Bibliography of Well-Log Applications
Annual Update: October 1, 1992 to September 30, 1993

by

Stephen E. Prensky

Open-File Report 93-0579A

October 1993

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature

1U.S. Geological Survey, Box 25046, MS 971, Denver, CO, 80225
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>ii</td>
</tr>
<tr>
<td>Part A: Basic Well Logging</td>
<td>1</td>
</tr>
<tr>
<td>1. Fundamentals of Well Logging and Well-Log Interpretation</td>
<td>1</td>
</tr>
<tr>
<td>I. Books and General Review Papers</td>
<td>1</td>
</tr>
<tr>
<td>II. General Log Analysis and Log Interpretation</td>
<td>1</td>
</tr>
<tr>
<td>III. General Petrophysics (including Core Analysis; Core Imaging and Image Analysis)</td>
<td>9</td>
</tr>
<tr>
<td>IV. Electromagnetic Logging (Including Resistivity; Nuclear Magnetic; Magnetic)</td>
<td>17</td>
</tr>
<tr>
<td>V. MWD (Measurement While Drilling); Horizontal Wells/Drilling</td>
<td>20</td>
</tr>
<tr>
<td>VI. Cased-Hole and Production Logging; Determination of ROS</td>
<td>26</td>
</tr>
<tr>
<td>VII. Acoustic Logging (Including P and S, Full Waveform, Borehole Seismic, and VSP)</td>
<td>30</td>
</tr>
<tr>
<td>VIII. Nuclear Logging; Geochemical Logging (Elemental Analysis)</td>
<td>34</td>
</tr>
<tr>
<td>IX. Shaly Sands</td>
<td>37</td>
</tr>
<tr>
<td>X. Borehole Gravimetry</td>
<td>39</td>
</tr>
<tr>
<td>XI. Permeability and Determination of Permeability from Logs</td>
<td>39</td>
</tr>
<tr>
<td>XII. Borehole Imaging; Nearwell and Crosswell Imaging and Tomography</td>
<td>41</td>
</tr>
<tr>
<td>XIII. Temperature Logging; Determination of Static BHT; Applications of BHT data; Heat-Flow and Geothermics</td>
<td>44</td>
</tr>
<tr>
<td>XIV. Conditions and Special Situations Affecting Tool Response</td>
<td>46</td>
</tr>
<tr>
<td>XV. Crossplot Techniques and Applications</td>
<td>46</td>
</tr>
<tr>
<td>XVI. Computer and Programmable Calculator Programs for Log Analysis</td>
<td>46</td>
</tr>
<tr>
<td>XVII. Schlumberger International Well Evaluation Conferences</td>
<td>47</td>
</tr>
<tr>
<td>XVIII. Reprint Volumes</td>
<td>47</td>
</tr>
<tr>
<td>XIX Bibliographies</td>
<td>47</td>
</tr>
<tr>
<td>XX. Well-Log-Response Charts</td>
<td>47</td>
</tr>
<tr>
<td>Part B: Applications</td>
<td>48</td>
</tr>
<tr>
<td>2. General Geological and Geotechnical Applications</td>
<td>48</td>
</tr>
<tr>
<td>3. Determination of Facies and Depositional Environment</td>
<td>53</td>
</tr>
<tr>
<td>4. Identification of Depositional Environments by SP and GR Pattern; Sequence Strat.</td>
<td>54</td>
</tr>
<tr>
<td>5. Dipmeter Applications</td>
<td>54</td>
</tr>
<tr>
<td>6. Applications of Artificial Intelligence (AI) and Expert Systems</td>
<td>55</td>
</tr>
<tr>
<td>7. Well-Log Data Processing (Including Automated Log Correlation and Analyses)</td>
<td>56</td>
</tr>
<tr>
<td>8. Natural Gamma-Ray Spectrometry</td>
<td>57</td>
</tr>
<tr>
<td>9. Organic Carbon and Source Rock Determination</td>
<td>57</td>
</tr>
<tr>
<td>10. Tight (Low-Permeability) Gas Sandstones</td>
<td>57</td>
</tr>
<tr>
<td>11. Abnormal Pressure Detection and Evaluation</td>
<td>59</td>
</tr>
<tr>
<td>12. Oil and Gas Shales</td>
<td>60</td>
</tr>
<tr>
<td>13. Heavy Oil and Tar Sandstones</td>
<td>61</td>
</tr>
<tr>
<td>14. Coal and Coalbed Methane</td>
<td>61</td>
</tr>
<tr>
<td>15. Fracture Detection and Evaluation; Wellbore Breakouts and In-Situ Stress Analysis</td>
<td>62</td>
</tr>
<tr>
<td>16. Permafrost and Gas Hydrates</td>
<td>66</td>
</tr>
<tr>
<td>17. Evaporites</td>
<td>66</td>
</tr>
<tr>
<td>18. Mineral Exploration and Evaluation</td>
<td>66</td>
</tr>
<tr>
<td>19. Ground Water Applications</td>
<td>67</td>
</tr>
<tr>
<td>20. Igneous and Metamorphic Rocks (Including DSDP and ODP results)</td>
<td>68</td>
</tr>
<tr>
<td>21. Geothermal Well-Log Evaluation</td>
<td>70</td>
</tr>
<tr>
<td>Part C: Listing of Citations by First Author</td>
<td>71</td>
</tr>
</tbody>
</table>
Introduction

The purpose of this bibliography is to emphasize the *application* and various uses of well-log data. The topical organization is loosely based on research interests within the U.S. Geological Survey (USGS). The following general criteria are applied to papers to determine whether they will be included: 1) the paper must be written in English, 2) it must be obtainable by a research library, and 3) most of the paper should discuss a particular application of well-log data or have immediate impact on the use of such data. Consequently, papers concerning theoretical or mathematical subjects (i.e., modeling), instrumentation design and development, and laboratory research, are generally excluded. For lack of space, abstracts are excluded (except for extended abstracts) and cross-indexing has been kept to a minimum. This update has over 650 new and updated references.

I wish to acknowledge the assistance of the staff at the Denver branch of the USGS library, especially that of Ms. Susann Powers. Their diligence, in tracking down and obtaining the papers listed herein, has made this bibliography possible.
PART A: BASIC WELL LOGGING

1. FUNDAMENTALS OF WELL LOGGING AND WELL-LOG INTERPRETATION

I. Books and General Review Papers

II. General Log Analysis and Log Interpretation

(See also III. General petrophysics; IV. Electromagnetic logging; IX. Shaly sand; 18. Mineral evaluation)

Becker, K., 1988, A guide to ODP tools for downhole measurements: Texas A&M University, Ocean Drilling Program, College Station, Texas, Technical Note No. 10, 68 p.

Salem, H.S., 1993, Derivation of the cementation factor (Archie’s exponent) and Kozeny-Carman constant from well log data, and their dependence on lithology and other physical parameters, SPE-26309: Society of Petroleum Engineers, unsolicited paper.

III. General Petrophysics (including Core Analysis); Core Imaging and Image Analysis
(See also II. General log analysis; IV. Electromagnetic logging; IX. Shaly Sands)

Salem, H.S., 1993, Derivation of the cementation factor (Archie's exponent) and Kozeny-Carman constant from well log data, and their dependence on lithology and other physical parameters, SPE-26309: Society of Petroleum Engineers, unsolicited paper.

IV. Electromagnetic Loggings (Includes Resistivity; Nuclear Magnetic; Magnetic)
(See also II. General log analysis)

V. MWD (Measurement While Drilling): Horizontal Wells Drilling/Logging

(See also II. General log analysis)

VI. Cased Hole and Production Logging: Determination of ROS
(See also VIII. Nuclear logging)

with induced channels, SPE-16817, in 1987 annual technical conference and exhibition, proceedings, v. omega,
formation evaluation and reservoir geology: Society of Petroleum Engineers, p. 681-689. Later reprinted in 1988:
Petroleum Engineers Reprint Series No. 34, p. 176-181.

Aldred, R.D., 1993, Interpretation of pulsed-neutron data in low-salinity environments without base logs, SPE-25374,
in SPE Asia Pacific oil and gas conference and exhibition proceedings: Society of Petroleum Engineers, p. 469-480.

Anonymous, 1991, Slimline tonic for a low salt solution [RST]: Schlumberger Middle East Well Evaluation Review,
no. 11, p. 6-9.

Audah, T., and Chardac, J-L., 1993, Reservoir fluid monitoring using through-tubing carbon-oxygen tools, paper LL, in
34th annual logging symposium transactions: Society of Professional Well Log Analysts, 10 p.

Barba, R.E., Jr., and Meyer, B.R., 1993, Integrating wireline data with three-dimensional hydraulic fracture simulators
in the Spraberry trend, SPE-25509, in Production operations symposium proceedings: Society of Petroleum
Engineers, p. 927-939.

Bigelow, E.L., 1993, Confirmation of a well's mechanical integrity [SBT], OTC-7344, in 25th annual OTC proceedings,

Boyd, D., 1992, Application of the fracture height log to deep sandstone reservoirs, Alberta, Canada: Canadian Well
Logging Society Journal, v. 18, p. 75-103.

Vacuum Grayburg San Andres Unit, paper O, in 34th annual logging symposium transactions: Society of
Professional Well Log Analysis, 24 p.

Chauvel, Y.L., and Oosthoek, P., 1990, Production logging in horizontal wells–applications and experience to date,
SPE-21094, in SPE Latin American petroleum engineering conference proceedings: Society of Petroleum Engineers,
15 p.

making in the Rasau field, SPE-25365, in SPE Asia Pacific oil and gas conference and exhibition proceedings:
Society of Petroleum Engineers, p. 391-396.

Copoulos, A.E., Costall, D., and Nice, S.B., 1993, Planning a coil-tubing-conveyed production logging job in a
horizontal well, SPE-26090, in Western regional meeting proceedings: Society of Petroleum Engineers, p. 603-609.

Corrigan, M., Hoyer, C., and Gaston, C., 1990, Logging on coiled tubing—a proven technique for highly deviated wells

Curnutt, R.C., Maas, R.B., Whittaker, S., and Mas, C., 1991, A new approach to tracer surveys with pulsed neutron
2, p. 315-329.

20-28.

delRosset, W.H.M., 1986, Examples of detection of water flow by oxygen activation on pulsed neutron logs, paper CCC,

Ding, Z., Jordan, C.W., Wu, S.Q., and Nice, S.B., 1993, Production logging in highly deviated and horizontal wells,
paper I, in 15th European formation evaluation symposium transactions: Society of Professional Well Log
Analysts, Norwegian Chapter, 14 p.

Fitz, D.E. and Ganapathy, N., 1993, Quantitative monitoring of fluid saturation changes using cased-hole logs, paper

Wyatt, D.F., Jr., 1993, Advances in carbon/oxygen logs clarify reservoir behind casing: Oil and Gas Journal, v. 91, no. 6, February 8, p. 54-61.

VII. Acoustic Logging
(Including P and S, Full Waveform, Borehole Seismic, and VSP)
(See also 15. Fracture detection)

Stein, N., 1992, Seismic data used to predict formation pressures: Oil and Gas Journal, v. 89, no. 48, November 30, p. 57-58.

VIII. Nuclear Logging: Geochemical Logging (Elemental Analysis)
(See also VII. Cased hole logging; 18. Mineral evaluation)

IX. Shaly Sands

(See also II. General log analysis; IV. Electromagnetic logging)

38

X. Borehole Gravimetry

XI. Permeability and Determination of Permeability From Logs
(See also VII. Acoustic logging; IX. Shaly sands; 15. Fracture detection)

XII. Borehole Imaging: Nearwell and Crosswell Imaging and Tomography
(See also IV. Electromagnetic logging; VII. Acoustic logging; 6. Dipmeter applications; 15. Fracture detection)

Li, Q., and Williamson, P.R., 1992, Crosshole reflection imaging at a borehole test site [abs.], P024, in 54th meeting and technical exhibition, technical programme and abstracts: European Association of Exploration Geophysicists, p. 506-507.

Shima, H., 1992, Vertical electric imaging—a new technique to image electric reflectivity near borehole [abs.], D037, in 54th meeting and technical exhibition, technical programme and abstracts: European Association of Exploration Geophysicists, p. 360-361.

XIII. Temperature Logging, Determination of Static BHT; Applications of BHT Data; Heat-flow and Geothermics
(See also 21. Geothermal logging)

XIV. Conditions and Special Situations Affecting Tool Response
(See also II. General log analysis)

XV. Crossplot Techniques and Applications
(See also II. General log analysis)

NONE

XVI. Computer and Programmable Calculator Programs for Log Analysis

46

XVII. Schlumberger International Well Evaluation Conferences

XVIII. Reprint Volumes

XIX. Bibliographies

XX. Well-Log-Response Charts

NONE
PART B: APPLICATIONS

2. GENERAL GEOLOGICAL AND GEOTECHNICAL APPLICATIONS

3. DETERMINATION OF FACIES AND DEPOSITIONAL ENVIRONMENT

4. IDENTIFICATION OF DEPOSITIONAL ENVIRONMENTS BY SP AND GR PATTERNS; SEQUENCE STRATIGRAPHY

5. DIPMETER APPLICATIONS

6. APPLICATIONS OF ARTIFICIAL INTELLIGENCE (AI) AND EXPERT SYSTEMS

(See also 7. Well-Log Data Processing)

7. WELL-LOG DATA PROCESSING
(INCLUDING LOG AUTOMATED CORRELATION AND ANALYSIS)

8. NATURAL GAMMA-RAY SPECTROMETRY

9. ORGANIC CARBON DETERMINATION AND SOURCE ROCK EVALUATION

Schwartzkopf, T.A., 1992, Source rock potential (TOC + hydrogen index) evaluation by integrating well log and geochemical data: Organic Geochemistry, v. 19, no. 4-6, p. 545-555.

10. TIGHT (LOW-PERMEABILITY) GAS SANDSTONES

(See also IX. Shaly Sands)

Gas Research Institute, 1991, Well logging and log analysis, in Executive summary of SFE No. 3—application of advanced technologies in tight gas sandstones; Travis Peak and Cotton Valley Formations: In Focus—Tight Gas Sands, v. 7, no. 1, p. 17-22.

11. ABNORMAL PRESSURE DETECTION AND DETERMINATION

Stein, N., 1992, Seismic data used to predict formation pressures: Oil and Gas Journal, v. 89, no. 48, November 30, p. 57-58.

12. OIL AND GAS SHALES

13. HEAVY OIL AND TAR SANDSTONES

14. COAL AND COALBED METHANE

15. Fracture Detection and Evaluation; Wellbore Breakouts and In Situ Stress Analysis

(See also 19. Ground water; 20. Igneous rocks; 21. Geothermal logging)

Bell, J.S., Caillet, G., and Le Marrec, G., 1992, The present-day stress regime of the southwestern part of the Aquitaine Basin, France, as indicated by oil well data: Journal of Structural Geology, v. 14, no. 8/9, p. 1019-1032.

Drier, R.B., and Leat, M.B., 1988, Fracture zone identification in the Appalachian fold and thrust belt determined from geophysical logs, in International conference on fluid flow in fractured rocks, proceedings: Georgia State University, Department of Geology, p. 355-369.

16. PERMAFROST AND GAS HYDRATES

17. EVAPORITES

NONE

18. MINERAL EXPLORATION AND EVALUATION

19. GROUND WATER APPLICATIONS
(See also 15. Fracture detection; 20. Igneous rocks)

20. IGNEOUS AND METAMORPHIC ROCKS (Including DSDP and ODP Results)
(See also 15. Fracture detection; 19. Ground water; 21. Geothermal)

Becker, K., 1988, A guide to ODP tools for downhole measurements: Texas A&M University, Ocean Drilling Program, College Station, Texas, Technical Note No. 10, 68 p.

21. GEOTHERMAL WELL-LOG EVALUATION

(See also XIII. Temperature logging; 15. Fracture detection; 19. Ground water; 20. Igneous rocks)

PART C: FIRST-AUTHOR LISTING

Chisholm, T.J. and Chapman, D.S., 1992, Climate change inferred from analysis of borehole temperatures—an example from western Utah: Journal of Geophysical Research, v. 97, no. B10, September, p. 14,155-14,175

Drier, R.B., and Leat, M.B., 1988, Fracture zone identification in the Appalachian fold and thrust belt determined from geophysical logs, in International conference on fluid flow in fractured rocks, proceedings: Georgia State University, Department of Geology, p. 355-369.

Gas Research Institute, 1991, Well logging and log analysis, in Executive summary of SFE No. 3—application of advanced technologies in tight gas sandstones; Travis Peak and Cotton Valley Formations: In Focus—Tight Gas Sands, v. 7, no. 1, p. 17-22.

critical for application of technology [3-part series]: American Oil and Gas Reporter, v. 34, no. 6, June, p. 27-32; v. 34, no. 7, July, p. 25-31.

Li, Q., and Williamson, P.R., 1992, Crosshole reflection imaging at a borehole test site [abs.], P024, in 54th meeting and technical exhibition, technical programme and abstracts: European Association of Exploration Geophysicists, p. 506-507.

digitization during logging on a PC based system, in 4th international symposium on borehole geophysics for
minerals, geotechnical and groundwater applications, proceedings: Society of Professional Well Log Analysts,

Schmoker, J.W., 1984, Empirical relation between carbonate porosity and thermal maturity—an approach to regional

Schmoker, J.W., Coalson, E.B., and Brown, C.A., eds., 1992, Geological studies relevant to horizontal drilling—

Schmoker, J.W., and Gautier, D.L., 1988, Sandstone porosity as a function of thermal maturity: Geology, v. 16, no. 11,
November, p. 1007-1010.

Schmoker, J.W., and Gautier, D.L., 1989, Compaction of basin sediments—modeling based on time-temperature history:

Schmorr, D.R., Targac, G.W., Guillory, R.J., Pearson, C.M., and Eck, M.E., 1993, Improved oxygen activation logging for
waterflow surveillance measurements, SPE-26602, in Western regional meeting proceedings: Society of Petroleum

Schultz, P., Ronen, S., Geoltrain, S., Hattori, M., and Varvik, F., 1993, Mapping reservoir properties from well
measurement guided by seismic attributes, paper CC, in 15th European formation evaluation symposium

Schwartzkopf, T.A., 1992, Source rock potential (TOC + hydrogen index) evaluation by integrating well log and
geochemical data: Organic Geochemistry, v. 19, no. 4-6, p. 545-555.

Sciacca, J., 1991, Application of geophysical logs in determining depositional environments for hydrogeologic
investigations of contaminated sites: Ground Water Management, no. 5, p. 1047-1056.

Scott, D., and Thomsen, L.A., 1993, A global algorithm for pore pressure prediction, SPE-25674, in 8th Middle East oil

for injection and production profiling in the Kuparuk River field, SPE-22130, in SPE international Arctic

Scommeda, N., and Katsube, T.J., 1993, Effect of vacuum-drying and temperature on effective porosity determination for

Sehal, S., Banerjie, V., and Chandra, K., 1991, Gas hydrates—a review: ONGC [Oil and Natural Gas Commission]
Bulletin [India], v. 28, no. 1, p. 179-202.

Serra, O., 1993, Contribution of well logging to knowledge of the crust [in French]: Bulletin de la Societe Geologique de

Serra, O., Stowe, I., and Motet, D., 1993, True integrated interpretation, paper Z, in 34th annual logging symposium

Sharma, B., 1992, A new technique to estimate vertical variability of rock properties for reservoir rock evaluation,
SPE-24724, in SPE annual technical conference and exhibition proceedings, v. omega, Formation evaluation and

from wireline logs at Patrick Draw field, chapter 2, in Integration of the geological/engineering model with

recovery potential, in 2nd international offshore and polar engineering conference proceedings, v. 1: International

Sharma, M.M., and Everett, R.V., 1992, Enhanced reserve and productivity evaluation in tight gas sands: Gas

Sharma, S.K., Gupta, D.K., and Rajaram, P.N., 1990, Application of wireline techniques for improved well completion
and effective zone isolation: ONGC [Oil and Natural Gas Commission] Bulletin [India], v. 27, no. 2, p. 105-132.

107

Shima, H., 1992, Vertical electric imaging--a new technique to image electric reflectivity near borehole [abs.], D037, in 54th meeting and technical exhibition, technical programme and abstracts: European Association of Exploration Geophysicists, p. 360-361.

Stein, N., 1992, Seismic data used to predict formation pressures: Oil and Gas Journal, v. 89, no. 48, November 30, p. 57-58.

Wyatt, D.F., Jr., 1993, Advances in carbon/oxygen logs clarify reservoir behind casing: Oil and Gas Journal, v. 91, no. 6, February 8, p. 54-61.

