PRELIMINARY GEOLOGIC MAP OF THE EDWARDS QUADRANGLE, KERN COUNTY, CALIFORNIA

by G.L. Dixon and A.W. Ward

Open-file Report 93-697

2002

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
INTRODUCTION

The Edwards Quadrangle is located in the Antelope Valley region of the western Mojave Desert of Southern California. The Antelope Valley is a small, closed basin, rimmed by the San Gabriel Mountains, the Sawmill-Liebre Mountains, and the Tehachapi Mountains to the south, southwest, and northwest, res., and by various buttes and pediments to the north and east. The most notable boundaries, however, are the Garlock Fault to the north, which separates the Mojave province from the Basin and Range province, and the San Andreas Fault to the south, which separates the Transverse Range province (Fig. 1).

The western Mojave province, in which the Antelope Valley Basin lies, is characterized by many deep Cenozoic sedimentary basins that are separated by low hills of Mesozoic granitic and metasedimentary rocks and Tertiary volcanic rocks. These basins, which surface and geophysical observations show to trend northeast (parallel to the Garlock Fault), were depocenters for upper Tertiary and lower Quaternary sediments; many contain more than 3 km of alluvium. During Tertiary time, the area drained southwest into the Pacific Ocean. Tectonic activity along the San Andreas and Garlock faults and the uplifting of the Transverse, Tehachapi, and southern Sierra Nevada ranges reversed this drainage pattern and formed new closed basins in the Mojave Desert. In Quaternary time these basins were occupied by pluvial lakes; one in particular, Lake Thompson, covered about 500 km² and was perhaps as deep as 20 m. Today Lake Thompson is represented by the playas Buckhorn, Rosamond, and Rogers dry lakes (Thompson, 1929).

STRATIGRAPHIC UNITS

Local rock units in the area include tuffs, lava flows, and sediments of the Tertiary Tropico Formation, Tertiary fanglomerates, Tertiary intrusive rhyolites and dacites, and deeply weathered Mesozoic granitic rocks. Dibblee (1967) gives excellent background on this subject. Exposed local Quaternary geologic units include sandy alluvium, playa clay, and beach deposits, most of which are late Quaternary in age and related to pluvial Lake Thompson.

Late Quaternary and Holocene drainages into the playas are from the west and south, along the Garlock and San Andreas faults. Much of the surface west of the playas is exposed granitic rocks and fine pediment gravel, cut by well defined shallow arroyos. The eastern side of Rogers Lake has a gentler slope characterized by several long, low alluvial fans and fan segments, some of which were periodically inundated with fluctuations in Lake Thompson. South of the playas, long channels have supplied sediment to both the former and modern lakes, channels, such as Big Rock Creek and Little Rock Creek, associated with large alluvial fans along the front of the San Gabriel Mountains. Ponti and Burke (1980) and Ponti and others (1981) have characterized the exposed alluvium as late Pleistocene (90,000 ybp) to Holocene (4,000 ybp) medium grained, moderately to well sorted, moderately to well stratified sediments with textural and soil development characteristics that are dominated by the addition of calcium carbonate during groundwater fluctuations of pluvial lake stands.

Other Quaternary and Tertiary units in the area have been described by well data (Dutcher and Worts, 1963; Neal and Motts, 1967; Neal, 1968). These units are principally alluvial fan and channel deposits from the south as the Transverse Range (San Gabriel Mts.) were uplifted, and the north as the Tehachapis shed debris.
Figure 1. Sketch map showing major features in the western Mojave Desert.
STRUCTURAL SETTING

Maybey (1960) first recognized the East Antelope Basin from a 40-mgal gravity low and suggested that the steep gravity gradients may be fault controlled. The gravity signature suggests that this is a northeast-trending basin, which is deepest just southwest of Rosamond Lake and shallows to the northeast. Confirmation of this being a fault-bounded basin (at least on the northwest side) has come from gravity data (Morin and others, in press) and also from a series of resistivity anomalies (Zohdy, 1990), as well as subtle surface escarpments, alignment of historical spring discharge mounds trending N30-45E, and steep hydrologic gradients (Ward and others, 1991). The southeast boundary of the basin is less apparent, however, but is definable from field observations and geophysics.

Known and inferred faults in the immediate area trend northwest. Major faults can be recognized from juxtaposed bedrock units and associated with long, linear valleys (with Quaternary and Holocene alluvium) that lead to the playa. Dibblee (1967) considers that several such features may have controlled the development and shape of Rogers Lake; the El Mirage fault and several unnamed faults along the north and south edges of the dry lake define and give the playa its hourglass shape. We consider further that the El Mirage Fault probably extends beneath the central portion of the playa and connects with the Bissell Hills fault.

In the Redman quadrangle immediately south, Ward and Dixon (1994a) recognize a geographic "corridor" in the southern part of Edwards AFB is a geologic fault zone, informally called the Antelope Valley Fault Zone (AVFZ). This corridor trends approximately N30E to N40E, and extends from south of Rosamond Playa to the southwestern part of Rogers Lake, a distance of at least 10 km. Although the authors report no disturbances of the surface in the AVFZ, this corridor is characterized, however, by several depressions that are former (historically active) spring discharge areas in the adjacent Redman Quadrangle. These springs (approximately 30 m in diameter) are circular depressed features, containing loamy soil and peat and commonly surrounded by dead mesquite. In the Rogers Lake North Quadrangle the authors recognize complex deposits on Rogers Lake at South Base that overlie the projected AVFZ (Ward and Dixon, 1994b).

GEOLOGIC UNITS IN THE EDWARDS QUADRANGLE

D Disturbed Ground (Holocene)-- Surfaces disrupted by construction and development
Qah Alluvium (Holocene)--Sand and silt (and minor gravel) in active channels and dry washes. Contains unconsolidated and unsorted granitic sediments; fines often have been reworked by wind into ripples
Qes Eolian Sand (Holocene and Late Pleistocene)--Fine to medium and coarse sand composed of feldspar and quartz, principally on the lee of hills marginal to Rogers Lake
Qafu Fan Alluvium (Late Pleistocene)--Thin deposits of alluvium in fans on slopes immediately adjacent to pluvial Lake Thompson. Moderately sorted sediment derived principally from local granitic rocks, with minor amounts of volcanic and metamorphic rock fragments. Undifferentiated and considered equivalent to Quca of Ponti and Burke (1980) and Ponti and others (1981) -- late Pleistocene (90,000 ybp) to Holocene (4,000 ybp) undifferentiated alluvial sediments around pluvial lake shorelines, medium grained, moderately to well sorted, moderately to well stratified, but with textural and soil development characteristics that are dominated by the addition of calcium carbonate during groundwater fluctuations of pluvial lake stands.

Qpc Playa Deposits (Late Pleistocene)--Clay and silt of Lake Thompson, thinly stratified on flat floor of Rogers Dry Lake

Qbb Beach Bar (Late Pleistocene)--Ridges and hills of sand and gravel marking shoreline of Lake Thompson, stratified, with 1-2-cm-thick gravel layers alternating with 1-m-thick sand beds. May have eolian sand cap of <1m

Qcs Clayey Sand (Late Pleistocene)--Moderately indurated, cohesive beach deposits, composed of coarse to fine sands, silt, and clay, at margins of Rogers Lake. Deposits are indurated by the desiccation of clays but also contain CaCO3

Qpg Pediment Gravel (Pleistocene)--Grus and minor, thin deposits of (undifferentiated) fan alluvium on granitic bedrock slopes leading to Rogers Lake

Tf Fanglomerate (Tertiary?)--Poorly sorted detrital granitic clasts in a weakly consolidated matrix of sand derived from plutonic rocks. Composed primarily of quartz monzonite (with blocks up to 2-3 m in diameter), with lesser amounts of leucogranite pebbles and cobbles. Admixtures of dark reddish brown quartz latite and dacite fragments total <2%

TROPICO GROUP OF DIBBLEE (1960)(TERTIARY)

Ttbh Bissell Hills Formation--Fluvatile and lacustrine sedimentary rocks composed primarily of tan to white bentonitic clays and light gray interbedded cherts and limestones

Ttgh Gem Hill Formation Light tan to grayish white, reworked or bedded rhyolitic tuff; altered. Contains <5% phenocrysts of quartz, feldspar, biotite, and altered mafic minerals

Klg Leucogranite (Cretaceous?)--Leucocratic, biotitic granite and granodiorite, weakly foliated; fine to medium grained; color index 1-5. Composed primarily of quartz, potassic feldspar, and plagioclase. Minor minerals (chiefly biotite) less than 1%. Intrudes quartz monzonite (Klqm)

Klqm Quartz Monzonite/Monzodiorite (Cretaceous?)--Light grayish white, medium-grained granitic rocks. Color index 5-10; dark where altered. Composed of quartz, potassic feldspar, plagioclase, biotite (dark where fresh), and minor hornblende and sphene (3-4 mm). Surface is weathered to depths of three to ten m (altered gruss) at most exposures
PP/Pms Metasedimentary Rocks (Pennsylvanian and/or Permian)-- Metasedimentary rocks consisting of white calcite and white to brown calcsilicate. Occurs as one outcrop located in northeast section of quadrangle (section 14)

REFERENCES
Neal, J.T. and Motts, W.S., 1967, Recent geomorphic changes in playas of western United States, Jour. Geology, 75, 511-525.
Contact, dashed where inferred, dotted where concealed.

Fault, dashed where inferred, dotted where concealed. Bar and ball on downthrown side.

Strike of vertical foliation.

Strike and dip of joint.

Strike and dip of fault plane.

<table>
<thead>
<tr>
<th>Qah</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qes</td>
<td></td>
</tr>
<tr>
<td>Qafu</td>
<td>Qcs</td>
</tr>
<tr>
<td>Qpg</td>
<td></td>
</tr>
<tr>
<td>Tf</td>
<td></td>
</tr>
<tr>
<td>Ttbh</td>
<td>Ttgh</td>
</tr>
</tbody>
</table>

unconformity

| Klg | Klqm |

unconformity

| PP/Pms |

CORRELATION OF UNITS

<table>
<thead>
<tr>
<th>Holocene</th>
<th>QUATERNARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene/Pleistocene</td>
<td></td>
</tr>
<tr>
<td>Late Pleistocene</td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td></td>
</tr>
</tbody>
</table>

| Miocene/Pliocene | TERTIARY |

| CRETACEOUS? |

| PENNSYLVANIAN |
| OR PERMIAN |