


# Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters near the Confluence of the Mississippi River and the Illinois, Missouri, and Ohio Rivers, June 1989 and May–June 1990



## Cross sectional concentration data for selected organic contaminants in river waters near the confluence of the Mississippi River and the Illinois, Missouri, and Ohio Rivers, June 1989 and May-June 1990

By Colleen E. Rostad, LaDonna M. Bishop, Wilfred E. Pereira, and Thomas J. Leiker

Open-File Report 93-371

U.S. Department of the Interior U.S. Geological Survey

#### **U.S. Department of the Interior**

Gale A. Norton, Secretary

#### **U.S. Geological Survey**

Charles G. Groat, Director

U.S. Geological Survey, Reston, Virginia: 2004

For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

## **Contents**

| Abstract                                     |   |
|----------------------------------------------|---|
| Introduction                                 | 1 |
| Purpose and Scope                            | 1 |
| Acknowledgments                              | 2 |
| Sample Collection, Preparation, and Analysis | 2 |
| Results                                      | 4 |
| Literature Cited                             |   |

## Figures

| 1. | Location of sampling cross-sections below the confluence of the Mississippi and    |     |
|----|------------------------------------------------------------------------------------|-----|
|    | Ohio Rivers. The number after the site name is the river mile [modified from Moody |     |
|    | and Meade, 1993)                                                                   | . 3 |

## Tables

| 1.  | Compounds for which samples were analyzed and their applications                                                                                        | . 2 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.  | Herbicide data for the Mississippi River at St. Louis, Missouri, June 9, 1989.<br>Total river width was 508 meters                                      | 4   |
| 3.  | Herbicide data for the Mississippi River below Hickman, Kentucky, June 13, 1989.<br>Total river width was 1,135 meters                                  | 5   |
| 4.  | Industrial organic-contaminant data for the Mississippi River at St. Louis, Missouri, June 9, 1989. Total river width was 508 meters                    | 5   |
| 5.  | Industrial organic-contaminant data for the Mississippi River below Hickman,<br>Kentucky, June 13, 1989. Total river width was 1,135 meters             | 6   |
| 6.  | Industrial organic-contaminant data for the Mississippi River near Cairo, Illinois,<br>May 31, 1990. Total river width is 696 meters                    | 6   |
| 7.  | Industrial organic-contaminant data for the Mississippi River for the Ohio River at Olmsted, Illinois, May 31, 1990. Total river width was 1,098 meters | 6   |
| 8.  | Industrial organic-contaminant data for the Mississippi River at Wickliffe, Kentucky, June 1, 1990. Total river width was 827 meters                    | 7   |
| 9.  | Industrial organic-contaminant data for the Mississippi River near Columbus,<br>Kentucky, June 1, 1990. Total river width was 912 meters                | 7   |
| 10. | Industrial organic-contaminant data for the Mississippi River above New Madrid,<br>Missouri, June 2, 1990. Total river width was 1,060 meters           | 8   |
| 11. | Industrial organic-contaminant data for the Mississippi River at Caruthersville,<br>Missouri, June 3, 1990. Total river width was 849 meters            | 8   |
| 12. | Average, minimum, and maximum uncertainties of replicate analyses as a percentage of the mean concentration for the herbicide data                      |     |
| 13. | Average, minimum, and maximum uncertainties for replicate analyses as a percentage of the mean concentration for the industrial organic-contaminant     |     |
|     | data                                                                                                                                                    | 10  |

## **Conversion Factors**

| Multiply        | Ву                       | To obtain                     |
|-----------------|--------------------------|-------------------------------|
|                 | Length                   |                               |
| meter (m)       | 3.281                    | foot (ft)                     |
| micrometer (µm) | 3.937 X 10 <sup>-5</sup> | inch (in.)                    |
| kilometer (km)  | 3.281                    | foot (ft)                     |
|                 | Volume                   |                               |
| liter (L)       | 0.2642                   | gallon (gal)                  |
| microliter (µL) | 3.531 X 10 <sup>-8</sup> | cubic foot (ft <sup>3</sup> ) |
| milliliter (mL) | 3.531 X 10 <sup>-5</sup> | cubic foot (ft <sup>3</sup> ) |
|                 | Mass                     |                               |
| gram (g)        | 0.03527                  | ounce, avoirdupois (oz)       |
| kilogram (kg)   | 2.205                    | ounce, avoirdupois (oz)       |

## Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters near the Confluence of the Mississippi River and the Illinois, Missouri, and Ohio Rivers, June 1989 and May-June 1990

By Colleen E. Rostad, LaDonna M. Bishop, Wilfred E. Pereira, and Thomas J. Leiker

## Abstract

Water samples were collected upstream and downstream from the confluence of the Ohio River and Mississippi River to study mixing of the river waters. Samples collected in June 1989 on the Mississippi River were analyzed for alachlor, atrazine, 2-chloro-2',6'-diethylacetanilide, cyanazine, desethyl-atrazine, desisopropylatrazine, 2,6-diethylaniline, 2-hydroxy-2',6'-diethylacetanilide, metolachlor, simazine, trimethyltriazinetrione, tris(2-chloroethyl) phosphate, and tris(chloroisopropyl) phosphate. Samples collected upstream and downstream from the confluence of the Ohio River and Mississippi River in May-June 1990 were analyzed for trimethyltriazinetrione, tris(2-chloroethyl) phosphate, and tris(chloroisopropyl) phosphate. Concentration data for six to fifteen locations across the rivers are presented in tabular form for two sites in 1989 and six sites in 1990.

#### Introduction

A knowledge of how rivers mix at and downstream from their confluence provides a basis for prediction of pollutant transport and dilution; such information can be gained by assessment of the distribution of contaminants in the river water. The U.S. Geological Survey conducted a study of pollutant transport in the Mississippi River from St. Louis, Missouri to New Orleans, Louisiana from July 1987 to June 1990.

The sampling protocol for the Mississippi River study from July 1987 to June 1989 consisted of collecting composite samples along cross-sections of the river and selected tributaries. The sampling protocol was expanded in June 1989 to include discrete samples collected at verticals along a crosssection. Water samples were collected at two sites—one site downriver from the Upper Mississippi-Missouri-Illinois River confluence near St. Louis, Missouri, and one site downriver from the Upper Mississippi-Ohio River confluence near Hickman, Kentucky.

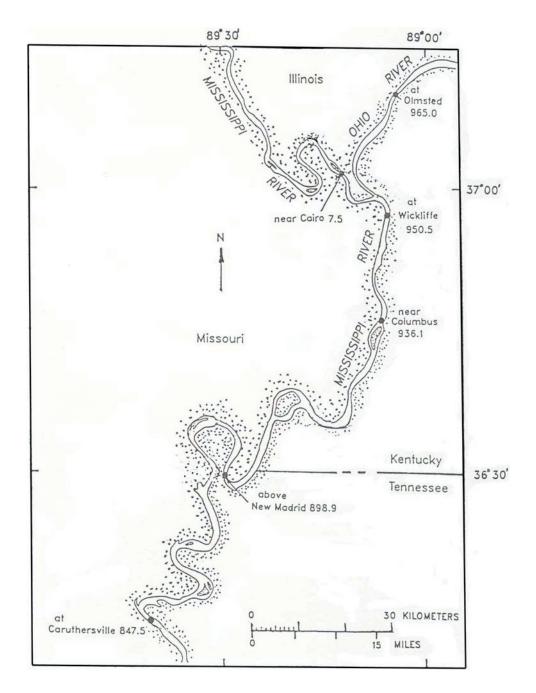
In May-June 1990 the study focused on the Upper Mississippi-Ohio River confluence and was expanded to seven sampling sites. The purpose of this phase of the study was to compare the transverse mixing that occurs along a straight reach of the river with the mixing that occurs along a curved reach of river. The straight reach started at the sampling site at Wickliffe, Kentucky (5 kilometers (km) downriver from the confluence), and ended 23 km downriver at the sampling site near Columbus, Kentucky. The curved reach started at the sampling site above New Madrid, Missouri (88 km downriver from the confluence), and ended 83 km downriver at the sampling site at Point Pleasant, Missouri. The Point Pleasant, Missouri, sample was lost, however. The final sampling site was at Caruthersville, Missouri (171 km downriver from the confluence), and was presumed to be a location where the Upper Mississippi and Ohio Rivers had completely mixed. Additionally, two upriver sites were sampled to determine initial concentrations of industrial organic contaminants prior to mixing: Cairo, Illinois 12 km upriver from the confluence on the Upper Mississippi River, and Olmsted, Illinois 27 km upriver from the confluence on the Ohio River. The samples collected during this phase of the study were analyzed for three industrial organic contaminants. Data in this report include results of analyses from June 1989 to July 1990.

#### **Purpose and Scope**

This report presents (1) a brief description of the methods of sample collection, preparation, and analysis, and (2) the results of analyses for the samples collected in June 1989 and May-June 1990. The compounds for which the samples were analyzed and their typical applications are listed in table 1.

#### 2 Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters

| Compound                            | Application                                                                                          | Reference                |
|-------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------|
|                                     | Herbicides                                                                                           |                          |
| alachlor                            | Herbicide used on corn and soybean crops to control annual grasses, broadleaf weeds and nutsedge     | Humburg and others, 1989 |
| atrazine                            | Selective herbicide used on corn and sorghum crops to control broadleaf and grassy weeds             | Humburg and others, 1989 |
| 2-chloro-2',6'- diethylacetanilide  | Degradation product of alachlor                                                                      | Aizawa, 1982             |
| cyanazine                           | Herbicide used in controlling annual grasses and broadleaf weeds for corn, grain sorghum, and cotton | Humburg and others, 1989 |
| desethylatrazine                    | Degradation product of atrazine                                                                      | Aizawa, 1982             |
| desisopropylatrazine                | Degradation product of atrazine                                                                      | Aizawa, 1982             |
| 2,6-diethylaniline                  | A starting material for the manufacturing of alachlor                                                |                          |
| 2-hydroxy-2',6'- diethylacetanilide | Degradation product of alachlor                                                                      | Aizawa, 1982             |
| metolachlor                         | Herbicide used in controlling annual grasses, and certain broadleaf weeds on corn and cotton crops   | Humburg and others, 1989 |
| simazine                            | Widely used herbicide for corn crops to control broadleaf and grass weeds                            | Humburg and others, 1989 |
|                                     | Industrial organic contaminants                                                                      |                          |
| trimethyltriazinetrione             | unknown                                                                                              |                          |
| tris(2-chloroethyl) phosphate       | A flame retardant and plasticizer                                                                    | Hawley, 1981             |
| tris(chloroisopropyl) phosphate     | A flame retardant                                                                                    | Hawley, 1981             |


 Table 1.
 Compounds for which samples were analyzed and their applications.

#### **Acknowledgments**

This study could not have been completed without the help of the following people. Wayne Simoneaux was instrumental in holding the research vessel within about 3-5 meters of each sampling location under difficult weather conditions and boat traffic, and Wilton Delaune operated the winch for the May-June 1990 sampling. The assistance during sampling of Terry Brinton, Pat Brown, Deborah Martin, Robert Meade, John Moody, Terry Rees, James Seeley, Herbert Stevens, and Howard Taylor was appreciated.

# Sample Collection, Preparation, and Analysis

Water samples were collected on the Mississippi River at St. Louis, Missouri, on June 9, 1989 and near Hickman, Kentucky, on June 13, 1989. In May-June 1990 samples were collected upriver and downriver from the confluence of the Mississippi River and Ohio River. These sites are shown in figure 1. The samples were collected in a Teflon bag sampler using a Teflon nozzle; this sampler was lowered to the river bottom and raised back to the surface at a constant rate in order to obtain a depth-integrated sample. Further details of this procedure, the exact location of sampling sites, and associated hydrologic data are described elsewhere by Moody and Meade (1993).



**Figure 1.** Location of sampling cross-sections below the confluence of the Mississippi and Ohio Rivers. The number after the site name is the river mile [modified from Moody and Meade, 1993).

#### 4 Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters

A 1-liter (L) aliquot was collected for each depth-integrated sample, preserved with five drops of chloroform, and refrigerated until extraction. These samples were extracted using the following liquid-liquid extraction technique. Samples were filtered through a 0.45-micron glass-fiber filter and adjusted to pH 8.5 with 10 percent potassium hydroxide. Fifteen grams of sodium chloride and an internal standard were added to the samples, which were subsequently extracted three times with methylene chloride using 75-, 50-, and 50-mL volumes successively for the 1990 samples, and 100-, 50-, and 50-mL volumes for the 1989 samples. The combined methylene chloride extracts were dried over anhydrous sodium sulfate and concentrated in a Kuderna-Danish apparatus to an approximate volume of 5 mL. Four drops of benzene was added, and the extract was further concentrated to a volume of 100 microliters under a slow stream of dry nitrogen gas. The extracts for June 1989 and May-June 1990 samples were then analyzed for trimethyltriazinetrione, tris(2chloroethyl)phosphate, and tris(chloroisopropyl)-phosphate by gas chromatography/positive chemical ionization/tandem mass spectrometry. The extracts for June 1989 samples were also analyzed for selected herbicides and their degradation products by using the same method (Rostad and others, 1989).

## Results

The results of analyses for the June 1989 samples and the mean concentration for the replicate analyses are listed in tables 2-5. Along with the mean concentration, the uncertainty or error, which is one half the range (Taylor, 1982) in the data, is also shown. The results of analyses for the May-June 1990 samples together with the mean and uncertainty of replicate analyses are presented in tables 6-11. Note that locations from left edge of water are as viewed facing downstream.

Table 2. Herbicide data for the Mississippi River at St. Louis, Missouri, June 9, 1989. Total river width was 508 meters.

[ng/L, nanograms per liter; ±, uncertainty of duplicate analyses; nd, not detected]

|                                                 |       | Conc    | entration (no | J/L) at points | from left edg | ge of water, i | n meters |       |       |       |
|-------------------------------------------------|-------|---------|---------------|----------------|---------------|----------------|----------|-------|-------|-------|
| Compound                                        | 45    | 78      | 112           | 139            | 177           | 233            | 279      | 323   | 384   | 459   |
| alachlor                                        | 740   | 720±9   | 730           | 710            | 660           | 570            | 520      | 470   | 600   | 1,600 |
| atrazine                                        | 1,700 | 1390±30 | 1,800         | 1,400          | 1,500         | 1,600          | 1,300    | 1,200 | 1,100 | 1,100 |
| 2-chloro-2',6'-<br>diethylacet-<br>anilide      | 19    | 20±4    | 20            | 22             | 13            | 18             | 13       | 15    | 110   | 630   |
| cyanazine                                       | 900   | 880±70  | 1,000         | 1,000          | 1,000         | 1,200          | 990      | 1,100 | 1,000 | 980   |
| desethylatra-<br>zine                           | 130   | 160±30  | 130           | 140            | 100           | 88             | 100      | 97    | 85    | 80    |
| desisopropyla-<br>trazine                       | 90    | 100±9   | 62            | 81             | nd            | 21             | 52       | nd    | 8.1   | 2.3   |
| 2,6-diethylani-<br>line                         | 3.5   | 3.4±0.2 | 2             | 2.4            | 2.3           | 1.5            | 1.0      | 4.6   | 90    | 400   |
| 2-hydroxy-<br>2',6'-<br>diethylacet-<br>anilide | 44    | 41±8    | 36            | 23             | 15            | 11             | 20       | 6.2   | 11    | 18    |
| metolachlor                                     | 970   | 930±16  | 980           | 920            | 970           | 910            | 920      | 890   | 850   | 840   |
| simazine                                        | 43.6  | 65±19   | 45            | 59             | 60            | 37             | 42       | 79    | 43    | 33    |

| 1135 meters.                      |
|-----------------------------------|
| 13, 1989. Total river width was 1 |
| an, Kentucky, June                |
| ver below Hickma                  |
| tta for the Mississippi Riv       |
| Table 3. Herbicide da             |
|                                   |

[ng/L, nanograms per liter;  $\pm,$  uncertainty for duplicate analyses]

|                                    |       | Concentrati | on (ng/L) at po | Concentration (ng/L) at points from left edge of water, in meters | dge of water, ir | n meters |       |       |               |              |
|------------------------------------|-------|-------------|-----------------|-------------------------------------------------------------------|------------------|----------|-------|-------|---------------|--------------|
| Compound                           | 64    | 173         | 288             | 399                                                               | 518              | 629      | 741   | 862   | 996           | 1081         |
| alachlor                           | 390   | 430         | 440             | 420                                                               | 500              | 560      | 670   | 650   | 680±20        | 690±10       |
| atrazine                           | 1,400 | 1,500       | 1,500           | 1,200                                                             | 1,600            | 1,600    | 1,600 | 1,600 | $1300 \pm 10$ | 1600±70      |
| 2-chloro-2', 6'-diethylacetanilide | 11    | 8.9         | 11              | 14                                                                | 20               | 26       | 49    | 50    | 49±2          | 54±5         |
| cyanazine                          | 710   | 780         | 700             | 670                                                               | 780              | 850      | 980   | 006   | 830±80        | $1000\pm 20$ |
| desethylatrazine                   | 200   | 220         | 200             | 200                                                               | 240              | 230      | 260   | 170   | 200±5         | 180±8        |
| desisopropylatrazine               | 53    | 28          | 71              | 54                                                                | 96               | 46       | 80    | 87    | 73±22         | 72±1         |
| 2,6-diethylaniline                 | 0.8   | 1.2         | 1.8             | 2.9                                                               | 7                | 5.8      | 7.5   | 15    | $13\pm 1$     | 13±1         |
| 2-hydroxy-2',6'-diethylacetanilide | 5.7   | 3.8         | 1.9             | 5.6                                                               | 7.3              | 8.7      | 16    | 11    | 25±6          | 9.8±0.7      |
| metolachlor                        | 800   | 840         | 860             | 810                                                               | 006              | 970      | 1,100 | 970   | 940±2         | 960±7        |
| simazine                           | 150   | 170         | 170             | 170                                                               | 210              | 170      | 190   | 110   | 120±3         | 98±10        |

Table 4. Industrial organic-contaminant data for the Mississippi River at St. Louis, Missouri, June 9, 1989. Total river width was 508 meters. [ng/L, nanograms per liter;  $\pm$ , uncertainty for duplicate analyses; nd, not detected]

|                                |     | Concentration | (ng/L) at poin | ts from left ed | ncentration (ng/L) at points from left edge of water, in meters | meters |     |     |     |     |
|--------------------------------|-----|---------------|----------------|-----------------|-----------------------------------------------------------------|--------|-----|-----|-----|-----|
| Compound                       | 45  | 78            | 112            | 139             | 177                                                             | 233    | 279 | 323 | 384 | 459 |
| trimethyltriazinetrione        | 0.7 | $1.2\pm0.1$   | pu             | 0.9             | pu                                                              | pu     | pu  | 1.4 | 0   | 0.5 |
| tris(2-chloroethyl)phosphate   | 120 | 96±23         | 110            | 97              | 06                                                              | 69     | 67  | 45  | 31  | 19  |
| tris(chloroisopropyl)phosphate | 890 | 820±130       | 062            | 720             | 660                                                             | 430    | 340 | 280 | 160 | 39  |

Table 5. Industrial organic-contaminant data for the Mississippi River below Hickman, Kentucky, June 13, 1989. Total river width was 1,135 meters.

| S           |
|-------------|
| yse         |
| anal        |
| cate        |
| ilqub       |
| for         |
| uncertainty |
| +î          |
| liter;      |
| per         |
| nanograms   |
| [ng/L,      |

|                                |    | Concentratio | Concentration (ng/L) at points from left edge of water, in meters | nts from left ed | ge of water, ir | meters |     |     |           |       |
|--------------------------------|----|--------------|-------------------------------------------------------------------|------------------|-----------------|--------|-----|-----|-----------|-------|
| Compound                       | 64 | 173          | 288                                                               | 399              | 518             | 629    | 741 | 862 | 996       | 1081  |
| trimethyltriazinetrione        | 60 | 54           | 58                                                                | 65               | 86              | 65     | 46  | 31  | $18\pm 0$ | 0.7   |
| tris(2-chloroethyl)phosphate   | 14 | 13           | 15                                                                | 18               | 29              | 32     | 48  | 52  | 56±0.6    | 59±2  |
| tris(chloroisopropyl)phosphate | 40 | 53           | 72                                                                | 65               | 93              | 140    | 250 | 270 | 470±140   | 300±7 |
|                                |    |              |                                                                   |                  |                 |        |     |     |           |       |

Table 6. Industrial organic-contaminant data for the Mississippi River near Cairo, Illinois, May 31, 1990. Total river width is 696 meters.

[ng/L, nanograms per liter;  $\pm$ , uncertainty for duplicate analyses]

|                                | Concentrati | on (ng/L) at points from | ncentration (ng/L) at points from left edge of water, in meters | iters         |         |              |
|--------------------------------|-------------|--------------------------|-----------------------------------------------------------------|---------------|---------|--------------|
| Compound                       | 161         | 280                      | 418                                                             | 464           | 509     | 614          |
| trimethyltriazinetrione        | $0.4\pm0.3$ | $0.8 \pm 0.6$            | $0.7 \pm 0.5$                                                   | $1.7 \pm 1.1$ | 3.2±4.5 | $2.5\pm 1.9$ |
| tris(2-chloroethyl)phosphate   | 93±13       | 85±7                     | 93±17                                                           | 98±15         | 70±23   | $110\pm 8$   |
| tris(chloroisopropy1)phosphate | 98±18       | 88±14                    | 94±18                                                           | 97±17         | 89±6    | 110±18       |
|                                |             |                          |                                                                 |               |         |              |

Table 7. Industrial organic-contaminant data for the Mississippi River for the Ohio River at Olmsted, Illinois, May 31, 1990. Total river width was 1098 meters. [ng/L, nanograms per liter;±, uncertainty for triplicate analyses]

|                                |           |        | Concentra | ition (ng/L | ) at points | s from left | edge of v | Concentration (ng/L) at points from left edge of water, in meters | leters |      |      |      |      |      |       |
|--------------------------------|-----------|--------|-----------|-------------|-------------|-------------|-----------|-------------------------------------------------------------------|--------|------|------|------|------|------|-------|
| Compound                       | 74        | 74 141 | 199       | 248         | 347         | 416         | 491       | 553                                                               | 612    | 685  | 758  | 821  | 879  | 941  | 1005  |
| trimethyltriazinetrione        | 37±5      | 39±6   | 38±5      | 47±5        | 25±5        | 35±5        | 41±11     | 60±13                                                             | 44±8   | 28±7 | 40±9 | 39±6 | 53±7 | 34±7 | 30±12 |
| tris(2-chloroethyl)phosphate   | 38±53     | 52±1   | 22±9      | 21±8        | 18±7        | 23±6        | 25±5      | 20±8                                                              | 23±5   | 20±8 | 24±2 | 24±8 | 26±6 | 20±1 | 27±9  |
| tris(chloroisopropyl)phosphate | 19±6 41±3 | 41±3   | 23±4      | 29±3        | 19±3        | 24±2        | 21±3      | 21±5                                                              | 22±4   | 22±1 | 22±9 | 34±4 | 25±1 | 20±4 | 21±5  |

#### 6 **Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters**

| ippi River at Wickliffe, Kentucky, June 1, 1990. Total river width was 827 meters. |  |
|------------------------------------------------------------------------------------|--|
| Industrial organic-contaminant data for the N                                      |  |
| Table 8.                                                                           |  |

| _        |
|----------|
| S        |
| ys(      |
| J.       |
| ï        |
| e<br>a   |
| Ĕ        |
| <u> </u> |
| 12       |
| ÷Ë       |
| rt       |
| ē        |
| 5        |
| nt       |
| ai       |
| Ħ        |
| S        |
| un       |
|          |
| +1       |
| Н.       |
| Ë.       |
| r.       |
| bei      |
| S        |
|          |
|          |
| ogr      |
| Ē        |
| na       |
| <u> </u> |
| Y        |
| - bb     |
| -        |

|                                    |       |       |      | Concen | tration (ng, | /L) at point | Concentration (ng/L) at points from left edge of water, in meters | edge of w         | ater, in met | ers           |              |                                                                         |         |         |              |
|------------------------------------|-------|-------|------|--------|--------------|--------------|-------------------------------------------------------------------|-------------------|--------------|---------------|--------------|-------------------------------------------------------------------------|---------|---------|--------------|
| Compound                           | 65    | 103   | 159  | 199    | 264          | 306          | 349                                                               | 412               | 412 459      | 501           | 552          | 603                                                                     | 645     | 697     | 750          |
| trimethyl-<br>triazinetrione       | 55±12 | 44±9  | 40±7 | 36±6   | 21±5         | 0.2±0        | 8.9 <u>+</u> 3.3                                                  | 4.6±2.3           | $0.6\pm 0.3$ | $0.8 \pm 0.5$ | 0.8±0.5      | 8.9±3.3 4.6±2.3 0.6±0.3 0.8±0.5 0.8±0.5 0.3±0.2 1.5±1.1 0.5±0.3 0.6±0.3 | 1.5±1.1 | 0.5±0.3 | 0.6±0.3      |
| tris(2-chloroethyl)<br>phosphate   | 22±8  | 31±12 | 28±2 | 34±3   | 71±9         | 53±11        | 86±9                                                              | 6 <del>1</del> 66 | 170±14       | 9€±6          | 110±10       | 110±10 110±8                                                            | 99±30   | 99±10   | 99±10 110±13 |
| tris(chloroisopropyl)<br>phosphate | 27±8  | 29±7  | 31±5 | 29±5   | 68±16        | 55±10        | 83±15                                                             | 97±13             | 97±13 170±19 | 97±12         | 97±12 110±16 | 120±12 120±9 120±18 110±31                                              | 120±9   | 120±18  | 110±31       |

Table 9. Industrial organic-contaminant data for the Mississippi River near Columbus, Kentucky, June 1, 1990. Total river width was 912 meters. [ng/L, nanograms per liter;  $\pm,$  uncertainty for triplicate analyses]

|                                    |        |      |      | Concer | ıtration (ng | /L) at poin | ncentration (ng/L) at points from left edge of water, in meters | edge of wa | ater, in met            | ers     |        |               |                 |         |       |
|------------------------------------|--------|------|------|--------|--------------|-------------|-----------------------------------------------------------------|------------|-------------------------|---------|--------|---------------|-----------------|---------|-------|
| Compound                           | 69     | 118  | 170  | 229    | 283          | 336         | 412                                                             | 461        | 507                     | 581     | 630    | 680           | 725             | 784     | 851   |
| trimethyl-<br>triazinetrione       | 47±10  | 37±7 | 36±5 | 27±4   | 13±1         | 8.9±1.5     | 8.9±1.5 5.7±0.9 3.6±0.6                                         | 3.6±0.6    | $4.4\pm0.9$ $1.9\pm0.1$ | 1.9±0.1 | 3±0.5  | 3±0.5 2.4±0.1 | 3.2±0.2 2.6±0.4 | 2.6±0.4 | 2.8±0 |
| tris(2-chloroethyl)<br>phosphate   | 200±16 | 55±8 | 68±9 | 140±11 | 84±6         | 94±5        | 104±6                                                           | 94±4.2     | 100±4                   | 100±12  | 110±12 | 110±9         | 100±3           | 120±14  | 100±6 |
| tris(chloroisopropyl)<br>phosphate | 52±8   | 35±9 | 42±8 | 78±1   | 72±11        | 83±7        | 83±7 100±11                                                     | 84±13      | 100±9                   | 95±14   | 110±14 | 110±12        | 100±8           | 120±15  | 97±6  |

Table 10. Industrial organic-contaminant data for the Mississippi River above New Madrid, Missouri, June 2, 1990. Total river width was 1,060 meters.

[ng/L, nanograms per liter;  $\pm,$  uncertainty for triplicate analyses]

|                                    |         |        | Concentration ( | ng/L) at points f | Concentration (ng/L) at points from left edge of water, in meters | water, in meters |        |        |        |        |
|------------------------------------|---------|--------|-----------------|-------------------|-------------------------------------------------------------------|------------------|--------|--------|--------|--------|
| Compound                           | 120     | 228    | 326             | 371               | 426                                                               | 536              | 640    | 748    | 850    | 959    |
| trimethyl-<br>triazinetrione       | 28±5    | 28±0.7 | 20±0.1          | 23±3              | 17±0.4                                                            | 13±0.6           | 12.8±1 | 7±2    | 13±0.1 | 13±1.1 |
| tris(2-chloroethyl)<br>phosphate   | 100±9   | 100±12 | 97±15           | 80±12             | 100±13                                                            | 100±10           | 93±1.9 | 95±4.2 | 120±5  | 140±5  |
| tris(chloroisopropyl)<br>phosphate | 83±12.8 | 79±0.4 | 81±1.4          | 84±17             | 82±2.8                                                            | 100±7            | 97±19  | 99±8.4 | 120±27 | 120±19 |
|                                    |         |        |                 |                   |                                                                   |                  |        |        |        |        |

Table 11. Industrial organic-contaminant data for the Mississippi River at Caruthersville, Missouri, June 3, 1990. Total river width was 849 meters. [ng/L, nanograms per liter;  $\pm,$  uncertainty for triplicate analyses]

|--|

|                                    |        | Co     | ncentration (ng/L) | Concentration (ng/L) at points from left edge of water, in meters | edge of water, in | meters |         |        |        |
|------------------------------------|--------|--------|--------------------|-------------------------------------------------------------------|-------------------|--------|---------|--------|--------|
| Compound                           | 95     | 179    | 257                | 344                                                               | 432               | 518    | 589     | 655    | 738    |
| trimethyl-<br>triazinetrione       | 28±1.6 | 19±1.7 | 23±9               | 14±2.5                                                            | 19±19             | 18±3   | 5.5±5.4 | 16±4.5 | 16±1.2 |
| tris(2chloroethyl)<br>phosphate    | 63±3.3 | 59±3.4 | 95±9               | 53±7.7                                                            | 81±25             | 61±1.3 | 60±6.1  | 68±7.6 | 87±6.3 |
| tris(chloroisopropyl)<br>phosphate | 79±7.4 | 77±11  | 130±27             | 75±1.9                                                            | 130±10            | 72±6.6 | 74±8.6  | 86±13  | 86±9.4 |

#### **Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters** 8

Variation in concentration values may result from inconsistencies in sample collection, extraction, and/or analytical (instrumentation) errors. Potential errors in the sampling procedure are described by Moody and Meade (1993). Extraction and recovery variability from the liquid-liquid extraction method are unknown unless duplicate samples were extracted for analysis, which were unavailable due to sample limitations. Analytical variation was determined as the uncertainty of replicate analyses. Average, minimum, and maximum values of the uncertainty expressed as a percentage of the mean concentration for replicate analyses are presented in tables 12-13. In table 13, the large uncertainty of some values is due to instrumental variability for the polar compound, trimethyltriazinetrione, which chromatographs poorly. Average values shown in tables 12-13 were determined from non-rounded values from previous tables.

## **Table 12.** Average, minimum, and maximum uncertainties of replicate analyses as a percentage of the mean concentration for the herbicide data.

[n.d., not determined because of insufficient data]

| Compound                           | Average           | Minimum           | Maximum |
|------------------------------------|-------------------|-------------------|---------|
| Mississippi River at S             | t. Louis, Missour | i, June 9, 1989   |         |
| alachlor                           | 1.2               | n.d.              | n.d.    |
| atrazine                           | 2.2               | n.d.              | n.d.    |
| 2-chloro-2',6'-diethylacetanilide  | 18                | n.d.              | n.d.    |
| cyanazine                          | 8.5               | n.d.              | n.d.    |
| desethylatrazine                   | 19                | n.d.              | n.d.    |
| desisopropylatrazine               | 8.8               | n.d               | n.d     |
| 2,6-diethylaniline                 | 5.9               | n.d               | n.d.    |
| 2-hydroxy-2',6'-diethylacetanilide | 20                | n.d.              | n.d.    |
| metolachlor                        | 1.7               | n.d.              | n.d.    |
| simazine                           | 29                | n.d.              | n.d.    |
| Mississippi River below            | Hickman, Kentuc   | ky, June 13, 1989 |         |
| alachlor                           | 2.6               | 2.2               | 2.9     |
| atrazine                           | 2.6               | 0.8               | 4.4     |
| 2-chloro-2',6'-diethylacetanilide  | 6.7               | 4.7               | 8.7     |
| cyanazine                          | 5.5               | 1.9               | 9.1     |
| desethylatrazine                   | 3.5               | 2.6               | 4.5     |
| desisopropylatrazine               | 16                | 1.5               | 29      |
| 2,6-diethylaniline                 | 4.2               | 3.7               | 4.8     |
| 2-hydroxy-2',6'-diethylacetanilide | 15                | 7.1               | 23      |
| metolachlor                        | 0.5               | 0.2               | 0.7     |
| simazine                           | 6.3               | 2.6               | 10      |

**Table 13.** Average, minimum, and maximum uncertainties for replicate analyses as apercentage of the mean concentration for the industrial organic-contaminant data.

[n.d., not determined because of insufficient data]

| Compound                        | Average                | Minimum           | Maximum |
|---------------------------------|------------------------|-------------------|---------|
| Mississippi River at S          | St. Louis, Missouri    | , June 9, 1989    |         |
| trimethyltriazinetrione         | 8.3                    | n.d.              | n.d.    |
| tris(2-chloroethyl) phosphate   | 24                     | n.d.              | n.d.    |
| tris(chloroisopropyl) phosphate | 16                     | n.d.              | n.d.    |
| Mississippi River below         | Hickman, Kentuc        | ky, June 13, 1989 |         |
| trimethyltriazinetrione         | 1.8                    | 0                 | 3.5     |
| tris(2-chloroethyl) phosphate   | 2.1                    | 1.1               | 3.1     |
| tris(chloroisopropyl) phosphate | 16                     | 2.3               | 29      |
| Mississippi River ne            | ear Cairo, Illinois, I | May 31, 1990      |         |
| trimethyltriazinetrione         | 83                     | 65                | 140     |
| tris(2-chloroethyl) phosphate   | 16                     | 7.5               | 32      |
| tris(chloroisopropyl) phosphate | 16                     | 7                 | 19      |
| Ohio River at Oln               | nsted, Illinois, Ma    | y 31, 1990        |         |
| trimethyltriazinetrione         | 19                     | 11                | 38      |
| tris(2-chloroethyl) phosphate   | 34                     | 2.1               | 140     |
| tris(chloroisopropyl) phosphate | 17                     | 4.4               | 41      |
| Mississippi River at V          | Vickliffe, Kentuck     | y, June 1, 1990   |         |
| trimethyltriazinetrione         | 40                     | 0                 | 73      |
| tris(2-chloroethyl) phosphate   | 15                     | 5.9               | 38      |
| tris(chloroisopropyl) phosphate | 17                     | 7.6               | 30      |
| Mississippi River near          | Columbus, Kentuc       | ky, June 1, 1990  |         |
| trimethyltriazinetrione         | 13                     | 0                 | 22      |
| tris(2-chloroethyl) phosphate   | 8.1                    | 2.9               | 14      |
| tris(chloroisopropyl) phosphate | 13                     | 6                 | 25      |
| Mississippi River above I       | New Madrid, Miss       | ouri, June 2, 199 | 0       |
| trimethyltriazinetrione         | 8.8                    | 0.5               | 29      |
| tris(2-chloroethyl) phosphate   | 8.6                    | 1                 | 15      |
| tris(chloroisopropyl) phosphate | 11                     | 0.5               | 22      |
| Mississippi River at Car        | uthersville, Misso     | uri, June 3, 1990 |         |
| trimethyltriazinetrione         | 36                     | 5.6               | 100     |
| tris(2-chloroethyl) phosphate   | 11                     | 2.1               | 32      |
| tris(chloroisopropyl) phosphate | 11                     | 2.5               | 21      |

## **Literature Cited**

- Aizawa, Hiroyasu, 1982, *Metabolic Maps of Pesticides*: New York, Academic Press, 219 p.
- Hawley, G.G., 1981, *The Condensed Chemical Dictionary*, Tenth Edition: New York, Van Nostrand Reinhold Company Inc., 1135 p.
- Humburg, N.E., Colby, S. R., Hill, E.R., Kitchen, L.M., Lym, R.G., McAvoy, W.J., Prasad, Raj, 1989, *Herbicide Handbook of the Weed Science Society of America*, Sixth Edition: Champaign, Illinois, Weed Science Society of America, 301 p.
- Moody, J.A., and Meade, R.H., 1993, Hydrological and sedimentological data collected during four cruises at high water on the Mississippi River and some of its tributaries, March 1989-June 1990: U.S. Geological Survey Open-File Report 92-651, 227 p.
- Rostad, C.E., Pereira, W.E., and Leiker, T.J., 1989, Determination of herbicides and their degradation products in surface waters by gas chromatography/positive chemical ionization/ tandem mass spectrometry: *Biomedical and Environmental Mass Spectrometry*, vol. 18, p. 820-827.
- Taylor, J.R., 1982, An introduction to error analysis: The study of uncertainties in physical measurements: Mill Valley, California, University Science Books, Oxford University Press, 270 p.

the Illinois, Missouri, and Ohio Rivers, June 1989 and May-June 1990-Open-File Report 93-371 Rostad and others-Cross Sectional Concentration Data for Selected Organic Contaminants in River Waters near the Confluence of the Mississippi River and

