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ABSTRACT

To help collect, process, and interpret seismic data used in environmental and geotechnical 
studies, I have developed two computer programs to simulate elastic wave propagation in 
heterogeneous, isotropic, perfectly elastic media. Both programs are based upon the finite 
difference solution of the equation of motion and upon a two-dimensional mathematical 
model of the near-surface. One program simulates P- and Sy-wave propagation and the 
other S/j-wave propagation. Both accurately simulate propagation in the types of 
materials that typically exist in environmental and geotechnical studies: in a homogeneous 
half space, the particle velocities calculated with these finite difference methods are 
virtually identical to velocities calculated with exact, analytical methods. Along with the 
usual seismograms, each program can calculate images of the wave field as it propagates; 
these images show the particle velocities, the dilatational (compressional) components of 
the wave field and the rotational (shear) components of the wave field.

1. INTRODUCTION

An important environmental problem is determining the location and hydraulic 
conductivity of fractures because fractures can rapidly transport contaminants to pristine 
aquifers used for drinking water (Freeze and Cherry, 1979, p. 408-409). The seismic 
method, which uses elastic waves to probe the ground, may be the best method of 
detecting these fractures since it can resolve small details and the waves are strongly 
affected by the fractures. Other environmental problems, for which the seismic method is 
well suited and for the same reasons, include mapping clay layers that can trap dense non- 
aqueous phase liquids (Hulling and Weaver, 1991) and mapping variations in hydraulic 
conductivity that disperse contaminants (Hess et al., 1992). Important geotechnical 
problems for which the seismic method is suitable are detecting cavities in rock and 
fissures in soils (Hasbrouck, 1991).

What is common to these applications is that the heterogeneities   the fractures, the clay 
layers, the changes in lithology, and the voids   are approximately the size of or much 
smaller than the wave lengths of the elastic waves. The implication is that traditional 
seismic methods will not work well. A good example of this point is a study conducted by 
Taylor (1982), who found that the traditional seismic refraction method could not be used 
to determine the orientation of joints. Since that study some advances have been made 
(see e.g., Imse and Levine, 1985), but the fundamental problem of heterogeneity has not 
been fully addressed.

To solve the environmental and geotechnical problems, new acquisition, processing, and 
interpretation techniques that properly account for the heterogeneity must be developed. 
The key to this development is knowing how the heterogeneity affects the waves, and for 
this reason I have developed two computer programs to simulate elastic waves in the 
types of heterogeneous media that are commonly encountered in environmental and 
geotechnical studies.



In this report both programs are described. In the next section, I discuss the equations on 
which the programs are based and the implementation of those equations using the finite 
difference method. Then I discuss proper selection of grid spacing, temporal step size, 
grid size, sources, and recorded wave field. Finally, I demonstrate the accuracy of the 
seismograms computed with the finite difference method by comparing them to 
seismograms computed with exact, analytical solutions.

2. METHOD

The selection of the appropriate method for simulating elastic wave propagation depends 
upon two criteria. First is the size of the heterogeneity, a, compared to a wave length, X, 
and is expressed as the ratio, 27wr/X. For typical environmental and geotechnical studies, 
this ratio generally ranges from 1 to 10, although it could be larger or smaller by a factor 
of 10. The second criterion is the propagation distance, L, compared to a wave length and 
is expressed as the ratio, 27tZA. For typical studies, this ratio generally ranges from 10 to 
100, although, again, it could be much larger or smaller. For the ranges of these two 
ratios, Aki and Richards (1980, p. 748-751) indicate that either finite difference methods 
or finite element methods may be used to simulate wave propagation. I chose the former 
for two reasons. First, the computer code for finite difference methods is simpler than the 
code for finite elements. Second, for materials with high Poisson's ratios, which are 
common in environmental and geotechnical studies, an accurate finite difference method 
has been developed whereas an accurate finite element method has not.

Three assumptions are inherent in the computer programs that I developed to simulate 
wave propagation. (1) The materials through which the waves propagate are isotropic. 
This assumption is satisfactory for soils, but probably not for rock. However, since 
anisotropy probably has less effect on the waves than heterogeneity in environmental and 
geotechnical studies, I will neglect it now. (2) The materials through which the waves 
propagate are perfectly elastic. This assumption is generally poor for the types of 
environmental studies we hope to address   soils and fractured rock have significant 
attenuation. In the future, I will modify the programs to account for the anelasticity of the 
media. (3) The mathematical models for the ground and for the source are two 
dimensional. To understand this assumption, imagine that a right-handed coordinate 
system is used to describe locations in the ground: positive x and positive^ are in the 
horizontal plane, and positive z is downward. The properties of the ground may vary in 
the x and z directions, but not in the>> direction. The source is along a line in the>> 
direction, and its properties do not vary in this direction. Although the ground and the 
source are never two dimensional, this approximation is sometimes satisfactory.

Only the equation of motion and the stress-strain relation (Aki and Richards, 1981, p. 17 
and 20) are needed to develop the equations for the computer programs. Due to 
invariance in the>> direction, all derivatives of displacement and stress with respect to>> are 
zero. As a result, the equation of motion and the stress-strain relation separate into two 
independent systems of equations:
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where A and // are the Lame parameters, and p the density. The ;', j component of the 
stress tensor is r^, the ; component of displacement is «,-, and the ; component of the body

force per unit volume isff . A discontinuity in a component of the stress tensor, T{J , which
is used to repesent some sources. The first system describes P- and Sv-wave propagation, 
the second S^-wave propagation.

I will implement a solution developed by Vireaux (1984 and 1986) using particle velocity, 
v,, instead of particle displacement. The advantage of this approach is that now both 
systems of equations only involve first derivatives:
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These equations can be solved using the finite difference method. Let / be the index for 
the x direction,y for the z direction, and k for time. The stress components and particle 
displacements are calculated for the staggered grids shown in Figures 1 and 2, which are 
for the first and second systems, respectively. The derivatives are expressed with centered 
finite differences, and each equation is solved for the particle velocities and stress 
components:
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In the grid for simulating P- and Sy-wave propagation (Figure 1), the top is a free surface 
that represents the surface of the ground (Aki and Richards, 1980, p. 135). The right, left, 
and bottom sides are transmitting boundaries that simulate wave propagation into an 
infinite space. The equations for the particle velocities and stress components on these 
four sides are derived in Appendix A. Initially all particle velocities and stress components 
are set to zero. At time step 1/2, the particle velocities at the interior grid points are 
calculated with equations 5a and 5b (which include sources represented by body forces), 
at the boundary points with A-4 and A-6, and at the free surface with A-7. At time step 1, 
the stress components at the interior grid points are calculated with equations 5c, 5d, and 
5e (which include sources represented by discontinuities in components of the stress



tensor), at the boundary points with A-3 and A-5, and at the free surface with A-8. This 
two-step cycle is repeated until all waves of interest are recorded.

The procedure for simulating 5/,-wave propagation is similar. The top of the grid (Figure 
2) models a free surface; the left, right, and bottom sides transmitting boundaries. The 
equations for the free surface and these boundaries are in Appendix B. At half time steps, 
they component of particle velocity at the interior grid points is calculated with equation 
6a (which include sources represented by body forces) and at the free surface with B-3. 
At all integral time steps, the stress components at the interior points are calculated with 
equations 6b and 6c (which include sources represented by discontinuities in components 
of the stress tensor) and at the boundary points with B-l and B-2.

3. DISCUSSION OF THE METHOD 

3.1 Grid Spacing

Ideally, the waves that are simulated during a finite difference solution of the wave 
equation propagate at the same speed as that determined by the elastic moduli and density. 
However, the grid causes velocity dispersion, and consequently the spacing between the 
nodes on the grid must be properly selected to minimize this dispersion. Previous 
researchers (see e.g., Aki and Richards, 1980, p. 773-788) have found that from analyzing 
the dispersion of body waves in a homogeneous medium they have enough information to 
properly select the grid spacing for an accurate simulation of all waves.

In Appendix CI derive analytical expressions for the dispersion of the phase and group 
velocities of simulated P- and Sv-waves. These velocities are normalized by the exact 
velocities to make the results easier to compare. In addition to depending upon the exact 
velocities, the normalized velocities for the simulated waves depend upon the grid spacing 
per wave length, the direction of propagation with respect to the grid, and y, a parameter 
related to the temporal step size (see section 3.2). For all calculations, I set ^to 0.95, a 
typical value. I made the grid spacing in the x and z directions the same, a common 
practice. Consequently, the normalized velocities are symmetric with respect to these axes 
  knowing the velocity when the direction of propagation is between 0° and 45° is 
enough information to predict it for any direction.

The dispersion of phase velocity of the P-wave (Figure 3) is negligibly small at all angles 
when the normalized grid spacing is less than 0.2. In contrast, the dispersion of its group 
velocity (Figure 4) is only small when the spacing is less than 0.1; it is severe above 
approximately 0.3 for small angles. I calculated the dispersion for the Sv-wave at extreme 
values of Poisson's ratio: 0.25, which is lower than that of steel, and 0.499, which is higher 
than that of a poorly consolidated soil. For both cases, the dispersion of its phase velocity 
(Figures 5 and 6) is small when the spacing is less than 0.2. The dispersion of its group 
velocity is small when the spacing is less than 0.1 but is large at all angles when the 
spacing is greater than 0.3. A rule-of-thumb that can made from these examples is that the



normalized grid spacing must be less than 0.1 for accurate simulation of body waves. In 
practice, I apply this rule to surface waves too; I obtain accurate results as I will 
demonstrate with an example in section 4. The formulas for the dispersion of the phase 
and group velocities of an ,5/,-wave (Appendix D) are identical to those for aP-wave. 
Consequently, the rule-of-thumb for the P- and 5v-waves applies to .5/,-waves as well.

These calculations demonstrate that in a material with a high Poisson's ratio, which 
commonly occurs in soils, wave propagation can be accurately simulated with a staggered 
finite difference grid. Standard grids give inaccurate results for this situation (Marfurt, 
1984), and for this reason I chose the staggered grid.

3.2 Temporal Step Size

The temporal step size, Af, must be small enough to make the finite difference solution 
stable   if it too large then the solution is unstable, which is manifested by inaccurate 
values for particle velocities and stress components. In Appendix C, I derive a stability 
condition for the simulation of P- and 5^-wave propagation:

(7)

where a is the highest speed of P-wave propagation in the model and ^is a number less 
than 1. (For this formula, I assume that the spacing in the z direction equals that in the x 
direction.) To minimize the number of calculations, I make y close to 1, say 0.95. In 
Appendix D, I derive a stability condition for the simulation of 5^-wave propagation; it is 
identical to the previous equation except the a is replaced by /?, the highest speed of Sfr- 
wave propagation in the model

3.3 Size of Grid

When selecting the size of the grid, several requirements must be considered. The grid 
must be large enough to simulate completely all waves of interest that are created by 
heterogeneities. If a highly accurate simulation is needed, then the grid must be large 
enough that the reflections from the right, left, and bottom boundaries do not interfere 
with the original waves. On the other hand, the grid must not be so large that the capacity 
of the computer memory is being exceeded. Finally, the grid must be as small as possible 
to minimize the amount of computation.

3.4 Sources

With a suitable choice of body forces or discontinuities in components of the stress tensor, 
any field source can be accurately simulated. A blow to a metal plate with a downward 
swing of a hammer and a vibroseis source should be represented by a vertical body force 
at single grid point on the free surface. A bullet entering the ground should be represented 
by a vertical body force at single grid point slightly below the free surface. A blow to a 
metal plate with a sidewards swing of a hammer   the so-called golf shoe developed by



Hasbrouck (1992, oral commun.)   should be represented by a horizontal body force at 
single grid point on the free surface. An explosion, which might be caused by dynamite,

should be represented by discontinuities in two components of the stress tensor, r^ and 

ra , slightly below the free surface.

Because representing a source as a discontinuity in one or more components of the stress 
tensor is difficult to intuit, some comments are necessary. This source is an excess of a 
stress component in a small volume centered at the point of application; the underlying 
theory of such sources is outlined in Aki and Richards (1980, p. 57-60). Approximating 
the volume by a point is valid because its diameter is small compared to the shortest wave 
lengths that are typical in environmental and geotechnical studies. Sometimes considering 
this source in terms of equivalent body forces is helpful The mathematical definition of the 
these equivalents (Aki and Richards, 1980, p. 61) shows that they equal the moment 
tensor times the spatial derivative of a delta function; the later term indicates that these are 
force couples. Another way of thinking about these equivalents, which is imprecise but 
conceptually easy, is that they are tractions on opposite sides of the volume. Because the 
volume is symmetric, the tractions point in opposite directions making them force couples.

3.5 Recorded Wave Field

The wave field may be studied by examining the components of either the particle velocity 
or the stress. Heretofore I have only examined the particle velocity because it is measured 
by most geophones (White, 1983, p. 231) that are used today. Both quantities may be 
recorded as either seismograms or snapshots of the wave field. Seismograms are 
important because field data are recorded this way. Snapshots, which are simply images 
of the wave field constructed from one component of the particle velocity or stress, are 
important because they clearly show how heterogeneity affects the propagating waves. 
For P- and Sy-wave propagation, I have found that these snapshots are easier to analyze if 
they are processed to show the compressional and shear components, which are computed 
from the divergence and curl, respectively, of the particle velocities (Bullen, 1979, p. 73).

4. TESTS OF ACCURACY

I tested the accuracy of the finite difference methods by comparing their solutions to 
exact, analytical solutions. For the results that I will present here, the models are 
homogeneous half-spaces   the most complicated models for which analytical solutions 
exist (Appendices E and F). Because these models contain a free surface, the tests also 
evaluate the accuracy of the free surface boundary.

For the test of P- and ^v-wave propagation, the explosive source, which is 2 m below the 

surface, is represented by discontinuities in two components of the stress tensor, T^ and 

r^ (Figure 9). The source wavelet is the first derivative of a Gaussian (Kelly et al., 1976)



for which the frequencies range from approximately 1 to 50 Hz and the duration is 0.184 
s. The receivers are evenly spaced along the surface. The left, right, and bottom 
transmitting boundaries are far enough away that any reflections from them will be not 
recorded by the receivers. The finite difference solutions for the x and z components of 
the particle velocity closely match the analytical solutions (Figure 10 a and b). The 
matches in other tests with infinite homogeneous models, which are much less 
complicated, are also excellent.

For the test of .S/j-wave propagation, the model and source-receiver configuration are 
identical with two exceptions (Figure 11). First, the sources and receivers are 5 m below 
the surface and are closer together. Second, the source is a body force in the.y direction, 
fy. Again, the finite difference solution for the particle velocity closely matches the 
analytical solution (Figure 12). The match in another test with an infinite homogeneous 
model is also excellent.
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APPENDIX A
TRANSMITTING BOUNDARIES AND FREE SURFACE, 

P~ AND

In this appendix I derive the equations for the transmitting boundaries and the free surface 
that are used in the simulation of P- and Sy-wave propagation on a staggered grid. These 
equations are new although Lysmer and Kuhlemeyer (1969) developed similar transmitting 
boundaries for a standard grid. The equations for the free surface were originally 
developed by M. Prange (1992, oral commun.).

The transmitting boundary on the right edge of the grid (Figure 1) is simulated with 
special expressions for the particle velocities and stress components at the edge nodes. To 
determine what expressions are needed here, examine the second column of nodes from 
the right edge of the grid. In this column vx and TXZ are computed using equations 5 a and 
5c, which can be used only if r^ and vz are known edge nodes. Therefore, expressions for 
TXX and vz must be developed that simulate a boundary. The derivation for the former 
quantity begins with equation 3c without the source term, and a planar body wave is 
assumed to be incident on the boundary. Expressing the planar wave in the frequency- 
wavenumber domain (Aki and Richards, 1980, p. 130-133), this equation becomes:

where kx and kz are the x and z components of the wavenumber, and a> the frequency. 
The variables with the tildes are Fourier components. The particle velocity of a P-wave

moving principally in the x direction will be in the x direction. For this reason, kx /a) can

be replaced by cos Of a where 6 is the angle between the wave normal and the x axis and 
a is the speed of the wave. Similarly, the particle velocity of an Sy-wave moving

principally in the x direction will be in the z direction. For this reason, kjo) can be

replaced by sin #//? where P is the speed of the wave. After these substitutions, equation 
A-l is transformed back to the time-space domain:

,. _ s . (A-2)

Because the source is often near the center of the grid, 9 is small. For this case, cos #« 1 
and sin #« 0. With these approximations, the final equation for T^ is

Ta *-pavx . (A-3) 
In this equation, I use the value of vx in the second column from the right. The derivation 
for vz begins with equation A-3 without the source term, and because it is similar to the 
previous derivation I will only present the result:

12
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In this equation, I use the value of rxr in the second column from the right.

For the transmitting boundary on the left edge of the grid, the derivations are identical to 
what I just presented except that cos#« -1. Therefore the equations for T^ and vz on 
this side are identical to equations A-3 and A-4 except that the minus signs are omitted.

For the transmitting boundary on the bottom of the grid, expressions for TXZ and vz are 
needed at the bottom nodes. The derivations begin with equations 3b and 3f without the 
source terms, and because they are similar to what I just presented I will not repeat them. 
The only significant difference is in the approximation of the angle: 6 is close to 90° 
making cos 9 « 0 and sin #« 1. The final equation for TXZ is

Tn «-p/?vx , (A-5) 
and for v7

    T (A-6)

The advantages of my implementation of the transmitting boundaries over other 
implementations (see e.g., Kausel, 1988) are that they are easy to translate into computer 
code, require little computer memory, and work well in heterogeneous media. The 
disadvantage of my implementation is that the waves hitting the boundary at large 
incidence angles (i.e., between approximately 60 and 90°) are partially reflected. 
Nonetheless, for the simulations that I have conducted this disadvantage has not caused 
any significant problems.

On the free surface, vx, T^, and TZZ must be computed for the finite difference solution of 
the wave equation (Figure 1). By the definition of a free surface (Aki and Richards, 1980, 
p. 135), TZZ and TXZ are zero, and so TZZ is simply set to zero here as the solution is 
computed. To calculate vx, the finite difference approximation of equation 3a is changed. 
The difference in TXZ is taken between the surface and one-half grid spacing below the 
surface (j = XX the finite difference equation is

= v H -i
,-n + P

At_ 
'*> Ax 4.o

(A-7)

To calculate T.^, a modification of equation 3c is used. The problem with a 

straightforward implementation of this equation is that <?zvz is not known. To overcome

13



this problem equation 3d without the source term is used: after setting rzz to zero, it is 

solved for dzvz . This expression is substituted into equation 3c, and after some algebra, 
the result is

ft)
~ ** a  

A + 2/J

This equation is implemented with centered finite differences.

(A-8)

APPENDIX B
TRANSMITTING BOUNDARIES AND FREE SURFACE,

S/,-WAVES

In this appendix I derive the equations for the transmitting boundaries and the free surface 
that are used in the simulation of 5/,-wave propagation on a staggered grid. These 
equations are new. Because the derivations are similar to those for P- and ^y-waves 
(Appendix A), I will omit redundant details.

For the transmitting boundary on the right edge of the grid (Figure 2), a special expression 
for Tyy is needed to simulate propagation into an infinite space. Beginning with equation 
4b without the source term and following a derivation virtually identical to that in 
Appendix A, this expression for the stress component is derived:

Tv *-ppvy . (B-l) 
For the boundary on the left edge, r^ is the same except that the minus sign is omitted. 
For the bottom of the grid, a special expression for T^ is needed. The derivation begins 
with equation 4c without the source term, and after some algebra this expression is 
derived:

Tyt^-p/fry. (B-2)

These transmitting boundaries have the same advantages and disadvantages that the 
boundaries for P- and .Sv-waves have (Appendix A).

On the free surface, Vj, and r^ must be computed (Figure 2). Here equation 4c for r^ can 
be used without any changes. To calculate vy, the difference in ryz is taken between the 
surface and one-half grid spacing below the surface (j = %)', the new finite difference 
equation is

= v.

-i

 (T T

-i
(B-3)
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APPENDIX C
DISPERSION AND STABILITY, 

P- AND S

In this appendix I derive, for P- and Sy-waves, equations to compute the dispersion of 
their phase velocities, equations to compute the dispersion of their group velocities, and an 
equation that must be satisfied for a stable solution. The equations and derivations for the 
group velocities are new. The other equations were presented by Vireaux (1986) without 
any derivations; here I give the complete derivations.

First I will derive the dispersion equations for P- and Sy-waves. Assume that a planar, 
elastic wave is propagating through a homogeneous medium. Because any wave can be 
expressed an a linear combination of planar waves (see e.g., Aki and Richards, 1980, p. 
194-200), detailed insight into the behavior of any wave can be obtained by examining the 
behavior of a planar wave. The components of the particle velocity and stress at location 
7, j and time k can be expressed in terms of related components at location 0,0 and time 0:

V «/o,0

exp[ i(kxiAx + k (C-l)

where kx and kt are the x and z components of the wavenumber, and a> the frequency.

Similar expressions can be readily developed for a plane wave at k + \, i +  £, etc. Such 
expressions are substituted into equations 5a, 5b, 5c, 5d, and 5e, and the resulting system
is

exp[ i(kxiAx + kJAz - (C-2)

where the elements of M are

m =  (e"0^12 - e- ia)A"2 }
11 * \ /

(C-3a)

15



<=
> 

>
|H

-

I

+
 

^

II 
II

O
 

O

to  fc

j* -U

II
(-

0
 

U
>

°1

I

I

n
n u>

n
n U

)
n U

) 
T

)

n
 

n
U

) 0
U

) 3

n
 i U

> g»^

n
n

n U
)

n
n

n u>
 

00

n
n u> n

n
 

n
u>

u> O

n U
) a*



< (C.3u)

.^ e , (C_3y)

=0 (C-3w)

= 0 (C-3x)

*- Az/2

Equation C-2 has a non-trivial solution only if detM = 0. After much algebra, this 
equation is:

0 = T4 +T2 [-(a2 +/f)(x2 +Z2 )] + [a2/?(x* +X2Z2 +Z4 )} (C-4) 

where

(c-5a)

(C.5c)

(C-6a)

(C-6b) 
P

The last two equations are the formulas for the velocities of the P- and Sv-waves, 
respectively.

Equation C-4, which is quadratic in T2 , is solved for this quantity:

T2 = a2 (x2 +Z2 ) (C-7) 

and

T2 =/f(x2 +Z2 ). (C-8)

Substituting equations C-5a, C-5b, and C-5c into these two yields the dispersion relations 
for the P- and
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a2 2 (kIAx} a2-^-sm    =   ̂sm 2 M   +   r 
& 2 ( 2 J Ax2 ( 2 ) Az 2
and

(C-9) V '

.-sm
2 

respectively.

These dispersion equations are easier to use if some simple substitutions are made: (1) Set 

Ax = Az . (2) Let H be the grid spacing per wave length, Ax/ A. (3) Express kx as 

2 ;rcos 91 /I where ^ is the angle from the x axis. (4) Similarly, express kz as 2 ;rsin #/ A . 

(5) For the P-wave, express a> as 2^an / X where an is the phase velocity of the

calculated wave. (6) Use equation C-18 for Af . After some algebra, the phase velocity of 
the calculated P-wave normalized by the true phase velocity is

(C-ll)- --- 
a nyH [V2

Similar substitutions are made for the Sy-wave, and the result is

UV2

To derive the equations for the dispersion of the group velocity, equations C-9 and C-10 
are differentiated with respect to the wavenumber, k. Again, the results are easier to use if

the same six substitutions are made. Denote da> I dk as agn and a as ag because the 
medium is not dispersive. After some algebra, the group velocity of the calculated P-wave 
normalized by the true group velocity is

agn __ (sin#+cos#)sin(2;r#cos0) a7 "

The group velocity of the calculated Sy-wave normalized by the true group velocity is 
calculated similarly, and the result is

18



sn _ (sin 0+ cos 0)sin(2;r#cos 0)n _

p a

I will now use the equations C-9 and C-10 to derive the condition for stability. Because 
the frequency must be real,

(C-15)

Applying this condition to the dispersion equations yields: 

la2 . -/EAx^ a2 . -,(k,Az\
At2 Ax2 ""

and
I 2 ) Az 2

f   \ *>2 [ /c_Ax I B~

(C-16a)

M   . (C-16b)
At2 Ax2 2 J te2 ( 2 J J

If equation C-16a is satisfied, equation C-16b is satisfied because a> B always. 
Consequently I need only equation C-16a. Because the largest value of either sine term in 
this equation is 1,

for which I have set Ax = Az, a common practice. This equation expresses the condition 

on At that must be satisfied for the solution to be numerically stable. In practice, I want 
At as large as possible to reduce the amount of computer computations, and the formula I 
use to calculate it is

where y is some number slightly less than 1, say 0.95.
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APPENDIX D
DISPERSION AND STABILITY, 

5/,-WAVES

In this appendix I derive, for Sfr-waves, an equation to compute the dispersion of the 
phase velocity, an equation to compute the dispersion of the group velocity, and an 
equation that must be satisfied for stability of the solution. All derivations are new. 
Because the derivations are similar to those for P- and Sy-waves (Appendix C), I will omit 
the redundant details.

The components of the particle velocity and stress at location i,j and time k are expressed 
in terms of related components at location 0,0 and time 0:

\* / \°v>
Ty 

T

exp[ i(kJAx + kJAz - cakAt}}. (D-l)

Substitute this expression and similar expressions for the wave at k +  £, / + $, etc. into 
equations 6a, 6b, and 6c. After some algebra the result is

/ \°

*yz exp[ i(kxi

where the elements of N are

At

"13 =
p&z

Ax

_ * In22 - \* I i <aA(/2 --e

(D-2)

"23 =

(D-3a) 

(D-3b) 

(D-3c) 

(D-3d)

(D-3e) 

(D-3f)
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0 (D-3h)

Computing the determinant of N and setting the result to zero yields the dispersion 
equation for a planar 5/,-wave:

1 . 2 (<yAA ff . 2 (kxAx} /? . 2 (kzte} _. ,,  x-siir    U-i-r-sirr     k-^-ysm2     . (D-4)
At2 ( 2 J Ax2 ( 2 J Az2 ( 2 ) '
This dispersion equation is easier to use if substitutions like those used for the Sy-wave are 
made; the result is

- = --- 
(3 nyH [V2

(D-5)

To calculate the dispersion of the group velocity, equation D-4 is differentiated with 
respect to k. After making the same substitutions that were make for the phase velocity, 
the group velocity of the calculated 5/,-wave normalized by the true group velocity is

(sin <9+ cos <9)sin(2;r//cos 6>)

(D-6)

The derivation for the condition for stability is identical to that for the P- and Sv-waves in 
all aspects except one: only one dispersion equation must be considered. Setting Ax = Az, 
the final equation is

** &  ^
In practice I use

(D-8)

to calculate A? where y is some number slightly less than 1, say 0.95.
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APPENDIX E
ANALYTICAL EQUATIONS FOR PARTICLE VELOCITIES, 

P- AND S-WAVE PROPAGATION

In this appendix, I derive exact, analytical equations for particle velocities on a free surface 
due to a linear, dilatational source. I use these particle velocities to determine the 
accuracy of the finite difference solutions forP-and Sy-wave propagation.

The derivation begins with the x and z components of the particle displacements on a free 
surface, ux(x,t) and uz(x,t), due to linear dilatational source for which the temporal part is a 
Heaviside step function. The dependent variables are the horizontal distance along the 
surface, x, and the time, t. Analytical expressions for these quantities are in equations 1 5 
and 16 of Gilbert and Knopoff (1961) and will not be derived here. Since the ground is 
modeled as a linear system, the particle displacements due to a source for which temporal 
part is a delta function are the temporal derivative ofux(x,t) and uz(x,t) (Lathi, 1965, p. 
406-408). The particle displacements due to an arbitrary excitation, f(t), equal the 
convolution of the excitation with the impulse response:

r)rfr (E-l)
A* 

and

(Lathi, 1965, p. 393-394). Both equations are integrated by parts, and the new terms 
outside the integrals go to zero because f(t) is zero at -oo and oo. To calculate the particle 
velocities, differentiate with respect to time and use the chain rule:

(E-3)
dpt

and

t . (E-4) 
dp* p=i-r
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APPENDIX F
ANALYTICAL EQUATIONS FOR PARTICLE VELOCITIES, 

S;,-WAVE PROPAGATION

In this appendix, I derive exact, analytical equations for particle velocities on a free surface 
due to a linear, body force source. I use these particle velocities to determine the accuracy 
of the finite difference solutions for iS/,-wave propagation.

The derivation begins with the>> component of the particle displacement, uy(x,z,t), caused 
by a linear source in an infinite homogeneous medium. The source is a body force acting 
impulsively in the>> direction at the origin, and the displacement only depends upon the 
distance of the observation point from the origin. The analytical expression for uy(x,z,t) is 
given in Aki and Richards (1980, p. 226) and will not be repeated here. When a free 
surface exists, then the particle displacement may be considered the sum of the two 
components because the system is assumed to be linear. The first component, which I will

designate udy (x,z,t), is the displacement due to the wave traveling directly between the 
source and the observation point, and it is computed using the formula for uy(x,z,t). The

second component, which I will designate ury (x,z,t), is the displacement due to the wave 
reflected from the free surface. Because an iS/,-wave that is reflected from a free surface

has the same amplitude as the incident wave, ury (x,z,t) can be computed using the formula
for ny(x,z,t) if the total distance traveled by the reflected wave is used. The particle 
displacement due to an arbitrary excitation,/^, equals the convolution of the excitation 
with the impulse response:

ufy (x,z,t} = J/(f- T)[uJy (x,z,T) + ury (x,z,T)]iT. (F-l)
-oo

To calculate the particle velocities, differentiate with respect to time and use the chain 
rule:

v'(x,z,f) = (F-2)
p=i-r
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Figure 1. Grid used to simulate P- and Sywave propagation.
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DISPERSION, P-WAVE

0.0

0.0 0.1 0.2 0.3 0.4 

GRID SPACING PER WAVE LENGTH

0.5

Figure 3. Normalized phase velocity of a/*-wave simulated on a staggered finite 
difference grid with different spacings. The angle of propagation, 0, is measured from the 
the horizontal.
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DISPERSION, P-WAVE

go.3H
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GRID SPACING PER WAVE LENGTH

0.5

Figure 4. Normalized group velocity of a P-wave simulated on a staggered finite 
difference grid with different spacings. The angle of propagation, 0, is measured from the 
the horizontal.
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Figure 5. Normalized phase velocity of a Sywave simulated on a staggered finite 
difference grid with different spacings. The angle of propagation, 0, is measured from the 
the horizontal. Poisson's ratio is 0.25.
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Figure 6. Normalized phase velocity of a Sywave simulated on a staggered finite 
difference grid with different spacings. The angle of propagation, 0, is measured from the 
the horizontal. Poisson's ratio is 0.499.
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Figure 7. Normalized group velocity of a Sy-wave simulated on a staggered finite 
difference grid with different spacings. The angle of propagation, 6, is measured from the 
the horizontal. Poisson's ratio is 0.25.
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Figure 8. Normalized group velocity of a Sy-wave simulated on a staggered finite 
difference grid with different spacings. The angle of propagation, 0, is measured from the 
the horizontal. Poisson's ratio is 0.499.
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SURFACE OF GROUND

10m

Figure 9. Model and source-receiver geometry used to test the accuracy of the finite 
difference simulation off- and Sy- wave propagation.
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(a) 10. 20. 30. 40. 50. 

OFFSET (m)

 2- 
ai

(b) 10. 20. 30. 40. 50

Figure 10. (a) x and (b) z components of the particle velocity for the model in Figure 9. 
The finite difference solution is represented by the solid lines; the exact, analytical solution 
by the dots.
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SURFACE OF GROUND

5m

Figure 11. Model and source-receiver geometry used to test the accuracy of the finite 
difference simulation of Sfr- wave propagation.
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Figure 12. y component of the particle velocity for the model in Figure 11. The finite 
difference solution is represented by the solid lines; the exact, analytical solution by the 
dots.
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