified random-sampling procedure designed to ensure geographic distribution and regional-scale interpretation of the data. The number of sites per state was proportional to the amount of corn and soybean production in each state, and sites were chosen randomly by The drainage area of the basins county. sampled ranged from 66 to more than 700,000 mi², with a median drainage area of 770 mi². Most of the sites were sampled three times in 1989--(1) before application of herbicides (March or April); (2) after application and during the first major runoff (May or June); and (3) in the fall during a low-flow period (October or November) when most of the streamflow was derived from ground water. A few sites were not sampled after herbicide application because of drought conditions or no runoff.

About one-third of the sites sampled in 1989 were resampled during 1990 before (March or April) and after (May or June) herbicide application. Based on a ranking of 1989 herbicide concentrations from highest to lowest values, sampling sites in 1990 were selected as follows: 50 percent of the sites to be sampled in 1990 were randomly selected from the upper one-third of 1989 herbicide concentrations, 25 percent from the middle one-third, and 25 percent from the lower one-third.

Data-Collection Techniques

All water samples were collected by depthintegrating techniques at three to five locations across each stream (Thurman and others, 1992). The herbicide samples were collected in glass or Teflon containers, composited in large glass containers, and filtered through 1- μ m (micrometer) pore diameter, glass-fiber filters into baked glass bottles prior to shipment to the laboratory.

Analytical Procedures

Specific conductance and pH measurements were made onsite. Samples, preserved with mercuric chloride, were analyzed for nitrate plus nitrite at the National Water Quality Laboratory, Arvada, Colorado (Fishman and Friedman, 1989). Herbicides were analyzed by enzyme-linked immunosorbent assay at the U.S. Geological Survey laboratory in Iowa City, Iowa (Goolsby and others, 1991b; table 6 at the end of this report). Most samples were also analyzed by gas chromatography/mass spectrometry (Thurman and others, 1990) at the U.S. Geological Survey laboratory in Lawrence, Kansas (table 7 at the end of this report). A comparison of the immunoassay method to the GC/MS analysis is presented in Goolsby and others (1991b).

Solvents used for analyzing samples included pesticide-grade methanol, acetate, and isooctane. Deionized water was charcoal filtered and glass distilled prior to use. Internal quantitative standard solutions were prepared in methanol and phenanthrene-d₁₀. Assay kits were used for the immunoassay analysis. The kits used polyclonal antibodies coated on the walls of polystyrene test tubes and an atrazine-enzyme conjugate prepared by covalently binding atrazine to horseradish peroxidase by a modified carbodiamide technique (Bushway and others, 1988). immunoassay procedure is described by Goolsby and others (1991b).

An automated workstation was used for solid-phase extraction of the herbicide compounds. Cartridges were preconditioned

¹The use of brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

Table 2. Sampling-site names, locations, and drainage areas

Map no. (figs. 2-5)	State	Site identifier	Site name	Latitude (degrees, minutes, seconds)	Longitude (degrees, minutes, seconds)	Drainage area (square miles)
					•	
1	S. Dak.		Big Sioux River near Watertown	45°00'22"	97°09'53"	1,007
2			Big Sioux River near Castlewood	44°43'54"	97°02'39"	1,997
3			Big Sioux River near Brookings	44°13'27"	96°46'06"	3,898
4			Big Sioux River at N. Cliff Avenue	43°34'01"	96°42'39"	5,216
5			James River near Scotland	43°11'09"	97°38'07"	20,653
6			Vermillion River near Vermillion	42°49'02"		1,779
7			Brule Creek near Elk Point	42°48'32"	96°41'11"	204
8		06485500	Big Sioux River at Akron	42°50′14″	96°33'41"	8,424
9	Nebr.		Bow Creek near St. James	42°43'48"	97°08'53"	304
10			Elkhorn River near Atkinson	42°29'12"	98°54'42"	586
11		06798300	Clearwater Creek near Clearwater	42°08'20"	98°12'10"	210
12		06788988	Mira Creek near Northloup	41°30'09"	98°47'47"	66
13		06795500	Shell Creek near Columbus	41°34'33"	97°46'55"	270
14		06800000	Maple Creek near Nickerson	41°32'44"	96°30'09"	450
15		06783500	Mud Creek at Sweetwater	41°02'15"	98°59'35"	707
16		06879900	Big Blue River at Surprise	41°06'05"	97°18'35"	345
17		06804000	Wahoo Creek at Itica	41°08'40"	96°32'10"	271
18		06880800	W. Fork Big Blue River near Dorchester	40°43'52"	97°10'38"	1,206
19		06803000	Salt Creek at Roca	40°39'29"	96°39'55"	167
20		06844000	Muddy Creek near Arapahoe	40°18'20"	99°54'40"	246
21		06884000	Little Blue River near Fairbury	40°06'54"	97°10'13"	2,350
22		06811500	Little Nemaha River at Auburn	40°23'33"	95°48'46"	793
23		06882000	Big Blue River at Barneston	40°02'40"	96°35'12"	4,447
24		06815000	Big Nemaha River at Fall City	40°02'08"	95°35'45"	1,340
25	Kans.	06814000	Turkey Creek near Seneca	39°56'52"	96°06'30"	276
26			Black Vermillion River near Frankfort	39°41'03"	96°26'15"	410
27		06890100	Delaware River near Muscotah	39°31'17"	95°31'57"	431
2 8		06876700	Salt Creek near Ada	39°08'30"	97°50'10"	384
29		06888500	Mill Creek near Paxico	39°03'44"	96°10'52"	316
30		06889000	Kansas River at Topeka	39°04'00"	95°38'58"	56,720
31	Minn.	05337400	Knife River near Mora	45°55'12"	93°18'26"	102
32			Sauk River near St. Cloud	45°33'35"	94°14'00"	925
33			Pomme de Terre River at Appleton	45°12'10"	96°01'20"	905
34			Rum River near St. Francis	45°19'40"		1,360
35	Wisc.	05340500	St. Croix River at St. Croix Falls	45°24'25"	92°38'49"	6,240

Table 2. Sampling-site names, locations, and drainage areas--Continued

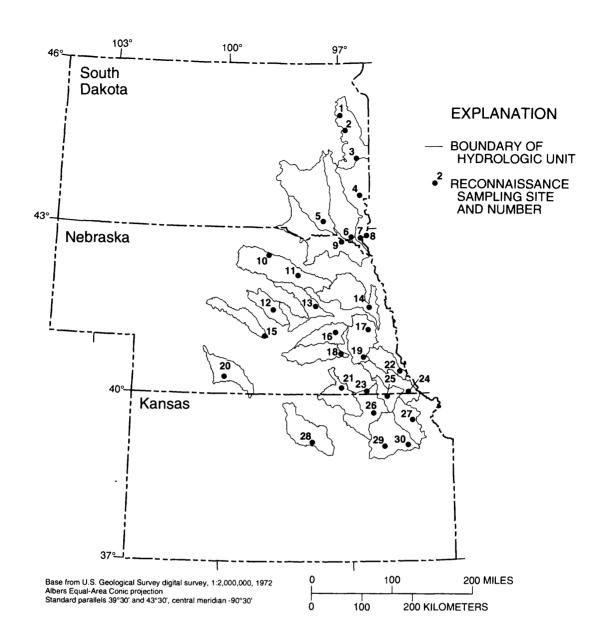

Map no. (figs. 2-5)	State	Site identifier	Site name	Latitude (degrees, minutes, seconds)	Longitude (degrees, minutes, seconds)	Drainage area (square miles)
36	Minn.	05280000	Crow River at Rockford	45°05'12"	93°44'02"	2,520
37		05330000	Minnesota River near Jordan	44°41'35"	93°38'30"	16,200
38		05316500	Redwood River near Redwood Falls	44°31'25"	95°10'20"	697
39		05317000	Cottonwood River near New Ulm	44°17'29"	94°26'24"	1,280
40		05320500	Le Sueur River near Rapidan	44°06'40"	94°02'28"	1,100
41		05353800	Straight River near Faribault	44°15'29"	93°13'51"	442
42		05376000	N. Fork Whitewater River near Elba	44°05'30"	92°03'57"	101
43		06483000	Rock River at Luverne	43°39'15"	96°12'03"	425
44		05476000	Des Moines River at Jackson	43°37'10"	94°59'10"	1,220
45		05384500	Rush Creek near Rushford	43°50'00"	91°46'40"	129
46	Iowa	06605000	Ocheyedan River near Spencer	43°07'44"	95°12'37"	426
47		05476500	Des Moines River at Estherville	43°23'51"	$94^{\circ}50'38''$	1,372
48		05459500	Winnebago River at Mason City	43°09'54"	93°11'33"	526
49		05458000	Little Cedar River near Ionia	43°02'05"	92°30'05"	306
50		05411600	Turkey River at Spillville	43°12'28"	91°56'56"	177
51		05388250	Upper Iowa River near Dorchester	43°25'16"	91°30'31"	770
52		06606600	Little Sioux River at Correctionville	42°28'20"	95°47'49"	2,500
53		05482300	North Racoon River near Sac City	42°20'28"	94°59'05"	713
54		05480500	Des Moines River at Fort Dodge	42°30'22"	94°12′04″	4,190
55		05449500	Iowa River near Rowan	42°45'36"	93°37'23"	429
56		05463050	Cedar River at Cedar Falls	42°30'50"	92°37'55"	4,734
57		05463500	Black Hawk Creek at Hudson	42°24'28"	92°27'47"	303
58		05421000	Wapsipinicon River at Independence	42°27'49"	91°53'42"	1,048
59		06607200	Maple River at Mapleton	42°09'28"	95°48'27"	669
60		06609500	Boyer River at Logan	41°38'33"	95°46'57"	871
61		05484500	Raccoon River at Van Meter	41°32'02"	93°56'59"	3,441
62		05471200	Indian Creek near Mingo	41°48'17"	93°18'26"	276
63		05453100	Iowa River near Marengo	41°48'41"	92003'42"	2,794
64		05455100	Old Mans Creek near Iowa City	41°36'25"	91°36'40"	201
65		05418450	N. Fork Maquoketa River at Fulton	42°08'42"	90°40'55"	516
66		05471500	S. Skunk River near Oskaloosa	41°21'19"	92°39'31"	1,635
67		05472500	N. Skunk River near Sigourney	41°18'03"	92°12'16"	730
68		06810000	Nishnabotna River above Hamburg	40°37'57"	95°37'32"	2,806
69		06903400	Chariton River near Chariton	40°57'12"	93°15'37"	182
70		06903700	S. Fork Chariton River near Promise City	40°48'02"	93°11'32"	168
71		05474000	Skunk River at Augusta	40°45'13"	91°16'40"	4,303
						4.000
72	Mo.		Nodaway River near Graham	40°12'08"	95°04'07"	1,320
73		05500000	South Fabius River near Taylor	39°53'49"	91°34'49"	620

Table 2. Sampling-site names, locations, and drainage areas--Continued

Map no. (figs. 2-5)	State	Site identifier	Site name	Latitude (degrees, minutes, seconds)	Longitude (degrees, minutes, seconds)	Drainage area (square miles)
74	Mo.		Grand River near Sumner	39°38'25"	93°16'25"	6,880
75		05506500	Middle Fork Salr River at Paris	39°29'05"	91°59'50"	356
76		06908000	Blackwater River at Blue Lick	38°59'32"	93°11'48"	1,120
77		06934500	Missouri River at Hermann	38°42'36"	91°26'21"	524,200
78		05587450	Mississippi River at Grafton	38°48'46"	90°40'38"	141,000
79	Wisc.	05394500	Prairie River near Merrill	45°14'09"	89°38'59"	184
80		05379500	Trempealeau River at Dodge	44°07'55"	91°33'14"	643
81		05382000	Black River near Galesville	44°04'22"	91°17'41"	2,080
82		05407000	Wisconsin River at Muscada	43°11'54"	90°26'26"	10,400
83		05413500	Grant River near Burton	42°43'13"	90°49'09"	269
84		05434500	Pecatonic River at Martintown	42°30'34"	89°47'58"	1,034
85		05430500	Rock River at Afton	42°36'33"	89°04'14"	3,340
86		05543830	Fox River at Wakesha	43°00'17"	88°14'37"	126
87		04087240	Root River at Racine	42°45'05"	87°49'25"	190
88	Ill.	05527800	Des Plains River at Russell	42°29'22"	87°55'32"	123
89		05548280	Nippersink Creek at Spring Cove	42°26'37"	88°14'51"	192
90		05439500	S. Br. Kishwaukee River at Fairdale	42°06'40"	88°54'00"	387
91			Kishwaukee River near Perryville	42°11'45"	88°59'55"	1,099
92			Elkhorn Creek near Penrose	41°54'10"	89°41'40"	146
93			Illinois River near Marseilles	41°19'40"	88°43'10"	8,259
94			Fox River near Dayton	41°23'12"	88°47'26"	2,642
95			Dupage River near Shorwood	41°31'20"	88°11'35"	324
96			Iroquois River near Chebanse	41°00'32"	87°49'27"	2,091
97			Edwards River near New Boston	41°11'15"	90°58'05"	445
98		05569500	Spoon River at London Mills	40°42'32"	90°16'53"	1,072
99		05584500	La Moine River at Colmar	40°19'45"	90°53'55"	655
100		05583000	Sangamon River at Oaksford	40°07'25"	89°59'05"	5,093
101			Lake Fork near Cornland	39°57'00"	89°23'10"	214
102			Sangamon River at Riverton	39°50'34"	89°32'52"	2,618
103			Illinois River at Hardin	39°09'37"	90°36'55"	28,690
104			Macoupin Creek near Kane	39°14'03"	90°23'40"	868
105			Kaskaskia River near Cowden	39°13'50"	88°50'33"	1,330
106		05592500	Kaskaskia River at Vandalia	38°57'35"	89°05'20"	1,940
107		03345500	Embarras River at Ste. Marie	38°56'10"	88°01'10"	1,516
108			Shoal Creek near Breese	38°36'35"	89°29'40"	735
109			Silver Creek near Freeburg	38°24'22"	89°52'26"	464
110		03378000	Bonpas Creek at Browns	38°23'11"-	87°58'32"	228

Table 2. Sampling-site names, locations, and drainage areas--Continued

Map no. (figs. 2-5)	State	Site identifier	Site name	Latitude (degrees, minutes, seconds)	Longitude (degrees, minutes, seconds)	Drainage area (square miles)
111	Ind.	03378500	Wabash River near New Harmony	38°13'42"	87°59'04"	29,080
112	Ill.	03381495	Little Wabash River at Carmi	38°05'32"	88°09'22"	3,088
113	111.		Big Muddy River near Murphysboro	37°44'55"	89°20'45"	2,169
110		0000000	Dig Maday 10000 mour Marphy 55000	J. 1100	00 20 10	2,100
114	Mo.	07022000	Mississippi River at Thebes	37°13'00"	8 9°27 '50"	713,200
115	Ill.	03612500	Ohio River near Grand Chain	37°10'34"	89°04'02"	203,100
116	Ind.	05519000	Kankakee River at Shelby	41°10'58"	87°20'33"	1,779
117	mu.		Tippecanoe River near Ora	41 10 38 41°09'26"	86°33'49"	856
118			Iroquois River near Foresman	41 03 20 40°52'14"	87°18'24"	449
			-			
119			Eel River near Logansport	40°46'55"	86°15'50"	789
120			Wabash River at Linn Grove	40°39'22"	85°01'58"	453
121			Wildcat Creek near Lafayette	40°26'26"	86°49'45"	794
122		03333450	Wildcat Creek near Jerome	40°26'29"	85°55'08"	146
123		03336000	Wabash River at Covington	40°08'24"	87°24'24"	8,218
124		03351000	White River near Nora	39°54'35"	86°06'20"	1,219
125		03361000	Big Blue River at Carthage	39°44'38"	85°34'33"	184
126		03275000	Whitewater River near Alpine	39°34'46"	85°09'29"	522
127		03357500	Big Walnut Creek near Reelsville	39°32'11"	86°58'35"	326
128			White River near Centerton	39°29'51"	86°24'02"	2,444
129		03362500	Sugar Creek near Edinburgh	39°21'39"	85°59'51"	474
130		03363900	Flatrock River at Columbus	39°14'06"	85°55'36"	534
131		03342500	Busseron Creek near Carlisle	38°58'26"	87°25'33"	22 8
133			Muscatatuck River near Deputy	38°48'15"	85°40'26"	293
134		03302800	Blue River at Fredricksburg	38°26'02"	86°11'31"	283
135	Ohio	04185000	Tiffin River at Stryker	41°30'16"	84°25'47"	410
136		04193500	Maumee River at Waterville	41°28'34"	83°44'20"	6,330
137			Sandusky River near Fremont	41°18'28"	83°09'32"	1,251
138		04186500	Auglaize River near Fort Jennings	40°56'55"	84°15'58"	332
139			Olentangy River at Claridon	40°34'58"	82°59'20"	157
140			Scioto River near Prospect	40°25'10"	83°11'50"	567
141			Kokosing River at Mount Vernon	40°24'20"	82°30'00"	202
142			Mad River at Eagle City	39°57'51"	83°49'54"	310
143			Little Miami River near Oldtown	39°44'54"	83°55'53"	129
144			Big Darby Creek at Darbyville	39°42'02"	83°06'37"	534
145			Clear Creek near Rockbridge	39°35'18" 39°12'44"	82°34'43" 82°51'50"	89 5 121
146 147			Scioto River at Higby Little Miami River at Milford	39°12'44 39°10'17"	82°51'50' 84°17'53"	5,131 1,203
741		00240000	Divide Wilding torver at Willion	09 10 17	O# 1100	1,200

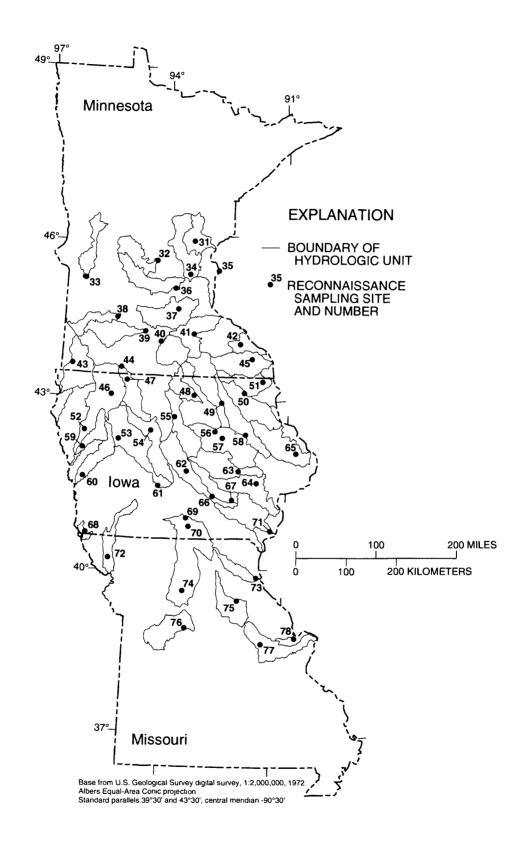
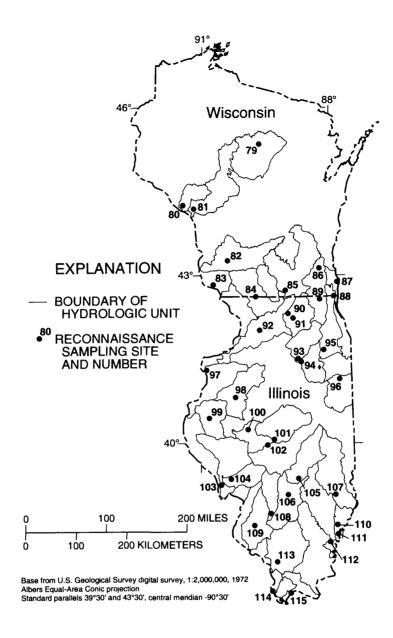


Figure 2. Location of sites sampled in South Dakota, Nebraska, and Kansas, map numbers 1 through 30.


sequentially with 2 mL methanol, 6 mL ethyl acetate, 2 mL methanol, and 2 mL distilled water. Each 123-mL water sample was spiked with a surrogate standard, 2.4 ng/ μ L terbutylazine, and pumped through the cartridge at a rate of 20 mL/min by the robotic probe. Herbicide compounds were eluted with ethyl acetate and spiked robotically with phenanthrene-d₁₀. The ethyl-acetate layer was transferred by probe to a clean test tube. Finally, the extract was evaporated automatically by a turbovap at 45° C under a nitrogen stream to approximately 100 μ L. The robotic probe was washed between samples by immersing in 4 mL of ethyl acetate and bubbling filtered compressed air through

the probe to ensure thorough removal of any herbicide or spike residues adhering to the outside of the probe.

Automated GC/MS analyses of the eluates were performed on a mass selective detector. Operating conditions were as follows: ionization voltage, 70 electronvolts; ion source temperature, 250 °C; electron multiplier, 2,200 volts; direct capillary interface at 280 °C, tuned daily with perfluorotributylamine; dwell time, 50 milliseconds. Separation of the herbicides was carried out using a 12-meter fused-silica capillary column, 0.2 millimeter in diameter with a methyl silicone stationary phase,

Figure 3. Location of sites sampled in Minnesota, Iowa, and Missouri, map numbers 31 through 78 (site 35 sampled in Wisconsin).

Figure 4. Location of sites sampled in Wisconsin and Illinois, map numbers 79 through 115 (site 111 sampled in Indiana and site 114 sampled in Missouri).

 $0.33~\mu m$ thick. Helium was used as the carrier gas at a flow rate of 1 mL/min and a head pressure of 35 kilopascals. The column temperature was held at 50 °C for 1 minute, then ramped at 6 °C per minute to 250 °C. Injector temperature was 280 °C. The filament and multiplier were not turned on until 5 minutes into the analysis. Quantification of the base peak of each compound was based on the response of the 188 ion of the internal standard, phenanthrene- d_{10} . Confirmation of the compound was based on the presence of the

molecular ion and one to two confirming ions with a retention-time match of + 0.2 percent relative to phenanthrene- d_{10} . This procedure is described by Thurman and others (1990) and Meyer and others (1993).

Quality Assurance

All water-quality measurements and water samples for this study were collected by U.S. Geological Survey personnel. All samples for GC/MS analysis were collected in duplicate to

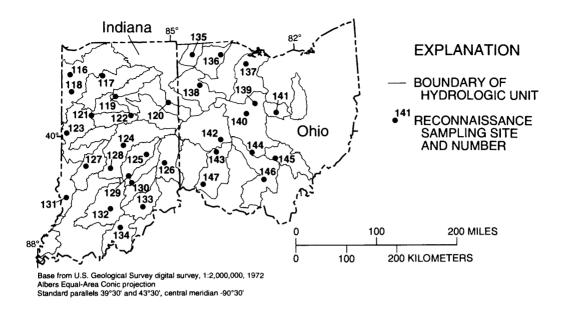


Figure 5. Location of sites sampled in Indiana and Ohio, map numbers 116 through 147.

provide a backup sample in case reanalysis was needed. Ten percent of the duplicates were analyzed by GC/MS for quality-assurance purposes. These analyses are identified in table 7 at the end of this report by a sample-type code of "L." In addition, blind duplicates were collected and analyzed by both GC/MS and immunoassay for about 5 percent of the samples. samples were disguised in such a way that laboratories doing the analyses were not aware they were duplicates. Analyses of these samples are identified in table 7 by a sample-type code of "B." About 2 percent of the samples analyzed by GC/MS were spikes prepared in organic-free distilled water by the U.S. Geological Survey's National Water Quality Laboratory (NWQL) in Arvada, Colorado. Analyses of these spikes are given in table 3. Also, included in the table are the herbicide concentrations added to the samples and an analysis of spikes by the NWQL. Analyses in table 3 identified by a sample-type code of "S" were known to be spikes by the analyzing laboratory. Some spikes were disguised as water samples. Results for these samples are identified in table 3 by a sample-type code of "BS."

DISCUSSION

Analytical results are presented in tables 6 and 7 at the end of this report. These results

indicate that large concentrations of herbicides were flushed from cropland and transported through the surface-water system in response to late spring and early summer rainfall (Thurman and others, 1992). Of the 11 herbicides and 2 atrazine metabolites analyzed, atrazine, alachlor, cyanazine, and metolachlor, were present in the largest percentage of samples, as shown in table 4. During the 1989 postapplication sampling, atrazine was detected (greater than 0.05 µg/L) in 98 percent of the samples. Alachlor, metolachlor, and deethylatrazine, an atrazine metabolite, were detected (greater than 0.05 µg/L) in water in more than 80 percent of the samples, and cyanazine was detected (greater than 0.20 µg/L) in more than 60 percent of the samples. Similar seasonal distributions were observed for the other major herbicides. It should be noted that the two atrazine metabolites (deethylatrazine and deisopropylatrazine) also can be produced by simazine and propazine. However, because these two herbicides are generally present in low concentrations relative to atrazine, their contribution to the formation of these two metabolites should be minimal.

During the late spring and summer (May or June, 1989-90), concentrations of one or more herbicides exceeded U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCL) or lifetime Health Advisories

Table 3. Concentrations of selected herbicides and two atrazine metabolites in quality-assurance samples, 1989-90

[DEA, deethylatrazine; DIA, deisopropylatrazine; ametryn, prometryn, terbutryn were not detected; S, spike sample; BS, blind spiked sample; spike, spiked concentration; NWQL, analysis by U.S. Geological Survey National Water Quality Laboratory, Arvada, Colo.; --, no data; <, less than]

	1.50						Concentrations, in micrograms	tions, in r	nicrogram	s per liter			
Laboratory identification number	Quanty assurance identifi- cation	Round1	Sample type	Alachlor	Atrazine	Cyana- zine	DEA	DIA	Metola- chlor	Metri- buzin	Pro- meton	Pro- pazine	Simazine
					Or	Organic-free water	water						
MT-101A MT-102 MT-1217A MT-2077 Mean Theoretical	0DG0 0DG0 0DG0 0DG0 1DG1	ппω 4 ¦	BS BS BS	0.05 0.05 0.05 0.05 0.05 0.05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	60.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.2060.20<td>0.05 0.05 0.05 0.05 0.05 0.05 0.05</td><td>() () () () () () () () () ()</td><td>0.050.050.050.050.050.05</td><td>60.05 60.05 60.05 60.05 60.05 60.05</td><td>0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05<</td><td>6.05 6.05 6.05 6.05 6.05 6.05</td><td>(0.05(0.05(0.05(0.05(0.05</td>	0.05 0.05 0.05 0.05 0.05 0.05 0.05	() () () () () () () () () ()	0.050.050.050.050.050.05	60.05 60.05 60.05 60.05 60.05 60.05	0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05<	6.05 6.05 6.05 6.05 6.05 6.05	(0.05(0.05(0.05(0.05(0.05
MT-35A MT-67 MT-7 MT-8 Mean Theoretical NWQL	1061 1061 1061 1061 1061		ထ္ထလလလ ၊ ၊	14 122 122 120 126 126 126	.07 .13 .13 .11 .11	22. 24. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	0505050505050505	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.05.14.10.09.10	.40 .43 .61 .47 .30		.32 .46 .46 .38 .34 .33	10 11 12 13 14 14 17 17 17 17 17 17 17 17 17 17 17 17 17
MT-3 MT-4 MT-69 Mean Theoretical NWQL	1DG2 1DG2 1DG2 1DG2 1DG2	::	ωωω ::	45. 65. 95. 96.	33 33 33 33 35 35 35 35	<.20 <.20 .46 .22 .22 .57	· · · · · · · · · · · · · · · · · · ·	V V V V V V V V V V V V V V V V V V V	22 23 23 23 23 23 72 72	.83 .90 .71 .81	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.74 .83 .71 .76	22 22 22 22 24 25 24 25 27
MT-5 MT-6 MT-65 MT-97A MT-97B Mean Theoretical	10 G3 10 G3 10 G3 10 G3 10 G3	!!	SSS : I	1.1 1.3 1.3 .93 .97 1.1 1.3	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.20 2.20 2.20 2.20 2.20 2.30 1.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	; v v v v v v v v v v v v v v v v v v v	86.00 kg kg 80.00 kg	46.66.44	V V V V V V V V V V V V V V V V V V V	1.3 1.3 1.2 1.2 1.3 85 .70	69 69 69 77 75

Table 3. Concentrations of selected herbicides and two atrazine metabolites in quality-assurance samples, 1989-90--Continued

						0	Concentrations, in micrograms per liter	ions, in n	nicrogram	s per liter			
Laboratory identification number	Quality assurance identifi- cation	Round ¹	Sample type	Alachlor	Alachlor Atrazine	Cyana- zine	DEA	DIA	Metola- chlor	Metri- buzin	Pro- meton	Pro- pazine	Simazine
					Organic-	free water	Organic-free waterContinued	pe					
MT-2 MT-6B	1DG4 1DG4		$\infty \infty$	3.0	<0.05	2.1	<0.05 <.05	<0.05 <.05	2.3	3.2	<0.05	2.3	0.68
Mean Theoretical NWQL	1DG4 1DG4	1 1	1 1	ည်လ ပ ်ပ ်	. 3.60 8.80 9.80 9.80 9.80 9.80 9.80 9.80 9.8	1.9	. v.05 . v.05	. v.05	22.7	3.5 3.0 1.0		1.7	.71
MT-10 MT-66 MT-9 Mean	1DG5 1DG5 1DG5		$\infty \infty \infty$	4.8 6.0 5.2	5.1 5.7 5.2 5.2	5 5 5 7 5 5 5 7 1 6 5 5 7	< 0.05< 0.05< 0.05< 0.05	· · · · · · · · · · · · · · · · · · ·	4.3.2.4.4.5.3.2.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	4. 60 4. 62 8. 72 . 82 4. 64 4. 64 4. 64 4. 64 6	V V V V V V V V V V V V V V V V V V V	4 70 4 4 6 6 6 70 8 7	1.4
Theoretical NWQL	1055 1065	1 1	! !	6.5	4.3 5.	5.7	-: -:	<.05 	5.4	6.0	-: -:	8 4	1.4
MT-275A Mean Theoretical NWQL	2DG1 2DG1 2DG1	67 II	ω ::	.44 .40 .30	.40 .40 .27 .22	<.20 <.20 <.20	<.05<.05<.05	.05.05.05	5.6 5.5 6.1	1.5	<0.05<0.05	1.5	2.3 2.1 2.0
MT-276A MT-612A MT-612B Mean Theoretical NWQL	2DG2 2DG2 2DG2 2DG2 2DG2 2DG2	000	BS : I	1.1 1.1 1.1 1.3 1.3 1.0 1.0 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1:1 1:1 1:1 09:	.80 .58 .70 .69 1.0	· · · · · · · · · · · · · · · · · · ·		1.5 1.5 1.6 2.0 1.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.3 5.0 5.1 5.1 5.1	0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
MT-277A MT-506A Mean Theoretical NWQL	2DG3 2DG3 3DG3 3DG3	00 11	SS ::	5.4 3.6 5.2 4.6	4. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	6.4 6.20 3.3 5.7 4.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	× 05 × 05 × 05 × 05	.26 .07 .17 .30	.37 <.05 .20 .30 .30	<.05<.05<.05<.05	.54 .46 .42 .50	.51 .39 .40 .40

Table 3. Concentrations of selected herbicides and two atrazine metabolites in quality-assurance samples, 1989-90--Continued

	Simazine		4.0.4.4 4.0.0.0	4.4	4.4.82 5.73.82	1.5	· · · 05 · · · 05 · · · 05 · · · 05
	Pro- pazine		0.61 .66 .62	69. 69.	.50 .45	1.8 1.9 1.9 1.5 1.5 1.5 1.5 1.5	× 0.05 × 0.05 × 0.05 × 0.05 × 0.05
	Pro- meton		<0.05<0.05<0.05	× 05 × 05 × 05	. × .05	V V O O O O O O O O O O O O O O O O O	· · · · · · · · · · · · · · · · · · ·
Concentrations, in micrograms per liter	Metri- buzin		8.8.4.0 8.7.0	3.9	3.0 2.7	.57 .70 .56 .73 .65 .65 .50	· · · · · · · · · · · · · · · · · · ·
nicrogram	Metola- chlor		6.4.8.0 7.6.0	. w 4	2 & Q 2 & Q 2 & Q	1.3	.21 .19 .20 .20
ions, in n	DIA	ed	< 0.05 < 0.05 < 0.05 < 0.05	× × 05 × 05 × 05 × 05	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.050.050.050.05
oncentrat	DEA	Continued	0.13 .11 .10	.11.	19.61.	38 32 32 37 36 36 40 40	05050505050505
	Cyana- zine	Organic-free water	1.6 1.9	3.0	2.4.2 0.4.0	.70 1.1 1.0 1.8 1.8 1.1 1.1 1.5	.38 <.20 <.20 <.20 <.20
	Atrazine	Organic-	0.53 .56 .51	.56	.50 .50 .4	3.8 3.1 3.1 5.1 5.1 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	25 27 26 26 20 20 20
	Alachlor		0.33 44.	3.30 3.00 3.00	.33 .27	6.00.00 6.00.00 7.00.00 7.00.00 7.00.00	35 35 36 30 30 30 30
	Sample		S BS BS	88	: :	R S B B B B B B B B B B B B B B B B B B	www !!
	Round ¹		ကကက	ာကက	1 1	ოოოოო	444
	Quality assurance identifi- cation		3DG1 3DG1 3DG1	3DG1 3DG1 3DG1	3DG1 3DG1	3DG2 3DG2 3DG2 3DG2 3DG2 4DG2	4DG1 4DG1 4DG1 4DG1 4DG1
	Laboratory sidentification number		MT-1203A MT-1219B MT-1221A	MT-1225A MT-1294	Mean Theoretical NWQL	MT-1204A MT-1218B MT-1220B MT-1224A MT-1293 Mean Theoretical NWQL	MT-1964 MT-2155 MT-3138 Mean Theoretical NWQL

Table 3. Concentrations of selected herbicides and two atrazine metabolites in quality-assurance samples, 1989-90--Continued

	Simazine		0.55	.50	.59	.55	.50	.40
	Pro- pazine Si		<0.05	<.05	<.05	<.05	<.05	1
	Pro- meton p				<.05	l I		-
per liter	Metri- buzin r					ł I	.20	.20
rograms l	Metola- I chlor I		0.48	.50	.51	.50	.50	.40
ons, in mic	N DIA	F	<0.05	<.05	<.05	<.05	<.05	-
Concentrations, in micrograms per liter	DEA	Organic-free waterContinued	<0.05	<.05	<.05	<.05	<.05	:
	Cyana- zine	ee water-	<0.20	.20	.50	.27	.50	.50
	(Atrazine	Organic-fr	1.4	1.5	1.5	1.5	1.2	1.0
	Alachlor A	·	0.78	98.	66:	88.	.80	09.
	$egin{array}{ccc}$		ß	ß	w	•	;	;
	Round ¹		4	4	4		;	
	Quality assurance identifi- cation		4DG2	4DG2	4DG2		4DG2	4DG2
	Laboratory acidentification number		MT-1963	MT-2156	MT-3139	Mean	Theoretical	NWQL

¹Round--1, 1989 pre-application (March or April); 2, 1989 post-application (May or June); 3, 1989 fall low flow (October or November); and 4, 1990 pre-application (March or April).

Table 4. Herbicide compounds analyzed and percentage of detections in pre-application, post-application, and fall low-flow samples during 1989-90

[μg/L, micrograms per liter; N, number of samples analyzed; <, less than. 1990 samples are from a stratified random subset of sites sampled in 1989 and are biased toward a slightly higher detection rate; ametryn, prometryn, terbutryn were not detected]

			Percer	tage of det	ections	
Herbicide or metabolite	Reporting limit (µg/L)	1989 pre- application (N=55)	1989 post- application (N=132)	1989 fall low flow (N=145)	1990 pre- application (N=52)	1990 post- application (N=52)
Alachlor	0.05	18	86	12	50	92
Atrazine	.05	91	98	76	96	100
Cyanazine	.20	5	63	0	8	81
Deethylatrazine	.05	54	86	47	8 6	98
Deisopropylatrazine	.05	9	54	0	44	90
Metolachlor	.05	34	83	44	67	96
Metribuzin	.05	2	53	0	0	58
Prometon	.05	0	23	6	10	17
Propazine	.05	0	40	<1	0	65
Simazine	.05	7	55	3	15	67

Levels (HAL) for drinking water (U.S. Environmental Protection Agency, 1988; Federal Register, 1989, 1990) in more than one-half of the samples (table 5). The majority of exceedences occurred during the post-application samplings (table 5). However, in order for these concentrations to be in violation of the Safe Drinking Water Act, the average annual concentrations must exceed the MCLs.

Analytical results indicate that atrazine was the most frequently detected and the most persistent of the major herbicides followed by deethylatrazine and metolachlor (Goolsby and others, 1990). Alachlor and cyanazine were detected primarily during the late spring and summer (table 7 at the end of this report). Atrazine was detected in three-fourths of the streams sampled during the fall. Resampling of about 50 streams in 1990 before and after herbicide application produced results similar to those obtained in 1989.

Concentrations of alachlor, atrazine, cyanazine, and metolachlor for the five sampling periods (data from table 7) are shown in figures 6-9. These figures also show that atrazine had the largest concentration, followed by alachlor, metolachlor, and cyanazine.

ELISA proved to be a rapid, reliable, and inexpensive method for analysis of herbicides in surface water. The presence or absence of triazine herbicides at concentrations of about 0.5 µg/L can be determined by visually comparing water samples with standard solutions containing atrazine. When a spectrophotometer is used to quantify immunoassay results, triazine concentrations as small as 0.2 µg/L can be detected. No false-positive identifications of atrazine were made by immunoassay, and no false-negative detections resulted from samples containing 0.5 µg/L or more of atrazine concentrations. The immunoassay results were useful in determining the occurrence and seasonal distribution of atrazine in the corn and soybean belt of the midwestern United States (Goolsby and others, 1991b).

Table 5. Comparison of herbicide samples collected during 1989-90 with Maximum Contaminant Levels and Health Advisory Levels for drinking water in effect at the time of this study

[MCL, U.S. Environmental Protection Agency Maximum Contaminant Level; HAL, Health Advisory Levels; $\mu g/L$, micrograms per liter; --, no data. 1990 samples are from a stratified random subset of sites sampled in 1989 and are biased toward slightly higher concentrations. HAL for cyanazine was 10 $\mu g/L$ in 1989-90; current (1993) HAL is 1 $\mu g/L$; MCL for simazine was 1 $\mu g/L$ in 1989-90; current (1993) MCL is 4 mg/L]

			Pe	ercentage of s	samples abov	e MCL or H	AL
Herbicide	1990 MCL (µg/L)	1990 Lifetime HAL (µg/L)	1989 pre- application (March or April)	1989 post- application (May or June)	1989 fall low flow (October or November)	1990 pre- application (March or April)	1990 post- application (May or June)
Alachlor	2.0		0	36	0	0	40
Atrazine	3.0	3.0	0	52	.60	1.6	74
Cyanazine		10	0	48	0	0	63
Simazine	1.0	4.0	5.6	8.8	0	3.1	12

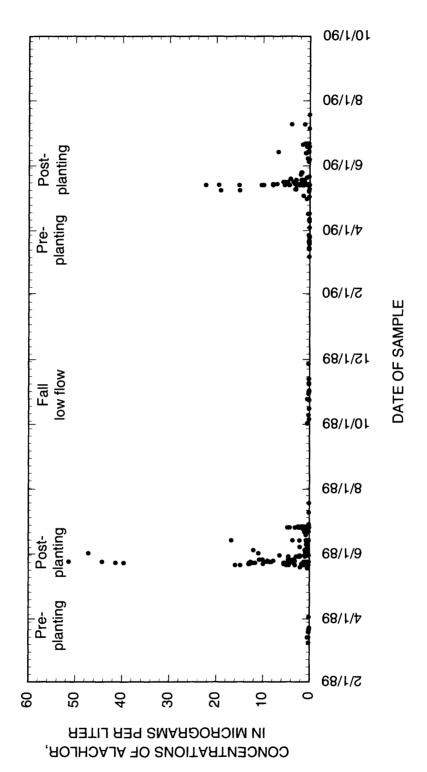
REFERENCES CITED

Bushway, R.J., Perkins, Bill, Savage, S.A., Lekousi, S.L., and Ferguson, B.S., 1988, Determination of atrazine residues in water and soil by enzyme immunoassay: Bulletin of Environmental Contamination Toxicology, v. 40, p. 647-654.

Federal Register, 1989, National Primary and Secondary Drinking Water Regulations: Washington, D.C., v. 54, no. 97, May 22, 1989, p. 22062-22160.

Drinking Water Regulations: Washington, D.C., v. 55, no. 143, July 25, 1990, p. 30370-30447.

Fishman, M.J., and Friedman, L.C., 1989, Methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 545 p.


Gianessi, L.P., and Puffer, C.M., 1990, Herbicide use in the United States--National Summary Report, revised April 1991: Washington, D.C., Resources for the Future, 128 p.

Goolsby, D.A., Coupe, R.C., and Markovchick, D.J., 1991a, Distribution of selected herbicides and nitrates in the Mississippi River and its major tributaries--April-June 1991: U.S. Geological Survey Water-Resources Investigations Report 91-4163, 35 p.

Goolsby, D. A., Thurman, E. M., Clark, M.L., and Pomes, M.L., 1991b, Immunoassay as a screening tool for atrazine herbicides in streams--Comparison with gas chromatographic/mass spectrometric methods, in Vanderlaan, Martin, Stanker, L.H., Watkins, B.E., and Roberts, D.W., eds., Immunoassays for trace chemical analysis: American Chemical Society, ACS Symposium Series 451, chap. 8, p. 86-99.

Goolsby, D. A., Thurman, E. M., and Kolpin, D. W., 1990, Geographic and temporal distribution of herbicides in surface waters of the upper midwestern United States, 1989-90: U.S. Geological Survey Water-Resources Investigations Report 91-4034, p. 86-99.

Meyer, M.T., Thurman, E.M., and Pedersen, M.J., 1993, Automated solid-phase extraction of herbicides from water for gas chromatographic-mass spectrometric analysis: Journal of Chromatography, v. 629, p. 55-59.

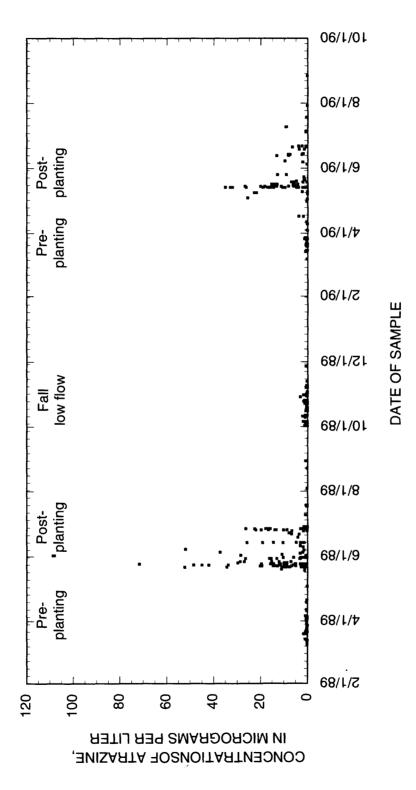
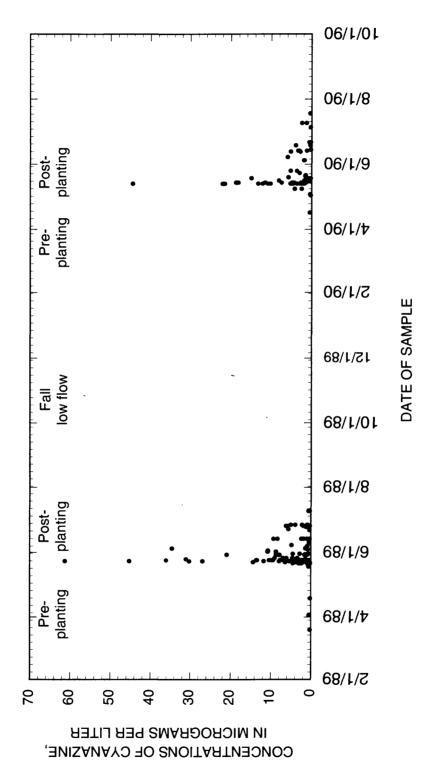



Figure 7. Concentrations of atrazine during 1989-90 reconnaissance study.

20 RECONNAISSANCE DATA FOR SELECTED HERBICIDES, TWO ATRAZINE METABOLITES, AND NITRATE IN SURFACE WATER, 1989-90

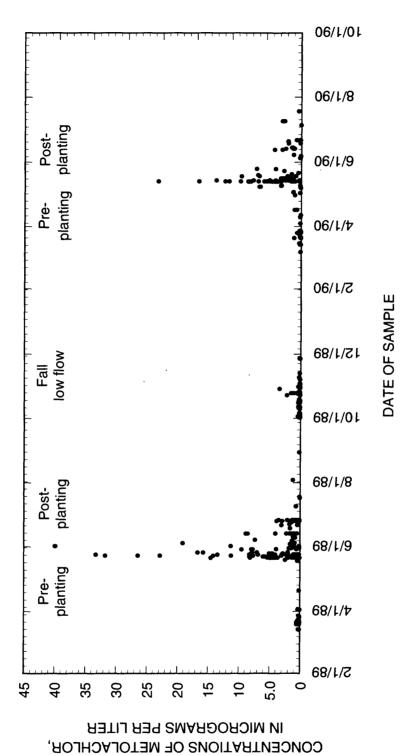


Figure 9. Concentrations of metolachlor during 1989-90 reconnaissance study.

- Thurman, E.M., Goolsby, D.A., Meyer, M.T., Mills, M.S., Pomes, M.L., and Kolpin, D.W., 1992, A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography/mass spectrometry: Environmental Science and Technology, v. 26, p. 2440-2447.
- Thurman, E.M., Meyer, Michael, Pomes, Michael, Perry, C.A., and Schwab, A.P.,
- 1990, Enzyme-linked immunosorbent assay compared with gas chromatography/mass spectrometry for the determination of triazine herbicides in water: Analytical Chemistry, v. 62, p. 2043-2048.
- U.S. Environmental Protection Agency, 1988, Drinking water health advisory--Pesticides: Chelsea, Mich., Lewis Publishers, 819 p.

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90

[ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; --, no data; <, less than; >, greater than; ELISA, enzyme-linked immunosorbent assay; GC/MS, gas chromatography/mass spectrometry]

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Stream- flow (ft.³/s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (µg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
			South Dakota	kota					Manufacture of the second of t
	Big Sioux River near Watertown	04/04/89	71	360	8.5	0.44	<0.20	ŀ	:
)	06/29/89	1.5	570	9.5	<.10	<.20	ŀ	0.08
		11/03/89	.74	790	8.0	.14	<.20	1	;
7	Big Sioux River near Castlewood	04/04/89	32	730	8.4	.45	.20	ŀ	;
		06/29/89	4.0	086	9.7	<.10	1.5	ŀ	1.5
		11/03/89	6.2	1,130	8.0	3.8	.40	:	;
		04/10/90	8.4	1,190	9.6	.30	;		.07
		08/21/90	12	066	8.0	.50	ł	ŀ	.14
က	Big Sioux River near Brookings	04/04/89	312	009	8.4	83.	<.20	1	ł
)	06/29/89	09	885	9.5	.17	906.	:	.82
		11/03/89	24	1,110	8.5	2.9	<.20	1	90.
4	Big Sioux River at N. Cliff Avenue	04/04/89	550	260	8.4	1.2	.30	ŀ	ŀ
		06/27/89	33	1,130	8.4	1.0	2.5	:	1.6
		11/02/89	19	1,770	8.0	17	.20	ŀ	1
5	James River near Scotland	04/03/89	1,460	520	7.9	88.	.70	0.20	.55
		06/27/89	139	1,230	8.3	<.10	<.20	:	.19
		11/02/89	43	2,000	8.0	<.10	<.20	ŀ	<.05

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Stream- flow (ft³/s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa 1 ($\mu g/L$)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
		Son	South DakotaContinued	.Continued					
9	Vermillion River near Vermillion	04/03/89 06/27/89	111 19	980 1,340	8.7	<0.10	<0.20	0.20	0.17
		11/02/89	5.0	1,660	7.7	<.10	<.20	í	<.05
7	Brule Creek near Elk Point	04/03/89 06/27/89	18 7.8	1,000	8.9 4.8	.43	<.20 .30	; ;	.36
		11/02/89	2.8	1,000	8.1	<.10	<.20	;	:
œ	Big Sioux River at Akron	04/03/89	2,140	500	8.5	1.8	<.20 90	.30	.46
		11/02/89	107	1,290	9.0	2.6	<.20	l	.05 05
			Nebraska	<u>ika</u>					
6	Bow Creek near St. James	04/05/89	48	696 580	8.8 4.8	2.5	<.20	1 1	30
		10/18/89	30.0	999	8.3 8.3	1.8	<.20	í	<.05
10	Elkhorn River near Atkinson	04/05/89	43	231	8.4	1.5	<.20	f	;
		06/26/89	22.3	211	8.9	1.0	.20	;	;
		10/23/89	12.2	254	8.4	2.0	1.9	;	1.2
11	Clearwater Creek near Clearwater	04/05/89	30.0	. 316	8.3	.16	<.20	ŀ	:
		06/26/89	13.4	307	8.2	.12	<.20	:	.20
		10/18/89	22.0	285	8.4	<.10	<.20	ŀ	<.05

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
		Ň	<u>Nebraska</u> Continued	Continued					
12	Mira Creek near Northloup	04/11/89 06/25/89	0.70	708 544	8.4	<0.10	<0.20	<0.30	0.27.
		10/20/89	.23	585	7.7	<.10	.70	;	.47
13	Shell Creek near Columbus	04/05/89	18.0	605	8.4	.57	<.20	;	1
		06/26/89	137	300	7.3	4.5	>5.0	1	14
		10/19/89	14.5	969	8.1	.25	.50	;	.28
14	Maple Creek near Nickerson	04/05/89	15.0	588	8.5	.65	<.20	<.20	.07
		06/26/89	333	569	7.6	2.8	>5.0	;	8.7
		10/19/89	13.0	556	8.1	.38	<.20	1	.08
15	Mud Creek at Sweetwater	04/11/89	21.0	576	8.6	.18	<.20	;	1
		06/25/89	27.8	434	8.1	1.1	1.9	1	1.7
		10/23/89	15.0	584	8.2	<.10	<.20	1	<.05
16	Big Blue River at Surprise	04/05/89	3.5	570	8.4	1.1	.20	;	;
		06/26/89	71.0	375	7.5	1.2	>5.0	}	17
		10/31/89	3.0	475	7.5	.23	1.3	1	.70
17	Wahoo Creek at Itica	04/04/89	40.0	821	8.4	1.1	<.20	<.20	<.05
		68/80/90	161	248	7.5	2.3	>5.0	;	52
		10/19/89	26.0	812	8.1	1.2	<.20	;	<.05
		03/20/90	32.0	870	8.5	1.5	i	;	.07
		06/80/90	126	548	7.8	1.9	;	;	9.6

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
		ğ	<u>Nebraska</u> Continued	ontinued					
18	W. Fork Big Blue River near Dorchester	04/04/89	70.0	632	8.8	1.7	<0.20	<0.20	0.16
		10/31/89	56.0	572	7.9	.84	.50	;	.34
19	Salt Creek at Roca	04/06/89	10.5	735	8.8	<.10	<.20	;	;
		06/26/89	53.0	497	7.7	1.8	>5.0	;	13
		10/31/89	10.5	066	7.7	.60	2.5	;	1.7
		03/27/90	19.0	1,232	8.8	.20	i	;	.12
		06/20/90	59.0	581	8.2	.20	;	!	2.1
20	Muddy Creek near Arapahoe	03/31/89	6.74	552	8.4	1.5	<.20	;	;
	•	06/25/89	4,160		7.8	.80	4.2	;	9.9
		11/07/89	5.58	595	8.0	2.0	<.20	1	.11
21	Little Blue River near Fairbury	04/05/89	116	495	8.5	.94	<.20	ŀ	;
		06/26/89	6,590	162	7.5	09.	>5.0	;	22
		10/30/89	106	438	7.9	1.1	.40	;	.31
		03/21/90	131	513	8.4	1.4	;	;	.21
		05/11/90	258	381	8.0	1.7	;	ŀ	15
22	Little Nemaha River at Auburn	04/06/89	57.0	586	4.8	.36	<.20	ŀ	ŀ
		06/26/89	969	217	9.7	1.2	>5.0	;	10
		10/24/89	53.0	612	8.2	.12	.20	ŀ	.24

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (µg/L)	Atrazine GC/MS ³ (μg/L)
		Ne	Nebraska Continued	ontinued					
23	Big Blue River at Barneston	04/06/89 06/27/89	226 3,380	696 310	8.9	2.0	2.1	1.7	0.91 16
		10/23/89	579	684	8.9	.55	90	ı	.51
		03/21/90	330	408	8.7	2.1	ł	ł	.51
		05/17/90	801	378	7.9	2.0	ŀ	I	14
24	Big Nemaha River at Fall City	04/06/89	56.0	899	8.4	<.10	<.20	1	;
		06/26/89	929	291	7.9	1.4	>5.0	ł	20
		10/24/89	56.0	746	8.2	<.10	.50	ł	.54
		03/27/90	123	726	8.5	.30	1	:	.81
		05/11/90	1,447	356	7.9	1.8	1	ł	5.6
			Kansas	<u>38</u>					
25	Turkey Creek near Seneca	03/21/89	2.64	712	8.6	<.10	<.20	<.20	<.05
		05/22/89	13.0		7.9	<.10	95. 5	.40	22.
		10/12/89	6.40	724	တ က	<.10	<.20	:	.23
56	Black Vermillion River near Frankfort	03/16/89	12.2	540	8.4	<.10	<.20	ŀ	1
		06/27/89	288	202	7.8	1.4	>5.0	;	16
		10/04/89	7.30	572	8.4	<.10	.30	1	.35
		03/22/90	24.6	909	8.2	.48	ì	;	.47
		05/16/90	2,560	268	7.6	1.6	;	ŀ	6.1

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map		Date of collection	Stream-	Specific conduct-	Hd	Nitrite plus nitrate as	Atrazine ELISĄ-	Atrazine ELISA.	Atrazine
(figs.	Site name	(month/ day/year)	flow (ft ³ /s)	ance (μS/cm)	(standard units)	nitrogen (mg/L)	Iowa¹ (μg/L)	Kans.² (μg/L)	GC/MS ³ (µg/L)
		Ī	<u>Kansas</u> Continued	ntinued					
27	Delaware River near Muscotah	03/15/89	9.87	569	8.8	<0.10	<0.20	ł	ł
		05/22/89	54.3	664	8.0	.19	>5.0	0.9	10
		10/11/89	3.00	629	8.2	<.10	90	ŀ	.83
28	Salt Creek near Ada	03/21/89	4.58	2,960	8.2	<.10	<.20	<.20	<.05
		05/22/89	550	307	8.1	76.	.40	.40	.27
		10/12/89	2.10	3,280	8.0	<.10	.40	1	.49
29	Mill Creek near Paxico	03/14/89	4.29	789	8.3	<.10	<.20	1	ł
		68/20/60	330	230	7.8	.50	.30	ŀ	ŀ
		10/06/89	22.5	661	8.2	<.10	<.20	1	<.05
30	Kansas River at Topeka	03/14/89	842	1,050	8.8	<.10	.80	1	ı
		68/30/80	3,690	440	8.1	.87	3.8	ŀ	ŀ
		10/06/89	2,360	546	8.4	.76	2.3	:	1.8
			Minnesota	<u>ota</u>					
31	Knife River near Mora	04/21/89	114	116	8.1	.17	<.20	1	ŀ
		07/19/89	9.20	242	7.8	.17	<.20	:	60.
		10/31/89	1.50	265	8.1	.37	<.20	1	<.05
		02/30/90	61.0	158	8.2	.10	ŀ	1	<.05

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

						Nitrite			
Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	$\begin{array}{c} \text{Stream-} \\ \text{flow} \\ (\text{ft}^3/\text{s}) \end{array}$	Specific conduct- ance (µS/cm)	pH (standard units)	plus nitrate as nitrogen (mg/L)	Atrazine ELISA- $lowa^1$ ($\mu g/L$)	Atrazine ELISA- Kans. 2 ($\mu g/L$)	$\begin{array}{c} A trazine \\ G C/M S^3 \\ (\mu g/L) \end{array}$
		M	MinnesotaContinued	Continued					
32	Sauk River near St. Cloud	03/23/89	300	720	7.9	2.0	0.30	1	ŀ
		05/25/89 11/08/89	00/	180	8	.96	.40	: :	0.17
33	Pomme de Terre River at Appleton	05/04/89	197	950	8. 8.	<.10	<.20	0.40	90.
	4	07/18/89	0.99	925	8.4	.21	<.20	;	.32
		10/25/89	22.0	089	8.2	<.10	<.20	ŀ	<.05
34	Rum River near St. Francis	04/19/89	790	221	8.6	.34	<.20	ŀ	ŀ
		07/19/89	165	357	8.4	<.10	<.20	;	<.05
		10/31/89	150	346	8.1	.27	<.20	1	<.05
			Wisconsin	nsin					
35	St. Croix River at St. Croix Falls	04/24/90	7,590	121	7.2	.14	<.20	ł	ł
		05/31/89	9,910	117	:	.13	<.20	;	.14
		10/11/89	1,710	208	8.2	<.10	<.20	;	<.05
		04/23/90	5,450	168	7.8	<.10	ł	ł	<.05
		04/30/90	2,600	174	7.8	.30	;	;	.16
			Minnesota	sota					
36	Crow River at Rockford	04/19/89	465	544	9.4	<.10	.20	.30	.33
		10/26/89	390 47.0	970	8.1	. / 4 <.10	5.3 <.20	ა. გ	2.8 <.05

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	$\begin{array}{c} \text{Stream-} \\ \text{flow} \\ (\text{ft}^3/\text{s}) \end{array}$	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- $lowa^1$ ($\mu g/L$)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
		Wi	<u> Minnesota</u> Continued	Continued					
37	Minnesota River near Jordan	03/22/89 07/19/89	1,892 508	590 868	8.2	2.8 < .10	0.40	0.20	0.17
		10/29/89	230	966	8.2	<.10	5.0	:	3.1
38	Redwood River near Redwood Falls	05/04/89	62.0	1,670	8.3	<.10	<.20	.20	80.
		06/27/89	93.0	1,200	8.1	3.7	.30	:	.42
		10/24/89	8.70	1,440	8.3	<.10	.30	:	.11
39	Cottonwood River near New Ulm	03/21/89	126	450	7.9	3.7	<.20	ł	ł
		07/18/89	58.0	645	8.4	<.10	<.20	;	.15
		11/08/89	17.0	1,000	8.2	.11	.20	;	<.05
		05/01/90	71.0	962	8.6	<.10	:	;	.33
		06/90/90	316	1,223	8.4	8.5	ì	;	.26
9	I o Sugar Birrar noor Bonidon	08/06/10	101	657	20	90	06 /	;	. ;
F	De Davai 1970 ileai Mapiaani	07/18/89	36.0	631	8.4 4.4	<.10	<.20	:	.27
		11/07/89	14.0	775	8.3	.18	<.20	:	<.05
41	Straight River near Faribault	04/05/89	204	099	8.4	6.0	.20	.30	.29
)	07/19/89	30.0	829	8.8	<.10	<.20	:	.32
		11/08/89	49.0	721	8.4	1.1	1	1	<.05
42	N. Fork Whitewater River near Elba	04/05/89	38.0	546	8.2	1.6	<.20	ŀ	ŀ
		07/19/89	342	531	8.4	1.9	ì	ŀ	;
		11/08/89	22.0	521	8.1	5.6	ł	ŀ	.05

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Med		Date of		Specific		Nitrite	Atrazino	Atrazina	
no (figs. 2-5)	Site name	collection (month/ day/year)	Stream- flow $(\mathrm{ft}^3/\mathrm{s})$	conduct- ance (µS/cm)	pH (standard units)	$ ho _{ m pres}$ nitrate as $ ho _{ m nitrogen}$ (mg/L)	ELISA- Iowa ¹ (μg/L)	ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
		Mis	Minnesota Continued	Continued					
43	Rock River at Luverne	05/03/89	87.0	790	8.1	1.8	<0.20	ŀ	;
		06/27/89	200	510	7.5	4.0	3.3	:	2.9
		10/23/89	12.0	440	8.7	1.1	<.20	;	80.
		06/08/90	36.3	730	8.4	09.	:	;	80.
		06/119/90	212	390	8.2	2.1	;	;	3.5
44	Des Moines River at Jackson	05/03/89	143	1,010	6.8	<.10	<.20	ŀ	ŀ
		06/27/89	40.0	1,110	8.7	<.10	1.4	;	1.0
		10/23/89	1.50	835	8.3	<.10	.70	;	.61
		06/08/90	46.0	1,290	8.8	<.10	;	;	11.
		06/11/90	424	925	8.5	4.9	;	i	1.4
45	Rush Creek near Rushford	04/05/89	48.0	490	00 00	. 1	< 20	;	1
}		05/25/89	55.0	445	7.9	1.8	1.7	;	2.1
		11/07/89	39.0	479	8.2	1.8	ŀ	;	90.
			lowa	æ!					
46	Ocheyedan River near Spencer	03/28/89 05/24/89	89.2	460	7.6	2.1	<.20 >5.0	0.20	.13
		10/12/89	4.55	640	8.3	<.10	<.20	ŀ	<.05
47	Des Moines River at Estherville	03/28/89 10/12/89	818 1.30	440 2,950	7.4	2.0	<.20 .20	.20	.14

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS ³ (μg/L)
			<u>Iowa</u> Continued	ntinued					
48	Winnebago River at Mason City	03/20/89	163	492	9.7	6.3	0.20	0.40	0.51
		10/11/89	10.7	740	9.2	<.10	<.20	1	<.05
49	Little Cedar River near Ionia	03/21/89	66.5	350	7.7	2.4	.70	ŀ	;
		10/16/89	9.70	430	7.7	<.10	.20	:	.14
50	Turkey River at Spillville	03/31/89	50.0	494	8.3	3.1	<.20	ł	ł
	•	10/04/89	10.4	550	7.8	1.7	<.20	;	<.05
		03/22/90	8.66	292	8.4	8.3	:	:	.43
		06/14/90	212	430	7.9	<.10	ł	ł	8.2
51	Upper Iowa River near Dorchester	03/31/89	348	453	8.4	2.3	<.20	ł	.33
		05/31/89	300	430	9.7	<.10	1	ł	10
		10/05/89	133	430	8.3	<.10	<.20	1	.15
52	Little Sioux River at Correctionville	03/23/89	509	540	7.9	3.1	;	:	;
		05/25/89	1,620	308	6.9	.10	>5.0	ŀ	6.6
		10/02/89	42.0	940	8.7	<.10	<.20	;	.13
		03/16/90	264	575	8.5	1.2	ŀ	i	.19
		06/14/90	788	622	7.1	6.5	1	1	7.4
53	North Racoon River near Sac City	03/24/89	163	630	7.7	4.6	4.2	ŀ	;
		05/24/89	ł	:	ŀ	7.0	80	ŀ	1.1
		10/12/89	12.6	1,120	8.8	<.10	<.20	ŀ	<.05

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
			<u>Iowa</u> Continued	ıtinued					
54	Des Moines River at Fort Dodge	03/27/89 05/24/89	1,170	430	7.6	2.4	<0.20	.23 8.8	2.3
		10/13/89	57.1	069	9.7	<.10	<.20	ŀ	<.05
		03/16/90	746	625	7.8	8.8	1	:	.12
		06/12/90	3,880	505	7.7	11	i	ŀ	1.8
55	Iowa River near Rowan	03/23/89	122	530	7.3	3.2	<.20	I	ł
		10/11/89	8.22	930	7.2	<.10	<.20	1	<.05
56	Cedar River at Cedar Falls	03/20/89	2,870	348	8.2	3.4	06:	ı	ŀ
		11/09/89	402	550	8.9	1.4	<.20	1	.15
57	Black Hawk Creek at Hudson	03/22/89	102	460	7.4	3.9	.30	1	1
		10/18/89	2.93	720	7.3	.10	.40	1	<.05
58	Wapsipinicon River at Independence	03/20/89	854	240	8.1	3.0	2.7	1.5	1.7
		11/09/89	174	555	8.5	9.7	<.20	:	.39
		03/22/90	886	488	8.3	13	;	:	.63
		06/60/20	1,270	358	8.5	8.1	:	:	22
		06/22/90	2,210	578	8.0	<.10	1	ŀ	3.9
59	Maple River at Mapleton	03/23/89	128	200	8.0	6.40	!	ł	;
		05/24/89	852	303	9.9	.10	>5.0	1	34

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft³/s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (µg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS ³ (μg/L)
			<u>Iowa</u> Continued	ntinued					
59	Maple River at MapletonContinued	10/02/89	44.4	089	8.5	3.0	0.80	;	0.59
		06/13/90	4,960	242	6.7	3.6	: :	: :	.±0
09	Boyer River at Logan	03/23/89	158	750	7.8	5.9	<.20	<0.20	.14
		05/24/89	2,070	323	6.5	.10	>5.0	10	45
		10/02/89	50.3	630	8.5	.12	<.20	;	.23
		03/16/90	461	540	8.3	4.1	ŧ	ŀ	.55
		06/13/90	15,700	220	9.9	2.1	ł	;	8.0
61	Raccoon River at Van Meter	03/21/89	516	512	8.1	හ	<.20	ŧ	;
		05/25/89	2,700	452	8.6	2.0	.70	1	1.1
		11/08/89	201	605	8.6	3.2	<.20	;	.32
		06/60/20	534	584	8.7	2.2	;	;	12
		05/10/90	3,420	200	8.3	8.2	ł	1	2.3
62	Indian Creek near Mingo	03/20/89	11.0	765	8.2	1.0	.40	1	1
		05/24/89	1,010	202	8.1	2.8	3.8	;	2.0
		10/10/89	1.30	580	8.1	<.10	<.20	i	<.05
63	Iowa River near Marengo	03/24/89	693	432	7.7	2.5	.40	.40	.42
	0	05/25/89	516	405	7.4	<.10	>5.0	9.4	15
		11/07/89	134	540	9.5	<.10	<.20	1	.15

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

	Atrazine GC/MS ³ (µg/L)		;	72	69.	ŀ	<.05	ŀ	48	.19	ł	42	.26	68.	1.1	1	37	1.0	21	13	1.3
	Atrazine ELISA- Kans. ² (μg/L)		ŀ	:	:	1	:	1	:	I	:	:	:	;	1	:	;	ŀ	0.30	7.2	1
	Atrazine ELISA- Iowa ¹ (μg/L)		1.2	>5.0	.30	.20	<.20	0:30	>5.0	<.20	1.0	>5.0	.40	;	1	.30	>5.0	1.0	< 20	>5.0	1.7
	Nitrite plus nitrate as nitrogen (mg/L)		1.2	5.3	<.10	3.4	3.1	1.6	6.3	.44	1.5	3.4	2.0	8.1	13	2.5	3.9	3.2	64	1.9	<.10
	pH (standard units)		7.4	7.2	9.4	7.6	8.3	8.1	7.2	8.2	7.9	7.5	8.2	7.3	8.2	7.7	7.2	7.7	α -	8.0	7.9
	Specific conduct- ance (µS/cm)	ıtinued	476	250	565	580	570	508	258	089	400	362	475	295	490	260	304	220	330		
	Stream-flow (\mathbf{ft}^3/s)	<u>Iowa</u> Continued	3.40	557	3.80	174	107	160	2,090	55.6	65.0	638	55.1	3,100	922	345	738	673	2.70	228	.10
	Date of collection (month/day/year)		03/24/89	05/25/89	11/07/89	03/27/89	10/05/89	03/22/89	05/24/89	10/16/89	03/22/89	05/24/89	10/02/89	03/12/90	05/21/90	03/24/89	06/02/89	10/10/89	03/20/89	05/30/89	10/02/89
The second secon	Site name		Old Mans Creek near Iowa City			N. Fork Maquoketa River at Fulton		S. Skunk River near Oskaloosa			N. Skunk River near Sigourney					Nishnabotna River above Hamburg			Chariton River near Chariton		
	Map no (figs. · 2-5)		64			65		99			29					89			69)	

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (µg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
			<u>Iowa</u> Continued	tinued					
20	S. Fork Chariton River near Promise City	03/20/89 05/30/89	$\frac{1.90}{26.0}$	315 238	8.8	$0.20 \\ 1.2$	0.50	: :	 16
		10/03/89	.40	438	7.9	<.10	1.0	ł	96.
71	Skunk River at Augusta	03/22/89	373	360	7.9	2.0	.90 	0.40	69.
		05/26/89	3,200	240	9.7	9.7 9.7	>5.0	10	30
		09/06/00	0470	630 615	ο. ο. 4	01.>	. 4 0	!	ებ. გი
		03/08/90	470 26,800	615 205	7.5	5.4 5.3	: :	: :	.30 6.5
			Missouri	<u>il</u>					
72	Nodaway River near Graham	03/15/89	331	265	7.8	.22	1.2	1.0	1.0
		10/03/89	4,490 414	125 395	7.7 7.9	98. 98.	>9.0 .20	: :	.21
		04/10/90	592	430	8.2	3.7	ŀ	ŀ	.14
		05/22/90	612	612	8.4	4.7	ŀ	1	1.5
73	South Fabius River near Taylor	04/04/89	95.8	479	8.1	<.10	<.20	1	ŀ
		10/05/89	3.70	370	8.1	<.10	.50	;	.57
74	Grand River near Sumner	03/08/89	325	430	7.4	2.4	.20	1	ı
		05/19/89	2,420	210	7.4	1.5	>5.0	;	;
		10/04/89	241	390	7.7	<.10	.50	:	.35

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

No.		Dotoof		Spiege		Nitrite	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A tours	
no (figs. 2-5)	Site name	collection (month/ day/year)	Stream- flow (ft.³/s)	conduct- ance (µS/cm)	pH (standard units)	nitrate as nitrogen (mg/L)	ELISA- Iowa ¹ (μg/L)	ELISA- Kans. ² (μg/L)	Atrazine GC/MS ³ (µg/L)
		4	<u> Missouri</u> Continued	ntinued					
75	Middle Fork Salr River at Paris	04/03/89 05/30/89	17.5 3.670	842	8.0	<0.10	0.40	<0.20	0.53
		10/06/89	3.10	310	7.9	.36	.80	l	.65
92	Blackwater River at Blue Lick	03/16/89	28.0	685	7.9	1.3	.30	;	;
		05/20/89	3,040	165	7.4	.93	>5.0	;	11
		10/04/89	13.7	580	9.7	<.10	.90	1	.50
77	Missouri River at Hermann	03/12/89	52,300	490	7.9	<.10	<.20	<.20	.18
		68/20/90	62,200	ł	ł	<.10	}	ł	1.5
		10/11/89	45,300	665	8.2	<.10	<.20	1	.26
78	Mississippi River at Grafton	03/10/89	30,000	436	9.0	<.10	.30	.20	.24
	•	06/02/89	81,900	ł	;	<.10	ŀ	:	2.0
		11/13/89	57,000	430	8.5	<.10	<.20	l	.21
			Wisconsin	nisi					
79	Prairie River near Merrill	04/21/89	213	104	8.1	.21	<.20	ŀ	ŀ
		05/05/89	178	119	8.2	.11	<.20	;	<.05
		10/23/89	72.0	204	8.6	<.10	<.20	1	<.05
80	Trempealeau River at Dodge	03/14/89	2,320	250	7.4	66.	ł	ł	1
		02/30/89	810	242	ŀ	1.9	>5.0	ŀ	56
		10/17/89	346	300	8.0	1.3	<.20	ł	.15

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Streamflow $(\mathbf{f}^3/\mathbf{s})$	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
		M	Wisconsin Continued	Continued					
81	Black River near Galesville	03/15/89	2,680	166	7.2	1.0	<0.20	;	ŀ
		05/30/89	4,100	92	ŀ	.39	2.4	ł	3.2
		10/18/89	539	155	9.7	.47	<.20	1	<.05
85	Wisconsin River at Muscada	03/31/89	18,800	230	8.2	.82	ł	;	;
		06/02/89	19,100	180	7.6	.57	.30	1	.65
		10/05/89	2,420	290	8.5	.32	<.20	1	.21
		03/20/90	20,700	280	7.7	.82	;	1	.31
		06/25/90	15,400	195	7.9	.60	;	;	77.
83	Grant River near Burton	03/23/89	285	558	8.2	3.4	<.20	0.30	.32
		05/31/89	85.0	586	8.3	1.9	1.1	1	1.7
		11/02/89	72.0	630	8.4	2.5	<.20	ł	.15
84	Pecatonic River at Martintown	04/11/89	382	009	8.3	3.1	.20	ł	ł
		07/19/89	298	565	8.3	1.8	<.20	1	.11
		10/31/89	249	610	8.3	2.1	<.20	;	.14
85	Rock River at Afton	04/12/89	3,420	200	9.0	1.5	<.20	.20	.34
		07/19/89	747	665	8.6	1.6	.40	ŀ	.51
		10/31/89	852	069	8.8	1.2	.30	1	.15
		04/12/90	3,350	515	9.1	1.0	1	1	.39
		06/90/20	2,540	009	8.6	.50	ł	ł	.72
86	Fox River at Wakesha	04/20/89	160	1,070	8.2	.92	<.20	;	ŀ
		07/10/89	77.0	780	8.1	1.6	.50	;	;
		11/03/89	43.0	1,070	8.1	3.4	<.20	;	.12

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct-ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS ³ (µg/L)
		M	WisconsinContinued	ontinued		I			
87	Root River at Racine	03/22/89	116	985	7.8	3.1	<0.20	<0.20	0.08
		07/10/89	10.0	990	4. 6	<.10	1.2	;	88
		03/52/89	4I.0 188	020,1 808	χ. α. Τ. τ	7. K	02.5	; ;	11.
		04/19/90	31.0	760	8.6	2.2		ŀ	44.
			Illinois	<u>is</u>					
88	Des Plains River at Russell	04/02/89	100	066	8.3	7.4	<0.2	;	ŀ
		05/25/89	27.4	452	7.7	.24	.40	ŀ	.23
		11/01/89	5.50	1,260	7.7	1.4	.20	1	.15
88	Nippersink Creek at Spring Cove	04/05/89	95.0	735	8.6	3.1	.30	<.20	.37
		05/25/89	95.5	629	8.0	96.	1.3	:	90
		11/01/89	43.0	780	8.0	1.7	<.20	1	.38
06	S. Br. Kishwaukee at Fairdale	03/22/89	145	770	7.8	8.7	.30	ŀ	1
		05/25/89	76.7	969	7.6	2.6	>5.0	:	11
		10/24/89	76.0	857	ł	5.6	.40	;	.24
		04/12/90	294	755	8.6	11	ł	:	.25
		05/14/90	1,280	:	7.8	19	:	:	2.1
91	Kiswaukee River near Perryville	03/22/89	445	720	7.6	5.3	<.20	<.20	.12
		05/25/89	225	722	7.8	1.2	4.0	0.9	4.9
		10/24/89	569	196	1	3.2	<.20	ŀ	.15

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS ³ (μg/L)
		 	Illinois Continued	ntinued					
92	Elkhorn Creek near Penrose	03/22/89	48.0	671	7.3	7.9	<0.20	ì	; ,
		05/25/89 10/24/89	40.4 30.0	643 704	1.7	4.9 6.6	2.0	1 1	1.9 .15
93	Illinois River near Marseilles	03/21/89	9,940	1,025	7.9	5.7	.30	;	;
		05/25/89	6,390	850	7.7	6.8	2.1	;	2.5
		10/31/89	3,200	758	8.9	4.0	.40	;	.15
94	Fox River near Dayton	03/21/89	2,100	292	7.8	3.8	.30	<0.20	.20
		05/25/89	638	803	8.4	.51	.50	1.2	.80
		10/31/89	869	781	8.6	<.10	2.4	ł	.26
95	Dupage River near Shorwood	04/06/89	248	1,555	9.0	7.8	<.20	<.20	<.05
		05/25/89	569	1,290	7.5	7.2	09:	1.0	77.
		11/02/89	110	1,770	8.7	10	<.20	1	<.05
		04/04/90	334	1,360	8.6	6.7	1	1	.07
		06/23/90	:	;	:	6.3	:	;	.37
96	Iroquois River near Chebanse	04/03/89	1,600	899	8.4	11	.30	.40	.47
		05/25/89	1,530	721	7.7	18	3.5	5.0	2.8
		11/03/89	477	770	8.2	5.0	.20	}	.16
		04/04/90	2,410	693	8.2	9.0	ł	;	.19
		05/11/90	5,560	685	8.2	15	1	1	4.2
97	Edwards River near New Boston	03/22/89	57.0	267	7.3	2.3	<.20	<.20	.15
I		10/23/89	55.0	089	:	4.3	.20	.	.34

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS ³ (µg/L)
		Ī	<u> Ilinois</u> Continued	ntinued					
86	Spoon River at London Mills	04/21/89 $06/02/89$	58.0 1.620	820 361	8.6	< 0.10 5.1	0.20	0.20	0.23
		10/17/89	81.0	200	8.3	4.2	.30	ł	.24
		04/10/90	490	750 666	8.1	12	1 1	: :	.18
		00/E1/00	6,600		.	,			ì
66	La Moine River at Colmar	04/20/89	8.90	200	8.3	<.10	.30	;	:
		68/80/90	12.1	648	7.4	.10	>5.0	1	11
		10/17/89	2.00	520	8.2	.10	.40	;	.29
100	Sangamon River at Oaksford	04/20/89	2,340	699	8.2	7.8	<.20	;	ŀ
		05/23/89	2,620	664	8.4	9.2	2.5	ŀ	2.7
		10/19/89	346	870	8.2	1.9	09.	1	.25
101	Lake Fork near Cornland	03/21/89	72.0	622	7.6	6.0	<.20	;	;
		05/22/89	120	727	8.1	13	.40	;	.64
		10/16/89	32.0	742	8.3	2.7	<.20	1	<.05
102	Sangamon River at Riverton	03/21/89	806	755	7.7	5.9	.80	;	2.6
		05/22/89	1,450	675	8.1	12	.1.8	;	ŀ
		10/12/89	77.0	1,716	8.4	1.8	09.	;	.33
		03/26/90	1,010	682	7.9	7.4	ŀ	!	.55
		05/14/90	5,730	575	8.0	9.7	:	;	3.8
103	Illinois River at Hardin	03/10/89	14,500	ŀ	;	<.10	<.20	<.20	.24
		06/04/89	27,500	:	1	<.10	ł	1	3.1
		10/16/89	4,760	675	8.2	2.9	.70	ł	.25

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map		Date of	į	Specific	;	Nitrite plus	Atrazine	Atrazine	•
no (figs. 2-5)	Site name	collection (month/ day/year)	Stream- flow $(\mathrm{ft}^3/\mathrm{s})$	conduct- ance (µS/cm)	pH (standard units)	nitrate as nitrogen (mg/L)	ELISA- $\log 1$ ($\mu g/L$)	ELISA- Kans. 2 ($\mu g/L$)	Atrazine GC/MS^3 $(\mu g/L)$
			<u>Ilinois</u> Continued	ntinued					
104	Macoupin Creek near Kane	03/21/89	2,890	299	7.5	2.4	0.80	0.70	0.89
		05/23/89	128	537	7.4	2.5	>5.0	10	20
		10/16/89	2.70	519	7.4	.10	1.1	ì	.62
		03/28/90	262	758	8.5	.82	;	;	62.
		05/14/90	4,020	329	8.2	3.1	;	;	16
105	Kaskaskia River near Cowden	03/20/89	1,460	447	7.8	1.7	.20	ł	ł
		05/22/89	1,300		6.9	9.2	2.0	:	2.7
		10/26/89	7.10	555	7.0	2.3	2.2	:	1.3
		03/27/90	214		8.3	2.7	;	1	1.3
		05/14/90	2,420		8.5	4.2	;	i	33
106	Kaskaskia River at Vandalia	03/20/89	4,780		7.5	1.2	.50	1	ł
		05/23/89	1,600	532	7.4	7.4	3.5	ł	4.9
		10/11/89	42.1	612	7.5	.10	.80	;	92.
107	Embarras River at Ste. Marie	04/13/89	2,320	529	7.4	12	.60	;	;
		05/22/89	1,900	540	7.5	11	>5.0	;	8.6
		10/18/89	231	663	8.2	2.9	.50	;	.33
108	Shoal Creek near Breese	03/20/89	2,040	208	7.2	1.1	.40	.30	.61
		05/23/89	152	429	7.0	1.4	>5.0	8.4	15
		10/11/89	13.8	436	7.0	.10	2.7	;	2.1
		03/28/90	196	700	8.2	.53	ł	ŀ	1.0
		05/04/90	209	458	7.5	.70	;	:	26°

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Atrazine GC/MS ³ (μg/L)		 19 .52	 52 .41 1.8 9.2		 6.7 .68		34 .69 3.8 9.0	5.1 .57
Atrazine ELISA- Kans. ² (μg/L)		1 1 1	1111		1 1 1		1111	111
Atrazine ELISA- Iowa ¹ (µg/L)		0.30 >5.0 .50	.50 >5.0 .50		<.20 4.2 1.1		.60 >5.0 2.0	.60 3.9 .70
Nitrite plus nitrate as nitrogen (mg/L)		1.6 1.8 .10	2.6 5.0 2.2 1.7		8.8 8.5 9.0		.49 1.5 .88 1.0 1.8	.22 1.0 .63
pH (standard units)		7.1 7.8 6.7	6.9 6.8 7.8 7.4		7.6 7.8 8.2		6.6 7.0 7.7 7.2 7.5	6.7 7.0 7.2
Specific conduct-ance (µS/cm)	ntinued	361 550 595	472 493 824 631 26	<u>18</u>	450 527 612	is Is	160 218 725 381 540	310 995 1,160
Stream- flow (ft³/s)	Illinois Continued	490 131 2.00	104 77.0 12.0 112 2.30	Indiana	49,300 29,700 12,700	Illinois	18,300 1,110 125 6,580 440	12,800 1,210 76.2
Date of collection (month/day/year)		03/20/89 05/23/89 10/11/89	04/12/89 05/22/89 11/27/89 04/17/90 07/10/90		03/29/89 06/22/89 10/31/89		04/12/89 05/22/89 11/27/89 04/17/90	04/11/89 05/24/89 10/16/89
up o gs. Site name		9 Silver Creek near Freeburg	0 Bonpas Creek at Browns		.1 Wabash River near New Harmony		112 Little Wabash River at Carmi	113 Big Muddy River near Murphysboro
Map no (figs. 2-5)		109	110		111		1	17

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Atrazine GC/MS ³ (µg/L)	0.27 1.8 .37		<.05 3.1 <.05		.05 2.8 <.05	 1.2 .23	 5.9 .11	.26 8.0 .12 .19 9.6
Atrazine ELISA- Kans. ² (µg/L)	0.20		<.20		<.20 4.4 	1 1 1	: : :	20
Atrazine ELISA- Iowa ¹ (µg/L)	0.20		<.20 <.20		<.20 2.7 <.20	<.20 1.0 .30	.20 >5.0 <.20	<.20 >5.0 <.20
Nitrite plus nitrate as nitrogen (mg/L)	<0.10 <.10 .73		<.10 <.10 .10		3.5 2.0 .59	4.8 3.3 .43	13 15 2.0	7.7 2.7 1.5 4.2 7.6
pH (standard units)	7.9		7.3		8.2 7.7 7.9	8.2 7.9 8.3	8.3 7.3 7.9	8.8 8.2 4.7 7.8 7.7
Specific conduct- ance (µS/cm)	uri 523 520	<u>is</u>	232	<u>na</u>	606 608 654	631 612 638	746 542 762	558 690 716 658
Stream- flow (ft. ³ /s)	Missouri 173,000 184,000 89,800	Illinois	721,000 309,000 275,000	Indiana	2,020 2,420 871	807 650 292	531 1,640 162	1,190 604 170 660 1,550
Date of collection (month/ day/year)	03/15/89 06/10/89 11/08/89		03/16/89 06/11/89 10/11/89		03/22/89 05/31/89 10/16/89	03/22/89 05/31/89 10/16/89	03/22/89 05/31/89 10/16/89	03/22/89 05/22/89 10/16/89 03/26/90 05/14/90
Site name	Mississippi River at Thebes		Ohio River near Grand Chain		Kankakee River at Shelby	Tippecanoe River near Ora	Iroquois River near Foresman	Eel River near Logansport
Map no (figs. 2-5)	114		115		116	117	118	119

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (µg/L)	Atrazine GC/MS ³ (µg/L)
		<u> </u>	Indiana Continued	ntinued					
120	Wabash River at Linn Grove	03/23/89	350	682	8.1	13	0.30	ŀ	;
		05/26/89	2,500	229	7.3	3.3	>5.0	ł	9.8
		10/17/89	20.0	1,140	7.9	35.	.50	1	.27
121	Wildcat Creek near Lafayette	03/23/89	648	739	8.4	8.1	<.20	0.20	.22
		05/27/89	11,500	288	7.6	5.5	>5.0	10	27
		10/16/89	234	167	8.3	1.9	.40	ł	.26
		03/26/90	54.0	721	7.8	5.6	1	;	.22
		05/14/90	1,220	564	7.7	11	ŀ	ŀ	14
122	Wildcat Creek near Jerome	03/23/89	95.0	695	8.3	12	0.40	ł	ł
		05/22/89	91.0	685	8.1	13	1.0	1	1.5
		10/17/89	33.0	718	7.7	2.7	.40	ŀ	.35
		03/26/90	90.0	641	8.0	3.1	1	1	.27
		05/14/90	260	588	7.4	15	1	1	10
123	Wabash River at Covington	03/24/89	5,930	663	8.5	6.5	.20	.20	.18
		05/22/89	8,080	621	8.0	8.9	>5.0	5.2	8.8
		10/16/89	2,700	829	8.3	2.6	1.5	1	89.
124	White River near Nora	03/27/89	829	727	8. 4.	5.1	<.20	.30	.18
		05/26/89	7.600	362	7.6	4.3	>5.0	8.0	8.6
		11/01/89	544	793	8.1	2.4	.30		.29
		03/26/90	959	693	7.9	3.6	1	1	.32
		05/14/90	6,430	444	7.7	9.9	ŀ	ŀ	17

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/day/year)	Stream- flow (ft ³ /s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (µg/L)	Atrazine ELISA- Kans. ² (µg/L)	Atrazine GC/MS³ (µg/L)
		[<u>Indiana</u> -Continued	ntinued					
125	Big Blue River at Carthage	03/27/89 05/23/89	136 1,680	685 335	8.3	5.2 4.4	<0.20	1, 1	13
		10/17/89	93.0	727	8.0	3.7	<.20	1	.12
126	Whitewater River near Alpine	03/23/89	613	625	8.2	6.7	<.20	;	;
		05/23/89	4,440	377	7.2	3.8	>5.0	1	20
		10/17/89	340	682	8.0	3.2	.20	:	.25
		03/27/90	570	646	8.0	4.3	1	1	.14
		05/15/90	1,880	555	8.1	6.2	ŀ	;	8.2
127	Big Walnut Creek near Reelsville	03/24/89	388	563	8.3	5.5	.20	0.20	.25
		05/23/89	420	488	8.2	3.0	4.0	5.6	9.9
		10/31/89	240	580	8.5	1.9	.50	;	.41
128	White River near Centerton	03/28/89	1,870	807	7.7	5.2	<.20	1	1
		05/23/89	8,900	435	7.6	3.0	4.4	ł	8.7
		10/30/89	1,490	821	7.8	3.5	09.	1	.36
129	Sugar Creek near Edinburgh	03/24/89	774	617	8.2	8.2	<.20	ŀ	ŀ
	,	05/25/89	1,620	200	7.8	8.7	>5.0	;	15
		10/30/89	126	711	8.2	1.1	<.20	;	<.05
		03/27/90	295	645	8.3	0.9	ŀ	1	.14
		05/12/90	2,191	463	7.9	7.1	1	1	20
130	Flatrock River at Columbus	03/24/89	1,070	578	8.1	5.6	<.20	;	ł
		05/25/89	1,820	471	7.9	9.1	>5.0	1	15
		10/30/89	162	635	8.0	2.9	.20	ŀ	.17

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Stream- flow (ft³/s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
			IndianaContinued	ntinued					
131	Busseron Creek near Carlisle	03/29/89	179	718	7.5	1.2	0.20	1	ł
		06/22/89	22.0	1,320	7.6	88.	2.5	ł	3.5
		10/31/89	74.0	1,100	7.7	.59	.30	1	.22
132	E. Fork White River near Bedford	03/28/89	10,800	419	7.7	3.6	<.20	ł	;
		05/25/89	9,820	264	7.5	2.2	>5.0	:	20
		10/30/89	1,140	605	8.1	1.8	.50	;	.28
		03/27/90	4,550	512	8.0	3.0	:	;	.22
		05/15/90	11,590	373	7.4	3.5	;	;	11
133	Muscatatuck River near Deputy	03/28/89	175	377	8.0	1.8	<.20	<0.20	90.
		05/25/89	303	238	7.7	.84	2.1	4.6	2.7
		10/30/89	43.0	406	7.8	.28	.50	:	.37
134	Blue River at Fredricksburg	03/28/89	313	374	8.1	3.5	<.20	;	;
		05/25/89	185	370	4.9	2.4	3.6	1	5.1
		10/30/89	51	438	8.0	1.9	.50	;	.30
		03/27/90	231	348	8.2	2.0	1	1	.16
		05/15/90	575	323	9.7	2.3	;	1	5.1
			Ohio	G.					
135	Tiffin River at Stryker	03/14/89	217	009	8.1	2.5	<.20	.30	.38
		06/05/89	4,570	300	7.5	6.3	>5.0	10	28
		10/25/89	100	745	7.3	1.3	.50	;	99.
		03/21/90	780	565	8.4	4.0	;	;	.45
		05/14/90	996	555	7.2	13	;	;	35

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Stream- flow (ft.³/s)	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (µg/L)	Atrazine GC/MS³ (µg/L)
			OhioContinued	tinued					
136	Maumee River at Waterville	03/29/89	5,060	920	8.2	7.9	0.30	1	· ·
		10/25/89	1,430	560	9.5	.49	1.0	l I	1:1
137	Sandusky River near Fremont	03/24/89	606	640	8.2	11	.50	;	;
		05/24/89	4,640	620	7.8	7.9	3.5	;	5.9
		10/25/89	215	780	8.3	3.8	1.9	;	1.7
138	Auglaize River near Fort Jennings	03/14/89	164	770	8.2	6.2	.30	;	15
		05/27/89	4,550	300	7.4	7.5	>5.0	;	.53
		10/25/89	65.0	770	7.2	2.5	90.	;	.30
		03/21/90	200	200	8.7	6.4	2 2	ì	16
		05/14/90	2,100	440	7.9	13	ı	1	1
139	Olentangy River at Claridon	03/15/89	117		8.2	6.3	.20	0.40	.49
	;	06/14/89	94.0	620	7.9	4.3	3.3	;	2.9
		10/24/89	11.0		7.8	.70	.60	1	.43
		03/21/90	0.09		8.4	2.7	į	ł	.24
		05/14/90	1,380		7.4	11	ı	1	32
140	Scioto River near Prospect	03/21/89	487	780	8.1	7.6	>5.0	1	1
		06/14/89	344		8.0	5.9	1.5	;	1.9
		10/19/89	20.0	1,050	7.8	5.5	.30	;	.21
		03/23/90	248		8.0	5.2	i	1	.26
		05/12/90	2,540		7.5	14	;	;	27

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

Map no (figs. 2-5)	Site name	Date of collection (month/ day/year)	Streamflow $(\mathbf{f}^3/\mathbf{s})$	Specific conduct- ance (µS/cm)	pH (standard units)	Nitrite plus nitrate as nitrogen (mg/L)	Atrazine ELISA- Iowa ¹ (μg/L)	Atrazine ELISA- Kans. ² (μg/L)	Atrazine GC/MS³ (μg/L)
			OhioContinued	tinued					
141	Kokosing River at Mount Vernon	03/13/89 $06/14/89$	293	420 350	8.4	2.9	<0.20	1 1	
		10/12/89	47	525	7.8	1.2	1.5	1	.90
142	Mad River at Eagle City	03/23/89	330	730	8.5	4.9	<.20	;	;
		06/14/89	835	620	8.0	4.7	>5.0	1	10
		10/12/89	168	770	8.6	4.8	<.20	1	<.05
		03/22/90	323	770	8.3	3.9	1	1	.05
		05/14/90	1,100	650	8.1	7.7	;	ŀ	11
143	Little Miami River near Oldtown	03/23/89	183	700	8.5	7.7	<.20	ı	ŀ
		06/14/89	1,160	410	8.0	4.0	>5.0	;	26
		10/12/89	35	160	8.5	<.10	<.20	ŀ	<.05
		03/22/90	125	750	8.6	4.6	;	;	.20
		05/14/90	809	220	8.2	14	ŀ	ŀ	26
144	Big Darby Creek at Darbyville	03/14/89	791	625	8.2	8.0	.30	1	ŀ
		06/14/89	481	735	8.3	6.4	2.0	;	1.4
		10/26/89	77	864	8.2	1.1	.20	ł	.20
		03/22/90	295	702	8.6	3.8	1	ł	.18
		05/15/90	3,090	452	8.2	10	1	1	18
145	Clear Creek near Rockbridge	03/14/89	165	398	8.2	4.2	<.20	<.20	.13
		06/14/89	245	380	8.0	5.6	>5.0	;	19
		10/16/89	43	467	7.9	1.3	<.20	1	<.05
		03/22/90	. 81	383	7.4	1.4	ŀ	1	.11
		05/26/90	1,250	210	7.7	<.10	ŀ	;	0.6

Table 6. Results of analyses of water-quality samples collected from Midwest streams and comparison of laboratory analyses for atrazine by ELISA and GC/MS, 1989-90--Continued

						Nitrite			
Map no		Date of collection	Stream-	Specific conduct-	Hď	plus nitrate as	Atrazine ELISA-	Atrazine ELISA-	Atrazine
(figs. 2-5)	Site name	(month/ day/year)	flow (ft ³ /s)	ance (μS/cm)	(standard units)	nitrogen (mg/L)	Iowa ¹ (µg/L)	Kans. ² (µg/L)	GC/MS ³ (µg/L)
			OhioContinued	tinued					
146	Scioto River at Higby	03/23/89	11,600	574	7.9	5.7	0.30	ŀ	;
		06/19/89	9,910	438	8.2	3.7	2.8	;	4.1
		10/03/89	948	830	8.2	3.3	1.1	;	.95
		03/26/90	3,440	069	8.1	3.3	1	:	.24
		05/15/90	15,400	465	6.7	8.9	;	1	13
147	Little Miami River at Milford	03/23/89	2,930	260	8.3	5.0	1.0	0.40	.48
		06/14/89	2,230	620	8.2	3.4	2.0	;	2.3
		10/17/89	347	290	8.4	2.1	.40	ŀ	.30

¹Atrazine concentration analyzed by ELISA at U.S. Geological Survey laboratory in Iowa City, Iowa. ²Atrazine concentration analyzed by ELISA at U.S. Geological Survey laboratory in Lawrence, Kansas. ³Atrazine concentration analyzed by GC/MS at U.S. Geological Survey laboratory in Lawrence, Kansas.

[μg/L, micrograms per liter; DEA, deethylatrazine; DIA, deisopropylatrazine, --, no data; <, less than; >, greater than; R, regular sample; L, laboratory duplicate; B, blind duplicate; X, extra sample] **Table 7.** Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (μg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (μg/L)	Sima- zine (µg/L)
	D: G: D:	00/00/20		South Dakota	akota	o o	, J	J.	, O	i,	i d	Ç	ć J
	big Sioux Kiver near watertown	68/62/90	4	<0.05	0.08	<0.20	<0.0>	<0.0>	c0.0>	<0.0>	<0.05	<0.0>	c0.0>
	Big Sioux River near Castlewood	06/29/89	~ 노	<.05	1.5	<.20	.17	<.05 70.	<.05 A	<.05 6.05	.93	<.05 A	<!--</td-->
		04/10/90	검	<.05 <.05	.07	<.20 <.20	<.05 <.05	.05	<.05 <.05	<.05 <.05	26.	<.05 <.05	<.05 <.05
		08/27/90	R	<.05	.14	<.20	<.05	<.05	<.05	<.05	.50	<.05	.20
	Big Sioux River near Brookings	06/29/89	П	.11	77.	<.20	.11	<.05	<.05	.29	.19	<.05	<.05
	1	06/29/89	24	.12	.82	<.20	.12	<.05	<.05	.18	<.05	.05	<.05
		11/03/89	24	<.05	90.	<.20	90.	<.05	<.05	<.05	<.05	<.05	<.05
	Big Sioux River at N. Cliff Ave.	06/27/89	R	<.05	1.6	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	James River near Scotland	04/03/89	R	<.05	.55	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		06/27/89	ద	<.05	.19	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		11/02/89	ద	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	Vermillion River near Vermillion	04/03/89	R	<.05	.17	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		06/27/89	h	<.05	.11	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		06/27/89	%	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		11/02/89	M M	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
	Brule Creek near Elk Point	06/27/89	R	60.	.36	<.20	90.	<.05	<.05	<.05	<.05	<.05	<.05
	Big Sioux River at Akron	04/03/89	В	<.05	.43	<.20	80.	<.05	<.05	<.05	<.05	<.05	<.05
		04/03/89 04/03/89	a 1	<.05 <.05	.46 .49	2020	.07 .12	<.05 <.05	.05 .06	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

		/											
Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (µg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			South	Dakota	South DakotaContinued	ned							
œ	Big Sioux River at AkronContinued	04/03/89 06/27/89	R R	<0.05	0.46 .56	<0.20	0.10	<0.05 <.05	<0.05	<0.05	<0.05	<0.05	<0.05 <.05
		06/27/89 06/27/89	B B	<.05 <.05	.62 .59	<.20 <.20	<.05 <.05	<.05 <.05	.14	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
		11/02/89	B	<.05	90.	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		11/02/89	Z	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
				Nebraska	ska								
6	Bow Creek near St. James	06/26/89 10/18/89	ж ж	.08	.20	.27	<.05 <.05	<.05 <.05	.12	<.05 <.05	<.05 <.05	<.05 <.05	<.05
10	Elkhorn River near Atkinson	10/23/89	æ	<.05	1.2	<.20	<.05	<.05	2.2	<.05	<.05	<.05	<.05
11	Clearwater Creek near Clearwater	06/26/89 10/18/89	요요	.06	.20	<.20 <.20	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05
12	Mira Creek near Northloup	04/11/89 06/25/89 10/20/89	52	<.05 <.05 <.05	.27 .15	<.20 <.20 <.20	<.05 .07 <.05	<.05 <.05 <.05	<.05 <.05 <.05 <.05	<.05 <.05 <.05	<.05	<.05 .05</.05</.05</td <td><.05 <.05 <.05</td>	<.05 <.05 <.05
13	Shell Creek near Columbus	06/26/89 10/19/89	저 저	4.7	14 .28	6.2	2.5	1.8 <.05	.74	.30	.20	.18	.15
14	Maple Creek near Nickerson	04/05/89 06/26/89 10/19/89	KKK	<.05 4.3 <.05	.07 8.7 .08	<.20 1.3 <.20	<.05 .97 <.05	<.05 1.4 <.05	<.05 .50 <.05	<.05 .35 <.05	<.05 <.05 <.05	<.05 .16 <.05	<.05 .12 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			Nebr	askaC	<u>Nebraska</u> Continued	þ							
15	Mud Creek at Sweetwater	06/25/89 10/23/89	24 24	0.29	1.7 <.05	<0.20	0.22	<0.05	0.20	<0.05	0.41	<0.05	<0.05
16	Big Blue River at Surprise	06/26/89 10/31/89	8 8	3.1	17 .70	5.9	1.7	1.4 < .05	3.8 <.05	.41	.64 <.05	.25 <.05	.14
17	Wahoo Creek at Itica	04/04/89 06/08/89 10/19/89 03/20/90	*****	<.052.1<.05<.05<.05	<.05 52 <.05 .07	< 20< 4.8< 20< 20< 20	<.05 1.9 <.05 <.05	<.053.0<.05<.05<.05	<.05 7.3 <.05 <.05	<.05 5.9 <.05 <.05	<.05<.05<.05<.05<.05	<.05<.05<.05<.05	<.05 .31 <.05 <.05
		05/14/90 05/14/90 06/08/90	xxx	.28 .31 .48	1.7 1.8 9.6	1.8 2.2 6.0	.12 .13	.10 .13	.34 .34 1.3	<.05	<.05<.05<.05	<.05 .05</td <td><.05 <.05 .05</td>	<.05 <.05 .05
18	W. Fork Big Blue River near Dorchester	04/04/89 04/04/89 06/27/89 06/27/89 10/31/89	1 K 1 K K	<.05<.052.41.7<.05	.10 .16 26 23 .34	< 20< 20< 20< 20< 20< 20	<.05<.053.02.8.14	<.05 <.05 2.0 1.9 <.05	<.05<.051.1<.05	<.05<.05<.30<.24<.05	<.05<.05.12.12<.05	< .05< .05< .34< .05	<.05<.051.71.4<.05
19	Salt Creek at Roca	06/26/89 10/31/89 03/27/90 05/14/90 06/07/90	环民民 X X	1.0 <.05 <.05 .07	13 1.7 .12 .86 .2.1	202020202020	2.3 .56 .06 .12	1.4 <.05 <.05 .09	1.4 .11 <.05 .29 .10	.46 <.05 <.05 <.05	.05.24.05.08.05	.14 <.05 <.05 <.05	.07 <.05 <.05 <.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Pro- Sima- n pazine zine) (μg/L) (μg/L)		0.08 0.06 <.05 <.05	.32 1.0 <.05 <.05 <.05 <.05 .19 .84 .20 .81	<.05 <.05 <.05 <.05 <.05 <.05	23 8.2 <.05 9.4 <.05 8.8 <.05 8.7 23 .15	.22 .09 .22 .13 <.05 .18 <.05 .21 <.05 .09	 <.05 .20 2.9 16 3.6
Pro- meton (µg/L)		0.07	.06 <.05 <.05 <.05 <.05	<.05 <.05	<.05<.05<.05<.05<.12	.15 .12 <.05 <.05	< 05< 05< 05
Metri- buzin (μg/L)		0.22	.30 <.05 <.05 .06	.30	<.05<.05<.05<.05<.05<.05	.41 .36 <.05 <.05	<.05 .29 .26
Meto- lachlor (μg/L)		1.3 .10	1.6 <.05 <.05 3.1 3.3	1.1 <.05	< .05< .05< .05< .05< .05< .13	1.3 1.3 <.05 <.05	<.05 3.2 2.8
DIA (µg/L)		0.71	2.2 <.05 <.05 .58	.88	.58 .48 .41 .59	1.5 1.5 < .05 < .05	<.05 .53 .55
DEA (µg/L)		1.2	3.7 .12 .10 1.1	1.3 <.05	<.05 <.05 <.05 <.05 <.05	2.1 2.1 .16 .19	.08 1.1 1.0
Cyana- zine (μg/L)	Ţ	1.2	1.9 <.20 <.20 .66	.67 <.20	< 20< 20< 20< 20< 20< 30< 30< 30	.83 <.20 <.20 <.20	<.20 1.8 1.7
Atra- zine ² (µg/L)	<u>Nebraska</u> Continued	6.6	22 .31 .21 15 15	10 .24	.88 .83 .91	18 16 .47 .51	.51 14 13
Ala- chlor (µg/L)	raska(1.4 < .05	2.3 <.05 <.05 3.4 3.5	.62	<.05<.05<.05<.05<.12	1.2 1.2 <.05 <.05	<.05 5.7 5.3
Sample type ¹	Neb	8 8	****	22 22	выгыв	口民国民国	足足足
Date of collection (month/ day/year)		06/25/89 11/07/89	06/26/89 10/30/89 03/21/90 05/17/90	06/26/89 10/24/89	04/06/89 04/06/89 04/06/89 04/06/89 06/27/89	06/27/89 06/27/89 10/23/89 10/23/89 03/21/90	03/21/90 05/17/90 05/17/90
Site name		Muddy Creek near Arapahoe	Little Blue River near Fairbury	Little Nemah River at Auburn	Big Blue River at Barneston		
Map no. (figs. 2-5)		20	21	22	23		

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atrazine ² $(\mu g/L)$	Cyana- zine (μg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			Nebi	<u>raska</u> (<u>Nebraska</u> Continued	þe							
24	Big Nemaha River at Fall City	06/26/89	24 6	2.1	20	0.33	2.2	1.5	2.9	0.30	0.05	0.23	0.07
		10/24/89 $03/27/90$	* *	.0. <.05		<.20 <.20	.09	<.05 <.05	.10	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
		05/17/90	R	1.1	5.6	.80	.61	.25	1.5	.21	<.05	90.	<.05
				Kansas	sas								
25	Turkey Creek near Seneca	03/21/89	В	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		03/21/89	R	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		05/22/89	В	<.05	.26	<.20	90.	<.05	.05	<.05	<.05	<.05	<.05
		05/22/89	R	<.05	.22	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		10/12/89	В	<.05	.23	<.20	.07	<.05	90.	<.05	<.05	<.05	<.05
		10/12/89	R	<.05	.23	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
26	Black Vermillion River near												
	Frankfort	06/22/89	그	1.3	17	<.20	2.3	1.6	2.1		.13	.17	80. 6-
		09/7/90	꾹,	1.6	16	07.V	F.8	7.7.	3.5	9. ç	00.V	0.V	77.
		10/04/89	م د د	0. 0. 7	ي. پې	07. 07. 08.	11.	<!--</td--><td>χ. Θ.</td><td>v. v.</td><td>o. v</td><td>. v . v . v</td><td>. v. v</td>	χ. Θ.	v. v.	o. v	. v . v . v	. v. v
		03/22/90	: 24	90.	74.	<.20	.14	90:	.05	<.05 <.05	<.05 <.05	<.05	<.05
		05/16/90	æ	1.6	6.1	.41	.58	.24	1.3	.20	<.05	.05	<.05
27	Delaware River near Muscotah	05/22/89	П	.30	10	.22	.54	.28	4.3	<.05	90.	60.	<.05
		05/22/89	니	¥;	10	<.20	.28	<.05	3.6	<.05	<.05	.10	<.05
		05/22/89	* F		10	×.20	.59	č.	4.2	<.05 20.05	70.	90. 4	ა. ე. /
		10/11/89	4	cn:>	.02	V.20	Ω Τ.	co.>	QT:	co.>	co.>	co.>	co.>

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (μg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			Ka	KansasContinued	ontinue	77							
28	Salt Creek near Ada	03/21/89 05/22/89 10/12/89	***	<0.05 <.05 <.05	<0.05 .27 .49	<0.20 <.20 <.20	<0.05 .11 .14	<0.05 <.05 <.05	<0.05 <.05 <.05	<0.05 <.05 <.05	<0.05 <.05 <.05	<0.05 .14 <.05	<0.05 <.05 <.05
29	Mill Creek near Paxico	10/06/89 10/06/89	n R	<.05 <.05	.09	<.20 <.20	.06	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
30	Kansas River at Topeka	10/06/89	R	.10	1.8	<.20	.39	<.05	.20	<.05	<.05	.08	<.05
				<u>Minnesota</u>	sota								
31	Knife River near Mora	07/19/89 10/31/89 05/30/90	民民民	<.05 <.05 <.05	.09 <.05 <.05	<.20 <.20 <.20	<.05 <.05 <.05	<.05 <.05 <.05	<.05	<.05 <.05 <.05 <.05	<.05<.05<.05	<.05 <.05 <.05 <.05	<.05 <.05 <.05
32	Sauk River near St Cloud	05/25/89 $11/08/89$	8 8	.21	.56	<.20 <.20	.11	<.05 <.05	.22 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05
33	Pomme de Terre River at Appleton	05/04/89 07/18/89 07/18/89 10/25/89	RURRX	.05.05.05.05.05	.06 .28 .32 <.05	< 20< 20< 20< 20< 20< 20	< .05< .05< .05< .06< .05	.05.05.05.05.05	<.05.06.07<.05<.05	0.050.050.050.05	<.05.19<.05<.05	0.050.050.050.05	0.050.050.050.05
34	Rum River near St. Francis	07/19/89 10/31/89	8 8	<.05	<.05 <.05	<.20 <.20	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type 1	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
				Wisconsin	nsin					1			
35	St. Croix River at St. Croix Falls	05/31/89 10/11/89 04/23/90 07/30/90	民民民民	<0.05 <.05 <.05 <.05	0.14 <.05 <.05 .16	<0.20 <.20 <.20 <.20	<0.05 <.05 <.05 .06	<0.05<.05<.05<.05	<0.05 <.05 <.05 <.05	<0.05 <.05 <.05 <.05	<0.05<.05<.05<.05	<0.05<.05<.05<.05	<0.05<0.05<05<05
				<u>Minnesota</u>	<u>sota</u>								
36	Crow River at Rockford	04/19/89 04/19/89 05/25/89 05/25/89	якалк	<.05 .05</.11</td <td>2.9 2.9 2.8 2.8</td> <td><.20 .21 2.1 2.3 2.3</td> <td>.09 .10 .15 .15</td> <td>.05.05.08.09.09</td> <td><.05<.05<.22<.23<.33</td> <td>< .05< .05< .05< .05< .05</td> <td>< .05< .05< .08< .05< .05</td> <td>.05.05.05.05.05</td> <td>.05.05.05.05</td>	2.9 2.9 2.8 2.8	<.20 .21 2.1 2.3 2.3	.09 .10 .15 .15	.05.05.08.09.09	<.05<.05<.22<.23<.33	< .05< .05< .05< .05< .05	< .05< .05< .08< .05< .05	.05.05.05.05.05	.05.05.05.05
		10/26/89 10/26/89	B 53	<.05 <.05	<.05 <.05	<.20 <.20	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
37	Minnesota River near Jordan	03/22/89 07/19/89 10/29/89	克克氏	.11 .08 <.05	.17 .29 3.1	<.20 <.20 <.20	<.05 <.05 .07	<.05 <.05 <.05	.19 <.05 3.4	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05
38	Redwood River near Redwood Falls	05/04/89 05/04/89 06/27/89 10/24/89	L K K K	<.05<.05<.26<.05	.07 .08 .42	<20<20<20<20	<.05<.05<.05<.05	<.05<.05<.05	<.05 <.05 .18 <.05	< .05< .05< .05< .05	< .05< .05< .05< .05	<.05<.05<.05<.05	.05.05.05.05
39	Cottonwood River near New Ulm	07/18/89 11/08/89 05/01/90	888	<.05 <.05 .64	.15 <.05 .33	<.20 <.20 <.20	<.05 <.05 <.05	.05.05.05	<.05 <.05 1.0	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90-Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (μg/L)
			Minr	lesota(MinnesotaContinued	eq						1	
45	Rush Creek near Rushford	05/25/89 11/07/89	K K	1.1 <.05	2.1	1.6	0.15	<0.05	0.89	<0.05	<0.05 <.05	<0.05	<0.05
				<u>Iowa</u>	ଷା								
46	Ocheyedan River near Spencer	03/28/89 05/24/89 10/12/89 10/12/89	路路口路	<.05 12 <.05 <.05	.13 12 <.05 <.05	<.20 12 <.20 <.20	<.05 .31 <.05 <.05	<.05 .36 <.05 <.05	.19 <.05 <.05	<.05 2.2 <.05 <.05	< .05< .05< .05< .05	< .05< .05< .05< .05	.05.06<05<05
47	Des Moines River at Estherville	03/28/89 10/12/89	요 요	<.05 <.05	.14	<.20 <.20	<.05 <.05	<.05 <.05	.13	<.05 <.05	<.05	<.05 <.05	<.05 <.05
48	Winnebago River at Mason City	03/20/89 03/20/89 10/11/89	RRL	<.05 <.05 <.05	.52 .51 <.05	<.20 <.20 <.20	.14 .13	<.05 <.05 <.05	.36 .33 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05
49	Little Cedar River near Ionia	10/16/89	R	<.05	.14	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
50	Turkey River at Spillville	08/23/89 10/04/89 03/22/90 05/19/90 06/14/90	XXXXX	<.05 <.05 .10 1.2 6.7	<.05<.05<.432.08.2	<.20 .20</.20</.20</.20</td <td>.51 <.05 .36 .35 1.4</td> <td><.05<.05<.05<.05<.05</td> <td>< .05< .05< .09< .88< .5</td> <td>< .05< .05< .05< .05< .83</td> <td>.05.05.05.05.05</td> <td><.05<.05<.05<.05<.05<.13</td> <td>. 05 . 05 . 05 . 05 . 05</td>	.51 <.05 .36 .35 1.4	<.05<.05<.05<.05<.05	< .05< .05< .09< .88< .5	< .05< .05< .05< .05< .83	.05.05.05.05.05	<.05<.05<.05<.05<.05<.13	. 05 . 05 . 05 . 05 . 05
51	Upper Iowa River near Dorchester	03/31/89 03/31/89 05/31/89 10/05/89	日路路路	<.05 6.4 <.05	.36 .33 10 .15	<.20 <.20 2.8 <.20	.14 .12 .52 <.05	< 05< 05< 23< 05	<.05 <.05 1.5 <.05	.05.05.05.05	.05.05.05.05	<.05 <.05 .10 <.05	<.05<.05<.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (μg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			OI	<u>Iowa</u> Continued	ntinued								
52	Little Sioux River at Correctionville	05/25/89 10/02/89 03/16/90 05/19/90	LXRRR	9.1 <.05 .09 2.9 .18	9.9 .13 .19 5.8 7.4	13 <.20 <.20 .25 3.1	0.61 <.05 <.05 .46	0.66 <.05 <.05 .37 .37	8.2 .07 .22 6.8 1.3	5.7 <.05 <.05 2.0 .14	<0.05 <.05 <.05 <.05	<0.05 <.05 <.05 <.05 <.05	<0.05<.05<.05<.05<.05<.06
		06/14/90	Ж	.20	7.4	3.4	.49	.43	1.3	.16	.11	.12	60.
53	North Racoon River near Sac City	05/24/89 05/24/89 10/12/89	JRR	5.5 5.5 <.05	.80 1.1 <.05	<.20 2.4 <.20	.07 .09 .05	<.05 .12 <.05	.72 .69 <.05	<.05 .29 <.05	<.05 <.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05
54	Des Moines River at Fort Dodge	05/24/89 05/24/89 10/13/89 03/16/90 05/14/90	L R R R X	12 12 <.05 .12	2.5 2.3 <.05 .12	2.8 5.4 <.20 <.20	.17 .14 <.05 <.05	<.05.14<.05<.05<.14	7.6 7.7 <.05 <.05	1.0 .97 <.05 <.05	<.05<.09<.05<.05<.10	<.05<.05<.05<.05<.05	.05.05.05.05
		05/19/90 06/15/90 06/15/90	X L X	1.6 .18 .18	.34 2.0 1.8	.77 .26 .25	.14	.16 .17	2.3 1.5 1.4	.22 <.05 <.05	<.05 .06 .07	<.05 <.05 <.05	<.05 <.05 <.05
22	Iowa River near Rowan	10/11/89	R	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
56	Cedar River at Cedar Falls	08/23/89 $11/09/89$	××	<.05 <.05	.14	<.20 <.20	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
57	Black Hawk Creek at Hudson	10/18/89	R	<.05	<.05	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90-Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/day/year)	Sample type 1	Ala- chlor (µg/L)	Atrazine 2 (µg/L)	Cyana- zine (μg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			<u>ol</u>	<u>Iowa</u> Continued	ntinued								
28	Wapsipinicon River at Independence	03/20/89	4	0.19	1.7	0.26	0.39	0.18	0.53	<0.05	<0.05	<0.05	<0.05
		11/09/89	그 œ	.16			92. 98.	.05.05	2. 2.	< 0.05< 0.05	.05.05	× .05 0.5	.05.05
		03/22/90	24	.17	63.	<.20	.35	60.	11.	<.05	<.05	<.05	<.05
		06/60/20	П	15	23	4.2	1.0	69	9.9	<.05	<.05	.28	<.05
		06/60/90	24	19	22	2.5	1.0	77.	8.9	<.05	<.05	<.05	<.05
		06/22/90	ᆸ	77.	2.4	09.	.73	.51	.72	.34	.27	.35	.11
		06/22/90	R	89.	3.9	.51	.83	.40	.77	60.	<.05	.05	<.05
59	Maple River at Mapleton	05/24/89	83	5.3	34	30	86.	77.	56	9.7	<.05	.50	.26
		10/02/89	æ	.49	.59	<.20	<.05	<.05	.19	<.05	<.05	<.05	<.05
		03/16/90	R	.18	.40	<.20	.17	<.05	.31	<.05	<.05	<.05	<.05
		05/19/90	×	1.8	8.9	15	.63	.52	8.6	1.1	<.05	90.	<.05
		06/13/90	Ж	.90	13	5.3	1.0	92.	4.3	.50	<.05	.18	60.
09	Boyer River at Logan	03/23/89	R	<.05	.14	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
		05/24/89	R	13	45	27	1.3	1.1	32	5.6	<.05	.32	.26
		10/02/89	꿈	<.05	.23	<.20	<.05	<.05	.10	<.05	<.05	<.05	<.05
		03/16/90	æ	.12	.55	<.20	.21	<.05	.25	<.05	90.	<.05	<.05
		05/10/90	×	80.	60.	<.20	<.05	<.05	.19	<.05	<.05	<.05	<.05
		05/20/90	×	4.1	4.6	5.8	.51	.35	7.0	.80	<.05	90.	<.05
		06/13/90	Ж	.75	8.0	2.8	.48	.65	3.0	.07	<.05	.37	.07
61	Raccoon River at Van Meter	05/25/89	%	.95	1.1	1.3	60.	.07	1.0	.22	<.05	<.05	<.05
		11/08/89 05/03/90	24 24	<.05 .08	.32	<.20 .23	<.05 .08	<.05 <.05	<.05 .18	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no.		Date of collection		Ala-	Atra-	Cyana-			Meto-	Metri-	Pro-	Pro-	Sima-
(figs. 2-5)	Site name	(month/ day/year)	Sample type ¹	chlor (µg/L)	$zine^2$ (µg/L)	zine (μg/L)	DEA (μg/L)	DIA (μg/L)	lachlor (μg/L)		meton (µg/L)	pazine (μg/L)	zine (μg/L)
			10	<u>Iowa</u> Continued	tinued								
61	Raccoon River at Van Meter-Continued	05/03/90 05/10/90 05/10/90 05/10/90	B 73 85 85	0.08 3.0 3.1	0.13 2.4 2.3	<0.20 <.20 <.20	0.09 .24 .23	<0.05 .25 .24	0.19 3.2 3.3	<0.05 .20 .20 .20	<0.05 <.05 <.05	<0.05<.05<.05	.00.06.06.06
		06/14/90	×	.42	2.3	1.3	.25	25	1.1	.21	<.05	<.05	<.05
62	Indian Creek near Mingo	05/24/89 10/10/89	84 84	3.4 < .05	5.0	7.9	.40	<.05 <.05	14 <.05	.62	<.05 <.05	.05	<.05 <.05
63	Iowa River near Marengo	03/24/89 05/25/89 11/07/89	* * *	.06 13 <.05	.42 15 .15	<.20 10 <.20	.07 .77.	<.05 .63 <.05	.30 13 <.05	<.05 .33 <.05	<.05 <.05 <.05	<.05 .19 <.05	<.05 .14 <.05
64	Old Mans Creek near Iowa City	05/25/89 11/07/89 03/15/90	路	51 <.05 .10	72 .69 .78	36 <.20 <.20	3.7 .16 .40	3.2 <.05 .16	33 <.05 .08	4.2 <.05 <.05	<.05 <.05 <.05	.91 <.05 <.05	.43 <.05 <.05
65	N. Fork Maquoketa River at Fulton	08/04/89 10/05/89	××	<.05 <.05	.21	<.20 <.20	.16	<.05 <.05	1.2	<.05 <.05	<.05 <.05	<.05	<.05 <.05
99	S. Skunk River near Oskaloosa	05/24/89 10/16/89	ж ж	41 <.05	48 .19	45 <.20	3.1 <.05	3.1 <.05	23 <.05	4.9	.12	.64	.42
29	N. Skunk River near Sigourney	05/24/89 10/02/89 03/15/90 05/21/90	***	40 <.05 .12 .66	42 .26 .89 1.1	61 <.20 <.20 1.6	2.4 <.05 .49	2.0 <.05 .26 .10	4.9 <.05 .23	2.7 <.05 <.05 <.05	.05.05.05.05	.51 <.05 <.05	.41 <.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Pro- Sima- pazine zine (µg/L) (µg/L)	0.51 0.39 <.05 <.05		.17 .12 .21 .16 <.05 <.05	<.05<.05<.05<.05<.05<.05<.05<.05<.05<.05<.05<.05<.05	<.05 .07	<.05<.05<.05<.05<.05<.05<.05<.05<.05<.05<.05
Pro-Pr meton paz (µg/L) (µg	0.05 0.		<.05 <.05 <.05		<.05	.05.05.05.05.05.05
Metri- buzin (µg/L)	1.5	<.05 1.9 <.05	1.0 1.2 <.05	<.051.6<.05<.05<.12	.26	.05.05.42.05.05
Meto- lachlor (μg/L)	19 .14	<.05 3.9 .25	7.7 7.9 .30	.50 5.0 .14 .11	2.1	.20 .27 1.7 .07
DIA (µg/L)	2.0	<.05 1.5 <.05	.88 1.4 <.05	<.05 1.8 <.05 .17	1.6	.08 .09 .58 < .05
DEA (µg/L)	2.2	<.05 1.2 .40	1.3 1.5	.12 1.5 .10 .15	1.4	.17 .22 .82 <.05
Cyana- zine (µg/L)	34	<.20 7.8 <.20	8.0 8.7 <.20	<.20 31 <.20 <.20 3.0	<.20	<.20<.20<.20<.20<.20
Atrazine 2 (µg/L)	atinued 37 1.0	.21 13 1.3	15 16 .96	.69 30 .36 .36	6.5 <u>uri</u>	.78 1.0 7.8 .20
Ala- chlor (µg/L)	<u>Iowa</u> Continued 12 37 .20 1.0	<.05 2.9 <.05	2.2 2.4 <.05	<.05 8.9 .14 .10	1.5 6 Missouri	< .05< .05< .05< .05
Sample type ¹	R R R	* * *	7	RRRRX	æ	因民民由民
Date of collection (month/day/year)	06/05/89	03/20/89 05/30/89 10/02/89	05/30/89 05/30/89 10/03/89	03/22/89 05/26/89 11/13/89 03/08/90 05/24/90	06/21/90	03/15/89 03/15/89 06/23/89 10/03/89
Site name	Nishnabotna River above Hamburg	Chariton River near Chariton	S. Fork Chariton River near Promise City	Skunk River at Augusta		Nodaway River near Graham
Map no. (figs. 2-5)	89	69	70	71		72

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Site name	Date of collection (month/day/year)	Sample type1	Ala- chlor (μg/L)	Atra- zine ² (μg/L)	Cyana- zine (μg/L)	DEA (µg/L)	DIA (μg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (μg/L)	Pro- pazine (μg/L)	Sima- zine (µg/L)
Nodaway River near Graham Continued	04/10/90 05/22/90	R R R	<0.05 -12	MissouriContinued (ed <0.20 1.5	.10	<0.05 .14	<0.05 .50	<0.05 <.05	<0.05 <.05	<0.05 <.05	<0.05 <.05
South Fabius River near Taylor	08/30/89 10/05/89	××	<.05 <.05	.82 .57	<.20 <.20	<.05 .18	<.05 <.05	.09	<.05 <.05	<.05 <.05	<.05 <.05	<.05
Grand River near Sumner	10/04/89	R	<.05	.35	<.20	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Middle Fork Salr River at Paris	04/03/89 05/30/89 05/30/89 10/06/89	RLRLR	<.05<.93<.05<.05	.53 3.1 3.0 .42 .65	<.201.61.4<.20<.20	.08 .30 .28 .11	<05<39<05<05	.17 .62 .60 .08 <.05	< 05< 05< 05< 05< 05	< 05< 05< 05< 05< 05< 05	0505050706	, , , , , , , , , , , , , , , , , , ,
Blackwater River at Blue Lick	05/20/89 10/04/89	R R	2.0	11 .50	<.20 <.20	.30	<.05 <.05	2.4	.54	<.05 <.05	<:05 <:05	<.05 <.05
Missouri River at Hermann	03/12/89 06/07/89 10/11/89	* * *	<.05 .47 <.05	.18 1.5 .26	<.20 .94 <.20	<.05 .08 <.05	<.05<.05<.05	<.05 1.3 .12	<.05 .20 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05
Mississippi River at Grafton	03/10/89 06/05/89 11/13/89	* * *	.22 .97 .18	.24 2.0 .21	<.20 1.4 <.20	.07 .13	<.05 .09 <.05	<.05 .87 <.05	<.05 .16 <.05	.05<.05<.05	<.05 <.05 <.05	<.05 <.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no.		Date of collection		Ala-	Atra-	Cyana-			Meto-	Metri-	Pro-	Pro-	Sima-
(figs. 2-5)	Site name	(month/ day/year)	Sample type 1	chlor (μg/L)	zine ² (μg/L)	zine (μg/L)	DEA (μg/L)	DIA (µg/L)	lachlor (µg/L)	buzin (μg/L)	meton (µg/L)	pazine (μg/L)	zine (µg/L)
				Wisconsin	nsin								
79	Prairie River near Merrill	05/05/89 10/23/89	22 22	<0.05	<0.05	<0.20	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <.05
80	Trempealeau River at Dodge	05/30/89 10/17/89	ස ස	4.5	26 .15	21 <.20	.84	.69	9.5	<.05 <.05	<.05 <.05	.37	.40
81	Black River near Galesville	05/30/89 10/18/89	요 요	2.0 < .05	3.2 < .05	.94	.11	<.05 <.05	.57	<.05 <.05	<.05 <.05	<.05 <.05	.05
83	Wisconsin River at Muscada	06/02/89 10/05/89 10/05/89 03/20/90 06/22/90	****	.38 <.05 <.05 .06 .20	.65 .22 .21 .31	, 20 , 20 , 20 , 20 , 20 , 20	.06 .08 <.05 .15	< .05< .05< .05< .05< .15	.15 <.05 <.05 <.05	< .05< .05< .05< .05< .05	< .05< .05< .05< .05< .05< .05	<.05<.05<.05<.05<.05	0.050.050.050.05
83	Grant River near Burton	03/23/89 03/23/89 05/31/89 05/31/89 11/02/89	BRLRB	<.05 <.05 <.05 .17 .15 <.05	.32 .32 1.4 1.7	<.20 <.20 .68 .61 <.20	.12 .11 .16 .20	<.05<.05<.07<td>< .05< .05.53< .56</td><td>< .05< .05< .05< .05< .05</td><td>< .05< .05< .05< .05< .05</td><td>< .05< .05< .05< .05< .05</td><td><.05<.05<.05<.05<.05</td>	< .05< .05.53< .56	< .05< .05< .05< .05< .05	< .05< .05< .05< .05< .05	< .05< .05< .05< .05< .05	<.05<.05<.05<.05<.05
		11/02/89	R	90.	.15	<.20	.13	<.05	<.05	<.05	<.05	<.05	<.05
84	Pecatonic River at Martintown	07/19/89 10/31/89	88	<.05 <.05	.11	<.20 <.20	.14	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
85	Rock River at Afton	04/12/89 04/12/89	n R	<.05 <.05	.29 .34	<.20 <.20	.10	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (μg/L)	Sima- zine (µg/L)
			Wisc	<u>Wisconsin</u> Continued	Continue	þ							
8	Rock River at AftonContinued	07/19/89 07/19/89 10/31/89 04/12/90	L K K K	<0.05<.05<.05<.05	0.59 .51 .15	<0.20 <.20 <.20 <.20	0.27 .19 .10	<0.05 <.05 <.05 .06	0.09 <.05 <.05	<0.05 <.05 <.05 <.05	<0.05 <.05 <.05 <.05	<0.05 <.05 <.05 <.05	<0.05<.05<.05<.05
86	Fox River at Wakesha	07/06/90	% %	.08	.12	<.29	.25	<.05	.05	<.05 <.05	<.05	<.05	<.05
87	Root River at Racine	03/22/89 07/10/89 07/10/89 11/03/89 03/27/90	第二段段段	<05.10.09<05.07	.08 .82 .88 .11	<.20<.32<.20<.20<.20	<.05.15.16.09.11	< .05< .05< .05< .05	.16 .66 .69 .06	<.05<.05<.05<.05<.05	.05.34.38.05.05	< .05< .05< .05< .05	< .05< .05< .05< .09
		04/13/90	M M	.06 Illinois	.44 <u>sic</u>	.40	.17	.21	.43	<.05	.07	<.05	<.05
88	Des Plains River at Russell	05/25/89 11/01/89	22 22	.18	.23	<.20 <.20	.10	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
88	Nippersink Creek at Spring Cove	04/05/89 05/25/89 05/25/89 11/01/89	民口民民	<.05 .52 .32 <.05	.37 1.7 .90	2020202020	.16 .19 .12	.11 <.05 .10	<.05.46.16<.05	< .05< .05< .05< .05	< .05< .05< .05	< .05< .05< .05< .05	<.05 .51 .33 <.05
06	S. Br. Kishwaukee River at Fairdale	05/25/89 10/24/89	щH	44 <.05	11 .23	14 <.20	.75 .09	<.05 <.05	.62 .14	<.05 <.05	<.05 .11	<.05 <.05	<.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90.-Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			III	<u> </u>	ntinuec								
06	S. Br. Kishwaukee River at FairdaleContinued	10/24/89 04/12/90 05/14/90	24 24 24	<0.05 .07 1.6	0.24 .25 2.1	<0.20 <.20 <.20	<0.05 .29 .70	<0.05 .10 <.05	0.16 .08 1.0	<0.05 <.05 <.05	0.11 <.05 <.05	<0.05 <.05 <.05	<0.05 <.05 .06
91	Kishwaukee River near Perryville	03/22/89 05/25/89 10/24/89	52 22 23	<.05 .57 <.05	.12 4.9 .15	<.20 <.20 <.20	.09 .16	<.05 .08 <.05	.05 2.9 .31	<.05 <.05 <.05	<.05 .05 <.05	<.05 <.05 <.05	<.05 <.05 <.05
92	Elkhorn Creek near Penrose	05/25/89 $10/24/89$	24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 2	1.2 < .05	1.9 .15	1.7	.54 .19	<.05 <.05	.76 .08	<.05 <.05	<.05 <.05	<.05 <.05	<.05 <.05
93	Illinois River near Marseilles	05/25/89 $10/31/89$	22 22	.91	2.5 .15	1.1	.12	<.05 <.05	89. 00.	<.05 <.05	<.05 .18	<.05 <.05	.15 <.05
94	Fox River near Dayton	03/21/89 05/25/89 10/31/89	888	<.05 .23 <.05	.20 .80 .26	<.20 1.5 <.20	.08 .12 .17	<.05 .09 <.05	<.05 1.9 <.05	<.05 .11 <.05	<.05 .07 <.05	<.05 <.05 <.05	<.05 .17 .11
95	Dupage River near Shorwood	04/06/89 05/25/89 05/25/89 11/02/89	*****	<.05.71.30<.05<.05	.05.91.77.05.05	<.201.7<.20<.20	<0512.07<05<05	<.05 .13 <.05 <.05	< .05.57.28< .05< .05	.05.21.05.05.05	0.050.050.050.05	< 05< 05< 05< 05< 05< 05	.06 .26 .13 <.05
		04/04/90 06/22/90 06/22/90	路디路	<.05 <.05 <.05	.07 .30 .37	<.20 <.20 <.20	.07 .10 .12	.06 .12 .08	<.05 .12 .15	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 .14 .17

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (μg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			III	<u>Illinois</u> Continued	ntinued								
96	Iroquois River near Chebanse	04/03/89 05/19/89 05/25/89 05/25/89 11/03/89	RX1KK	0.13 .43 .34 1.0	0.47 1.2 1.1 2.8 .16	0.52 .62 .62 2.4 <:20	<0.05 <.05 .06 .13	<0.05<.05<.05<.09<.05	0.34 .43 .42 .77	<0.05 <.05 <.05 .16 <.05	<0.05<.05<.05<.05<.05<.05	<0.05<0.05<0.05<0.05	<0.05<0.05<0.05<0.05
		04/04/90 05/17/90	8 8	.07	.19	<.20 8.2	.12	.41	.14	<.05 <.05	<.05 <.05	<.05	<.05
26	Edwards River near New Boston	03/22/89 10/23/89	K K	<.05 <.05	.15	<.20 <.20	<.05 <.05	<.05 <.05	<.05 <.05	.16	<.05 <.05	<.05	<.05
86	Spoon River at London Mills	04/21/89 06/02/89 06/02/89 10/17/89 04/10/90	*1***	<.05 < 47 47 < .05 < .05 .06	.23 109 108 .24 .18	<.20 11 11 <:20 <:20	<.054.24.4.12.15	< .052.52.2< .05< .05	.16 40 40 .24 .19	<.051.41.5<.05<.05	.05.05.05.05	<.051.41.4<.05<.05	<.05 1.7 1.9 <.05 <.05
		05/14/90	æ	1.6	2.0	<.20	.45	.27	4.3	<.05	<.05	<.05	.08
66	La Moine River at Colmar	06/03/89 10/17/89	8 8	.87	11 .29	11 <.20	.09 .09	.45	1.0	<.05 <.05	<.05 <.05	.08	.15
100	Sangamon River at Oaksford	05/23/89 10/19/89	88	.74	2.7	.28	.20	<.05 <.05	1.3	<.05 <.05	<.05 <.05	<.05 <.05	.12
101	Lake Fork near Cornland	05/22/89 10/16/89 10/16/89	RIR	.18 <.05 <.05	.64 <.05 <.05	<.20 <.20 <.20	<.05 <.05 <.05	<.05 <.05 <.05	.26 <.05 <.05	.15 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (μg/L)
			Illir	Illinois Continued	ontinue	q	<u> </u>						
107	Embarras River at Ste. Marie	05/22/89 05/22/89 10/18/89	n m n	4.4 4.9 <.05	11 8.6 .33	<0.20 <.20 <.20	0.21 .22 <.05	<0.05 <.05 <.05	4.1 3.9 .08	<0.05 <.05 <.05	<0.05 <.05 <.05	<0.05 <.05 <.05	<0.05 <.05 <.05
108	Shoal Creek near Breese	03/20/89 05/23/89 10/11/89 03/28/90 05/04/90	****	.11 5.5 <.05 <.05	.61 15 2.1 1.0	<.204.4<.20<.20<.40	.10 .79 .42 .27	<.05 .58 <.05 .12	.14 6.0 .21 .09 1.3	<.05<.05<.05<.05<.05	<.05<.05<.05<.05<.05	<.05<.05<.05<.05	<.05 .41 <.05 <.05 <.05
109	Silver Creek near Freeburg	05/23/89 10/11/89	24 24	4.8 <.05	19 .52	6.4	1.5	.72 <.05	8.2 .29	1.4 <.05	<.05 <.05	.23	.92
110	Bonpas Creek at Browns	05/22/89 11/27/89 04/17/90 07/10/90	***	16 <.05 .09 1.1	52 .41 1.8 9.2	4.5 <.20 <.20 1.3	3.8 .22 .20 2.8	2.1 <.05 .12 1.6	14 .09 .68 2.7	.81 <.05 <.05 .13	<.05<.05<.05	.75 <.05 <.05	7.0 <.05 .13
				Indiana	<u>na</u>								
1111	Wabash River near New Harmony	06/22/89 10/31/89	24 24	1.1	6.7	.39	.46 .32	<.05 <.05	3.0	<.05 <.05	<.05 <.05	<.05 <.05	.44
				Illinois	<u>sic</u>								
112	Little Wabash River at Carmi	05/22/89 11/27/89 04/17/90 07/10/90	民民民民	15 .21 .41 3.9	34 .69 3.8 9.0	3.1 <.20 .50 2.4	2.5 .19 .40 3.2	1.7 <.05 .34 2.0	8.1 .21 1.1 3.0	1.4 <.05 <.05	< .05< .05< .05< .05	.46 <.05 <.05 .16	4.9 <.05 1.4 .17

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

o- Sima- ne zine L) (µg/L)		0.46 0.46 0.05)5 <.05)5 .06)5 <.05)5 <.05)5 .21)5 <.05)5 <.05)5 .05)5 <.05)5 .43)5 <.05)7 .16)5 <.05	05 < .05 05 .34 06 .37 05 < .05 05 < .05
Pro- n pazine L) (µg/L)		5 <0.05	5 < .05 5 < .05 5 < .05	5 <.05 5 <.05 5 <.05		5 <.05 5 <.05 5 <.05	5 <.05 5 <.05	5 .07 5 <.05	55 < 05 6 .05 5 .06 5 < 05 5 < 05
Pro- meton (µg/L)		<0.05 <.05	<.05 <.05 <.05	<.05 <.05 <.05		<.05 <.05 <.05	<.05 <.05	<.05 <.05	.05 .05 .05 .05 .05
Metri- buzin (μg/L)		<0.05 <.05		<.05 .18 <.05		<.05 <.05 <.05	.14	.30	<.05<!--</td-->
Meto- lachlor (µg/L)		0.29	<.05 .80 .15	<.05 1.1 <.05		<.05 1.4 <.05	.16	1.8 <.05	<.054.75.3<.05.15
DIA (µg/L)		0.13	<.05 .05 <.05	<.05 .16 <.05		<.05<.05<.05	<.05 <.05	.14	.05.09.05.05
DEA (µg/L)		0.25	.08 .15	.05 .29 <.05		<.05 .17 <.05	.13	.39	.06 .16 .17 .05
Cyana- zine (μg/L)	75	2.1	<.20 .45 <.20	<.20 .47 <.20		<.20 <.20 <.20	<.20 <.20	4.5	2.202.52.52.0
$\begin{array}{l} Atra-\\ zine^2\\ (\mu g/L) \end{array}$	ontinue	5.1 .57	.27 1.8 .37	<.05 3.1 <.05	<u>nna</u>	.05 2.8 <.05	1.2	5.9	.26 7.4 8.0 .12 .19
Ala- chlor (μg/L)	<u>Illinois</u> Continued	1.4 <.05	.44 .65	<.05 .57 <.05	Indiana	<.05 1.0 <.05	.42	2.1	.08 1.3 1.7 <.05
Sample type ¹		22 22	**	22 22 23		***	22 22	22 22	****
Date of collection (month/day/year)		05/24/89 10/16/89	03/15/89 06/10/89 11/08/89	03/16/89 06/11/89 10/11/09		03/22/89 05/31/89 10/16/89	05/31/89 10/16/89	05/31/89 10/16/89	03/22/89 05/22/89 05/22/89 10/16/89 03/26/90
Site name		Big Muddy River near Murphysboro	Mississippi River at Thebes	Ohio River near Grand Chain		Kankakee River at Shelby	Tippecanoe River near Ora	Iroquois River near Foresman	Eel River near Logansport
Map no. (figs. 2-5)		113	114	115		116	117	118	119

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (μg/L)
			Ind	<u>iana</u> Cc	<u>Indiana</u> Continued								
119	Eel River near Logansport Continued	05/14/90	ಜ	4.3	9.6	10	0.91	0.46	3.3	<0.05	<0.05	0.12	0.13
120	Wabash River at Linn Grove	05/26/89 10/17/89	88	7.7 <.05	8.6	1.4	.08	.23	2.8	.74	.08	.09	1.4 < .05
121	Wildcat Creek near Lafayette	03/23/89 05/27/89 05/27/89 10/16/89 03/26/90	****	.07 11 10 <.05 <.05	.22 29 27 .26 .26	<.20 6.9 6.1 <.20 <.20	.05 1.5 1.4 .12	<.05.86.78<.05.06	.35 17 16 .14	<.051.51.3<.05	<.05.19<.05<.05	<.05.14<.25<.05<.05	<.05.74<.05<.05
٠		05/14/90	R	5.4	14	3.6	1.2	.53	8.6	.53	<.05	.20	.93
122	Wildcat Creek near Jerome	05/22/89 10/17/89 03/26/90 05/14/90 05/14/90	****	.53 <.05 <.05 7.9 7.9	1.5 .35 .27 9.8	<.20<.20<.20<.20<.30	.13 .14 .21 .98	<.05<.05<.09<.43<.45	1.3 .32 .16 8.1 8.4	<.05<.05<.05<td>0.050.050.050.05</td><td><.05<.05<.05<.14<.14</td><td>.05.05.05.05.05</td>	0.050.050.050.05	<.05<.05<.05<.14<.14	.05.05.05.05.05
123	Wabash River at Covington	03/24/89 05/22/89 10/16/89 10/16/89	8878	<.05 3.1 <.05 .13	.18 8.8 .79	<.20 <.20 <.20	< 05< 55< 26< 20	<.05<.23<.05<.05	.14 4.9 .33	<.05<.34<.05<.05	<.05<!--</td--><td><.05 .07 <.05 <.05</td><td><.05 .39 <.05 <.05</td>	<.05 .07 <.05 <.05	<.05 .39 <.05 <.05
124	White River near Nora	03/27/89 03/27/89 05/26/89	B 73 B	<.05 <.05 3.3	.22 .18 9.8	<.20 <.20 4.2	.08 .07	<.05 <.05 .35	.05 <.05 4.6	<.05 <.05 .19	<.05 <.05 <.05	<.05 <.05 .06	<.05 <.05 .55

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (μg/L)	DIA (μg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (μg/L)
			Ind	<u>Indiana</u> Continued	ontinue								
124	White River near NoraContinued	05/26/89 11/01/89 11/01/89	REE	3.1 <.05 .07	9.8 .28 .29	4.0 <.20 <.20	0.57 .17 .19	0.33 <.05 <.05	4.5 .14 .14	0.19 <.05 <.05	<0.05 <.05 <.05	0.08 <.05 <.05	0.51 <.05 <.05
		03/26/90	a 64	90.	.32	<.20 <.20	20	.10	.14	<.05 <.05	<.05	<.05 <.05	<.05 <.05
		05/14/90 05/14/90	m m	10 9.8	19 17	$\frac{5.2}{13}$	1.6	1.0	6.0 5.6	1.3	.09	.29 .27	.70
125	Big Blue River at Carthage	05/23/89 05/23/89 10/17/89	n z z	13 13 <.05	13 13 .12	3.9 4.5 <.20	.67 .78 <.05	<.05 <.05 <.05	.18 .20 <.05	.28 .30 <.05	.15 .17 <.05	.13 .13 <.05	.87 .92 <.05
126	Whitewater River near Alpine	05/23/89 10/17/89 03/27/90 03/27/90 05/15/90	路路卫路路	9.9 <.05 <.05 <.05	20 .25 .13 .14 8.2	14 <.20 <.20 <.20 <.20	1.0 .16 .12 .13	.53 <.05 <.05 <.05 .57	5.7 .14 <.05 <.05	.38 <.05 <.05 <.05	.09 <.05 <.05 <.05	.23 <.05 <.05 <.05	.83 <.05 <.05 <.05
		05/15/90	ы	2.2	5.9	2.6	.84	.38	2.1	.18	<.05	<.05	.48
127	Big Walnut Creek near Reelsville	03/24/89 05/23/89 10/31/89	民民民	<.05 .73 <.05	.25 6.6 .41	<.20 <.20 <.20	.11 .34 .22	<.05 .13 <.05	<.05 1.8 <.05	<.05 <.05 <.05	<.05 <.05 <.05	<.05 .06 <.05	<.05 1.2 <.05
128	White River near Centerton	05/23/89 10/30/89	R R	1.7	8.7 .36	<.20	0.23	<.05 <.05	1.6	<.05	<.05 <.05	.10	1.7

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Pro- Pro- Sima- meton pazine zine (μg/L) (μg/L) (μg/L)	0.05 0.37 0.23	.17	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	.09 .23 1.5 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.	<.05<.05<.05<.05<.05<.05<.05	.05.06.36.05.05.05.05.05
Metri- buzin (µg/L)	60.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0		<.05<.05<		.05.14.05	.05.05.05
Meto- l lachlor l) (μg/L)	5 2.2 2 2.1 5 < 0.05 4.2		5 .43 5 .05	9 6.8 5 <.05 5 .05 9 3.1	5 <.05 4 1.0 5 .11	9 4.0 5 .07 5 <.05
DEA DIA (μg/L)	0.89 0.86 .91 .32 <.05 <.05 .11 <.05		.24 <.05 .13 <.05	1.1 .59 .12 <.05 .15 <.05 1.2 .69	<.05 <.05 .37 .24 .17 <.05	.42 .19 .38 <.05 .15 <.05
Cyana- zine DE (µg/L) (µg	9.7 0.3 7.7 6.20 <.20 <.20 7.5		<.20 <.20	9.4 1. <.20 . <.20 4.7 1.	<.20 <. 2.8 . <.20 .	2.8 <.20 <.20
Atra- C zine ² (µg/L) (ontinued 14 15 <.05 .14	14 15 .17	3.5 .22	20 .28 .22 11	.06 2.7 .37	5.1 .30 .16
Ala- e chlor (µg/L)	IndianaContinued 4.4 14 4.3 15 <.05 <.05 <.05 0.14	8.1 8.5 <.05	.17	4.0 <.05 <.05 2.2	<.05 .23 <.05	.14 .23 <.05
n Sample	12 24 24 24 24	RRL	8 H H	*****	8 B B B	9 9 9 B R R R
Date of collection (month/day/year)	05/25/89 05/25/89 10/30/89 03/27/90 05/15/90	05/25/89 05/25/89 10/30/89	06/22/89 10/31/89	05/25/89 10/30/89 03/27/90 05/15/90	03/28/89 05/25/89 10/30/89	05/25/89 10/30/89 03/27/90
Site name	Sugar Creek near Edinburgh	Flatrock River at Columbus	Busseron Creek near Carlisle	E. Fork White River near Bedford	Muscatatuck River near Deputy	Blue River at Fredricksburg
Map no. (figs. 2-5)	129	130	131	132	133	134

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map		Date of]		į							
no. (figs. 2-5)	Site name	collection (month/ dav/vear)	$\frac{\mathrm{Sample}}{\mathrm{tvoe}^1}$	Ala- chlor (ug/L)	Atra- zine ² (ug/L)	Cyana- zine	DEA (ug/L)	DIA (ug/L)	Meto- lachlor (ug/L)	Metri- buzin (ug/L)	Pro- meton (ug/L)	Pro- pazine (ug/L)	Sima- zine
		1		- 1		ì	Ì						
135	Tiffin River at Stryker	03/14/89 06/02/89 10/25/89 03/21/90 05/14/90	RRRR 1	<0.05 11 .30 .08	0.38 28 .66 .45	<0.20 8.7 <.20 <.20	0.16 2.5 .20 .28 3.7	<0.05 1.9 <.05 .14 3.4	<0.05 11 .54 .08	<0.054.7<0.05<0.054.5	<0.05<.05<.05<.05<.05	<0.05 .27 <.05 <.05	<0.05 .60 <.05 .07
		05/14/90	R	10	.14	22	1.4	.85	7.0	1.5	<.05	.14	.12
136	Maumee River at Waterville	05/27/89 10/25/89	24 24	4.5	7.0	9.0	.30	.12	2.0	1.2 <.05	<.05 .23	.05	.39
137	Sandusky River near Fremont	05/24/89 10/25/89	24 24	.96 .50	5.9	.38	.37	<.05 <.05	3.0	.21	<.05 <.05	<.05	.21
138	Auglaize River near Fort Jennings	05/27/89 05/27/89 10/25/89 03/21/90 05/14/90	니 R R R R R	3.4 4.2 <.05 .07	12 15 .53 .30	4.6 3.4 <.20 <.20	.87 -74 -05 .22 1.6	.54 .66 .05 .12	7.0 7.8 1.5 1.1	1.2 <.05 <.05 <.05	.12 <.05 .17 <.05 <.05	.14 .20 .20 .25 .22	2.6 3.4 <.05 .12
139	Olentangy River at Claridon	03/15/89 06/14/89 10/24/89 10/24/89 03/21/90	88787	.19 .75 .12 <.05	.49 2.9 .48 .43	2035202020	.12 .33 .18 .15	<.05<.05<.05<.05<.05	.13 1.4 .24 .21 .06	<.05<.05<.05<.05	<.05<.05<.15<.07	.05.05.05.05	.08 .10 <.05 .30
		03/21/90 05/14/90	요 요	<.05 15	.24 32	<.20 12	.14	<.05 <.05	.10	<.05 <.05	.05	<.05	<.05 .85

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/ day/year)	Sample type ¹	Ala- chlor (µg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (µg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (µg/L)
			Ö	OhioContinued	tinued								÷
140	Scioto River near Prospect	06/14/89 10/19/89 03/23/90 05/15/90	* * * *	0.49 <.05 .10 7.9	1.9 .21 .26 .26	<0.20 <.20 <.20 19	0.14 <.05 .14 2.1	<0.05 <.05 .13 1.1	0.95 .23 .23 14	<0.05 <.05 <.05 1.9	<0.05 <.05 <.05 <.05	0.10 <.05 <.05	0.28 <.05 .07 2.1
141	Kokosing River at Mount Vernon	06/14/89 10/12/89	% %	.63	4.7	1.0	.37	.16	2.2 .34	.23	<.05 <.05	<.05 <.05	.92
142	Mad River at Eagle City	06/14/89 10/12/89 03/22/90 05/14/90	***	2.1 <.05 <.05 2.9	10 <.05 .05	2.4 <.20 <.20 5.2	.97 <.05 .06	.46 <.05 <.05	4.0 .09 <.05 4.1	.90 <.05 <.05	<.05<.05<.05<.05	.12 <.05 <.05	.17 <.05 <.05
143	Little Miami River near Oldtown	06/14/89 10/12/89 03/22/90 05/14/90	***	17 <.05 <.05 20	26 <.05 .20 26	9.3 <.20 <.20	1.0 <.05 .19 2.4	<.05 <.05 <.05 1.5	1.7 <.05 .13 9.8	1.1 <.05 <.05 2.3	.05.05.05.05	<.05 <.05 <.05 <.05	.12 <.05 <.05 1.3
144	Big Darby Creek at Darbyville	06/14/89 10/26/89 10/26/89 03/22/90 05/15/90	R	.14 <.05 <.05 .05	1.4 .20 .20 .20 .18	1.0 <.20 <.20 <.20	.14 <.05 <.05 .15	<.05<.05<.05<.10<.98	.51 .10 .10 .05	<.05<.05<.05<.05<.05	< .05< .05< .05< .05< .05	<.05<.05<.05<.05<.23	.33 <.05 <.05 <.05
145	Clear Creek near Rockbridge	03/14/89 03/14/89 06/14/89 06/14/89	RBRB	<.05	.12 .13 14 19	< 20< 208.38.3	.07 .08 1.6 1.5	<.05 <.05 1.5 1.5	<.05<.058.58.8	<.05 <.05 .91 .96	<.05<.05<.05<.05	<.05 <.05 .15 .08	.05 <.05 2.4 3.8

Table 7. Results of analyses of water-quality samples for selected herbicides and two atrazine metabolites in Midwest streams, 1989-90--Continued

Map no. (figs. 2-5)	Site name	Date of collection (month/day/year)	Sample type ¹	Ala- chlor (μg/L)	Atra- zine ² (µg/L)	Cyana- zine (µg/L)	DEA (µg/L)	DIA (µg/L)	Meto- lachlor (μg/L)	Metri- buzin (μg/L)	Pro- meton (µg/L)	Pro- pazine (µg/L)	Sima- zine (μg/L)
			0	OhioContinued	tinued								
145 Clear Cre	Clear Creek near Rockbridge	00/01/01	۵	i.	7	o o	į	ì	ć	i C	i.	i,	ų Č
Continued	ıued	10/16/89	я гі	<0.05 <.05	0.17 .24	<0.20 <.20	<0.05 <.05	<0.05 <.05	0.09 .19	<0.05 <.05	<0.05 <.05	<0.05 <.05	<0.05 <.05
		10/16/89	24	<.05	<.05	<.20	<.05	<.05	60	<.05	<.05	<.05	<.05
		03/21/90	В	<.05	60.	<.20	80.	<.05	<.05	<.05	<.05	<.05	.05
		03/22/90	ద	<.05	.11	<.20	.10	<.05	.05	<.05	<.05	<.05	.07
		05/14/90	В	.26	4.7	4.7	.47	.31	1.6	<.05	<.05	90.	.73
		05/15/90	×	.23	4.8	4.4	.46	.28	1.7	<.05	<.05	.05	.74
		05/15/90	×	.29	4.8	4.8	.48	.32	1.7	<.05	<.05	90:	.72
		05/26/90	IJ	1.8	13	3.7	2.5	2.1	7.2	.98	<.05	.22	2.5
		05/26/90	R	1.7	9.0	5.2	1.5	1.5	4.2	.12	<.05	.12	2.2
146 Scioto Riv	Scioto River at Higby	06/19/89	83	.73	4.1	<.20	.18	<.05	1.6	.05	.05	.05	<.05
		10/03/89	24	<.05	.95	<.20	.19	<.05	.40	<.05	<.05	<.05	<.05
		03/26/90	u	<.05	.49	<.20	.14	.10	.64	<.05	<.05	<.05	2.1
		03/26/90	~	<.05	.24	<.20	80.	.07	.31	<.05	<.05	<.05	<.05
		05/15/90	æ	5.6	13	12	86.	.63	5.1	.34	.07	.17	1.0
147 Little Mis	Little Miami River at Milford	03/23/89	R	<.05	.48	<.20	.25	<.05	.21	<.05	<.05	<.05	.12
		06/14/89	ĸ	.37	2.3	1.8	.22	.13	.56	<.05	<.05	<.05	.33
		10/17/89	R	<.05	.30	<.20	<.05	<.05	.12	<.05	<.05	<.05	<.05
1Sample type: B. blind sample:	blind sample:					!							

^{*}Sample type: B, blind sample;

L, duplicate sample; R, regular sample; and X, extra sample.

²Analyses by gas chromatography/mass spectrometry at U.S. Geological Survey in Lawrence, Kansas.