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Ground-Water Quality and Geochemistry,
Carson Desert, Western Nevada

By Michael S. Lico and Ralph L. Seiler

Abstract

Basalt and basin-fill (alluvial and lacustrine)
aquifers that underlie the Carson Desert are the
primary source of public water supplies for the
residents. The city of Fallon and the Fallon Naval
Air Station derive all of their water supply from
the basalt aquifer directly beneath the city. Most
of the residents in rural areas of Carson Desert
obtain their water from wells completed in the
shallow and intermediate basin-fill aquifers.
Thermal water is used for heating and generating
electricity in parts of the Carson Desert. Sedimen-
tary deposits in the Carson Desert may be as thick
as 8,000 feet, although only the upper 500 feet is
used for water supplies.

The principal source of recharge to the
shallow basin-fill aquifers is infiltration of surface
water from irrigation and the numerous river chan-
nels, canals, and ditches that crisscross the south-
ern Carson Desert. Other sources of recharge to
the shallow aquifers include infiltration of precipi-
tation in low-lying areas after intense storms and
precipitation in the surrounding mountains.

The present-day Carson and Truckee Rivers
are not the principal source of water in the inter-
mediate and basalt aquifers. Samples collected
from wells completed in the intermediate aquifer
have carbon-14 ages ranging from the present to
7,700 years. Samples from wells completed in the
basalt aquifer have carbon-14 ages ranging from
1,100 to 8,100 years. Tritium concentrations in
ground water indicate that some water from canals
is recharging the basalt aquifer; however, canal

water is probably only a minor component of
recharge to the aquifer.

Ground water generally flows to discharge
areas in the northeast, south, and southeast. Wide-
spread irrigation that began in the early 1900's has
resulted in a rise of the water table in the Carson
Desert. The rise was as much as 60 feet in the
Soda Lakes area, but probably is much less in most
of the Carson Desert, especially in the discharge
areas near Carson Lake and Stillwater Wildlife
Management area.

The chemical composition of water in the
aquifers of the Carson Desert is highly variable. In
the shallow basin-fill aquifers, ground water varies
from a dilute calcium bicarbonate type to a saline
sodium chloride type. Generally, the more dilute
water is present beneath the irrigated areas and the
more chemically concentrated waters are present
in unirrigated areas. The water in more than
50 percent of the ground-water samples referred to
in this report have dissolved-solids concentrations
that exceed Nevada State drinking-water stan-
dards. Many of these same samples also exceed
standards for magnesium, chloride, and sulfate.
The locations of samples with high concentrations
of dissolved solids, magnesium, chloride, and sul-
fate commonly are in discharge areas. Arsenic and
manganese concentrations commonly exceed
drinking-water standards, but concentrations at
only a few sites exceed standards for fluoride and
nitrate. Water in the intermediate basin-fill aqui-
fers is a dilute sodium bicarbonate water in the
Fallon area and a distinctly more saline sodium
chloride water in the Soda Lakes-Upsal Hogback
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area. Dissolved solids and chloride concentrations
commonly (more than 50 percent of the samples)
exceed drinking-water standards. Arsenic,
fluoride, and manganese concentrations com-
monly exceed standards. The basalt aquifer,

the primary source of drinking water for the city
of Fallon, contains a dilute sodium bicarbonate
chloride water. Arsenic concentrations exceed
standards in all samples included in this study.

The chemical character of water in the
aquifers beneath the southern Carson Desert is the
result of evapotranspiration and natural geochemi-
cal reactions with minerals derived mostly from
igneous rocks. Results of mass-balance modeling,
combined with thermodynamic and mineralogic
data, are consistent with major ion concentrations
being the result of reaction with plagioclase feld-
spar, calcite, augite, carbon dioxide, beidellite, and
small amounts of potassium feldspar, gypsum,
silica, sodium chloride, and pyrite. The exchange
of calcium for sodium on clay minerals also is a
common reaction in all the models.

Dissolved oxygen probably is the major
control on iron and manganese concentrations in
the ground water of the Carson Desert, primarily
because of the increased solubility of the chemi-
cally reduced forms of these elements. Water
with high concentrations of iron and manganese is
near thermodynamic equilibrium with siderite and
rhodochrosite. This indicates that the concentra-
tions of these elements may be limited by the solu-
bility of their respective carbonate minerals. The
rise in the water table caused by infiltration of irri-
gation water may have caused a reduction in the
redox conditions (lower dissolved oxygen con-
centration), thus allowing dissolution of iron and
manganese oxides and the release of minor con-
stituents (such as arsenic) associated with the
oxides. Where dissolved oxygen is present,
sedimentary organic matter may be oxidizing
and releasing adsorbed minor constituents.

Naturally occurring radionuclides (uranium
and radon-222) are present in ground water from
the Carson Desert in concentrations higher than
proposed U.S. Environmental Protection Agency

drinking-water standards. High uranium concen-
trations in the shallow aquifers may be caused by
the release of uranium by dissolution of iron and
manganese oxides. Another possible source for
uranium may be the oxidation of sedimentary
organic matter that typically has high concentra-
tions of uranium. Radon-222 concentrations in the
ground water are not supported by concentrations
of dissolved radium-226. This observation indi-
cates that radium-226 must be present in grain
coatings, sedimentary organic matter, or some
other mineral form and that the radon-222 is
coming from these solid-phase sources.

Ground water in the Carson Desert
appears not to have been significantly contami-
nated by synthetic organic chemicals. Water
from one site has a detectable concentration of
1,2-Dichloroethane, but does not exceed the State
drinking-water standard. No other volatile organic
compounds were detected in samples of ground
water from this area. Samples from four sites have
detectable concentrations of Dicamba. Silvex,
Simazine, and 2, 4-D are detectable at low concen-
trations in water samples from one well each.

INTRODUCTION
Background

Beginning in 1986, Congress has annually
appropriated funds for the U.S. Geological Survey to
test and refine concepts for a National Water-Quality
Assessment (NAWQA) Program. The long-term goals
of a full-scale program are:

1. Provide a nationally consistent description of
current water-quality conditions for a large part of the
Nation's surface- and ground-water resources,

2. Define long-term trends (or lack of trends) in
water quality, and

3. Identify, describe, and explain, as possible, the
major factors that affect the observed water-quality
conditions and trends.

The information obtained will be available to
water managers, policy makers, and the public to
provide an improved scientific basis for evaluating

2 Ground-Water Quality and Geochemistry, Carson Desert, Western Nevada



the effectiveness of water-quality management
programs and to provide a data base for assessing

the likely effects of contemplated changes in land- and
water-management practices. Concepts for a full-scale
NAWQA Program are described by Hirsch and others
(1988). The NAWQA Program is organized into study
units on the basis of specific hydrologic systems. The
study units are large, involving areas of a few thousand
to several tens of thousands of square miles. This
report presents results of part of a pilot phase of
NAWQA that was done in the Carson River Basin, one
of the seven areas selected throughout the United States
to represent diverse hydrologic environments and
water-quality conditions. The seven pilot projects
include four surface-water and three ground-water
studies. The surface-water project areas are the
Yakima River Basin in Washington; the lower Kansas
River Basin in Kansas and Nebraska; the upper Illinois
River Basin in Illinois, Indiana, and Wisconsin; and the
Kentucky River Basin in Kentucky. The ground-water
project areas are the Carson River Basin in western
Nevada and eastern California; the Central Oklahoma
aquifer in Oklahoma; and the Delmarva Peninsula in
Delaware, Maryland, and Virginia.

The Carson River Basin pilot project included
studies of several areas within the basin. Some of the
studies have produced reports concerned with water
issues and related topics of special interest. Reports of
studies in Carson and Eagle Valleys (Welch, 1994), and
Dayton and Churchill Valleys (Thomas and Lawrence,
1994) provide a description of the geochemistry and
ground-water quality interpreted from data collected
specifically for the NAWQA Program from 1987
through 1990 and data previously collected by the
U.S. Geological Survey. These reports complement
and update geochemical and hydrologic data available
through 1987, summarized by Welch and others
(1989). Topics of special interest include the effects
of urbanization on water quality (Lawrence and
Whitney, 1990), radionuclides (Thomas and others,
1993; Thomas and others, 1990; Welch and others,
1990), minor constituents (Welch and others, 1988;
A.H. Welch, U.S. Geological Survey, written
commun., 1992), data on sediment chemistry (Tidball
and others, 1991), and the relation between water
quality and the geochemistry of shallow sediments
(E.A. Frick, U.S. Geological Survey, written
commun., 1992).

In arid parts of the western United States, potable
water is scarce and future development depends on its

availability. Rapid population growth in the Carson
Desert area of western Nevada (figs. 1 and 2) since
the 1970's has increased the demand for potable water,
much of which is derived from aquifers. Most of the
ground water in the Carson Desert is only marginally
potable, making the task of finding usable water
resources difficult.

Dissolved-solids concentrations commonly
exceed drinking-water standards in parts of the Carson
Desert and expensive treatment of the water may be
required before the water is suitable for consumption.
Taste and odor problems caused by iron, manganese,
and hydrogen sulfide (rotten-egg odor) make the water
in parts of the basin unpalatable or even unsuitable for
drinking. In some areas, arsenic concentrations greatly
exceed drinking-water standards; one case of arsenic
poisoning has been reported (Glancy, 1986, p. 48).

Purpose and Scope

The primary purpose of this report is to describe
the quality of the ground water in the southern Carson
Desert, with an emphasis on the water in aquifers used
for domestic or public water supply. The description
of the water quality includes a discussion of the general
water quality and the physical and chemical processes
that produce the observed quality. Data collected
from 1987 to 1990 as part of the Carson River Basin
NAWQA project are the primary source of information
in this report, although other data are included, particu-
larly for the areas where little new sampling was done.

Local Identification System for Wells

Ground-water site locations in tables, figures,
and text of this report are identified by site numbers.
Site locations are shown on figure 3. The locations
are further described as “site identifications” using
local well numbers which are based on the rectangular
subdivision of public lands, referenced to the Mount
Diablo base line and meridian. A complete designation
of a site consists of: (1) the township number north
of the base line; (2) the range east of the meridian;

(3) the section number; (4) letters designating the
quarter section, quarter-quarter section, and so-on
(the letters A, B, C, and D indicate northeast, north-
west, southwest, and southeast quarters, respectively);
and (5) a sequence number that distinguishes between
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The thermal systems result from deep circulation
of meteoric water. According to the conceptual model
of Olmsted (1985), cold meteoric water moves down-
ward through a fault or fault system to a hot permeable
zone within consolidated rocks. As the water moves
laterally through the permeable zone, it is heated.

Hot water leaves the aquifer and rises along a fault

or fault system. Thermal water in the Stillwater area
discharges into a Tertiary sand aquifer, but some water
rises to the overlying Quaternary alluvial and lacustrine
deposits (Morgan, 1982, p. 83). Discharge of hot water
at the surface is prevented by absence of fault conduits
in the fine-grained lake deposits despite the strong
upward gradients. High heat flow in the Great Basin
may be attributed to upward convective transport in
the Earth’s upper mantle (Lachenbruch and Sass,
1978, p. 243).

The Soda Lakes thermal system probably
has a different recharge mechanism from that of the
Stillwater thermal system (Olmsted and others, 1984,
p. 128). On the basis of the stable-isotopic composition
of the thermal water, possible sources of recharge were
water in Lake Lahontan or the Carson River that was
affected by evapotranspiration. These possible sources
indicate that recharge is through the basin-fill deposits
rather than by flow along a fault zone.

Hot water from thermal wells is used to heat
some homes in the Stillwater area. Electrical power
is generated using hot water and steam from wells in
the Stillwater and Soda Lakes thermal areas.

Mineralogic Composition of Basin-Fill
Sediments and the Basalt Aquifer

The mineralogic composition of sediments in
parts of the Carson Desert has been described by Lico
and others (1986 and 1987). The composition of the
sediment from the shallow basin-fill aquifers reflects
the igneous origin of the source rocks (mostly basalt)
in the surrounding mountains. The sediments are
composed mostly of plagioclase feldspar (anorthite and
albite), volcanic-lithic fragments, quartz, sedimentary
lithic fragments, and potassium feldspar. Calcite, clay
minerals (montmorillonite, illite, and chlorite), and
zeolites (heulandite and clinoptilolite) are secondary
minerals in the aquifer material. Minerals in the
shallow basin-fill aquifer in the Stillwater Wildlife
Management Area (northeastern Carson Desert) are
described by Lico (1992). Grains include quartz, pla-
gioclase (mostly oligoclase, andesine, and labradorite),
calcite, potassium feldspar, basaltic to andesitic lithic

fragments, and biotite, with minor amounts of pyrox-
ene and hornblende. Alteration of plagioclase to illite,
sericite, and chlorite is common, as is alteration of
biotite to chlorite. Chlorite is an alteration product in
the groundmass of lithic fragments and in grains of
hornblende and pyroxene. Calcite is a secondary phase
precipitated on shell fragments and as caliche layers
that were formed in the unsaturated zone.

The mineralogic composition, including original
detrital minerals and authigenic phases, of an aquifer is
important in constraining any conceptual or numerical
model of the interaction between ground water and
the aquifer matrix. Important observations include
whether precipitation or dissolution of mineral phases
has occurred and the presence of alteration features on
detrital grains. In some mineral samples, it is difficult
to distinguish whether features were formed in place
or at some other location and transported to the
Carson Desert.

Core samples were collected from the shallow
basin-fill aquifers adjacent to well screens with a split-
spoon sampler. The mineralogic composition of the
deposits analyzed for this study indicate that they were
derived from mixed plutonic, volcanic, metavolcanic,
and metasedimentary terranes. Most of the plutonic
lithic grains are quartz monzonite; lithic grains of
granodiorite and granite are present in lesser amounts.
Mafic volcanic, metadacite, and metasandstone and
siltstone are the most abundant volcanic, metavolcanic,
and metasedimentary lithic fragments, respectively.
Monomineralogic grains are plagioclase (primarily
labradorite and andesine), quartz, potassium feldspar,
hornblende, augite, biotite, and magnetite (possibly
ilmenite). Quartz grains are unaltered and commonly
have thin discontinuous coatings of chlorite or hematite
(rarely) precipitated on grain boundaries. Plagioclase
grains commonly are altered to chlorite along cleavage
planes and grain surfaces. Sericite is the second most
common alteration product and is abundant on some
grains. Vacuoles filled with chlorite or sericite are
abundant in plagioclase grains. Potassium feldspar
is slightly altered with thin coatings of chlorite and
sericite on grains.

Hornblende and augite grains are either
unaltered or slightly altered to chlorite along their
edges. Some hornblende grains have rough or jagged
grain boundaries, possibly indicative of dissolution.
Biotite grains are moderately to strongly altered to
chlorite. Opaque mineral grains (magnetite and
ilmenite) commonly have thin hematite rims. Some
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of the chlorite and sericite is present as coatings on the
outer surfaces of grains, indicating that this alteration
occurred after the mineral and other lithic sediment
particles were transported to the Carson Desert.

Basaltic lithic fragments are the most common
volcanic grains in sediment of the Carson Desert.
The groundmass of these grains commonly is slightly
altered to chlorite. Plagioclase laths show minor illitic
or sericitic alteration. Augite is the most abundant
mafic mineral and has slight chloritic alteration. Minor
amounts of magnetite or ilmenite are present and have
thin hematite rims. Some siliceous tuff fragments con-
sist mostly of slightly chloritic devitrified glass. Meta-
dacite in small fragments typically has a moderately
chloritic groundmass, strongly sericitic feldspar crys-
tals, and a minor amount of unaltered epidote. Most
basalt fragments are altered in a similar manner to
those described above.

Calcareous silt, clay, and carbonate lithic grains
make up a small part of the sediment in the shallow
aquifers. Calcitic and phosphatic fossil fragments are
present in these sediments and show no evidence of
dissolution or precipitation.

Clay minerals are abundant in the sediment
from the shallow basin-fill aquifers. Montmorillonite
(beidellite) is the most common clay and illite the
next most abundant. Lesser amounts of chlorite and
kaolinite also are present.

The mineralogic composition of the basalt
aquifer was determined by X-ray diffraction analysis
and thin-section petrography. The bulk of the basalt is
composed of zoned plagioclase (albite and interme-
diate anorthite), sanidine, and augite. On visual inspec-
tion of the basalt rock, secondary minerals were seen
precipitated on fracture and vesicle surfaces. Samples
of this material were scraped off the rock and the com-
position determined by X-ray diffraction analysis.
Calcite (with approximately 2.5 mole percent magne-
sium) was the major mineral present. Small amounts
of quartz, phillipsite (a potassium calcium zeolite), and
a clay minerals also were identified. Alteration of the
basalt aquifer matrix consists of slight chloritization of
pyroxene (augite) crystals and the groundmass. Plagio-
clase laths have minor illitic or sericitic alteration along
cleavage planes. The edges of iron-bearing minerals
(magnetite or ilmenite) commonly are hematitic.

Movement of Ground Water and
Isotope Hydrology

The principal source of recharge to the basin-fill
aquifer systems in the southern Carson Desert is infil-
tration from the system of river channels, canals, and
ditches that crisscross the desert (Glancy, 1986).
Other sources include infiltration of irrigation water,
local ponding of precipitation in low-lying areas after
intense storms (generally in surrounding nonirrigated
areas; Olmsted, 1985, p. 25), and precipitation in
mountains surrounding the basin.

Recharge to the basalt aquifer is from
surrounding sediments. Glancy (1986, p. 26) con-
cluded that most of the recharge is from the interme-
diate and shallow aquifers. The hydraulic gradient is
such that water can move into the basalt aquifer from
the intermediate aquifers in the southwestern part of the
basalt aquifer and back into the intermediate aquifers
near the northeastern part of the basalt aquifer (Glancy,
1986, fig. 10). Some recharge to the basalt aquifer may
be from irrigation canals near Rattlesnake Hill, where
the basalt is exposed at the surface.

In much of the western and southwestern parts
of the Carson Desert, the hydraulic gradient between
the shallow and intermediate aquifers is downward and
water moves into the underlying aquifers. The overall
area where there is potential for downward movement
exceeds 100 mi? (Glancy, 1986, p. 54). In the eastern
and southern parts of the Carson Desert, the hydro-
logic gradient is upward and water moves from the
intermediate aquifers to the shallow aquifers.

In both the shallow and intermediate aquifers,
the altitude of the potentiometric surface ranges from
about 4,000 ft above sea level in the western part of the
study area to about 3,900 ft in the eastern part (Glancy,
1986, p. 42 and 53). The direction of ground-water
movement in the shallow and intermediate aquifers
generally is northeastward toward the Carson Sink and
Stillwater Marsh and southeastward toward Carson
Lake and Fourmile and Eightmile Flats.

The average horizontal hydraulic gradient is
about 7.5 ft/mi in the shallow aquifers (Glancy, 1986,
p- 38) and about 6.5 ft/mi in the intermediate aquifers
(Glancy, 1986, p 51). Glancy (1986) estimated specific
capacity values for about 430 wells in the shallow aqui-
fers and 15 wells in the intermediate aquifers. The
greatest specific capacities, about 70 gal/min/ft of
drawdown, are in the shallow aquifers on the western
side of the area, where the Carson River enters the
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basin. Specific capacity in the intermediate aquifers
ranges from 0.5 to 12 gal/min/ft of drawdown, which
is similar to that in most of the shallow aquifers.

The principal mechanism of natural discharge
from the shallow aquifers is evapotranspiration.
Some discharge also results from pumpage, open
surface drains, and ditches 10- to 15-ft deep that drain
shallow ground water from irrigated areas. This irri-
gation-return flow is delivered to the Stillwater and
Carson Lake Wildlife Management Areas for use
in maintaining wildlife habitat.

Hydrogen and Oxygen Isotopes

Stable isotopes of water (hydrogen and oxygen)
can be used to aid in the identification of the origin and
thus the recharge mechanism for certain ground-water
systems. A water molecule has variable concentrations
of the stable isotopes of hydrogen and oxygen. Hydro-
gen has two stable isotopes with masses of 1 (protium)
and 2 (deuterium); oxygen has two stable isotopes with
masses of 16 and 18. The stable-isotope composition
of water may be used as an indicator of the source of
recharge to ground-water systems because, in general,
the stable-isotope composition of nonthermal (less
than 30°C) water is not affected by processes other
than evaporation. Stable hydrogen and oxygen isotope
compositions are expressed relative to a standard
(Vienna Standard Mean Ocean Water) in units of parts
per thousand or 'permil' (Fritz and Fontes, 1980, p. 11).
Because surface water and atmospheric precipitation
that provide recharge to ground-water systems in the
Carson Desert are “lighter” than the standard mean
ocean water, the isotope composition (or permil) values
are all negative. When comparing water of differing
composition, the lighter water (water containing less of
the heavier isotope) will have a more negative permil
value than the heavier water. The distribution of deu-
terium in ground water of the Carson Desert is shown
in figure 8. The areal distribution of deuterium shows
that heavier deuterium values correspond to discharge
areas near Stillwater and Carson Lake in the shallow
aquifers, but that there is no apparent areal relation for
deuterium in the intermediate aquifers.

The stable-isotopic composition of water in the
Carson Desert is shown in figure 9. There are two
isotopic groups. The first group (A) consists mostly
of water from wells in the intermediate, basalt, and
thermal aquifers, and from some wells in the shallow
aquifers in nonirrigated areas. This group (group A in
fig. 9) follows an evaporation trend line originating in

isotopically light water in the intermediate and basalt
aquifers near Fallon and ending as highly evaporated
water in the shallow aquifers at discharge areas near
Carson Lake and Stillwater. Ground water from wells
in the intermediate aquifers in the Upsal Hogback area
are of an intermediate isotopic composition along this
evaporation trend line.

The other isotopic group (group B in fig. 9)
consists of water from wells in the shallow aquifers in
areas that are irrigated and from two wells tapping the
intermediate aquifers near Lahontan Reservoir. Water
in this group has a composition that lies along a mixing
line between the endmembers for Carson River and
slightly evaporated Truckee Canal water as represented
by samples from the Truckee River at Nixon. This
composition is shown in figure 9. Many samples are
offset from this mixing line because of evaporation of
different mixtures of endmembers during transport
and application of the water for irrigation. No single
evaporation trend line can be defined for these samples
because of the variable composition of the irrigation
water. The isotopic composition of the irrigation
water (from Lahontan Reservoir) can vary because of
(1) differing amounts of Carson and Truckee River
waters, (2) the degree of evaporation of Truckee River
water in the Truckee Canal, and (3) the amount of
evaporation in the irrigation distribution system before
recharge to the shallow aquifers. Only one analysis
for stable isotopes of hydrogen and oxygen is available
for water from a site just downstream from Lahontan
reservoir on the Carson River—the delta deuterium is
-103 permil and the delta oxygen-18 is -13.7 permil.
This sample has a similar composition to other Carson
River samples collected at upstream sites.

Thus, water in the shallow aquifers in the Carson
Desert has two origins. Ground-water in irrigated areas
evolves isotopically from a mixture of present-day
Carson and Truckee Rivers water. Water in the shallow
aquifers in nonirrigated areas (Carson Pasture and
Stillwater Marsh) evolves isotopically from water
in the intermediate and basalt aquifers.

Water in the intermediate and basalt aquifers

in the Fallon area is generally lighter in hydrogen iso-
topes than water in the present-day Carson and Truckee
Rivers. Evaporation makes water isotopically heavier,
thus, present-day Carson and Truckee River water can-
not evolve into the water now found in the intermediate
and basalt aquifers. It follows that water supplied for
irrigation is not the principal source of water presently
in the intermediate and basalt aquifers.
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Table 1. Activities of tritium and carbon-14 and estimated ages of
ground water from selected sites in the Carson Desert

[Carbon-13 values are relative to carbonate-mineral belemnite fossil from Cretaceous Peedee
Formation of South Carolina. Analyses made in 1978 are from Glancy (1986).
Abbreviations and symbol: permil, parts per thousand; PMC, percent modern carbon; pCi/L,
picocuries per liter; --, data not available]

Site o Estimated age
number Date C(ar::"r‘\i-:)s ca(mg-)m {mt;:;s Lab! of ground water
(fig. 3) P P (years)
Shallow aquifers
107 03-09-89 -11.3 -- 42 DRI -
108 04-19-89 -13.4 -- 55 USGS -
110 04-19-89 -14.1 - 39 USGS -
113 02-23-89 -12.0 - 93 DRI -
164 08-30-89 -- -- 44 USGS -
165 03-07-89 -11.6 -- 51 DRI -
189 03-08-89 -14.0 - 70 DRI --
191 01-18-89 - - <16 DRI --
192 01-17-89 - -- <16 DRI --
204 01-20-89 - - <16 DRI --
Intermediate aquifers
74 04-25-89 -9.90 18.3 <0.3 USGS 7,700
75 03-01-89 -114 69.4 <16 DRI --
82 05-31-89 -11.6 73.4 <16 DRI 1,100
88 02-28-89 -12.2 85.3 90 DRI modern
94 02-28-89 -11.0 89.6 67 DRI modern
95 03-08-78 -11.0 61.7 <0.3 USGS 1,400
97 03-08-78 -10.7 86.5 .3 USGS 1,200
104 04-18-89 -12.5 -- <16 DRI --
115 03-07-89 -12.2 88.6 <16 DRI modern
119 02-22-89 -12.1 76.9 <16 DRI modern
150 05-31-89 -8.30 -- .5 USGS -
151 03-08-89 -8.50 353 <16 DRI 3,200
152 04-20-89 -10.7 62.4 <16 DRI 1,600
157 01-27-89 -13.2 60.5 <16 DRI 1,200
158 04-20-89 -8.80 39.5 <16 DRI 3,100
161 04-20-89 -8.50 40.8 <16 DRI 2,700
167 04-21-89 -10.1 13.2 <16 DRI 7,300
169 05-31-89 -6.30 18.1 <16 DRI 6,300
Basalt aquifer
52 03-09-89 -8.20 15.4 <16 DRI 8,100
63 07-19-78 -6.89 30.2 .6 USGS 3,600
87 02-28-78 -8.72 34.1 2.6 USGS 4,400
87 03-02-89 -8.40 35.6 <16 DRI 3,800
111 03-01-89 -9.10 43.2 14 DRI 2,500
118 01-25-89 -9.50 51.2 15 USGS 1,800
121 08-10-78 941 52.7 26 USGS 1,500
122 01-25-89 -9.60 522 15 USGS --
127 10-06-78 -9.96 39.9 8.4 USGS 4,200
130 02-22-78 -8.85 514 22 USGS 1,100
131 01-26-89 -9.20 45.1 14 USGS 2,200
Thermal aquifer
45 12-07-82 -9.20 34 - - -

lLaboratory performing tritium analysis: DRI, Desert Research Institute, Reno, Nevada;
USGS, U.S. Geological Survey, Reston, Virginia.
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Water from most wells in the basalt aquifer has
tritium concentrations less than 16 pCi/L, indicating
that the water is at least 20 years old or is a mixture of
pre- and post-nuclear detonation water. Glancy (1986)
reported tritium concentrations of 0.6 pCi/L for water
in the basalt aquifer about 6 mi northeast of Fallon
(site 52) and less than 0.6 pCi/L for water from a
nearby well. Water in these wells was recharged at
least 57 years ago. Water in the Kennametal well
(site 87) in the basalt aquifer about 2 mi north of Fallon
had a tritium concentration of 2.6 pCi/L in 1978 and
had an age of at least 38 years. The greatest tritium
concentrations in water from the basalt aquifer are from
wells near the center of Fallon (site 121) and at the
Naval Air Station. This high concentration indicates
that recharge to the basalt aquifer may be taking place
near the center of Fallon and the Rattlesnake Hill area
of the Carson Desert. More likely, surface water from
irrigation canals is the source of recharge in this area.
Recharge may be increasing by pumping of the net-
work of wells completed in the basalt aquifer in the
immediate area.

Carbon-14

Under some conditions, ground-water ages
ranging from several hundred to about 30,000 years
can be determined using carbon isotopes (13C and
radioactive 14C). Dating of ground water using 140 is
complicated because 14C activity can be decreased by
the dissolution of minerals and sedimentary organic
matter containing 1*C-depleted carbon in the aquifer,
as well as by radioactive decay. Calculation of ground-
water ages from 4C concentrations requires detailed
information about the carbon sources and reaction
paths followed during the geochemical evolution of the
water. Alternatively, a model based on assumptions of
carbon sources and sinks and their isotopic composi-
tion can be used to estimate ages.

Mass-balance calculations (discussed in the
section titled “Processes affecting concentrations of
major constituents”) were used to provide estimates
of the carbon sources between waters along reaction
paths. Sources of carbon in the intermediate and basalt
aquifers could include calcite, organic matter, and
atmospheric and soil-zone CO, gas. The following
assumptions were made for 13C values used to deter-
mine the amount of carbon moving into the water:

(1) Carbon is added to the water by dissolution of
calcite. This calcite is secondary and is assumed to
have a delta carbon-13 (8!13C) of about -6 to 0 permil.
Shell fragments from Pleistocene Lake Lahontan inver-
tebrates are present in the sediment and, if dissolved,
would contribute carbon-13 of an unknown composi-
tion. No analyses have been made for these specific
carbonate sources to substantiate these assumptions.
Ten core samples were analyzed for the carbon-isotope
composition of inorganic carbon and have values rang-
ing from -6.8 to -0.8 permil and the median 813C value
is -1.3 permil. Because the above values represent a
combination of carbon sources, the composition of
individual sources is not known.

(2) Carbon supplied to water, other than carbon
from calcite dissolution, is assumed to be the result
of dissolution of soil-zone CO, gas. Oxidation of sed-
imentary organic matter is considered to be minor,
especially in the basalt aquifer. Sediment comprising
the intermediate aquifers has been saturated for at least
3,000-5,000 years. During that time, most of the sedi-
mentary organic carbon probably has been oxidized.
Modeling results—presented in the section of this
report titled “Processes affecting concentrations of
major constituents”—also indicate that sedimentary
organic carbon is not an important source for dissolved
carbon in the intermediate aquifers. The basalt aquifer,
because of its igneous origin, is assumed to have no
sedimentary organic carbon.

(3) The initial recharge water is assumed to have
a 13C composition of -4 to -11 permil. Two analyses of
surface water used for irrigation have been reported for
the Carson Desert; a sample collected from an irriga-
tion canal reported by Lico and others (1987) has a
813C of -4.3 permil, and a sample collected from the
Truckee Canal (supplies water from the Truckee River
to Lahontan Reservoir) has a 8!3C of -9.6 permil
(Rowe and others, 1991). Water samples collected by
the U.S. Geological Survey during 1990-91 on the
Walker and Truckee Rivers have average 13C values of
-10.5 and -10.1 permil, respectively (L.V. Benson,
U.S. Geological Survey, written commun., 1991). The
range of values for the Walker River is -11.7 to -9.3 per-
mil for 15 samples. The range of values for the Truckee
Riveris-11.1 to -9.6 permil for 9 samples. Because the
Walker and Truckee River Basins bound the Carson
River Basin and the carbon-isotope composition is
similar in both rivers, the carbon-isotope composition
of the Carson River is assumed to be near the values for
these two rivers.
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(4) The recharge water is assumed to have a l4c
activity of 100 percent modern carbon (PMC). There
are no measurements of the Carson River to substanti-
ate this, but it is possible to assume that the river water
is in equilibrium w1th atmospheric carbon dioxide
(CO,). The initial 14C activity depends on the source
of carbon in the river. The activity would be about
50 PMC if it resulted from mixing equal amounts of
carbon from modern CO, (100 PMC) and 14C-depleted
carbonate minerals (0 PMC). If the carbonate minerals
dissolved to produce the carbon in the river are second-
ary (0-100 PMC), then the 14C activity of the river
water would be between 50 and 100 PMC. Similarly,
the initial 14C activity would be near 100 PMC if
the carbon is mostly the result of weathering of non-
carbonate rocks by carbonic acid.

The different models used to calculate 14C ages
are described by Plummer and others (1991). Ground-
water ages listed in table 1 were calculated by NET-
PATH (a computer program) using the “original data”
model (Plummer and others, 1991). The time since
recharge (isolation from the atmo here) of the water
was calculated by correcting the 1*C composition of
the recharge water for the inferred chemical evolutlon
during travel and then comparing that corrected 14C
age to the measured 1C of the ground water. The time
since recharge is calculated by using the equation:

14
C ted
t = 8,267 x |:ln(14 (corrected) ﬂ )
C (measured)

where

t is the corrected 14C age of the
water, in years; 8,267 is the half

life of 14C divided by the natural
log of 2, in years;

l4e (corrected) is the 13C mass-transfer corrected
14C value in PMC assuming no
decay; and

l4c (measured) is the 14¢ value in PMC measured
in the water.

The !4C ages for water in the intermediate
aquifers range between modern and 7,700 years.
The oldest is from the northernmost and southernmost
wells towards the ends of the flow paths. The youngest
water is from wells near major canals near the center
of Fallon and the wells nearest Lahontan Reservoir.

As mentioned above, the basalt aquifer near the center
of Fallon, is being recharged by some modern water
and one may conclude that the intermediate aquifers
also are being recharged in that area and near
Lahontan Reservoir.

Because the amount of recharge the basalt aquifer
receives is not known, no corrections were made for
contributions of modern water. Thus the ages given
in table 1 probably are minimum ages.

The presence of measurable amounts of trltlum
in water from the basalt aquifers suggest the 14C ages
have been underestimated. Recharge of as little as
20 percent modern water could account for the mea-
sured tritium concentrations and reduce the apparent

l4c age of the water by several thousand years. This
suggests that prehlstonc Lake Lahontan m 4y be the
source of water in the basalt aquifer. The 1“C ages in
table 2 indicate that the age of water in the basalt aqui-
fer ranges from 1,100 to 8,100 years. The oldest water
is at site 52, the northernmost well. This agrees with
the conclusion presented above that the northeast part
of the basalt aquifer is the distal end of the flow system.

WATER QUALITY AND AQUEOUS
GEOCHEMISTRY

This section provides a description of the
chemical composition of ground water in the Carson
Desert and the processes that control concentrations
of solute in the different aquifers. The processes that
affect the composition of water in the thermal aquifers
will not be discussed in this report (see Olmsted and
others, 1984) and the processes responsible for the
water quality observed in the shallow aquifer can be
found in reports from other studies (Lico and others,
1987; Lico, 1992; A.H. Welch, U.S. Geological
Survey, written commun., 1991).

Ground water is the major source of drinking
water in Nevada for both private-domestic and public-
supply sources. The Nevada State drinking-water stan-
dards are used in this report as a reference for the
acceptability of a water source for human consumption.
These standards (table 2), which apply only to public-
supply systems, consist of maximum contaminant lev-
els (MCL's), secondary maximum contaminant levels
(SMCL's), and secondary preferred standards
(SPS's). The MCL's are health related and Federally
enforceable and specify the maximum concentrations
allowed to be delivered to the user of a public water-
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supply system. The MCL's were adopted from the
U.S. Environmental Protection Agency's National
Drinking Water Regulations (1986 a, b, and c) with
the addition of a 2 milligram per liter (mg/L) standard
for fluoride. MCL's have been proposed by the

U.S. Environmental Protection Agency (1991) for
radon-222, uranium, radium-226, and radium-228
(300 pCv/L, 20 pg/L, 20 pCi/L, and 20 pCi/L, respec-
tively). It should be noted that the uranium MCL is
expressed in mass terms whereas the other radio-
nuclides are expressed in units of radioactivity. The
aesthetic quality of water is mandated by State stan-
dards (SMCL's) that are not Federally enforceable.
SPS's apply to public water purveyors, unless water
of that quality is not available, in which case, the
MCL's and SMCL's apply (Nevada Bureau of
Consumer Health Protection Services, 1980, p. 8).

Surface Water

To understand how water quality changes as
the water moves through an aquifer system, it is impor-
tant to know the chemical characteristics of dissolved
constituents in the recharge water. The Carson and

Truckee Rivers are the major source of most recharge
in the Carson Desert. Statistical information for chem-
ical quality of Carson River water below Lahontan
Reservoir is shown in figure 11. Flow along this reach
of the Carson River includes water diverted from the
Truckee River into the Carson River Basin through the
Truckee Canal. The relative abundances of major ions,
pH, and dissolved-solids concentrations are shown in
figure 12.

Boxplots and modified trilinear diagrams are used
to display the large number of data points in this report.
Boxplots display summary statistics for the distribution
of reported concentrations for selected constituents.
The statistical components are represented visually by
features known as “boxes” and “whiskers,” and are
described as follows: The box defines the spread of
the middle 50 percent of the data (that is, the concentra-
tions that lie between the 25th and 75th percentiles).
The median value of the data (50th percentile) is indi-
cated by the horizontal line within the box. The vertical
lines beyond each end of the box are called whiskers.
They show the range of concentrations and extend
beyond the ends of the box to the maximum and
minimum data values.

Table 2. Nevada State drinking-water standards for public water systems

[Units of measure: milligrams per liter, except as noted. --, standard does not exist for the indicated constituent

or property]
Maximum Secondary  Secondary
Constituent or property contaminant maximum preferred
level (MCL)' contaminant  standard
level (SMCL)? (SPs)®
Inorganic constituents and properties
Arsenic 0.05 - .
Barium 70 - -
Cadmium o1 - -
Chloride . - 5
Chromium .05 - .
Copper ~ B L
Fluoride 0 o 1
Iron 0 0 .
Vo .05 - .
Magnesium > ot e
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Tabie 2. Nevada State drinking-water standards for public water systems—Continued

Secondary Secondary

Maximum .
R maximum preferred
Constituent or property contammanit contaminant standard
level (MCL)

levei (SMCL)? (sps)®

Inorganic constituents and properties—Continued

Manganese - 1 .05
Mercury .002 -- --
Nitrate (as N) 10 -- --
Selenium .01 - --
Silver .05 -- --
Sulfate - 500 250
Total dissolved solids -- 1,000 500
Zinc - - 5.0
pH - - 6.5-8.5
Organic compounds
Benzene 0.005 - -
Carbon tetrachloride .005 -- -
Endrin .0002 - --
Lindane .004 - --
Methoxychlor 1 -- --
Trichloroethylene .005 -- --
Toxaphene .005 -- -
Trihalomethanes, total 1 - -
Vinylchloride .002 - --
1,2-Dichloroethane .005 -- -
1,1-Dichloroethylene .007 -- -
1,4-Dichlorobenzene 075 - -
1,1,1-Trichloroethane 2 - -
2,4-Dichlorophenoxyacetic acid (2,4-D) 1 - .07
2,4,5-Trichlorophenoxypropionic acid (2,4,5-T) 01 - .07
Radionuclides

Adjusted gross alpha4 (excluding

radium-226, radon, and uranium), in picocuries per liter 15 - -
Gross beta, in millirems per year 4 -- --
Radium-226 and -228 (combined), in picocuries per liter 5 - -
Radium-226*, in picocuries per liter 20 - -
Radium-228*, in picocuries per liter 20 -- --
Radon-222*, in picocuries per liter 300 -- --
Uranium .02 -- --

'Maximum contaminant levels (MCL's) are health related and State and Federally mandated. Best available
technology as determined by the U.S. Environmental Protection Agency must be utilized to achieve these levels (Jeffrey
A. Fontaine, Nevada Bureau of Consumer Health Protection Services, oral commun., 1989). MCL's are adopted by the State
of Nevada (Nevada Bureau of Consumer Health Protection Services, 1980) from the National Drinking Water Regulations
(U.S. Environmental Protection Agency, 1986a, 1986b).

2Secondary maximum contaminant levels (SMCL's) are based on aesthetic qualities and are enforceable by the State
of Nevada (State of Nevada, 1980). Best available technology is determined by the State of Nevada (Jeffrey A. Fontaine,
Nevada Bureau of Consumer Health Protection Services, oral commun., 1989). SMCL's, except that for magnesium, are
adopted from National Drinking Water Regulations (U.S. Environmental Protection Agency, 1986c, p. 587-590). SMCL's
have not been established by the State of Nevada for copper, pH, and zinc.

3Secondary preferred standards (SPS's) must be met unless water of that quality is not available, in which case
the SMCL's must be met if they exist (Nevada Bureau of Consumer Health Protection Services, 1980, p. 8-9).

4Standard has been proposed, but not promulgated as of 1991 (U.S. Environmental Protection Agency, 1991).
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Figure 12. General chemical composition of water. A, Carson River; B, ground water. Arrows in A show how data in
separate fields correlate.
rectangle is a transitional area to connect the four out- Nineteen water analyses are available for the
side triangular and rectangular plots. On some plots, Carson River below the Lahontan Reservoir gage for

the data are crowded, which makes distinguishing indi- the years 1978-89 and include discharge values that
vidual symbols impossible. Where crowding presents range from 1.3 to 1,420 ft*/sec. The predominant
this problem, an alternative approach is to display constituents are sodium, calcium, and bicarbonate.
fields that enclose either 50 or 75 percent of the data The dissolved-solids concentration ranges from 172

in each of the five areas. The fields are defined

to 317 mg/L, with a median of 216 mg/L. The pH

using polar smoothing routines developed by Helsel ranges from 7.4 to 8.9, with a median pH of 8.0. A

(Dennis Helsel, U.S. Geological Survey, written
commun., 1991). is listed in table 3.
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Other water-quality oriented studies in the
Carson Desert (Hoffman and others, 1990; Rowe
and others, 1991; Lico, 1992) have described different
aspects of surface-water quality, mostly in the dis-
charge areas of Stillwater Wildlife Management area
and Carson Lake (Carson Pasture). These reports
include a few analyses from the Carson River down-
stream of Lahontan Reservoir. The chemical composi-

SAMPLES
Shallow aquifer
- Intermediate aqulfer

tion of water from agricultural return flow has been
described by Hoffman and others, 1990; Rowe and
others, 1991; and Lico, 1992). This water is trans-
ported in drains and can be a source of recharge in
the distal parts of the ground-water flow systems in
the southern Carson Desert. In the Fallon area, the
drains are removing water from the shallow aquifers
thus lowering the water table.
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Ground Water

Most of the data used to describe the quality
of ground water in the Carson Desert were collected as
part of the NAWQA program (Whitney, 1994). Several
other sources of water-quality data also were used to
aid in this description, these include: Morgan (1982),
Olmsted and others (1984), Olmsted (1985), Glancy
(1986), Lico and others (1987), Hoffman and others
(1990), Rowe and others (1991), and Lico (1992).

Characterization of the water quality in the
Carson Desert is only as good as the data set used in
that characterization. In that regard, the available data
for the quality of water in the ground-water system in
the Carson Desert have some limitations. The number
of samples from the shallow aquifers far exceeds those
from the other aquifers (intermediate and basalt aqui-
fers). The basalt aquifer, in particular, has only a few
tens of wells completed in it, thus it may be underrep-
resented in the data set. Also, many of the wells in
the shallow aquifers are observation wells and are not
used for public supply, whereas the wells in the inter-
mediate and basalt aquifers are almost exclusively used
for public supply. This fact may not allow for a direct
comparison of water quality between the shallow aqui-
fers and the intermediate and basalt aquifers. Another
bias may be that wells with unacceptable water quality,
especially in the intermediate and basalt aquifers,
probably would be abandoned, leaving only the wells
with acceptable water quality for sampling. The meth-
ods of well completion for wells in the shallow aquifers
commonly are different from those used for intermedi-
ate and basalt wells. Typically, the public supply wells
of the intermediate and basalt aquifers are perforated
over large or multiple vertical intervals, whereas the
wells in the shallow aquifers are open to relatively
short intervals. Also, the open intervals of wells usu-
ally are placed in the more productive sands (coarser
grained) and may bias samples by not including water
from the fine-grained sediment within the aquifer

The following part of the report contains four
sections that discuss the major inorganic constituents,
minor inorganic constituents, radionuclides, and syn-
thetic organic compounds in ground water of the
Carson Desert. For the purposes of this report, major
constituents are those that make up most (greater than
98 percent) of the solute content; minor constituents are
generally present at concentrations of less than 1 mg/L.

Each subsection describes the general water quality
and the relation to Nevada State drinking-water stan-
dards and the processes that affect the observed quality.

Major Inorganic Constituents

Water Quality and its Reiation to Nevada
State Drinking-Water Standards

Plots showing the chemical composition of
water from the entire ground-water system in the
Carson Desert are in figure 12. Ground water varies
from a dilute calcium bicarbonate water, similar to that
of the Carson River, to a saline sodium chloride type.
Typically, as the dissolved solids increase, sodium and
chloride become the dominant ions in solution. The
more saline water (greater than 10,000 mg/L, dissolved
solids) is found in the shallow aquifer in areas that are
not irrigated, such as Stillwater Wildlife Management
Area, Carson Lake (Carson Pasture), and Soda Lakes-
Upsal Hogback area. These areas are discharging
ground water and are highly affected by evaporation,
as previously discussed in the section “Movement of
ground water and isotope hydrology.”

The statistical distribution of major constituents
in ground water from the shallow aquifers is shown
in figure 13. In general, water in the shallow aquifers
is similar to that of the Carson River below Lahontan
Reservoir and is dominated by sodium, calcium, sul-
fate, and bicarbonate. The dissolved-solids concen-
trations range from 205 to 93,800 mg/L and have a
median of 1,990 mg/L. The pH generally ranges from
6 to 9 and has a median pH of 7.4. Representative
analyses of ground water in the Carson River Basin
are listed in table 3.

In general, concentrations of dissolved solids
in the shallow aquifers are lowest in the vicinity of
Fallon and are greatest in the surrounding areas near
Stillwater Marsh, Carson Lake, and the Soda Lakes-
Upsal Hogback area (fig. 14). Concentrations of dis-
solved solids are greatly affected by local conditions
such as proximity to canals, drains, and irrigated fields,
and evaporation. Wells at sites 108 and 110 (fig. 3) are
only a few hundred feet apart, but the dissolved-solids
concentration at site 110 (524 mg/L) is less than one-
half of that at site 108 (1,210 mg/L). Glancy (1986)
and Lico and others (1987) also described the highly
variable ground water in the shallow aquifers. Site 110
is near an unlined irrigation canal and ground water
probably is affected by seepage from that canal.
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Processes Affecting Concentrations of
Major Constituents

Ground water in aquifers of the Carson Desert
is in contact with sediment derived from intrusive and
extrusive igneous, metasedimentary, sedimentary, and
metavolcanic rocks in the adjacent mountains and the
headwaters of the Carson River in the Sierra Nevada.
Concentrations of the major constituents are primarily
aresult of chemical reactions with the minerals derived
from rocks in upland areas and their weathering prod-
ucts. Evapotranspiration also concentrates solutes,
particularly for water in the shallow aquifers in the
peripheral areas of the basin. Some processes respon-
sible for the observed water quality can be presented as
a set of geochemical reactions (referred to as reactions
hereafter), commonly termed a geochemical model
(referred to as model hereafter). A model for a ground-
water system can be evaluated by using a mass-balance
approach that generally consists of analyzing chemical
and isotopic data for ground water and aquifer matrix,
thermodynamic data for phases1 of interest (minerals,
gases, and amorphous phases), and hydrologic know-
ledge (Plummer and others, 1983). One common
approach is the formulation of a model along a ground-
water flow path that yields a different reaction for the
various segments of the flow path between the sam-
pling locations. This common approach was used for
the Fernley area by Lico (1992), but was not used for
ground water in the Carson Desert because sampling
locations are generally not along flow paths and the
wells do not always draw water from discrete depths
because supply wells are open over long vertical inter-
vals. In contrast, the approach used here assumed that
the water quality in the basin-fill deposits is a result of
a common set of reactions. This approach has led to a
model that is consistent with available data. The model
described within this report consists of a general set of
reactions that result in a water composition that has
characteristics similar to those found in the aquifers.

The model is evaluated for consistency with
(1) mineralogic data for a limited set of water samples
collected in the shallow subsurface in the Carson
Desert, (2) the bulk geochemistry of sediments in
Carson Desert, (3) the chemical and isotopic composi-
tion of the ground water, and (4) thermodynamic calcu-

1A phase is any homogeneous part of water separated from
other parts of matter by physical surfaces or boundaries. A phase
may be solid, liquid, or gas and may be composed of an element, a
compound, or a homogeneous mixture of elements or compounds.

lations of mineral equilibrium. Although this approach
does not yield a unique model, the model is believed to
provide a satisfactory description of the geochemical
processes that results in the observed water quality

of major constituents.

The mass-balance approach yields unique
numerical solutions (if there are any) for a particular
set of phases and water-quality data. Formulation of
a unique solution requires that the number of phases
be equal to the total number of elements and isotopes
used in the model. Minerals that have been identified
in basin-fill sediments and the basalt of Rattlesnake
Hill are included in the models as phases and are listed
in table 5. These phases represent a set of probable
phases that react with, or precipitate from, the through-
flowing ground water. Additional phases included in
the model are cation-exchange reactions, carbon diox-
ide, pyrite, and sodium chloride. Pyrite is an accessory
mineral in igneous and metamorphic rocks and is a
potential source for sulfate in the ground water. Chlo-
ride, with an equivalent amount of sodium, is assumed
to enter ground water from fluid inclusions in igneous
rock fragments or halite present as evaporite minerals
in the sediment.

The mass-balance approach requires that exact
mineral compositions be used. For some of the identi-
fied minerals an exact chemical composition has not
been determined. In general, the chemical formulas
used in models for dissolving minerals correspond
to compositions for minerals commonly found in the
Sierra Nevada—the primary source of sediment for
the Carson River. The composition used for plagio-
clase feldspar corresponds to intermediate andesine
with a molar ratio of sodium to calcium of 3:2.
Andesine is the mineral most commonly identified in
thin sections of sediment from the Carson Desert. A
chemical formula for hornblende was used to represent
the amphibole mineral group. Biotite, which is com-
mon in the sediment of the Carson Desert, is included
in the model as an arbitrarily selected composition
(table 5). The composition of pyroxene corresponds
to the mineral augite—a common mineral in volcanic
rocks and the sediment of the Carson Desert. The
sodium endmember is used for the clay, beidellite,
along with the inclusion of an exchange phase that
allows sodium to be released to ground water in
exchange for calcium that generally is the divalent
cation that has the highest concentrations in the
ground water.
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Table 5. Minerals identified and phases included in geochemical models, their composition, and rationale for inclusion in
geochemical models of the Carson Desert

Mineral Composition Phase selection rationale
or phase

Biotite KMgq sFe(Il)g sAlg sFe(Ill)g 5Si301o(OH),  Identified in thin section, mostly altered to chlorite.

Calcite CaCOs Ubiquitous; identified in thin section and X-ray diffraction,
present as shell fragments in Lake Lahontan sediments, as
crystal overgrowths, carbonate clastic fragments, and
cavity fillings in basalt.

Carbon dioxide CO, Ubiquitous; atmospheric, root-respiration of plants, and
oxidation of sedimentary organic matter.

Chlorite Mg;Al,Si30;9(OH)g Common alteration product of feldspars, biotite, pyroxene,
and hornblende as seen in thin section. Presence
confirmed by X-ray diffraction.

Exchange Ca-Na Abundant exchange sites are present in sediment; mainly used
to adjust unknown compositions of beidellite, pyroxene,
hornblende, and biotite.

Gypsum CaS0O42H,0 Present in desert soils; identified by optical petrography near
Stillwater.

Halite NaCl Common mineral in areas with high evaporation rates

Hematite Fe,04 Present as coatings on iron-bearing minerals.

Hornblende CayNay sMgsAly gSi70,,(0H), Identified in thin section; possible dissolution.

Illite Ko ¢Mgo.25Al5 3513 s019(OH), Presence confirmed by X-ray diffraction.

Plagioclase feldspar Nay ¢Cag 4Al; 4Sij ¢Og Present as detrital grains and as components in volcanic and
intermediate sedimentary lithic fragments. Compositions range from
andesine albite to labradorite.

Potassium feldspar KAISizOg Identified in thin section and by X-ray diffraction. Slightly

altered to chlorite and sericite.

Pyrite Fe$S, Present in volcanic rock fragments.

Pyroxene augite Cag sMgy sFeg sAlg 5SipOg Identified in thin section; possible dissolution (ragged edges).

Sericite KAI,(AlSi3010)(OH), Identified in thin section, common alteration product of
plagioclase.

Silica Si0, Quartz, chalcedony, and glass shards are present in thin

Smectite sodium
beidellite

Nay 33Al5 33513 67010(0H),

section.

Presence confirmed by X-ray diffraction, exact composition
unknown, some mixed-layer clays (smectite-illite) also
present.
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In general, water in aquifers beneath the Carson
Desert contains little or no measurable dissolved oxy-
gen. Concentrations of dissolved oxygen are less than
1.0mg/L in 71, 95, and 83 percent of samples collected
from the shallow, intermediate, and basalt aquifers,
respectively. This indicates that oxidation-reduction
(redox) reactions may be important in the ground
water. Oxygen-consuming reactions are most likely
occurring in the upper parts of the shallow aquifers that
have not been evaluated here. Lico and others (1987)
have described the important redox reactions taking
place in the shallow aquifers. The general absence of
measurable nitrite and sulfide odor (except for a few
samples) indicate that chemical reduction of nitrogen
and sulfur is not an important process in the ground
water, although microbially mediated redox reactions
(such as sulfate reduction) may be occurring, most
likely with the sulfide being precipitated as iron sul-
phide on the solid-phase aquifer material. Mass-
balance reactions in this report do not include
redox reactions.

The stable-isotope composition of dissolved
inorganic sulfur and carbon can be used to evaluate
the feasibility of specific proposed reactions. The
differences in the stable-isotope composition of
dissolved inorganic carbon and sulfur in the Carson
Desert can be a result of several factors including
(1) variation in the amount or isotopic composition
of minerals containing sulfur and carbon that are
dissolved by the ground water; (2) mineral precipita-
tion; (3) microbial processes, such as sulfate reduction;
and (4) differences in the isotopic composition of
recharge water.

The sulfur-isotope composition of water with
sulfate concentrations less than about 50 mg/L is gen-
erally heavier (more positive) in Carson Desert than the
composition in samples with higher concentrations of
sulfate (fig. 18). The variation of the low sulfate water
probably is caused by microbial sulfate reduction and
compositional differences in the rocks that compose
the basin-fill sediments. Microbial reduction of sulfate
leaves the isotopically heavier sulfate in solution and
reduces the isotopically lighter sulfate to sulfide.
Abiotic (without the aid of microbes) reduction of
sulfate, which probably does not occur at the condi-
tions present in the aquifers, would not fractionate sul-
fur at temperatures below about 50°C (Ohmoto and
Rye, 1979, p. 539). The sulfur-isotope composition

of water with sulfate concentrations less than 50 mg/L
is heavier than the range found in granitic rocks in the
circum-Pacific by Ishihara and Sasaki (1989) and that
found in Carson and Eagle Valleys farther upstream in
the Carson River Basin (Welch, 1994). The isotopic
composition of dissolved sulfate in the aquifers proba-
bly is not affected by mineral precipitation because sul-
fate concentrations are well below concentrations that
could form common sulfur-bearing minerals such as
gypsum except in the shallow basin-fill aquifer near
Stillwater Marsh.

As the chloride concentration increases, the
sulfate concentration increases linearly for ground-
water samples from the shallow aquifer (fig. 18).

The isotopic composition of sulfate in water from the
shallow aquifers remains relatively constant (from 4 to
10 permil) as sulfate concentrations increase indicating
either evaporative concentration or dissolution of a sul-
fate-containing phase that has an isotopic composition
between 4 and 10 permil. Sulfate in water samples
from wells in the intermediate aquifer has a much
larger range of isotopic compositions (from -5 to

33 permil). There are possible explanations for this
observation, (1) evaporative concentration of ground
water is enriching chloride and sulfate, but the sulfate
concentrations are being lowered by microbial sulfate
reduction, (2) evaporative concentration of ground
water enriches chloride and sulfate, but the sulfate is
being removed from solution by precipitation of gyp-
sum, and (3) a chloride-containing salt is being dis-
solved. Precipitation of gypsum can be ruled out
because most water samples in the intermediate aqui-
fers are undersaturated with gypsum and it could not
be precipitated. Itis unlikely that a chloride-containing
salt is dissolving in high enough quantities to produce
the observed concentrations. The sulfur-isotope com-
position of dissolved sulfate in water from the interme-
diate and basalt aquifers indicates that the two aquifers
have the same source of sulfur and that sulfate
reduction is occurring in the intermediate aquifers.
Abundant dissolved organic carbon (table 3) in the
intermediate aquifers provides ample amounts of
carbon for the reaction:

2CH,0+S03” = H,S+2HCO; . (1)
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Figure 18. Relation between the concentration of sulfate and A, the stable-isotope
composition of sulfur in sulfate; and B, chloride in ground water in the Carson Desent.
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The stable-isotope composition of carbon in
ground water is affected by the composition of the
different sources of carbon. Much of the carbon enters
ground water as dissolved bicarbonate in the recharge
water or in the form of dissolved CO, as the water
passes though the root zone. The carbon-isotope com-
position of the Carson River (recharge water) has not
been measured, but water samples from the Walker
and Truckee Rivers have been. Average 13C values for
these two rivers are -10.1 permil (range from -11.7 to
-9.3 for 15 samples) and -10.5 permil (range of -11.1
to -9.6 for 9 samples) (L.V. Benson, U.S. Geological
Survey, written commun., 1992). One water sample
from an irrigation ditch near Fallon, reported by Lico
and others (1987), has a 13¢C value of -4.3 permil.
Rowe and others (1991) reported a water sample
having a !13C value of -9.6 permil from the Truckee
Canal near Fernley. The carbon-isotope composition
of CO, in the root zone has not been determined in
the study area, but may be estimated based on the
composition in ground water and studies of carbon in
the unsaturated zone elsewhere in the Great Basin
(see below). The carbon-isotope composition of
ground water in the unsaturated zone can be controlled
by equilibrium with atmospheric and plant-respired
CO,. The isotopic composition of plant-respired CO,
is primarily dependent upon metabolic pathways of
plant biomass on the land surface. Most plants in the
Great Basin follow one of two photosynthetic path-
ways (Calvin cycle, C5 pathway or Hatch-Slack cycle,
C,4 pathway), each of which results in a distinct carbon-
isotope composition of the biomass (Cerling, 1984).
The carbon-isotope composition of CO, respired by
plants is similar to the composition of the plant biomass
(Deines, 1980). In the Headwaters Area of the Carson
River Basin, most native vegetation, including pines
and firs, follow the C; pathway (Quade and others,
1989, table 2). The carbon-isotope composition of
CO, generated by C;3 pathway plants averages about
-27 permil (Deines, 1980; Cerling, 1984). Plants fol-
lowing the C4 pathway, such as Atriplex (saltbrush),
are present in the Carson Desert and yield a carbon-
isotope composition of about -13 permil (Deines, 1980
and Cerling, 1984). As a result of areal differences in
the types of vegetation, the CO, in soils has a variable
isotopic composition that has been shown to range
from about -20 to -12 permil for an area with C
and C,4 vegetation in southern Nevada (Quade and
others, 1989).

Dissolution of carbonate minerals is a second
possible source of inorganic carbon. Calcite (and
possibly other carbonate minerals) is present as shell
fragments in the Pleistocene Lake Lahontan sediment
(shallow aquifers). These shell fragments generally
do not show evidence of dissolution, instead they com-
monly are coated with overgrowths of calcite precipi-
tated from the ground water (Lico, 1992). Other calcite
sources are present as caliche in the soil zone, ancient
caliche layers buried in the shallow aquifers, and sec-
ondary fracture and vug fillings in the basalt aquifer.
The carbon-isotope composition of calcite sources is
not well known. Eight sediment samples from the
shallow aquifers were analyzed for their carbon-
isotope composition. The samples range from -6.8 to
0.9 permil and have an average value of -1.37 permil.
Secondary calcite (caliche) from unsaturated zones in
southern Nevada has a carbon-isotope composition of
-8 to 0 permil (Quade and others, 1989). Sedimentary
and dissolved organic matter can supply carbon to the
total dissolved inorganic carbon by microbial sulfate
reduction (eq. 2). The carbon-isotope composition
of organic material in 11 sediment samples from the
shallow aquifers ranges from -25.2 to -22.4 permil
and has an average value of -23.7 permil.

The trend in carbon-isotope composition of
dissolved bicarbonate in the intermediate aquifers
indicates dissolution of a few millimoles of calcite that
has a composition somewhat heavier than -6 permil
(fig. 19). The most dilute water samples have carbon-
isotope compositions similar to those found in water
that is in equilibrium with CO, in the soil zone where
C,4 plants are present. This dilute water may represent
the composition of recharge for the intermediate aqui-
fers. Most of the shallow aquifer water samples from
the irrigated area near Fallon have carbon-isotope com-
positions that range from -15 to -11 permil, indicative
of a CO, source from Cy4 plants. Ground-water sam-
ples from the shallow aquifers in the discharge areas
(Carson Pasture and Stillwater Marsh) have carbon-
isotope compositions that range from -8 to -5 permil.
This water evolved from the intermediate aquifers and
has a carbon-isotopic composition that remains rela-
tively constant; the dissolved inorganic carbon concen-
tration changed more than four-fold. Evaporative
concentration of the ground water is the most likely
explanation for this observed relation.

44 Ground-Water Quality and Geochemlstry, Carson Desert, Western Nevada






2. Shallow basin-fill aquifers near Fallon to basalt
aquifer;

3. Intermediate basin-fill aquifers near Fallon to
basalt aquifer;

4. Intermediate basin-fill aquifers near Fallon to
intermediate basin-fill aquifers near Soda
Lakes-Upsal Hogback; and,

5. Intermediate basin-fill aquifers near Fallon to
shallow basin-fill aquifers near Carson
Lake (Carson Pasture).

Eleven phases may be included in each individual
reaction because eleven constituents (sodium, calcium,
magnesium, potassium, dissolved inorganic carbon,
chloride, sulfate, silica, iron, aluminum, and the stable-
isotope composition of carbon) are included in the
reactions. The mineralogic phases considered for
the reactions, their chemical compositions, and ratio-
nale for their selection are listed in table 5. The mass-
balance approach does not yield a unique solution in
a system like that found in Carson Desert because the
number of possible reacting phases is greater than the
number of “elements.” Each reaction starts with the
chemistry of a representative water from the aquifer
where the water originates. This composition was
chosen by evaluating chemical, isotopic, and hydro-
logic data for the aquifers. Reactions were designed
for changes in composition from these initial waters to
all samples available of the final water. Four mineral
phases were “forced” to be in each model on the basis
of visual observations of thin sections made from the
sediment or basalt. These minerals are plagioclase
(intermediate andesine composition), augite, calcite,
and sodium beidellite (table 5).

All possible combinations of the phases indicated
in table 5 were evaluated for each reaction segment
using the computer program BALANCE (Parkhurst
and others, 1982). The program solves a set of simul-
taneous equations and yields the stoichiometric coeffi-
cients for chemical mass-balance reactions. For each
of the general reactions, the average amounts of mass
input and output for each unique combination of phases
was calculated. Specific combinations of minerals,
termed "specific reactions," that can form the observed
water quality were retained for further consideration if
total mass transfer was less than twice (five times for
reaction segment 2) the average dissolved-solids con-

tent in ground water. The limitation on the total mass
transfer is imposed in order to demonstrate that reac-
tions with relatively modest amounts of dissolution and
precipitation can explain the observed water quality.
Linear combinations of the specific reactions represent
additional numerically valid reactions as well. For
instance, the sum of one-half the mass transfer of each
of the phases from two other specific reactions repre-
sents a valid reaction that meets the second criterion.
A reaction consisting of a combination of mostly an
“accepted” reaction combined with a small amount of
a “rejected” reaction is therefore a satisfactory solution
to a general reaction. Two of the reaction segments did
not fit the constraints of the reactions as defined. One
of these reaction segments (segment 4 above), had only
1 sample out of 20 that fit the 9 identified reactions for
that segment. The other reaction segment (segment 5
above), had one reaction that fit 5 of 15 samples. The
absence of acceptable reactions for this step indicates
that other processes, most likely mixing of ground
water with irrigation water, are occurring. These

two reaction segments (4 and 5) were deleted from
evaluation in the subsequent discussion of possible
geochemical reactions occurring in the ground-water
system of the Carson Desert.

Criteria were selected in order to retain specific
reactions that are numerically possible and compatible
with both the observed mineralogy and general ground-
water quality. An evaluation of the resulting set of
specific reactions indicates whether or not a general
model describing the major reactions is a satisfactory
representation of the processes that lead to the observed
ground-water quality. This overall approach generally
cannot be used to accept or reject minerals in a pro-
posed general model, but may give information about
the relative amounts of input from the various phases
and provide a basis for accepting or rejecting a
general model.

The BALANCE initial-water concentrations for
the three reaction segments are the observed concentra-
tions in ground water, except for aluminum. Alumi-
num concentrations are generally low (10 ug/L or less)
in ground water with pH values in the range found for
Carson Desert, so that the aluminum concentrations
were set to zero. The compositions of the initial waters
are listed in table 6.
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Median values for mass transfer of minerals
for the three reaction segments are indicated in
figures 20A-F. The amounts of mass transfer shown
in the figures is the molar (atomic) mass contributed
by the phases and not the mole fraction for each phase
that allows comparison with the molar concentrations
in ground water. Positive values indicate dissolution
and negative values indicate precipitation. For each of
the reaction segments, the reactions have some broad
similarities in that (1) plagioclase feldspar represents a
major source of dissolved solids, (2) release of sodium
to solution by cation exchange for calcium is a com-
mon factor in all reactions, (3) sodium beidellite is
formed in all reactions, and (4) mass transfer of CO; is
relatively small—in all cases no more than 1 millimole
per liter (mmol/L).

Three reactions were developed for the
segment representing changes in water quality between
the shallow basin-fill aquifers and the intermediate
basin-fill aquifers near Fallon (reaction segment 1;
fig. 20A and B). As in all reaction segments in the
Carson Desert, plagioclase, cation exchange, and
sodium beidellite are the major reactants and products
of reactions between sediments and water. Calcite is
included in the reactions and represents a small fraction
of the total mass transferred in any one reaction (less
than 0.5 mmol/L). One reaction in segment 1 allows
for precipitation of a small amount of calcite
(0.23 mmol/L), another reaction allows for dissolution
of about 0.5 mmol/L, and the third allows for precipita-
tion of a minute amount (0.006 mmol/L). Sodium
chloride has median values that comprise a large part of
the total amount of mass transfer, with values that range
from 15 to 19 mmol/L. Although evaporation was not
included in the reaction, sodium chloride probably
represents concentration of the ground water by either
evaporation or dissolution of salts precipitated in the
unsaturated zone as the soils desiccate and is common
in all reactions, especially those involving the shallow
aquifers. Silica is precipitated in small amounts in two
of the reactions (less than 0.7 mmol/L). Because any
linear combination of the reactions also represents
valid reaction of this segment, the data displayed in
figure 20 indicate that an overall reaction, which
includes all of the indicated phases, is consistent with
the observed concentrations of major constituents.

The mass transfers for the reactions occurring
along reaction segment 2 (shallow basin-fill aquifers
near Fallon to the basalt aquifer) are indicated in
figure 20C and D. The amounts of precipitation and

dissolution indicated by the seven reactions are broadly
similar to the amounts estimated by the set of reactions
for segment 1. Plagioclase is the major mineral that
dissolves in all reactions between 3 and 4 mmol/L.
Sodium beidellite is formed in all reactions as a direct
product of incongruent dissolution of plagioclase.
Amounts of sodium beidellite formed are between
about 1 and 3.3 mmol/L. Cation exchange, involving
about 4 mmol/L of mass transfer, is present in all
reactions for this reaction segment. The amounts of
CO, indicated by all the reactions are relatively small
(about 0.25 mmol/L). All reactions indicate that calcite
precipitates (about 0.5 mmol/L). Silica precipitates in
three of seven reactions (less than 0.9 mmol/L) and
dissolves in one reaction (0.35 mmol/L). Small
amounts of gypsum and sericite also are dissolving.
Illite is forming in the aquifer as indicated in six of
seven reactions.

Reaction segment 3 is characterized by the six
possible reactions shown in figure 20E and F. Only
one-half of the samples are explained by four of the six
reactions. Plagioclase, calcite, and carbon dioxide are
common to all reactions and are the major components
dissolving in these reactions. Cation exchange mass
transfer involves between 3 to 3.5 mmol/L. Sodium
beidellite is the major reaction product forming in all
reactions (between 0.25 and 3.3 mmol/L). Silica pre-
cipitates in four of six reactions in small amounts
(0.44 to 0.74 mmol/L). Small amounts of pyrite, seric-
ite, hematite, and illite also are involved in the reac-
tions controlling the major-element chemistry of these
waters. Between 4.6 and 5.0 mmol/L of sodium chlo-
ride dissolved in these reactions indicates evaporation
is occurring along this reaction segment or possibly
sodium chloride-rich fluid inclusions are being mixed
with the water as minerals in the basalt dissolves.

The mass-balance reactions indicated by the
data shown in figures 20A-F are consistent with the
thermodynamic state of the ground water. Thermody-
namic data used for the phases in the model are from
the computer program WATEQA4F (Ball and others,
1987). Thermodynamic data, and hence calculations
involving them, are not available for some of the
mineral phases included in the model described
above. Saturation indices for those minerals that have
thermodynamic data are listed in table 7. Chemical
activity diagrams, shown in figure 21, indicate the
following conditions:
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Table 7. Saturation indices for selected minerals in ground-water sample as calculated by the computer

program WATEQ4F (Ball and others, 1986)

[Symbol: --, data not calculated because aluminum concentration was not measured]

Saturation Index!

Shallow
Shallow Intermediate
Phase aqulfers Basalt
aquifers aquifers
(composition) near aquifer
near Falion near Fallon
Stiiiwater (site 111)
(site 142) (site 157)
(site 26)
Albite (NaAlSizOg) -0.55 22 -- -
Anorthite (CaAlSi;Og) -3.4 24 -- -
Sodium beidellite (Nao‘33A12.33Si3.67010(OH)2) 35 5.5 - -
Calcite (CaCO,) -.19 .29 -0.38 0.21
Chlorite (MgsAl»Si;019(OH)g) -7.4 -.76 -- --
Gypsum (CaSO,4-2H,0) -2.1 -.14 -3.0 -33
Halite (NaCl) -1.8 -3.0 -1 -6.2
Hematite (Fe,O3) 14 14 17 15
Illite (Ko gMgg 25Al, 3513 5019(OH),) 23 5.0 -- -
Kaolinite (Al,Si,05(OH),) 3.0 43 -- --
K-mica (sericite) (KAly(AlSi;014)(OH),) 8.9 12 -- --
Rhodochrosite (MnCOs) -2.7 -.085 -47 -1.2
Siderite (FeCO,) -4.7 -2.0 -.90 -8.2
Silica (amorphous) (SiOy) .023 .14 -.037 -34
. . IAP
ISaturation Index (SY) is defined as: SI = log —_;
Keq

where
IAP is the ion-activity product,
K, is the equilibrium constant, and
log is the logarithm (base 10).

Saturation indices of near zero indicate the solution is in equilibrium with the mineral phase. Saturation indices less
than zero indicate the solution is undersaturated and that the mineral, if present, may dissolve. Saturation indices greater
than zero indicate the solution is supersaturated and the mineral can precipitate from the solution.

(1) The chemical activity ratios for Carson Desert
ground water in the intermediate aquifers generally
plot along slopes consistent with cation exchange reac-
tions (figs. 21A-C). Specifically, a ratio of 2 will result
where the aqueous geochemistry is controlled by the
exchange of a divalent cation for a monovalent cation
(Drever, 1982, p. 181-183) and corresponds to a slope
of 2 on figures 214 and C. Similarly, plots of two
cations with the same valence will result in a slope of 1

on a diagram like figure 21B if exchange controls the
cation ratio. Most data for the intermediate aquifers
have trends consistent with cation exchange being the
geochemical control on the ratios of the major cations.
In the shallow aquifers, calcium is being removed from
solution at a rate greater than that attributed to simple
cation exchange. Most likely, precipitation of calcite is
limiting calcium concentrations in ground water within
the shallow aquifers.
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Figure 21. Relation between chemical activities of major constituents in ground water in the Carson Desert:
A, calcium and sodium; B, calcium and magnesium; C, magnesium and sodium; D, sodium and silica; E, calcium and
silica; £, magnesium and silica. All phase boundaries were calculated for a temperature of 25° Celsius.

(2) The clay minerals kaolinite, beidellite appears to have stable ionic compositions that
(smectite), and chlorite are stable w_eathering products correspond to those indicated by solubility constants
in most water samples from the basin-fill and basalt determined for beidellite (Drever, 1982, p. 177-190)

aquifers. Activity diagrams (figs. 21D-F) show the
activities for ground-water samples on stability fields
for minerals that commonly form in ground-water sys-
tems. Thermodynamic data for beidellite may not be

and may be a result of a steady-state condition rather
than true equilibrium. Although commonly adopted
thermodynamic data for beidellite may not represent

valid in a strict thermodynamic sense (May and others, ~true equilibrium, the data are useful for the purpose of
1986). In contrast, studies of ground-water systems comparison with other systems where beidellite has
where beidellite is forming have shown that water been observed to be forming.
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Figure 21. Continued.

Saturation indices, which are a measure of the
thermodynamic state of a solution, have been calcu-
lated for calcite and amorphous silica. For the purposes
of discussion, saturation indices of less than -0.5 are
considered undersaturated, values ranging from -0.5 to
0.5 are considered to be saturated (at equilibrium), and
values greater than 0.5 are oversaturated. Ground
water in the aquifers of the Carson Desert is generally

at saturation with calcite (fig. 22A4), which is consistent
with dissolution or precipitation in the mass-balance
models. The ground water is generally saturated

(at equilibrium) with amorphous silica (fig. 22B),
which also is consistent with the reactions that indicate
precipitation or dissolution of small amounts of
amorphous silica.
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Figure 26. Relation between boron and chloride concentrations in ground water in the

Carson Desert.

Only a few ground-water sites sampled in the
Carson Desert have water that exceeds MCL's for
minor elements other than arsenic (fig. 17). Cadmium
is greater than or equal to 5 pug/L in five samples.
Selenium exceeds the MCL of 50 pg/L in five wells.

The only minor elements that exceed SMCL's
are manganese and iron. A total of 40 sites from the
shallow and intermediate aquifers have ground water
with manganese concentrations greater than 0.1 mg/L.
Seven samples have concentrations of iron that are
greater than the SMCL. The sites that have ground
water in exceedance of the SMCL for iron and
manganese are shown in figure 15.

Processes Affecting Concentrations of Minor
Constituents

Arsenic concentrations are highly variable and
probably controlled by local redox conditions in the
aquifers. Lico (1992) has described the processes
responsible for the mobilization of arsenic in the
shallow aquifers near Stillwater Wildlife Management
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Area. Dissolution of volcanic-rock fragments and iron
oxyhydroxides possibly releases arsenic to the ground
water. Lico and others (1986) noted that concentra-
tions of arsenic in volcanic rock fragments and iron
oxyhydroxide-coated grains are substantially greater
than those in other grain types (quartz and feldspar).
Discrete arsenic-bearing mineral phases have not been
identified in the basin-fill aquifers of the Carson Desert;
however, the methods used to identify the mineralogic
composition of the sediments probably are not sensi-
tive enough to detect small amounts of a specific min-
eral. Processes that control the concentrations of
arsenic in the Carson Desert are discussed in more
detail by Welch and others (1988), Welch and Lico
(1988), and A.H. Welch (U.S. Geological Survey,
written commun.,1991).

Concentrations of iron and manganese are
weakly correlated (Spearman's rho=0.36) with the
higher manganese concentrations tending to have
higher iron concentrations (fig. 27). Iron and
manganese concentrations in water samples from the
intermediate basin-fill and basalt aquifers are slightly
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better correlated with a Spearman's rho of 0.45. Iron
and manganese concentrations tend to have no relation
(Spearman's rho =0.008 and -0.014, respectively) to
dissolved oxygen concentrations (figs. 268 and C).
The sampling procedures used for ground-water
samples may introduce air into the sample prior to

the measurement of dissolved oxygen, thus the actual
concentrations of dissolved oxygen may be less than
those reported here. Iron concentrations are weakly
correlated (Spearman's tho = 0.38) and manganese
concentrations are moderately correlated (Spearman's
rho = 0.54) with dissolved organic carbon concentra-
tions (figs. 27D and E). Only some samples with dis-
solved organic carbon greater than 20 mg/L have iron
and manganese concentrations greater than 10 pg/L.
These relations suggest that dissolved oxygen is being
depleted by reaction with organic carbon. An abundant
source of sedimentary organic matter must be present
in parts of the shallow aquifers because all of the sam-
ples with high dissolved organic carbon (greater than
10 mg/L), except one, are from the shallow aquifers.
Therefore, organic carbon is not a limiting factor in the
removal of dissolved oxygen from the shallow ground
water. For water within the intermediate basin-fill
aquifers where all dissolved oxygen has been depleted,
organic-carbon concentrations are less than or equal to
1 mg/L in all but one sample. Once the dissolved
oxygen is gone, dissolved organic carbon can react
with iron and manganese oxides, if they are present
on the aquifer material, producing relatively high
concentrations of these two metals in ground water.

The reaction of dissolved organic carbon with
iron and manganese oxides is consistent with the
hydrogeologic regimes in the shallow aquifers of the
Carson Desert, that contain most of the water with high
concentrations of iron and manganese. The sediment
in the shallow aquifers primarily consists of alluvial
and lacustrine deposits, which, in general, have oxide
coatings (Jenne, 1968). Prior to the construction of the
Newlands Project, which brought large-scale irrigation
to the Carson Desert, the water table was below present
levels, by as much as 60 ft in places (Rush, 1972). This
rise in the water table has saturated sediment that was
previously unsaturated, thus changing the geochemical
environment of the sediment. This has resulted in the
dissolution of sedimentary organic matter that reacted
with the dissolved oxygen and oxide coatings on the
aquifer material. Thus, the changes brought on by
large-scale irrigation in the Carson Desert may be
directly responsible for water with high concentrations

of iron and manganese (arsenic and uranium) in parts
of the area.

Ground water with high concentrations of
iron and manganese in the Carson Desert generally
approaches equilibrium with respect to the carbonate
minerals siderite and rhodochrosite at high concentra-
tions of iron and manganese (fig. 284 and B). These
minerals have not been identified in the basin-fill aqui-
fers in the Carson Desert, but are known to form in
anoxic nonmarine water. Siderite has been identified
as a secondary mineral precipitating from oxygen-
depleted ground water in Oregon (Magaritz and Luzier,
1985) and rhodochrosite has been reported from sev-
eral localities (Jones and Bowser, 1978, p. 215-219).
These carbonate minerals possibly are one of the limit-
ing factors controlling the concentrations of iron and
manganese in the ground water.

Radionuclides

Water Quality and its Relation to Nevada
State Drinking-Water Standards

Radionuclides of concern in ground water of
the Carson Desert include uranium and radon. Gross
measurements of ground-water radioactivity, such as
gross-alpha and gross-beta activities, commonly are
used as screening methods for the presence of radio-
nuclides in public-water supplies (U.S. Environmental
Protection Agency, 1986a and b). These gross mea-
surements provide an estimate of the total contribution
of alpha or beta emitters in the sample, except for
gases, such as radon. Maximum contaminant levels
(MCL's) have been proposed for most commonly
occurring radionuclides (U.S. Environmental Protec-
tion Agency, 1991). The MCL's are uranium, 20 pug/L;
adjusted gross-alpha activity, 15 pCi/L; radium-226,
20 pCi/L; radium-228, 20 pCi/L; and radon-222,

300 pCi/L. Concentrations of radio-nuclides in
representative ground-water samples from the
Carson Desert are shown in table 9.

The minimum uranium concentration in the
shallow aquifers is 1.1 pCi/L, the greatest is 305 pCi/L,
and the median is 29 pCi/L (fig. 29). The highest con-
centrations are found in shallow ground water from the
Carson Pasture area. Ground water from the Stillwater
Marsh area also has high uranium concentrations (Lico,
1992). Both Carson Pasture and Stillwater Marsh are
discharge areas where solutes are highly concentrated
by evaporation. Most of the wells sampled in these
areas are observation wells and are not used as sources
of drinking water. The highest concentration measured
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in a well used as a drinking-water source was 54 pCi/L.
The intermediate aquifers had a range of uranium con-
centrations from less than 0.2 to 31 pCV/L and a median
of 0.5 pCV/L. In the basalt aquifer, uranium concentra-
tions range from less than 0.3 pCi/L to 2.2 pCi/L and
have a median of 1.5 pC/L. The only sample analysis
from the thermal aquifer has a uranium concentration
of less than 0.4 pg/L.

Gross-alpha activities in samples from the
shallow aquifers range from 0.27 to 290 pCi/L and
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have a median activity of 24 pCi/L. In the intermediate
aquifers, the minimum, maximum, and median gross-
alpha concentrations are 0.27, 52, and 3.7 pCV/L as
natural uranium, respectively. Gross-alpha activity in
water from the basalt aquifer ranges from a minimum
of 1.6 pCi/L to a maximum value of 4.2 pCi/L and
the median is 2.0 pCi/L. One sample was analyzed
from the thermal aquifers and it has a gross-alpha
radioactivity of less than 0.27 pCVL.
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Figure 27. Relations between dissolved constituents in ground water in the Carson Desert. A, iron and manganese;
B, iron and oxygen; C, manganese and oxygen; D, organic carbon and iron; E, organic carbon and manganese.
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Essentially all of the observed gross-alpha
activity in ground water from the Carson Desert can
be explained as that contributed by dissolved uranium.
Uranium concentration compared with gross-alpha
concentration is plotted in figure 30 and shows the
relation between these two parameters. The data plot
along lines that correspond to uranium activity ratios
from 1.0 to 1.4, common values for ground water in
the Carson River Basin (Thomas and others, 1993).
At Jower uranium concentrations, the data points tend
to deviate from the activity ratio lines (mostly higher
gross-alpha activity) than that at higher uranium con-
centrations indicating another source of gross-alpha
radioactivity. The analytical uncertainty also is greater
at low uranium concentrations. A possible source for
this excess gross-alpha activity is polonium-210
(Thomas and others, 1993).

In the shallow aquifers, the lowest concentration
of radium-226 is 0.04 pCi/L, the highest is 0.77 pCi/L,
and the median is 0.14 pCi/L (fig. 29). The highest
concentration of radium-226 in the intermediate aqui-
fers 0.16 pCi/L, the lowest is less than 0.02 pCv/L, and
the median is 0.05 pCi/L. One sample was collected
from the thermal aquifers and it has a radium-226
concentration of 1.5 pCi/L. No samples were analyzed
for radium-226 from the basalt aquifer.
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Figure 27. Continued.

Gross-beta activities in the shallow aquifers
range from 5.8 to 1,200 pCi/L and have a median of
35 pCi/L (fig. 29). Ground water from the interme-
diate aquifers has a minimum gross-beta activity of
2.7 pCV/L, a maximum of 64 pCi/L, and a median of
12 pCi/L.. The minimum gross-beta activity in the
basalt aquifer is 11 pCi/L, the maximum is 24 pCi/L,
and the median is 12 pCi/L. There is one analysis from
the thermal aquifers for gross-beta activity and it has
a value of 180 pCi/L. The two main sources of gross-
beta activity are potassium-40 and uranium. Figure 31
shows the relation between gross-beta (corrected for
the contribution from potassium-40) and uranium
activities. As with the gross-alpha activity, gross-beta
activity is closely related to uranium concentration.
At lower uranium concentrations, the relation becomes
rather poor and indicates another source of gross-beta
activity as well as greater analytical uncertainty. Two
possible sources are identified by Thomas and others
(1993) that may cause the deviation from this relation
at low gross-beta activities. Ingrowth of thorium-234
has been found to occur in samples between collection
and analysis and lead-210 may be a significant gross-
beta contributor in samples with low gross-beta
activities.
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Synthetic Organic Compounds

Synthetic organic compounds are becoming
increasingly prevalent in aquifers that are prone to
contamination by human activities on the land. As part
of the NAWQA program, wells in the Carson Desert
were sampled for selected herbicides, pesticides, and
volatile organic compounds (table 11). These data can
be found in a report by Whitney (1994). In all, 6 wells
in the basalt aquifer, 19 wells in the intermediate aqui-
fers, and 26 wells in the shallow aquifers were sampled
for volatile organic compounds. Only wells completed
in the shallow aquifers (19 wells) were sampled for
herbicides and pesticides. Previously collected data,
prior to 1988, were summarized by Welch and
others (1989).

Aquifers in the Carson Desert Basin appear to
have so far escaped widespread contamination with
synthetic organic compounds by human activities.
Types and quantities of pesticides applied in the Carson
Desert are not well known. Aerial applicators of pesti-
cides are the only users required to report quantities of
compounds used. Welch and others (1989) list pesti-

cides applied aerially in the Carson Desert. Of the 51
sites where data were collected, only one site (site 84,
fig. 3) had detectable concentrations of volatile organic
compounds. This site, in the shallow aquifer near Soda
Lakes, had 1,2-Dichloroethane present at a concentra-
tion of 1.0 pg/L. No other volatile organic compounds
were found in any sample analyzed from the Carson
Desert. Herbicides and pesticides were detected at low
concentrations in a few water samples from the shallow
aquifer. Four samples contained detectable concentra-
tions (maximum of 0.02 ug/L) of Dicamba. Silvex,
Simazine, and 2,4-D were detected in one sample each
at concentrations of 0.01, 0.1, and 0.07 pg/L, respec-
tively. These low concentrations of synthetic organic
compounds may be the result of contamination during
sample collection. However, ground water at the
Fallon Naval Air Station is contaminated by hydro-
carbons from spills of jet fuel and solvents used on the
base (Nevin Caine, Nevada Division of Environmental
Protection, oral commun., 1991). Contamination
appears to be restricted to the confines of the base, but
sampling was not done as part of the NAWQA program
to confirm this possibility.
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SUMMARY AND CONCLUSIONS

The basin-fill (mostly alluvial and lacustrine
deposits) and basalt aquifers that underlie the Carson
Desert are the primary source of public supply for
the area. The city of Fallon and the Fallon Naval Air
Station derive all of their water supply from the basalt
aquifer directly beneath the town. Most of the resi-
dents in rural areas of the Carson Desert obtain their
water from wells completed in the shallow and inter-
mediate basin-fill aquifers. The sedimentary deposits
in the Carson Desert may be as thick as 8,000 ft,
although only the upper 500 ft or so have been used
for water supplies. These basin sediments are, in
downward succession: (1) Holocene post-Lake
Lahontan interbedded fluvial and eolian sediments;
(2) Pleistocene sediments of Lake Lahontan;

(3) Quaternary and Tertiary sedimentary and
volcanic rocks; and (4) pre-Tertiary igneous and
sedimentary rocks. The Carson Desert is surrounded
by mountains composed of a wide variety of igneous,
sedimentary, and metamorphic rocks that range in
age from Triassic to Quaternary.

The principal source of recharge to the basin-fill
aquifers is infiltration from the numerous river chan-
nels, canals, and ditches that crisscross the Carson
Desert. This system of canals and ditches is part of
the Newlands Project that delivers water from the
Carson and Truckee Rivers to irrigate crops in the
Carson Desert. Other sources of recharge to the
ground-water system include infiltration of irrigation
water, local ponding of precipitation in low-lying areas
after intense storms, and precipitation in the surround-
ing mountain ranges. On the basis of stable-isotope
composition of their waters, the present day Carson
and Truckee Rivers are not the principal source of
water for the basalt and intermediate aquifers. Waters
from most of the wells in the intermediate aquifer and
all of the wells in the basalt aquifer have l4c ages of
more than 1,000 years. Tritium concentrations indicate
that some water from the canals is reaching the basalt
aquifer; however, canal water probably is only a minor
component of water recharging the basalt aquifer.
Ground water generally flows to the northeast (towards
Stillwater Wildlife Management Area), south (towards
Carson Lake), and to the southeast (towards Fourmile
and Eightmile Flats). Ground-water levels have risen
by as much as 60 ft in the Carson Desert because of the
irrigation of more than 60,000 acres of croplands since
the early 1900's.

Water in the Carson River just below Lahontan
Reservoir (recharge water for the basin-fill aquifers)
generally has pH values ranging from near neutral to
alkaline with dissolved-solids concentrations that are
less than 300 mg/L. Sodium, calcium, and bicarbonate
are the dominant ions in the water.

Ground water in the aquifers of the Carson Desert
is highly variable in composition and quality. Ground
water varies from a dilute calcium bicarbonate type
water to a saline sodium chloride type. Generally, the
more dilute water is beneath the irrigated areas and the
more concentrated water is in unirrigated areas (such
as Stillwater and Carson Lake). Many (more than
50 percent) of the ground-water samples included in
this report have dissolved-solids concentrations that
exceed Nevada State drinking-water standards. Many
of the wells from which the sample were collected,
however, are observation wells and are located in areas
where few people live. Many of these same wells
have ground water that exceeds standards for chloride,
magnesium, and sulfate. Water from a few sites
exceeds standards for fluoride (32 sites), nitrate
(3 sites), and selenium (5 sites). Arsenic concentra-
tions commonly exceed primary drinking-water
standards (98 sites out of 172). Water from basalt
aquifer, the primary drinking-water source for the city
of Fallon, has arsenic concentrations that exceed the
MCL in all cases. Manganese concentrations in water
from the basin-fill aquifers commonly exceed the
SMCL by more than 30 percent of samples.

The major-constituent concentrations in ground
water of the aquifers beneath Carson Desert are the
result of natural geochemical reactions with minerals
derived mostly from igneous rocks. Evaluation of
mass-balance reactions, combined with thermody-
namic and mineralogic data, is consistent with major-
constituent concentrations being the result of reaction
with plagioclase feldspar, calcite, augite, carbon diox-
ide, beidellite, and small amounts of potassium feld-
spar, gypsum, silica, sodium chloride, and pyrite. The
exchange of calcium for sodium on clay minerals also
is a common process in all geochemical reactions
determined in the study.

Dissolved oxygen concentrations appear to be
the major control on iron and manganese concentra-
tions in the ground water of Carson Desert. Higher
concentrations of these metals are caused primarily by
the increased solubility of the chemically reduced
forms of these elements which can be present at low
dissolved oxygen concentrations. Dissolved oxygen is
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consumed by reaction with dissolved organic carbon in
the shallow aquifer. The waters with higher concentra-
tions of iron and manganese are near thermodynamic
equilibrium with siderite and rhodochrosite. This rela-
tion indicates that the concentrations of these elements
may be limited by the solubility of their respective
carbonate minerals. The change in redox conditions
because of the rise in the water table from irrigation
may result in lower dissolved oxygen, dissolution

of iron and manganese oxides, and release of trace
elements associated with the oxides.

Naturally occurring radionuclides are present in
ground water from the Carson Desert in concentrations
that are higher than proposed USEPA drinking-water
standards. Uranium and radon-222 are the two radio-
nuclides that most commonly exceed these standards.
Uranium exceeds standards in samples from 31 of
73 wells and radon-222 exceeds standards in 41 of
52 wells. Uranium concentrations are highest in
water from the shallow aquifers. Gross-alpha
activities exceed proposed USEPA standards in
water from 9 of 56 wells.

High concentrations of dissolved uranium
may be caused by its release when iron and manganese
oxides dissolve in the shallow aquifers. Another possi-
ble source for uranium may be the oxidation of sedi-
mentary organic matter which typically has elevated
concentrations of uranium. Dissolved uranium con-
centrations appear to be high enough to account for
the observed gross-alpha activities. High concentra-
tions of radon-222 in the ground water are not the
result of dissolved radium-226 concentrations in the
water. This lack of correlation indicates that radium-
226 must be present in grain coatings or some other
mineral form and that the radon-222 is coming from
this solid-phase source.

Ground water in the Carson Desert appears to
have escaped gross contamination by synthetic organic
chemicals. A water sample from 1 site in the shallow
basin-fill aquifers has a detectable concentration of
1,2-Dichloroethane, but does not exceed drinking-
water standards. No other volatile organic compounds
were detected in samples from the Carson Desert.
Ground water at 4 sites in the shallow aquifer has
Dicamba present at detectable concentrations. Silvex,
Simazine, and 2,4-D were detected once each in
ground-water samples from 3 different sites.
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