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FIVE COMPUTER PROGRAMS FOR TESTING WEIGHTED RESIDUALS AND 

CALCULATING LINEAR CONFIDENCE AND PREDICTION INTERVALS ON RESULTS 

FROM THE GROUND-WATER PARAMETER-ESTIMATION COMPUTER PROGRAM MODFLOWP

Mary C. Hill

ABSTRACT

This report documents five computer programs, YR, NORM, BCINT, YCINT, 

and BEALEP, that use results from the ground-water flow and parameter- 

estimation computer program MODFLOWP. MODFLOWP uses nonlinear regression 

to estimate parameter values. Programs YR and NORM produce data sets for 

two commonly used graphs of weighted residuals that are important in 

analyzing regression results. Programs BCINT and YCINT calculate linear 

confidence intervals on parameter estimates, and linear confidence and 

prediction intervals on simulated hydraulic heads and simulated flows 

along head-dependent boundaries. These intervals are essential for 

displaying the reliability of simulated results, and can be used to make 

sensitivity analyses much more accurate than is allowed by traditional 

methods. Program BEALEP computes a measure of model linearity, which is 

needed to determine the accuracy of the linear intervals calculated with 

programs BCINT and YCINT. This report includes a discussion of the 

purposes of all the programs and how results can be used, brief 

descriptions of the theory behind each program, illustrative examples of 

how the programs may be used, descriptions of program input and output, 

and listings of the FORTRAN source codes.



INTRODUCTION

In the U.S. Geological Survey computer program MODFLOWP, the values 

of parameters of ground-water flow systems can be estimated by nonlinear 

regression using observations of hydraulic heads and flows along head- 

dependent boundaries, and prior information on parameter values (Hill, 

1992). Nonlinear regression can be used to effectively estimate parameter 

values of ground-water flow systems, but each regression must be evaluated 

to determine whether the regression is valid. MODFLOWP prints some 

statistics needed in this evaluation, but does not support two commonly 

used graphical methods of evaluating weighted residuals.

Use of nonlinear regression also allows for the calculation of very 

useful measures of the uncertainty with which the parameter values are 

estimated, and the uncertainty in the simulated hydraulic heads and flows 

along head-dependent boundaries that results from the uncertainty in the 

estimated parameter values. The measures are called linear confidence and 

prediction intervals, and they are discussed below. Although MODFLOWP 

prints some information regarding the uncertainty of estimated parameter 

values, no information regarding the uncertainty of simulated hydraulic 

heads and flows along head-dependent boundaries is printed. MODFLOWP does 

not calculate linear confidence and prediction intervals.

Purpose and Scope

This report presents and describes five computer programs, YR, NORM, 

BCINT, YCINT, and BEALEP, that use results from MODFLOWP to (1) produce 

data sets that can be used to create two graphs commonly used to test 

weighted residuals, (2) calculate linear confidence and prediction 

intervals, and (3) test the validity of one of the assumptions of the 

method used to calculate the linear confidence and prediction intervals. 

The results of the programs need to be used together--for example, the 

validity of the calculated confidence intervals depends on the conclusions 

drawn from the graphical analyses of weighted residuals. Because of this 

interdependence, the purposes of all the programs and how results can be 

used are discussed in the following sections of the introduction. The 

remainder of this report includes additional discussion about the theory 

behind each program, how the calculations are performed, illustrative
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examples of how the programs may be used, and descriptions of program 

input and output. Listings of FORTRAN source codes for all of the 

programs are included at the end of the report.

Testing Weighted Residuals

Evaluation of the regression requires an investigation of the 

differences between the observed and simulated hydraulic heads and flows 

and between the prior information and estimated parameter values (Draper 

and Smith, 1981; Cooley and Naff, 1990; Hill, 1992, p. 61-65). These 

differences are called residuals. If weighted regression is used (Hill, 

1992, p. 38-50), weighted residuals need to be used in the evaluation, and 

they are calculated as (Hill, 1992, p. 39):

i/ * 
weighted residual = w.(y.-y.) (D

^ where w. = the square root of the weight of the ith observation or prior

estimate (Hill, 1992, p. 5);

y. = the ith observation of hydraulic head or flow along a head- 

dependent boundary, or a prior estimate of a parameter value.
*.
y. = a simulated equivalent of the ith observation, or a regression

estimate of a parameter value.

The purpose of programs YR and NORM is to produce data sets for two types 

of graphs commonly used to evaluate weighted residuals. The two graphs 

are described below and also are described by Draper and Smith (1981, p. 

147-148) and Cooley and Naff (1990, p. 168-170).

The first graph is of the weighted residuals (eq. 1) against the
X * 

weighted simulated values (calculated as w. y.). Examples of this graph

for five simulations are shown in figure 1; the simulations differ in how 

various features of a ground-water system are represented. For a 

regression to be valid, the weighted residuals need to be randomly 

distributed above and below a weighted residual value of zero for all 

weighted simulated values (Draper and Smith, 1981, p. 147-148). Problems 

are indicated if, for example, weighted residuals are grouped above or 

below zero for a distinct range of weighted simulated values or the spread 

of the weighted residuals about zero increases or decreases systematically 

with increasing or decreasing values of the weighted simulated values.
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Figure 1.--Example graphs of weighted residuals and weighted simulated 

values for five simulations named CALO, CAL1, CAL2, CAL3, and NO LAKE 

produced using output from program YR.

Examples showing common nonrandom graphs are presented by Cooley and Naff 

(1990, p. 170-171); nonrandom graphs may indicate the model and 

calibration problems discussed by Hill (1992, p. 66-69). In figure 1, the 

graph for CALO is nonrandom in that for weighted simulated values between 

5 and 10 ft, all six weighted residuals are greater than zero. The other
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graphs are more randomly distributed. The name of program YR is derived
A

from the fact that simulated values often are referred to as y (eq. 1), 

and the word residuals begins with an r.

The second graph is a normal probability graph of the weighted 

residuals. An example of this graph is shown in figure 2. In a normal 

probability graph, the weighted residuals approximately fall on a straight 

line if they are independent and normally distributed. Helsel and Hirsch 

(1992, p. 30-33) show normal probability graphs characterized by several 

common problems. Benjamin and Cornell (1970, p. 449-450) show probability 

graphs with small samples of points generated from a probability 

distribution that is consistent with the graph, so that the values would 

be expected to fall on a straight line. Although the triangular 

probability distribution used in these examples differs from the normal 

probability distribution discussed in this report, the examples illustrate 

variations that might be expected with small samples. The name of program 

NORM is derived from the normal probability distribution.

NORMAL PROBABILITY PLOT
4.0

3.0

2.0

§ 0.0
z 
a
QC

a -i.o

-2.0

-3.0

-4.0

  Hydraulic heads

+ Flows

x Prior information

/*
J

-0.5 0.0 0.5 

WEIGHTED SIMULATED VALUE, IN FEET

Figure 2.--Example normal probability graph of weighted residuals from 

simulation CAL1 produced using output from program NORM.
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Whether the weighted residuals are independent and normally 

distributed is important if confidence and prediction intervals are to be 

calculated. Normality of the weighted residuals indicates that the true 

errors in the observations and prior information (Hill, 1992, p. 33) are 

normally distributed. If the true errors are normally distributed, the 

estimated parameter values and simulated hydraulic heads and flows are 

normally distributed, as generally is assumed to construct confidence and 

prediction intervals on these quantities (Draper and Smith, 1981, p. 22- 

31, 92-94; Helsel and Hirsch, 1992, p. 225).

Independence of the weighted residuals is not necessarily expected 

(Cooley and Naff, 1990, p. 168; Hill, 1992, p. 65), but any correlation 

that exists should be consistent with the correlation expected from the 

regression given that the true errors are independent. As discussed by 

Cooley and Naff (1990, p. 168-170), this can be tested by plotting normal 

deviates generated by using the expected correlation on normal probability 

graphs and by comparing these graphs to the graph of weighted residuals 

produced using NORM. For applications of MODFLOWP, normal deviates with 

the expected correlation can be generated with the computer program RESANP 

(called RESAN.MODP in Hill, 1992, p. 224) .

If the graphs produced using YR show no problem with the model or the 

calibration, and the weighted residuals indicate that the true errors are 

normal and independently distributed, then confidence intervals on 

estimated parameter values and confidence and prediction intervals on 

simulated values may be calculated using a normal probability 

distribution.

Linear Confidence and Prediction Intervals

Programs BCINT and YCINT are designed to calculate linear confidence 

intervals of estimated parameter values and linear confidence or 

prediction intervals of simulated values (such as hydraulic heads and 

flows) using a normal probability distribution. The names of programs 

BCINT and YCINT were derived by noting that parameter values and simulated
A.

values are often represented mathematically using b and y, respectively, 

and abbreviating 'confidence interval' as cint. Use of linear intervals 

is an application of first-order error analysis, and has been discussed by
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many authors, including Graybill (1976), Cooley (1977, 1977a), Dettinger 

and Wilson (1981), Yeh (1986), Donaldson and Schnabel (1987), and Vecchia 

and Cooley (1987) .

Confidence intervals are used to quantify the precision with which 

parameter values or simulated values are determined with the available 

data. When nonlinear regression is used in model calibration, the 

uncertainty with which the parameter values are estimated with the 

available data is quantified as variances on the parameters; the 

interdependence between parameter values is quantified as covariances on 

the parameter values (Hill, 1992, p. 57-59). The variances can be used to 

calculate confidence intervals on estimated parameter values so that the 

modeler can make statements such as: "With the available data, the value 

of the first parameter was estimated accurately enough that the 

probability that it lies between 10 and 30 ft/d is greater than 95 

percent." The variances and covariances can be used to calculate 

confidence intervals on simulated values so that the modeler can make 

statements such as: "With the available data, the parameter values were 

estimated accurately enough that the probability that the true hydraulic 

head at well B at time five lies between 85 and 110 ft is greater than 95 

percent." In this example, 85 and 110 ft are the limits of a 95-percent 

confidence interval which reflects all parameter variances and 

covariances, and, therefore, all parameter uncertainty and 

interdependence.

Prediction intervals reflect all of the uncertainty included in 

confidence intervals. In addition, prediction intervals include the 

uncertainty related to measurement error, and are, therefore, generally 

larger than the associated confidence interval. Prediction intervals need 

to be used to compare a measured value to an interval. For example, in a 

statement such as, "With the available data, the parameter values were 

estimated accurately enough that the probability that the measured 

hydraulic head at well B at time five lies between 84 and 111 ft is 

greater than 95 percent", 84 and 111 ft are the limits of a 95 percent 

prediction interval which reflects all parameter variances and 

covariances, and the error with which the measured hydraulic head is 

measured. The distinction between confidence and prediction intervals 

also is discussed in the section "Theory for YCINT" of this report.
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The assumptions behind the construction of confidence and prediction 

intervals for sensitivity analyses are that: (1) the true errors in the 

available data are distributed as needed for the construction of the 

interval (usually a normal probability distribution is assumed); (2) the 

model correctly represents the relevant features of the ground-water flow 

system, so that the uncertainty in the simulated values is only produced 

by parameter uncertainty; and (3) if linear confidence intervals are 

calculated, the model is assumed to be effectively linear for parameter 

values close to the parameter values produced by the regression.

If a normal probability distribution is used, the first assumption 

can be tested using summary statistics printed by MODFLOWP and the graph 

produced using the computer program NORM, which is presented in this 

report. A normal probability distribution has been found to be valid for 

many ground-water model calibrations performed using nonlinear regression.

The second assumption is clearly untrue in some ways. The second 

assumption can be tested using the graphical methods suggested by Cooley 

and Naff (1990, p. 170-171); the first of these graphs can be produced 

using the computer program YR, which is presented in this report. In 

nonlinear regression, how much of the uncertainty in the simulated values 

is produced by parameter uncertainty and thus reflected in the confidence 

and prediction intervals on simulated values depends on how the parameters 

are defined. If they are defined such that they are influential in the 

calculation of all heads and flows in the ground-water flow system, the 

calculated confidence intervals probably reflect the model uncertainty 

accurately.

The third assumption can be tested using the modified Beale's measure 

(Cooley and Naff, 1990, p. 187-189), which can be calculated using 

computer program BEALEP, which is presented in this report.

Program BCINT produces an output file that can be used with a 

separate plotting routine to produce graphs as shown in figure 3. This 

graph shows estimated parameter values and their associated linear 

confidence intervals for four simulations.
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Figure 3.--Example graph of parameter estimates and their linear,

individual confidence intervals for four simulations named CAL1, CAL2, 

CAL3, and NO LAKE produced using output from program BCINT.
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Program YCINT calculates confidence or prediction intervals on 

simulated hydraulic heads and flows along head-dependent boundaries. 

Confidence and prediction intervals on the changes in these values between 

two simulations also can be calculated. This is needed, for example, to 

calculate a confidence or prediction interval on the drawdown caused by 

pumpage. The confidence or prediction intervals are printed in tabular 

form in the output file and are not ready for plotting.

Using Confidence Intervals for Sensitivity Analyses

Confidence intervals on simulated values can be used to replace the 

traditional procedure used to perform sensitivity analyses. According to 

Anderson and Woessner (1992, p. 246), "The purpose of a sensitivity 

analysis is to quantify the uncertainty in the calibrated model caused by 

uncertainty in the estimated parameter values", and in the procedure 

traditionally followed to fulfill this purpose, "calibrated values for 

hydraulic conductivity, storage parameters, recharge, and boundary 

conditions are systematically changed within the previously established 

plausible range." The results of several traditional sensitivity analyses 

are shown in Anderson and Woessner (1992, p. 247-254) . The major 

weaknesses of the traditional procedure are that:

(1) the 'plausible range' usually is determined subjectively prior to 

model calibration (Anderson and Woessner, 1992, p. 231), so that it 

does not reflect the significant increase in the certainty with which 

some parameters are estimated based on model calibration. In this 

circumstance, the uncertainty in the calibrated model, as determined 

by the sensitivity analysis, would be unrealistically large.

(2) Coordinated changes in two or more parameter values are rarely 

considered, though they are often important in ground-water flow 

problems. A typical example is that if hydraulic conductivity and 

areal recharge are both increased, in many ground-water flow 

simulations the hydraulic heads change very little. Anderson and 

Woessner (1992, p. 248) suggest that in traditional sensitivity 

analyses hydraulic conductivity and areal recharge values be changed 

in opposite directions to display the full range of possible model 

uncertainty. In some cases this is appropriate, however, if model 

calibration has shown that this combination of parameter values

10



produces results that are contrary to the available data, including 

such a simulation as part of the sensitivity analysis will produce an 

exaggerated impression of model uncertainty.

Confidence intervals can be used to fulfill the purpose of 

sensitivity analyses more effectively than the traditional approach. 

Confidence intervals can be used to construct graphs that convey 

information analogous to that conveyed in the graphs presented by Anderson 

and Woessner (1992, p. 247-254), or, for example, confidence intervals 

could be calculated for hydraulic heads at many grid locations and the 

length of the confidence intervals could be contoured to produce a map of 

model uncertainty (for more ideas for using confidence intervals, see 

Hill, 1989, p. 188-189). When predictive simulations are constructed, 

confidence intervals can be included to quantify the likely uncertainty in 

the prediction.

A Problem with using parts of the MODFLOWP Output File 

as Input for YR. NORM, and BCINT

The input files for computer programs YR, NORM, and BCINT are at 

least partially composed of sections of the main MODFLOWP output file -- 

the modeler uses an editor to extract pieces from the output file and puts 

the pieces into the input files. The formats used to read these lines in 

YR, NORM, and BCINT are coordinated with the formats used to print them 

from MODFLOWP. A problem will occur if the first character in each line 

is used as a FORTRAN format character, as occurs on some computers in some 

situations. When this occurs, all lines of the main MODFLOWP output file 

are shifted one column to the left, and can not be read correctly by YR, 

NORM, and BCINT.

This problem can be detected by comparing the relevant sections of 

the main MODFLOWP output file to the data formats presented later in this 

report, or by inspection of one of the output files from YR, NORM, or 

BCINT -- look for missing minus signs in the first column. If the problem 

occurs, it can be fixed in one of the following ways: (1) Add a blank to 

the beginning of each line taken from the main MODFLOWP output file; or 

(2) change the format statements in YR, NORM, and BCINT --in formats 505, 

506, and 507 of YR and NORM, and in formats 510 and 520 of BCINT,
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eliminate one of the skipped spaces preceding the fist occurrence of Fll.O 

(YR and NORM), or A4 or F10.0 (BCINT).

COMPUTER PROGRAM YR FOR CALCULATING VALUES FOR GRAPHS OF WEIGHTED 

RESIDUALS AGAINST WEIGHTED SIMULATED VALUES

Theory for YR

Construction of plots of weighted residuals against weighted 

simulated values and the underlying theory generally is simple and is 

covered in the introduction of this report. There are, however, three 

common problems with graphs of weighted residuals and weighted simulated 

values. These can be corrected as described below.

The first problem occurs when the weighted simulated values differ 

from each other enough that a convenient scaling of the horizontal axis on 

graphs such as those in figure 1 is not possible. To resolve this 

problem, the weighted simulated values of outlying points can be 

multiplied by a factor so they will plot closer to the other weighted 

simulated values. To ensure that the graph can still indicate whether the 

weighted residuals vary systematically with weighted simulated values for 

any one type of data, the factor needs to be applied carefully. It is 

usually a good idea to apply the same factor to all weighted simulated 

values for a given type of data--for example, the same factor could be 

applied to all flow weighted simulated values. Factors can be applied as 

described in the section "Input for YR".

The second problem occurs when the weights are calculated using the 

observed values as, for example, sometimes is done for streamflow (Hill, 

1992, p. 49-50). In this circumstance, the standard deviation of the

observation error is estimated as a constant times the observed value, and
22 2 the weight, w, equals a /(cxy) , where a is the common error variance

(Hill, 1992, p. 39), c is the constant, and y represents an observed value 

of hydraulic head or flow or a prior information value. The constant, c, 

ideally equals the coefficient of variation (the standard deviation 

divided by the true, but unknown value of y). Using streamflow as an 

example, the weighted residual is calculated as:

12



weighted residual = [u .] x(q. -q. ) = [a/ (c .xq. ) ] x (q. -q. ) , (2)

where j = the identification number of the flow observation;
% a/(c.xq.) = the square root of the weight, also represented by w . ;

q. = the observation; and 
 O
q. = the simulated value. 

The weighted, simulated value is calculated as:

weighted simulated value = [w.]xq. = [a/ (c .xq. ) ] xq. . (3)

Normally, the values calculated by equations (2) and (3) would be used in 

graphs of weighted residuals and weighted simulated values. However, 

multiplying through, equations (2) and (3) can be rewritten as:

A
weighted residual = a/c . - (a/c . )x (q./q. ) (4)

A

weighted, simulated value = (a/c . )x (q./q. ). (5)

The second term of equation (4) equals equation (5), and a/c. is a 

constant. If c . is the same for multiple observations, the related values 

will plot on a straight line with a slope of -1. This graph would give no 

indication about whether the weighted residuals vary systematically with 

the size of the simulated value. To rectify the situation, the weighted 

residual needs to be graphed against a value that excludes the observed 

value used to calculate the weight.

This second problem can be resolved by multiplying the weighted 

simulated values by q.. Thus, equation (5) would become:

*A A A 
modified weighted, simulated value = w. q.q. = (a/c.)xq. (6)

To accomplish this, YR must be modified: The statement Q=Q*WT*FAC, in the 

DO 20 loop needs to be changed to Q=Q*WT*FAC*ABS (QOBS) , where QOBS equals 

q., which already has been read by YR from QCALi (see section "Input for 

YR") . This change fixes the second problem, but it often exacerbates the 

first problem discussed above.

13



The third problem occurs when estimated parameters that have prior 

information are scaled using the value of the prior information. Scaling 

is sometimes convenient because it transforms all prior information to 

equal 1.0, and the percentage change between the estimate and the prior 

value is obvious from the estimate: for example, an estimate of 1.5 

indicates a 50-percent increase over the prior value. In this 

circumstance, the weighted residuals are calculated as:

weighted residual = wj;x(1.0-b, ) (7) 

and the weighted, simulated values are calculated as:

weighted, simulated value = w?*xb, , (8) 

where w = the weight for the prior value of b, , where b, is the kth
k K. K.

estimated parameter.

If w, is the same for multiple prior parameters, a graph of weighted 

residuals and weighted simulated values is a straight line with a slope of 

-1. As for the second problem discussed above, the graph would not 

indicate whether the weighted residuals vary systematically with the size 

of the simulated value. A meaningful graph can be obtained by calculating 

a modified weighted, simulated value as:

modified weighted, simulated value = w?*xb XP , (9) 

where P, = the original, unsealed value of the prior information.
JC

This can be accomplished by listing the original P, values in the input
JC

file YR.DAT, which is described below. No program modifications are 

required to use equation (9) instead of equation (8); YR uses P, = 1.0 in 

equation (9) unless input file YR.DAT is used as described in the section 

'Input for YR'.

The second and third problems discussed above result from using the 

observed values and prior parameter estimates, which are considered to be 

random variables within the context of regression, to calculate weights 

and scaling factors, respectively, which are considered to be constant, 

known values within the context of regression. Although this usage is 

nonstandard and should be avoided if possible, there are circumstances in
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the complicated problems that MODFLOWP is meant to represent in which use 

of these methods produce the best possible estimates of the correct 

weighting of observed hydraulic heads and flows, and the most convenient 

scaling of the parameters. Care should be taken when using these 

nonstandard methods so that, for example, graphs of weighted residuals and 

weighted simulated values are modified as discussed above to display what 

they are intended to display.

Input for YR

Often in model calibration, several calibrated models are compared. 

To accommodate this comparison, YR is constructed to read data from as 

many as 10 simulations. These data need to be in files with specific 

names, as discussed below. The value of NSD, which is defined immediately 

after the format statements in YR, must be equal to or greater than the 

number of simulations being considered, but may not exceed 10.

Most of the input for computer program YR consists of parts of the 

main MODFLOWP output file (See section of introduction "A problem with 

using parts of the MODFLOWP output file as input for YR, NORM, and 

BCINT"). Examples of the MODFLOWP output file are included in appendix A 

of Hill (1992, p. 174-192 and 205-221). For each of the simulations 

considered, the input for YR consists of three files that contain 

information on hydraulic heads, flows, and prior parameter estimates. The 

files need to be named HCALO, HCAL1,....; QCALO, QCAL1,...; and PCALO, 

PCAL1,.... The numbers, 0, 1, . . ., refer to as many as 10 simulations, so 

the sequences may continue up to HCAL9, QCAL9, and PCAL9. YR will try to 

read files for i=0, 1,...NSD-1, where NSD is discussed above. For each of 

the HCALi, QCALi, and PCALi, i=0,1,...NSD-1 files that do exist, the 

following statement is printed to ISCREEN (see last paragraph of this 

section):

NUMBER OF NON-BLANK LINES READ FROM FILE filename = n, 

where n is the number of lines. If a file does not exist, the following 

statement is printed to unit ISCREEN:

FILE filename DOES NOT EXIST

and execution continues. This message, therefore, does not necessarily 

indicate a problem. Examples of HCALi, QCALi, and PCALi input files used 

to produce figure 1 are shown in figure 4.
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Column 1 of input file HCALi

B

1 1
2 1
3 2
4 2
5 3
6 3
7 4
8 4

34 17
35 18
36 18
37 19
38 19
39 20
40 20
41 21
42 21
43 22
44 22

Column 1
1

C

45
45
46

61
62
63

Column 1 
1

1
2
3
4
5
6
7
8
9

10
11
12

1 3
3 3
1 4
3 4
1 7
3 7
1 13
3 13

3 38
1 3
3 3
1 7
3 7
1 10
3 10
1 22
3 22
1 29
2 29

18 0
18 0
11 0
11 0
21 0
21 0
23 0
23 0

23 0
23 0
23 0
9 0
9 0

15 0
15 0
17 0
17 0
18 0
18 0

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

12.
11.
11.
11.
12.
11.
11.
11.

6.
12.
12.
11.
11.
11.
11.
9.
8.
6.
6.

050
850
630
350
150
830
440
430

220
220
120
290
100
710
300
140
950
430
410

12.146 -0
11.887 -0
11.790 -0
11.565 -0
12.051 0
11.830 0
11.323 0
11.311 0

6.295 -0
12.283 -0
12.038 0
11.462 -0
11.321 -0
11.651 0
11.396 -0
9.019 0
8.830 0
6.641 -0
6.631 -0

.957E-01

.366E-01

.160

.215

.992E-01

.399E-03

.117

.119

.753E-01

.635E-01

.820E-01

.172

.221

.586E-01

.958E-01

.121

.120

.211

.221

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

of input file QCALi

SI 0
S2 0
S3 0

S17 0
S18 0
SSL 0

of input file

O.lOOE-t-01
0.100E+01
O.lOOE-t-01
0.100E+01
O.lOOE-t-01
0.100E+01
0.100E+01
0.100E+01
0.100E+01
O.lOOE-t-01
0.100E+01
0.100E+01

-0.521E+05
-0.521E+05
-0.443E+05

-0.408E+05
-0.466E+05
0.335E-I-05

PCALi

0.984E+00
0.991E+00
0.103E+01
0.946E+00
0.621E-I-00
0.142E+01
0.128E+01
0.101E+01
0.983E+00
0.111E+01
0.123E+01
0.872E-I-00

-0.546E+05
-0.546E+05

0.
0.

-0.409E-1-05 -0.

-0.423E+05 0.
-0.421E+05 -0.
0.318E+05

0.165E-01
0.889E-02

-0.314E-01
0.550E-01
0.477E-1-00

-0.353E-1-00
-0.244E+00
-0.761E-02
0.171E-01

-0.103E+00
-0.206E+00
0.137E+00

0.

1
1
1
1
1
1
1
1
1
1
1
1

250E+04
250E-I-04
342E+04

145E+04
446E+04
170E+04

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

0
0
0

0
0
0

0
0

-0
0
0

-0
-0
-0
0

-0
-0
0

.543E-04

.543E-04

.638E-04

.693E-04

.607E-04

.423E-04

.165E-01

.889E-02

.314E-01

.550E-01

.477

.353

.244

.761E-02

.171E-01

.103

.206

.137

0.136
0.136

-0.218

0.101
-0.271

l.E-5
l.E-5
l.E-5

l.E-5
l.E-5

0.718E-01 l.E-5

-0.957E-01
-0.366E-01
-0.160
-0.215 
0.992E-01 
0.399E-03 
0.117
0.119

-0.753E-01
-0.635E-01 
0.820E-01

-0.172
-0.221 
0.586E-01

-0.958E-01 
0.121 
0.120

-0.211
-0.221

Figure 4.--Examples of (A) HCALi, (B) QCALi, and (C) PCALi (i=0,l,..., or 

9) input files for programs YR and NORM.

Each file HCALi (i=0,l,...or 9) needs to contain the final repetition 

of the table 'DATA AT HEAD LOCATIONS' from the MODFLOWP output file of the 

ith simulation. Examples of this table are shown in Hill (1992, p. 189 

and 216). In the first example (p. 189), HCALi would contain the lines 

for observations 1 through 32. Each line of an HCALi file is read using 

the format A10 7 51X 7 Fll.O, 11X, 2F11.0. The first 10 characters are used
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to identify blank lines. The numbers read by the Fll.O formats are the 

values from the columns labeled "CALC. HEAD", "WEIGHT**.5" and "WEIGHTED 

RESIDUAL".

Each file QCALi (i=0,l,...or 9) needs to contain the final repetition 

of the table 'DATA FOR FLOWS' from the MODFLOWP output file of the ith 

simulation. An example of the table is shown in Hill (1992, p. 189). In 

that example, QCALi would contain the lines for observations 33 through 

35. Each line of a QCALi file is read using the format A10, 11X, 2F11.0, 

11X, 2F11.0. The first 10 characters are used to identify blank lines. 

The numbers read by the Fll.O formats are the values from the columns 

labeled "MEAS. FLOW", "CALC. FLOW", "WEIGHT**.5", and "WEIGHTED RESIDUAL".

Each file PCALi (1=0,1,...or 9) needs to contain the final repetition 

of the tables 'PARAMETERS WITH PRIOR INFORMATION, BY GROUP' if DATA SET 11 

was used to designate prior information and 'PARAMETER SUMS WITH PRIOR 

INFORMATION' if DATA SET 12 was used to designate prior information. 

Examples of these tables are shown in Hill (1992, p. 217). In that 

example, PCALi would contain seven lines from the first table and two 

lines from the second table. Each line of a PCALi file is read using the 

format A10, 11X, Fll.O, 11X, 2F11.0. The first 10 characters are used to 

identify blank lines. The numbers read by the Fll.O formats are the 

values from the columns "VALUES--CALC.", "WEIGHT**5" and "WEIGHTED 

RESIDUAL".

An additional file, YR.DAT is needed if one or both of two 

circumstances occur. The first circumstance is that any parameter with 

prior information is estimated as a log-transformed value (This option is 

activated using the variable LN of DATA SET 2 of Hill, 1992, p. 136) . The 

second circumstance is that values of P need to be provided to rectify 

the third problem discussed in the last section. The YR.DAT file used to 

produce figure 1 is shown in figure 5. Each line of YR.DAT contains two 

numbers in F10.0, 15 format (Note that real numbers with digits to the 

right of the decimal point can be read using F10.0 format). The first 

line contains the value of P, and LN for the parameter to which the first
ri

line of PCALi, i=0,l,...9 refers (fig. 4); the second line contains the 

value of P, and LN for the parameter to which the second line of PCALi, 

i=0,l,...9 refers; and so on. The number of lines in YR.DAT must equal
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the maximum number of lines in any PCALi file. If a file named YR.DAT 

does not exist, the following statement is printed to unit ISCREEN (see 

last paragraph of this section):

FILE YR.DAT DOES NOT EXIST 

and execution continues with P, = 1.0 in equation (9) for all k and LN = 0
JC

for all parameters.

Column 1 of input file YR.DAT

437.
329.
165.
341.
288.
126.
193.
173.
380.
268.
82.
163.
169.
218.
195.
182.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5.--Example of a YR.DAT input file for YR.

YR is designed to read only one YR.DAT file. Separate YR.DAT files 

for each simulation are necessary if the differences between PCALi files 

are more than simply the addition of new prior values as would occur, for 

example, if the parameter definitions used in a simulation were 

reorganized so that the second parameter of one simulation was different 

than the second parameter of another simulation. Simulations requiring 

different YR.DAT files can not be processed with a single execution of 

program YR.

The input and output unit numbers used by YR are defined in the six 

lines following the definition of NSD, which follows the format statements 

in YR. Set ISCREEN to the FORTRAN unit number of the screen or a file; 

set IUH, IUQ, and IUP to the FORTRAN unit numbers for the input files 

HCALi, QCALi, and PCALi, respectively (the files for each simulation, i,
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are opened, read, and closed sequentially); set IUM to the unit number for 

YR.DAT; and set IOUT to the unit number for the output files YRCALi, which 

are described below. All files are opened within the program.

Output for YR

YR produces output files named YRCALi for every simulation i for 

which at least one of the three input files exists. Each line in each 

YRCALi file contains two numbers written using format 2G16.8: the first 

is the weighted, simulated value (or modified weighted, simulated value); 

the second is the weighted residual. Most available plotting routines 

accept data in this format.

It is often helpful to have the three different types of data plotted 

with different symbols, as in figure 1. To accomplish this, the output 

from program YR needs to be coordinated with the plotting package used. 

Program YR is designed to insert blank lines between the different types 

of data (statement numbers 12 and 22). These blank lines provide the 

needed coordination with the nonproprietary plotting package used to 

produce figure 1 (Turner, 1992) . To coordinate with other plotting 

packages, changes can be made to the WRITE statements in the DO 10, DO 20, 

and DO 30 loops of YR.

COMPUTER PROGRAM NORM FOR CALCULATING VALUES FOR NORMAL PROBABILITY

GRAPHS OF WEIGHTED RESIDUALS

Theory for NORM

Normal probability graphs are used as discussed in the introduction 

of this report. Normal probability graphs are constructed by ordering the 

weighted residuals from smallest to largest and plotting them against the 

cumulative probability that would be expected for each value if they were 

independent and normally distributed. The cumulative probabilities can be 

calculated in a number of ways, as discussed by Draper and Smith (1981, p. 

178) and Looney and Gulledge (1985). In the computer program NORM, they 

are calculated as (k-0.5)/n (Hazen, 1914), where n equals the number of 

weighted residuals and k equals one for the smallest weighted residual, 

two for the next largest residual, and so on. For the largest residual, k
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equals n. Calculating the cumulative probabilities in this way makes the
2 normal probability graphs consistent with how the statistic RTL is

2 calculated by MODFLOWP (Hill, 1992, p. 63), so RTL is the correlation

coefficient for the probability graph.

Normal probability graphs often are plotted on normal probability 

paper, on which the sample cumulative probabilities are graphed along a 

nonarithmetic scale (Benjamin and Cornell, 1970, p. 453). Because 

available plotting packages rarely provide a normal probability scale as 

an option, an arithmetic scale is preferable. A graph with an arithmetic 

scale can be created using the fact that in NORM the sample cumulative 

probabilities are calculated as (k-0.5)/n, as discussed above. Note that 

a sample cumulative probability is the probability that a randomly 

selected weighted residual (X) is less than the value of the ith smallest 

residual (x.), or P(X<x.). To produce a graph with an arithmetic axis, 

the sample cumulative probabilities can be used to calculate abscissa 

values (the values along the horizontal axes of graphs of probability 

distributions) of a standard normal probability distribution. The 

abscissa values plot on an arithmetic scale, and are used in the graph 

shown on figure 2. In NORM, the abscissa values are determined using 

subroutine UNORM from MODFLOWP (Hill, 1992, p. 238 and 357-358). The axis 

is labeled 'standard normal statistic'.

Input for NORM

The input files for NORM are identical to the input files for YR, 

except that YR.DAT is omitted. NSD is defined in the PARAMETER statement 

in the beginning of the program.

The input and output unit numbers used by NORM are defined in the 

seven lines following the format statements in NORM. Set ISCREEN to the 

FORTRAN unit number of the screen or a file; set IUH, IUQ, and IUP to the 

FORTRAN unit numbers for the input files HCALi, QCALi, and PCALi, 

respectively; and set IOUTH, IOUTQ, and IOUTP to the unit numbers for the 

output files NORMHi, NORMQi, and NORMPi, respectively. The output files 

are described below. All files are opened within the program.
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The PARAMETER statement in the beginning of NORM may need to be 

changed to allow enough spaces in the dimensioned arrays for the problem 

being considered. NDD must equal or exceed the number of hydraulic-head 

and flow observations; NPRD must equal or exceed the number of values of 

prior information.

Output for NORM

NORM produces output files named NORMHi, NORMQi, and NORMPi 

(1=0,1,...or 9). The NORMHi files contain the weighted residuals and the 

standard normal statistics related to hydraulic-head observations and are 

produced for each simulation, i, for which there is a file HCALi. NORMQi 

files contain data for graphs of the weighted residuals related to 

hydraulic-head and flow observations and are produced for each i for which 

there is a file QCALi. NORMPi files contain data for graphs of the 

weighted residuals related to hydraulic-head observations, flow 

observations, and prior information and are produced for each i for which 

there is a file PCALi. In all files, each line contains a weighted 

residual and associated standard normal statistic, printed using format 

2G15.6.

It often is helpful to have the three different types of data plotted 

with different symbols, as was done in figure 2. To accomplish this, the 

output from program NORM needs to be coordinated with the plotting package 

used. Program NORM is designed to insert blank lines between the 

different types of data (statement number 300 of subroutine ORDER). These 

blank lines provide the needed coordination with the nonproprietary 

plotting package used to produce figure 2 (Turner, 1992) . To coordinate 

with other plotting packages, changes can be made to the WRITE statement 

in the DO 290 loop in subroutine ORDER of NORM.

COMPUTER PROGRAM BCINT FOR CALCULATING VALUES FOR GRAPHS OF ESTIMATED 

PARAMETER VALUES AND THEIR LINEAR CONFIDENCE INTERVALS

Theory for BCINT

The computer program BCINT calculates linear confidence intervals on 

estimated parameter values and creates a file of these values which can be 

graphed as shown in figure 3.
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The equations for the confidence intervals are developed based on the 

assumptions that (1) the parameter values are normally distributed, (2) 

the model is correct, and (3) the model is roughly linear for parameter 

values close to the optimal parameter values. These assumptions need to 

be tested as discussed in the introduction of this report.

The confidence intervals calculated for parameter estimates are 

usually individual linear confidence intervals, which are calculated as 

(Draper and Smith, 1981, p. 94) :

b' ± (v.J X t (ND+NPR-NP', l.O-a/2) (10)
X, )L )L S

where b. = the estimate of the /0th parameter;

v,, = the estimated variance of the /0th parameter from the 

variance-covariance matrix on the parameter values;

t (., .) = the critical value of a random variable from the student-t 
s

probability distribution in which the first argument equals 

the degrees of freedom, the second argument equals the 

probability that the true parameter value occurs within the 

confidence interval, and a equals the probability that the 

confidence interval does not contain the true value; 

ND = the number of observations used in the regression; 

NPR = the number of prior estimates used in the regression; and 

NP' = the number of parameters estimated in the regression

(equals NP of line 3 of the Parameter-Estimation Package 

input file minus one for each parameter with a negative 

group number in data set 9 of that input file).

Alternatively, simultaneous confidence intervals, or individual or 

simultaneous prediction intervals, could be calculated if needed based on 

how the intervals are to be used. The different intervals are defined and 

discussed in the section 'Computer Program YCINT'.

Input for BCINT

Often in model calibration, several calibrated models are compared. 

To accommodate this circumstance, BCINT was constructed to read data from 

as many as NSD simulations, where NSD is defined in the PARAMETER
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statement at the beginning of BCINT, and may not exceed 10. The data need 

to be in files named PARC, PAR1,..., where the numbers 0, 1,... refer to 

as many as 10 simulations so the sequence may continue up to PAR9. BCINT 

will try to read files for i=0,1,...NSD-1. If a file does not exist, the 

following statement is printed to unit ISCREEN (see below):

FILE filename DOES NOT EXIST

and execution continues. This message, therefore, does not necessarily 

indicate a problem.

Each file PARi (i=0,l,...or 9) needs to contain the data sets listed 

in table 1. As an example, one of the PARi files used to produce figure 3 

is shown in figure 6.

The input and output unit numbers used by BCINT are defined in the 

three lines following the format statements in BCINT (see section "Listing 

of computer program BCINT"). ISCREEN is the FORTRAN unit number of the 

screen or a file; IPAR is the unit number for the PARi files; and IOUT is 

the unit number for the output file, CI.OUT, which is described in the 

next section.

Output for BCINT

BCINT produces an output file named CI.OUT, which is composed of two 

sets of lines separated by one blank line. Each non-blank line of the 

output file contains two numbers in format 2G13.3: the first number is an 

estimated parameter value or, after the blank line, one of the limits of a 

confidence interval; the second number is an ordinate (y-axis) plotting 

position. The ordinate plotting position is the same for the estimated 

parameter value and the two ends of the confidence interval for a single 

parameter from one simulation so the values graph along the same 

horizontal line as in figure 3. The ordinate plotting positions are 

incremented so parameters from different simulations having the same value 

of IY (see table 1) are plotted together.
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Table 1.-- Data Sets of the PARi (1=0,1,...or 9) input files for BCINT

Data 
set

Number 
of lines Format Variable Definition

I5,F10.0 NP^STAT 1 Number of parameters and the 
statistic used to calculated 
the confidence interval.

1 or more

1 or more

1015

1015

1 or more 10F5.0

LN(I), LN from DATA SET 2 of 
I=1,NP' MODFLOWP for each parameter.

IY(I), Confidence intervals are 
1=1,NP' calculated for parameters I 

for which IY(I)>0, and 
parameters from different 
simulations with the same 
value of IY(I) are grouped. 2 

BX(I), Multiplicative factors used 
1=1,NP' to scale parameter values. 3

fromThe remainder of the file consists of the table 'PARAMETER SUMMARY' 
the MODLFOWP output file 4 , starting with the line that begins with 
'PARAMETER ID' and ending after the parameter standard deviations, which 
are labeled 'STD. DEV . The first part of the table is read using 
formation 16X, 10(6X,A4); the characters read are PIDs, which are described 
by Hill (1992, p. 113 and 136). Next a line is skipped and the estimated 
parameter values are read using format 17X, 10F10.0. Finally, the program 
skips to the line following STD.DEV., and the standard deviations are read 
using format 17X, 10F10.0.

STAT equals t (ND+NRP-NP', 1.0-a/2) of equation (10) to calculate 
individual linear confidence intervals. For other types of intervals, 
STAT may be set to other critical values. See instructions for FSTAT of 
program YCINT.

The IY were used to construct figure 3 so all the values related to the 
parameter labeled Kl are grouped together, all the values related to K2 
are grouped together, and so on.

The BX were used to construct figure 3 so that plotted values were 
hydraulic-conductivity values. In these simulations, the estimated 
parameter values had been scaled in MODFLOWP so a value of 1.0 indicated 
that the value of the estimated hydraulic conductivity was equal to the 
prior information (see the third problem discussed in the section ' 
Computer program YR, Input'). Thus, the BX were the prior estimates of 
hydraulic conductivity.

See Hill (1992, p. 191 and 220) for examples of this table, and see the 
section of the introduction "A problem with using parts of the MODFLOWP 
output file as input for YR, NORM, and BCINT".
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Generally, it is helpful to have the parameter values plotted with 

different symbols than the confidence interval limits, as in figure 3. To 

accomplish this, the output from program BCINT needs to be coordinated 

with the plotting package used. Program BCINT inserts a blank line 

between the parameter estimates and the limits of the confidence intervals 

to coordinate with the nonproprietary plotting package by Turner (1992). 

To coordinate with another plotting package, changes can be made to the 

WRITE statements in and between the DO 120 and DO 130 loops.

COMPUTER PROGRAM YCINT FOR CALCULATING LINEAR CONFIDENCE INTERVALS ON 

SIMULATED HYDRAULIC HEADS AND FLOWS ALOGN HEAD DEPENDENT BOUNDARIES

Theory for YCINT

The program YCINT calculates linear confidence or prediction 

intervals on simulated values. Both types of intervals are discussed in 

the introduction of this report. Additional discussion is provided here 

to further clarify the distinction between confidence and prediction 

intervals.

Confidence intervals produced by YCINT are a function of the 

uncertainty in the parameters estimated using MODFLOWP, as expressed in 

the variance-covariance matrix on the parameters (Hill, 1992, p. 57) and 

the sensitivities of the simulated values to the estimated parameters 

(Hill, 1992, p. 90); uncertainties about other aspects of the system, such 

as parameters not estimated by MODFLOWP and the location of boundary 

conditions, are not reflected in the confidence intervals.

Confidence intervals have a specified probability of including the 

true, not the measured, value to which they relate; they do not account 

for measurement error. For example, a confidence interval on a hydraulic 

head value simulated for a certain time and place has a specified 

probability of including the true value of hydraulic head at that time and 

place. To test whether or not the true value is included within the 

calculated confidence interval, it might seem reasonable to measure the 

hydraulic head at the specified time and place and compare it to the 

confidence interval. Because any measurement contains measurement errors, 

however, the measured hydraulic head would have a smaller probability of
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being included in the confidence interval than the probability specified 

for the confidence interval. A prediction interval with the same 

probability would usually be larger than the confidence interval. 

Measured values need to be compared against prediction intervals, not 

confidence intervals.

The term 'predict 7 is used in two ways in this report. As above, 

this term is used to specify 'prediction' intervals, which differ from 

confidence intervals in that they account for measurement errors. The 

term 'predict' also is used to specify (1) 'prediction' period, (2) 

'prediction' conditions, and (3) 'predicted' values, which refer to (1) a 

period of time other than, and usually following, the calibration period, 

(2) the hydrologic conditions of the prediction period, and (3) the values 

(hydraulic heads and flows) simulated for the prediction period.

The confidence and prediction intervals calculated using YCINT are 

accurate only if (1) the parameters are normally distributed, (2) the 

model is correct, and (3) the model is roughly linear. See the comments 

about testing these assumptions in the section "Linear confidence and 

prediction intervals" in the introduction of this report.

Confidence and prediction intervals vary in size depending on how 

many intervals are to be considered simultaneously. For example, consider 

a situation in which management criteria state that drawdown at a certain 

location should not exceed 2 feet and that the flow to a stream along a 

certain reach should not be decreased by more than 20 percent. Confidence 

or prediction intervals can be constructed on the simulated drawdown and 

the change in flow to the stream to indicate the reliability of the 

simulated values. The intervals can be defined in two ways: (1) each of 

the two true values (for confidence intervals) or measured values (for 

predictive intervals) have a specified probability of being included in 

their respective intervals, regardless of whether the other is included in 

its interval; or (2) both of the true or measured values have a specified 

probability of being included in their respective intervals 

simultaneously. The first definition produces individual confidence or 

prediction intervals, and the second produces simultaneous confidence or 

prediction intervals.
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The two types of intervals are different, and care needs to be taken 

to select the interval most appropriate for a given situation. Individual 

intervals generally are smaller than simultaneous intervals because one 

predicted value is considered without regard to what else is simulated. 

For example, if the only simulated value of interest is the drawdown at a 

certain location, an individual confidence interval could be used to 

indicate the uncertainty with which the drawdown is calculated.

Individual confidence intervals are calculated as (Draper and Smith, 

1981, p. 29; Miller, 1981, p. 49; Hill, 1992, p. 58) :

y ± s X t (ND+NPR-NP', l.O-a/2) (11) 
Ym S

where y = the mth simulated value; 
m

s = the standard deviation of y , calculated as described 
Ym

below; and

t (.,.) = the critical value of a random variable from the student-t 
s

probability distribution (see table in Hill, 1992, p. 60, 

or any basic statistics book), in which the first argument 

is degrees of freedom and a equals the probability that the 

confidence interval does not contain the true value. 

The other variables are defined after equation (10).

The standard deviation of y is calculated as (after Cooley and Naff, 

1990, p. 176):

|NP' NP' dy dy
sy   * . s n a^^ij aT*! (12)

m LI   T ~i   1 T -'Ul 1 = J_ J=-L 1 j

A. A.

where dy /3b. = the partial derivative of y with respect to the ith 
mi m

parameter, b., evaluated at b', the optimal parameter
1 A.

values (also referred to as the sensitivity of y with 

respect to b.); and

V(b') . . = the element in the ith row and jth column of the variance- 

covariance matrix on the parameters (Hill, 1992, p. 57).
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The two methods of calculating simultaneous confidence intervals
/ 

presented in this report are named Bonferroni and Scheffe, after people

involved in their development (Miller, 1981). Both methods are 

conservative with respect to a, the stated probability that the 

calculated interval does not contain the true value--that is, the stated 

probability is greater than or equal to the actual probability. The 

method that produces the smallest interval generally should be used, and

guidelines for when each is smallest are provided below. However,
/ 

Scheffe-simultaneous intervals need to be used when the number of

intervals being considered can not be defined. For example, this would 

occur if a management criteria stated that drawdown over a certain area of 

an aquifer should not exceed 2 feet, and the location of maximum drawdown 

could not be identified based on considerations such as pumping well 

location. In this situation, intervals could theoretically be calculated 

at each location in the area involved, so that there would be an infinite 

number of intervals. Note that the imposition of a grid of a numerical 

model on the area can not be used to reduce the number of locations in the 

defined area to the number of grid nodes in the area.

Bonferroni-simultaneous confidence intervals are calculated as 

(Miller, 1981, p. 67-69):

A
y ± s X t (ND+NPR-NP', 1.0-a/2k) (13) 
m y B  'm

where k = the number of simultaneous confidence intervals (this would 

have been two in the example discussed previously if the 

management criteria on drawdown and decrease in flow to a 

stream were considered simultaneously); and 

t (.,.) = the critical value of a random variable from the
B

Bonferroni-t probability distribution (table 2) in which 

the first argument is degrees of freedom and is designated 

as v in table 2, and a equals the probability that the 

confidence interval does not contain the true value.
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/

Scheffe- simultaneous confidence intervals are calculated as (Miller, 

1981, p. 50; Cooley and Naff, 1990, p. 175-176) :

y ± s X [d X F (d, ND+NPR-NP' ) ] " (14) 
my a 

m

where d = k or NP' , whichever is less; and

F ( . , . ) = the critical value of a random variable from the F 
a

probability distribution (see table in Cooley and Naff, 

1990, p. 46-47 or any basic statistics book) in which the 

first and second arguments are degrees of freedom and a 

equals the probability that the confidence interval does 

not contain the true value .

The Bonf erroni -simultaneous confidence interval is smaller than the
i 

Scheffe- simultaneous confidence interval when the critical value

t (ND+NPR-NP' , 1.0-a/2k) is less than the value of [d x F (d, ND+NPR-x a
NP')]   Generally, the Bonferroni critical value is smaller than [d x

*A 
F (d, ND+NPR-NP')] unless k (the number of simultaneous confidence

intervals) is much larger than NP' (the number of parameters estimated in 

the regression) (Miller, 1981, p. 69).

Prediction intervals also can be calculated as individual,
i 

Bonf erroni -simultaneous, or Scheffe- simultaneous intervals. Individual

prediction intervals are calculated as (Draper and Smith, 1981, p. 29; 

Miller, 1981, p. 49; Hill, 1992, p. 58):

y ±[s + s /(*> ] X t (ND+NPR-NP', l.O-a/2) (15) 
my m s  'm

2 
where s = the calculated error variance of the regression; and

22 2
u> = a weight that equals a fa , where a is the estimated commonmm 2

error variance of the regression that should be close to s
2

(Hill, 1992, p. 39) , and where a is the variance of the error
m

with which y is measured. 
m

2 
The term s /u> approximates the variance of the measurement error. This

approximation is from Cooley and Naff (1990, p. 176), and it is valid only 

if the error with which y is measured is independent of all other 

measurement errors .
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Bonf erroni -simultaneous prediction intervals are calculated as 

(Miller, 1981, p. 67-69) :

y ± [s2 + s 2 /w ] X t (ND+NPR-NP' , 1.0-a/2k). (16) 
my m B  'm

/
Scheffe- simultaneous prediction intervals are calculated as (Miller, 1981,

p. 50; Cooley and Naff, 1990, p. 175-176) :

y ± [s2 + s 2 /w ]^ X [k X F (k, ND+NPR-NP')]^. (17) 
m y m a J

Note that for prediction intervals, k replaces d.

As with confidence intervals, the two procedures of calculating 

simultaneous prediction intervals are nearly identical, and the procedure 

that produces the smallest interval should be used. For a. = 0.05, this 

procedure always will be the Bonf erroni procedure (Miller, 1981, p. 116) .

The simulated values for which confidence and prediction intervals 

can be calculated with YCINT are presented in the following paragraphs. 

To improve clarity, only confidence intervals are mentioned, however, 

prediction intervals also can be calculated for the simulated values 

included in the discussion.

With YCINT, linear confidence intervals can be calculated for the 

simulated values of hydraulic head at arbitrary times and locations and 

flows along head -dependent boundaries that are described in Hill (1992, p. 

19-31) . For example, figure 7A shows values of steady-state hydraulic 

heads and flows into a river simulated under calibration conditions and 

under two pumping scenarios, and figure 7B shows hydraulic heads simulated 

under transient calibration and predictive conditions. Linear confidence 

intervals can be calculated for any of these simulated values.

In many management situations, the value of interest is how much 

hydraulic heads or flows along head- dependent boundaries would change 

under certain conditions. For example, figure 7A shows a cross section 

through a ground-water flow system with hydraulic heads and flow to a
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river that were simulated for steady-state calibration conditions and for 

steady-state conditions representing two pumping scenarios.

If the management criterion for the system in figure 7A is that 

drawdown cannot exceed 2 feet, simulated drawdown is of interest. Using 

the calibrated model, simulated hydraulic heads for the calibration 

conditions could be subtracted from simulated hydraulic heads for pumping 

scenarios 1 or 2 to produce simulated drawdowns. YCINT can be used to 

calculate the linear confidence interval on the maximum drawdown.

If the management criterion for the system in figure 7A is that the 

streamflow gain must not be decreased by more than 20 percent of an 

observed flow along a reach of the stream, the simulated change in 

streamflow is of interest. Using the calibrated model, the streamflow 

gain simulated for the calibration conditions could be subtracted from the 

streamflow gain simulated for pumping scenarios 1 and 2. YCINT can be 

used to calculate the linear confidence interval on the difference between 

these simulated streamflow gains.

To provide a consistent terminology, changes in hydraulic heads and 

changes in streamflow are called 'differences', and the calculated 

confidence intervals are called 'confidence intervals on the differences'. 

The simulation that produces the values from which other values are 

subtracted is referred to as 'the predictive simulation'; the simulation 

that produces the values that are subtracted is referred to as the 'base 

simulation'.

Differences need not be between calibration conditions and a pumping 

scenario. For example, if the differences between hydraulic heads 

simulated under pumping scenarios 1 and 2 of figure 7A are of interest, 

the hydraulic heads for the two pumping scenarios can be calculated using 

the calibrated model, and the differences and related confidence intervals 

can be calculated with YCINT. Note, however, that the confidence 

intervals on the differences generally will get smaller as the base and 

predictive simulations become more similar. This decrease occurs because 

the sensitivities related to the quantities being subtracted get closer to 

each other. See the last paragraph of this section for a discussion of 

this situation.
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Land surface

DISTANCE FROM RIVER

EXPLANATION

Simulated hydraulic-head 
distribution for:

    Calibration conditions
      - Pumping scenario 1 
......... pumpj n g scenario 2

Simulated flow to the river for: 
Qc Calibration conditions 
Q-| Pumping scenario 1 
Q2 Pumping scenario 2

CALIBRATION PERIOD PREDICTION PERIOD

EXPLANATION

^ x  Simulated hydraulic head for calibration period
    Simulated hydraulic head at end of 

calibration period
      - Simulated hydraulic head for scenario 1 
......... Simulated hydraulic head for scenario 2

Fi, F2, G Examples of the types of differences that 
may be of interest

Figure 7.-- Diagrams showing quantities for which confidence intervals can 

be calculated with program YCINT for (A) steady-state calibration and 

predictive simulations and (B) transient calibration and predictive 

simulations.
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Transient calibration and prediction periods produce a variety of 

'differences' that may be of interest. For example, a simulated 

hydrograph from a transient calibration period followed by a transient 

prediction period is shown in figure 7B. Differences which may be of 

interest are (1) decline in hydraulic head since the end of the 

calibration period (difference F and F of fig. 7B), or (2) the
_L <&

difference in the hydraulic head that would occur with and without 

proposed additional pumpage (difference G of fig. 7B) .

When confidence or prediction intervals are calculated on
A

differences, y of equations 11 through 17 equals:

y = y (18)
m

where p represents the predictive conditions and q represents the base
A.

conditions. The standard deviation of y , s of equations 11 through 17,
m 

is calculated as:

m

NP' NP

2 2
i=l =

dy

V(b) . . 
ID

dy
m

(19)

where all terms were defined for equation (12) or (18). The approximation
2

of the variance of the measurement error, s /co of equation (15), (16),
m

and (17), is calculated as:

22 2
S /CO = S /CO + S CO

m p c m
(20)

Care must be taken when calculating confidence and prediction 

intervals on differences because intervals on differences are calculated 

using differences in the sensitivities (eq. 19). If the sensitivities to

each of the parameters are the same for the two subtracted values, s of
ym 

equation (19) will equal 0.0 and the limits of calculated confidence

intervals on differences will equal the the simulated difference. As a

result, the width of these confidence intervals will equal zero and
2

prediction intervals will reflect only the a /co measurement error term.
m
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An unrealistic but illustrative example is if all conditions, 

including stresses, are the same in the two simulations for which 

differences are calculated. In this situation, all simulated differences 

would equal 0.0, and the confidence interval limits on differences would 

equal 0.0. This result indicates that it is certain that if nothing in 

the system changes, the hydraulic heads and flows will not change, which 

is a direct result of using the deterministic ground-water flow equation. 

These results also indicate that if the differences between two 

simulations are small, the confidence intervals on the differences also 

will tend to be small.

Another situation that produces s =0.0 occurs if the sensitivities
ym 

related to all estimated parameters are independent of whatever is changed

between the two simulations for which differences are calculated. For 

example, consider a simulation in which all model layers are confined and 

all boundary conditions are linear (this excludes some situations in which 

the River, Drain, and Evapotranspiration Packages of MODFLOW are used; 

McDonald and Harbaugh, 1988, ch. 6, 9, and 10). In such a simulation, a 

1.0 increase in areal recharge produces the same increase in hydraulic 

head or flow at any specified location in the system regardless of the 

simulated pumpage (this can be verified with any simulation that satisfies 

the stated criteria). This situation indicates that the sensitivities 

related to areal recharge (which, in this situation, equal the changes in 

hydraulic heads or flows at the specified locations divided by the 1.0 

change in areal recharge), are independent of pumpage. If areal recharge 

is the only parameter and confidence intervals are calculated for 

differences between two simulations that differ only in the pumpage, the

difference between the sensitivities would equal zero and, therefore, s
ym 

would equal zero. A more practical consequence of this result is that in

a simulation in which many parameter values have been estimated by

regression, for differences, s only will reflect the uncertainty and
ym 

correlation of parameters for which the sensitivities are dependent on

whatever is changed between the simulations for which the differences are 

calculated.
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Input for YCINT

Two input files are always required by YCINT: RESANP.DAT and 

YCINT.DAT. An additional input file, YCINT.DAT2, is needed if intervals 

are to be calculated on differences. The three input files are produced 

by MODFLOWP when used as described in the following paragraphs.

If the first three input files are needed, it is suggested that 

RESANP.DAT be created first, then YCINT.DAT2, and, finally, YCINT.DAT. 

Creating the files in this order is more convenient because the needed 

changes to the MODFLOWP input files are progressive.

RESANP.DAT is identical to the data set required by the program 

RESANP (in Hill, 1992, p. 224 it is called RESAN.MODP). YCINT reads the 

variance-covariance matrix on the estimated parameters from RESANP.DAT. 

If RESANP.DAT was not produced in the final calibration run, it can be 

produced by executing MODFLOWP as follows [The LINE and DATA SET numbers 

cited refer to parts of the Parameter-Estimation Package input file (Hill, 

1992, p. 131-150)]:

1. Substitute the final calibrated parameter values from file IOUB 

(LINE 7) into DATA SET 8. If these values are not available, set 

IOUB equal to a FORTRAN unit number and continue with the 

following instructions. Save the file referred to by the FORTRAN 

unit number IOUB.

2. Set IPAR=1 (LINE 6).

3. Set IOUR (DATA SET 13) equal to the FORTRAN unit number of 

RESANP.DAT.

4. In all other respects, the input file for the Parameter-Estimation 

Package and all other input files need to be the same as they were 

for calibration.

5. Execute MODFLOWP.
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YCINT.DAT provides information about the simulated conditions for 

which confidence or prediction intervals are being calculated. If 

confidence or prediction intervals on the differences are to calculated, 

YCINT.DAT provides information about the final changed conditions. To 

create YCINT.DAT, MODFLOWP needs to be executed as follows [The LINE and 

DATA SET numbers cited refer to parts of the Parameter-Estimation Package 

input file (Hill, 1992, p. 131-150)]:

1. If not done in step 1 for RESANP.DAT, substitute the final

calibrated parameter values from the file referred to by IOUB 

(LINE 7) into DATA SET 8.

2. Set IPAR=1 (LINE 6).

3. Modify DATA SETS 6 and 7 and related values on LINE 6 to define 

only the quantities for which confidence or prediction intervals 

are to be calculated. For example, if confidence intervals are 

to be calculated on five values of simulated hydraulic head and 

one flow, on LINE 6 NH needs to equal five, MOBS and MAXM need to 

be nonzero if any of the simulated hydraulic heads are multilayer 

(see instructions for DATA SETS 6 and 6A), NQ and NQT need to 

each equal 1, and NQC needs to equal the number of cells involved 

in calculating the flow (see instructions for DATA SET 7A). If 

confidence or prediction intervals on differences are to be
A

calculated, DATA SETS 6 and 7 need to define the y of equation
Pm 

(18); see the discussion following the instructions for

YCINT.DAT2. HOBS is ignored, so it does not matter what values

are used; if prediction intervals are to be calculated, IWT needs
2 to equal 0 and WT needs to equal s /co (eqs. 15, 16, or 17) or,

2 m 
if differences are calculated, B /co (eq. 20). If DATA SET 6C

*m 

is used and ITT of DATA SET 6B equals 1, WT. needs to equal
2 2

s /w , or if differences are calculated, s /co . If ITT equalsm p
2 m 

2, WT needs to equal s /co ; ITT generally should not equal 2 if

differences are calculated. In these situations, IWT needs to 

equal 0.
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4. A new variable, FSTAT, has been added to DATA SET 13. FSTAT 

needs to be placed on a new second line of DATA SET 13 and is 

read using F10.0 format. FSTAT needs to be set to the

appropriate critical value: FSTAT = t (ND+NPR-NP', l.O-a/2) to
s

calculate individual confidence and prediction intervals, FSTAT = 

t (ND+NPR-NP', 1.0-a/2k) to calculate Bonferroni-simulataneous
D

confidence and prediction intervals, FSTAT = [d x F (d, ND+NPR-
i/ ' a 

NP')] to calculate Scheffe-simultaneous confidence intervals,
i/ ' 

and FSTAT = [k x F (k, ND+NPR-NP')] to calculate Scheffe-

simultaneous prediction intervals. See the section 'Theory for 

YCINT' for a discussion of these critical values and the symbols 

used. Changing the value of FSTAT does not require reexecuting 

MODFLOWP: See point 9 of this list.

5. Set DMAX=1X10" and TOL=1X10 1 (DATA SET 13) so the final 

calibrated parameter values in DATA SET 8 remain unchanged.

6. A new variable IOUE has been added to LINE 7; it follows IUNHEA 

in 15 format. Set IOUE equal to the FORTRAN UNIT number of 

YCINT.DAT; set IOUR (DATA SET 13) equal to zero.

7. Change files from other packages to represent the stresses, 

boundary conditions, and so on of the system for which 

predictions are being made.

8. Execute MODFLOWP to produce YCINT.DAT.

9. Changes need to be made to the first line of YCINT.DAT as 

follows:

(a) Values for variables IDIF and IPRED need to be added to the 

first line of YCINT.DAT using 215 format. If confidence or 

prediction intervals for differences are to be calculated, set 

IDIF to 1; otherwise, set it to 0. If prediction intervals are 

being calculated, set IPRED to 1; otherwise, set it to 0.

(b) The real number preceding IDIF on the first line of YCINT.DAT 

equals FSTAT, which was discussed in point 4 above. If the user 

wishes to change FSTAT, MODFLOWP need not be reexecuted. Up to
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this point, FSTAT has not been used in any calculations, and it 

can simply be changed in YCINT.DAT. FSTAT occupies columns 41 to 

50 of the first line of YCINT.DAT, and is read by YCINT using 

format F10.0.

If confidence or prediction intervals for differences are to be 

calculated (IDIF=1), a third input file, YCINT.DAT2, is needed. 

YCINT.DAT2 provides information about the base conditions. To create 

YCINT.DAT2, MODFLOWP needs to be executed as follows [The LINE and DATA 

SET numbers cited refer to parts of the Parameter-Estimation Package input 

file (Hill, 1992, p. 131-150)]:

1-2. Follow steps 1 and 2 for YCINT.DAT.

3. Modify DATA SETS 6 and 7 created for YCINT.DAT to define the y
Tn 

of equation (18); see the discussion below. HOBS is ignored, so

it does not matter what values are used for HOBS; WT needs to
2 equal s /u> (eq. 20) and IWT needs to equal 0. If DATA SET 6C is
^ 2 

used and ITT of DATA SET 6B equals 1, WT, needs to equal s /w
Sn 

and IWT needs to equal 0. ITT generally should not equal 2 if

diffeences are calculated.

4-5. Follow steps 4 and 5 for YCINT.DAT.

6. Set IOUR (DATA SET 13) equal to the FORTRAN UNIT number of 

YCINT.DAT2; set IOUE (LINE 7) equal to zero.

7. Change input files from other packages to represent the stresses, 

boundary conditions, and so on of the base conditions. If the 

base simulation represents calibration conditions the input files 

used in model calibration can be used.

8. Execute MODFLOWP.
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Differences are calculated by subtracting the YCINT.DAT2 hydraulic

heads and flows at head-dependent boundaries (the y 's of eq. 18) from
^m 

the YCINT.DAT values (the y 's of eq. 18) in the order they are listed in
*m 

DATA SETS 6 and 7 of those runs (see step 3). Therefore, the DATA SETS 6

and 7 need to be constructed so the values listed first in each run are to 

be subtracted from each other, the values listed second in each run are to 

be subtracted from each other, and so on. A problem occurs if, for 

example, the 15th value listed for YCINT.DAT is a flow along a head- 

dependent boundary, and the 15th value for YCINT.DAT2 is a hydraulic-head 

value. In this situation, the computer program YCINT will calculate the 

difference and related confidence interval as if the difference made 

sense. It is up to the user to discover that there was a mistake in how 

the two runs were constructed. To aid in this effort, the data 

identifiers (DID) from DATA SETS 6 and 7 are printed in the YCINT output 

file (fig. 8).

Once the input files have been created, YCINT can be executed after 

checking the FORTRAN to be sure that the values defined in the PARAMETER 

statement at the top of YCINT are large enough, and recomputing and 

loading the program if changes are made. NDD needs to equal or exceed 

NH+NQT (LINE 5); NPD needs to equal or exceed NP (LINE 3). Execution of 

YCINT produces YCINT.OUT, which is described below.

Output for YCINT

YCINT.OUT is composed of seven sections, which are briefly described 

in table 3. An example of the table of section G in which differences and 

their related confidence intervals are included is shown in figure 8. The 

first two columns show the sequential number and data identifiers from 

YCINT.DAT. The third column shows the simulated value under predictive 

conditions. The fourth column shows the standard deviation of the value 

simulated under predictive conditions, and the fifth and sixth columns 

show the upper and lower limits of the linear confidence or prediction 

interval on the simulated value.
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Table 3.-- The seven sections of YCINT.OUT

[When differences and related intervals are calculated, base conditions 
are the conditions represented in the simulation that produces the values 
that are subtracted, and predictive conditions are the conditions 
represented in the simulation that produces the values from which 
subtraction occurs. When differences are not calculated, the 'predictive 
conditions' of sections E and F may be the calibration conditions, if 
confidence or prediction intervals on calibrated values are to be 
calculated]

Section__________________________Description____________________ 
A The number of values for which confidence or prediction 

intervals are to be calculated, the number of estimated 
parameters, the value of FSTAT, a statement of whether 
differences and associated intervals are calculated, and a 
statement of whether or not confidence or prediction 
intervals are to be calculated. The value of FSTAT is the 
only indication in YCINT.OUT as to whether the calculated 
intervals are individual, Bonferroni-simultaneous, or 
Scheffe-simultaneous; it is also printed as part of 
section G.

B The variance-covariance matrix for the estimated 
parameters.

(Sections C and D are omitted if differences are not calculated.)

C The values of the quantities defined by DATA SETS 6 and 7 
calculated using optimum parameter values for the base 
conditions. Data identifiers also are listed.

D Sensitivities for the optimum parameters for base 
conditions.

E The values of the quantities defined by DATA SETS 6 and 7 
calculated using optimum parameter values for predictive 
conditions. Data identifiers also are listed.

F Sensitivities for the optimum parameters under predictive 
conditions.

G A table that includes simulated values and their standard 
deviations and confidence or prediction intervals and data 
identifiers. FSTAT is printed just before this table.

To graph the confidence intervals from section G, the numbers need to 

be rearranged to be compatible with a graphing routine. Because it was 

anticipated that these numbers often would be used in tables instead of 

figures, and because a figure design that was expected to be useful in 

most circumstances was not apparent, a data set suitable for graphing is 

not produced by YCINT.
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The remaining columns are related to the calculated differences and 

are omitted if IDIF = 0 in YCINT.DAT (see item 9 in the instructions for 

YCINT.DAT). The seventh column shows the data identifier from YCINT.DAT2. 

The eight column shows the simulated difference; the ninth column shows 

the standard deviation of the difference; and the tenth and eleventh 

columns show the lower and upper limits of the linear confidence or 

prediction interval on the difference.

COMPUTER PROGRAM BEALEP FOR CALCULATING THE MODIFIED BEALE'S MEASURE OF

MODEL LINEARITY

Theory for BEALEP

As mentioned in the introduction of this report, the modified Beale's 

measure can be used to indicate whether a ground-water flow model is 

roughly linear for parameter values close to the optimized parameter 

values. A model needs to be roughly linear for the linear confidence 

intervals produced by computer programs BCINT and YCINT, which are 

presented in this report, to be accurate.

The modified Beale's measure is calculated by generating sets of 

parameter values close to the optimized parameter values using the 

variances and covariances of the optimized parameter values. The number 

of parameter sets generated equals twice the number of parameters. In the 

generated sets, parameter values corresponding to parameters with small 

variances generally are relatively near the optimized values, while 

parameter values corresponding to parameters with larger variances are 

relatively far from the optimized values in at least some of the generated 

sets. The generated sets are calculated using equation 5.6-14 of Cooley 

and Naff (1990, p. 174)

Once the parameter sets are generated, they are used to calculate 

hydraulic heads and flows in two ways. First, each parameter set is read 

into MODFLOWP and the ground-water flow equation is solved. The simulated 

values of hydraulic heads and flows at observation points generated from 

this solution are referred to as y.., where i refers to the ith observed 

hydraulic head or flow used in the regression and Z indicates that the 

generated parameter set was used. A problem that can occur at this step
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is that some parameter sets may create situations for which the ground- 

water flow equation is difficult or impossible to solve. If solving the 

flow equation is difficult, so that the information printed by the solver 

indicates that convergence is being reached slowly or that the convergence 

criteria have nearly been reached, a solution may be obtainable by 

increasing the number of solver iterations or by increasing the 

convergence criteria. Increasing the convergence criteria by as much as a 

factor of five generally will not have a major impact on the calculated 

value of the modified Beale's measure. Solving the flow equation is 

impossible if any of the generated parameter values produce negative 

values of aquifer transmissivity, vertical conductance, or conductance 

along head-dependent boundaries. To correct this problem, the 

parameter(s) involved need to be log-transformed (see instructions for 

DATA SET 2 of the Parameter-Estimation Package input file, Hill, 1992, p. 

136) the regression needs to be reexecuted, and the parameter sets for the 

modified Beale's measure need to be regenerated. If the y«. can not be 

calculated, it must be assumed that the model is effectively nonlinear.

Each generated parameter set also is used to calculate hydraulic 

heads and flows using the assumption that the ground-water flow equation 

is linear. The ith linearized hydraulic head or flow, represented by the 

symbol y*., where the superscript o indicates that a linear model is used, 

is calculated as:

NP
2XNP' (21)

where NP' equals the number of parameters, b'. is the value of the jth

optimized parameter value, bp. is the value of the jth parameter value *3 * 
from the J?th generated parameter set, 3y./3b. is the partial derivative of

the simulated value of the ith hydraulic head or flow with respect to the 

jth parameter, and the derivatives are calculated using the optimized 

parameter values which, in vector form, are expressed as b'. The 

derivatives are sensitivities, and are calculated as discussed in Hill 

(1992, p. 90-94) .
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Once the above calculations have been completed, the modified Beale's 

measure is calculated using equation 6.2-3 of Cooely and Naff (1990, p. 

188). Using the notation presented above, this equation is equivalent to:

(22)

where ND equals the number of observations of hydraulic head and flow, y. 

are hydraulic heads and flows simulated using the optimized parameter 

values, and all other terms were defined above. The derivation of the 

modified Beale's measure and its critical values are discussed by Cooley 

and Naff (1990, p. 187-189).

In some situations, the modified Beale's measure may not adequately 

indicate whether or not a model is roughly linear. For example, if a 

model is calibrated using only hydraulic-head observations, the y., y.., 

and y.. of equation (22) all relate to hydraulic heads, and the calculated 

value of the modified Beale's measure could not be used to indicate 

whether or not the model was roughly linear for the calculation of a 

linear confidence or prediction interval on a simulated flow. In general, 

if the quantities for which linear confidence or prediction intervals are 

to be calculated are very different than the observations used in the 

regression, the modified Beale's measure may be an inadequate measure of 

model linearity.

To calculate the modified Beale's measure of model linearity as 

described by Cooley and Naff (1990, p. 187-189), subroutine PAR1BE has 

been added to MODFLOWP. PAR1BE produces BEALE.DAT and BEALE.DAT2, input 

files for the computer program BEALEP. BEALEP is a modified version of a 

code presented by Cooley and Naff (1990, p.191-198). Instructions for 

producing the two input files follow. The LINE and DATA SET numbers cited 

refer to parts of the Parameter-Estimation Package input file (Hill, 1992, 

p. 131-150).
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Input for BEALEP

First, the two variables added to the Parameter-Estimation Package 

input file and introduced in items 4 and 6 of the instructions for 

creating YCINT.DAT also are used to calculate the modified Beale's 

measure. IOUE is the FORTRAN UNIT number of BEALE.DAT and is read from 

the end of LINE 7 using 15 format. Therefore, LINE 7 now includes five 

integers read using 15 format.

The second new variable is FSTAT, which is added to a new second line 

of DATA SET 13 (Hill, 1992, p. 150) and is read using F10.0 format. FSTAT 

is the value of the F-distribution statistic required to calculate the 

different parameter sets that are then used to calculate the modified

Beale's measure, F (NP',ND+NPR-NP') (Cooley and Naff, 1990, eqs. 5.6-12
a

and 5.6-14, p. 173-174). For a significance level of 0.05, values of 

FSTAT can be determined using table 2.10.3 of Cooley and Naff (1990, p. 

46). For example, with seven parameters (NP'=7) and 127 observations 

(ND=127; NPR=0), FSTAT=2.02.

Two input files are needed by BEALEP: BEALE.DAT and BEALE.DAT2. 

The steps required to create input files BEALE.DAT and BEALE.DAT2 are as 

follows, starting with the files used for model calibration [The LINE and 

DATA SET numbers cited refer to parts of the Parameter-Estimation Package 

input file (Hill, 1992, p. 131-150)]:

1. Set IPAR=1, IOUE equal to the unit number for BEALE.DAT, and FSTAT

equal to F (NP',ND+NPR-NP'). If the regression has been completed and

the purpose of this run is just to create the input file for

BEALEP.F77, the following procedures will make this run take less time.

(a) Copy the final parameter values from the IOUB file (Hill, 1992, p. 

134) into DATA SET 8.

(b) If prior information is specified using DATA SETS 8 and 10, step 

(a) will have changed your prior parameter estimates. To restore 

them (which is needed to calculate the modified Beale's measure), 

set the entries in DATA SET 10 to 0.0, and specify the prior 

information using repetitions of DATA SET 12 (see Hill, 1992, p. 

230) .
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2. Execute MODFLOWP. BEALE.DAT will be written on FORTRAN unit IOUE.

3. In BEALE.DAT, the generated parameter sets for the modified Beale's 

measure follow the statement "THE PARAMETER SETS FOLLOW. In the 

following steps, these parameter sets are read from BEALE.DAT and are 

used to solve for hydraulic heads and flows along head-dependent 

boundaries defined in DATA SETS 6 and 7. The simulated values of 

hydraulic heads and flows are written to BEALE.DAT2.

4. Set IPAR=-1 on LINE 6.

5. Configure the Output Control input file to avoid printing or saving 

heads or drawdowns. This is necessary because hydraulic heads will be 

calculated (and would be printed and saved if specified in the Output 

Control input file) for all the parameter sets in BEALE.DAT.

6. BEALE.DAT will be read instead of written to in step 8 below. On some 

computers, this means the file definition may need to be changed. The 

FORTRAN UNIT number of BEALE.DAT is Still IOUE.

7. Make any arrangements necessary on your computer to write to BEALE.DAT2 

as FORTRAN UNIT number IOUE+1.

8. Execute MODFLOWP.

9. Unless you plan to repeat the calculation of the modified Beale's 

measure, set IOUE to 0 and reset the Output Control input file to 

print heads and drawdowns as you prefer.

The input and output unit numbers used by BEALEP are defined in the 

three lines following the format statements. Set UN equal to the FORTRAN 

unit number of BEALE.DAT, set IIN2 to the FORTRAN unit number of 

BEALE.DAT2, and set IOUT equal to the FORTRAN unit number of BEALE.OUT. 

All files are opened within the program.
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BEALEP can be executed after checking to be sure that the values 

defined in the PARAMETER statement at the top of BEALEP are large enough. 

NDD needs to equal or exceed NH+NQT of LINE 5 of the Parameter-Estimation 

Package input file (Hill, 1992, p. 132), NPD needs to equal or exceed NPD 

of LINE 3, and MPD needs to equal or exceed MPR of LINE 5. Execution of 

BEALEP produces BEALE.OUT, which is described below.

Output for BEALEP

BEALE.OUT includes the modified Beale's measure statistic and its 

critical values and some background information by which the source of 

model nonlinearity can be identified. BEALE.OUT also includes the 

statistics from the top right column of Cooley and Naff (1990, p.174). 

BEALE.OUT is composed of 11 sections, which are briefly described in table 

4. Examples of sections B, I, J, and K are shown in figure 9. As noted 

in table 4, sections B and I can be used to identify the source of model 

nonlinearity.

Table 4.-- The 11 sections of BEALE.OUT

Section Description

Values of NP', NRES (usually equals NP'; see Cooley and Naff, 
1990, p. 187-197, for uses; to change NRES to a smaller value, 
create BEALE.DAT using FSTAT=F (NRES,ND+NPR-NP') and proceed 
as above), NH+NQT, NPR (numberaof nonzero values in DATA SET 
10; needs to equal 0), MPR, NPTS (2XNRES), calculated error 
variance from the regression, FSTAT (equals FSTAT of DATA SET 
13) .

Optimized parameter values from the regression.

Hydraulic heads and flows defined in DATA SETS 6 and 7 
simulated using the optimized parameter values.

Observed values of the hydraulic heads and flows of DATA SETS 
6 and 7.

Weights of the observations.

Sensitivities calculated using the optimized parameter values.

Prior information on the parameters.

LN for each of the parameters (from DATA SET 2).
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Table 4. - - Continued

Section______________Description

I Each parameter set used to calculate the modified Beale's 
measure is listed with: (1) hydraulic heads and flows 
simulated using this parameter set and the ground-water flow 
model, (2) hydraulic heads and flows calculated using this 
data set and a linear approximation to the ground-water flow 
model (the linear model uses the sensitivities of F), (3) the 
sum of squared errors calculated using simulated hydraulic 
heads and flows from the ground-water flow model, and (4) the 
sum of squared errors calculated using the calculated 
hydraulic heads and flows from the linear model. Large 
differences between the last two values indicate that the 
model is nonlinear with respect to this parameter set. For 
the example output shown in figure 9, the model is 
approximately linear with respect to parameter set 1, and 
nonlinear with respect to parameter set 48. To determine the 
source of the nonlinearity, compare the parameter set in I 
with the optimized set in B to determine which parameter 
values are most different, and compare the two sets of 
hydraulic heads and flows presented in I to determine which 
are most different. For the example output shown in figure 9, 
parameter set 48 differs from the optimized parameter set most 
for parameters 23 and 24, and the dependent variables that are 
most different from the linearized dependent variables are 
those with DID's of SS1, which, for this example, are flows 
along reaches of a head-dependent boundary.

J The modified Beale's measure and its critical values.

K A table of the statistic described by Cooley and Naff (1990, 
p. 174) for each of the parameter sets listed in I, and an 
explanation of how to interpret the values.
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OPTIMUM PARAMETERS
NO
1
2
3
4
5
6
7
8

. PID
RCH
KRB
KRB
KRB
KV
T
T
T

BOPT
0.35405E-02
17715.
44793.
88626.

0.86154E-02
0.96500
0.99012
1.0024

NO.
9

10
11
12
13
14
15
16

PARAMETERS
NO
1
2
3
4
5
6
7
8

. PID
RCH
KRB
KRB
KRB
KV
T
T
T

B
0.31800E-02
15700.
36200.
62700.

0.76100E-02
0.93300
0.96700
0.98900

NO.
9

10
11
12
13
14
15
16

DEPENDENT VARIABLES
NO
1
2
3
4
5
6
7
8
9

10
LI
L2
L3
14
15
16
17
18
19
20
21
22
23
24

. DID
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12

FC
12.174
11.886
11.895
11.572
12.060
11.840
11.456
11.454
10.859
10.572
10.857
10.849
9.2330
9.2281
8.8455
8.8376
8.7533
8.7462
10.542
10.538
4.2326
4.2291
4.2400
4.2325

NO.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

PID
T
T
T
T
T
T
T
T

FOR
PID
T
T
T
T
T
T
T
T

BOPT
1.1264

0.62690
1.1375
1.0156

0.99995
1.5677
1.2035

0.78975

SAMPLE NO
B

1.0600
0.57300
1.0900

0.95100
0.99300
1.3500
1.0900

0.69600
COMPUTED FOR
DID
13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24

LINEARIZED DEPENDENT VARIABLES
NO
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

.
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12

FL
12.130
11.842
11.852
11.530
12.015
11.795
11.409
11.407
10.817
10.531
10.809
10.801
9.1956
9.1908
8.8121
8.8042
8.7181
8.7109
10.493
10.488
4.2093
4.2050
4.2165
4.2088

(FC-FOPT)*W**.5) = 0.
(FL-FOPT)*W**.5) = 0.

NO.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

96349
81862

13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24

FC
7.6559
7.6502
2.6429
2.6372
4.5632
4.5585
2.7779
2.7690
6.2561
6.2517
12.290
12.032
11.665
11.337
11.712
11.427
9.1876
8.9817
6.5663
6.5639
7.8729
7.8651
10.391
10.123

COMPUTED
FL

7.6016
7.5959
2.6252
2.6195
4.5402
4.5356
2.7605
2.7514
6.2125
6.2082
12.245
11.987
11.622
11.296
11.666
11.383
9.1395
8.9360
6.5248
6.5225
7.8385
7.8306
10.353
10.085

NO.
17
18
19
20
21
22
23
24

1
NO.
17
18
19
20
21
22
23
24

SAMPLE NO.
NO.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

FOR SAMPLE
NO.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

PID
T
T
T
T
T
T
T
T

PID
T
T
T
T
T
T
T
T

1
DID
25
25
26
26
27
27
SS1
SS1
SS2
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
NO.

25
25
26
26
27
27
SS1
SS1
SS2
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1

BOPT
0.89533
0.83925
0.81115
0.68161
0.81799
1.5169

0.80766
0.95562

B
0.79900
0.81700
0.72700
0.61900
0.77800
1.2000

0.83300
0.76200

FC
4.8080
4.8181
7.5808
7.5750
11.976
11.681

-50407.
-38360.
-55234.
-61673.
-51444.
-46054.
-42984.
-41815.
-41722.
-41809.
-41234.
-40757.
-40465.
-40405.
-40235.
-39788.
-39650.
-40572.

1
FL

4.7792
4.7903
7.5269
7.5211
11.932
11.637

-49952.
-38045.
-54756.
-61697.
-51622.
-46228.
-43126.
-41930.
-41815.
-41901.
-41335.
-40858.
-40564.
-40499.
-40299.
-39861.
-39720.
-40642.

Figure 9.-- Examples of sections B, I, J, and K of BEALE.OUT.
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PARAMETERS FOR SAMPLE NO. 48
NO.
1  
2
3
4
5
6
7
8

PID
RCH
KRB
KRB
KRB
KV
T
T
T

B
0.35800E-02
18800.
51200.

0.11900E+06
0.92500E-02
0.95000
0.98100
1.0100

NO.
9

10
11
12
13
14
15
16

DEPENDENT VARIABLES
NO.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

DID
1
1
2
2
3
3
4
4
5
5
6
6
7
7
3
8
9
9
10
10
11
11
12
12

FC
11.457
11.188
11.205
10.906
11.285
11.076
10.566
10.564
10.168
9.8995
9.9805
9.9714
8.6873
8.6817
8.3204
8.3116
8.1539
8.1459
9.5299
9.5248
4.0212
4.0171
3.7107
3.7023

LINEARIZED DEPENDENT
NO.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12

FL
12.120
11.852
11.824
11.525
11.989
11.780
11.342
11.340
10.779
10.509
10.771
10.762
9.1706
9.1650
8.7934
8.7844
8.6960
8.6879
10.431
10.426
4.2342
4.2303
4.1165
4.1072

SS( (FC-FOPT)*W**.5) = 38.

NO.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

PID
T
T
T
T
T
T
T
T

B
1.2500

0.87800
1.1500

0.80700
1.0000
1.4900
1.1400

0.77900
COMPUTED FOR
DID
13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24

VARIABLES
NO.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

634

13
13
14
14
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24

FC
5.9715
5.9649
2.4455
2.4389
3.8951
3.8900
2.7375
2.7274
4.6511
4.6462
11.548
11.304
10.980
10.676
10.976
10.710
8.4166
8.2186
5.4864
5.4837
7.4229
7.4141
9.7521
9.5006

COMPUTED
FL

7.4577
7.4509
2.5626
2.5563
4.6993
4.6945
2.9971
2.9886
5.9254
5.9199
12.238
11.995
11.583
11.279
11.634
11.368
9.2300
9.0347
6.6162
6.6138
7.8385
7.8297
10.318
10.063

NO.
17
18
19
20
21
22
23
24

SAMPLE NO.
NO.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

PID
T
T
T
T
T
T
T
T
48

DID
25
25
26
26
27
27
SS1
SS1
SS2
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1

FOR SAMPLE NO.
NO.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

25
25
26
26
27
27
SS1
SS1
SS2
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1
SS1

B
0.60500
0.86000
0.80400
0.67600
0.98200
1.5400

0.20400
6.1700

FC
4.5014
4.5114
5.9430
5.9363
11.262
10.987

-52775.
-39159.
-58897.
-68884.
-54946.
-48105.
-44076.
-42189.
-41667.
-41328.
-39502.
-37717.
-36489.
-37038.
-44967.
-57756.
-69549.
-80147.
48

FL
4.7352
4.7464
7.4191
7.4123
11.910
11.636

-57233.
-42576.
-64359.
-76147.
-61095.
-53770.
-49548.
-47818.
-47535.
-47248.
-45215.
-42955.
-40965.
-39776.
-40273.
-42209.
-45670.
-50460.

SS( (FL-FOPT)*W**.5) = 0.83138

Figure 9.-- Examples of sections B, I, J, and K of BEALE.OUT--Continued,

53



BEALES MEASURE = 2.5213
IF BEALES MEASURE IS GREATER THAN 0.59 , THE MODEL IS NONLINEAR. 
IF BEALES MEASURE IS LESS THAN 0.53E-01, THE MODEL IS ROUGHLY LINEAR 
AND LINEAR CONFIDENCE INTERVALS ARE FAIRLY ACCURATE IF THE RESIDUALS ARE 
NORMALLY DISTRIBUTED. INTERMEDIATE VALUES ARE INCONCLUSIVE.

THE FOLLOWING TABLE SHOWS VALUES OF THE STATISTIC DESCRIBED BY COOLEY AND
NAFF (1990,P.174,TOP OF RIGHT COLUMN). THE STATISTIC EQUALS THE NONLINEAR SUM
OF SQUARED ERRORS EVALUATED FOR EACH DATA SET (NSSE) MINUS THE SUM OF SQUARED
ERRORS FOR THE OPTIMUM PARAMETER VALUES ( 1.30 ).
IF THE MODEL IS LINEAR, THE STATISTIC SHOULD BE CLOSE TO 0.829
IF THE CORRELATIONS BETWEEN PARAMETERS IS SMALL, THE TABLE SHOWS WHICH
INDIVIDUAL PARAMETERS ARE MOST NONLINEAR.
THE FIRST PAIR OF PARAMETER SETS ARE RELATED TO THE FIRST PARAMETER, THE
SECOND PAIR ARE RELATED TO THE SECOND PARAMTER, AND SO ON.

PARAMETER STATISTIC PERCENT 
SET NSSE STATISTIC - 0.829 DIFFERENCE

1 2.27 0.976 0.147 17.72
2 2.60 1.30 0.468 56.47

48 40.0 38.7 37.8 4566.83

Figure 9.-- Examples of sections B, I, J, and K of BEALE.OUT--Continued
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COMPUTER PROGRAM DESCRIPTIONS AND FORTRAN LISTINGS 

Description of Computer Program YR

Program YR reads the weighted residual, simulated value, and the 
square root of the weight from each line of the input files; calculates 
the weighted simulated value; and writes the weighted simulated value and 
the weighted residual to the output file.

The variables used in the program YR are described in the following 
table.

Variable Definition

B Values from the column 'CALC. VALUES' of the tables
'PARAMETERS WITH PRIOR INFORMATION, BY GROUP' and 'PARAMETER 
SUMS WITH PRIOR INFORMATION'. Also used to store the weighted 
simulated value, which is calculated with In B if the 
associated LN ^ 0.

CHECK Character variable used to read the first 10 characters in 
lines of input files HCALi, QCALi, and PCALi. If these 
characters are all blank, it is assumed that this is a blank 
line in the file and the line is skipped.

FILE Character variable used to store the names of files that are 
being opened or closed.

H Values from the column 'CALC. HEAD' of the table 'DATA AT HEAD 
LOCATIONS'. Also used to store H*WT.

IH Flag which is 1 if there are hydraulic-head observations for 
the simulation being considered, and 0 if there are not.

IP Flag which is 1 if there is prior information for the 
simulation being considered, and 0 if there is not.

IQ Flag which is 1 if there are flow observations for the 
simulation being considered, and 0 if there are not.

IS The sequential number of the simulation being considered. IS 
progresses from 1 to NSD.

IUH Fortran unit number of HCALi

IUQ Fortran unit number of QCALi

IUP Fortran unit number for PCALi

IUM Fortran unit number for YR.DAT

IOUT Fortran unit member for YRCALi

LN If LN is not zero, the parameter was log-transformed for the 
regression.

NH Counter for the number of nonblank lines in each file HCALi.
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Variable Definition

NPR Counter for the number of nonblank lines in each file PCALi.

NQ Counter for the number of nonblank lines in each file QCALi.

NSD The number of simulations for which YR tries to read data. 
NSD needs to be less than or equal to 10.

P Value of the prior information. Used for parameters with 
prior information that are scaled with this value (eq. 9).

Q Values from the column 'CALC. FLOW of the table 'DATA FOR 
FLOWS' and used to store weighted simulated values.

QOBS Values from the column 'MEAS. FLOW of the table 'DATA FOR 
FLOWS'.

WT Value from the column 'WEIGHT**.5' of all the tables used to 
create the HCALi, QCALi, and PCALi input files.

WTR Value from the column 'WEIGHTED RESIDUAL' of all the tables 
used to create HCALi, QCALi and PCALi input files.
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Listing of Computer Program YR

C FORTRAN PROGRAM YR
C
C READS PARTS OF THE MODFLOWP OUTPUT FILE WHICH HAVE BEEN PUT IN SEPARATE
C FILES NAMED HCALO, HCAL1,...; QCALO , QCAL1 , . . . ; AND PCALO, PCAL1,....
C THE FIRST SET (HCAL) CONTAIN THE TABLES 'DATA AT HEAD LOCATIONS 7 FROM
C SIMULATION 0, 1, . . . . THE SECOND SET (QCAL) CONTAIN THE TABLES 'DATA
C FOR FLOWS 7 FROM SIMULATIONS 0, 1,.... THE THIRD SET (PCAL)CONTAIN THE
C TABLES 'PARAMETERS WITH PRIOR INFORMATION, BY GROUP 7 , AND 'PARAMETER
C SUMS WITH PRIOR INFORMATION' FROM SIMULATION 0, 1, ....
C
C DATA FILES (YRCALO, YRCAL1,...), WHICH CONTAIN THE DATA NEEDED FOR
C PLOTS OF WEIGHTED RESIDUALS VERSUS WEIGHTED SIMULATED VALUES ARE
C PRODUCED BY YR.
C
C MARY C HILL 01DEC1992
C
C $Date: 1993/10/15 19:14:28 $
C $Revision: 1.4 $
C

CHARACTER*20 FILE
CHARACTER*10 CHECK,BLANK 

C
505 FORMAT(A10,SIX,Fll.0,11X,3F11.0)
506 FORMAT(A10,11X,2F11.0,11X,3F11.0)
507 FORMAT(A10,11X,Fll.0,11X,3F11.0)
508 FORMAT(2G16.8)
509 FORMAT(F10.0,15) 
515 FORMAT(15) 
520 FORMAT('HCAL',11) 
530 FORMAT('QCAL',11) 
540 FORMAT('PCAL',11) 
545 FORMAT('YRCAL',11)
550 FORMAT (' NSD MUST BE LESS THAN 11 -- STOP 7 ) 
560 FORMAT(A10)
580 FORMAT(/,' FILE ',A20,' DOES NOT EXIST 7 )
590 FORMAT(/,' NUMBER OF NON-BLANK LINES READ FROM FILE ',A20,'= ' , 15) 

C
C-----NSD IS EQUAL TO OR GREATER THAN THE NUMBER OF SIMULATIONS FOR WHICH 
C DATA ARE BEING PLOTTED. NSD MUST NOT EXCEED 10.

NSD=5 
C

ISCREEN=6 
IUH=1 
IUQ=2 
IUP=3 
IUM=10 
IOUT=4 

C
IF(NSD.GT.10) THEN 
WRITE(ISCREEN,550) 
STOP 

ENDIF
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C-----INPUT FILE OF SCALING FACTORS FOR PARAMETERS WITH PRIOR INFORMATION 
IM=1
OPEN(UNIT=IUM,FILE='YR.DAT',STATUS='OLD',ERR=8) 
GO TO 9

8 IM=0
FILE='YR.DAT 
WRITE(ISCREEN,580) FILE 

C
9 BLANK=' 

C
C MAIN LOOP 
C

DO 200 IS=1,NSD 
IH=1
IQ=1
IP=1 

C 
C-----FILE WITH FINAL HEADS AND RESIDUALS FROM MODFLOWP OUTPUT FILE

WRITE(FILE,520) IS-1
OPEN(UNIT=IUH,FILE=FILE,STATUS='OLD',ERR=1)
GO TO 2

1 WRITE(ISCREEN,580) FILE
IH=0 

C 
C-----FILE WITH FINAL FLOWS AND RESIDUALS FROM MODFLOWP OUTPUT FILE

2 WRITE(FILE,530) IS-1
OPEN(UNIT=IUQ,FILE=FILE,STATUS='OLD',ERR=3) 
GO TO 4

3 WRITE(ISCREEN,580) FILE
IQ=0 

C
C-----FILE WITH FINAL PARAMETER VALUES FOR PARAMETERS WITH PRIOR 
C INFORMATION AND RESIDUALS

4 WRITE(FILE,540) IS-1
OPEN(UNIT=IUP,FILE=FILE,STATUS='OLD',ERR=5) 
GO TO 6

5 WRITE(ISCREEN,580) FILE
IP=0 

C
6 IF(IH+IQ+IP.EQ.O) GO TO 200 

C
C-----OUTPUT FILE WITH VALUES FOR PLOTTING 

WRITE(FILE,545) IS-1
OPEN(UNIT=IOUT,FILE=FILE,STATUS='UNKNOWN') 

C
C-- - - -INITIALIZE VARIABLES 

NH=0 
NQ=0 
NPR=0 

C-----HEADS

IF(IH.EQ.l) THEN 
DO 10 1=1,10000

READ(IUH,505,END=11) CHECK,H,WT,WTR,FAC
IF (FAC.EQ.O) FAC=1.
IF(CHECK.EQ.BLANK) GO TO 10
NH=NH+1
H=H*WT*FAC
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WRITE(IOUT,508) H,WTR
10 CONTINUE
11 IF(NH.EQ.O) CLOSE(IUH) 

12 IF(NH.NE.O) WRITE(IOUT,560) BLANK
WRITE(ISCREEN, 590) FILE,NH 

ENDIF
C-----FLOWS

C MULTIPLY THE WEIGHTED OBSERVED VALUE (Q) BY ABS(QOBS) IF WT 
C IS A MULTIPLE OF QOBS. 

IF(IQ.EQ.l) THEN 
DO 20 1=1,10000

READ(IUQ,506,END=21) CHECK,QOBS,Q,WT,WTR,FAC 
IF (FAC.EQ.O.) FAC=1. 
IF(CHECK.EQ.BLANK) GO TO 20 
NQ=NQ+1
WRITE(11,508) REAL(NQ),Q 
Q=Q*WT*FAC*ABS(QOBS) 

C Q=Q*WT*FAC
WRITE(IOUT,508) Q,WTR

20 CONTINUE
21 IF(NQ.EQ.O)CLOSE(IUQ)

22 IF(NQ.NE.O) WRITE(IOUT,560) BLANK
23 IF(NQ.NE.O) WRITE(11,560) BLANK

WRITE(ISCREEN, 590) FILE,NQ 
ENDIF

C-----PRIOR INFORMATION
C THE WEIGHTED OBSERVED VALUES (B) ARE MULTIPLIED BY P, THE PRIOR 
C PARAMETER ESTIMATE, BECAUSE THE ESTIMATED PARAMETERS ARE SCALED BY 
C DIVIDING BY P. THE LN IS TAKEN BECAUSE THE ESTIMATED PARAMETERS ARE 
C LOG TRANSFORMED

IF(IP.EQ.l) THEN 
P=l. 
LN=0 
DO 30 1=1,10000

READ(IUP,507,END=31) CHECK,B,WT,WTR,FAC
IF (FAC.EQ.O) FAC=1.
IF(IM.EQ.l) READ(IUM,509) P,LN
IF(CHECK.EQ.BLANK) GO TO 30
NPR=NPR+1
B=P*B
IF(LN.GT.O) B=ALOG(B)
B=B*WT*FAC
WRITE(IOUT,508) B,WTR

30 CONTINUE
31 IF(NPR.EQ.O) CLOSE(IUP)

WRITE(ISCREEN, 590) FILE,NPR 
REWIND(IUM) 

ENDIF
200 CONTINUE 

C
STOP 
END
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Description of Computer Program NORM

Program NORM consists of a MAIN and subroutines ORDER and UNORM. 
MAIN reads all of the weighted residuals from the input files and calls 
subroutine ORDER. Subroutine ORDER orders the residuals, calculates the 
cumulative probability, calls subroutine UNORM (which calculates the value 
of the order statistic), and writes the weighted residuals and the order 
statistics to the output file. This is repeated for each simulation for 
which at least one input file exists.

The variables and their definitions are listed below. Many of the 
variables are the same as the variables in YR; these are not repeated in 
this table.

Variable Description

D DIMENSION (NDD+NPRD,2), used to store the weighted residuals 
and a number equal to 1.0 for hydraulic-head residuals, 2.0 
for flow residuals, and 3.0 for prior information residuals.

NN Number of weighted residuals to be included in a normal 
probability graph.

NMIN Used as temporary storage when ordering the weighted 
residuals.

RMIN Used as temporary storage when ordering the weighted 
residuals.

RNORM Calculated cumulative probability.

SMIN Used as temporary storage when ordering the weighted 
residuals.
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Listing of Computer Program NORM

C FORTRAN PROGRAM NORM
C
C READS PARTS OF THE MODFLOWP OUTPUT FILE WHICH HAVE BEEN PUT IN SEPARATE
C FILES NAMED HCALO, HCAL1,...; QCALO, QCAL1,...; AND PCALO, PCAL1,....
C THE FIRST SET (HCAL) CONTAIN THE TABLES 'DATA AT HEAD LOCATIONS' FROM
C SIMULATION 0, 1,.... THE SECOND SET (QCAL) CONTAIN THE TABLES 'DATA
C FOR FLOWS' FROM SIMULATIONS 0, 1,.... THE THIRD SET (PCAL)CONTAIN THE
C TABLES 'PARAMETERS WITH PRIOR INFORMATION, BY GROUP', AND 'PARAMETER
C SUMS WITH PRIOR INFORMATION' FROM SIMULATION 0, 1,....
C
C DATA FILES WHICH CONTAIN THE VALUES NEEDED FOR NORMAL PROBABILITY PLOTS
C OF WEIGHTED RESIDUALS ARE PRODUCED BY NORM.
C HEAD RESIDUALS ONLY ARE CONTAINED IN FILES NAMED NORMHO, NORMH1,
C HEAD AND FLOW RESIDUALS ARE CONTAINED IN FILES NAMED NORMQO, NORMQ1
C HEAD, FLOW, AND PRIOR INFORMATION RESIDUALS ARE CONTAINED IN FILES NAMED
C NORMPO, NORMP1,....
C
C READS PIECES OF THE MODFLOWP OUTPUT FILE AND PRODUCES INPUT FILES FOR
C MORMAL PROBABILITY PLOTS
C
C
C MARY C HILL 15DEC1992
C
C $Date: 1993/05/18 15:47:02 $
C $Revision: 1.2 $
C
C NDD MUST EQUAL OR EXCEED THE NUMBER OF HEAD AND FLOW OBSERVATIONS.
C NPRD MUST EQUAL OR EXCEED THE NUMBER OF PRIOR ESTIMATES ON THE
C PARAMETERS.
C NSD MUST EQUAL OR EXCEED THE NUMBER OF RUNS. NSD MAY NOT EXCEED 10.

PARAMETER (NDD=100,NPRD=25,NSD=10)
CHARACTER*20 BLANK,FILE,CHECK
DIMENSION D(NDD+NPRD,2),R(NDD+NPRD) 

C
505 FORMAT(A20,41X,10X,23X,Fll.0)
506 FORMAT(A20,IX,22X,22X,Fll.0)
507 FORMAT(A20,IX,11X,22X,Fll.0)
515 FORMAT(15)
520 FORMAT('HCAL',11)
530 FORMAT('QCAL',11)
540 FORMAT('PCAL',11)
545 FORMAT('NORMH',11)
546 FORMAT('NORMQ',11)
547 FORMAT('NORMP',11)
550 FORMAT(' IN PARAMETER STATEMENT IN BEGINNING OF PROGRAM,

1 'NSD MUST BE LESS THAN 11 -- STOP') 
560 FORMAT(A20)
580 FORMAT(/,' FILE ',A20,' DOES NOT EXIST') 

C
ISCREEN=6
IUH=1
IUQ=2
IUP=3
IOUTH=12
IOUTQ=13
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IOUTP=14 
C

IF(NSD.GT.IO) THEN 
WRITE(ISREEN,550) 
STOP 

ENDIF 
BLANK=' 

C
C MAIN LOOP 
C

DO 200 IS=1,NSD 
IH=1 
IQ=1 
IP=1 

C
C-----FILE WITH FINAL HEADS AND RESIDUALS FROM MODFLOWP OUTPUT FILE 

WRITE(FILE,520) IS-1
OPEN(UNIT=IUH / FILE=FILE / STATUS= / OLD' / ERR=1) 
GO TO 2

1 WRITE(ISCREEN,580) FILE
IH=0 

C 
C-----FILE WITH FINAL FLOWS AND RESIDUALS FROM MODFLOWP OUTPUT FILE

2 WRITE(FILE,530) IS-1
OPEN(UNIT=IUQ / FILE=FILE / STATUS='OLD',ERR=3) 
GO TO 4

3 WRITE(ISCREEN,580) FILE
IQ=0 

C
C-----FILE WITH FINAL PARAMETER VALUES FOR PARAMETERS WITH PRIOR 
C INFORMATION AND RESIDUALS

4 WRITE(FILE,540) IS-1
OPEN(UNIT=IUP,FILE=FILE,STATUS='OLD',ERR=5) 
GO TO 6

5 WRITE(ISCREEN,580) FILE
IP=0 

C 
C-----OUTPUT FILES WITH VALUES FOR PLOTTING

6 IF(IH.EQ.l) THEN
WRITE(FILE,545) IS-1
OPEN(UNIT=IOUTH / FILE=FILE,STATUS='UNKNOWN') 

ENDIF 
C

IF(IQ.EQ.l) THEN
WRITE(FILE,546) IS-1
OPEN(UNIT=IOUTQ / FILE=FILE,STATUS='UNKNOWN') 

ENDIF 
C

IF(IP.EQ.l) THEN
WRITE(FILE,547) IS-1
OPEN(UNIT=IOUTP,FILE=FILE,STATUS='UNKNOWN') 

ENDIF 
C
C-----INITIALIZE VARIABLES 

NH=0 
NQ=0 
NPR=0
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DO 8 1=1,NDD+NPRD 
D(I,1)=0. 

8 D(I,2)=0. 
C-----HEADS

IF(IH.EQ.l) THEN 
DO 10 1=1,10000

READ(IUH,505,END=11) CHECK,WTR
IF(CHECK.EQ.BLANK) GO TO 10
NH=NH+1
D(NH,1)=WTR
D(NH,2)=1.

10 CONTINUE
11 IF(NH.EQ.O) CLOSE(IUH)

IF(NH.NE.O) CALL ORDER(D,R,NH,IOUTH,NDD+NPRD) 
ENDIF 

C-----FLOWS

IF(IQ.EQ.l) THEN 
DO 20 1=1,10000

READ(IUQ,506,END=21) CHECK,WTR
IF(CHECK.EQ.BLANK) GO TO 10
NQ=NQ+1
D(NH+NQ,1)=WTR
D(NH+NQ,2)=2.

20 CONTINUE
21 IF(NQ.EQ.O)CLOSE(IUQ)

IF(NQ.NE.O) CALL ORDER(D,R,NH+NQ,IOUTQ,NDD+NPRD) 
ENDIF

C-----PRIOR INFORMATION 
IF(IP.EQ.l) THEN 
DO 30 1=1,10000

READ(IUP,507,END=31) CHECK,WTR
IF(CHECK.EQ.BLANK) GO TO 10
NPR=NPR+1
D(NH+NQ+NPR,1)=WTR
D(NH+NQ+NPR,2)=3.

30 CONTINUE
31 IF(NPR.EQ.O) CLOSE(IUP)

IF(NPR.NE.O) CALL ORDER(D,R,NH+NQ+NPR,IOUTP,NDD+NPRD) 
ENDIF

200 CONTINUE 
C

STOP 
END

SUBROUTINE ORDER(D,R,NN,IPR,ND) 
DIMENSION D(ND,2),R(NN) 

500 FORMAT(2G15.6) 
510 FORMAT (A4)

DO 100 N1=1,NN-1 
NMIN=N1 
RMIN=D(N1,1) 
DO 50 N2=N1+1,NN

IF(D(N2,1).LE.RMIN) THEN 
RMIN=D(N2,1) 
SMIN=D(N2,2)
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NMIN=N2 
ENDIF 

50 CONTINUE
IF(NMIN.NE.Nl) THEN 
D(NMIN,1)=D(N1,1) 
D(NMIN,2)=D(N1,2) 
D(N1,1)=RMIN 
D (Nl, 2) =SMIN 

ENDIF 
100 CONTINUE

DO 200 N=1,NN
RNORM= (REAL (N) - . 5) / (REAL (NN) ) 
CALL UNORM(R(N) ,RNORM, -1) 

200 CONTINUE
DO 300 1=1,3 
DO 290 N=1,NN

290 IF(INT(D(N,2)).EQ.I) WRITE(IPR,500) D(N,1),R(N) 
300 WRITE(IPR,510) ' 

RETURN 
END

SUBROUTINE UNORM IS FROM MODFLOWP (HILL,1992)

C-

C
C
C
C
C
C

cX*
C
c-

C_x*

SUBROUTINE UNORM ( U, RNORM, IP)
----VERSION 1000 01FEB1992

****************************************************************:

FIND THE PROBABILITY RELATED TO A U (IP=l) , OR A U RELATED TO A
PROBABILITY (IP=-1) FOR A STANDARD GAUSSIAN DISTRIBUTION
*****************************************************************

SPECIFICATIONS :

DIMENSION PNORM(2,41)
DATA (PNORM(1,I) , 1=1, 41) /O . 0, . 15, .20, .25, . 30, . 35,

1 .40, .45, .50, .55, .60, .65, .70, .75, .80,
2 .85, .90, .95,1.00,1.05,1.10,1.15,1.20,1.25,
3 1.30,1.35,1.40,1.45,1.50,1.55,1.60,1.65,
4 1.70,1.75,1.80,1.85,1.90,1.95,2.20,
5 4.00,5.5/
DATA (PNORM(2,I) ,1=1,41) /. 5, .5596, .5793, .5987, .6179, .6368,

1 .6554, .6736, .6915, .7088, .7257, .7422, .7580, .7734, .7881,
2 .8023, .8159, .8289, .8413, .8531, .8643, .8749, .8849, .8944,
3 .90320, .91149, .91924, .92647, .93319, .93943, .94520, .95053,
4 .95543, .95994, .96407, .96784, .97128, .97441, .98610,
5 .9999683,1.0/

----GIVEN U, GET THE CUMULATIVE PROBABILITY
IF(IP.EQ.l) THEN

------FIND THE VALUES ABOVE AND BELOW U

AU=ABS (U)
IF(AU.GE.5.5) THEN
RNORM=1.0
IF(U.LT.O.O) RNORM=0.0
RETURN

ENDIF
DO 100 1=1,40
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100 IF (AU.GE.PNORMd, I) .AND.AU.LT.PNORMd, I+l) ) GO TO 150
STOP 'ERROR IN UNORM -- U NOT FOUND' 

C-------INTERPOLATE

150 FACTOR=(AU-PNORMd, I))/(PNORM (1,1+1) -PNORMd, I)) 
RNORM=PNORM(2,I)+FACTOR*(PNORM(2,I+1)-PNORM(2,I)) 
IF(U.LT.O) RNORM=1.0-RNORM 
RETURN 

ENDIF 
C-----GIVEN THE CUMULATIVE PROBABILITY, GET U

IF(IP.EQ.-l) THEN 
C-------FIND THE VALUES ABOVE AND BELOW RNORM

ARNORM=RNORM
IF(RNORM.LT..50) ARNORM=1.-RNORM 
IF(ARNORM.EQ.l.O) THEN 
U=5.5
IF(RNORM.LT..5) U=-5.5 
RETURN 

ENDIF
DO 170 1=1,40

170 IF(ARNORM.GE.PNORM(2,I).AND.ARNORM.LT.PNORM(2,I+l)) 
1 GO TO 190

STOP 'ERROR IN UNORM -- RNORM NOT FOUND' 
C-------INTERPOLATE

190 FACTOR=(ARNORM-PNORM(2,I))/(PNORM(2,I+l)-PNORM(2,I)) 
U=PNORM(1,I)+FACTOR*(PNORM(1,I+l)-PNORM(1,I)) 
IF(RNORM.LT..50) U=-U 
RETURN 

ENDIF 
END

UTI0300 
UTI0301 
UTI0302 
UTI0303 
UTI0304 
UTI0305 
UTI0306 
UTI0307 
UTI0308 
UTI0309 
UTI0310 
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UTI0313 
UTI0314 
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UTI0316 
UTI0317 
UTI0318 
UTI0319 
UTI0320 
UTI0321 
UTI0322 
UTI0323 
UTI0324 
UTI0325 
UTI0326 
UTI0327 
UTI0328
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Description of Computer Program BCINT

Program BCINT reads the input files for all of the simulations, 
calculates the confidence intervals and the plotting positions, and writes 
the parameter values and their plotting positions to the output file, 
followed by the confidence intervals and their plotting positions.

The variables used in the program BCINT are described in the 
following table.

Variable Definition

B DIMENSION (NPD,NSD), estimated parameter values. Also used 
to store the estimated parameter values times BX.

BL DIMENSION (NPD,NSD), lower limits of confidence intervals. 

BU DIMENSION (NPD,NSD), upper limits of confidence intervals.

BX DIMENSION (NPD), multiplicative factors used to scale 
parameter values.

CTMP Character variable used to check location in the input file.

IY DIMENSION (NPD,NSD) , read from data set 3 of the PARi input 
files (table 1) for i = 1, NSD. Confidence intervals are 
calculated for parameters I for which IY(I) * 0, and 
parameters from different simulations with the same value of 
IY(I) are grouped. See the definition for variable Y.

LN DIMENSION (NPD), LN values (see definitions for DATA SET 2 
of MODFLOWP) for each parameter.

NPD Defined in the PARAMETER statement at the beginning of the 
program and used to dimension arrays. Must equal or exceed 
the maximum number of parameters in any of the simulations.

NSD Defined in the PARAMETER statement at the beginning of the 
program and used to dimension arrays. Must equal or exceed 
the number of simulations, which may not exceed 10.

NSIM Counter for the number of simulations for which confidence 
intervals are calculated.

PID DIMENSION (NPD), same as PID in DATA SET 2 of MODFLOWP.

STD DIMENSION (NPD), standard deviations of the estimated 
parameter values.

Y Plotting position calculated by adding (NS-1)/(NSIM+1) to 
IY(I, NS), where NS is one for the first simulation for 
which confidence intervals are calculated, two for the 
second simulation for which confidence intervals are 
calculated and so on, and NSIM at this point in the program 
equals the total number of simulations for which confidence 
intervals are calculated. Y was used as the plotting 
position along the vertical axis in figure 3.
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Listing of Computer Program BCINT

C FORTRAN PROGRAM BCINT
C
C WRITES DATA FILE (CI.OUT) WHICH CONTAINS THE DATA REQUIRED TO PLOT
C ESTIMATED PARAMETER VALUES AND THEIR CONFIDENCE INTERVALS.
C THE INPUT FILES FOR BCINT (PARO, PAR1,...) CONTAIN THE TABLES
C 'PARAMETER SUMMARY FROM THE MODFLOWP OUTPUT FILE.
C
C MARY C. HILL 15DEC1992
C
C $Date: 1993/05/18 15:47:03 $
C $Revision: 1.2 $
C
C NSD MUST EQUAL OR EXCEED THE NUMBER OF RUNS FOR WHICH CONFIDENCE
C INTERVALS ARE TO BE PLOTTED. NSD MAY NOT EXCEED 10.
C NPD MUST EQUAL OR EXCEED THE LARGEST NUMBER OF PARAMETER VALUES
C IN ANY OF THE SIMULATIONS

PARAMETER (NSD=5,NPD=50) 
C

DIMENSION BL(NPD,NSD),B(NPD,NSD),BU(NPD,NSD),BX(NPD), 
1 IY(NPD,NSD),STD(NPD),LN(NPD)
CHARACTER*4 PID(NPD),CTMP,BLANK
CHARACTER*20 FILE 

500 FORMAT(1015) 
505 FORMAT (10F5.0) 
510 FORMAT (16X, 6X, A4 , 6X, A4 , 6X, A4 , 6X, A4 , 6X, A4 , 6X, A4 , 6X, A4 , 6X, A4 , 6X, A4 ,

1 6X,A4)
520 FORMAT(17X,10F10.0) 
530 FORMAT (A4) 
540 FORMAT(15,F10.0) 
550 FORMAT('PAR',11) 
560 FORMAT(2G13.3) 
570 FORMAT(/,' IN PARAMETER STATEMENT IN BEGINNING OF PROGRAM, ',

1 'NSD MUST BE LESS THAN 11')
600 FORMAT(/,' FILE ',A20,' DOES NOT EXIST') 
C

ISCREEN=6
IPAR=1
IOUT=2
BLANK=' 

C
IF(NSD.GT.10) THEN 
WRITE(ISCREEN,570) 
STOP

ENDIF 
C

DO 10 NS=1,NSD
DO 10 IP=1,NPD 

10 IY(IP,NS)=0. 
C

NPMAX=0.
NSIM=0 

C
DO 100 NS=1,NSD

C DEFINE AND OPEN DATA FILE 
WRITE(FILE,550) NS-1
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OPEN (UNIT=IPAR,FILE=FILE,STATUS='OLD' ,ERR=95) 
NSIM=NSIM+1 

C READ DATA
C NUMBER OF PARAMETERS AND STATISTIC FOR CALCULATING CONFIDENCE 
C INTERVALS

READ(IPAR,540) NP,STAT 
IF(NP.GT.NPMAX) NPMAX=NP 

C WERE THE PARAMETERS LOG-TRANSFORMED FOR THE REGRESSION?
READ(IPAR,500) (LN(IP),IP=1,NP)

C THE SEQUENCE IN WHICH THE PARAMETERS FOR THIS SIMULATION ARE 
C PLOTTED

READ(IPAR,500) (IY(IP,NSIM),IP=1,NP) 
C MULTIPLICATIVE FACTORS

READ(IPAR,505) (BX(IP),IP=1,NP) 
C LINES FROM MODFLOWP

READ(IPAR,510) (PID (IP) ,IP=1,NP) 
READ(IPAR,510) CTMP
READ(IPAR,520) (B(IP,NSIM),IP=1,NP) 
READ (IPAR, 530) CTMP
IF(CTMP.NE.' STD'.AND.CTMP.NE.'STD.') THEN 
READ(IPAR,510) CTMP 
READ (IPAR,520) (DUMB,IP=1,NP) 

ENDIF
C STANDARD DEVIATIONS 

READ (IPAR,510) CTMP 
READ(IPAR,520) (STD(IP),IP=1,NP) 

C CALCULATE CONFIDENCE INTERVALS 
DO 20 IP=1,NP

BU(IP,NSIM)=B(IP,NSIM)+STAT*STD(IP) 
BL(IP,NSIM)=B(IP,NSIM)-STAT*STD(IP) 

20 CONTINUE
DO 30 IP=1,NP

IF(LN(IP).NE.O) THEN
B(IP,NSIM)=EXP(B(IP,NSIM)) 
BU(IP,NSIM)=EXP(BU(IP,NSIM)) 
BL(IP,NSIM)=EXP(BL(IP,NSIM)) 

ENDIF 
30 CONTINUE

DO 40 IP=1,NP 
BXX=BX(IP)
B(IP,NSIM) =B(IP,NSIM) *BXX 
BU(IP,NSIM) =BU(IP,NSIM)*BXX 
BL(IP,NSIM) =BL(IP,NSIM)*BXX 

40 CONTINUE
CLOSE(IPAR) 
GO TO 100

C FILE DOES NOT EXIST 
95 WRITE(ISCREEN,600)FILE 
C
100 CONTINUE 
C

OPEN(UNIT=IOUT,FILE='CI.OUT',STATUS='UNKNOWN') 
FRAC=1./REAL(NSIM+1) 
DO 120 NS=1,NSIM 

SUB=REAL(NS)-1. 
DO 120 IP=1,NPMAX

Y=REAL(IY(IP,NS))-SUB*FRAC
68



120 IF(IY(IP,NS).NE.O) WRITE(IOUT,560) B(IP,NS),Y 
WRITE(IOUT,530) BLANK 
DO 140 NS=1,NSIM 
DO 130 IP=1,NPMAX

IF(IY(IP,NS).EQ.O) GO TO 130 
SUB=REAL(NS)-1. 
Y=REAL(IY(IP,NS))-SUB*FRAC 
WRITE(IOUT,560) BL(IP,NS),Y 
WRITE(IOUT,560) BU(IP,NS),Y 

130 CONTINUE 
140 CONTINUE 

STOP 
END
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Description of Computer Program YCINT

YCINT is modified from an unpublished program called RELIAB by R.L. 
Cooley (U.S. Geological Survey, written commun., 1992). The variables used 
in the program YCINT are described in the following table.

Variable Definition

C DIMENSION (NPD,NPD), variance-covariance matrix for the 
estimated parameters.

DID DIMENSION (NDD), data identifiers (see descriptions for DATA 
SETS 6 and 7 of MODFLOWP) for the predictive conditions.

DID1 DIMENSION (NDD), data identifiers (see descriptions for DATA 
SETS 6 and 7 of MODFLOWP) for the base conditions.

DUMBC A character variable used to skip lines in the input files.

H DIMENSION (NDD), the values of the quantities defined by DATA 
SETS 6 and 7 calculated for predictive conditions using 
optimum parameter values.

HI DIMENSION (NDD), the values of the quantities defined by DATA 
SETS 6 and 7 calculated for the base conditions using optimum 
parameter values.

NDD Defined in the PARAMETER statement at the beginning of the 
program. NDD must equal or exceed NH+NQT (LINE 5 of 
MODFLOWP).

NPD Defined in the PARAMETER statement at the beginning of the 
program. NPD must equal or exceed NP (LINE 3 of MODFLOWP).

NVAR Equals NP of LINE 3 of MODFLOWP.

X DIMENSION (NPD,NDD), sensitivities for the optimum parameters 
under predictive conditions.

XI DIMENSION (NPD,NDD), sensitivities for the optimum parameters 
for the base conditions.
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Listing of Computer Program YCINT

C FORTRAN PROGRAM YCINT
C
C CALCULATE LINEAR CONFIDENCE INTERVALS ON SIMULATED HYDRAULIC HEADS
C AND FLOWS ALONG HEAD-DEPENDENT BOUNDARIES.
C
C MARY C. HILL 15DEC1992
C MODIFIED FROM AN UNPUBLISHED PROGRAM CALLED RELIAB BY
C RICHARD L. COOLEY (WRITTEN COMMUN., 1992)
C
C $Date: 1993/05/18 15:47:03 $
C $Revision: 1.2 $
C
C NDD MUST EQUAL OR EXCEED THE NUMBER OF HEADS AND FLOWS FOR WHICH
C INTERVALS ARE CALCULATED
C NPD MUST EQUAL OR EXCEED THE NUMBER OF PARAMETER VALUES

PARAMETER(NDD=100,NPD=30)
CHARACTER*4 DID(NDD),DID1(NDD),DUMBC
DIMENSION X(NPD,NDD),C(NPD,NPD),H(NDD),HI(NDD),X1(NPD,NDD), 

1 V(NDD) ,V1 (NDD)
COMMON/ITP/IIN,IOUT 

C**FORMAT LIST
1 FORMAT (615,2F10.0,215)
2 FORMAT (8F10.0)
3 FORMAT (' NUMBER OF ESTIMATED PARAMETERS = ',I4/
1 ' NUMBER OF INTERVALS........... = ',I4/
2 ' CRITICAL VALUE................ = ',G11.5)

4 FORMAT(/,' INTERVALS ARE CALCULATED ON DIFFERENCES')
5 FORMAT (/,9X,'VALUES COMPUTED WITH OPTIMUM PARAME', 
1'TERS FOR PREDICTIVE CONDITIONS AND ASSOCIATED IDENTIFIERS',/ 
1 IH ,3X,3(3HNO.,2X,'ID',3X,'VALUE',9X))

6 FORMAT (/,9X,'VALUE COMPUTED WITH OPTIMUM PARAME', 
1'TERS FOR CALIBRATION CONDITIONS AND ASSOCIATED IDENTIFIERS',/ 
1 IH ,3X,3(3HNO.,7X,'VALUE',8X))

7 FORMAT(/,' INTERVALS ARE NOT CALCULATED ON DIFFERNCES')
8 FORMAT (/,' SENSITIVITIES FOR OPTIMUM PARAMETERS FOR PREDICTIVE', 
1 ' CONDITIONS')

9 FORMAT (/,' SENSITIVITIES FOR OPTIMUM PARAMETERS FOR CALIBRATION', 
1 ' CONDITIONS')

16 FORMAT(16F13.0)
17 FORMAT (6F13.0)
18 FORMAT (/,' NDD AND NPD, DEFINED IN THE PARAMETER STATEMENT, ',

1 'ARE NOT LARGE ENOUGH.',/,
2 ' SET NDD >=',I5,' AND NPD >=',I5,' -- STOP EXECUTION') 

500 FORMAT(/,' VARIANCE-COVARIANCE MATRIX FOR ESTIMATED PARAMETERS') 
510 FORMAT(/,' CRITICAL VALUE FOR THE INTERVALS = ',G11.5,//,

1/,12X,'SIMQLATED',52X,'SIMQLATED',/,
1 ' NO. ID VALUE STD. DEV.
1 'CONFIDENCE INTERVAL
1 ' ID DIFFERENCE STD. DEV. CONFIDENCE INTERVAL') 

515 FORMAT(/,' CRITICAL VALUE FOR THE INTERVALS = ',G11.5,//,
1/,12X,'SIMULATED',/
1 ' NO. ID VALUE STD. DEV.
1'CONFIDENCE INTERVAL') 

520 FORMAT(I4,3X,A4,G13.6,1X,G13.6,1X,G13.6,';',G13.6,A4,G13.6,IX,
1 G13.6,1X,G13.6,';',G13.6)
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530 FORMAT(20A4)
540 FORMAT(/,' PREDICTION INTERVALS ARE CALCULATED -- YCINTS.VAR',

1 ' IS READ')
545 FORMAT(/,' CONFIDENCE INTERVALS ARE CALCULATED') 
550 FORMAT(/,' CRITICAL VALUE FOR THE INTERVALS = ',G11.5,//, 

1/,12X,'SIMULATED',52X,'SIMULATED',/, 
1 ' NO. ID VALUE STD. DEV. 
1 'PREDICTION INTERVAL
1 ' ID DIFFERENCE STD. DEV. PREDICTION INTERVAL') 

555 FORMAT(/,' CRITICAL VALUE FOR THE INTERVALS = ',G11.5,//, 
1/,12X,'SIMULATED',/,
1 ' NO. ID VALUE STD. DEV. 
1'PREDICTION INTERVAL') 

C
C**DEFINE INPUT FILE, OUTPUT FILE, AND ARRAY DIMENSION 

IIN=1 
IIN2=2 
IIN3=3 
IOUT=4 
IVAR=8 

C
OPEN(IIN,FILE='YCINT.DAT',STATUS='OLD') 

C UNIT IIN2 OPENED BELOW, IF NEEDED
OPEN(IIN3,FILE='RESANP.DAT',STATUS='OLD') 
OPENdOUT, FILE=' YCINT.OUT' , STATUS ='UNKNOWN' ) 

C UNIT IVAR OPENED BELOW, IF NEEDED 
C**READ FIRST LINE OF YCINT.DAT

READ(UN,1) NVAR,NRES,NOBS,NPR,MPR,NPTS,VAR,FSTAT,IDIF,IPRED 
WRITE(IOUT,3) NVAR,NOBS,FSTAT 
IF(NVAR.GT.NPD.OR.NOBS.GT.NDD) THEN 
WRITE(IOUT,18)NVAR,NOBS 
STOP 

ENDIF
IF(IDIF.EQ.l) WRITE(IOUT,4) 
IF(IDIF.NE.l) WRITE(IOUT,7) 
IF(IPRED.EQ.l) WRITE(IOUT,540) 
IF(IPRED.NE.l) WRITE(IOUT,545) 

C**INITIALIZE V AND VI 
DO 60 N=1,NOBS

V(N)=0. 
60 V1(N)=0. 

C
C**READ RESANP.DAT - VARIANCE - COVARIANCE MATRIX ON THE PARAMETERS FROM 
C THE CALIBRATION. MUST BE PRODUCED USING THE STRESSES AND DATA SETS 
C 6 AND 7 FROM THE CALIBRATION. 
C

READ(IIN3,1) IDUMB 
DO 20 1=1,NVAR

READ(IIN3,16) (C(I,J),J=I,NVAR) 
IF(I.LT.NVAR) THEN 
DO 10 J=I+1,NVAR

C(J,I)=C(I,J) 
10 CONTINUE

ENDIF 
20 CONTINUE

WRITE(IOUT,500)
CALL PRTOT(C,NVAR,NVAR,NPD)

72



c
C**READ YCINT.DAT2 - BASE CONDITIONS FOR INTERVALS ON DIFFERENCES.
C PRODUCED WITH IPAR=1; IOUR>0 (DATA SET 13).
C

IF (IDIF.EQ.l) THEN
OPEN(IIN2,FILE='YCINT.DAT2' , STATUS='OLD') 
READ(IIN2,1) IDUMB,IDUMB,NPR 
DO 30 1=1,NVAR 

30 READ(IIN2,16) (DUMB,J=I,NVAR)
IF(IPRED.EQ.l) READ(IIN2,16) (VI (I) ,1 = 1,NOBS) 
IF(IPRED.NE.l) READ(IIN2,16)(DUMB,1=1,NOBS) 
DO 40 N=1,NOBS

40 READ(IIN2,16) (XI(I,N),1=1,NVAR) 
IF(NPR.NE.O) THEN 
READ(IIN2,2) DUMB 
READ(IIN2,2) (DUMB,1=1,NVAR) 

ENDIF
READ(IIN2,16) (HI(N),N=1,NOBS) 
WRITE(IOUT,6)
READ(IIN2,530) (DID1(N),N=1,NOBS) 
CALL PRTOTB(H1,NOBS,DID1) 
WRITE(IOUT,9)
CALL PRTOT(XI,NVAR,NOBS,NPD) 

ENDIF 
C
C**READ YCINT.DAT - PREDICTIVE CONDITIONS FOR INTERVALS ON DIFFERENCES. 
C PRODUCED WITH IPAR=1; IOUE>0 (LINE 7). 
C

READ (UN, 17) (DUMB, J=l, NVAR) 
READ (UN, 530) (DUMBC, J=1,NVAR) 
READ(IIN,530) (DID(N),N=l,NOBS) 
READ(IIN,17) (H(N),N=1,NOBS) 
WRITE(IOUT,5) 
CALL PRTOTB(H,NOBS,DID) 
READ (UN, 17) (DUMB, N=l, NOBS)
IF(IPRED.EQ.l) READ(IIN,2) (V(N),N=l,NOBS) 
IF(IPRED.NE.l) READ(IIN,2) (DUMB,N=l,NOBS) 
DO 50 N=1,NOBS
READ(IIN,17) (X(I,N),1=1,NVAR) 

50 CONTINUE
WRITE(IOUT,8)
CALL PRTOT(X,NVAR,NOBS,NPD) 

C**CALCULATE AND PRINT THE INTERVALS 
IF(IPRED.EQ.O) THEN

IF(IDIF.EQ.l) WRITE(IOUT,510)FSTAT 
IF(IDIF.NE.l) WRITE(IOUT,515)FSTAT 

ELSE
IF(IDIF.EQ.l) WRITE(IOUT,550)FSTAT 
IF(IDIF.NE.l) WRITE(IOUT,555)FSTAT 

ENDIF
DO 80 N=1,NOBS 

S2=0.0 
S21=0.0
DO 70 1=1,NVAR 
DO 70 J=1,NVAR 
IF(IDIF.EQ.l)

1 S21=S21 + (X(I,N) -XI(I,N) ) * C(I,J) * (X(J,N) -X1(J,N))
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70 S2=S2+X(I,N)*C(I,J)*X(J,N) 
S2=S2+V(N) 
S2=S2**.5 
IF(IDIF.EQ.l) THEN

S21=S21+V(N)+V1(N)
S21=S21**.5 

ENDIF
HL=H(N)-FSTAT*S2 
HU=H(N)+FSTAT*S2 
IF(IDIF.EQ.l) THEN

HD=H(N) -H1(N)
HL1=HD-FSTAT*S21
HU1=HD+FSTAT*S21
WRITE(IOUT,520) N,DID(N),H(N),S2,HL,HU,DID1(N),HD,S21,HL1,HU1 

ELSE
WRITE(IOUT,520) N,DID(N),H(N),S2,HL,HU 

ENDIF
80 CONTINUE 

STOP 
END

C
SUBROUTINE PRTOT(C,NR,NC,NRD) 

C**PRINT MATRICES DIVIDED VERTICALLY INTO TEN-COLUMN BLOCKS
DIMENSION C(NRD,NC)
COMMON/ITP/IIN,IOUT
DO 60 K=1,NC,10
J10=K+9
IF(JIO.GT.NC) J10=NC
WRITE(IOUT,70) (J,J=K,J10)
WRITE(IOUT,90)
DO 30 1=1,NR

30 WRITE(IOUT,80) I,(C(I,J),J=K,J10) 
60 CONTINUE
70 FORMAT(IHO,10(9X,13)) 
80 FORMAT (1H ,13,IX,10(IX,Gil.5)) 
90 FORMAT (1H )

RETURN
END

C
SUBROUTINE PRTOTB(VAL,NO,DID) 

C**PRINT VALUES IN THREE GROUPS OF TWO COLUMNS
CHARACTER*4 DID(NO)
DIMENSION VAL (NO)
COMMON/ITP/IIN,IOUT
NR=NO/3
IF(3*NR.NE.NO) NR=NR+1
DO 10 K=1,NR
WRITE(IOUT,20) (L,DID(L),VAL(L),L=K,NO,NR) 

10 CONTINUE
RETURN 

20 FORMAT (1H ,2X,3(13,2X,A4,IX,Gil.5,3X))
END
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Description of Computer Program BEALEP

BEALEP is modified from a program documented by Cooley and Naff 
(1990, p. 190-193). All of the variables used in BEALEP were used in the 
previous version, or are described in the section 'Description of Computer 
Program YCINT' of this report.

Listing of computer program BEALEP

C FORTAN PROGRAM BEALEP
C
C CALCULATES BEALE'S MEASURE OF NONLINEARITY
C
C MARY C. HILL 15DEC1992
C MODIFIED FROM COOLEY AND NAFF (1990, P. 187-189)
C
C $Date: 1993/05/18 15:47:04 $
C $Revision: 1.6 $
C
C MODIFIED BEALE'S MEASURE PROGRAM BY R. L. COOLEY, USGS, DENVER,
C COLO. SEE COOLEY AND NAFF (1990, P. 187-198)
C MODIFIED FOR MODFLOWP BY M. C. HILL 01JUN1992
C VARIABLES IN THE PARAMETER STATEMENT:
C NDD = OR > SUM OF THE HEAD AND FLOW OBSERVATIONS USED IN THE
C REGRESSION (NH+NQT FOR LINE 5 OF MODFLOWP)
C NPD = OR > NUMBER OF PARAMETERS ESTIMATED IN THE REGRESSION
C MPD = OR > MPR OF DATA LINE 5 OF MODFLOWP

PARAMETER(NDD=100,NPD=30, MPD=16)
CHARACTER*4 DID(NDD),PID(NPD)
DIMENSION BOPT(NPD),FOPT(NDD),B(NPD),FC(NDD),FL(NDD),X(NPD,NDD) 
1,W(NDD),WP(NPD+MPD),FOBS(NDD),PRM(NPD+1,MPD),B1(NPD),SUMY(2*NPD), 
2LN(NPD)
COMMON/ITP/IIN,IOUT
COMMON/FLT/X 

C**FORMAT LIST
1 FORMAT (6I5,2F10.0)
2 FORMAT (8F10.0)
3 FORMAT (' NP = ',I4,/,' NRES = ',I4,/,' NH+NQT= ',14, 
I/,' NPR = ',I4,/,' MPR = ',I4,/,' NPTS = ',I4,/, 
2' CALCULATED ERROR VARIANCE = ',Gil.5,/, 
3' FSTAT = ',G11.5)

4 FORMAT (/,26X,18HOPTIMUM PARAMETERS 
1/1H ,3X,3(3HNO.,1X,'PID',5X,4HBOPT,8X))

5 FORMAT (/,9X,'DEPENDENT VARIABLES COMPUTED WITH OPTIMUM PARAME', 
1'TERS',/lH ,3X,3(3HNO.,1X,'DID',5X,4HFOPT,8X))

6 FORMAT (/,21X,26HPARAMETERS FOR SAMPLE NO. ,13 
1/1H ,3X,3(3HNO.,IX,'PID',7X,1KB,9X))

7 FORMAT (/,12X,44HDEPENDENT VARIABLES COMPUTED FOR SAMPLE NO. ,13 
1/1H ,3X,3(3HNO.,1X,'DID',6X,2HFC,9X))

8 FORMAT (/,37H SENSITIVITIES FOR OPTIMUM PARAMETERS)
9 FORMAT (1HO,6X,55HLINEARIZED DEPENDENT VARIABLES COMPUTED FOR SAMP
1LE NO. ,I3/1H ,3X,3(3HNO.,1X,'DID',6X,2HFL,9X))

10 FORMAT (/,' USING FSTAT = ',G11.5,', BEALES MEASURE = ',G11.5,/, 
1' IF BEALES MEASURE IS ',
1'GREATER THAN ',G10.2,', THE MODEL IS NONLINEAR.',/, 
2' IF BEALES MEASURE IS LESS THAN ',G10.2,', THE MODEL IS ', 
3'EFFECTIVELY LINEAR,',/,' AND LINEAR CONFIDENCE INTERVALS ',
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4'ARE FAIRLY ACCURATE IF THE RESIDUALS', 
5' ARE NORMALLY',/,' DISTRIBUTED.',/)

11 FORMAT (/,23H SS((FC-FOPT)*W**.5) = ,G11.5 
1/23H SS((FL-FOPT)*W**.5) = ,G11.5)

12 FORMAT (/,14X,42HRELIABILITY WEIGHTS FOR SAMPLE INFORMATION, 
1/1H ,3X,3(3HNO.,IX,'DID',6X,1HW,10X))

13 FORMAT (1615)
14 FORMAT (/,12X,'STARTING PARAMETERS FROM DATA SET 8', 

1/1H ,3X,3(3HNO.,8X,3HIPR,10X) )
15 FORMAT (/,14X,40HSTANDARD DEVIATIONS OF PRIOR INFORMATION 

1/1H ,3X,3(3HNO.,10X,2HWP,9X))
16 FORMAT (/,6H EV = ,G11.5)
17 FORMAT (6F13.0)
18 FORMAT (/,' DIMENSIONS EXCEED DIMENSIONS IN PARAMETER STATEMENT', 

1 ' -- STOP EXECUTION')
19 FORMAT (/,9X,'OBSERVED VALUES OF THE DEPENDENT VARIABLES', 

1/1H ,3X,3(3HNO.,1X,'DID',5X,4HFOBS,8X))
500 FORMAT(/,' MULTIPLE PRIOR NUMBER',13,

1 ' ESTIMATE(LOG IF LN>0)=',GlO.3,', WEIGHT=',G10.3)
510 FORMAT(' THE FOLLOWING TABLE SHOWS VALUES OF THE', 

1 ' STATISTIC DESCRIBED BY COOLEY AND',/, 
1 ' NAFF (1990,P.174,TOP OF RIGHT COLUMN).', 
1 ' THE STATISTIC EQUALS THE NONLINEAR SUM',/, 
1 ' OF SQUARED ERRORS EVALUATED FOR EACH DATA' , 
1 ' SET (NSSE) MINUS THE SUM OF SQUARED',/,
1 ' ERRORS FOR THE OPTIMUM PARAMETER VALUES (',G10.3,').',/, 
1 ' IF THE MODEL IS LINEAR, THE STATISTIC SHOULD BE CLOSE TO ',
1 GlO.3,'.',/,
2 ' IF THE CORRELATIONS BETWEEN PARAMETERS IS SMALL, THE',
2 ' TABLE SHOWS WHICH INDIVIDUAL',/,
2 ' PARAMETERS ARE MOST NONLINEAR. THE FIRST PAIR OF PARAMETER',
2 ' SETS ARE RELATED TO THE',/,
2 ' FIRST PARAMETER, THE SECOND PAIR ARE RELATED TO THE SECOND',
2 ' PARAMTER, AND SO ON.',
3 //,' PARAMETER',17X,' STATISTIC PERCENT',/,
4 ' SET NSSE STATISTIC -',G10.3,' DIFFERENCE',/) 

520 FORMAT(I6,5X,2G10.3,2X,G10.3,2X,F10.2) 
530 FORMAT(8110)
540 FORMAT(/,' PARAMETER',/,' NUMBER LN',/) 
550 FORMAT(16,19) 
560 FORMAT(20A4) 
600 FORMAT(' END OF BEALE.DAT2.' ,/,' MODFLOWP SOLUTION MUST NOT',

1 ' HAVE CONVERGED FOR NEXT SET OF PARAMETER VALUES.',/,
2 ' CHECK PARAMETER VALUES; NEGATIVE VALUES CAN BE MADE TO',
3 ' STAY POSITIVE BY ESTIMATING THE LOG TRANSFORM') 

C**DEFINE INPUT AND OUTPUT UNIT NUMBERS 
IIN=1 
IIN2=2 
IOUT=3 

C**OPEN FILES
OPEN (UN,FILE='BEALE.DAT',STATUS='OLD',ACCESS='SEQUENTIAL' 

1, FORM=' FORMATTED' )
OPEN (IIN2,FILE='BEALE.DAT2',STATUS='OLD',ACCESS='SEQUENTIAL' 

1, FORM=' FORMATTED' )
OPEN (IOUT,FILE='BEALE.OUT',STATUS='UNKNOWN',ACCESS='SEQUENTIAL' 
1,FORM='FORMATTED') 

C**READ BASE DATA
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READ(UN,1) NVAR,NRES,NOBS,NPR,MPR,NPTS,VAR,FSTAT 
WRITE(IOUT,3) NVAR,NRES,NOBS,NPR,MPR,NPTS,VAR,FSTAT 
IF(NVAR.GT.NPD.OR.NOBS.GT.NDD.OR.MPR.GT.MPD) THEN
WRITE(IOUT,18)
STOP 

ENDIF
READ(IIN,17) (BOPT(J),J=1,NVAR) 
READ(IIN,560) (PID(J),J=l,NVAR) 
WRITE(IOUT,4)
CALL PRTOTB(BOPT,PID,NVAR) 
READ(IIN,560) (DID(I),1=1,NOBS) 
READ(IIN,17) (FOPT(I),1=1,NOBS) 
WRITE(IOUT,5)
CALL PRTOTB(FOPT,DID,NOBS) 
READ(IIN,17) (FOBS(I),1=1,NOBS) 
WRITE(IOUT,19) 
CALL PRTOTB(FOBS,DID,NOBS) 
READ(IIN,2) (W(I),1=1,NOBS) 
WRITE(IOUT,12) 
CALL PRTOTB(W,DID,NOBS) 
DO 20 J=1,NOBS
READ(IIN,17) (X(I,J),1=1,NVAR) 

20 CONTINUE
WRITE(IOUT,8)
CALL PRTOT(X,NVAR,NOBS,NPD)
IF(NPR.GT.O) THEN

READ (UN, 17) (B1(I) ,1=1,NVAR)
WRITE(IOUT,14)
CALL PRTOTB(Bl,PID,NVAR)
READ(IIN,17) (WP(I),1=1,NVAR)
WRITE(IOUT,15)
CALL PRTOTB(WP,PID,NVAR) 

ENDIF 
IF(MPR.GT.O) THEN
DO 30 IMP=1,MPR

READ (UN, 2) (PRM(IP,IMP) , IP=1 ,NVAR+1) , WP (NVAR+IMP) 
WRITE(IOUT,500) IMP,PRM(NVAR+1,IMP),WP(NVAR+IMP) 
CALL PRTOTB(PRM(1,IMP),PID,NVAR) 

30 CONTINUE 
ENDIF
READ(IIN,530) (LN(I),1=1,NVAR) 
WRITE(IOUT,540)
WRITE(IOUT,550) (I,LN(I),1=1,NVAR) 
DO 40 IP=1,NVAR

40 IF(LN(IP).NE.O) BOPT(IP)=ALOG(BOPT(IP))
C**READ DATA FOR EACH SAMPLE AND COMPUTE MODIFIED BEALE'S MEASURE, BN, 
C**AND THE SATAISTIC FROM COOLEY AND NAFF(1990,P.174,TOP OF RIGHT COLUMN) 

SUMA=0. 
SUMB=0.
DO 80 M=1,NPTS
READ(IIN2,2,END=42) (B(J),J=l,NVAR) 
GO TO 43

42 WRITE(IOUT,600) 
STOP

43 CONTINUE
WRITE (IOUT, 6) M
CALL PRTOTB(B,PID,NVAR)
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DO 45 I=1,NVAR
45 IF(LN(I).NE.O) B(I)=ALOG(B(I)) 

READ(IIN2,17) (FC(I),1=1,NOBS) 
WRITE(IOUT,7) M 
CALL PRTOTB(FC,DID,NOBS) 
SUMC=0 . 
SUMD=0. 
SUMY (M) =0 . 
DO 60 J=1,NOBS 
SUM=FOPT(J) 
DO 50 I=1,NVAR

50 SUM=SUM+X(I,J)*(B(I)-BOPT(I)) 
FL(J)=SUM 
TMP=FC(J)-SUM 
SUMA=SUMA+TMP*W (J) *TMP 
TMP=FC(J)-FOPT(J) 
SUMC=SUMC+TMP*W(J) *TMP 
TMP=SUM-FOPT(J) 
SUMD=SUMD+TMP*W(J) *TMP 
TMP=FOBS(J)-FC(J) 
SUMY (M) =SUMY (M) +TMP*W (J) *TMP 

60 CONTINUE
IF(NPR.GT.O) THEN 
DO 70 J=1,NVAR

IF(WP(J).GT.O.) THEN 
TMP=B(J)-BOPT(J) 
TMP=TMP*WP (J) *TMP 
SUMC=SUMC+TMP 
SUMD=SUMD+TMP 
TMP=B1(J) -B(J)
SUMY (M) =SUMY (M) +TMP*WP (J) *TMP 

ENDIF
70 CONTINUE 

ENDIF
IF(MPR.GT.O) THEN 
DO 72 J=1,MPR 

TEMP=0. 
TEMPI=0. 
DO 71 I=1,NVAR 
TEMP1=TEMP1+PRM(I,J)*BOPT(I)

71 TEMP=TEMP+PRM(I,J)*B(I) 
TMP =TEMP - TEMP 1 
TMP=TMP*WP (NVAR+J) *TMP 
SUMC=SUMC+TMP 
SUMD=SUMD+TMP 
TMP=PRM(NVAR+1, J)-TEMP 
SUMY (M) =SUMY (M) +TMP*WP (NVAR+J) *TMP

72 CONTINUE
ENDIF 

75 WRITE(IOUT,9) M
CALL PRTOTB(FL,DID,NOBS)
WRITE(IOUT,11) SUMC,SUMD 

80 SUMB=SUMB+SUMD*SUMD
TMP=NRES
BN=TMP * VAR* SUMA/ SUMB
WRITE(IOUT,10) FSTAT,BN,1./FSTAT,.09/FSTAT
S STAT=VAR*NRE S * FSTAT
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SSE=VAR*(NOBS+NPR+MPR-NVAR) 
WRITE(IOUT,510) SSE,SSTAT,SSTAT
WRITE(IOUT,520) (I,SUMY(I),SUMY (I)-SSE,SUMY(I)-SSE-SSTAT, 

1 100.*(SUMY (I)-SSE-SSTAT)/SSTAT,1=1,NPTS) 
STOP 
END

SUBROUTINE PRTOTB(VAL,VID,NO) 
C**PRINT VALUES IN THREE GROUPS OF TWO COLUMNS

CHARACTER*4 VID(NO)
DIMENSION VAL(NO)
COMMON/ITP/IIN,IOUT
NR=NO/3
IF(3*NR.NE.NO) NR=NR+1
DO 10 K=1,NR
WRITE(IOUT,20) (L,VID(L),VAL(L),L=K,NO,NR) 

10 CONTINUE
RETURN 

20 FORMAT (1H ,2X,3(13,2X,A4,IX,Gil.5,3X))
END

SUBROUTINE PRTOT(C,NR,NC,NRD) 
C**PRINT MATRICES DIVIDED VERTICALLY INTO TEN-COLUMN BLOCKS

DIMENSION C(NRD,NC)
COMMON/ITP/IIN,IOUT
DO 60 K=1,NC,10
J10=K+9
IF(JIO.GT.NC) J10=NC
WRITE(IOUT,70) (J,J=K,J10)
WRITE(IOUT,90)
DO 30 1=1,NR

30 WRITE(IOUT,80) I,(C(I,J),J=K,J10) 
60 CONTINUE
70 FORMAT(1HO,10(9X,13)) 
80 FORMAT (1H ,13,IX,10(IX,Gil.5)) 
90 FORMAT (1H )

RETURN
END
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