# U.S. DEPARTMENT OF INTERIOR

# U.S. GEOLOGICAL SURVEY

Geology and Coal Resources of the Thar Coal Field Sindh Province, Pakistan

by

James E. Fassett<sup>1</sup> and Nasir A. Durrani<sup>2</sup>

Open-File Report 94-167

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

<sup>1</sup>U.S. Geological Survey, P.O. Box 25046, MS 939, DFC, Denver, Colorado 80225 <sup>2</sup>International Resources Group, 30 ATS Center (third floor), Blue Area, Islamabad, Pakistan

# **CONTENTS**

| Pag                                                                          |  |  |  |
|------------------------------------------------------------------------------|--|--|--|
| Abstract 1                                                                   |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
| Drilling-exploration program for the Thar field                              |  |  |  |
| Purpose and scope 5                                                          |  |  |  |
| Acknowledgments                                                              |  |  |  |
| Geography 6                                                                  |  |  |  |
| General geology                                                              |  |  |  |
| Thar coal field                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
| • • •                                                                        |  |  |  |
| <del>*</del>                                                                 |  |  |  |
| · ·                                                                          |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
| Comparison with other coal fields of South Asia                              |  |  |  |
| Geologic history                                                             |  |  |  |
| General                                                                      |  |  |  |
| Coal-deposition model                                                        |  |  |  |
| References cited                                                             |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
|                                                                              |  |  |  |
| Appendix 5 Structural cross sections across that coal field                  |  |  |  |
| ILLUSTRATIONS                                                                |  |  |  |
| Discovery of the Thar coal field   3   3   3   3   3   4   3   4   3   4   4 |  |  |  |
| Figure 2. Thar coal field index map 4                                        |  |  |  |

| Figure | 4.  | Stratigraphic column for Nabisar 1 drill hole          |
|--------|-----|--------------------------------------------------------|
| Figure | 5.  | Granite basement structure contour map                 |
| Figure | 6.  | Total coal isopach map                                 |
| Figure | 7.  | Thickest coal bench isopach map                        |
| Figure | 8.  | Coal correlation diagram                               |
| Figure | 9.  | Heating value (as received) isopleth map               |
| Figure | 10. | Total overburden isopach map                           |
| Figure | 11. | Structure map on top of first coal bed                 |
| Figure | 12. | Isopach map of coal with less than 150 m of overburden |
|        |     | Tables                                                 |
| Table  | 1.  | Locations and summary data for Thar drill holes        |
| Table  | 2.  | Summary of selected coal analyses for Thar drill holes |

#### **ABSTRACT**

The Thar coal field is located in the Thar Desert of southeast Pakistan in eastern Sindh Province. The coal field area covers about 9,000 square kilometers with dimensions of 140 km (north-south) by 65 km (east-west); the field area is bounded by the Pakistan-India border to the north, east, and south. The field area is covered by northeasttrending longitudinal stabilized sand dunes with topographic relief of up to 100 m. The Thar is essentially roadless with tracks through the sand being the principal transportation routes mandating four-wheel drive vehicles. The Mirpur Khas -Khokhropar Branch Railroad traverses the desert just northwest of the field area. Total coal tonnage for the field is 78,196,555,800 metric tons. The coal is lignite B in rank with an average as-received heating value of 5,333 Btu, as received sulfur percentage of 1.57, and as-received ash percentage of 8.83 percent. The average dry and ash-free heating value for the Thar coals is 12,322. Average as received moisture content is 48.57 percent. Nine drill holes in the south-central part of the field contain more than 24 m of total coal; six of these nine drill holes contain coal beds greater than 20 m thick. Drill hole TP-3 contains a bed of coal 27 m thick containing only three partings in its upper part measuring 1.05 m, .9 m, and .41 m thick. The shallowest coal in the field lies at a depth of 123 m; the deepest coal (depth to 1st coal bed) is at 245 m. The field contains 3,962,385,900 metric tons of coal at a depth of less than 150 m. All of the drill holes in the field were located in interdune areas at the lowest elevation possible; because the surface relief of the sand dunes of the Thar Desert is as much as 100 m, the Thar coals between drill holes will probably be covered, on average by an additional tens of meters of dune sand.

A structural dome in the south-central part of the Thar coal field has elevated the thickest coals in the field closer to the surface. A north-easterly trending fault forms the boundary of the Thar field in the southeast part of the field area; east of this fault, the coal-bearing rocks were uplifted as much as 150 m and were probably eroded prior to deposition of the overlying alluvium. The Rann of Kutch fault zone probably represents the maximum southern extent of minable coal in the field area. Thar coals thin greatly northward, eastward, and westward in the northern half of the field area; to the south, relatively thick coals may be present west of the presently-drilled area. On the basis of paleontological information the Thar coals are Paleocene to Eocene in age; probably early Eocene. Available evidence indicates that the Thar coals may have been deposited in a raised-bog environment landward of a north-trending coastline of a sea to the west.

#### INTRODUCTION

The Thar coal field is located in the eastern part of Sindh Province, Pakistan in the Thar Desert (fig. 1). The discovery of this giant coal field was the culmination of a coal exploration and assessment program (COALREAP) involving the United States Geological Survey (USGS) and the Geological Survey of Pakistan (GSP). This program was carried out under the auspices of the United States Agency for International Development (USAID); the program began in 1985 and formally ended on June 30, 1993. The principal goals of the USGS/GSP program were to improve the professional

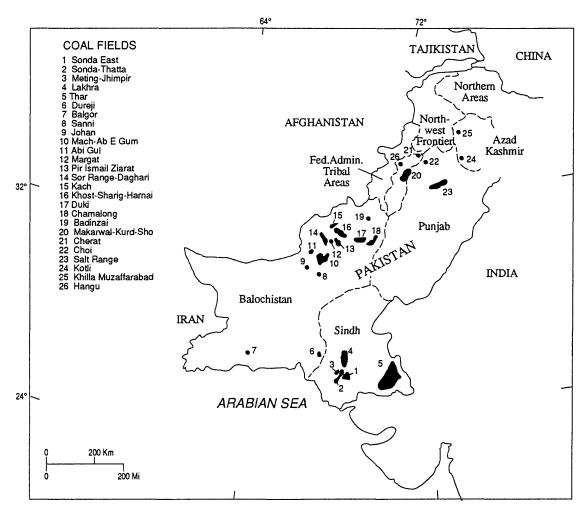



Figure 1. Map of Pakistan showing locations and names of coal fields and coal occurances; the Thar coal field area is shown at larger scale on figure 2 of this report.

capabilities of the GSP staff, particularly in the area of coal exploration and assessment, and to examine in detail the coal resource potential of Pakistan.

# Discovery of the Thar Coal Field

The first tangible indication that coal was present beneath the sands of the Thar Desert came with the drilling of five water wells by the British Overseas Development Agency (ODA) in cooperation with the Sindh Arid Zone Development Authority (SAZDA). (This account of the discovery of coal in the Thar Desert is largely derived from a report by SanFilipo and others, 1992.) Water well ODA2 was drilled in 1988 near the village of Khario Ghulam Shah about 15 km east of Islamkot (fig. 2). The description of cuttings from this well noted "carbonaceous shale" (sic) between depths of 126.5 m and 129.5 m. In addition, the sample log gave the following description for the interval from 129.6 m and 132.0 m: "CARBONACEOUS SHALE very fine, dark but variably coloured, some resin and amber, some lignite, rare chalcopyrite". The interval from 129.6 m and 132.0 m in this well was cored. The core was examined in February 1989 by USGS and GSP geologists who determined that most of the cored interval was coal.

On the basis of the presence of coal in the ODA2 water well the USGS/GSP examined and described drill cuttings from other nearby SAZDA wells and in March 1989 geophysically logged water well TH-5 near Dhaklo (essentially the same location as TP-1 on fig. 2) and in July 1989 geophysically logged water well TH-6 near Chachro. On the basis of these geophysical logs it was estimated that the total coal present in well TH-5 was 19 m and in well TH-6 the total coal thickness was 16.1 m. (TH-6 is used as a control point in this report and its total coal thickness has been re-estimated to be 12.5 m.) The confirmation of the presence of very thick coal beds on geophysical logs in the Thar Desert ultimately led to a modest 4-hole coal test drilling program in the Thar that was conducted in February through July, 1992. This drilling confirmed the presence of the thickest coal beds yet found in Pakistan; test hole TP-3 penetrated nearly 30 m of coal and contained a bench of unbroken coal nearly 20 m thick.

# **Drilling-Exploration Program for the Thar Field**

In October 1992, the GSP/USGS began a 21-hole exploration program to define the magnitude and geographic limits of the Thar coal field. The drilling plan was based on locating the 21 test holes over a more or less uniform grid covering that part of the desert thought to be underlain by significant coal resources. This drilling pattern resulted in a drill-hole spacing averaging about 22 km. (These 21 holes plus the initial 4 Thar Desert test holes have the prefix TP- in this report; "TP" stands for Thar Parker, and administrative district of Sindh Province.) This strategy proved to be quite successful in that it almost totally defined the limits of the field (with the exception of the southern boundary of the field which is as yet still not clearly defined). The 21-hole drilling program ended in mid-summer, 1993.

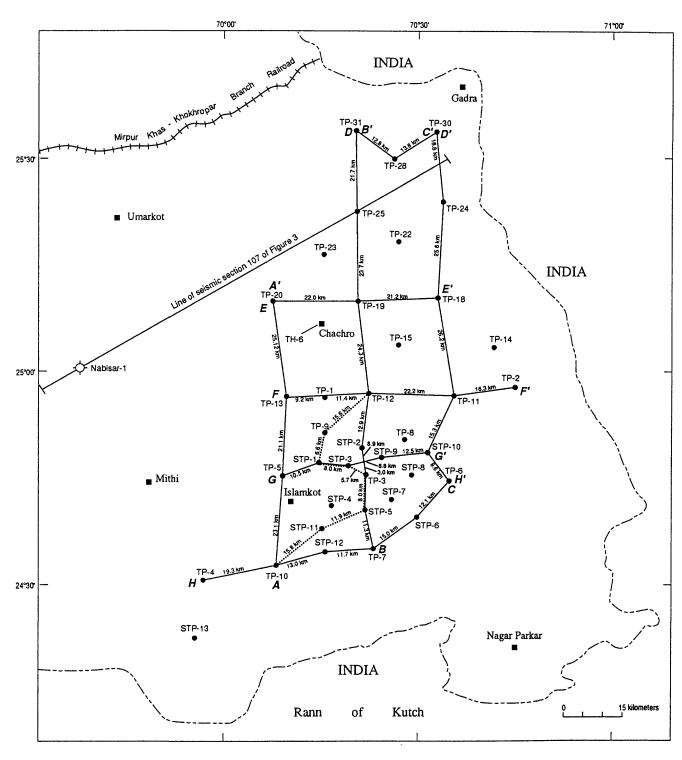



Figure 2. Index map of the Thar coal field area showing locations of all coal test holes plus water well TH-6 and lines of eight structural cross sections A-A' through H-H'. The dotted line beginning at drill hole TP-10 and ending at drill hole TP-12 is the line of the coal-correlation diagram (fig. 8). The line of seismic section 107 of figure 3 is also shown.

During the last quarter of 1993 an additional 10 test holes were drilled under a contract with the John T. Boyd Company under the auspices of USAID. The focus of this 10-hole drilling program was to conduct in-fill drilling in the south-central part of the field where the coal was known to be thickest and shallowest to gather data for a preliminary determination of the mining-engineering parameters of the Thar field. The Boyd drilling was completed in late December 1993. In January 1994 the GSP drilled 3 additional coal test holes under the auspices of USAID. (The 10 John T. Boyd holes and the three GSP holes have the prefix STP- in this report; "STP" stand for Sindh Thar Parker.)

Coal samples were collected for analysis by the USGS/GSP from the first 25 Thar coal field test holes and the results of those analyses are summarized in this report (table 2 and appendix 2). Coal samples were collected for analysis from the 10 John T. Boyd drill holes but the results of those analyses were not available at the time of writing of this report.

# Purpose and Scope

The Thar field has enormous economic potential for Pakistan because it contains 78 billion metric tons of total coal in place; when this tonnage is added to Pakistan's previously known resource base of 9 billion metric tons, the total resources of 87 billion metric tons of total coal resources for Pakistan vaults the country to 11th place in a list of 12 countries in the world with the most reported estimated coal resources as shown on the following table (modified from Landis and Weaver, 1993); resources are in millions of metric tons:

|            | · · · · · · · · · · · · · · · · · · · |           |  |
|------------|---------------------------------------|-----------|--|
| 1.         | USSR (former)                         | 4,405,900 |  |
| 2.         | USA                                   | 1,570,262 |  |
| 3.         | China                                 | 1,566,500 |  |
| 4.         | Australia                             | 785,226   |  |
| 5.         | Germany                               | 285,400   |  |
| 6.         | Great Britain                         | 190,000   |  |
| 7.         | Poland                                | 184,000   |  |
| 8.         | South Africa                          | 129,100   |  |
| 9.         | India                                 | 115,402   |  |
| 10.        | Botswana                              | 107,000   |  |
| 11.        | Pakistan                              | 87,000    |  |
| <u>12.</u> | Canada                                | 63,000    |  |

Prior to the discovery of the Thar field Pakistan was not even in the top 20 countries with significant coal resources.

Because the economic potential of the Thar field is so significant for Pakistan, it is important to quickly make available the basic geologic facts of this deposit and that is the purpose of this report. These facts are presented herein primarily in the form of

figures and tables. A detailed discussion of the geologic setting of the Thar field within the tectonic and stratigraphic environs of Pakistan and South Asia is beyond the scope of this report.

# Acknowledgments

The basic hard, dirty, and physically demanding work of gathering the data that this report is based on fell primarily on the shoulders of the GSP drilling crews, drill-site geologists, and geophysicists assigned to work on the Thar coal-drilling program. These personnel worked long hours in a very harsh environment in order to successfully complete the Thar Desert coal test drilling program. There is not space enough to list all of the many persons who participated in the discovery and definition of the Thar coal field but recognition must be given to the well-site geologists whose core descriptions form the basis for this report; they are, A. A. Shah, H. Chandio, M. D. Khan, S. A. Khan, Z. M. Khan, G. S. Lashari, A. R. Memon, and M. A. Tagar; the field geophysicists responsible for conducting the geophysical logging of the test holes are; Mehtab ur Rehman, Mujeeb Ahmad, and M.A. Nizmani. Five USGS geologists were involved in tours of duty on the Thar exploration program overseeing the drilling in the Thar Desert and making detailed core descriptions of the drill core; these persons were John SanFilipo, Peter Warwick, Bruce Wardlaw, Roger Thomas, and Ellie Brouwers. The true discoverer of the Thar coal field, USGS geologist John SanFilipo, deserves special recognition; it was John's perseverance and stubborn insistence on following up on the initial ODA coal discovery that ultimately led to the Thar coal test drilling program and the discovery and definition of the Thar coal field.

Upper-level management in the GSP were totally supportive of the Thar drilling program and their efforts contributed greatly to the success of the drilling program. We would especially like to thank Farhat Hussain who was Director General of the GSP during the time the Thar drilling program was conceived and executed; Dr. Hussain's patient and continuing support was invaluable in helping to resolve all of the many crises and problems that developed in the course of putting this drilling program together; without Dr. Hussain's strong and able leadership of the GSP during his tenure as Director General, the Thar drilling program and definition of the Thar coal field would probably not have occurred.

# Geography

The Thar Desert of Pakistan is part of a much larger desert extending to the north and east into India. The Thar coal field is located in the Pakistan part of the Thar Desert in the eastern part of Sindh Province (fig. 1). The Thar Desert of Pakistan is bounded to the north, east, and south by the Indian border and on the west by the irrigated Indus River flood plain. The Indian border to the south follows the "shoreline" of the Great Rann of Kutch, a great, shallow arm of the Arabian Sea that is seasonally dry. The Thar

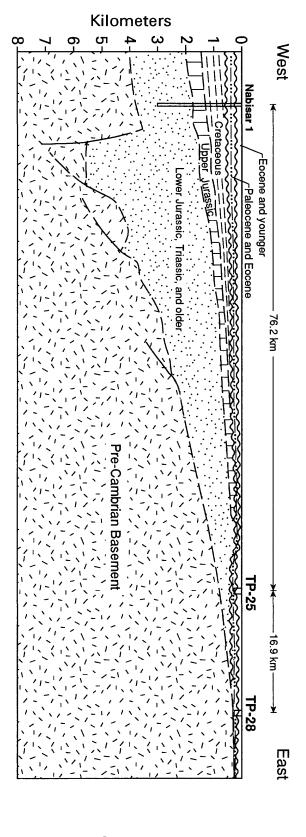
coal field, as presently defined, is about 140 km long (north trend) and about 65 km wide (east trend) covering an area of 9,100 square km.

The terrain is generally topographically higher in the northern and eastern parts of the field area with elevations ranging from near sea level in the south to more than 200 m above sea level in the northeast. Most of the sand dunes of the Thar are stabilized by scrub vegetation and grasses. The dunes are longitudinal with a northeast trend and have a relief ranging from tens of meters to 100 meters. There is no drainage system developed in the Thar coal field area. When the monsoon rains fall the water is immediately absorbed by the sand or rarely, during heavy downpours, flows very short distances down into the low-lying interdune areas where it is quickly absorbed.

Precipitation is seasonal coming normally during the monsoon months of June to September but drought years are not uncommon. For example, a seven-year drought was broken by very heavy rains in September 1992 as the 21-drill-hole program (holes TP-5 through TP-31) was just getting under way. Average annual rainfall ranges from 200 to 300 mm; the amount of average annual rainfall increases from northwest to southeast. Mean annual maximum and minimum temperatures range from 35°C to 19°C; maximum daily temperatures commonly exceed 45°C in April through June (Ploethner, 1992). The Thar Desert has been characterized as one of the most densely populated deserts in the world; the 1982 government census showed the population at nearly one million people.

The people of the Thar are primarily pastoral; livestock consists of cattle, sheep, goats, camels, horses, and donkeys, but the low-lying interdune areas are heavily farmed whenever the monsoon rains cooperate. The crops raised are primarily rapid-growing and maturing millets and pulses. The people of the Thar depend on dug wells as their primary source of water. The water is typically quite salty but potable. Immediately following the monsoon rains relatively shallow wells producing very fresh water are utilized in some of the broader low-lying interdune playa flats; these wells must obviously be producing from perched, ephemeral aquifers. A detailed study of the groundwater of the Thar Desert of Pakistan is available (Ploethner, 1992).

The only paved road in the Thar Desert extends from the town of Naukot located west of the Thar coal field on the eastern edge of the irrigated Indus plain to Mithi, west of the coal field area (fig. 2). The other roads of the Thar consist of deep ruts in the sand and four-wheel drive vehicles are a necessity to traverse these roads. Commercial transport into and out of the Thar Desert is provided by large, six-wheel drive trucks that serve as combination busses and goods carriers. Camels are the primary means of transport for the Thar people within the desert. The Mirpur Khas - Khokhropar Branch railroad traverses the northwestern part of the Thar coal field area (fig. 2).


## **GENERAL GEOLOGY**

The geology of the Thar Desert of Pakistan has been poorly understood because the area is covered by dune sand to an average depth of approximately 80 m. The only outcropping bedrock in the Thar Desert of Pakistan is found at Nagar Parker (fig. 2) where the striking red-granite basement rocks tower above the surrounding dunes. (The basement rocks are not all granite, there are minor amounts of rhyolite and metamorphic rocks mixed in with the granite, but red granite seems to be the dominant lithology.) The Thar coal field rests upon a structural platform in the eastern part of the desert. This platform is underlain by relatively shallow granite basement rock. Figure 3, modified from a report by Ahmad and Zaigham (1993), provides a good representation of the subsurface geology of the Thar Desert area. This figure is a northeast-trending geologic cross section that is an interpretation of a geophysical seismic line that was run from the vicinity of the Nabisar 1 oil and gas test hole on the western edge of the desert nearly to the Pakistan-Indian border on the east. This cross section shows that the granite basement rock dives down abruptly beneath the western part of the Thar Desert and is there highly faulted. (Ahmad and Zaigham, 1993, interpret three other seismic lines in the Thar coal field area.)

At the Nabisar drill site the sedimentary rock sequence is nearly 4,000 m thick; drilled rocks at the Nabisar hole are 3,000 m thick and consist of Triassic, Jurassic, Cretaceous, Paleocene, Eocene, and post-Eocene age rocks (figure 4 is a stratigraphic column of the Nabisar hole). As this cross section shows, the sedimentary rock sequence thins markedly from west to east across the Thar Desert and in the Thar coal field area has an average thickness of about 250 m. The depth to granite basement rocks in the Thar coal field ranges from 1,530 m below sea level at drill site TP-20 to 66 m below sea level at TP-6 (fig. 5).

The available seismic records in the Thar coal field area were designed for oil and gas exploration purposes and hence designed to show stratigraphic relations at depth. For that reason, the definition of the stratigraphy of the upper few hundred meters on these seismic profiles is so poor as to be useless. For this reason, the Ahmad and Zaigham (1993) cross section on which figure 3 of this report is based is essentially blank above the granite on its eastern end where the sedimentary sequence is close to the surface. The interpretation of the subsurface relationships in the area of the Thar field (east of the point where the upper Jurassic carbonates of the Chiltan Formation are shown ending) on figure 3 is our modification of the original figure by Ahmad and Zaigham (1993). We here show an unconformity at the base of the Paleocene/Eocene sequence in the Thar field area truncating the underlying sedimentary rock sequence eastward to the point where the Paleocene/Eocene rocks rest directly on the basement granite.

Ahmad and Zaigham (1993) conclude in their report that the thickest coal in the Thar coal field is Jurassic in age based on the physical tracing of geologic contacts on seismic sections. Published palynological studies of cuttings samples, however, from two water



seismic profile. The stratigraphic column for the Nabisar 1 drill hole is figure 4 of this report. section. This figure is modified from figure 8 in Ahmad and others (1993) based on an oil and gas exploration showing the configuration of the basement granite and the distribution of the sedimentary rocks along the line of Figure 3. Structural cross section from Nabisar 1 oil and gas test hole through drill hole TP-25 and east of TP-28

| System or Series | Formation or Group    | Depth<br>(meters) | Lithology                             | Thickness (meters) |  |
|------------------|-----------------------|-------------------|---------------------------------------|--------------------|--|
| POST EOCENE      | Siwalik<br>(Alluvium) | 200               |                                       | 226                |  |
|                  | Kirthar               | 226<br>263        |                                       | 37                 |  |
| EOCENE           | Laki                  | 412               | ======                                | 149                |  |
| PALEOCENE        | Ranikot               |                   |                                       | 149                |  |
|                  | Lower<br>Goru         | 561<br>843        |                                       | 282                |  |
| CRETACEOUS       | Sembar                | ——1,337 —         |                                       | 494                |  |
|                  | Chiltan               | Chiltan           |                                       |                    |  |
| JURASSIC         | Shirinab              | 1,710<br>2,773    |                                       | 1,063              |  |
| TRIASSIC         | Wulgai                | TD 3,055-         | = = = = = = = = = = = = = = = = = = = | 283                |  |

**Figure 4.** Stratigraphic column of the Nabisar 1 oil and gas test hole; location of this hole is shown on figure 2. This figure is adapted from the STANVAC interpretation report for the prospect of Nabisar, 1959.

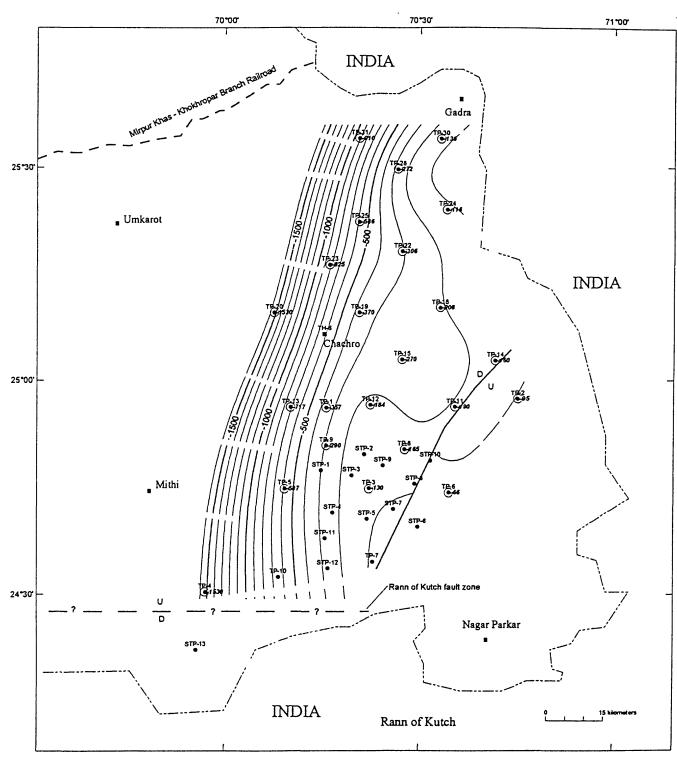



Figure 5. Structure contour map of the Thar coal field area contoured on the top of the granite basement rock. Drill sites used for control for this map are circled. Drill holes that actually penetrated the granite basement are TP-2, TP-3, TP-6, TP-8, TP-14, STP-5, STP-6, STP-8, and STP-10. (This map was generated using the computer-contouring program Surfer, manufactured by Golden Software.) Contour interval is 100 m.

wells from these same coal-bearing sequences in the vicinity of drill hole TP-1 and east of Islamkot clearly indicate that the coal-bearing strata are of late Paleocene to early Eocene age (see Report on Referred Fossils by Frederiksen, appendix 6 in SanFilipo and others, 1991). Frederiksen has subsequently examined rock samples collected from drill core from drill holes TP-1, TP-3, TP-4, TP-5, and TP-7 and he reports that: "... these samples undoubtedly come from close to the Paleocene-Eocene boundary, and the preponderance of evidence may favor an early Eocene age." (Frederiksen, written communication, 1993). On the basis of all available evidence, it is our opinion that the coal-bearing rocks of the Thar coal field are all late Paleocene to early Eocene in age. (This subject is discussed further in the "Geologic History" section of this report.)

The stratigraphic sequence in all of the Thar Desert coal test holes is essentially the same; in each drill hole there is an interval of dune sand ranging from 14 m to 93 m thick, followed by an interval of what is thought to be relatively recent Indus-valley alluvium, ranging from 11 m to 209 m thick, followed by the coal-bearing bedrock interval ranging from zero to 185 m thick. Nine of the test holes penetrated granite at or near their total depths (table 1 and fig. 5). Stratigraphic columns for the 38 coal test holes plus the water well TH-6 are in appendix 1 of this report.

No stratigraphic name is here given to the coal-bearing rocks of the Thar coal field; these strata are labeled "bedrock" on all of the stratigraphic diagrams in this report. As stated above these rocks are Paleocene to Eocene in age on the basis of palynological evidence. Additional studies of fossils from marine interbeds in the coal-bearing sequence from several test holes in the western part of the coal field are now in progress and it is hoped that those studies will more narrowly define the age of the coal-bearing rocks of the Thar coal field. The coal-bearing strata appear to be equivalent to the upper part of the Ranikot Group or more likely the lower part of the Laki Formation (fig. 4) but available evidence indicates that these coals are probably younger than the coals of the Indus valley coal fields to the west (fields 1-4 of figure 1). Coal-bearing rocks in coal fields of western India have been dated as Eocene and major Eocene-age Indian coal deposits in the Panandhro region, south of the Rann of Kutch and the Barmer region, due east of the Thar coal field (Gowrisankaran and others, 1987) provide evidence that coal occurrences in rocks of Eocene age are widespread south, east, and northeast of the Thar coal field area.

## THAR COAL FIELD

The data on which this report is based were obtained by drilling 38 coal test holes in the Thar Desert. In addition, information about the Thar coal field was obtained from geophysical logs and sample descriptions from water well TH-6. The coal test drilling was conducted by the Geological Survey of Pakistan (GSP) drill crews using GSP drill rigs; geological work during the drilling program, including core description and coal-core sampling, was done principally by GSP geologists with some oversight and assistance provided by USGS geologists for the drill holes prefixed TP- and by John T. Boyd

Table 1. Locations and summary data for 39 Thar Desert drill holes

| STP-13<br>TH-6             | STP-12      | STP-11 | STP-10  | 9-41S       | STP-8            | STP-7       | STP-6            | STP-5            | STP-4 | STP-3 | STP-2       | STP-1 | TP-31       | TP-30           | TP-28       | TP-25       | TP-24 | TP-23       | TP-22 | TP-20       | TP-19       | IP-18       | TP-15       | TP-14            | TP-13 | TP-12       | TP-11       | TP-10       | TP-9        | TP-8             | TP-7        | TP-6        | 1P-5 | TP-4        | TP-3             | TP-2             | TP-1        | No.         | Hole        | Mote to           |
|----------------------------|-------------|--------|---------|-------------|------------------|-------------|------------------|------------------|-------|-------|-------------|-------|-------------|-----------------|-------------|-------------|-------|-------------|-------|-------------|-------------|-------------|-------------|------------------|-------|-------------|-------------|-------------|-------------|------------------|-------------|-------------|------|-------------|------------------|------------------|-------------|-------------|-------------|-------------------|
| 24° 22.31'N<br>25° 06.55'N | 24° 33.65'N |        |         | 24° 48.12'N |                  | 24° 42.00'N | 24° 39.49'N      | 24° 40.62'N      | 41    | 46.   | 24° 49.66'N | 47.   | 25° 34 12'N | 34              | 25° 29.78'N | 25° 22,40'N | 24.   | 25° 16.36'N |       | 25° 09.61'N | 25° 09.62'N | 25° 10.27'N | 25° 02.96'N | 25° 02.79'N      |       | 24° 56.58'N | 24° 56.28'N |             | 24° 50.87'N | 24° 50,331N      | 24° 34.56'N |             |      | 24° 30.32'N | 24° 44.92'N      | 24° 57,42'N      | 24° 56.20'N | Latitude    |             | ocations shown on |
| 69° 55.591E<br>70° 15.251E | -           | -      | ч       |             | 70° 29.25'E      |             |                  |                  | 16    |       | 70° 21.41'E |       |             |                 |             |             |       |             |       | 97          | 20          | 33          | 70° 27.28'E | 41               |       | 22          |             | 70° 08.27'E | 70° 15.55'E | 70° 27.69'E      |             | 70° 34.63'E |      |             | 70° 22.16'E      | 70° 45.21'E      | 70° 15.56'E | Long i tude |             | figure 2,         |
| 93<br>93                   | 42          | 45     | 91      | 84          | 88               | 92          | 46               | 53               | 76    | 70    | 91          | 91    | 90          | 139             | 128         | 114         | 134   | 75          | 104   | 70          | 105         | 137         | 1<br>05     | 110              | 3     | %           | 100         | 26          | 110         | 90               | 45          | 3           | 63   | 20          | 74               | %                | 78          | tion        | Eleva-      | stratigraphic     |
| 63<br>40                   | 58          | 54     | 8       | 53          | 51               | 44          | 14               | 62               | 81    | 65    | 65          | 78    | 20          | 5               | 32          | 44          | 42    | 23          | 39    | 63          | 55          | 66          | 82          | 93               | 60    | 50          | 21          | 71          | 82          | 14               | 69          | 43          | 43   | 58          | 58               | 84               | 66          | dune sand   | Base of     | c columns of      |
| 147<br>212                 | 146         | 138    | 151     | 129         | 154              | 135         | 94               | 127              | 144   | 107   | 115         | 118   | 168         | 99              | 175         | 175         | 155   | 188         | 165   | 208         | 194         | 224         | 212         | 222              | 142   | 200         | 230         | 167         | 123         | 118              | 179         | 54          | 135  | 179         | 133              | 133              | 125         | alluvium    | Base of     |                   |
| no coal<br>240             | 747         | 143    | no coal | 130         | 154              | 145         | no coal          | 142              | 147   | 128   | 125         | 136   | 218         | 123             | 194         | 189         | 176   | 206         | 179   | 244         | 223         | 230         | 231         | 244              | 177   | 201         | 233         | 178         | 148         | 158              | 187         | no coal     | 155  | 181         | 135              | no coal          | _           | coal bench  | to 1st      | , s               |
| no coal<br>245             | 171         | 171    | no coal | 177         | 154              | 190         | no coal          | 169              | 180   | 153   | 163         | 144   | 239         | 131             | 215         | 206         | 176   | 206         | 232   | 258         | 223         | 230         | 231         | 244              | 202   | 236         | 236         | 225         | 212         | 158              | 223         | no coal     | 166  | 192         | 151              | no coal          | 164         | coal bench  | to thickest | F                 |
| 0.0<br>4.6                 | 4.0         | 15.5   | 0.0     | 5.3         | 5.6              | 4.0         | 0.0              | 11.5             | 10.9  | 11.0  | 5.2         | 10.3  | 3.6         | 0.9             | 3.4         | 1.0         | 0.4   | 1.3         | 2.7   | 2.7         | 2.5         | 0.6         | 6.3         | 6.4              | 5.5   | 13.0        | 1.8         | 9.2         | 5.7         | 7.0              | 7.2         | 0.0         | 3.3  | 3.1         | 19.6             | 0.0              | 4.7         | coal ber    | of thickest | 12                |
| 0.0<br>12.5                | 14.6        | 28.7   | 0.0     | 25.1        | 11.8             | 24.1        | 0.0              | 28.8             | 17.3  | 26.9  | 15.4        | 30.6  | 5.6         | <u>-1</u><br>.5 | 5.6         | 2.1         | 0.5   | 2.0         | 12.9  | 5.64        | 4.2         | 0.6         | 13.4        | 7.7              | 14.8  | 26.7        | 4.6         | 28.2        | 29.3        | 17.2             | 17.6        | 0.0         | 14.6 | 11.2        | 29.2             | 0.0              | 20.8        | thickne     | coal        | meters]           |
| 249<br>301                 | 243         | 231    | 175°    | 225         | 206 <sup>G</sup> | 224         | 112 <sup>6</sup> | 231 <sup>6</sup> | 234   | 215   | 223         | 237   | 256         | 163             | 260         | 276         | 225   | 246         | 284   | 311         | 260         | 288         | 270         | 279 <sup>G</sup> | 301   | 263         | 249         | 267         | 308         | 268 <sup>6</sup> | 246         | 147°        | 274  | 313         | 210 <sup>G</sup> | 196 <sup>6</sup> | 253         | ss hole     | depth of    | 1                 |

<sup>G</sup>Drill hole penetrated granite near total depth.

Company personnel for holes STP-1 through STP-10. The GSP selected the locations, drilled, and carried out the geologic work for holes STP-11 through STP-13 independently. The drill hole locations and summary data about each drill hole are in table 1 and the locations of the drill holes are shown on figure 2. The complete raw data set for the Thar test holes in the form of drill-site geologist's core descriptions and strip logs, copies of geophysical logs, and complete coal-analyses report sheets will be published separately; for TP-1 through TP-4 in SanFilipo and others (1994) and for TP-5 through TP-31 in Thomas and others, (1994).

#### **Field Limits**

An isopach map of the total coal thickness in the Thar coal field (fig. 6) shows that the field is defined quite sharply on its eastern side by the zero coal line in the north and by the northeast-trending fault to the south. This fault is upthrown on the east side and the coal-bearing strata that may once have been present east of the fault are no longer present due to their erosion. The coal-thickness pattern shown by the isopach map does seem to indicate that the coal is generally thinning eastward toward the fault but it is possible that a lobe of thicker coal may have extended further eastward prior to the time of faulting and erosion of the coal.

To the south the total-coal isopach lines do not close and the limit of the field in that direction is not presently known. Drill hole STP-13, the southernmost coal test hole, was drilled to a total depth of 249 meters and did not penetrate any coal beds. It is thought that this hole may be located south of a large east-trending fault that has down-dropped the coal-bearing strata and that coal may be present at the STP-13 drill site at greater depths. Such a fault or fault zone is tentatively shown on the Tectonic Map of Pakistan compiled by A. H. Kazmi and R. A. Rana (1982) and is thereon labeled the Rann of Kutch fault zone. Thus, the Thar field is probably limited to the south along an east-trending fault zone running between drill holes TP-4 and STP-13 that has dropped the coal down to great depths to the south (we have tentatively sketched in the Rann of Kutch fault zone on figure 6).

To the north and northwest the total coal is thin and the field is fairly well defined in those areas by the 1.5-meter isopach line. In the west central part of the field the isopachs do not close beyond the 12-meter coal-thickness line, thus the limits of the field in that direction are not known. The size of the field is thus roughly 9,100 square kilometers; about 140 km (north-south) and about 65 km (east-west).

#### **Total Coal Thickness**

#### Coal thickness measurements and methodology

The total coal thickness for the drill holes shown on figure 6 represents the sum of the thicknesses of the coal beds present in each drill hole. For the most part, these

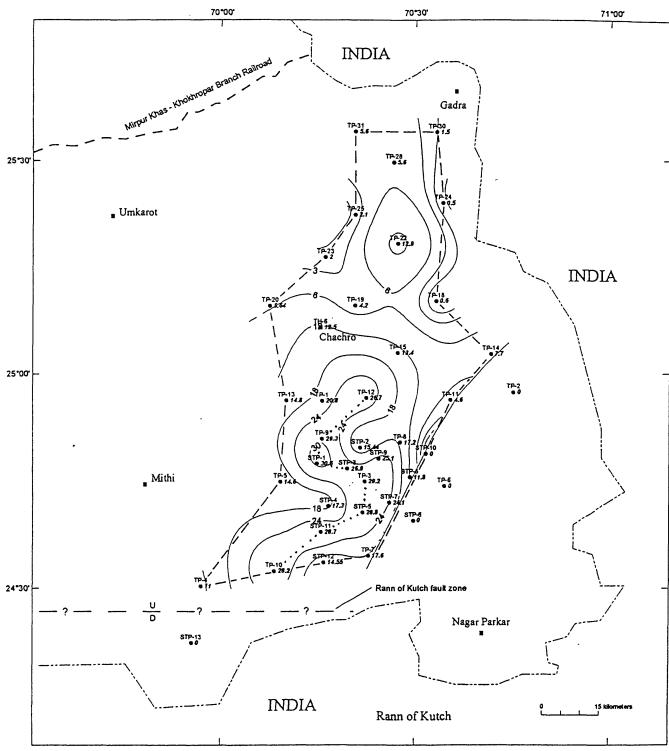



Figure 6. Isopach map of total coal in the Thar coal field. Coal-thickness values at each control point represent the sum of the thicknesses of all coal beds in each drill hole. The area bounded by the dashed line is the area for which coal resource calculations were made. The dotted line from TP-10 to TP-12 is the line of the coal correlation diagram on figure 8. (This map was generated using the computer program Surfer, manufactured by Golden Software; total coal resources for the Thar coal field were based on area-determinations for the various coal-thickness intervals shown on this map using the Surfer program.) Contour interval is variable, as shown.

thicknesses represent coal beds actually measured by the drill site geologist in drill core. (Drill hole TH-6 is the only drill hole that was not cored; coal thicknesses in this water well were determined from geophysical logs.) The tables accompanying the stratigraphic columns for each of the 39 drill holes in appendix 1 give the depths to the top and bottom of each coal bed and the bed thicknesses. For some of the drill holes there was core loss in coal beds (denoted by CLC on the table); in most instances the core loss in coal has been determined from the geophysical log for the hole, in a few rare cases where there was no geophysical log of the coal-bearing interval of the drill hole, the drill site geologist's notation that the lost core was "probably coal" has been accepted but this has only been done for relatively thin lost-core intervals within thicker coal beds.

The most serious question regarding whether lost core was coal or not arose with hole TP-7. There was extensive core loss in this drill hole that the drill site geologist noted as "probably coal" and there were no geophysical logs run in the coal-bearing part of this hole because of poor hole conditions. The total thickness of the probable-coal intervals in TP-7 was 20.7 m; because the total thickness of recovered coal from TP-7 was only 17.6 m we thought it prudent to not include the 20.7 m of probable coal in the total coal thickness for this drill hole. (If all of this lost core is coal, TP-7 has a total of 38.3 m of coal, by far the thickest total coal of any of the Thar Desert drill holes.)

All of the coal benches from which samples were collected for coal-quality analysis (drill holes with the TP- prefix) are numbered from the top down. The word "bench" is here used as defined in Wood and others (1983) as a layer of coal containing no partings of non-coal material greater than 1 cm in thickness. As can be seen on the stratigraphic columns in appendix 1, coal samples were not collected for analysis from some of the thinner coal benches in the TP- holes (usually benches less than .3 m thick); these benches are labeled NA. For the TH-6 hole and the holes with an STP- prefix all of the coal benches penetrated are numbered from the top down on the stratigraphic columns in appendix 1.

Coal beds are defined by Wood and others (1983) as intervals of mixed coal and noncoal layers in which the noncoal partings are less thick than overlying or underlying coal benches. The coal beds present in the Thar coal test holes are shown in brackets and are lettered alphabetically from the top down on the stratigraphic sections in appendix 1. Wood and others (1983) state that benches of "...lignite less than 75 cm thick are omitted from calculations [of reserves or resources] if they lie above or below partings that may deter their mining". Because the minability of these beds is presently unknown in the Thar Desert, in this report every measured coal bench, regardless of thickness, has been included in total coal thicknesses and consequently these thinner beds are included in the total coal tonnage resources numbers.

#### Coal distribution

Figure 6, the total-coal isopach map, shows the distribution of the coals in the Thar field. The area of thickest total coal is in the southern two-thirds of the field area; the area bounded by the 18-m isopach line has a somewhat sinuous northeasterly trend; within this thick-coal area total-coal thickness reaches its maximum value of 30.6 m at STP-1. There are ten drill holes within this thick-coal area that penetrated more than 24 m of total coal. The total coal thins away from the thick-coal area to the west, north, and east and to some extent to the south, although the total-coal thickness south of TP-10 (total-coal thickness of 28.2 m) is unknown because of lack of control south of that drill site. As discussed above, the Rann of Kutch fault zone (fig. 6) is probably located about 10 km or so south of drill site TP-10 and has probably dropped the coal-bearing rocks down to the south to great depths, hence regardless of the coal thicknesses south of TP-10, the area of potentially minable coal to the south is probably not large, in a relative sense.

With the exception of the 12.9 m of total coal found at TP-23, there is a marked thinning of total coal in the northern third of the Thar coal field but the northerly trend of the coal field is continued in this area. The width of the coal field is considerably narrower in its northern part.

Figure 7 is an isopach map of the thickest bench of coal present in each drill hole. The trends and patterns shown on this map are similar to those shown on the total-coal isopach map (fig. 6) with the thickest coal benches exhibiting a northerly trend. Drill hole TP-3 has the thickest coal bench at 19.6 m. Six drill holes contain coal benches more than 10 m thick; these drill holes are located on the same sinuous, northerly thick-coal trend seen on figure 6.

## **Coal Bench Correlation**

A perusal of the stratigraphic columns in appendix 1 shows that the coal beds penetrated in the Thar Desert coal test holes are not easily correlated field-wide. However, a correlation diagram constructed along the sinuous thick coal trend portrayed on figure 6 shows that some coal-bench and coal-bed correlations are possible (fig. 8). Figure 8 is an 8-drill-hole correlation diagram on which the most probable coal-bench correlations are indicated (the line of this cross section is shown on figs. 2 and 6). (The suggested correlations are admittedly conservative, but we think, the most realistic given the relatively wide spacing of the drill holes.) This diagram shows that the coal benches in the southernmost 5 drill holes do seem to correlate quite nicely, especially the thicker coals in the lowermost coal bed. Coal-bench correlations from STP-3 to STP-1 and TP-9 are much less certain due to the spreading-out of the coals vertically in the last-mentioned two drill holes. It is interesting to note that TP-12 contains a thick coal bed at its base similar to the bed in the southernmost five holes but there is no apparent connection of these thick beds.

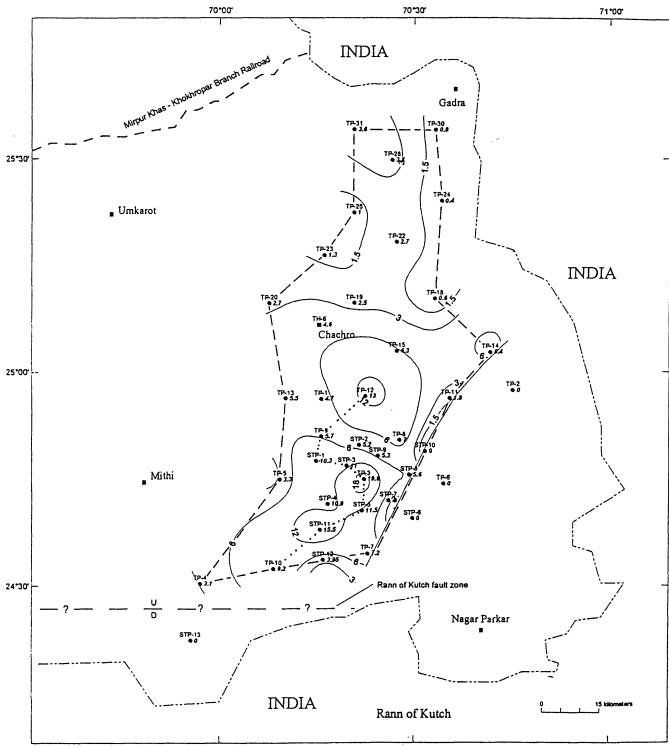
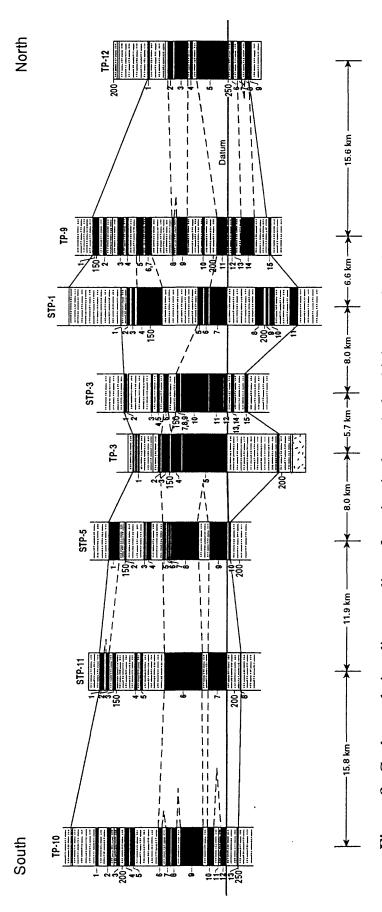




Figure 7. Isopach map of thickest coal bench in the Thar coal field. Coal-thickness values are the thickness of the thickest coal bench present in each drill hole. The area bounded by the dashed line is the area for which coal resource and reserve calculations were made. (This map was generated using the computer program Surfer, manufactured by Golden Software; the total coal resources for the Thar coal field were based on area-determinations for the various coal-thickness intervals shown on this map using the Surfer program.) Contour interval is variable, as shown.



bed for drill holes TP-10 through STP-3 and for TP-12; datum for STP-1 and TP-9 is a bit more subjective because Figure 8. Coal-correlation diagram; line of section is through the thickest total-coal area on the total coal isopach map (fig. 6). The line of section is also shown on figure 2. Datum for this diagram is the base of the thickest coal of the wider vertical distribution of coals in these drill holes.

# **Coal Quality**

## Sample collection and analysis

Coal samples were collected from 22 of the 25 TP-series drill holes for analytical analysis; a total of 315 samples were analyzed. Sampled intervals varied from less than .2 m to more than 2 m but most sampled intervals were less than one-meter thick and averaged .74 m. Coal samples were collected at the drill site and for the most part, the utmost care was used to wrap the coal-core samples in waterproof plastic bags as soon as possible after the core was pulled and described. Procedures were as follows: as soon as the core was pulled and removed from the core barrel the core was washed and described and then double-wrapped in heavy plastic core-sample bags. If the coal core was left unwrapped for any length of time it was covered with water-soaked cloths. The only drill hole from which coal core apparently dried out prior to bagging was TP-1. The summary coal-analysis sheet for TP-1 (appendix 2) identifies those samples that probably dried prior to waterproof bagging.

Coal samples from the TP- drill holes were analyzed by three different laboratories; the Geochemical Testing laboratory in the United States, the Geological Survey of Pakistan laboratory in Karachi, Pakistan, and the Pakistan Council of Scientific and Industrial Research, Fuel Research Centre in Karachi, Pakistan. Table 2 summarizes the selected coal-analyses results for the TP-series drill holes and identifies the laboratory that performed the analyses.

Table 2. Selected coal-analyses values for 315 coal samples from 22 sampled coal test holes, Thar Desert, Sindh Province, Pakistan

[Coal analyses values shown are weighted averages for all samples analyzed from each coal test hole; GT, Geochemical Testing; GSP, Geological Survey of Pakistan; PCSIR, Pakistan Council of Scientific and Industrial Research, Fuel Research Centre; NA, not available; DAF, dry, ash free; MMM, moist, mineral matter; sampled coal thicknesses in meters]

|                   | Sampled-          | Number   |             | As re   | ceived v | alues-%  | Heatir   | ng values       | - Btu  |       | Volatile | Apparent |
|-------------------|-------------------|----------|-------------|---------|----------|----------|----------|-----------------|--------|-------|----------|----------|
| Hole              | coal              | of       | Analytical  | Total   |          |          | As       |                 |        | MMM   | matter   | specific |
| number            | thickness         | samples  | laboratory  | sul fur | Ash      | Moisture | received | Dry             | DAF    | free  | (DAF-%)  | gravity  |
| TP-1              | 18.86             | 24       | GT          | 1.68    | 8.08     | 48.24    | 5,404    | 10,485          | 12,350 | 5,759 | 55.09    | 1.3      |
| TP-3              | 27.22             | 36       | GT          | 1.17    | 7.89     | 47.94    | 5,549    | 10,760          | 12,544 | 5,938 | 57.55    | 1.18     |
| TP-4 <sup>2</sup> | 10.49             | 17       | GSP         | 2.23    | 13.41    | 45.45    | 4,934    | 8,952           | 12,037 | 5,612 | 59.04    | NA       |
| TP-5              | 13.17             | 19       | GT          | 1.11    | 10.16    | 48.48    | 5,185    | 10,144          | 12,496 | 5,701 | 56.97    | 1.19     |
| TP-7              | 16.24             | 21       | PCSIR       | 1.81    | 10.12    | 48.63    | 5,210    | 10,375          | 12,535 | 5,647 | 59.82    | 1.33     |
| TP-8              | 16.89             | 18       | PCSIR       | 1.2     | 7.6      | 49.4     | 5,276    | 10,465          | 12,230 | 5,625 | 60.09    | 1.29     |
| TP-9              | 26.82             | 37       | PCSIR       | 0.91    | 9.74     | 47.13    | 5,151    | 9,897           | 11,910 | 5,669 | 57       | 1.3      |
| TP-10             | 25.09             | 33       | PCSIR       | 1.4     | 8.68     | 47.21    | 5,453    | 10,417          | 12,322 | 5,869 | 61.2     | 1.38     |
| TP-11             | 4.49              | 5        | PCSIR       | 0.57    | 5.53     | 50.59    | 5,416    | 10,958          | 12,339 | 5,710 | 60.07    | 1.28     |
| TP-12             | 25.09             | 32       | PCSIR       | 1.27    | 6.99     | 48.11    | 5,400    | 10,470          | 12,043 | 5,715 | 60.53    | 1.45     |
| TP-13             | 12.15             | 17       | PCSIR       | 1.47    | 10.03    | 49.37    | 4,816    | 9,558           | 11,841 | 5,270 | 59.31    | 1.45     |
| TP-14             | 4.75              | 5        | PCSIR       | 2.56    | 8.54     | 47.36    | 5,253    | 10,072          | 11,906 | 5,752 | 58.16    | 1.3      |
| TP-15             | 9.66              | 15       | PCSIR       | 1.71    | 7.57     | 45.6     | 5,528    | 10,227          | 11,782 | 5,857 | 59.37    | 1.32     |
| TP-18             | 0.6               | 1        | PCSIR       | 0.8     | 8.46     | 44.72    | 5,659    | 10,236          | 12,084 | 6,154 | 63.62    | 2.1      |
| TP-19             | 2.83              | 3        | PCSIR       | 1.41    | 7.51     | 51.27    | 5,454    | 11,195          | 13,228 | 5,808 | 59.78    | 1.38     |
| TP-20             | 2.35              | 3        | PCSIR       | 1.54    | 9.19     | 49.5     | 5,071    | 10 <b>,07</b> 0 | 12,271 | 5,490 | 60.09    | 1.36     |
| TP-22             | 4.45              | 11       | PCSIR       | 1.6     | 6.78     | 50.14    | 4,986    | 10,033          | 11,586 | 5,252 | 57.51    | 1.3      |
| TP-23             | 2.35              | 2        | PCSIR       | 2.4     | 17.13    | 44.05    | 4,414    | 7,894           | 11,349 | 5,174 | 61.31    | 1.35     |
| TP-25             | 2.1               | 3        | PCSIR       | 1.81    | 6.06     | 44.16    | 5,392    | 10,846          | 12,349 | 5,613 | 62.09    | 1.36     |
| TP-28             | 4.49              | 6        | PCSIR       | 2.18    | 5.71     | 51.85    | 4,936    | 10,305          | 11,638 | 5,123 | 57.67    | 1.27     |
| TP-30             | 1.52              | 2        | PCSIR       | 1.52    | 6.84     | 47.02    | 4,539    | 9,711           | 11,375 | 4,777 | 57.29    | 1.37     |
| TP-31             | 4.49              | 5        | PCSIR       | 3.6     | 9.58     | 47.95    | 4,886    | 9,438           | 11,455 | 5,109 | 56.62    | 1.68     |
|                   |                   | Arithmet | ic averages | 1.63    | 8.71     | 47.92    | 5,178    | 10,114          | 12,076 | 5,574 | 59.1     | 1.32     |
|                   | Weighted averages |          |             |         | 8.83     | 48.57    | 5.333    | 10.356          | 12.322 | 5.747 | 58.72    | 1.33     |

Weighted-average values do not include analyses values for some coal samples that dried out prior to sealing in plastic bags.

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Not all samples from this hole have Btu values, Btu averages are for 12 of the 17 samples.

The majority of the coal samples were submitted to the testing laboratories for proximate and ultimate analysis, heating value, total sulfur and forms of sulfur, free swelling index, equilibrium moisture, apparent specific gravity, and Hardgrove grindability index determinations. All of these values are not summarized on the tables in this report; the values shown herein are: total sulfur, ash, moisture, and heating value on the as-received basis. Heating values are also given on the dry, dry and ash free, and moist, mineral-matter free basis. Volatile matter is presented on the dry and ash-free basis and apparent specific gravity is also given. Copies of the complete testinglaboratory analysis reports for each of the 315 samples will be published separately along with all other raw data acquired during the Thar Desert test drilling program; for TP-1 through TP-4 in SanFilipo and others (1994) and for TP-5 through TP-31 in Thomas and others, (1994). Heating values are shown as reported by each coal analysis testing laboratory in Btus (British thermal units). Even though all other measurements in this report are metric, coal heating values were not converted to kilogram-calories on the tables because of the difficulty this would have created for the reader wanting to compare values on the tables in this report with the values shown on the original laboratory analysis report sheets. Btu heating values can be converted to kilogramcalories by multiplying by 0.556.

We have created a detailed table for each of the drill holes from which samples were analyzed providing the above-listed values in three categories; by coal sample, by coal bench, and by coal bench and bed numbers on these tables are keyed to the numbered benches and beds shown on the stratigraphic columns shown in appendix 1 of this report. Composite-sample values for coal benches and beds are all weighted averages. The coal-analysis tables are in appendix 2 of this report. Table 2 presents the averages (arithmetic and weighted) of the analyses from each of the sampled drill holes.

# Heating values

The over-all average analytical values for Thar Desert coals show that the coal is in the lignite B category because weighted-average MMF (moist, mineral matter free) heating values, are 5,747 Btu; below 6,300 Btu, the American Society for Testing and Materials (ASTM) threshold value between lignite B and lignite A. The highest average MMF heating value on table 2 is for TP-18 which had a value of 6,154 Btu; this value only represents a single coal sample from a coal bench .6-m thick and thus is not thought to be representative. The highest MMF heating value of 5,938 Btu for a drill hole with more than one sample came from drill hole TP-3 which had 36 samples from coals totaling 27.22-m thick (table 2). The lowest MMF heating value of 4,777 Btu came from TP-30 which only had two samples analyzed from two thin beds totaling 1.52-m thick and thus this average value cannot be considered to be representative.

A few thin coal benches from drill holes TP-4, TP-10, TP-12, and TP-22 had MMF heating values in excess of 6,300 Btu putting them in the lignite A range on the ASTM scale but these values appear to be anomalous. The highest MMF heating value for one

of the relatively thick coal benches found in the southern part of the coal field is from bench 9 of TP-10; this 8.93-m thick bench has an MMF heating value of 6,106 Btu. Bench 5 of TP-3, 19.58-m thick, has an MMF heating value of 6,043 Btu.

As received heating values are probably more important to consider in terms of the amount of heat that will be produced from the coal as it comes out of the ground. As received heating values were the only values from the coal analyses results for the TP-test holes that were susceptible to contouring; figure 9 is an iso-Btu map showing the distribution of the weighted-average, as-received heating values in the Thar coal field; these values are from table 2. The map shows that there is an area of heating values greater than 5,250 Btu that again shows the northeasterly trend first noted on the total-coal isopach map (fig. 6). Within the 5,250-Btu isopleth are two areas with heating values greater than 5,500 Btu. As figure 9 shows, TP-3 has one of the highest as-received heating values at 5,549 Btu; the thickest bench in TP-3, bench 5 (19.58-m thick) has an as-received heating value of 5,725.

Heating values for Thar coals are also given on the included tables in the standard categories of dry, and dry and ash free; these values are of interest in terms of providing some indication of what the heating value for the Thar coals would be if some of their moisture or ash content were to be removed. On the dry basis, with all of the coal's moisture removed, the weighted-average for all samples analyzed is 10,356 Btu; with all of the moisture and ash removed the heating value is 12,322 Btu.

#### Moisture

The weighted average for as-received moisture content for Thar coals is 48.57 percent (table 2); that is, nearly 50 percent of the coal's weight is in its contained moisture. The distribution of moisture-percentage values for the Thar coals appears to be random with no discernible pattern throughout the field area.

#### Sulfur

The weighted average for as-received sulfur percentage for all analyzed Thar coals (table 2) is 1.57 percent. The range of sulfur content for Thar coals is from .57 to 3.6 percent. The end members of this range are drill holes with relatively thin total coal and few samples. In drill holes from which more the 10 coal samples were analyzed, sulfur percentages range from .91 percent in TP-9 to 2.23 percent in TP-4. Sulfur percentages for the thicker (more than 6-m thick) coal benches in the field range from .8 percent in TP-3 for the 19.58-m thick bench 5, to 1.6 percent for the 6.65-m thick bench 8 in TP-8. The other coal bench over 10-m thick, the 12.67-m thick bench 5 in TP-12 has a sulfur value of .89 percent. The arithmetic average for sulfur for the six analyzed coal benches over 6-m thick is 1.1 percent. In a general sense, it is clear that the thickest coal benches in the Thar field have lower sulfur values than do the thinner benches. Sulfur

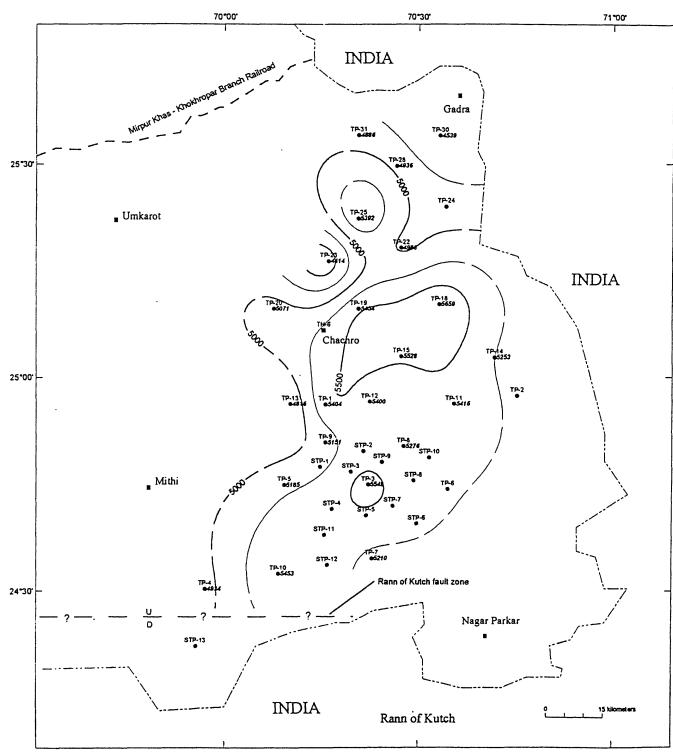



Figure 9. Isopleth map of as-received heating values for the Thar coal field. Heating values are given in Btu's (British thermal units); to convert Btu values to kilogram-calories, multiply by .556. Map constructed using the Surfer computer program. Contour interval is 250 Btu (as received).

percentages do not seem to have any specific geographic pattern throughout the Thar field.

#### Ash

The weighted average for as-received ash values for all the coals in the Thar field is 8.83 percent. The range for weighted-averaged ash values is from 5.53 percent in TP-11 to 17.13 percent in TP-23. As with the sulfur values these extremes are from drill holes with few samples and thin coals. Looking just at the ash values for drill holes with more than 10 samples analyzed, the range in ash content is 6.99 percent to 13.41 percent. For the thickest analyzed coal benches in the field the ash values range from 5.0 percent for the 12.67-m thick bench 5 in TP-12 to 10.28 percent for the 5.69-m thick bench 14 in TP-9. The thickest bench in the Thar field, bench 5 in TP-3 (19.58 m) has an as-received ash value of 6.21 percent. As with the sulfur values, the thickest coal benches tend to have the lowest percentage of ash values. Ash-percentage values seem to have a random geographic distribution throughout the field.

#### Overburden

The overburden in the Thar coal field consists of three kinds of material: dune sand, alluvium that was probably deposited by an ancestral Indus river system, and Paleocene to Eocene sedimentary rock. The dune-sand thickness throughout the field (at interdune drill sites) ranges from 14-m to 93-m thick and averages around 50-m thick; alluvium thicknesses range from 11-m to 209-m thick and average around 100-m thick. The Paleocene-Eocene bedrock interval above the first coal bed is normally quite thin with the first coals generally located less than 20 m beneath the alluvium-bedrock contact. In a few drill holes alluvium rests directly on the first coal bed.

It must be strongly emphasized at this point that in planning the coal test drilling program every effort was made to locate drill holes at the lowest possible elevation in the interdune areas. Thus, the average dune-sand thickness of 50 m is the average thickness of dune sand beneath an imaginary plane connecting the surface elevations of all the drill sites. Because the relief of the sand dunes at the surface in the Thar Desert exceeds 100 m in places, the average sand dune thickness overlying the alluvium layer probably averages more like 80 meters throughout the coal field; 50 m of dune sand below the low points where the test holes were sited plus an average of 30 m more represented by present dune topography. The "total overburden" isopach map (fig. 10) does not include the thickness of the dune sand above the imaginary plane referred to above. To compile an overburden map including the topography of the dunes between all of the test holes would have been an enormous undertaking far beyond the scope of this report. (If digitized large-scale topography were available throughout the Thar coal field area, such a map could be drawn quite easily using a computer-contouring program.) Figure 10 is thus a somewhat flawed total-overburden isopach map.

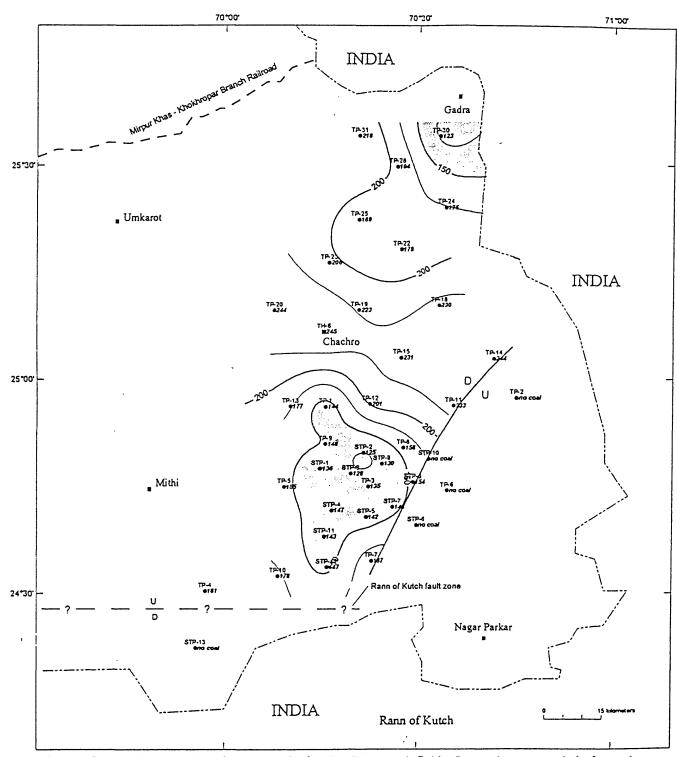



Figure 10. Total-overburden isopach map for the Thar coal field. Interval contoured is from the surface to the top of the first coal bed at each drill hole. Map constructed using the Surfer computer-contouring program. Contour interval is 25 m. Shaded areas are underlain by less than 150 m of overburden.

The values on figure 10 represent the interval from the ground surface to the top of the first coal bench penetrated. This map shows two areas of least (less than 150 m) overburden. The largest and most significant of these thinner-overburden areas is in the same part of the field where the thickest coals are found in the southern part of the field area. The area to the north where the overburden is less than 150-m thick is confined to a small region around TP-30 where the total coal is only 1.5-m thick. The thinnest overburden in the southern part of the field where the coals are thickest is 125 m at drill site STP-3. The area of thickest overburden (more than 225-m thick) is present along an east-trending band in the center of the coal field area.

The 150-m overburden isopach line is especially significant because lignite may be classified as coal reserves only where it is shallower than 150 m whereas lignite deeper than 150 m must be classified as resources (Wood and others, 1983). This subject will be discussed at greater length below in the "Coal Resources" section of this report.

#### Structure

The geologic structure throughout the Thar coal field is best seen on figure 11, a geologic structure map contoured on the top of the highest coal bed penetrated in each drill hole. The structure-contour values for all of the drill holes except one are below sea level; the exception is TP-30 where the top of the first coal is at 16 m above sea level. The major structural elements of the Thar field are the structural dome in the southern part with structural closure of 80 m, the structurally low saddle trending southeastward through the center of the field, the structural high in the northeast part of the field, and the uplifted fault block which sharply truncates the coal field in the southeast. The throw on this fault appears to be on the order of 150 m to the south decreasing to nearly zero at its northern end. There is a regional dip to the west indicated for the field area, however, if the structural and stratigraphic relationships inferred on the geologic cross section of figure 3 are correct there is the possibility, at least, of relatively shallow coal-bearing strata west of the Thar field.

To illustrate the structure of the coal field in another dimension, we have constructed a series of eight intersecting structural cross sections across the field. The lines of these cross sections are shown on figure 2; the cross sections are figures 3-1 through 3-5 in appendix 3 of this report. As shown on figure 2, three of the cross sections are north-trending and five are east-trending.

Structural cross section A-A' (fig. 3-1) trends north across the western part of the field and portrays the more gentle uplift of the structural dome along its western flank. There is slight thinning of the bedrock and alluvium intervals over the dome. There is little expression of the structural dome at the surface. The coal-bearing rocks have been brought closer to the surface over this structure. Cross section B-B' (fig. 3-2) crosses directly over the highest point of the structural dome and best shows the configuration of this structure in cross section. Bedrock does seem to thin over the dome and the

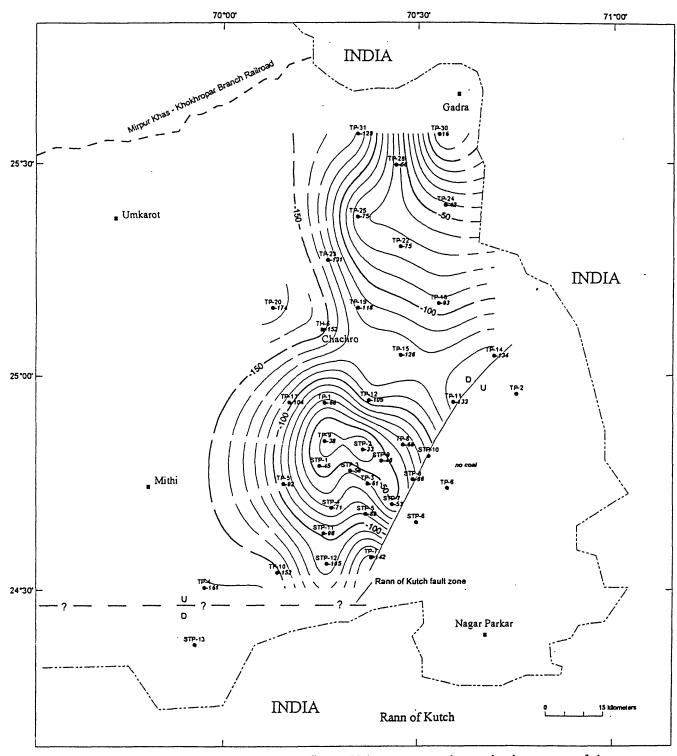



Figure 11. Structure map of the Thar coal field. Values contoured are depths to top of the stratigraphically highest coal bed adjusted to a sea-level datum. Contours were drawn by the Surfer computer-contouring program. Contour interval is 10 m.

alluvium thins dramatically over the structure. As on section A-A' the dome seems to have no surface expression. The very thick coals in TP-3 have been elevated closer to the surface over the dome. Section B-B' extends the entire length of the field and thus also shows the structural saddle between TP-12 and TP-25 and a small structural nose at TP-25.

The third north-trending cross section, C-C' (fig. 3-3), is east of the northeast-trending fault to the south and crosses the fault between drill holes STP-10 and TP-11. We have depicted the probable location and configuration of the fault on this cross section. As can be seen, the granite basement rock and the overlying bedrock have been offset by this fault about 100 m with the coal-bearing rocks apparently eroded off of the upthrown fault block to the south. The depths to the top of the granite basement at drill holes TP-11 and TP-18 are derived from the basement structure map (fig. 3) in Ahmad and others (1993). North of the fault, the bedrock rises steadily toward the surface. There seems to be no expression of the fault at the surface.

East-trending cross sections D-D' (fig. 3-1) and E-E' (fig. 3-4) cross the northernmost part of the Thar field and show the eastward-rising regional structural trend there; this eastward structural rise is mimicked by a topographic rise of the land surface. Section F-F' (fig. 3-4) crosses the north flank of the structural dome on its western end and crosses the fault at its eastern end. The estimated location of the fault is shown and apparently the coal-bearing rocks have been removed by erosion east of the fault where alluvium rests directly on the granite basement rock. The throw on the fault in this area is about 40 m. The depths to the top of the granite basement at drill holes TP-1, TP-12, and TP-11 are based on data on figure 3 in Ahmad and others (1993). Bedrock does not appear to thin over the dome on this cross section but the alluvium layer thins markedly over this structure. Again there is no expression of the fault or the structural dome at the surface.

Cross section G-G' (fig. 3-5) crosses nearly over the top of the structural dome and then crosses the fault at its eastern end. The throw on the fault between STP-9 and STP-10 is shown to be about 80 m but the depth to the granite basement rock is not know at drill site STP-10 so this is only an estimate. The depths to the top of the granite basement at drill holes STP-3, STP-1, and TP-5 are based on data in Ahmad and others (1993). Alluvium thins greatly over the dome whereas bedrock does not appear to thin appreciably. Again, neither the dome nor the fault show much expression at the surface. Cross section H-H' (fig. 3-5) is the southernmost of the east-trending cross sections and crosses the southernmost flank of the structural dome to the west before crossing the fault between TP-7 and STP-6. The throw on the fault here appears to be about 150 m. East of the fault at drill sites STP-6 and TP-6 the coal has apparently been eroded and alluvium rests directly on the granite basement.

#### **Coal Resources**

For coal resource calculations, the field was conservatively defined as being the area enclosed within a boundary line connecting the outermost coal test hole locations. The field area, so defined, is shown on figures 6 and 7 and it contains 4,320 square kilometers (431,900 hectares). Only coal resources within this boundary are included in the tables in this report (the exception is for measured and indicated resources for the edge-holes, those holes on the periphery of the field boundary; for these drill holes measured and indicated resources were included that fell within a .4 km and 1.2 km arc, respectively, outside the above-described field boundary.) There is undoubtedly additional coal to the south and west of the herein tightly-defined field area but additional test drilling in those areas will be required to quantify those resources.

The coal resources for the Thar coal field are herein given in the standard U.S. Geological Survey format as set forth in Wood and others (1983): coal quantities are presented in the measured, indicated, inferred, and hypothetical categories and in the thickness ranges recommended (in those few instances where U.S.G.S. standards were not strictly adhered to for calculation or presentation of coal resources, the reasons for so doing are clearly stated in the text). For coal resource determinations based on drill hole data, resource areas are defined by the U.S.G.S. as having radii (centered on the drill hole) of .4 km for measured, 1.2 km for indicated, and 4.8 km for inferred resources; beyond 4.8 km, resources are in the hypothetical category. Resource numbers are provided in three groupings; total coal, total coal with less than 150-m of overburden, and thickest coal bench. The total-coal resource determinations for each of the three groupings were made using a computer contouring program named Surfur, by Golden Software. Using that program, isopach maps were drawn for the three groupings listed above; these maps are shown on figures 6, 7, and 12 of this report. The areas for each thickness-range polygon on the three isopach maps were measured by the Surfer program in square kilometers. The coal tonnage was calculated by multiplying the area in square kilometers for each coal-thickness range polygon times the average thickness of coal for each area in meters and multiplying by 100 to obtain the volume of the coal in hectaremeters. The hectare-meter number was next multiplied by 13,200, the number of metric tons of coal per hectare-meter for coal of the specific gravity of the Thar field (Wood and others, 1983); as shown on table 2, the average specific gravity for Thar coal is 1.33.

The coal tonnages for the measured, indicated, and inferred categories were determined as follows: For measured resources the area of a circle with a radius of .4 kilometers was calculated (0.50 km²) and this area was multiplied by the coal thickness value for that drill hole. The coal tonnage for that area was then determined by multiplying the area by 100 and then by 13,200, as described above. The coal tonnage thus determined was then assigned to the thickness-range category based on the thickness value for the test hole. Tonnage for the indicated-reserves category was calculated by determining the area of a circle with a 1.2 km radius (4.52 km²) and this number was multiplied by an estimated thickness value. This estimated value was determined by observing the

thickness values of nearby drill holes and slightly modifying the value for the hole in question based on whether nearby holes had greater, lesser, or equivalent values than the drill hole in question. (For example, a drill hole with a total coal thickness of 20 m surrounded by drill holes with values of 10 m might be estimated to have a value of 19 m for calculating indicated resources.)

The procedure for determining inferred resources was to draw an arc around the drill hole on the isopach map with a radius of 4.8 km and then using a polar planimeter determine the areas of each thickness-range polygon within the area bounded by the arc. (In those cases where 4.8-km-radius arcs from nearby test holes intersected, areas for coal-thickness-range polygons within the larger area defined by the outer limit of 4.8-km arcs from two or more test holes were determined with a polar planimeter. In those instances where the 4.8 km arc intersected the boundary line of the field, coal resources were measured only for the area within the field boundary.) The coal tonnage for hypothetical resources was determined by subtracting the sum of tonnage for measured, indicated, and inferred resources from the total coal resources for the field for each of the three groupings.

The coal tonnages for the Thar field in the total-coal grouping is tabulated below; tonnages are based on the sum of the thicknesses of all of the coal benches identified in each of the Thar coal field test holes and contoured on figure 6; all coal benches, regardless how thin, are included in the total-coal-thickness values. Tonnages are presented in 8 thickness-range categories:

| 1.5 to 3 m       | 3 to 6 m                                                                                                                                                                                                 | 6 to 12 m                                                                                                                                                                                                                                                                                                                                             | 12 to 18 m                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 1.5              | 2.5                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                       | 5.0                                |
| 3,715,958        | 17,013,781                                                                                                                                                                                               | 20,238,702                                                                                                                                                                                                                                                                                                                                            | 99,096,648                         |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 12.0             | 20.1                                                                                                                                                                                                     | 12.0                                                                                                                                                                                                                                                                                                                                                  | 40.2                               |
| 31,847,904       | 139,599,979                                                                                                                                                                                              | 161,893,512                                                                                                                                                                                                                                                                                                                                           | 805,751,971                        |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 109.9            | 210.8                                                                                                                                                                                                    | 217.8                                                                                                                                                                                                                                                                                                                                                 | 171.7                              |
| 326,403,000      | 1,252,152,000                                                                                                                                                                                            | 2,587,464,000                                                                                                                                                                                                                                                                                                                                         | 5,019,300,000                      |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 92.5             | 648.1                                                                                                                                                                                                    | 720.9                                                                                                                                                                                                                                                                                                                                                 | 544.6                              |
| 279,315,538      | 3,827,105,640                                                                                                                                                                                            | 8,541,945,786                                                                                                                                                                                                                                                                                                                                         | 9,152,561,381                      |
| 641,282,400      | 5,235,872,400                                                                                                                                                                                            | 11,311,542,000                                                                                                                                                                                                                                                                                                                                        | 15,076,710,000                     |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| thickness ranges |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 24 to 30 m       | >30 m                                                                                                                                                                                                    | Totals                                                                                                                                                                                                                                                                                                                                                |                                    |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 4.5              | .5                                                                                                                                                                                                       | 17.6                                                                                                                                                                                                                                                                                                                                                  |                                    |
| 163,900,308      | 20,305,058                                                                                                                                                                                               | 338,802,507                                                                                                                                                                                                                                                                                                                                           |                                    |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 36.2             | 4.0                                                                                                                                                                                                      | 140.4                                                                                                                                                                                                                                                                                                                                                 |                                    |
| 1,308,948,854    | 153,931,536                                                                                                                                                                                              | 115,4 <u>19,988,886</u>                                                                                                                                                                                                                                                                                                                               |                                    |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 370.4            | 19                                                                                                                                                                                                       | 1,386                                                                                                                                                                                                                                                                                                                                                 |                                    |
| 15,000,876,000   | 752,400,000                                                                                                                                                                                              | 32,318,451,000                                                                                                                                                                                                                                                                                                                                        |                                    |
|                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 251.1            | 9.9                                                                                                                                                                                                      | 2,775.8                                                                                                                                                                                                                                                                                                                                               |                                    |
| 7,126,370,038    | 394,419,406                                                                                                                                                                                              | 42,814,714,106                                                                                                                                                                                                                                                                                                                                        |                                    |
| 23,600,095,200   | 1,321,056,000                                                                                                                                                                                            | 78,196,555,800                                                                                                                                                                                                                                                                                                                                        |                                    |
|                  | 1.5 to 3 m  1.5 3,715,958  12.0 31,847,904  109.9 326,403,000  92.5 279,315,538 641,282,400  thickness ranges 24 to 30 m  4.5 163,900,308  36.2 1,308,948,854  370.4 15,000,876,000  251.1 7,126,370,038 | 1.5 2.5 3,715,958 17,013,781  12.0 20.1 31,847,904 139,599,979  109.9 210.8 326,403,000 1,252,152,000  92.5 648.1 279,315,538 3,827,105,640 641,282,400 5,235,872,400  thickness ranges 24 to 30 m >30 m  4.5 .5 163,900,308 20,305,058  36.2 4.0 1,308,948,854 153,931,536  370.4 19 15,000,876,000 752,400,000  251.1 9.9 7,126,370,038 394,419,406 | 1.5 to 3 m 3 to 6 m 6 to 12 m  1.5 |

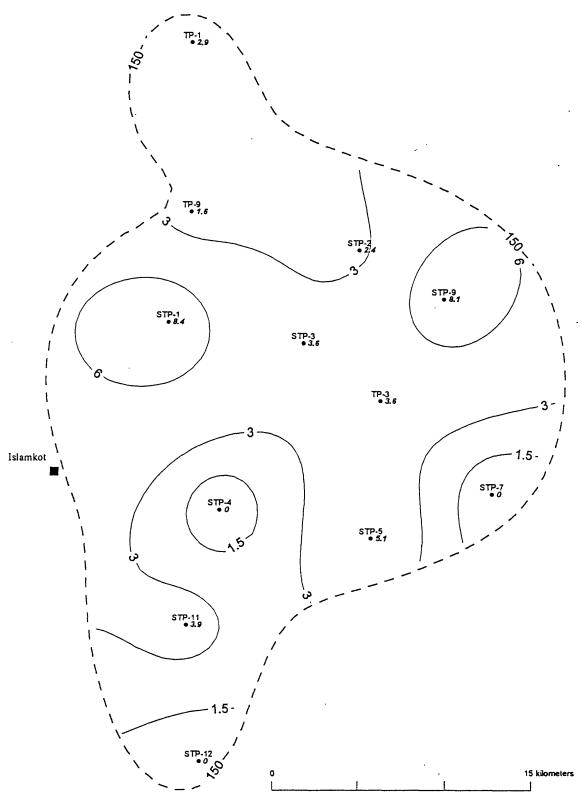



Figure 12. Isopach map showing distribution of coal thicknesses for coals shallower than 150 m. in the Thar coal field. Bounding line is 150-m thickness-of-overburden line from figure 10. Contours were drawn by Surfer computer-contouring program; areas for each coal-thickness range were measured by the Surfer program for coal-tonnage calculations. Contour interval is variable, as shown. Drill holes STP-4, STP-7, and STP-12 have values of zero because these holes do contain coal benches less than 150-m deep, but those benches are all less than .75-m thick and thus are not included in the coal totals for depths less than 150 m.

The coal tonnages for coals with total overburden thicknesses less than 150 m are tabulated below. Figure 12 is an isopach map of total-coal thicknesses at less than 150-m depth. The 150-m of overburden line shown on this map is from figure 10 of this report. The thickness of coal in each of the 12 drill holes containing coal at a depth less than 150 m (fig. 12) was measured down to the 150-m limit; in some drill holes a coal bench ranged from above 150 m to below 150 meters but only the coal above the 150 m line in such benches was included. In accordance with U.S.G.S. standards for coal-resource calculations (Wood and others, 1983), coal benches less than .75-m thick were not included. However, an artifact of the contouring of the coal thicknesses less than 150-m deep (some had zero values because they contained coal less than 150-m deep but the coal was in benches less than .75-m thick) resulted in areas on the isopach map of from 0 to 1.5 m in thickness; consequently those areas were measured, their coal tonnages were determined, and those areas and tonnages are shown on the table below. Tonnages are shown below in 4 thickness-ranges in the geologic assurance categories prescribed by the U.S.G.S.:

| Geologic<br>assurance |            | Coal this    | ckness ranges       |             |               |
|-----------------------|------------|--------------|---------------------|-------------|---------------|
| category              | 0 to 1.5 m | 1.5 to 3.0 m | 3.0 to 6.0 m        | >6.0 m      | Totals        |
| Measured              |            |              |                     |             |               |
| area km²              | 1.5        | 1            | 2                   | 1           | 5.5           |
| metric tons           | 0          | 4,578,592    | 10,749, <i>7</i> 37 | 10,948,806  | 26,277,134    |
| Indicated             |            |              |                     |             | •••           |
| area km²              | 12         | 8            | 20.1                | 8           | 48.1          |
| metric tons           | 8,758,174  | 50,425,848   | 82,804,550          | 79,619,760  | 221,608,332   |
| Inferred              |            |              |                     |             |               |
| area km²              | 39.4       | 202.2        | 237.4               | 58.9        | 537.9         |
| metric tons           | 39,006,000 | 600,534,000  | 1,410,156,000       | 515,691,000 | 2,565,387,000 |
| Hypothetical          |            |              |                     |             |               |
| area km²              | 5.8        | 77.5         | 141                 | 5.1         | 229.4         |
| metric tons           | 10,368,626 | 195,812,060  | 874,487,513         | 68,445,234  | 1,149,113,434 |
| Totals (tons)         | 58,132,800 | 851,350,500  | 2,378,197,800       | 674,704,800 | 3,962,385,900 |

The tonnages of coal calculated for the thickest coal bench present in each of the drill holes is tabulated below. These resource numbers provide a more realistic estimate of the number of tons of coal in the field that would be the primary target of mining. However, in many of the coal test holes there are several thick coal benches and thus the coal tonnage values for the thickest bench in each hole clearly under-represent the tonnage of potentially minable coal in the Thar field. The tonnages of coal in the thickest bench in each drill hole are shown below in 6 thickness-range columns:

| Geologic<br>assurance |             |               |               |                |               |
|-----------------------|-------------|---------------|---------------|----------------|---------------|
| category              | 0 to 1.5 m  | 1.5 to 3 m    | 3 to 6 m      | 6 to 12 m      | 12 to 18 m    |
| Measured              |             |               |               |                |               |
| area km²              | 3.0         | 2.0           | 6.5           | 4.5            | 1.0           |
| metric tons           | 2,786,969   | 6,436,571     | 38,486,712    | 52,952,407     | 18,911,574    |
| Indicated             |             |               |               |                |               |
| area km²              | 24.1        | 16.1          | 52.3          | 36.2           | 8.0           |
| metric tons           | 26,539,920  | 52,018,243    | 308,393,870   | 428,354,309    | 143,315,568   |
| Inferred              |             |               |               |                |               |
| area km²              | 137.6       | 237           | 502.1         | 476            | 169.1         |
| metric tons           | 136,224,000 | 729,696,000   | 2,900,277,600 | 5,617,920,000  | 3,251,160,000 |
| <u>Hypothetical</u>   | • •         |               | , ,           |                |               |
| area km²              | 244.5       | 708.35        | 872.53        | 743.14         | 58.26         |
| metric tons           | 239,557,111 | 2,073,295,686 | 5,267,416,018 | 8,867,672,484  | 1,266,540,858 |
| Totals (tons)         | 405,108,000 | 2,861,446,500 | 8,514,574,200 | 14,966,899,200 | 4,679,928,000 |

# (Table continued)

| Geologic      | Coal thicknes | ss             |
|---------------|---------------|----------------|
| assurance     | range         | _              |
| category      | >18 m         | Totals         |
| Measured      |               |                |
| area km²      | .5            | 17.5           |
| metric tons   | 13,005,854    | 132,580,087    |
| Indicated     |               |                |
| area km²      | 4.0           | 140            |
| metric tons   | 98,197,704    | 1,056,819,614  |
| Inferred      |               |                |
| area km²      | 12.0          | 1,538          |
| metric tons   | 297,792,000   | 12,933,069,600 |
| Hypothetical  | • •           |                |
| area km²      | 0.0           | 2,626,780      |
| metric tons   | 0.0           | 17,714,482,157 |
| Totals (tons) | 408,622,500   | 31,836,578,400 |

## **Summary of Thar Coal Field Characteristics**

The Thar coal field is located in the Thar Desert of southeastern Pakistan in eastern Sindh Province. The field area is about 9,100 square kilometers; the field dimensions are about 140 km (north-south) and about 65 km (east-west). The area of the field contained within a boundary drawn connecting the outermost drill holes contains 4,319 square kilometers (431,900 hectares). The dimensions of the field area so defined are about 115 km long (north-south) by about 40 km wide (east-west). Total coal tonnage for the field is 78,269,762,092 metric tons. The coal is lignite B in rank with an asreceived heating value of 5,333 Btu, as received sulfur percentage of 1.57, and asreceived ash percentage of 8.83 percent. The dry and ash-free heating value for the Thar coals is 12,322 Btu. As received moisture content is 48.57 percent. Nine drill holes in the south-central part of the field contain more than 24 m of total coal; six of these nine drill holes contain coal beds greater than 20 m thick. Drill hole TP-3 contains a bed of coal 27 m thick containing only three partings 1.05 m, .9 m, and .41 m thick.

The shallowest coal in the field lies at a depth of 123 m (TP-30); the deepest coal (depth to 1st coal bed) is at 244 m (TP-14). The field contains 3,962,385,900 metric tons of coal at a depth of less than 150 m. All of the drill holes in the field were located in interdune areas at the lowest elevation possible; because the surface relief of the sand dunes of the Thar Desert is as much as 100 m, the Thar coals between drill holes will probably be covered, on average by an additional tens of meters of dune sand.

A structural dome in the south-central part of the Thar coal field has elevated the thickest coals in the field closer to the surface. A north-easterly trending fault forms the boundary of the Thar field in the southeast part of the field area; east of this fault, the coal-bearing rocks were uplifted as much as 150 m and probably eroded prior to deposition of the overlying alluvium. The Rann of Kutch fault zone probably represents the maximum southern extent of minable coal in the field area. Thar coals thin greatly northward, eastward, and westward in the northern half of the field area; to the south, relatively thick coals may be present west of the presently-drilled area. On the basis of

paleontological information the Thar coals are Paleocene to Eocene in age; and are probably early Eocene.

### COMPARISON WITH OTHER COAL FIELDS OF SOUTH ASIA

Warwick and Javed (1990) summarized the quality and characteristics of Pakistan coal and showed that the coals of northern and western Paksitan have the highest rank (bituminous) and the highest calorific value (10,000 to 13,000 Btu). The coals of Sindh Province, on the other hand, were shown to be lower in rank (lignite to subbituminous) with as-received Btu values ranging from 6,500 to nearly 7,000 Btu. The coals of northern Pakistan generally contained higher sulfur and ash values than the coals of Sindh, but all had sulfur values generally in excess of 3 percent. Ash percentages averaged in the mid-teens to the mid-twenties for all of the Pakistan coals. Most of the coals of the other fields of Pakistan are relatively thin and lens-shaped seldom reaching thicknesses in excess of a few meters. Total estimated resources for all of the coal fields of Pakistan prior to the Thar discovery were 9 billion tons (Kazmi, 1990).

Clearly, the low-sulfur, low-ash, very thick coals of the Thar coal field are nothing like the coals in the other fields of Pakistan. Coals with more resemblance to the Thar coals are present in the nearby west-central coal fields of India. The Panandhro lignite field 160 km southwest of the southwest corner of the Thar field is the third largest lignite field in India with reserves of 95-100 million metric tons. Coals in this deposit are contained in as many as five beds ranging in thickness from 10 cm to 10.5 m and are lower Eocene in age (Misra, B.K. 1992). The field is small covering an area of 8.3 square kilometers. Panandhro coals have moisture values of 35 percent and heating values of 6,800 Btu, (presumed to be as-received, but not specified), ash percentage is around 8 percent (Gowrisankaran and others, 1987).

In the Barmer basin of India, 85 km northeast of the northeastern corner of the Thar field, Eocene-age lignite beds as thick as 5 m are present, but on average coal-bed thicknesses for these lens-shaped coals are on the order of 1 to 2 m (Mukherjee and others, 1992). Moisture ranges from 41 to 50 percent, ash content is around 12 percent, and heating values average 4,500 Btu (Gowrisankaran and others, 1987). Reserves for the field are around 90 million metric tons.

In summary, the Thar coal field has more similarities to the coal fields of west-central India than to the coal fields of Pakistan. But when all of the characteristics of the Thar field such as thickness and continuity of beds, low ash, low sulfur, and total resources are considered there does not appear to be a direct counterpart to the Thar coal deposit anywhere in South Asia. It is hoped that more work on the Thar coal field will allow for the construction of more comprehensive models of coal deposition for this apparently unique deposit.

### **GEOLOGIC HISTORY**

#### General

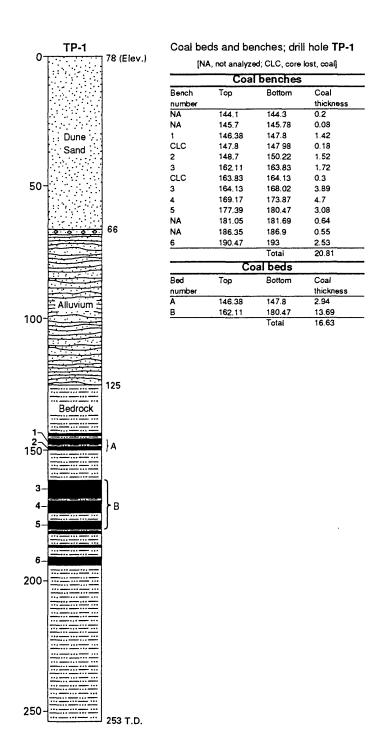
Figure 3, the regional geologic cross section from the Nabisar well through the northern part of the Thar coal field shows the present relationships of the sedimentary cover to the predominantly granite basement rocks. This figure indicates that a regional high existed in the Thar coal field area throughout the time that the 4,000 m of sedimentary rocks present at the Nabisar 1 hole were being deposited to the west. (The oldest rocks penetrated in the Nabisar 1 hole were Triassic in age, but Permian-age rocks are probably present below the total depth of this drill hole.) During Late Cretaceous time the entire area of figure 3 was uplifted and erosion of uppermost Cretaceous rocks took place; the Thar coal field area was most certainly uplifted higher than the area to the west resulting in the beveling by erosion of the older Paleozoic rocks so that the basement granites in the eastern parts of the Thar coal field were exposed.

Following this erosion cycle, the area again subsided and Paleocene and Eocene age rocks were deposited on top of the Cretaceous unconformity to the west. Because most if not all of the Paleocene is missing in the Thar field area, this area probably did not subside enough to begin accumulating sediments until late Paleocene to early Eocene time. During this time conditions became right for coal deposition and the Thar coals (and the lower Eocene coals of western India) began to form. Toward the end of the Eocene, the collision of the Indian sub-continent with the Asian mainland, which began around the beginning of the Eocene, began to buckle the rocks in what is now northern Pakistan and India resulting in a flood of coarse clastic rocks being carried south across the area west of the area here discussed; these are the post-Eocene Siwalik rocks of figure 4. During this post-Eocene episode of deposition the Thar coal field area apparently remained tectonically stable; not being elevated enough to cause erosion of the thin layer of Paleocene-Eocene coal-bearing rocks and not subsiding enough to be covered by any appreciable thickness of Siwalik rocks. Finally, during relatively recent times, the area was traversed by the ancestral Indus river system resulting in deposition of the alluvium layer present throughout the Thar coal field. The structural dome in the southern part of the Thar coal field must have been forming about this time because the alluvium thins over this structure. The fault in the southeast part of the field also probably formed at the same time resulting in the coals east of the fault probably being uplifted and removed by erosion. (Another, less favored hypothesis is that the fault was active during the time of coal deposition and the coals were not deposited on the upward-moving fault block.) The last chapter of the story occurred when the dunes of the Thar Desert began to form about 20,000 years ago (Margane, 1991).

# **Coal-Deposition Model**

Available data is insufficient to establish a definitive coal-deposition model for the Thar Desert coals. Much closer-spaced test drilling will be required to provide detailed data on the geometry and continuity of the coal beds. However, the very low ash and sulfur content of the Thar coals would tend to indicate that the coals formed in raised peat

content of the Thar coals would tend to indicate that the coals formed in raised peat bogs rather than in low-lying swamp environments. Several of the test holes along the western edge of the field area contained marine-fossil-bearing strata interfingering with non-marine coal-bearing strata. This relationship clearly indicates that at the time the Thar coals were forming, the sea was to the west and the shoreline was transgressing and regressing across what is now the western edge of the Thar coal field area. The position of the very thick Thar coals east of the shoreline of the sea suggests that the coals may have formed shoreward of a stabilized and vertically upbuilding shoreline similar to the San Juan Basin (New Mexico and Colorado, USA) coal deposition model (Fassett and Hinds, 1973, Fassett, 1986). The north-trending sinuous trend of the thickest Thar coal beds lends credence to a coal-depositional model characterized by a backshore environment of deposition with peat bogs forming relatively near to a sinuous coastline to the west. It will be interesting to learn whether further drilling in the area will support this hypothesis.


## **REFERENCES CITED**

- Ahmad, Anwaruddin, and Zaigham, N.A., 1993, Seismo-stratigraphy and basement configuration in relation to coal bearing horizons in the Tharparker Desert, Sindh Province, Pakistan: Record No. 100 of the Geological Survey of Pakistan, 26 p.
- Fassett, J.E., 1986, The non-transferability of a Cretaceous coal model in the San Juan Basin of New Mexico and Colorado, in Lyons, P.C., and Rice, C.L., eds., Paleoenvironmental and tectonic controls in coal-forming basins in the United States: Geological Society of America Special Paper 210, p. 155-171.
- Fassett, J.E., and Hinds, J.S., 1971, Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado: U. S. Geological Survey Professional Paper 676, 76 p.
- Gowrisankaran, S., Sethi, P.P., Hariharan, R, and Agrawal, K.P., Lignite deposits of India their occurrences, depositional features, and characteristics, <u>in Singh</u>, R.M., ed., Proceedings: Seminar on coal resources of India, p. 481-553.
- Kazmi, A.H., Welcome and keynote address, in Kazmi, A.H., and Siddiqui, R.A., eds., The coal resources of Pakistan: Geological Survey of Pakistan publication, p. 1-5.
- Kazmi, A.H., and Rana, R.A., 1982, Tectonic Map of Pakistan, scale 1:2,000,000: Geological Survey of Pakistan.
- Landis, E.R., and Weaver, J.N., Global Coal Occurrence, <u>in Law</u>, B.E., and Rice, D.D., 1993, eds., Hydrocarbons from coal: American Association of Petroleum Geologists Studies in Geology 38, p. 1-12.
- Margane, A., 1991, Paleoclimate and groundwater recharge during the past 30,000 years in Cholistan, Pakistan, vol. II B, Results of hydrological investigations in the Tharparker project area: Technical Cooperation Project No. 84.20666.3, prepared by the German Federal Institute for Geoscience and Natural Resources for the Pakistan Water and Power Development Authority, 31 p.
- Misra, B.K., 1992, Spectral fluorescence analysis of some liptinite macerals from Panandhro lignite (Kutch), Gujarat, India: International Journal of Coal Geology, 21, Elsevier Science Publishers B.V., p. 145-163.
- Mukherjee, A.K., Alam, M.M., Mazumdar, S.K., Haque, R., and Gowrisankaran, S., 1992, Physico-chemical properties and petrographic characteristics of the Kapurdi lignite deposit, Barmer Basin, Rajasthan, India: International Journal of Coal Geology, 20, Elsevier Science Publishers B.V., p. 31-44.
- Ploethner, D, 1992, Groundwater investigations in desert areas of Pakistan, Chapter 3, vol. II, Results of hydrological investigations in the Tharparker project area:

- Technical Cooperation Project No. 84.20666.3, prepared by the German Federal Institute for Geoscience and Natural Resources for the Pakistan Water and Power Development Authority, p. 84-135.
- SanFilipo, J.R., Chandio, A.H., Khan, S.A., Khan, R.A., and Shah, A.A., 1994, Results of exploratory drilling from January 1992 to July 1992, Coal Resource Exploration and Assessment Program (COALREAP), Thar Desert, Lakhra South, Indus Plain, and adjacent areas, Sindh Province, Pakistan: U.S. Geological Survey Project Report (IR)PK-108.
- SanFilipo, J.R., Wnuk, C., Fariduddin, M., Ahmad, M., Khan, S.A., Rahman, M., Chandio, A.H., and Khan, R.A., 1992, Potential for the occurrence of thick lignite deposits in the Thar Desert and adjacent Lower Indus Plain, Sindh Province Pakistan: U.S. Geological Survey Open-File Report 92-576, 135 p. [also released as U.S. Geological Survey Project Report (IR)PK-91].
- Thomas, R.E., Shah, A.A., Fassett, J.E., Khan, S.A., Warwick, P.D., Tagar, M.A., Wardlaw, B.R., Memon, A.R., Lashari, G.S., Khan, M.D., Khan, Z.M., Chandio, A.H., Anwar, M., Mehtab, R., Nizamani, M.A., and Mujeeb, A., 1994, Data from drilling activities in the Thar Desert, Sindh Province, Pakistan, October 1992 through January 1994): U.S. Geological Survey Project Report (IR)PK-110.
- Warwick, P.D., and Javed, S., 1990, Quality and character of Pakistan coal, <u>in Kazmi</u>, A. H., and Siddiqui, R.A., eds., The coal resources of Pakistan: Geological Survey of Pakistan publication, p. 127-135.
- Wood, G.H., Kehn, T.A., Carter, M.D., and Culbertson, W.C., 1983, Coal resource classification system of the U. S. Geological Survey: U.S. Geological Survey Circular 891, 65 p.

### APPENDIX 1

Stratigraphic columns showing geologic data obtained from 39 Thar Desert drill holes, Sindh Province, Pakistan; coal samples from the 25 holes prefixed TP- were analyzed and coal bench and coal bed numbers shown on the TP- stratigraphic columns in this appendix are keyed to the coal analyses tables in appendix 2 of this report; coal samples were collected from the STP-drill holes but analyses results from those holes were not available at the time of publication of this report; drill hole TH-6 was a water well and no coal samples were collected from it for analysis.



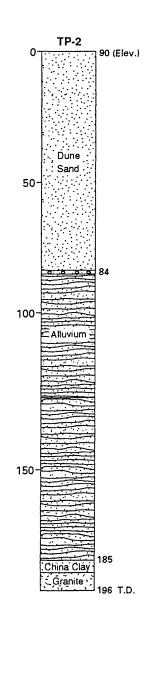



Figure 1-1. Stratigraphic columns of drill hole TP-1 and TP-2, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

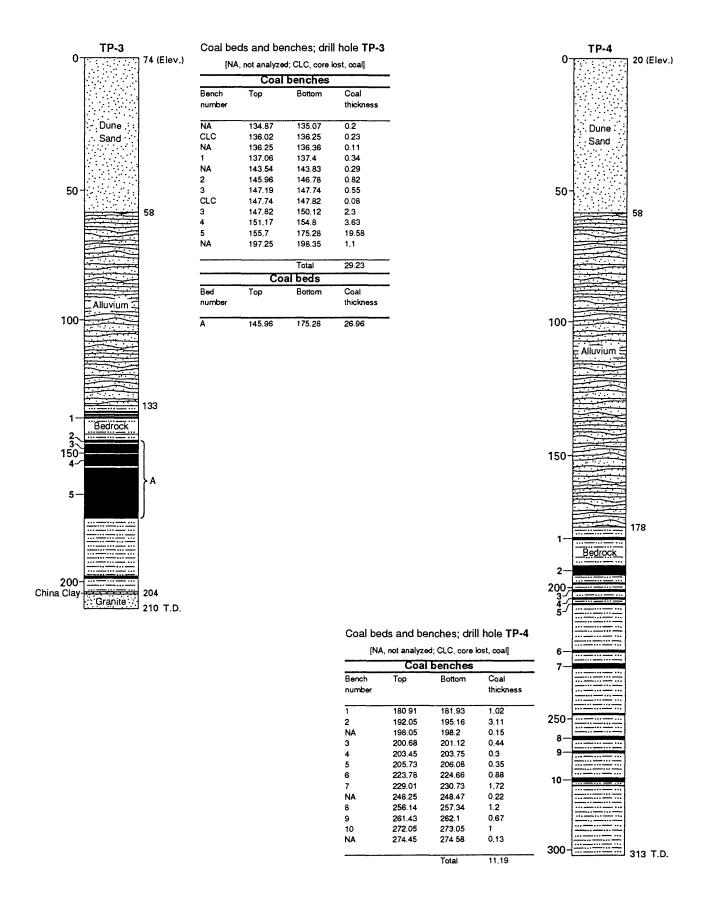



Figure 1-2. Stratigraphic columns of drill hole TP-3 and TP-4, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

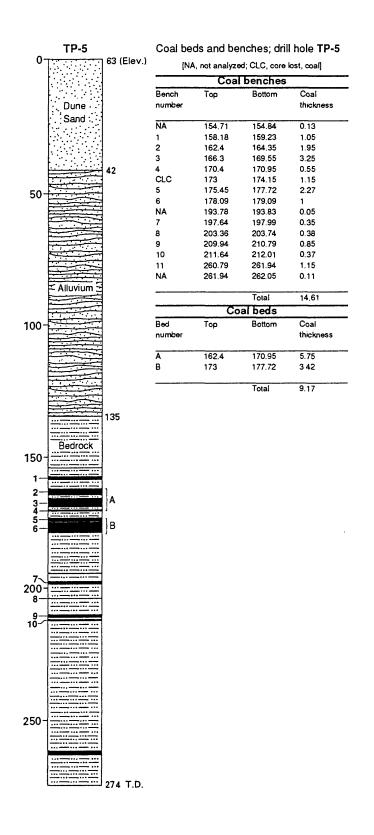



Figure 1-3. Stratigraphic columns of drill hole TP-5 and TP-6, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

TP-6

Dune

Sand

50

100

China Clay

73 (Elev.)

43

139

147 T.D.

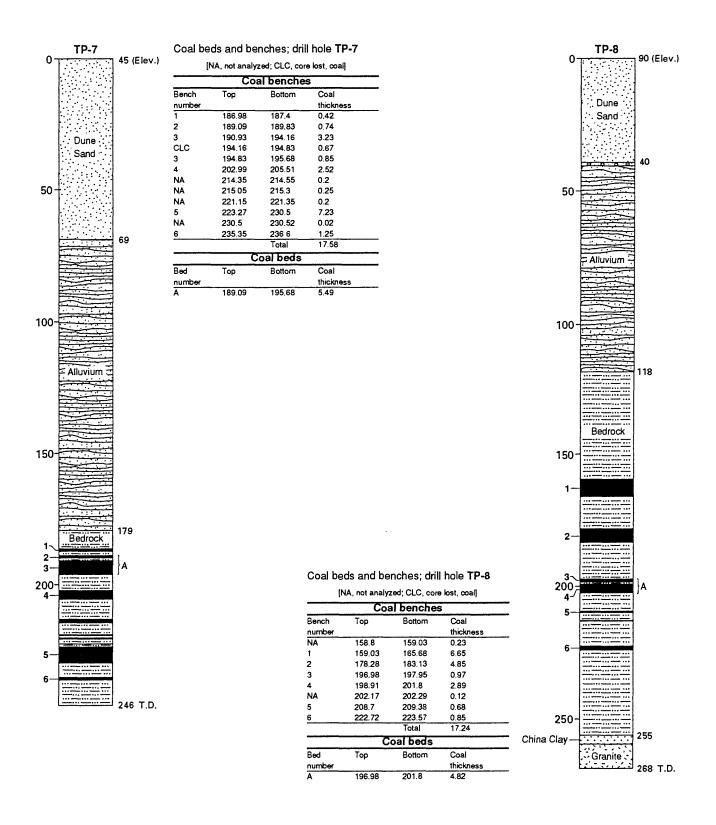



Figure 1-4. Stratigraphic columns of drill hole TP-7 and TP-8, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

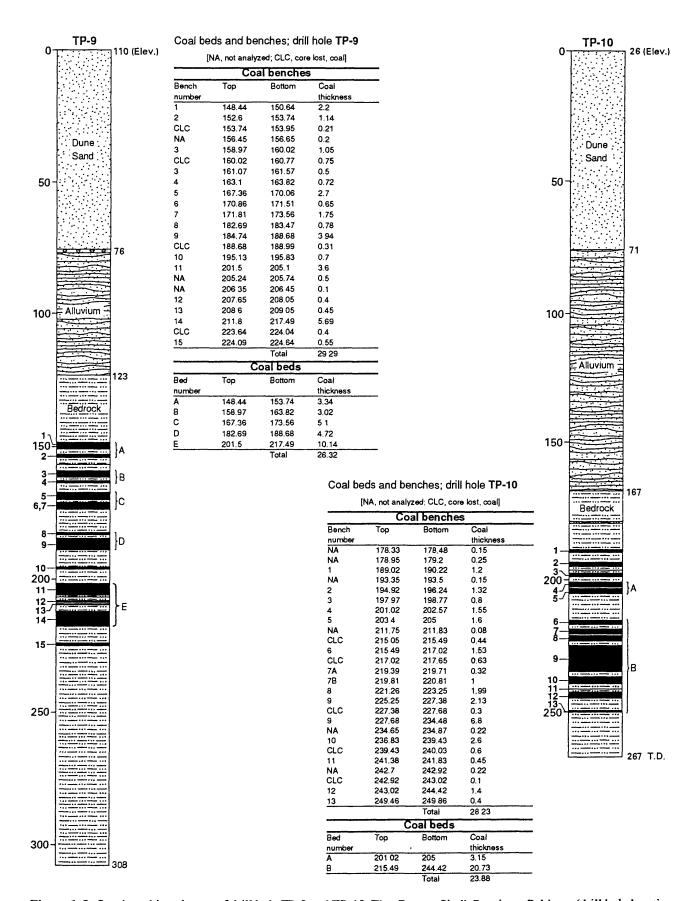



Figure 1-5. Stratigraphic columns of drill hole TP-9 and TP-10, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

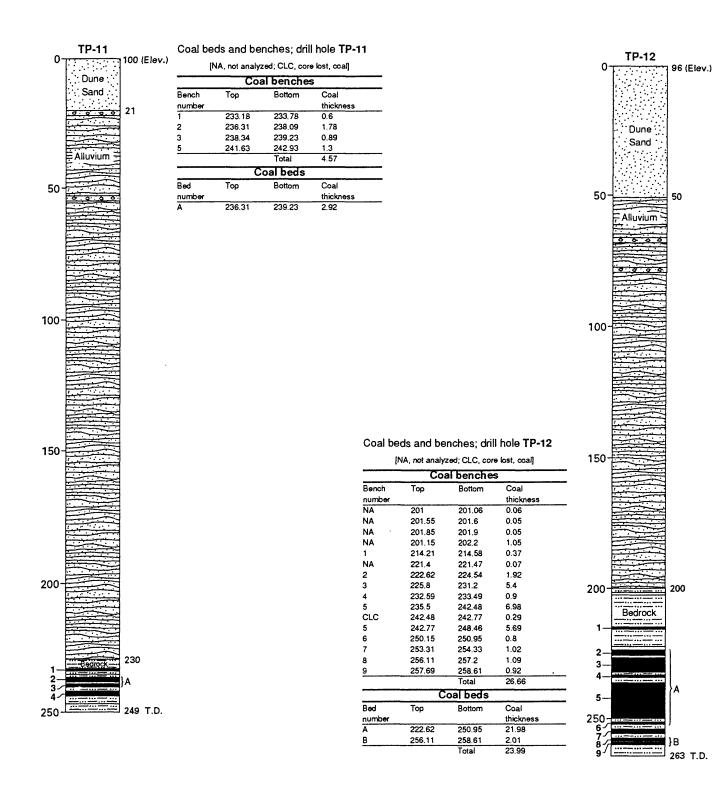



Figure 1-6. Stratigraphic columns of drill hole TP-11 and TP-12, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

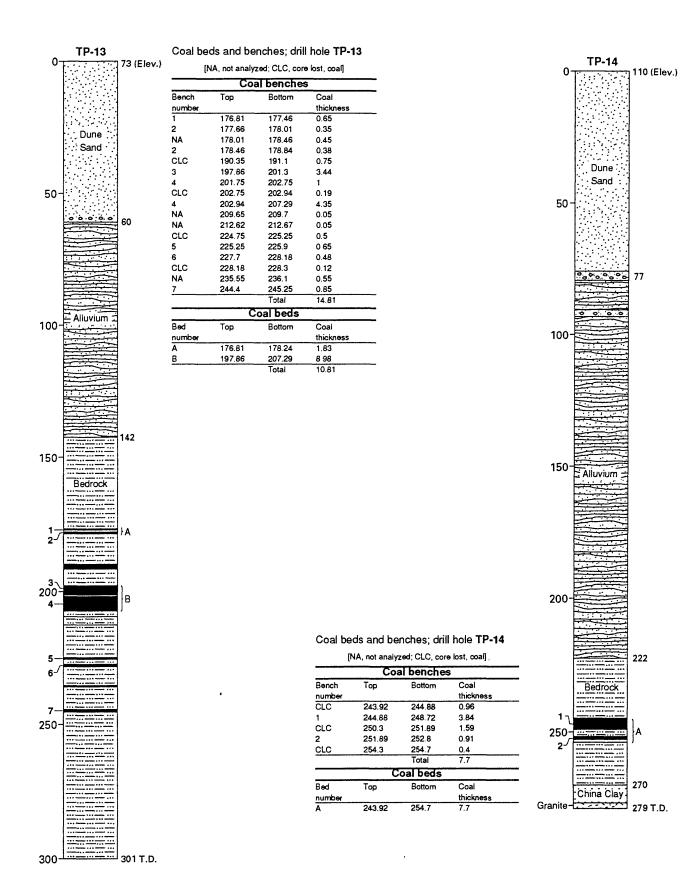



Figure 1-7. Stratigraphic columns of drill hole TP-13 and TP-14, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

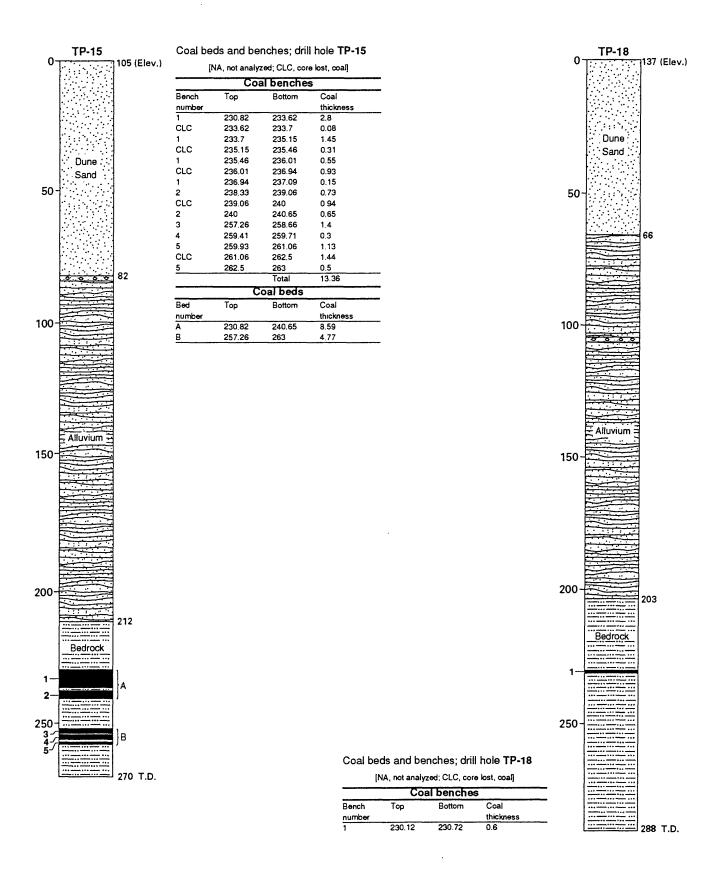



Figure 1-8. Stratigraphic columns of drill hole TP-16 and TP-18, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

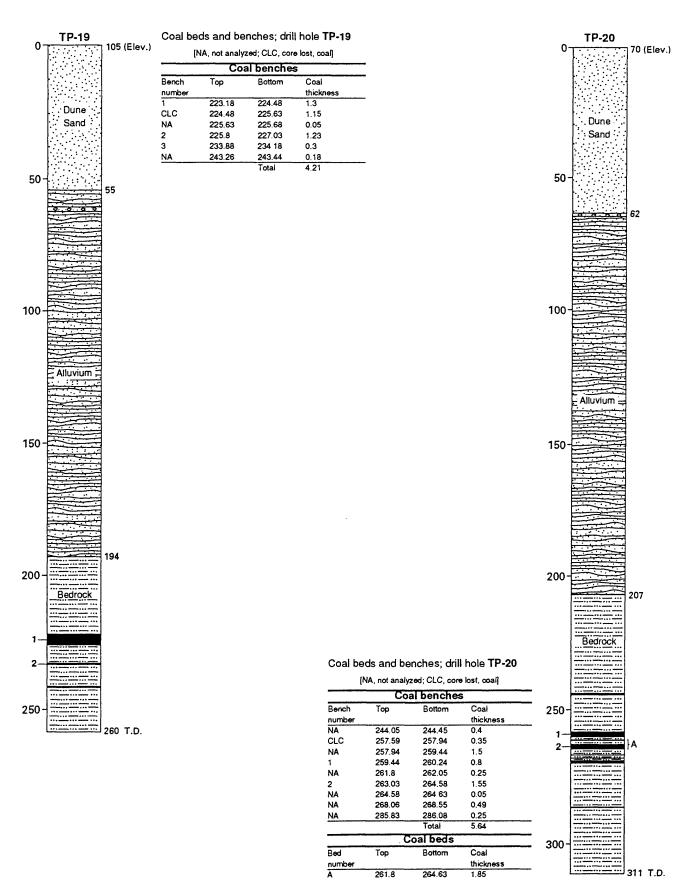



Figure 1-9. Stratigraphic columns of drill hole TP-19 and TP-20, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

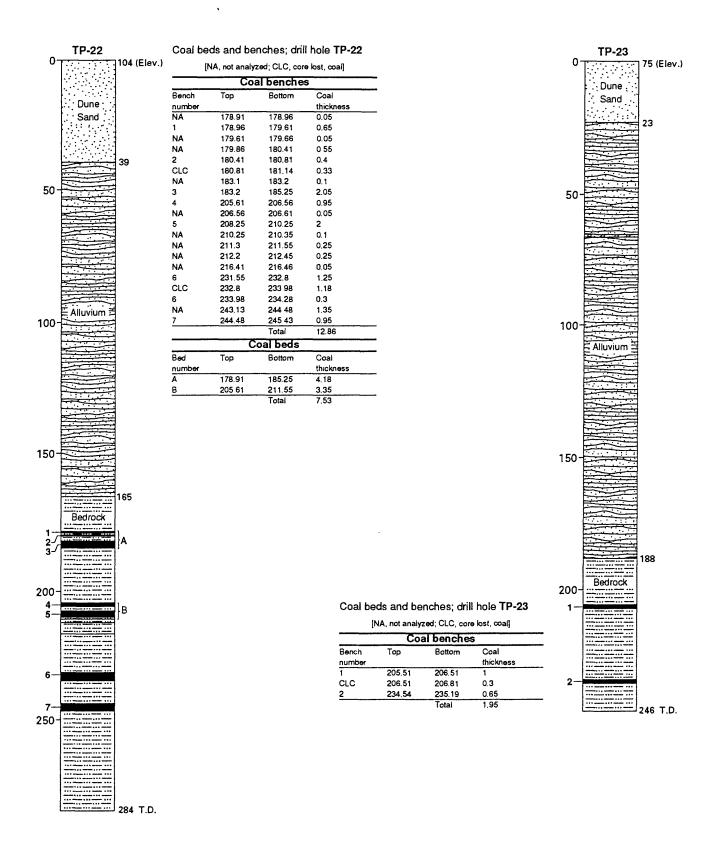



Figure 1-10. Stratigraphic columns of drill hole TP-22 and TP-23, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

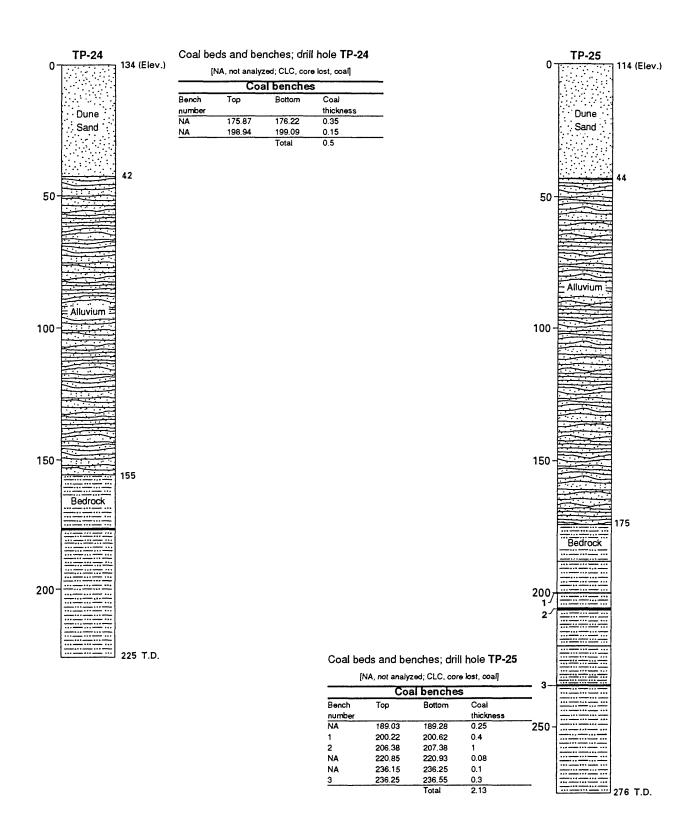



Figure 1-11. Stratigraphic columns of drill hole TP-24 and TP-25 Coal beds and benches; drill hole TP-22, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

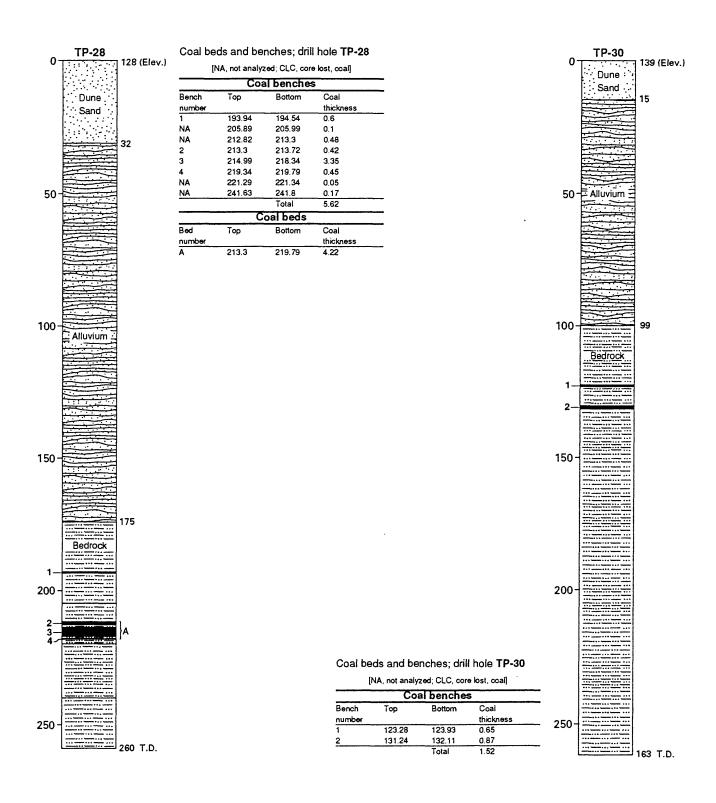



Figure 1-12. Stratigraphic columns of drill hole TP-28 and TP-30, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

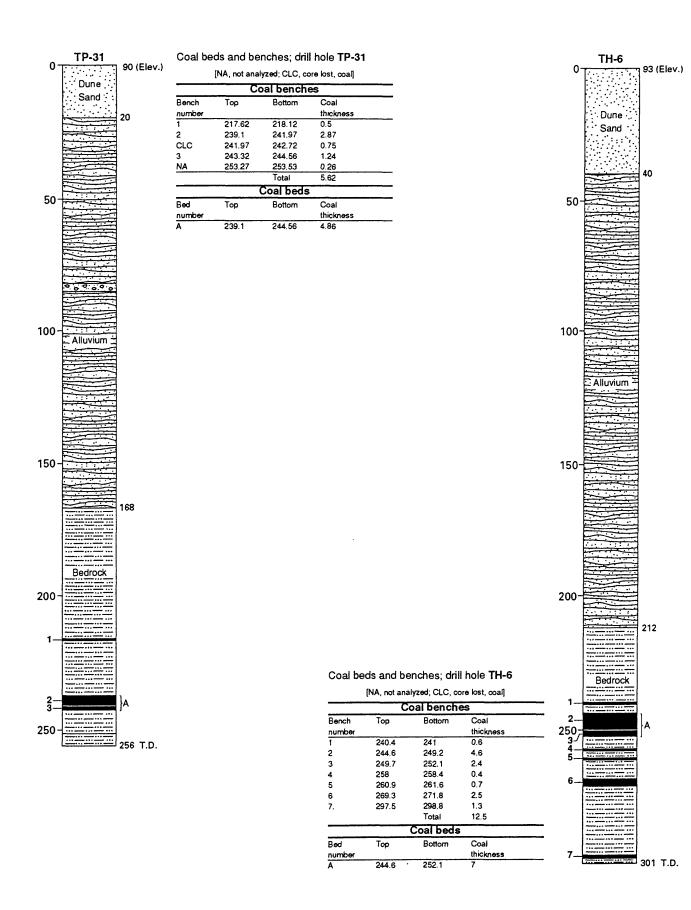



Figure 1-13. Stratigraphic columns of drill hole TP-31 and TH-6, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column; numbers and letters are keyed to coal-analyses tables in appendix 2.

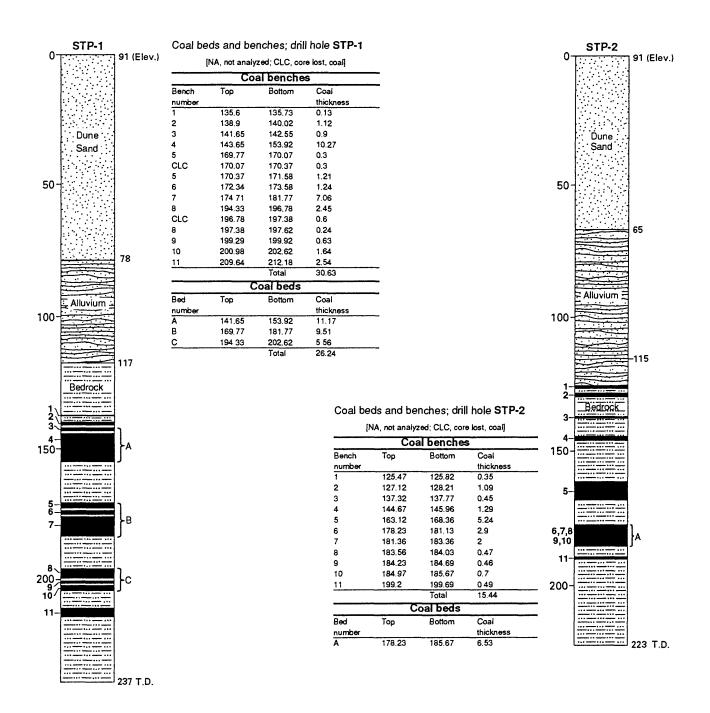



Figure 1-14. Stratigraphic columns of drill hole STP-1 and STP-2, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.

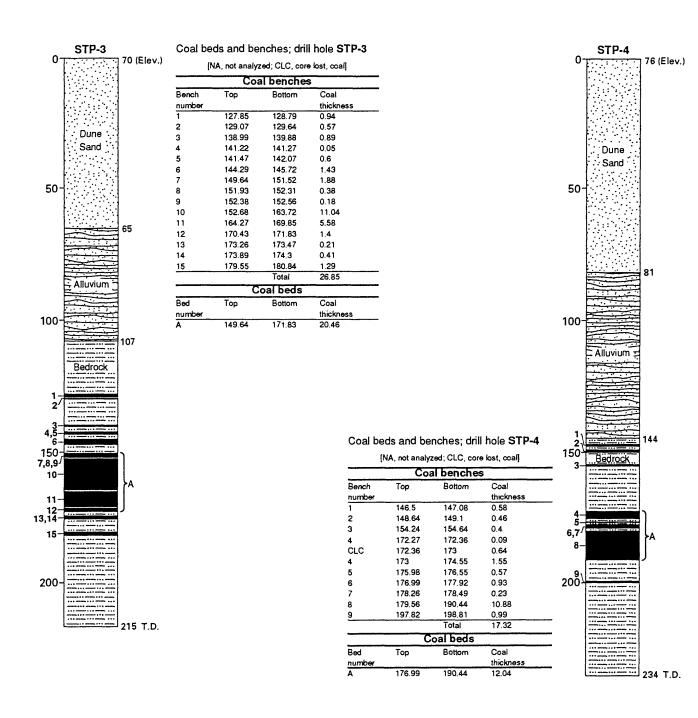
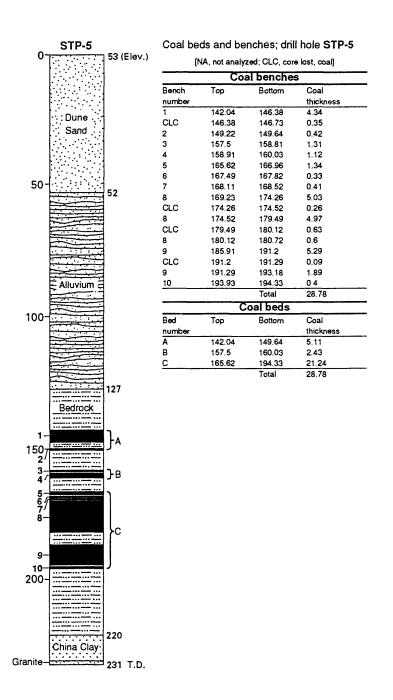




Figure 1-15. Stratigraphic columns of drill hole STP-3 and STP-4, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.



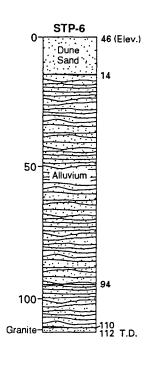



Figure 1-16. Stratigraphic columns of drill hole STP-5 and STP-6, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.

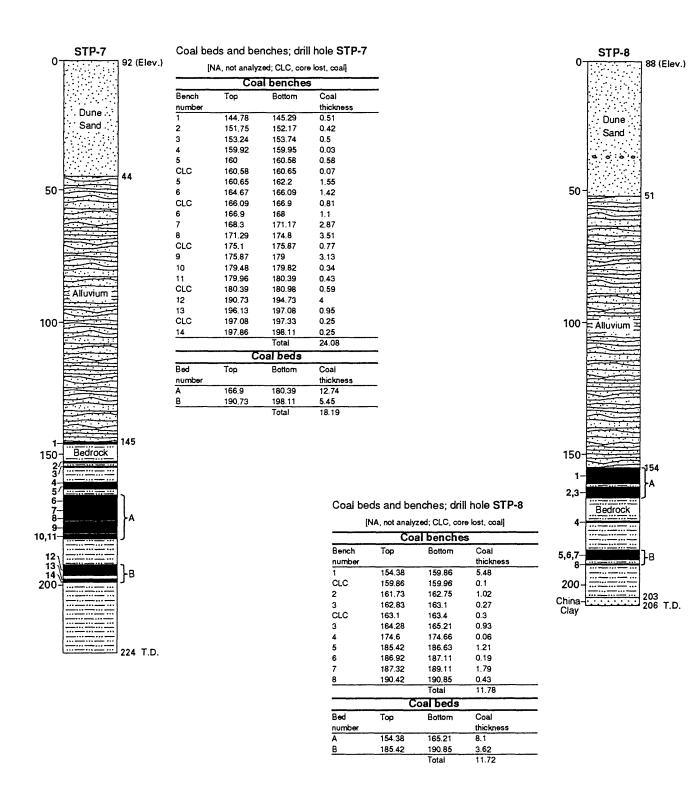



Figure 1-17. Stratigraphic columns of drill hole STP-7 and STP-8, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.

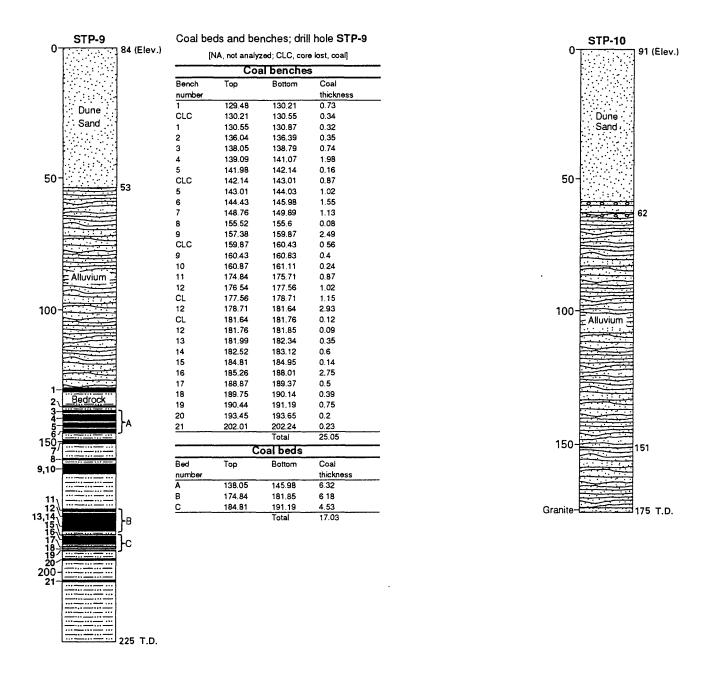



Figure 1-18. Stratigraphic columns of drill hole STP-9 and STP-10, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.

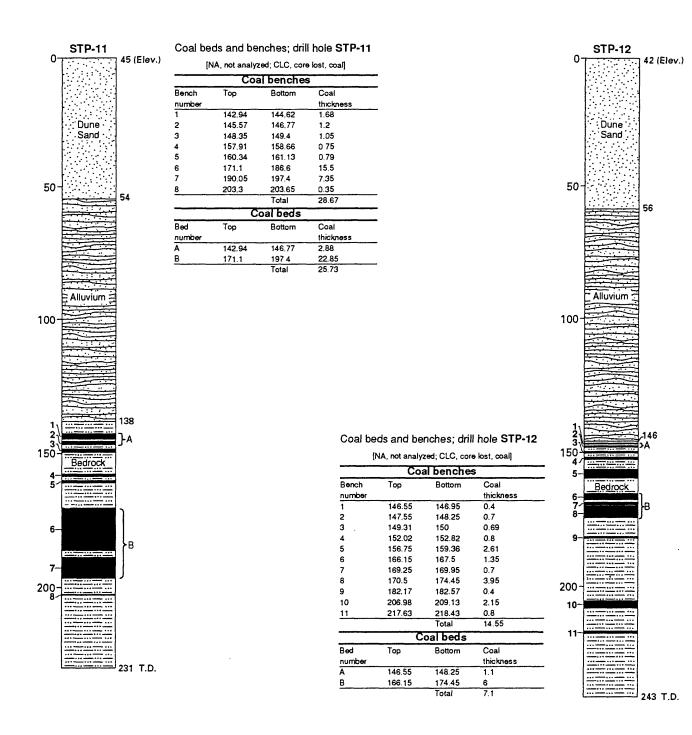



Figure 1-19. Stratigraphic columns of drill hole STP-11 and STP-12, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.

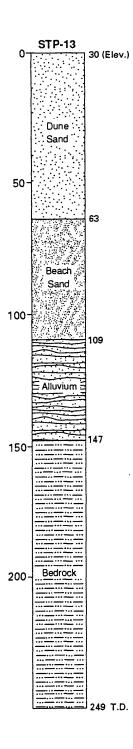



Figure 1-20. Stratigraphic columns of drill hole STP-13, Thar Desert, Sindh Province, Pakistan (drill hole locations are shown on figure 2). Coal bench numbers are shown on left side of column, coal bed letters are on right side of column.

| A DDENIDAY 2                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPENDIX 2  Coal-analyses tables for 22 coal test holes from the Thar Desert, Sindh Province, Pakistan; coal bench and coal bed numbers in these tables are keyed to the stratigraphic columns for these drill holes depicted in appendix 1 of this report. |
|                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             |

Table 2-1. Selected coal-analyses values from drill hole TP-1, Thar Desert, Sindh Province, Pakistan

[Analyses of 24 coal samples by Geochemical Testing Laboratory, a Division of Energy Center, Inc., Somerset, Pennsylvania, USA; DAF, dry, ash free; MMM, moist, mineral matter, NA, not available; depths and thicknesses in meters, drill-hole locations are shown on figure 2]

|        |          |                 |        |          |         | l-sample a | nalyses  |        |        |        |          |          |
|--------|----------|-----------------|--------|----------|---------|------------|----------|--------|--------|--------|----------|----------|
|        | Sampled  | <u>interval</u> | Coal   | _As rece | eived v | alues-%_   | Heating  | values | - Btu  |        | Volatile | Apparent |
| Sample |          |                 | thick- | Total    |         |            | As       |        |        | MMM    | matter   | specific |
| number | Top      | Bottom          | ness   | sul fur  | Ash     | Moisture   | received | Dry    | DAF    | free   | (DAF-%)  | gravity  |
| 1.1    | 146.38   | 147.57          | 1.19   | 1.19     | 1.26    | 9.23       | 47.62    | 5,404  | 10,317 | 5,887  | 6,560    | 1.4      |
| 1.2    | 147.57   | 147.8           | 0.23   | 0.23     | 0.79    | 5.46       | 51.65    | 5,315  | 10,993 | 5,580  | 5,992    | NA       |
| 2.1    | 148.7    | 149.54          | 0.84   | 0.84     | 0.63    | 5.21       | 50.12    | 5,495  | 11,017 | 5,768  | 6,137    | NA       |
| 2.2    | 149.54   | 149.64          | 0.1    | 0.1      | 4.84    | 9.9        | 48.86    | 4,996  | 9,769  | 5,169  | 6,195    | NA       |
| 2.3    | 149.64   | 150.22          | 0.58   | 0.58     | 1.27    | 12.21      | 48.62    | 4,580  | 8,913  | 5,161  | 6,007    | 1.39     |
| 7.1*   | 162.11   | 163.83          | 1.72   | 1.72     | 2.12    | 19.59      | 13.13    | 8,140  | 9,370  | 10,041 | 10,510   | NA       |
| 3.1*   | 164.13   | 164.34          | 0.21   | 0.21     | 0.57    | 8.33       | 27.84    | 9,050  | 12,541 | 9,879  | 10,232   | NA       |
| 3.2*   | 164.34   | 164.97          | 0.63   | 0.63     | 1.36    | 6.43       | 41.9     | 6,791  | 11,688 | 7,167  | 7,636    | 1.23     |
| 3.3*   | 164.97   | 166.3           | 1.33   | 1.33     | 0.31    | 4.36       | 44.92    | 6,567  | 11,923 | 6,863  | 7,132    | 1.26     |
| 3.4    | 166.3    | 166.59          | 0.29   | 0.29     | 1.28    | 6.15       | 45.44    | 6,105  | 11,189 | 6,422  | 6,881    | NA       |
| 3.5*   | 166.59   | 167.43          | 0.84   | 0.84     | 0.44    | 4.84       | 40.09    | 7,222  | 12,054 | 7,578  | 7,856    | 1.21     |
| 3.6    | 167.43   | 168.02          | 0.59   | 0.59     | 1.66    | 6.61       | 44.56    | 6,127  | 11,052 | 6,445  | 6,957    | 1.36     |
| 4.1*   | 169.17   | 169.47          | 0.3    | 0.3      | 2.32    | 9.22       | 38.53    | 6,863  | 11,165 | 7,388  | 8,074    | 1.21     |
| 4.2    | 169.47   | 169.86          | 0.39   | 0.39     | 1.93    | 8.91       | 45.6     | 5,668  | 10,419 | 6,093  | 6,778    | 1.37     |
| 4.3    | 169.86   | 170.23          | 0.37   | 0.37     | 0.57    | 6.47       | 49.04    | 5,542  | 10,876 | 5,908  | 6,349    | 1.6      |
| 4.4    | 170.23   | 170.62          | 0.39   | 0.39     | 3.91    | 30.93      | 36.75    | 3,475  | 5,494  | 4,770  | 6,799    | NA       |
| 4.5    | 170.62   | 171.35          | 0.73   | 0.73     | 3.1     | 8.22       | 46.97    | 5,546  | 10,459 | 5,808  | 6,563    | 1.33     |
| 4.6*   | 171.35   | 171.99          | 0.64   | 0.64     | 1.25    | 5.54       | 46.12    | 6,114  | 11,348 | 6,390  | 6,815    | 1.21     |
| 4.7*   | 171.99   | 172.88          | 0.89   | 0.89     | 1.52    | 5.61       | 43.55    | 6,653  | 11,786 | 6,939  | 7,387    | 1.25     |
| 4.8*   | 172.88   | 173.87          | 0.99   | 0.99     | 0.52    | 9.72       | 46.72    | 5,435  | 10,201 | 6,024  | 6,647    | 1.24     |
| 5.1    | 177.39   | 178.55          | 1.16   | 1.16     | 4.61    | 9.38       | 48.37    | 5,151  | 9,976  | 5,325  | 6,294    | 1.37     |
| 5A2    | 178.55   | 178.91          | 0.36   | 0.36     | 0.12    | 2.7        | 51.13    | 5,792  | 11,852 | 5,956  | 6,130    | NA       |
| 5.2    | 178.91   | 180.47          | 1.56   | 1.56     | 1.42    | 5.62       | 49.45    | 5,729  | 11,333 | 5,974  | 6,446    | 1.3      |
| 6.1    | 190.47   | 193             | 2.53   | 2.53     | 0.72    | 6.51       | 49.87    | 5,396  | 10,763 | 5,741  | 6,201    | 1.28     |
|        |          | Total           | 18.86  |          |         |            |          |        |        |        |          |          |
|        | Weighted | averages        |        | 1.68     | 8.08    | 48.24      | 5,404    | 10,485 | 12,350 | 5,759  | 55.09    | 1.3      |

<sup>\*</sup>These samples apparently dried out because of delays in wrapping them in plastic bags thus reducing their total moisture content; as a consequence, analyses values for these samples are skewed, values for these analyses were not used for determination of weighted averages

|         |            |             |          |          | Coa     | il-bench ar | alyses    |           |           |         |           |          |
|---------|------------|-------------|----------|----------|---------|-------------|-----------|-----------|-----------|---------|-----------|----------|
| [Values | are weight | ted average | s for sa | mples fr | om each | bench; in   | parenthes | es are nu | umbers of | samples | in each b | ench]    |
|         | Composite  | e interval  | Coal     | As rec   | eived v | alues-%     | Heating   | values ·  | Btu       |         | Volatile  | Apparent |
| Bench   |            |             | thick-   | Total    |         |             | As        |           |           | MMM     | matter    | specific |
| number  | Тор        | Bottom      | ness     | sul fur  | Ash     | Moisture    | received  | Dry       | DAF       | free    | (DAF-%)   | gravity  |
| 1 (2)   | 146.38     | 147.8       | 1.42     | 1.18     | 8.62    | 48.27       | 5,390     | 10,426    | 12,502    | 5,837   | 56.23     | 1.17     |
| 2 (3)   | 148.7      | 150.22      | 1.52     | 1.15     | 8.19    | 49.46       | 5,113     | 10,132    | 12,057    | 5,497   | 53.8      | NA       |
| 7 (1)*  | 162.11     | 163.83      | 1.72     | 2.12     | 19.59   | 13.13       | 8,140     | 9,370     | 12,099    | 10,041  | 55.1      | NA       |
| 3 (6)*  | 164.13     | 168.02      | 3.89     | 0.8      | 5.49    | 42.45       | 6,778     | 11,760    | 12,996    | 7,133   | 58.88     | NA       |
| 4 (8)*  | 169.17     | 173.87      | 4.7      | 1.73     | 9.54    | 44.82       | 5,732     | 10,440    | 12,495    | 6,193   | 58.72     | NA       |
| 5 (3)   | 177.39     | 180.47      | 3.08     | 2.47     | 6.69    | 49.24       | 5,519     | 10,883    | 12,516    | 5,727   | 55.2      | NA       |
| 6 (1)   | 190.47     | 193         | 2.53     | 0.72     | 6,51    | 49.87       | 5,396     | 10,763    | 12,370    | 5,741   | 53.66     | 1.28     |
|         |            | Total       | 18.86    |          |         |             |           |           |           |         |           |          |
|         | Weighted   | averages    |          | 1.5      | 7.23    | 49.31       | 5,389     | 10,638    | 12,389    | 5,709   | 54.66     | NA       |

<sup>\*</sup>These benches contain samples with skewed analyses values due to drying out of samples prior to bagging, thus the values shown for these benches cannot be considered to be representative; values for these benches containing skewed analyses were not used to determine weighted averages

|          |              |                 |          |            | LO     | at-peotanat | yses           |          |          |          |           |          |
|----------|--------------|-----------------|----------|------------|--------|-------------|----------------|----------|----------|----------|-----------|----------|
| [Value:  | s are weight | ed average      | s of sam | mples from | each   | bed; in pa  | rentheses      | are coal | bench nu | mbers in | cluded in | beds]    |
|          | Composite    | <u>interval</u> | Coal     | As rece    | ived v | values-%    | <u>Heating</u> | values - | - Btu    |          | Volatile  | Apparent |
| Bed      |              |                 | thick-   | Total      |        |             | As             |          |          | MMM      | matter    | specific |
| Number   | Top          | Bottom          | ness     | sul fur    | Ash    | Moisture    | received       | Dry      | DAF      | free     | (DAF-%)   | gravity  |
| A (1,2)  | 146.38       | 150.22          | 2.94     | 1.17       | 8.4    | 48.89       | 5,247          | 10,274   | 12,272   | 5,661    | 54.97     | NA       |
| B (7,3-5 | )* 162.11    | 180.47          | 13.39    | 1,68       | 9      | 41.08       | 6,296          | 10,788   | 12,595   | 6,853    | 57        | NA.      |
|          |              | Total           | 16.33    |            |        |             |                |          |          |          |           |          |

<sup>\*</sup>This coal bed contains samples with skewed analyses values due to drying out of samples prior to bagging, thus the values shown for this bed cannot be considered to be representative

Table 2-2. Selected coal-analyses values from drill hole TP-3, Thar Desert, Sindh Province, Pakista:

[Analyses of 36 coal samples by Geochemical Testing Laboratory, a Division of Energy Center, Inc., Somerset, Pennsylvania, USA; DAF, dry, ash free; MMM, moist, mineral matter, NA, not available; depths and thicknesses in meters, drill-hole locations are shown on figure 2]

As received values-%

Coal-sample analyses

Heating values - Btu

Volatile Apparent

|             | Sampled 1   | nterval   | Coat         | AS rec    | eived va | ilues-%   | <u>Heating</u> | values - | Btu         |         | Volatile | Apparent   |
|-------------|-------------|-----------|--------------|-----------|----------|-----------|----------------|----------|-------------|---------|----------|------------|
| Sample      |             |           | thick-       | Total     |          |           | As             |          |             | MMM     | matter   | specific   |
| number      | Top         | Bottom    | ness         | sul fur   | Ash      | Moisture  | received       | Dry      | DAF         | free    | (DAF-%)  | gravity    |
| 1           | 137.06      | 137.4     | 0.34         | 1.1       | 6.04     | 55.32     | 4,667          | 10,446   | 12,078      | 4,902   | 53.1     | NA         |
| 2A          | 145.96      | 146.78    | 0.82         | 1.53      | 9.21     | 49.7      | 4,998          | 9,936    | 12,164      | 5,415   | 54.17    | 1.25       |
| 2B          | 147.19      | 147.74    | 0.55         | 4.51      | 12.88    | 45.66     | 4,997          | 9,196    | 12,052      | 5,387   | 56.16    | 1.37       |
| 2C          | 147.82      | 148.64    | 0.82         | 2.09      | 6.3      | 46.9      | 6,266          | 11,801   | 13,389      | 6,531   | 63.08    | 1.09       |
| 2D          | 148.64      | 148.86    | 0.22         | 1.79      | 6.07     | 50.57     | 5,435          | 10,995   | 12,534      | 5,661   | 55.52    | NA         |
| 2E          | 148.86      | 149.36    | 0.5          | 1.11      | 5.32     | 49.98     | 5,676          | 11,347   | 12,697      | 5,925   | 57.97    | NA         |
| 2F          | 149.36      | 150.12    | 0.76         | 3.75      | 11.11    | 47.11     | 5,039          | 9,528    | 12,060      | 5,387   | 59.36    | 1.38       |
| 2G          | 151.17      | 151.74    | 0.57         | 1.61      | 7.41     | 49.56     | 5,334          | 10,575   | 12,397      | 5,415   | 54.37    | 1.14       |
| 2H          | 151.74      | 152.35    | 0.61         | 2.95      | 13.02    | 46.4      | 4,856          | 9,059    | 11,966      | 5,387   | 55.64    | 1.32       |
| 21          | 152.35      | 153.28    | 0.93         |           | 12.25    | 45.4      | 5,252          | 9,620    | 12,401      | 6,531   | 59.95    | 1.13       |
|             |             |           |              | 0.47      |          |           |                |          |             |         |          |            |
| 2J          | 153.28      | 153.92    | 0.64         | 3.19      | 20.87    | 40.6      | 4,574          | 7,700    | 11,871      | 5,661   | 58.84    | 1.4        |
| 2K1         | 153.92      | 154.22    | 0.3          | 1.55      | 14.75    | 44.81     | 5,027          | 9,109    | 12,432      | 5,925   | 59.14    | NA<br>1    |
| 2K2         | 154.22      | 154.8     | 0.58         | 1.43      | 30.33    | 36.98     | 3,781          | 6,000    | 11,567      | 5,387   | 66.02    | 1.69       |
| 2L          | 155.7       | 156.72    | 1.02         | 1.47      | 17.07    | 45.78     | 4,463          | 8,231    | 12,013      | 6,513   | 54.68    | 1.27       |
| 2M          | 156.72      | 156.97    | 0.25         | 0.41      | 8.07     | 47.04     | 5,746          | 10,849   | 12,800      | 6,257   | 59.67    | NA         |
| 2N          | 156.97      | 157.64    | 0.67         | 0.77      | 5.08     | 49.67     | 5,840          | 11,604   | 12,905      | 6,111   | 59.49    | 0.97       |
| 20          | 157.64      | 158.24    | 0.6          | 0.75      | 4.7      | 49.76     | 5,869          | 11,682   | 12,886      | 6,117   | 58.22    | 0.95       |
| 2P          | 158.24      | 158.94    | 0.7          | 1.86      | 9.42     | 46.12     | 5,556          | 10,311   | 12,497      | 6,013   | 59.64    | 1.1        |
| 2Q          | 158.94      | 160.02    | 1.08         | 0.77      | 5.12     | 48.73     | 5,826          | 11,364   | 12,625      | 6,099   | 55.47    | 1.02       |
| 2R          | 160.02      | 161.52    | 1.5          | 1.05      | 4.51     | 48.71     | 5,908          | 11,518   | 12,628      | 6,118   | 56.13    | 1.1        |
| 2S          | 161.52      | 162.42    | 0.9          | 2.35      | 6.15     | 47.17     | 6,111          | 11,567   | 13,090      | 6,332   | 62.13    | 1.06       |
| 21          | 162,42      | 163.07    | 0.65         | 0.63      | 3.79     | 49.6      | 5,814          | 11,535   | 12,474      | 6,008   | 54.97    | 1.04       |
| 20          | 163.07      | 164.3     | 1.23         | 0.37      | 3.08     | 48.98     | 6,091          | 11,938   | 12,705      | 6,268   | 55.99    | 1.02       |
| 2V          | 164.3       | 164.75    | 0.45         | 0.79      | 3.99     | 47.53     | 6,450          | 12,293   | 13,305      | 6,669   | 63.11    | 1          |
| 2W          | 164.75      | 165.52    | 0.77         | 0.66      | 3.62     | 50.43     | 5,803          | 11,706   | 12,629      | 5,982   | 55.6     | 1.13       |
| 2x          | 165.52      | 166.11    | 0.59         | 0.4       | 3.13     | 50.24     | 6,105          | 12,269   | 13,092      | 6,284   | 57.89    | NA         |
| 2Y          | 166.11      | 167.66    | 1.55         | 0.47      | 3.47     | 48.91     | 6,282          | 12,295   | 13,191      | 6,485   | 58.91    | 0.94       |
| 2Z1         | 167.66      | 168.21    | 0.55         | 0.51      | 3.26     | 48.62     | 6,633          | 12,910   | 13,785      | 6,829   | 64.1     | NA         |
| 2Z2         | 168.21      | 169.21    | 1            | 1.01      | 5.19     | 49.47     | 5,698          | 11,276   | 12,567      | 5,948   | 57.01    | 1.14       |
| 2AA         | 169.21      | 169.9     | 0.69         | 0.41      | 3.88     | 50.63     | 5,640          | 11,424   | 12,399      | 5,852   | 53.69    | 1.14       |
| 2AB         | 169.9       | 170.73    | 0.83         | 0.67      | 6.02     | 47.38     | 5,974          | 11,353   | 12,821      | 6,329   | 57.5     | 1.19       |
| 2AC         | 170.73      | 171.38    | 0.65         | 0.25      | 25.73    | 40.9      | 3,691          | 6,245    | 11,062      | 5,084   | 62.76    | 1.51       |
| 2AD         | 171.38      | 172.26    | 0.88         | 0.36      | 5.03     | 51.31     | 5,227          | 10,735   | 11,972      | 5,497   | 50.5     | 1.4        |
| 2AE         | 172.26      | 172.93    | 0.67         | 0.68      | 4.89     | 49.21     | 5,920          | 11,655   | 12,896      | 6,190   | 60.54    | NA         |
| 2AF         | 172.93      | 173.83    | 0.9          | 0.53      | 4.2      | 49.89     | 5,873          | 11,719   | 12,791      | 6,106   | 57.99    | 1.1        |
| 2AG         | 173.83      | 175.28    | 1.45         | 0.38      | 5.35     | 51.33     | 5,314          | 10,918   | 12,265      | 5,607   | 53.24    | 1.32       |
| <u> LAU</u> | 113.03      | Total     | 27.22        | 0.50      | رو.ر     | رد.،ر     | 4۱ د , ر       | 10,710   | 16,203      | 7,001   | JJ . C4  | 1,36       |
|             | Weighted    |           | ۲۱،۲۲        | 1.17      | 7.89     | 47.94     | 5,549          | 10,760   | 12,544      | 5,938   | 57.55    | 1.18       |
|             | weighted    | averages  |              | 1.1/      |          | -bench an |                | 10,100   | 16,344      | 7,730   | 20.00    | 1.10       |
| [Values     | e are weigh | ted avera | nee for      | camples : |          |           | in parenthe    | 200      | numbers of  | samoles | in each  | hench1     |
| LVALUES     | Composite   |           | Coal         |           |          | lues-%    |                | values - |             | Sampres | Volatile |            |
| Bench       | COMPOSITE   | incervat  | thick-       | Total     | LIVEU VE | 1465-70   | As             | varues - | <u> Dtu</u> | MMM     | matter   | specific   |
|             | Ton         | Datta     |              |           | Aak      | Majatura  |                | Day.     | DAF         |         | (DAF-%)  | gravity    |
| number      | Top         | Bottom    | ness<br>0.34 | sul fur   |          |           | received       | Dry      | 12,078      | free    | 53.1     |            |
| 1 (1)       | 137.06      | 137.4     |              | 1.1       | 6.04     | 55.32     | 4,667          | 10,446   | •           | 4,902   |          | NA<br>1 25 |
| 2 (1)       | 145.96      | 146.78    | 0.82         | 1.53      | 9.21     | 49.7      | 4,998          | 9,936    | 12,164      | 5,415   | 54.17    | 1.25       |
| 3 (5)       | 147.19      | 150.12    | 2.85         | 2.8       | 8.66     | 47.54     | 5,526          | 10,550   | 12,589      | 5,832   | 59.27    | 1.27       |
| 4 (6)       | 151.17      | 154.8     | 3.63         | 1.79      | 16.23    | 43.98     | 4,825          | 8,717    | 12,103      | 5,666   | 59.06    | 1.32       |

| 1This | bench | contains   | core  | loss | in  | coal. |
|-------|-------|------------|-------|------|-----|-------|
| 11113 |       | COLLEGILIS | CO. C | 1033 | .,, | coat. |

Weighted averages

175.28

Total

19.58

27.22

0.8

1.17

155.7

5 (23)

Sampled interval

Coal

Coal-bed analyses [Values are weighted averages for samples from each bed; in parentheses are coal-bench numbers included in beds] Composite interval Coal As received values-% Heating values - Btu Volatile Apparent MMM Sample thick-Total As matter specific (DAF-%) Number gravity Top Bottom ness sul fur Ash Moisture received DAF free 175.28 12,550 57.61 1.18 A (2-5) 145.96 26.88 1.17 7.92 48.53 5,560 10,764 5,951 27.22 Total 12,544 5,938 57.55 1.18 Weighted averages 1.17 7.89 47.94 5,549 10,760

49.46

47.94

5,725

5,549

11,209

10,760

12,644

12,544

6,043

5,938

57.24

57.55

1.14

1.18

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

6.21

7.89

Table 2-3. Selected coal-analyses values from drill hole TP-4, Thar Desert, Sindh Province, Pakistan

[Analyses of 17 coal samples; 14 by Geological Survey of Pakistan Karachi laboratory and 3 by Geochemical Testing Laboratory, a Division of Energy Center, Inc., Somerset, Pennsylvania, USA; DAF, dry, ash free; MMM, moist, mineral matter; NA, not available; depths and thicknesses in meters; drill-hole locations are shown on figure n] shown on figure 2]

|            |                 |           |        |         | Coa     | il-sample a | nalyses  |           |         |       |          |          |
|------------|-----------------|-----------|--------|---------|---------|-------------|----------|-----------|---------|-------|----------|----------|
|            | Sampled         | interval_ | Coal   | As rec  | eived v | alues-%     | Heati    | ng value: | s - Btu |       | Volatile | Apparent |
| Sample     |                 |           | thick- | Total   |         |             | As       |           |         | MMM   | matter   | specific |
| number     | Top             | Bottom    | ness   | sul fur | Ash     | Moisture    | received | Dry       | DAF     | free  | (DAF-%)  | gravity  |
| 1A         | 180.91          | 181.25    | 0.34   | 2.45    | 13.22   | 48.23       | NA       | NA        | NA      | NA    | 59.51    | N.A      |
| 1B         | 181.25          | 181.6     | 0.35   | 3.4     | 32.82   | 39.31       | 2,730    | 4,498     | 9,797   | 3,854 | 66.22    | N.A      |
| 1C         | 181.6           | 181.93    | 0.33   | 0.11    | 25.93   | 41.06       | 2,689    | 4,562     | 8,146   | 3,724 | 68.56    | N.A      |
| 2A         | 192.05          | 193.02    | 0.97   | 5.92    | 14.15   | 43.35       | 5,545    | 9,788     | 13,048  | 5,967 | 57.38    | N.A      |
| 2B         | 193.02          | 193.58    | 0.56   | 0.1     | 12.95   | 44.91       | 4,840    | 8,786     | 11,486  | 5,618 | 60.11    | N.A      |
| 2C         | 193.58          | 194.31    | 0.73   | 1.08    | 8.33    | 48.11       | NA.      | NA        | NA      | NA.   | 56.17    | NA       |
| 2D         | 194.51          | 195.16    | 0.65   | 9.85    | 18.18   | 40.08       | 5,742    | 9,583     | 13,757  | 6,119 | 61.44    | NA       |
| 3          | 200.68          | 201.12    | 0.44   | 1.41    | 13.68   | 46.04       | 4,324    | 8,013     | 10,734  | 4,946 | 62.58    | NA       |
| 4          | 203.45          | 203.75    | 0.3    | 2.63    | 8.82    | 48.9        | NA       | NA        | NA      | NA    | 58.08    | NA       |
| 5          | 205. <i>7</i> 3 | 206.08    | 0.35   | 2.79    | 6.76    | 52.79       | 4,696    | 9,948     | 11,609  | 4,834 | 64.63    | NA       |
| 6          | 223,78          | 224.66    | 0.88   | 0.14    | 3.95    | 48.13       | 6,525    | 12,579    | 13,617  | 6,804 | 63.79    | NA       |
| 7A         | 229.01          | 229.71    | 0.7    | 1.84    | 7.66    | 48.37       | NA       | NA        | NA      | NA    | 57.38    | NA       |
| 7B         | 229,71          | 230.18    | 0.47   | 0.24    | 4.41    | 48.06       | 6,269    | 12,071    | 13,192  | 6,561 | 59.47    | NA       |
| 7C         | 230.18          | 230.73    | 0.55   | 2.74    | 7.76    | 48.76       | NA       | NA        | NA      | . NA  | 54.65    | NA       |
| 8*         | 256.14          | 257.34    | 1.2    | 0.39    | 18.67   | 41.81       | 4,855    | 8,344     | 12,285  | 6,041 | 60.03    | 1.46     |
| 9 <b>*</b> | 261.43          | 262.1     | 0.67   | 0.23    | 18.18   | 44.86       | 4,101    | 7,438     | 11,096  | 5,081 | 54.13    | 1.35     |
| 10*        | 272.05          | 273.05    | 1      | 2.27    | 16.46   | 45.45       | 4,356    | 7,986     | 11,436  | 5,083 | 52.86    | 1.54     |
|            |                 | Total     | 10.49  |         |         |             |          |           | -       |       |          |          |
|            | Weighted        | averages  |        | 2.23    | 13.41   | 45.45       | 4,934    | 8,952     | 12,037  | 5,612 | 59.04    | 1.46     |

\*Coal samples analyzed by Geochemical Testing, all other samples analyzed by Geological Survey of Pakistan

|         |           |            |          |          | Coa     | it-bench an | alyses     |           |            |         |          |          |
|---------|-----------|------------|----------|----------|---------|-------------|------------|-----------|------------|---------|----------|----------|
| [Values | are weigh | ted averag | es for s | amples f | rom eac | h bench; i  | n parenthe | ses are   | numbers of | samples | in each  | bench]   |
|         | Composite | interval   | Coal     | As rec   | eived v | alues-%     | Heati      | ng value: | s - Btu    |         | Volatile | Apparent |
| Bench   |           |            | thick-   | Total    |         |             | As         |           |            | MMM     | matter   | specific |
| number  | Top       | Bottom     | ness     | sul fur  | Ash     | Moisture    | received   | Dry       | DAF        | free    | (DAF-%)  | gravity  |
| 1 (3)*  | 180.91    | 181.93     | 1.02     | 2.02     | 24.06   | 42.85       | 2,710      | 4,529     | 8,996      | 3,791   | 64.74    | NA       |
| 2A (3)* | 192.05    | 194.31     | 2.26     | 2.91     | 11.97   | 45.27       | 5,287      | 9,421     | 12,476     | 5,839   | 57.66    | NA       |
| 2B (1)  | 194.51    | 195.16     | 0.65     | 1.08     | 8.33    | 48.11       | NA.        | NA        | NA         | NA      | 56.17    | NA       |
| 3 (1)   | 200.68    | 201.12     | 0.44     | 1.41     | 13.68   | 46.04       | 4,324      | 8,013     | 10,734     | 4,946   | 62.58    | NA       |
| 4 (1)   | 203.45    | 203.75     | 0.3      | 2.63     | 8.82    | 48.9        | NA         | NA        | NA         | NA      | 58.08    | NA       |
| 5 (1)   | 205.73    | 206.08     | 0.35     | 2.79     | 6.76    | 52.79       | 4,696      | 9,948     | 11,609     | 4,834   | 64.63    | NA       |
| 6 (1)   | 223.78    | 224.66     | 0.88     | 0.14     | 3.95    | 48.13       | 6,525      | 12,579    | 13,617     | 6,804   | 63.79    | NA       |
| 7 (3)*  | 229.01    | 230.73     | 1.72     | 1.69     | 6.8     | 48.41       | 6,269      | 12,071    | 13,192     | 6,561   | 57.08    | NA       |
| 8 (1)   | 256.14    | 257.34     | 1.2      | 0.39     | 18.67   | 41.81       | 4,855      | 8,344     | 12,285     | 6,041   | 60.03    | 1.46     |
| 9 (1)   | 261.43    | 262.1      | 0.67     | 0.23     | 18.18   | 44.86       | 4,101      | 7,438     | 11.096     | 5,081   | 54.13    | 1.35     |
| 10 (1)  | 272.05    | 273.05     | 1        | 2.27     | 16.46   | 45.45       | 4,356      | 7,986     | 11,436     | 5,083   | 52.86    | 1.54     |
|         |           | Total      | 10.49    |          | ·       |             |            |           |            |         |          |          |
|         | Weighted  | averages   | *        | 2.23     | 13.41   | 45.45       | 4,861      | 8,896     | 11,882     | 5,566   | 59.04    | 1.46     |

\*Heating values for these benches are weighted averages of the available Btu determinations; Btu values for some samples from these benches were not available

| Coal-bed analyses |                     |            |          |          |         |            |             |          |                   |         |                   |          |
|-------------------|---------------------|------------|----------|----------|---------|------------|-------------|----------|-------------------|---------|-------------------|----------|
| [Valu             | <u>les are weig</u> | hted avera | ges of s | amples f | rom eac | h bed; in  | parenthese  | s are co | <u>al-bench r</u> | numbers | <u>included i</u> | n beds]  |
|                   | Composite           | interval   | Coal     | As rec   | eived v | alues-%    | Hea         | ting val | ues - Btu         |         | Volatile          | Apparent |
| Bed               |                     |            | thick-   | Total    |         |            | As          |          |                   | MMM     | matter            | specific |
| Number            | Top                 | Bottom     | ness     | sul fur  | Ash     | Moisture   | received    | Dry      | DAF               | free    | (DAF-%)           | gravity  |
| A (2A-2B          | )*192.05            | 195.16     | 3.11     | 4.18     | 12.5    | 41.28      | 4,967       | 8,674    | 11,778            | 5,425   | 54.74             | NA       |
| *Heating          | values for          | this bed   | are weig | hted ave | rages o | f the avai | lable Btu ( | determin | ations; Bt        | u value | s for some        |          |
| samples           | from this b         | ed were no | t availa | ble      |         |            |             |          |                   |         |                   |          |

Table 2-4. Selected coal-analyses values from drill hole TP-5, Thar Desert, Sindh Province, Pakistan

[Analyses of 19 coal samples by Geochemical Testing Laboratory, a Division of Energy Center, Inc., Somerset, Pennsylvania, USA; DAF, dry, ash free; MMM, moist, mineral matter, depths and thicknesses in meters, drill-hole locations are shown on figure 2]

Coal-sample analyses

|            | Sampled i          | nterval         | Coal   | As re   | ceived v        | alues-%    | Heating  | values - | Btu    |          | Volatile | Apparent |
|------------|--------------------|-----------------|--------|---------|-----------------|------------|----------|----------|--------|----------|----------|----------|
| Sample     |                    |                 | thick- | Total   |                 |            | As       |          |        | MMM      | matter   | specific |
| number     | Тор                | Bottom          | ness   | sul fur | Ash             | Moisture   | received | Dry      | DAF    | free     | (DAF-%)  | gravity  |
| 1          | 158.18             | 159.23          | 1.05   | 0.52    | 6.48            | 50.85      | 5,282    | 10,747   | 12,379 | 5,634    | 54.94    | 1.17     |
| 2A         | 162.4              | 163.15          | 0.75   | 1.04    | 6.63            | 51.06      | 5,374    | 10,981   | 12,703 | 5,697    | 57.12    | 1.04     |
| 2B         | 163.15             | 164.05          | 0.9    | 1.65    | 8.21            | 49.63      | 5,434    | 10,788   | 12,888 | 5,814    | 56.79    | 1.17     |
| 2C         | 164.05             | 164.35          | 0.3    | 0.24    | 17.9            | 46.04      | 4,361    | 8,081    | 12,093 | 5,382    | 58.12    | 1.26     |
| 3A         | 166.3              | 166.9           | 0.6    | 4.46    | 25              | 41.34      | 3,900    | 6,649    | 11,588 | 4,873    | 57.8     | 1.5      |
| 3B         | 166.9              | 167.7           | 0.8    | 0.75    | 6.59            | 52.71      | 5,010    | 10,594   | 12,308 | 5,330    | 52.72    | 0.97     |
| 3C         | 167.7              | 168.7           | 1      | 0.9     | 6.28            | 49.66      | 5,744    | 11,410   | 13,036 | 6,081    | 59.27    | 1.14     |
| 3D         | 168.7              | 169.55          | 0.85   | 0.46    | 8.86            | 48.56      | 5,598    | 10,883   | 13,149 | 6,148    | 61.52    | 0.97     |
| 4          | 170.4              | 170.95          | 0.55   | 1.07    | 9.33            | 47.83      | 5,619    | 10,771   | 13,166 | 6,149    | 60.6     | 0.98     |
| 5A         | 175.45             | 176.05          | 0.6    | 0.26    | 18.86           | 45.8       | 4,110    | 7,583    | 11,626 | 5,136    | 58.18    | 1.39     |
| 5B         | 176.05             | 177.03          | 0.98   | 0.27    | 9.49            | 47.67      | 5,373    | 10,268   | 12,542 | 5,962    | 58.27    | 1.18     |
| 5C         | 177.03             | 177.72          | 0.69   | 0.41    | 26.48           | 41.35      | 3,491    | 5,953    | 10,851 | 4,845    | 62.65    | 1.62     |
| 6          | 178.09             | 179.09          | 1      | 1       | 7.84            | 48.74      | 5,501    | 10,732   | 12,671 | 5,920    | 56.87    | 1.18     |
| 7          | 197.64             | 197.99          | 0.35   | 0.22    | 3.91            | 50.87      | 5,664    | 11,529   | 12,527 | 5,895    | 53.37    | 0.99     |
| 8          | 203.36             | 203.74          | 0.38   | 5.21    | 13.33           | 44.52      | 5,248    | 9,458    | 12,449 | 5,638    | 54.39    | 1.11     |
| 9          | 209.94             | 210.79          | 0.85   | 1.71    | 7.13            | 48.34      | 5,676    | 10,987   | 12,746 | 5,996    | 55.54    | 1.23     |
| 10         | 211.64             | 212.01          | 0.37   | 1.44    | 6.78            | 50.68      | 5,463    | 11,078   | 12,842 | 5,768    | 55.66    | 0.95     |
| 11A        | 260.79             | 261.39          | 0.6    | 0.94    | 4.28            | 51.84      | 5,611    | 11,651   | 12,788 | 5,802    | 52.27    | 0.98     |
| <u>118</u> | 261.39             | 261.94          | 0.55   | 0.39    | 10.44           | 49.11      | 4,980    | 9,787    | 12,313 | 5,577    | 52.39    | 1.07     |
|            |                    | Total           |        |         |                 |            |          |          |        |          |          |          |
|            | Weighted           | averages        | 13.17  | 1.11    | 10.16           | 48.48      | 5,185    | 10,144   | 12,496 | 5,701    | 56.97    | 1.16     |
|            |                    |                 |        |         |                 | -bench ana |          |          |        |          |          |          |
| [Value     | <u>es are weig</u> |                 |        |         |                 |            |          |          |        | f sample |          |          |
|            | Composite          | <u>interval</u> | Coal   |         | <u>ceived v</u> | alues-%    |          | values - | Btu    |          | Volatile | Apparent |
| Bench      |                    |                 | thick- | Total   |                 |            | As       |          |        | MMM      | matter   | specific |
| number     | Тор                | Bottom          | ness   | sul fur | Ash             | Moisture   | received | Dry      | DAF    | free     | (DAF-%)  | gravity  |
| 1 (1)      | 158.18             | 159.23          | 1.05   | 0.52    | 6.48            | 50.85      | 5,282    | 10,747   | 12,379 | 5,634    | 54.94    | 1.17     |
| 2 (3)      | 162.4              | 164.35          | 1.95   | 1.2     | 9.09            | 49.63      | 5,246    | 10,446   | 12,695 | 5,703    | 57.12    | 1.13     |
| 3 (4)      | 166.3              | 169.55          | 3.25   | 1.41    | 10.49           | 48.59      | 5,185    | 10,192   | 12,619 | 5,691    | 57.97    | 1.12     |
| 4 (1)      | 170.4              | 170.95          | 0.55   | 1.07    | 9.33            | 47.83      | 5,619    | 10,771   | 13,166 | 6,149    | 60.6     | 0.98     |
| 5 (3)      | 1 <i>7</i> 5.45    | 177.72          | 2.27   | 0.31    | 17.13           | 45.25      | 4,467    | 8,247    | 11,786 | 5,404    | 59.58    | 1.37     |
| 6 (1)      | 178.09             | 179.09          | 1      | 1       | 7.84            | 48.74      | 5,501    | 10,732   | 12,671 | 5,920    | 56.87    | 1.18     |
| 7 (1)      | 197.64             | 197.99          | 0.35   | 0.22    | 3.91            | 50.87      | 5,664    | 11,529   | 12,527 | 5,895    | 53.37    | 0.99     |
| 0 (1)      | 207 74             | 207 7/          | 0.70   | E 24    | 17 77           | // 53      | E 2/0    | 0 /50    | 12 //0 | E 470    | E/ 70    | 1 11     |

| 1.11 | 10.16  | 48.48      | 5,185 |
|------|--------|------------|-------|
|      | Coal-t | ped analys | es    |

13.33

7.13

6.78

7.23

203.36

209.94

211.64

260.79

8 (1)

9 (1)

10 (1)

203.74

210.79

212.01

<u> 261,94</u>

Total

Weighted Averages

0.38

0.85

0.37

1.15

13,17

5.21

1.71

1.44

0.68

| [Value:  | s are weig | hted avera | ages of | samples | from e | ach bed; i | n parenthes | es are o | coal-bench | numbers | included i | n beds]  |
|----------|------------|------------|---------|---------|--------|------------|-------------|----------|------------|---------|------------|----------|
|          | Composite  | interval   | Coal    | As re   | ceived | values-%   | Heating     | values   | - Btu      |         | Volatile   | Apparent |
| Bed      |            |            | thick-  | Total   |        |            | As          |          |            | MMM     | matter     | specific |
| Number   | Top        | Bottom     | ness    | sul fur | Ash    | Moisture   | received    | Dry      | DAF        | free    | (DAF-%)    | gravity  |
| A(2,3,4) | 162.4      | 170.95     | 5.75    | 1.3     | 9.9    | 48.87      | 5,247       | 10,334   | 4 12,697   | 5,739   | 57.94      | 1.11     |

44.52

48.34

50.68

50.53

9,458

10,987

11,078

10,760

10,144

5,248

5,676

5,463 5,309

12,527 12,449 12,746

12,842

12,561

12,496

54.39

55.54

55.66

52.33

56.97

1.11

1.23

0.95

1.02

1.16

5,638

5,996

5,768

5,695

5,701

Table 2-5. Selected coal-analyses values from drill hole TP-7, Thar Desert, Sindh Province, Pakistan

[Analyses of 21 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; NA, not available; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|            |           |         |        |         | Coa     | l-sample a | analyses |           |         |       |          |          |
|------------|-----------|---------|--------|---------|---------|------------|----------|-----------|---------|-------|----------|----------|
|            | Sampled i | nterval | Coal   | As rece | ived va | lues-%     | Heati    | ng value: | s - Btu |       | Volatile | Apparent |
| Sample     |           |         | thick- | Total   |         |            | As       |           |         | MMM   | matter   | specific |
| number     | Top       | Bottom  | ness   | sul fur | Ash     | Moisture   | received |           | DAF     | free  | (DAF-%)  | gravity  |
| 1          | 186.98    | 187.4   | 0.42   | 4.13    | 18.28   | 46.34      | 4,028    | 7,507     | 11,385  | 4,631 | 58.43    | 1.62     |
| 2A         | 189.09    | 189.59  | 0.5    | 3.87    | 20.33   | 45.83      | 3,825    | 7,061     | 11,302  | 4,530 | 56.62    | 1.56     |
| 2B         | 189.59    | 189.83  | 0.24   | 0.49    | 12.02   | 54.18      | 3,866    | 8,437     | 11,436  | 4,401 | 55.15    | 1.26     |
| 3A         | 190.93    | 191.78  | 0.85   | 2.49    | 6.79    | 48.95      | 5,653    | 11,075    | 12,773  | 5,879 | 60.97    | 1.34     |
| 38         | 191.78    | 192.71  | 0.93   | 2.41    | 7.59    | 44.71      | 6,106    | 11,044    | 12,802  | 6,428 | 60.89    | 1.21     |
| 3C         | 192.71    | 193.2   | 0.49   | 4.33    | 34.76   | 39.16      | 2,861    | 4,702     | 10,969  | 4,078 | 59.02    | 2.28     |
| 3D         | 193.2     | 194.16  | 0.96   | 2.25    | 5.99    | 57.51      | 4,532    | 10,666    | 12,415  | 4,664 | 57.19    | 1.62     |
| 3E         | 194.83    | 195.68  | 0.85   | 2.24    | 26.08   | 32.84      | 4,758    | 7,084     | 11,581  | 6,359 | 62.52    | 1.45     |
| 4A         | 202.99    | 203.69  | 0.7    | 2.59    | 8.93    | 47.56      | 5,612    | 10,702    | 12,900  | 5,974 | 63.56    | 1.28     |
| 48         | 203.69    | 204.39  | 0.7    | 1.82    | 5.22    | 51.51      | 5,504    | 11,351    | 12,720  | 5,676 | 60.51    | 1.29     |
| 4C         | 204.39    | 205.51  | 1.12   | 1.52    | 5.03    | 57.15      | 4,692    | 10,951    | 12,409  | 4,839 | 56.89    | 1.1      |
| 5 <b>A</b> | 223.27    | 223.84  | 0.57   | 2.32    | 34.88   | 35.61      | 3,090    | 4,799     | 10,473  | 4,676 | 66.42    | 1.71     |
| 58         | 223.84    | 224.41  | 0.57   | 1.92    | 32.65   | 36.84      | 3,324    | 5,262     | 10,893  | 4,906 | 65.85    | 1.66     |
| 5C         | 224.41    | 225.41  | 1      | 0.79    | 3.38    | 51.08      | 5,790    | 11,837    | 12,716  | 5,942 | 58.58    | 1.18     |
| 5D         | 225.41    | 226.41  | 1      | 0.52    | 2.84    | 51.32      | 5,845    | 12,008    | 12,750  | 5,985 | 57.54    | 1.13     |
| 5E         | 226.41    | 227.46  | 1.05   | 0.82    | 3.69    | 52.25      | 5,642    | 11,816    | 12,806  | 5,806 | 59.33    | 1.17     |
| 5F         | 227.46    | 228.46  | 1      | 0.75    | 3.17    | 52.16      | 5,620    | 11,748    | 12,581  | 5,756 | 57.6     | 1.18     |
| 5G         | 228.46    | 229.46  | 1      | 0.74    | 3.76    | 51.52      | 7,051    | 14,543    | 15,765  | 7,280 | 58.17    | 1.2      |
| 5H         | 229.46    | 230.5   | 1.04   | 3.28    | 6.88    | 50.54      | 5,412    | 10,943    | 12,712  | 5,561 | 57.91    | 1.1      |
| 6A         | 235.35    | 236.14  | 0.79   | 0.62    | 2.75    | 50.99      | 5,996    | 12,236    | 12,964  | 6,126 | 63.4     | NA       |
| 6B         | 236.14    | 236.6   | 0.46   | 0.56    | 12.02   | 44.35      | 5,459    | 9,809     | 12,512  | 6,219 | 64.28    | NA_      |
|            |           | Total   | 16.24  |         |         |            |          |           |         |       |          |          |
|            | Weighted  |         |        | 1.81    | 10.12   | 48.63      | 5,210    | 10,375    | 12,535  | 5,647 | 59.82    | 1.33     |
|            |           |         |        |         | Coa     | l-bench ar | nalyses  |           |         |       |          |          |

|                    |             |           |          |         |          |           | ~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |            |         |            |           |
|--------------------|-------------|-----------|----------|---------|----------|-----------|-----------------------------------------|-----------|------------|---------|------------|-----------|
| (Value             | es are weig | hted aver | ages for | samples | from eac | ch bench; | in paren                                | theses a  | re numbers | of samp | oles in ea | ch bench] |
|                    | Composite   | interval  | Coal     | As rece | ived va  | lues-%    | Heati                                   | ng value: | s - Btu    |         | Volatile   | Apparent  |
| Bench              |             |           | thick-   | Total   |          |           | As                                      |           |            | MMM     | matter     | specific  |
| number             | Top         | Bottom    | ness     | sul fur | Ash      | Moisture  | received                                | Dry       | DAF        | free    | (DAF-%)    | gravity   |
| 1 (1)              | 186.98      | 187.4     | 0.42     | 4.13    | 18.28    | 46.34     | 4,028                                   | 7,507     | 11,385     | 4,631   | 58.43      | 1.62      |
| 2 (2)              | 189.09      | 189.83    | 0.74     | 2.66    | 17.43    | 48.55     | 3,862                                   | 7,505     | 11,350     | 4,512   | 61.32      | 1.46      |
| 3 (5) <sup>1</sup> | 190.93      | 195.68    | 4.08     | 2.62    | 13.55    | 45.64     | 5,037                                   | 9,265     | 12,340     | 5,651   | 56.38      | 1.51      |
| 4 (3)              | 202.99      | 205.51    | 2.52     | 1.9     | 6.17     | 52.94     | 5,169                                   | 10,985    | 12,643     | 5,376   | 56.38      | 1.2       |
| 5 (8)              | 223.27      | 230.5     | 7.23     | 1.31    | 8.23     | 48.99     | 5,520                                   | 10,821    | 12,904     | 5,939   | 59.5       | 1.24      |
| 6 (2)              | 235.35      | 236.6     | 1.25     | 0.6     | 5.95     | 48.58     | 5,827                                   | 11,331    | 12,814     | 6,173   | 58.66      | NA_       |
|                    |             | Total     | 16.24    |         |          | -         |                                         |           |            |         |            |           |
|                    | Weighted    | averages  |          | 1.81    | 10.12    | 48.63     | 5.210                                   | 10.375    | 12.535     | 5.647   | 59.82      | 1.33      |

<sup>1</sup>This bench contains core loss in coal.

195,68

4.82

2.63

189.09

A(2,3)

Coal-bed analyses [Values are weighted averages of samples from each bed; in parentheses are coal-bench numbers included in beds] Composite interval Coal As received values-% Heating values - Btu Volatile Apparent Bed thick-Total As MMM matter specific (DAF-%) Number Top sul fur gravity **Bottom** ness Ash Moisture received free

46.08

4,797

9,088

12,094

5,431

59.54

1.5

Table 2-6. Selected coal-analyses values from drill hole TP-8, Thar Desert, Sindh Province, Pakistan

[Analyses of 18 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

Coal-sample analyses

|        | Sampled  | interval        | Coal   | As rec  | eived va | lues-%     | Heatin   | g values | - Btu  |       | Volatile | Apparent |
|--------|----------|-----------------|--------|---------|----------|------------|----------|----------|--------|-------|----------|----------|
| Sample |          |                 | thick- | Total   |          |            | As       |          |        | MMM   | matter   | specific |
| number | Top      | Bottom          | ness   | sul fur | Ash      | Moisture   | received | Dry      | DAF    | free  | (DAF-%)  | gravity  |
| 1A     | 159.03   | 160.03          | 1      | 2.07    | 6.05     | 50.1       | 5,583    | 11,187   | 12,730 | 5,792 | 59.61    | 1.22     |
| 1B     | 160.03   | 160.63          | 0.6    | 1.28    | 3.74     | 53.57      | 4,742    | 10,214   | 11,108 | 4,840 | 56.5     | 1.22     |
| 1C     | 160.63   | 161.63          | 1      | 0.38    | 4.53     | 48.2       | 5,643    | 10,893   | 11,937 | 5,901 | 54.19    | 1.26     |
| 1D     | 161.63   | 162.63          | 1      | 2.31    | 5.78     | 51.06      | 5,561    | 11,363   | 12,885 | 5,731 | 60.7     | 1.28     |
| 1E     | 162.63   | 163.63          | 1      | 3.18    | 6.34     | 48.19      | 6,144    | 11,860   | 13,513 | 6,306 | 66.15    | 1.24     |
| 1F     | 163.63   | 164.63          | 1      | 0.69    | 6.2      | 48.88      | 5,749    | 11,247   | 12,801 | 6,101 | 62.76    | 1.32     |
| 1G     | 164.63   | 165.68          | 1.05   | 1.22    | 14.65    | 46.27      | 4,472    | 8,323    | 11,441 | 5,199 | 57.17    | 1.36     |
| 2A     | 178.28   | 179.28          | 1      | 0.96    | 6.05     | 48.65      | 5,854    | 11,399   | 12,922 | 6,177 | 62.93    | 1.22     |
| 2B     | 179.28   | 180.28          | 1      | 0.67    | 3.25     | 51.63      | 5,774    | 11,938   | 12,798 | 5,926 | 61.6     | 1.23     |
| 2C     | 180.28   | 181.35          | 1.07   | 0.53    | 3.26     | 54.43      | 4,926    | 10,809   | 11,641 | 5,063 | 55.75    | 1.22     |
| 2D     | 181.35   | 182.35          | 1      | 1.45    | 10.11    | 49.8       | 4,030    | 8,028    | 10,053 | 4,403 | 78.69    | 1.27     |
| 2E     | 182.35   | 183.13          | 0.78   | 0.44    | 5.54     | 48.86      | 5,325    | 10,412   | 11,677 | 5,626 | 54.79    | 1.26     |
| 3      | 196.98   | 197.95          | 0.97   | 0.42    | 8.93     | 47.02      | 5,527    | 10,434   | 12,551 | 6,079 | 54.27    | 1.3      |
| 4A     | 198.91   | 199.95          | 1.04   | 1.12    | 5 - 28   | 48.35      | 6,032    | 11,679   | 13,008 | 6,296 | 62.21    | 1.24     |
| 4B     | 199.95   | 200.95          | 1      | 1.29    | 3.98     | 51.68      | 5,606    | 11,600   | 12,642 | 5,748 | 57.91    | 1.61     |
| 4C     | 200.95   | 201.8           | 0.85   | 0.99    | 5.12     | 51.49      | 5,406    | 11,143   | 12,459 | 5,637 | 57.68    | 1.26     |
| 5      | 208.7    | 209.38          | 0.68   | 0.88    | 17.92    | 45.55      | 4,292    | 7,883    | 11,750 | 5,236 | 59.05    | 1.45     |
| 6      | 222.72   | 223.57          | 0.85   | 1.6     | 23.41    | 45.22      | 3,598    | 6,569    | 11,472 | 4,654 | 55.9     | 1.37     |
|        |          | Total           | 16.89  |         |          |            |          |          |        |       |          |          |
|        | Weighted | averages        |        | 1.2     | 7.6      | 49.4       | 5,276    | 10,465   | 12,230 | 5,625 | 60.09    | 1.29     |
|        |          |                 |        |         |          | -bench and |          |          |        |       |          |          |
| [Value |          | ghted aver      |        |         |          |            |          |          |        |       |          | h bench] |
|        | Sampled  | <u>interval</u> | Coal   |         | eived va | lues-%     |          | g values | - Btu  |       | Volatile | Apparent |
| Bench  |          |                 | thick- | Total   |          |            | As       |          |        | MMM   | matter   | specific |
| number | Top      | Bottom          | ness   | sulfur  | Ash      | Moisture   | received | Dry      | DAF    | free  | (DAF-%)  | gravity  |
| 1 (7)  | 159.03   | 165.68          | 6.65   | 1.6     | 7        | 49.19      | 5,447    | 10,739   | 12,413 | 5,743 | 59.75    | 1.28     |
| 2 (5)  | 178.28   | 183.13          | 4.85   | 0.82    | 5.61     | 50.81      | 5,172    | 10,526   | 11,822 | 5,425 | 63.01    | 1.24     |
| 3 (1)  | 196.98   | 197.95          | 0.97   | 0.42    | 8.93     | 47.02      | 5,527    | 10,434   | 12,551 | 6,079 | 54.27    | 1.3      |
| 4 (3)  | 198.91   | 201.8           | 2.89   | 1.14    | 4.78     | 50.43      | 5,700    | 11,494   | 12,720 | 5,912 | 59.39    | 1.37     |
| 5 (1)  | 208.7    | 209.38          | 0.68   | 0.88    | 17.92    | 45.55      | 4,292    | 7,883    | 11,750 | 5,236 | 59.05    | 1.45     |
| 6 (1)  | 222.72   | 223.57          | 0.85   | 1.6     | 23.41    | 45.22      | 3,598    | 6,569    | 11,472 | 4,654 | 55.9     | 1.37     |

|         |             |           |         |         | Coal     | -bed analy | yses      |          |           |         |          |          |   |
|---------|-------------|-----------|---------|---------|----------|------------|-----------|----------|-----------|---------|----------|----------|---|
| [Value  | s are weigh | ited aver | ages of | samples | from eac | h bed; in  | parenthes | es are c | oal-bench | numbers | included | in beds] | _ |
|         | Sampled in  | nterval   | Coal    | As rec  | eived va | lues-%     | Heatin    | g values | s - Btu   |         | Volatile | Apparent |   |
| Bed     | \           |           | thick-  | Total   |          |            | As        |          |           | MMM     | matter   | specific |   |
| number  | Top         | Bottom    | ness    | sulfur  | Ash      | Moisture   | received  | Dry      | DAF       | free    | (DAF-%)  | gravity  |   |
| A (3 () | 104 08      | 201.8     | 7 94    | 0.04    | 5 97     | 40.57      | 5 457     | 11 228   | 12 677    | 5 05/   | 58 1     | 1 36     |   |

49.4

5,276

10,465

12,230

5,625

60.09

1.29

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

7.6

16.89

Total

Weighted averages

Table 2-7. Selected coal-analyses values from drill hole TP-9, Thar Desert, Sindh Province, Pakistan

[Analyses of 37 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

| are SHOW        | n on figur | e 21               |        |         | Coal     | -sample and | alvses   |          |        |                |          | <del></del>  |
|-----------------|------------|--------------------|--------|---------|----------|-------------|----------|----------|--------|----------------|----------|--------------|
|                 | Sampled    | interval           | Coal   | As rec  | ceived v |             |          | g values | - Btu  |                | Volatile | Apparent     |
| Sample          |            |                    | thick- | Total   |          |             | As       |          |        | MMM            | matter   | specific     |
| number          | Top        | Bottom             | ness   | sul fur | Ash      | Moisture    | received | Dry      | DAF    | free           | (DAF-%)  | gravity      |
| 1A              | 148.44     | 149.04             | 0.6    | 0.97    | 6.65     | 51.33       | 5,013    | 10,302   | 11,931 | 5,318          | 53.51    | 1.42         |
| 1B              | 149.04     | 149.69             | 0.65   | 1.33    | 10.08    | 45.44       | 5,776    | 10,587   | 12,987 | 6,355          | 63.32    | 1.39         |
| 1C              | 149.69     | 150.24             | 0.55   | 1.08    | 3.53     | 52.48       | 5,835    | 12,277   | 13,262 | 5,973          | 65.8     | 1.27         |
| 1D              | 150.24     | 150.64             | 0.4    | 1.9     | 8.56     | 44.78       | 6,178    | 11,188   | 13,240 | 6,627          | 65.12    | 1.37         |
| 2A              | 152.6      | 153.12             | 0.52   | 5       | 20.08    | 41.74       | 4,561    | 7,829    | 11,944 | 5,318          | 61.16    | 1.57         |
| 2B              | 153.12     | 153.74             | 0.62   | 0.39    | 6.41     | 50.68       | 5,414    | 10,977   | 12,617 | 5,783          | 60.72    | 1.36         |
| 3A              | 158.97     | 160.02             | 1.05   | 1.04    | 5.04     | 52.6        | 5,342    | 11,270   | 12,610 | 5,560          | 59.35    | 1.34         |
| 3B              | 161.07     | 161.57             | 0.5    | 0.33    | 7.72     | 49.28       | 5,253    | 10,355   | 12,215 | 5,701          | 57.02    | 1.39         |
| 4               | 163.1      | 163.82             | 0.72   | 0.3     | 6.55     | 51.86       | 4,809    | 9,991    | 11,563 | 5,150          | 51.46    | 1.41         |
| 5A              | 167.36     | 168.26             | 0.9    | 0.21    | 30.22    | 38.92       | 3,336    | 5,461    | 10,808 | 4,928          | 63.94    | 1.84         |
| 5B              | 168.26     | 169.16             | 0.9    | 0.74    | 17.16    | 44.52       | 4,303    | 7,757    | 11,232 | 5,211          | 59.43    | 1.63         |
| 5C              | 169.16     | 170.06             | 0.9    | 0.32    | 16.91    | 31.08       | 6,186    | 8,975    | 11,893 | 7,532          | 61.55    | 1.24         |
| 6               | 170.86     | 171.51             | 0.65   | 0.55    | 14.16    | 38.58       | 5,347    | 8,705    | 11,314 | 6,257          | 56.24    | 1.45         |
| 7A <sup>1</sup> | 171.81     | 172.21             | 0.4    | 3.31    | 22.89    | 23.5        | 6,259    | 8,182    | 11,675 | 7,902          | 59.85    | 1.33         |
| 7B              | 172.21     | 172.91             | 0.7    | 0.39    | 7.33     | 35.99       | 6,648    | 10,386   | 11,729 | 7,181          | 53.37    | 1.21         |
| 7C              | 172.91     | 173.56             | 0.65   | 1.08    | 12.79    | 35.14       | 6,191    | 9,546    | 11,890 | 7,071          | 56.79    | 1.19         |
| 8               | 182.69     | 183.47             | 0.78   | 0.69    | 16.46    | 35.23       | 5,520    | 8,523    | 11,425 | 6,640          | 56.3     | 1.54         |
| 9A              | 184.74     | 185.44             | 0.7    | 0.58    | 6.13     | 51.08       | 5,505    | 11,254   | 12,866 | 5,844          | 58.84    | 1.17         |
| 9B              | 185.44     | 186.14             | 0.7    | 0.22    | 3.4      | 51.44       | 5,644    | 11,623   | 12,498 | 5,840          | 57.87    | 1.15         |
| 9C              | 186.14     | 186.84             | 0.7    | 0.96    | 4.7      | 53.24       | 5,155    | 11,024   | 12,257 | 5,350          | 55.66    | 1.2          |
| 9D              | 186.84     | 187.41             | 0.57   | 0.26    | 2.26     | 53.7        | 5,251    | 11,343   | 11,926 | 5,362          | 54.64    | 1.16         |
| 9E              | 187.41     | 187.98             | 0.57   | 0.2     | 2.22     | 54.06       | 5,210    | 11,340   | 11,915 | 5,321          | 53.2     | 1.19         |
| 9F              | 187.98     | 188.68             | 0.7    | 0.36    | 2.13     | 54.5        | 5,216    | 11,465   | 12,028 | 5,310          | 53.64    | 1.12         |
| 10              | 195.13     | 195.83             | 0.7    | 3.29    | 23.19    | 43.16       | 3,666    | 6,450    | 10,894 | 4,561          | 57.94    | 1.41         |
| 11A             | 201.5      | 202.4              | 0.9    | 1.2     | 4.14     | 51.75       | 5,470    | 11,337   | 12,400 | 5,624          | 54.65    | 1.15         |
| 11B             | 202.4      | 203.3              | 0.9    | 0.34    | 2.34     | 49.78       | 5,791    | 11,531   | 12,094 | 5,912          | 54.04    | 1.15         |
| 11C             | 203.3      | 204.2              | 0.9    | 1       | 3.86     | 55.76       | 5,002    | 11,308   | 12,389 | 5,138          | 51.93    | 1.22         |
| 11D             | 204.2      | 205.1              | 0.9    | 0.79    | 3.72     | 54.51       | 4,904    | 10,781   | 11,740 | 5,046          | 50.64    | 1.14         |
| 12              | 207.65     | 208.05             | 0.4    | 2.62    | 16.88    | 47.34       | 4,194    | 7,964    | 11,722 | 4,883          | 56.12    | 1.32         |
| 13              | 208.6      | 209.05             | 0.45   | 1.44    | 11.24    | 46.12       | 5,189    | 9,630    | 12,167 | 5,771          | 57.62    | 1.27         |
| 14A             | 211.8      | 212.44             | 0.64   | 0.37    | 2.73     | 49.53       | 5,888    | 11,666   | 12,332 | 6,035          | 56.02    | 1.14         |
| 14B             | 212.44     | 213.44             | 1      | 0.86    | 3.49     | 52.26       | 5,190    | 10,871   | 11,727 | 5,323          | 53.44    | 1.17         |
| 14C             | 213.44     | 214.44             | 1      | 1.05    | 7.95     | 49.43       | 5,079    | 10,044   | 11,916 | 5,464          | 55.4     | 1.21         |
| 14D             | 214.44     | 215.49             | 1.05   | 0.55    | 14.54    | 46.47       | 4,470    | 8,349    | 11,462 | 5,251          | 57.61    | 1.26<br>1.35 |
| 14E             | 215.49     | 216.49             | 1      | 0.8     | 26.99    | 39.25       | 3,491    | 5,747    | 10,340 | 4,841          | 63.28    |              |
| 14F             | 216.49     | 217.49             | 1      | 0.52    | 3.07     | 52.08       | 5,294    | 11,048   | 11,804 | 5,433<br>5,722 | 54.13    | 1.19<br>1.19 |
| 15              | 224.09     | 224.64             | 0.55   | 0.51    | 4.65     | 49.07       | 5,477    | 10,754   | 11,835 | 2,122          | 53.44    | 1.19         |
|                 | Weighted   | Total<br>I average | 26.82  | 0.91    | 9.79     | 46.98       | 5,163    | 9,897    | 11,910 | 5,688          | 57       | 1.3          |

<sup>1</sup>Reported air dried moisture loss for this sample of 17.98 appeared to be anomalously low; consequently, this value was changed to 27.98. Coal-bench analyses

|         |          |            |         |           | Loat    | -bench ana  | ıyses      |          |            |         |            |           |
|---------|----------|------------|---------|-----------|---------|-------------|------------|----------|------------|---------|------------|-----------|
| [Values | are weig | hted aver  | ages fo | or sample | s from  | each bench; | ; in paren | theses a | re numbers | of same | oles in ea | ch bench] |
|         | Sampled  | interval   | Coal    | As rec    | eived v | alues-%     | Heatin     | g values | - Btu      |         | Volatile   | Apparent  |
| Sample  |          |            | thick-  | Total     |         |             | As         |          |            | MMM     | matter     | specific  |
| number  | Top      | Bottom     | ness    | sul fur   | Ash     | Moisture    | received   | Dry      | DAF        | free    | (DAF-%)    | gravity   |
| 1 (4)   | 148.44   | 150.64     | 2.2     | 1.27      | 7.23    | 48.69       | 5,656      | 11,041   | 12,814     | 6,026   | 61.59      | 1.36      |
| 2 (2)   | 152.6    | 153.74     | 1.14    | 2.49      | 12.65   | 46.65       | 5,025      | 9,541    | 12,310     | 5,571   | 60.92      | 1.46      |
| 3 (2)¹  | 158.97   | 161.57     | 1.55    | 0.81      | 5.9     | 51.54       | 5,313      | 10,975   | 12,483     | 5,606   | 58.6       | 1.36      |
| 4 (1)   | 163.1    | 163.82     | 0.72    | 0.3       | 6.55    | 51.86       | 4,809      | 9,991    | 11,563     | 5,150   | 51.46      | 1.41      |
| 5 (3)   | 167.36   | 170.06     | 2.7     | 0.42      | 23.81   | 38.17       | 4,608      | 7,397    | 11,311     | 5,891   | 61.64      | 1.57      |
| 6 (1)   | 170.86   | 171.51     | 0.65    | 0.55      | 14.16   | 38.58       | 5,347      | 8,705    | 11,314     | 6,257   | 56.24      | 1.45      |
| 7 (3)   | 171.81   | 173.56     | 1.75    | 1.32      | 12.91   | 32.9        | 6,386      | 9,570    | 11,776     | 7,305   | 56.12      | 1.23      |
| 8 (1)   | 182.69   | 183.47     | 0.78    | 0.69      | 16.46   | 35.23       | 5,520      | 8,523    | 11,425     | 6,640   | 56.3       | 1.54      |
| 9 (6)   | 184.74   | 188.68     | 3.94    | 0.44      | 3.56    | 52.94       | 5,337      | 11,342   | 12,270     | 5,515   | 55.76      | 1.16      |
| 10 (1)  | 195.13   | 195.83     | 0.7     | 3.29      | 23.19   | 43.16       | 3,666      | 6,450    | 10,894     | 4,561   | 57.94      | 1.41      |
| 11 (4)  | 201.5    | 205.1      | 3.6     | 0.83      | 3.51    | 52.9        | 5,292      | 11,239   | 12,156     | 5,430   | 52.82      | 1.17      |
| 12 (1)  | 207.65   | 208.05     | 0.4     | 2.62      | 16.88   | 47.34       | 4,194      | 7,964    | 11,722     | 4,883   | 56.12      | 1.32      |
| 13 (1)  | 208.6    | 209.05     | 0.45    | 1.44      | 11.24   | 46.12       | 5,189      | 9,630    | 12,167     | 5,771   | 57.62      | 1.27      |
| 14 (6)  | 211.8    | 217.49     | 5.69    | 0.71      | 10.28   | 48.12       | 4,836      | 9,480    | 11,549     | 5,349   | 56.69      | 1.23      |
| 15 (1)  | 224.09   | 224.64     | 0.55    | 0.51      | 4.65    | 49.07       | 5,477      | 10,754   | 11,835     | 5,722   | 53.44      | 1.19      |
|         |          | Total      | 26.82   |           |         | <u> </u>    |            |          |            |         |            |           |
|         | Weighted | l averages | 3       | 0.91      | 9.78    | 46.99       | 5,162      | 9,897    | 11,910     | 5,687   | 57         | 1.3       |

Interval includes core loss in coal; only thickness of analyzed coal samples is shown.

Table 2-7. Selected coal-analyses values from drill hole TP-9, Thar Desert, Sindh Province, Pakistan (Continued)

|               |          |            |          |          | Coal     | l-bed analy  | ses        |          |            |         |                 |          |
|---------------|----------|------------|----------|----------|----------|--------------|------------|----------|------------|---------|-----------------|----------|
| [Values       | are weig | hted ave   | rages of | samples  | s from e | each bed; in | n parenthe | ses are  | coal-bench | numbers | <u>included</u> | in beds] |
|               | Sampled  | interval   | Coal     | _ As red | ceived y | /alues-%     | Heatin     | g values | - Btu      |         | Volatile        | Apparent |
| Sample        |          |            | thick-   | Total    |          |              | As         |          |            | MMM     | matter          | specific |
| number        | Top      | Bottom     | ness     | sul fur  | Ash      | Moisture     | received   | Dry      | DAF        | free    | (DAF-%)         | gravity  |
| A (1,2)       | 148.44   | 153.74     | 3.34     | 1.69     | 9.08     | 47.97        | 5,441      | 10,529   | 12,642     | 5,871   | 61.36           | 1.4      |
| B (3,4)       | 158.97   | 163.82     | 2.27     | 0.65     | 6.11     | 51.63        | 5,153      | 10,663   | 12,191     | 5,461   | 56.33           | 1.37     |
| $C(5-7)^2$    | 167.36   | 173.56     | 5.1      | 0.75     | 17.58    | 36.4         | 5,312      | 8,310    | 11,471     | 6,421   | 59.06           | 1.44     |
| D (8,9)       | 182.69   | 188.68     | 4.72     | 0.49     | 5.69     | 50.02        | 5,367      | 10,876   | 12,131     | 5,701   | 55.85           | 1.23     |
| $E (11-14)^3$ | 201.5    | 217,49     | 10.14    | 0.86     | 8.18     | 49.69        | 4,988      | 10,051   | 11,799     | 5,378   | 55.34           | 1.21     |
|               |          | Total      | 25.57    |          |          |              |            |          |            |         |                 |          |
|               | Weighted | l average: | S        | 0.86     | 9.53     | 47.05        | 5,197      | 9,973    | 11,940     | 5,717   | 57.05           | 1.3      |

<sup>&</sup>lt;sup>1</sup>Interval includes core loss in coal.

<sup>&</sup>lt;sup>2</sup>MMM-free Btu (and other values) for this bed are probably too high because of low (incorrect) moisture value for sample 7A.

This coal bed contains 2 thin unanalyzed coal benches.

Table 2-8. Selected coal-analyses values from drill hole TP-10, Thar Desert, Sindh Province, Pakistan

[Analyses of 33 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |          |        |         |                 | -sample a |          |                 |        |       |          |          |
|--------|----------|----------|--------|---------|-----------------|-----------|----------|-----------------|--------|-------|----------|----------|
|        | Sampled  | interval | Coal   |         | <u>eived va</u> | lues-%    |          | yalues ·        | - Btu  |       | Volatile | Apparent |
| Sample |          |          | thick- | Total   |                 |           | As       |                 |        | MMM   | matter   | specific |
| number | Тор      | Bottom   | ness   | sul fur | Ash             |           | received | Dry             | DAF    | free  | (DAF-%)  | gravity  |
| 1A     | 189.02   | 189.62   | 0.6    | 0.71    | 22.86           | 38.66     | 4,683    | 7,635           | 12,170 | 6,140 | 66.69    | 1.97     |
| 18     | 189.62   | 190.22   | 0.6    | 0.32    | 30              | 38.57     |          | 5,118           | 10,002 | 4,615 | 64.88    | 1.57     |
| 2A     | 194.92   | 195.62   | 0.7    | 3.48    | 4.55            | 47.24     | 4,798    | 9,092           | 9,951  | 4,767 | 57.79    | 1.4      |
| 28     | 195.62   | 196.24   | 0.62   | 2.13    | 12.18           | 49.15     | 4,336    | 8,527           | 11,212 | 4,805 | 56.67    | 1.43     |
| 3      | 197.97   | 198.77   | 0.8    | 4.95    | 20.61           | 43        | 4,049    | 7,103           | 11,126 | 4,724 | 58.24    | 1.52     |
| 4A     | 201.02   | 201.82   | 0.8    | 2.92    | 7.71            | 47.28     | 5,661    | 10 <i>,7</i> 39 | 12,579 | 5,912 | 61.3     | 1.4      |
| 48     | 201.82   | 202.57   | 0.75   | 2.77    | 8.51            | 49.21     | 5,153    | 10,147          | 12,189 | 5,431 | 57.04    | 1.38     |
| 5A     | 203.4    | 204.2    | 0.8    | 1.17    | 6.85            | 45.13     | 6,272    | 11,430          | 13,060 | 6,664 | 65.94    | 1.27     |
| 58     | 204.2    | 205      | 0.8    | 1.18    | 5.02            | 49.04     | 6,024    | 11,821          | 13,112 | 6,264 | 57.97    | 1.46     |
| 6A     | 215.49   | 216.32   | 0.83   | 1.62    | 7.38            | 46.03     | 5,852    | 10,843          | 12,560 | 6,211 | 66.77    | 1.36     |
| 68     | 216.32   | 217.02   | 0.7    | 0.4     | 5.33            | 48.72     | 5,390    | 10,512          | 11,731 | 5,685 | 59.32    | 1.32     |
| 7A     | 219.39   | 219.71   | 0.32   | 0.4     | 7.97            | 47.64     | 5,296    | 10,114          | 11,930 | 5,759 | 58.57    | 1.37     |
| 7B     | 219.81   | 220.81   | 1      | 2.36    | 27.06           | 38.66     | 3,742    | 6,100           | 10,915 | 5,029 | 64.84    | 1.87     |
| 7C     | 221.26   | 221.59   | 0.33   | 1       | 8.02            | 45.53     | 5,816    | 10,678          | 12,521 | 6,275 | 63.83    | 1.46     |
| 8A     | 221.59   | 222.45   | 0.86   | 0.96    | 7.11            | 48.94     | 5,663    | 11,090          | 12,883 | 6,047 | 61.93    | 1.32     |
| 8B     | 222.45   | 223.25   | 0.8    | 0.45    | 3.99            | 49.9      | 5,585    | 11,148          | 12,112 | 5,797 | 58.67    | 1.32     |
| 9A     | 225.25   | 225.96   | 0.71   | 4.04    | 9.79            | 43.37     | 6,062    | 10,704          | 12,942 | 6,394 | 62.93    | 1.67     |
| 9B     | 225.96   | 226.67   | 0.71   | 0.81    | 4.78            | 47.49     | 6,112    | 11,640          | 12,806 | 6,372 | 61.71    | 1.27     |
| 9C     | 226.67   | 227.38   | 0.71   | 1.81    | 5.73            | 47.98     | 5,909    | 11,359          | 12,766 | 6,138 | 61.92    | 1.3      |
| 10A    | 227.68   | 228.68   | 1      | 0.53    | 3.63            | 50.63     | 5,661    | 11,467          | 12,377 | 5,847 | 60.66    | 1.28     |
| 10B    | 228.68   | 229.68   | 1      | 1.02    | 5.13            | 49.76     | 5,641    | 11,228          | 12,505 | 5,882 | 59.05    | 1.31     |
| 10C    | 229.68   | 230.73   | 1.05   | 1.5     | 6.72            | 48.63     | 5,656    | 11,009          | 12,667 | 5,965 | 62.17    | 1.33     |
| 11A    | 230.73   | 231.73   | 1      | 0.81    | 4.01            | 49.11     | 5,831    | 11,458          | 12,437 | 6,025 | 59.3     | 1.34     |
| 11B    | 231.73   | 232.73   | 1      | 1.04    | 4.67            | 47.71     | 6,187    | 11,832          | 12,993 | 6,422 | 63.99    | 1.23     |
| 11C    | 232.73   | 233.78   | 1.05   | 1.21    | 14.48           | 45.88     | 5,523    | 10,206          | 13,936 | 6,424 | 62.78    | 1.32     |
| 12     | 233.78   | 234.48   | 0.7    | 0.44    | 3.11            | 51.65     | 5,446    | 11,262          | 12,036 | 5,599 | 55.44    | 1.32     |
| 13A    | 236.83   | 237.83   | 1      | 0.29    | 2.77            | 49.05     | 6,178    | 12,124          | 12,821 | 6,343 | 64.07    | 1.23     |
| 13B    | 237.83   | 238.83   | 1      | 1.28    | 4.86            | 48.73     | 6,043    | 11,787          | 13,021 | 6,264 | 62.74    | 1.24     |
| 13C    | 238.83   | 239.43   | 0.6    | 0.28    | 2.94            | 51.03     | 5,647    | 11,533          | 12,269 | 5,809 | 57.9     | 1.29     |
| 14     | 241.38   | 241.83   | 0.45   | 0.27    | 10.33           | 45.39     | 5,567    | 10,194          | 12,572 | 6,240 | 62.49    | 1.36     |
| 15A    | 243.02   | 243.72   | 0.7    | 0.22    | 2.81            | 50.84     | 5,842    | 11,882          | 12,602 | 6,006 | 60.58    | 1.25     |
| 158    | 243.72   | 244.42   | 0.7    | 0.25    | 8.72            | 47.84     | 5,245    | 10,055          | 12,073 | 5,767 | 59.07    | 1.38     |
| 16     | 249.46   | 249.86   | 0.4    | 3.22    | 17.5            | 44.56     | 4,243    | 7,654           | 11,186 | 4,926 | 56.75    | 1.14     |
|        |          | Total    | 25.09  |         |                 |           |          |                 |        |       |          |          |
|        | Weighted | averages |        | 1.4     | 8.68            | 47.21     | 5,453    | 10,417          | 12,322 | 5,869 | 61.2     | 1.38     |

Coal-bench analyses [Values are weighted averages for samples from each bench; in parentheses are numbers of samples in each bench] Volatile Apparent Sampled interval Coal As received values-% Heating values - Btu Bench thick-Total MMM matter specific As (DAF-%) Top Bottom ness <u>sul fur</u> <u>Ash</u> Moisture received Dry DAF free

number gravity 6,377 5,377 189.02 0.51 26.43 3,914 65.79 1.77 1 (2) 190.22 1.2 38.62 11,086 4,785 57.26 2 (2) 194.92 196.24 1.32 2.85 8.13 48.13 4,581 8,827 10,543 1.41 20.61 3 (1) 197.97 198.77 0.8 4.95 43 4,049 7,103 11,126 4,724 58.24 1.52 48.22 12,390 59.24 1.39 (2) 201.02 202.57 1.55 2.85 8.1 5,415 10,452 5,679 6,464 203.4 205 5.93 47.08 13,086 61.96 1.37 5 (2) 1.6 1.17 6,148 11,625 12,180 5,970 215.49 217.02 47.26 5,641 10,692 63.36 6 (2) 1.53 1.06 6.44 1.34 14,291 219.39 5,573 9,743 6,774 79.28 2.11 7 (2) 220.81 1.32 1.88 24.44 52.22 4,944 8 (3) 221.26 223.25 1.99 0.76 4.67 41.21 4,692 9,274 10,437 50.35 1.1 9 (10)<sup>2</sup> 225.25 12,768 234.48 8.93 48.28 5,790 11,206 6,106 61.08 1.33 1.26 6.3 10 (3) 236.83 239.43 2.6 0.67 3.61 49.38 6,003 11,858 12,770 6,189 62.13 1.25 12,572 12,338 11,186 10,194 6,240 62.49 1.36 241.38 241.83 0.45 0.27 10.33 45.39 5,567 11 (1) 5,543 4,243 12 (2) 243.02 244.42 1.4 0.23 5.76 49.34 10,969 5,887 59.82 1.32 249.46 <u>249.</u>86 17.5 4,926 56.75 1.14 0.4 3.22 44.56 7,654 13 (1) 25.09 Total

47.21

1.4

8.68

Weighted averages

5,453

10,417

12,322

5,869

61.2

1.38

<sup>&</sup>lt;sup>1</sup>Contains .01-meter-thick unanalyzed carbonaceous mudstone parting.

<sup>&</sup>lt;sup>2</sup>Contains core loss in coal.

Table 2-8. Selected coal-analyses values from drill hole TP-10, Thar Desert, Sindh Province, Pakistan (Continued)

|         |                  |           |          |         |          | -bed analy |             |           |                  |         |          |          |
|---------|------------------|-----------|----------|---------|----------|------------|-------------|-----------|------------------|---------|----------|----------|
| _[Value | <u>s are wei</u> | ghted ave | rages of | samples | from eac | ch bed; ir | n parenthes | ses are c | <u>oal-bench</u> | numbers | included | in beds] |
|         | Sampled          | interval  | Coal     | As rece | eived va | lues-%     | Heating     | g values  | - Btu            |         | Volatile | Apparent |
| Bed     |                  |           | thick-   | Total   |          |            | As          |           |                  | MMM     | matter   | specific |
| number  | Top              | Bottom    | ness     | sulfur  | Ash      | Moisture   | received    | Dry       | DAF              | free    | (DAF-%)  | gravity  |
| A (4,5) | 201.02           | 205       | 3.15     | 2       | 7        | 47.64      | 5,787       | 11,048    | 12,744           | 6,078   | 60.62    | 1.38     |
| B (6-12 | )215.49          | 244.42    | 18.22    | 1.05    | 7.13     | 47.88      | 5,648       | 10,896    | 12,537           | 6,014   | 61.51    | 1.35     |
|         |                  | Total     | 21.37    |         |          |            |             |           |                  |         |          |          |
|         | Weighted         |           | 1.19     | 7.11    | 47.84    | 5,669      | 10,918      | 12,567    | 6,024            | 61.38   | 1.35     |          |
|         | •                | •         |          |         |          |            | •           | -         | -                | -       |          |          |

<sup>1</sup>This bed contains 2 lost coal core intervals and 2 thin unanalyzed coal benches.

Table 2-9. Selected coal-analyses values from drill hole TP-11, Thar Desert, Sindh Province, Pakistan

[Analyses of 5 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |          |        |           | Coal    | -sample an | alyses   |          |        |       |          |          |
|--------|----------|----------|--------|-----------|---------|------------|----------|----------|--------|-------|----------|----------|
|        | Sampled  | interval | Coal   | _ As rece | ived va | lues-%     | Heating  | values - | Btu    |       | Volatile | Apparent |
| Sample |          |          | thick- | Total     |         |            | As       |          |        | MMM   | matter   | specific |
| number | Top      | Bottom   | ness   | sul fur   | Ash     | Moisture   | received | Dry      | DAF    | free  | (DAF-%)  | gravity  |
| 1      | 233.18   | 233.78   | 0.6    | 1.14      | 6.3     | 50.54      | 5,496    | 11,112   | 12,734 | 5,797 | 62.78    | 1.3      |
| 2      | 236.31   | 236.83   | 0.52   | 0.58      | 5.65    | 54.43      | 4,763    | 10,453   | 11,933 | 5,025 | 57.81    | 1.1      |
| 3      | 236.83   | 238.09   | 1.26   | 0.6       | 5.47    | 48.61      | 5,765    | 11,217   | 12,554 | 6,073 | 61.97    | 1.32     |
| 4      | 238.34   | 239.23   | 0.89   | 0.44      | 8.39    | 49.84      | 5,152    | 10,271   | 12,333 | 5,626 | 62.65    | 1.41     |
| 5      | 241.63   | 242.93   | 1.3    | 0.42      | 3.27    | 51.52      | 5,488    | 11,318   | 12,137 | 5,654 | 56.28    | 1.23     |
|        |          | Total    | 4.57   |           |         |            |          |          |        |       |          |          |
|        | Weighted | averages |        | 0.57      | 5.53    | 50.59      | 5,416    | 10,958   | 12,339 | 5,710 | 60.07    | 1.28     |
|        |          |          |        |           | Coal    | -bench ana | lyses    |          |        |       |          |          |

|        |            |           |          |           | Luai    | Dencin and | LYSES      |           |           |          |           |          |
|--------|------------|-----------|----------|-----------|---------|------------|------------|-----------|-----------|----------|-----------|----------|
| [Value | es are wei | ghted ave | rages fo | r samples | from e  | ach bench; | in parentl | neses are | numbers o | f sample | s in each | bench]   |
|        | Sampled    | interval  | Coal     | As rece   | ived va | lues-%     | Heating    | values -  | Btu       |          | Volatile  | Apparent |
| Bench  |            |           | thick-   | Total     |         |            | As         |           |           | MMM      | matter    | specific |
| number | Тор        | Bottom    | ness     | sulfur    | Ash     | Moisture   | received   | Dry       | DAF       | free     | (DAF-%)   | gravity  |
| 1 (1)  | 233.18     | 233.78    | 0.6      | 1.14      | 6.3     | 50.54      | 5,496      | 11,112    | 12,734    | 5,797    | 62.78     | 1.3      |
| 2 (2)  | 236.31     | 238.09    | 1.78     | 0.59      | 5.53    | 50.31      | 5,472      | 10,994    | 12,373    | 5,767    | 60.76     | 1.26     |
| 3 (1)  | 238.34     | 239.23    | 0.89     | 0.44      | 8.39    | 49.84      | 5,152      | 10,271    | 12,333    | 5,626    | 62.65     | 1.41     |
| 4 (1)  | 241.63     | 242.93    | 1.3      | 0.42      | 3.27    | 51.52      | 5,488      | 11,318    | 12,137    | 5,654    | 56.28     | 1.23     |
|        |            | Total     | 4.57     |           |         |            |            |           |           |          |           | 1.28     |
|        | Weighted   | averages  |          | 0.57      | 5.53    | 50.59      | 5,416      | 10,958    | 12,339    | 5,710    | 60.07     |          |
|        |            |           |          |           | Coal    | -bed analy | ses        |           |           |          |           |          |

| [Value | s are wei | ghted ave | rages of | samples | from eac | h bed: i | parenthes | es are o | coal-bench | numbers | included i | n beds1  |
|--------|-----------|-----------|----------|---------|----------|----------|-----------|----------|------------|---------|------------|----------|
|        | Sampled   |           |          |         |          | lues-%   | Heating   |          |            |         | Volatile   |          |
| Bed    |           |           | thick-   | Total   |          |          | As        |          |            | MMM     | matter     | specific |
| number | Top       | Bottom    | ness     | sul fur | Ash      | Moisture | received  | Dry      | DAF        | free    | (DAF-%)    | gravity  |
| A(2,3) | 236.31    | 239.23    | 2.67     | 0.54    | 6.48     | 50.15    | 5,365     | 10,753   | 3 12,359   | 5,720   | 61.39      | 1.31     |

Table 2-10. Selected coal-analyses values from drill hole TP-12, Thar Desert, Sindh Province, Pakistan

[Analyses of 32 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |                 | <del></del> |         |                | l-sample a |       |          | <del></del> |       |               |          |
|--------|----------|-----------------|-------------|---------|----------------|------------|-------|----------|-------------|-------|---------------|----------|
|        | Sampled  | <u>interval</u> | Coal        | As rece | <u>ived va</u> | lues-%     |       | values - | Btu         |       | Volatile      | Apparent |
| Sample |          |                 | thick-      | Total   |                |            | As    |          |             | MMM   | matter        | specific |
| number | Тор      | Bottom          | ness        | sul fur | Ash            | Moisture   |       | Dry      | DAF         | free  | (DAF-%)       | gravity  |
| 1      | 214.21   | 214.58          | 0.37        | 2.85    | 12.79          | 44.27      | 5,134 | 9,213    | 11,957      | 5,688 | 57.55         | 1.44     |
| 2A     | 222.62   | 223.52          | 0.9         | 2.23    | 3.15           | 41.15      | 3,717 | 6,316    | 6,673       | 3,686 | 64.23         | 1.87     |
| 2B     | 223.52   | 224.54          | 1.02        | 0.84    | 5.89           | 48.71      | 4,841 | 9,439    | 10,663      | 5,099 | 61.88         | 1.45     |
| 3A     | 225.8    | 226.65          | 0.85        | 3.93    | 10.47          |            | 5,907 | 11,161   | 13,913      | 6,286 | 60.51         | 1.6      |
| 3B     | 226.65   | 227.53          | 0.88        | 1.15    | 5.7            | 47.42      | 3,227 | 6,136    | 6,882       | 3,355 | 61.67         | 1.42     |
| 4A     | 227.53   | 228.33          | 0.8         | 1.19    | 4.94           | 50.43      | 5,630 | 11,358   | 12,616      | 5,844 | 61.1          | 1.42     |
| 4B     | 228.33   | 229.13          | 0.8         | 1.64    | 5.66           | 48.46      | 5,911 | 11,469   | 12,884      | 6,149 | 62.87         | 1.43     |
| 4C     | 229.13   | 229.93          | 0.8         | 2.11    | 6.9            | 46.25      | 6,434 | 11,972   | 13,734      | 6,754 | 66.52         | 1.4      |
| 4D     | 229.93   | 230.58          | 0.65        | 1.17    | 5.92           | 43.54      | 7,135 | 12,638   | 14,118      | 7,508 | <i>7</i> 3.47 | 1.19     |
| 5A     | 230.58   | 231.2           | 0.62        | 0.31    | 9.87           | 44.55      | 5,689 | 10,259   | 12,481      | 6,339 | 63.25         | 1.47     |
| 5B     | 232.59   | 233.49          | 0.9         | 0.36    | 9.54           | 44.46      | 5,903 | 10,628   | 12,833      | 6,547 | 64.82         | 1.42     |
| 6A     | 235.5    | 236.1           | 0.6         | 1.81    | 6.22           | 49.12      | 5,453 | 10,717   | 12,211      | 5,688 | 56.88         | 1.47     |
| 6B     | 236.1    | 236.67          | 0.57        | 3.24    | 7.96           | 48.41      | 5,300 | 10,273   | 12,146      | 5,514 | 54.9          | 1.57     |
| 7A     | 236.67   | 237.47          | 0.8         | 0.69    | 3.49           | 50.57      | 5,764 | 11,660   | 12,547      | 5,931 | 58.36         | 1.36     |
| 7B     | 237.47   | 238.27          | 0.8         | 0.59    | 4.5            | 49.07      | 5,670 | 11,132   | 12,211      | 5,908 | 58.06         | 1.37     |
| 7c     | 238.27   | 239.07          | 0.8         | 0.95    | 5.32           | 50.44      | 5,473 | 11,044   | 12,373      | 5,725 | 58.2          | 1.37     |
| 7D     | 239.07   | 239.72          | 0.65        | 1.42    | 18.74          | 44.08      | 4,283 | 7,660    | 11,519      | 5,229 | 61.14         | 1.96     |
| 8A     | 239.72   | 240.62          | 0.9         | 0.68    | 4.22           | 49.9       | 5,749 | 11,474   | 12,528      | 5,964 | 58.44         | 1.43     |
| 8B     | 240.62   | 241.52          | 0.9         | 1.09    | 5.62           | 50.74      | 5,297 | 10,752   | 12,136      | 5,546 | 56.51         | 1.45     |
| 80     | 241.52   | 242.48          | 0.96        | 0.58    | 3.3            | 50.22      | 5,839 | 11,730   | 12,564      | 6,005 | 61.58         | 1.34     |
| 9A     | 242.77   | 243.57          | 0.8         | 0.76    | 3.76           | 48.62      | 6,072 | 11,817   | 12,749      | 6,262 | 61.97         | 1.36     |
| 9B     | 243.57   | 244.37          | 0.8         | 0.62    | 3.7            | 51.24      | 5,528 | 11,339   | 12,271      | 5,706 | 56.68         | 1.38     |
| 90     | 244.37   | 245.17          | 0.8         | 0.25    | 2.5            | 48.62      | 6,457 | 12,568   | 13,211      | 6,614 | 65.85         | 1.22     |
| 9D     | 245.17   | 245.82          | 0.65        | 1.21    | 5.16           | 49.14      | 5,978 | 11,755   | 13,082      | 6,224 | 62.91         | 1.39     |
| 10A    | 245.82   | 246.72          | 0.9         | 0.45    | 3.23           | 50         | 5,984 | 11,969   | 12,795      | 6,161 | 60.11         | 1.41     |
| 10B    | 246.72   | 247.62          | 0.9         | 0.4     | 2.66           | 49.36      | 6,241 | 12,324   | 13,008      | 6,391 | 63.19         | 1.31     |
| 10C    | 247.62   | 248.46          | 0.84        | 0.75    | 4.32           | 49.31      | 5,933 | 11,704   | 12,793      | 6,156 | 60.94         | 1.33     |
| 11     | 250.15   | 250.95          | 0.8         | 0.34    | 5.41           | 51.11      | 5,291 | 10,823   | 12,169      | 5,591 | 56.54         | 1.28     |
| 12     | 253.31   | 254.33          | 1.02        | 1.18    | 14.99          | 49.11      | 4,282 | 8,413    | 11,925      | 5,000 | 53.34         | 1.54     |
| 13A    | 256.11   | 257.2           | 1.09        | 1.75    | 10.36          | 50.37      | 4,682 | 9,434    | 11,922      | 5,118 | 55.61         | 1.54     |
| 13B    | 257.69   | 258.01          | 0.32        | 1.82    | 7.83           | 49.58      | 4,989 | 9,895    | 11,713      | 5,292 | 55.65         | 1.44     |
| 14     | 258.01   | 258.61          | 0.6         | 5.07    | 30.94          | 37.01      | 3,049 | 4,841    | 9,513       | 4,030 | 61.54         | 1.97     |
|        |          | Total           | 25.09       |         |                |            |       |          |             |       |               |          |
|        | Weighted | averages        |             | 1.27    | 6.99           | 48.11      | 5,400 | 10,470   | 12,043      | 5,715 | 60.53         | 1.45     |

Coal-bench analyses

| [Value              | s are wei | ghted ave | rages for | samples | from e | ach bench; | in parenth | neses are | numbers | of sample | s in each | bench]   |
|---------------------|-----------|-----------|-----------|---------|--------|------------|------------|-----------|---------|-----------|-----------|----------|
|                     | Sampled   | interval  | Coal      | As rece | ved va | lues-%     | Heating    | values -  | Btu     |           | Volatile  | Apparent |
| Bench               |           |           | thick-    | Total   |        |            | As         |           |         | MMM       | matter    | specific |
| number              | Top       | Bottom    | ness      | sulfur  | Ash    | Moisture   | received   | Dry       | DAF     | free      | (DAF-%)   | gravity  |
| 1 (1)               | 214.21    | 214.58    | 0.37      | 2.85    | 12.79  | 44.27      | 5,134      | 9,213     | 11,957  | 5,688     | 57.55     | 1.44     |
| 2 (2)               | 222.62    | 224.54    | 1.92      | 1.49    | 4.6    | 45.17      | 4,314      | 7,975     | 8,793   | 4,437     | 62.98     | 1.65     |
| 3 (7)               | 225.8     | 231.2     | 5.4       | 1.71    | 7.02   | 47         | 5,631      | 10,611    | 12,257  | 5,945     | 63.9      | 1.42     |
| 4 (1)               | 232.59    | 233.49    | 0.9       | 0.36    | 9.54   | 44.46      | 5,903      | 10,628    | 12,833  | 6,547     | 64.82     | 1.42     |
| 5 (16) <sup>1</sup> | 235.5     | 248.46    | 12.67     | 0.89    | 5      | 49.42      | 5,720      | 11,327    | 12,530  | 5,960     | 59.83     | 1.41     |
| 6 (1)               | 250.15    | 250.95    | 0.8       | 0.34    | 5.41   | 51.11      | 5,291      | 10,823    | 12,169  | 5,591     | 56.54     | 1.28     |
| 7 (1)               | 253.31    | 254.33    | 1.02      | 1.18    | 14.99  | 49.11      | 4,282      | 8,413     | 11,925  | 5,000     | 53.34     | 1.54     |
| 8 (1)               | 256.11    | 257.2     | 1.09      | 1.75    | 10.36  | 50.37      | 4,682      | 9,434     | 11,922  | 5,118     | 55.61     | 1.54     |
| 9 (2)               | 257.69    | 258.61    | 0.92      | 3.94    | 22.9   | 41.38      | 3,724      | 6,599     | 10,278  | 4,469     | 59.49     | 1.79     |
|                     |           | Total     | 25.09     | 1.27    | 6.99   | 48.11      | 5,400      | 10,470    | 12,043  | 5,715     | 60.53     | 1.45     |

Weighted averages

¹This bed contains core loss in coal.

Coal-bed analyses [Values are weighted averages of samples from each bed; in parentheses are coal-bench numbers included in beds] Sampled interval Coal As received values-% Heating values - Btu Volatile Apparent ммм specific Bed thick-Total As matter sul fur (DAF-%) free gravity number Top Bottom ness Ash Moisture received Dry 12,131 5,832 61.21 1.43 A (2-6) 222.62 250.95 21.69 1.11 5.67 48.3 5,565 10,805 B(8,9)258.61 8136.57 11169.96 4.821 57.39 1.65 256.11 2.01 2.75 16.1 46.26 4243.45 23.7 Total 10,578 5,746 60.89 1.45 Weighted Averages: 1.24 6.56 48.12 5,453 12,049

Note: Coal samples collected for analyses from this hole were not all correctly labeled by bench; bench 3 includes samples 3A-5A, bench 4 includes sample 5B, bench 5 includes samples 6A-10C; bench 6 includes sample 11; bench 7 includes sample 12; bench 8 includes sample 13A; and bench 9 includes samples 13B and 14; to convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Table 2-11. Selected coal-analyses values from drill hole TP-13, Thar Desert, Sindh Province, Pakistan

[Analyses of 17 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

Coal-sample analyses

|            | Sampled  | interval   | Coal     | As rece | eived va | lues-%     | Heating   | values - | Btu    |       | Volatile      | Apparent |
|------------|----------|------------|----------|---------|----------|------------|-----------|----------|--------|-------|---------------|----------|
| Sample     |          |            | thick-   | Total   |          |            | As        |          |        | MMM   | matter        | specific |
| number     | Top      | Bottom     | ness     | sulfur  | Ash      | Moisture   | received  | Dry      | DAF    | free  | (DAF-%)       | gravity  |
| 1A         | 176.81   | 177.46     | 0.65     | 2.4     | 11.67    | 48         | 4,917     | 9,456    | 12,192 | 5,408 | 59.97         | 1.54     |
| 1B         | 177.66   | 178.01     | 0.35     | 0.64    | 21.14    |            | 3,986     | 7,010    | 11,160 | 5,100 | 62.07         | 1.62     |
| 1C         | 178.46   | 178.84     | 0.38     | 8.21    | 17.16    | 47.86      | 4,129     | 7,919    | 11,803 | 4,324 | 58.49         | 1.79     |
| 2 <b>A</b> | 197.86   | 198.56     | 0.7      | 1.03    | 12.87    | 39.16      | 5,531     | 9,091    | 11,531 | 6,323 | 58.13         | 1.46     |
| 2B         | 198.56   | 199.21     | 0.65     | 0.56    | 3.87     | 50.38      | 5,326     | 10,732   | 11,641 | 5,511 | 56.5          | 1.4      |
| 2C         | 199.21   | 199.9      | 0.69     | 0.23    | 3.42     | 49.9       | 5,759     | 11,495   | 12,337 | 5,960 | 59.89         | 1.33     |
| 2D         | 199.9    | 200.6      | 0.7      | 0.29    | 3.91     | 50.86      | 5,391     | 10,972   | 11,920 | 5,605 | 56.96         | 1.36     |
| 2E         | 200.6    | 201.3      | 0.7      | 0.26    | 4.48     | 65.12      | 3,560     | 10,206   | 11,711 | 3,721 | 57.64         | 1.35     |
| 2F         | 201.75   | 202.75     | 1        | 0.72    | 8.01     | 47.12      | 5,117     | 9,677    | 11,405 | 5,538 | 60.78         | 1.38     |
| 2G         | 202.94   | 203.94     | 1        | 1.93    | 21.52    | 39.24      | 4,517     | 7,434    | 11,511 | 5,681 | 64.33         | 1.66     |
| 2H         | 203.94   | 204.99     | 1.05     | 1.93    | 11.53    | 61.74      | 3,107     | 8,120    | 11,621 | 3,397 | 59.75         | 1.62     |
| 21         | 204.99   | 205.99     | 1        | 1.64    | 6.66     | 49.99      | 5,367     | 10,732   | 12,381 | 5,640 | 60.49         | 1.35     |
| 2J         | 205.99   | 206.99     | 1        | 2       | 7.62     | 47.57      | 5,568     | 10,619   | 12,426 | 5,888 | 59.93         | 1.33     |
| 2K         | 206.99   | 207.29     | 0.3      | 0.63    | 10.25    | 45.08      | 5,519     | 10,049   | 12,355 | 6,147 | 63.4          | 1.35     |
| 3          | 225.25   | 225.9      | 0.65     | 1.08    | 4.54     | 53.48      | 5,104     | 10,971   | 12,157 | 5,278 | 53.67         | 1.3      |
| 4          | 227.7    | 228.18     | 0.48     | 1.79    | 11.6     | 49.02      | 4,509     | 8,844    | 11,450 | 4,996 | 54.46         | 1.41     |
| 5          | 244.4    | 245.25     | 0.85     | 1.47    | 15.37    | 45.85      | 4,486     | 8,284    | 11,567 | 5,239 | 59.36         | 1.57     |
|            |          | Total      | 12.15    |         |          |            |           |          |        |       |               |          |
|            | Weighted | l average: | <u>s</u> | 1.47    | 10.03    | 49.37      | 4,816     | 9,558    | 11,841 | 5,270 | 59.31         | 1.45     |
|            |          |            |          |         |          | -bench ana |           |          |        |       |               |          |
| _[Values   |          |            |          |         |          |            | in parent |          |        |       |               | bench]   |
|            | Sampled  | interval   | Coal     |         | eived va | lues-%     |           | values - | Btu    |       | Volatile      | Apparent |
| Bench      |          |            | thick-   | Total   |          |            | As        |          |        | MMM   | matter        | specific |
| number     | Тор      | Bottom     | ness     | sul fur | Ash      | Moisture   | received  | Dry      | DAF    | free  | (DAF-%)       | gravity  |
| 1 (1)      | 176.81   | 177.46     | 0.65     | 2.4     | 11.67    |            | 4,917     | 9,456    | 12,192 | 5,408 | 59.97         | 1.54     |
| 2 (1)      | 177.66   | 178.01     | 0.35     | 0.64    | 21.14    | 43.15      | 3,986     | 7,010    | 11,160 | 5,100 | 62.07         | 1.62     |
| 3 (1)      | 178.46   | 178.84     | 0.38     | 8.21    | 17.16    |            | 4,129     | 7,919    | 11,803 | 4,324 | 58.49         | 1.79     |
| 4 (5)      | 197.86   | 201.3      | 3.44     | 0.47    | 5.75     | 51.1       | 5,108     | 10,493   | 11,829 | 5,421 | <b>57.8</b> 4 | 1.38     |
| 5 (6)¹     | 201.75   | 207.29     | 5.35     | 1.59    | 11.03    | 49.02      | 4,764     | 9,346    | 11,894 | 5,263 | 61.18         | 1.46     |
| 6 (1)      | 225.25   | 225.9      | 0.65     | 1.08    | 4.54     | 53.48      | 5,104     | 10,971   | 12,157 | 5,278 | 53.67         | 1.3      |
| 7 (1)      | 227.7    | 228.18     | 0.48     | 1.79    | 11.6     | 49.02      | 4,509     | 8,844    | 11,450 | 4,996 | 54.46         | 1.41     |
| 8 (1)      | 244.4    | 245.25     | 0.85     | 1.47    | 15.37    | 45.85      | 4,486     | 8,284    | 11,567 | 5,239 | 59.36         | 1.57     |
|            |          | Total      | 12.15    |         |          |            |           |          |        |       |               |          |
|            | Weighted | laverages  | s        | 1.47    | 10.03    | 49.37      | 4,816     | 9,558    | 11,841 | 5,270 | 59.31         | 1.45     |
|            | •        | •          |          |         |          |            | •         | •        | •      | •     |               |          |

<sup>1</sup>Contains core loss in coal.

|         |          |          |          |         | Coal    | -bed analy | ses        |          |          |         |                   |          |
|---------|----------|----------|----------|---------|---------|------------|------------|----------|----------|---------|-------------------|----------|
| [Values | are weig | hted ave | rages of | samples | from ea | ch bed; in | parenthese | s are co | al-bench | numbers | <u>included i</u> | n beds]  |
|         | Volatile | Apparent |          |         |         |            |            |          |          |         |                   |          |
| Bed     |          |          | thick-   | Total   |         |            | As         |          |          | MMM     | matter            | specific |
| number  | Top      | Bottom   | ness     | sulfur  | Ash     | Moisture   | received   | Dry      | DAF      | free    | (DAF-%)           | gravity  |
| A (1-3) | 176.81   | 178.84   | 1.38     | 3.55    | 15.58   | 46.73      | 4,464      | 8,412    | 11,823   | 5,031   | 60.09             | 1.63     |
| B (4,5) | 197.86   | 207.29   | 8.79     | 1.15    | 8.96    | 49.83      | 4,899      | 9,795    | 11,869   | 5,325   | 59.87             | 1.43     |
|         |          | Total    | 10.17    |         |         |            |            |          |          |         |                   |          |
|         | Weighted | average  | s        | 1.48    | 9.86    | 49.41      | 4,840      | 9,607    | 11,862   | 5,285   | 59.9              | 1.46     |

Note: Coal samples collected for analyses from this hole were not all correctly labled by bench; benchs 1-3 contain samples 1A-1C, respectively; bench 4 includes samples 2A-2E; bench 5 includes samples 2F-2K, benchs 6-8 contain samples 3-5, respectively; to convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Table 2-12. Selected coal-analyses values from drill hole TP-14, Thar Desert, Sindh Province, Pakistan

[Analyses of 5 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |             |           |          |           | Coal    | -sample an | alyses     |           |            |        |           |          |
|--------|-------------|-----------|----------|-----------|---------|------------|------------|-----------|------------|--------|-----------|----------|
|        | Sampled     | interval  | Coal     | As rece   | ived va | lues-%     | Heating    | values -  | Btu        |        | Volatile  | Apparent |
| Sample |             |           | thick-   | Total     |         |            | As         |           |            | MMM    | matter    | specific |
| number | Top         | Bottom    | ness     | sul fur   | Ash     | Moisture   | received   | Dry       | DAF        | free   | (DAF-%)   | gravity  |
| 1A     | 244.88      | 245.8     | 0.92     | 2.28      | 12.34   | 43.99      | 5,468      | 9,763     | 12,520     | 6,252  | 63.67     | 1.34     |
| 1B     | 245.8       | 246.47    | 0.67     | 0.44      | 3.28    | 52.44      | 5,228      | 10,994    | 11,807     | 5,390  | 56.34     | 1.33     |
| 1C     | 246.47      | 247.57    | 1.1      | 0.54      | 3.65    | 50.11      | 5,688      | 11,401    | 12,302     | 5,867  | 58.71     | 1.26     |
| 1D     | 247.57      | 248.72    | 1.15     | 0.4       | 5.64    | 51.07      | 4,928      | 10,071    | 11,384     | 5,192  | 53.9      | 1.08     |
| 2      | 251.89      | 252.8     | 0.91     | 9.56      | 18.16   | 39.02      | 4,941      | 8,103     | 11,539     | 6,083  | 58.63     | 1.5      |
|        |             | Total     | 4.75     |           |         |            |            |           |            |        |           |          |
|        | Weighted    | averages  |          | 2.56      | 8.54    | 47.36      | 5,253      | 10,072    | 11,906     | 5,752  | 58.16     | 1.3      |
|        |             |           |          |           | Coal    | -bench ana | lyses      |           |            |        |           |          |
| [Value | es are weig | ghted ave | rages fo | r samples | from e  | ach bench; | in parenti | neses are | numbers of | sample | s in each | bench]   |
|        | Sampled     | interval  | Coal     | As rece   | ived va | lues-%     | Heating    | values -  | Btu        |        | Volatile  | Apparent |
| Bench  |             |           | thick-   | Total     |         |            | As         |           |            | MMM    | matter    | specific |

Moisture

39.02

received

4,941

DAF

11,539

Dry

8,103

(DAF-%)

58.63

free

6,083

gravity

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Ash

18.16

sul fur

7.92

number

A(5)

Top

244.88

Bottom

252.8

ness

0.91

Table 2-13. Selected coal-analyses values from drill hole TP-15, Thar Desert, Sindh Province, Pakistar

[Analyses of 15 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

Coal-sample analyses

|                    | Sampled  | interval        | Coal   | As rece | ived va | lues-%     | Hear       | ting valu | es - Btu |       | Volatile | Apparent |
|--------------------|----------|-----------------|--------|---------|---------|------------|------------|-----------|----------|-------|----------|----------|
| Sample             |          |                 | thick- | Total   |         |            | As         |           |          | MMM   | matter   | specific |
| number             | Тор      | Bottom          | ness   | sulfur  | Ash     | Moisture   | received   | Dry       | DAF      | free  | (DAF-%)  | gravity  |
| 1A                 | 230.82   | 231.82          | 1      | 4.61    | 12.95   | 40.5       | 5,734      | 9,637     | 12,317   | 6,214 | 62.86    | 1.26     |
| 1B                 | 231.82   | 232.82          | 1      | 1.07    | 4.93    | 45.04      | 6,319      | 11,497    | 12,631   | 6,578 | 63.58    | 1.32     |
| 1C                 | 232.82   | 233.62          | 0.8    | 1.67    | 6.04    | 46.06      | 5,466      | 10,135    | 11,414   | 5,703 | 57.8     | 1.21     |
| 1D                 | 233.7    | 234.7           | 1      | 1.23    | 4.67    | 49.54      | 5,281      | 10,465    | 11,532   | 5,458 | 55.63    | 1.35     |
| 1E                 | 234.7    | 235.15          | 0.45   | 0.38    | 2.93    | 47.51      | 5,724      | 10,906    | 11,550   | 5,879 | 56.36    | 1.24     |
| 1F                 | 235.46   | 236.01          | 0.55   | 0.64    | 4.58    | 52.57      | 5,469      | 11,532    | 12,765   | 5,699 | 65.03    | 1.27     |
| 1G                 | 236.94   | 237.09          | 0.15   | 2.53    | 11.47   | 51.14      | 4,145      | 8,483     | 11,084   | 4,515 | 56.3     | 1.46     |
| 2A                 | 238.33   | 239.06          | 0.73   | 0.65    | 4.1     | 46.3       | 5,964      | 11,106    | 12,026   | 6,183 | 59.75    | 1.31     |
| 2B                 | 240      | 240.65          | 0.65   | 0.42    | 7.59    | 45.2       | 5,355      | 9,772     | 11,343   | 5,795 | 58.12    | 1.39     |
| 3A                 | 257.26   | 257.78          | 0.52   | 4.14    | 10.35   | 43.57      | 5,308      | 9,406     | 11,520   | 5,599 | 56.24    | 1.35     |
| 3B                 | 257.78   | 258.01          | 0.23   | 4.47    | 35.19   | 31.65      | 2,989      | 4,372     | 9,014    | 4,290 | 64.29    | 1.77     |
| 3C                 | 258.01   | 258.66          | 0.65   | 1.24    | 5.28    | 46.17      | 5,733      | 10,651    | 11,810   | 5,971 | 57.99    | 1.29     |
| 3D                 | 259.41   | 259.71          | 0.3    | 2.25    | 16.55   | 35.02      | 5,284      | 8,132     | 10,912   | 6,204 | 58.33    | 1.43     |
| 3E                 | 259.93   | 261.06          | 1.13   | 1.38    | 6.73    |            | 5,569      | 10,421    | 11,921   | 5,883 | 60.01    | 1.33     |
| 3F                 | 262.5    | 263             | 0.5    | 0.74    | 5.58    | 48.63      | 5,210      | 10,142    | 11,379   | 5,481 | 54.38    | 1.29     |
|                    |          | Total           | 9.66   |         |         |            |            |           |          |       |          |          |
|                    | Weighted | averages        |        | 1.71    | 7.57    |            | 5,528      | 10,227    | 11,782   | 5,857 | 59.37    | 1.32     |
|                    |          |                 |        |         |         | -bench ana |            |           |          |       |          |          |
| (Value             |          |                 |        |         |         |            | in parenth |           |          |       |          |          |
|                    | Sampled  | <u>interval</u> | Coal   |         | ived va | lues-%     |            | ting valu | es - Btu |       | Volatile | Apparent |
| Bench              | _        |                 | thick- | Total   |         |            | As         | _         |          | MMM   | matter   | specific |
| number             | Тор      | Bottom          | ness   | sul fur | Ash     | Moisture   |            | Dry       | DAF      | free  | (DAF-%)  | gravity  |
| 1 (7)              | 230.82   | 237.09          | 4.95   | 1.85    | 6.65    |            | 5,639      | 10,551    | 12,019   | 5,913 | 60.18    | 1.29     |
| 2 (2)              | 238.33   | 240.65          | 1.38   | 0.54    | 5.75    | 45.78      | 5,677      | 10,478    | 11,704   | 6,000 | 58.98    | 1.35     |
| 3 (3)              | 257.26   | 258.66          | 1.4    | 2.85    | 12.08   | 42.82      | 5,124      | 9,157     | 11,243   | 5,557 | 58.38    | 1.39     |
| 4 (1)              | 259.41   | 259.71          | 0.3    | 2.25    | 16.55   | 35.02      | 5,284      | 8,132     | 10,912   | 6,204 | 58.33    | 1.43     |
| 5 (2) <sup>1</sup> | 259.93   | 263             | 1.63   | 1.35    | 7.96    | 45.3       | 5,432      | 9,993     | 11,624   | 5,828 | 58.29    | 1.34     |
|                    |          | Total           | 9.66   |         |         |            |            |           |          |       |          |          |
|                    | Weighted | averages        |        | 1.71    | 7.57    | 45.6       | 5,528      | 10,227    | 11,782   | 5,857 | 59.37    | 1.32     |

<sup>1</sup>Bench contains a lost-coal-core interval(s).

|                                                                      |            |          |          |         | Coal     | -bed analy | ses        |           |          |         |                   |          |  |
|----------------------------------------------------------------------|------------|----------|----------|---------|----------|------------|------------|-----------|----------|---------|-------------------|----------|--|
| [Value                                                               | s are weig | hted ave | rages of | samples | from eac | ch bed; in | parenthese | es are co | al-bench | numbers | <u>included i</u> | n beds]  |  |
| Sampled interval Coal As received values-% Heating values - Btu Vola |            |          |          |         |          |            |            |           |          |         |                   |          |  |
| Bed                                                                  |            |          | thick-   | Total   |          |            | As         |           |          | MMM     | matter            | specific |  |
| number                                                               | Top        | Bottom   | ness     | sul fur | Ash      | Moisture   | received   | Dry       | DAF      | free    | (DAF-%)           | gravity  |  |
| A(1,2)                                                               | 230.82     | 240.65   | 6.33     | 1.56    | 6.46     | 46.3       | 5,647      | 10,535    | 11,950   | 5,932   | 59.92             | 1.3      |  |
| B (3-5)                                                              | 257.26     | 263      | 3.33     | 1.98    | 9.69     | 44.26      | 5,302      | 9,641     | 11,464   | 5,714   | 58.33             | 1.36     |  |
|                                                                      |            | Total    | 9.66     |         |          |            |            |           |          |         |                   |          |  |
| <del></del>                                                          | Weighted   | averages |          | 1.71    | 7.57     | 45.6       | 5,528      | 10,227    | 11,782   | 5,857   | 59.37             | 1.32     |  |

Note: Coal samples collected for analyses from this hole were not all correctly labled by bench; bench 3 includes samples 3A-C, bench 4 is 3D, and bench 5 includes 3E,F; to convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Table 2-14. Selected coal-analyses values from drill hole TP-19, Thar Desert, Sindh Province, Pakistar

Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |         |          |        |         | Coal    | -sample a | nalysis  |          |        |       |          |          |
|--------|---------|----------|--------|---------|---------|-----------|----------|----------|--------|-------|----------|----------|
|        | Sampled | interval | Coal   | As rece | ived va | lues-%    | Heating  | values · | - Btu  |       | Volatile | Apparent |
| Sample |         |          | thick- | Total   |         |           | As       | -        |        | MMM   | matter   | specific |
| number | Top     | Bottom   | ness   | sulfur  | Ash     | Moisture  | received | Dry      | DAF    | free  | (DAF-%)  | gravity  |
| 1      | 230.12  | 230.72   | 0.6    | 0.8     | 8.46    | 44.72     | 5,659    | 10,236   | 12,084 | 6,154 | 63.62    | 2.1      |

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Table 2-15. Selected coal-analyses values from drill hole TP-19, Thar Desert, Sindh Province, Pakistar

[Analyses of 3 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|                |           |           |          |         | Coal     | -sample a      | nalyses    |          |         |           |            |          |
|----------------|-----------|-----------|----------|---------|----------|----------------|------------|----------|---------|-----------|------------|----------|
|                | Sampled   | interval  | Coal     | As rec  | eived va | lues-%         | Heating    | values   | - Btu   |           | Volatile   | Apparent |
| Sample         |           |           | thick-   | Total   |          |                | As         |          |         | MMM       | matter     | specific |
| number         | Тор       | Bottom    | ness     | sulfur  | Ash      | Moisture       | received   | Dry      | DAF     | free      | (DAF-%)    | gravity  |
| 1A             | 223.18    | 224.48    | 1.3      | 2.09    | 7.78     | 51.14          | 5,682      | 11,628   | 13,831  | 6,013     | 54.61      | 1.4      |
| 1B             | 225.8     | 227.03    | 1.23     | 0.78    | 6.73     | 51.54          | 5,432      | 11,209   | 13,017  | 5,789     | 62.93      | 1.36     |
| 2              | 233.88    | 234.18    | 0.3      | 1.02    | 9.51     | 50.73          | 4,562      | 9,261    | 11,476  | 4,997     | 69.31      | 1.41     |
|                |           | Total     | 2.83     |         |          |                |            |          |         |           |            |          |
|                | Weighted  | averages  |          | 1.41    | 7.51     | 51.27          | 5,454      | 11,195   | 13,228  | 5,808     | 59.78      | 1,38     |
|                |           |           |          |         | Coal     | -bench and     | alyses     |          |         |           |            |          |
| <u>[Values</u> | are weigh | nted aver | ages for | samples | from ea  | ch bench;      | in parenth | eses are | numbers | of sample | es in each | bench]   |
|                | Sampled i | interval  | Coal     | As rec  | eived va | lues-%         | Heating    | values   | - Btu   |           | Volatile   | Apparent |
| Bench          |           |           | thick-   | Total   |          |                | As         |          |         | MMM       | matter     | specific |
| number         | Top       | Bottom    | ness     | sul fur | Ash      | Moisture       | received   | Dry      | DAF     | free_     | (DAF-%)    | gravity  |
| 1 (2)          | 223.18    | 227.03    | 1.3      | 2.09    | 7.78     | 51.14          | 5,682      | 11,628   | 13,831  | 6,013     | 54.61      | 1.4      |
| 2 (1)          | 233.88    | 234.18    | 0.3      | 1.02    | 9.51     | 50. <i>7</i> 3 | 4,562      | 9,261    | 11,476  | 4,997     | 69.31      | 1.41     |
|                |           | Total     | 2.83     |         |          |                |            |          |         |           | 3          |          |

<sup>1</sup>Bench contains core loss in coal and unanalyzed coal sample intervals.

1.41

Weighted averages

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

7.51

Table 2-16. Selected coal-analyses values from drill hole TP-20, Thar Desert, Sindh Province, Pakistar

51.27 5,454 11,195 13,228

5,808

1.38

[Analyses of 3 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |          |        |         | Coal     | -sample a  | nalyses  |          |        |       |          |          |
|--------|----------|----------|--------|---------|----------|------------|----------|----------|--------|-------|----------|----------|
|        | Sampled  | interval | Coal   | As rec  | eived va | lues-%     | Heatin   | g values | - Btu  |       | Volatile | Apparent |
| Sample |          |          | thick- | Total   |          |            | As       |          |        | MMM   | matter   | specific |
| number | Top      | Bottom   | ness   | sul fur | Ash      | Moisture   | received | Dry      | DAF    | free  | (DAF-%)  | gravity  |
| 1      | 259.44   | 260.24   | 0.8    | 2.15    | 13.72    | 46.84      | 4,777    | 8,987    | 12,113 | 5,407 | 60.18    | 1.49     |
| 2A     | 263.03   | 264.03   | 1      | 1.37    | 7.23     | 51.07      | 5,127    | 10,476   | 12,294 | 5,442 | 60.86    | 1.3      |
| 2B     | 264.03   | 264.58   | 0.55   | 0.96    | 6.16     | 50.52      | 5,397    | 10,907   | 12,459 | 5,698 | 58.55    | 1.27     |
|        |          | Total    | 2.35   |         |          |            |          |          |        |       |          |          |
|        | Weighted | averages |        | 1.54    | 9.19     | 49.5       | 5,071    | 10,070   | 12,271 | 5,490 | 60.09    | 1.36     |
|        |          |          |        |         | Coal     | -bench and | alyses   |          |        |       |          |          |

| are weigh | <u>ited aver</u>        | ages for                                                                                                                      | samples                                                                                                                                                                                          | from ea                                                                                                                                                                                                                             | ch bench;                                                                                                                                                                                                                             | in parent                                                                                                                                                                                                                                                                                       | <u>heses are</u>                                                                                                                                                                                                                                                                                                                                                                             | numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                | of sampl                                                                                                                                                                                                                                                                                                                          | <u>es in each</u>                                                                                                                                                                                                                                                                                                                                  | bench]                                                                                                                                                                                                                                                                                                                                           |
|-----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampled i | nterval                 | Coal                                                                                                                          | As rec                                                                                                                                                                                           | eived va                                                                                                                                                                                                                            | lues-%                                                                                                                                                                                                                                | Heating                                                                                                                                                                                                                                                                                         | g values                                                                                                                                                                                                                                                                                                                                                                                     | - Btu                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                   | Volatile                                                                                                                                                                                                                                                                                                                                           | Apparent                                                                                                                                                                                                                                                                                                                                         |
|           |                         | thick-                                                                                                                        | Total                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       | As                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MMM                                                                                                                                                                                                                                                                                                                               | matter                                                                                                                                                                                                                                                                                                                                             | specific                                                                                                                                                                                                                                                                                                                                         |
| Top       | Bottom                  | ness                                                                                                                          | sul fur                                                                                                                                                                                          | Ash                                                                                                                                                                                                                                 | Moisture                                                                                                                                                                                                                              | received                                                                                                                                                                                                                                                                                        | Dry                                                                                                                                                                                                                                                                                                                                                                                          | DAF                                                                                                                                                                                                                                                                                                                                                                                                                                                    | free                                                                                                                                                                                                                                                                                                                              | (DAF-%)                                                                                                                                                                                                                                                                                                                                            | gravity                                                                                                                                                                                                                                                                                                                                          |
| 259.44    | 260.24                  | 0.8                                                                                                                           | 2.15                                                                                                                                                                                             | 13.72                                                                                                                                                                                                                               | 46.84                                                                                                                                                                                                                                 | 4,777                                                                                                                                                                                                                                                                                           | 8,987                                                                                                                                                                                                                                                                                                                                                                                        | 12,113                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,407                                                                                                                                                                                                                                                                                                                             | 60.18                                                                                                                                                                                                                                                                                                                                              | 1.49                                                                                                                                                                                                                                                                                                                                             |
| 263.03    | 264.58                  | 1.55                                                                                                                          | 1.23                                                                                                                                                                                             | 6.85                                                                                                                                                                                                                                | 50.87                                                                                                                                                                                                                                 | 5,222                                                                                                                                                                                                                                                                                           | 10,629                                                                                                                                                                                                                                                                                                                                                                                       | 12,352                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,533                                                                                                                                                                                                                                                                                                                             | 60.04                                                                                                                                                                                                                                                                                                                                              | 1.29                                                                                                                                                                                                                                                                                                                                             |
|           | Total                   | 2.35                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  |
| Weighted  | averages                |                                                                                                                               | 1 54                                                                                                                                                                                             | 0 10                                                                                                                                                                                                                                | 49.5                                                                                                                                                                                                                                  | 5 071                                                                                                                                                                                                                                                                                           | 10.070                                                                                                                                                                                                                                                                                                                                                                                       | 12 271                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.490                                                                                                                                                                                                                                                                                                                             | 60.09                                                                                                                                                                                                                                                                                                                                              | 1.36                                                                                                                                                                                                                                                                                                                                             |
|           | Top<br>259.44<br>263.03 | Sampled interval           Top         Bottom           259.44         260.24           263.03         264.58           Total | Sampled interval         Coal thick-ness           Top         Bottom ness           259.44         260.24         0.8           263.03         264.58         1.55           Total         2.35 | Sampled interval         Coal thick- Total           Top         Bottom ness sulfur           259.44         260.24         0.8         2.15           263.03         264.58         1.55         1.23           Total         2.35 | Sampled interval         Coal thick- Total           Top         Bottom ness sulfur Ash           259.44         260.24         0.8         2.15         13.72           263.03         264.58         1.55         1.23         6.85 | Top         Bottom ness         sulfur sulfur sulfur         Ash sulfur         Moisture           259.44         260.24         0.8         2.15         13.72         46.84           263.03         264.58         1.55         1.23         6.85         50.87           Total         2.35 | Sampled interval         Coal thick- Total         As received values-%         Heating As           Top         Bottom ness sulfur Ash Moisture received           259.44         260.24         0.8         2.15         13.72         46.84         4,777           263.03         264.58         1.55         1.23         6.85         50.87         5,222           Total         2.35 | Sampled interval         Coal thick-thick-Total         As received values-%         Heating values           Top         Bottom ness sulfur         Ash Moisture received         Dry           259.44         260.24         0.8         2.15         13.72         46.84         4,777         8,987           263.03         264.58         1.55         1.23         6.85         50.87         5,222         10,629           Total         2.35 | Sampled interval         Coal thick- Total         As received values-%         Heating values - Btu           Top         Bottom ness sulfur Ash Moisture received Dry DAF           259.44 260.24 0.8 2.15 13.72 46.84 4,777 8,987 12,113           263.03 264.58 1.55 1.23 6.85 50.87 5,222 10,629 12,352           Total 2.35 | Sampled interval         Coal thick- Total         As received values-%         Heating values - Btu           Top         Bottom ness sulfur Ash Moisture received Dry DAF free           259.44 260.24 0.8 2.15 13.72 46.84 4,777 8,987 12,113 5,407           263.03 264.58 1.55 1.23 6.85 50.87 5,222 10,629 12,352 5,533           Total 2.35 | Sampled interval         Coal thick- Total         As received values-%         Heating values - Btu         Volatile           Top         Bottom ness sulfur Ash Moisture received Dry 259.44 260.24 0.8 2.15 13.72 46.84 4,777 8,987 12,113 5,407 60.18 263.03 264.58 1.55 1.23 6.85 50.87 5,222 10,629 12,352 5,533 60.04         Total 2.35 |

Table 2-17. Selected coal-analyses values from drill hole TP-22, Thar Desert, Sindh Province, Pakistan

[Analyses of 11 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |          |        |         | Coal    | -sample an | alyses   |           |          |       |          |          |
|--------|----------|----------|--------|---------|---------|------------|----------|-----------|----------|-------|----------|----------|
|        | Sampled  | interval | Coal   | As rece | ived va | lues-%     | Heat     | ting valu | es - Btu |       | Volatile | Apparent |
| Sample |          |          | thick- | Total   |         |            | As       |           |          | MMM   | matter   | specific |
| number | Top      | Bottom   | ness   | sul fur | Ash     | Moisture   | received | Dry       | DAF      | free  | (DAF-%)  | gravity  |
| 1A     | 178.96   | 179.61   | 0.65   | 2.54    | 9.63    | 47.18      | 5,024    | 9,511     | 11,633   | 5,382 | 58.56    | 1.35     |
| 18     | 180.41   | 180.81   | 0.4    | 3.12    | 10.93   | 46.94      | 4,971    | 9,369     | 11,798   | 5,356 | 61.4     | 1.31     |
| 2A     | 183.2    | 183.9    | 0.7    | 1.76    | 6.67    | 49.51      | 5,234    | 10,367    | 11,944   | 5,488 | 59.69    | 1.32     |
| 2B     | 183.9    | 184.4    | 0.5    | 4.38    | 9.01    | 53.58      | 4,498    | 9,691     | 12,025   | 4,617 | 59.81    | 1.38     |
| 2C     | 184.4    | 185.25   | 0.85   | 0.83    | 4.73    | 52.6       | 4,936    | 10,413    | 11,569   | 5,133 | 59.74    | 1.24     |
| 3      | 205.61   | 206,56   | 0.95   | 1.53    | 10.77   | 38         | 5,725    | 9.234     | 11,175   | 6,332 | 56.53    | 1.33     |
| 4A     | 208.25   | 209.25   | 1      | 1.18    | 4.84    | 52.5       | 5,068    | 10,668    | 11,878   | 5,249 | 57.35    | 1.26     |
| 4B     | 209.25   | 210.25   | 1      | 1.89    | 5.08    | 54.19      | 4,661    | 10,175    | 11,444   | 4,779 | 58.38    | 1.26     |
| 5A     | 231.55   | 232.8    | 1.25   | 1.19    | 5.43    | 51.66      | 5,055    | 10.457    | 11,780   | 5,270 | 56.16    | 1.25     |
| 5B     | 233.98   | 234.28   | 0.3    | 0.83    | 5.94    | 54.52      | 4.542    | 9,988     | 11,489   | 4,786 | 54.6     | 1.34     |
| 6      | 244.48   | 245.43   | 0.95   | 0.39    | 5.73    | 52         | 4,656    | 9,701     | 11,018   | 4,931 | 53.26    | 1.4      |
|        |          | Total    | 4.45   |         |         |            |          |           |          |       |          |          |
|        | Weighted |          |        | 1.6     | 6.78    | 50.14      | 4.986    | 10.033    | 11,586   | 5,252 | 57.51    | 1.3      |

Coal-bench analyses

| (Value             | es are wei | ghted ave | rages fo | r samples | from e   | ach bench; | in parent | heses are | numbers   | of sampl | <u>es in each</u> | bench]   |
|--------------------|------------|-----------|----------|-----------|----------|------------|-----------|-----------|-----------|----------|-------------------|----------|
| •                  | Sampled    | interval  | Coal     | As rece   | eived va | lues-%     | Неа       | ting valu | ies - Btu |          | Volatile          | Apparent |
| Bench              |            |           | thick-   | Total     |          |            | As        |           |           | MMM      | matter            | specific |
| number             | Top        | Bottom    | ness     | sul fur   | Ash      | Moisture   | received  | Dry       | DAF       | free     | (DAF-%)           | gravity  |
| 1 (1)              | 178.96     | 179.61    | 0.65     | 2.54      | 9.63     | 47.18      | 5,024     | 9,511     | 11,633    | 5,382    | 58.56             | 1.35     |
| 2 (1)              | 180.41     | 180.81    | 0.4      | 3.12      | 10.93    | 46.94      | 4,971     | 9,369     | 11,798    | 5,356    | 61.4              | 1.31     |
| 3 (3)              | 183.2      | 185.25    | 2.05     | 2.02      | 6.44     | 51.79      | 4,931     | 10,221    | 11,808    | 5,128    | 59.74             | 1.3      |
| 4 (1)              | 205.61     | 206.56    | 0.95     | 1.53      | 10.77    | 38         | 5,725     | 9,234     | 11,175    | 6,332    | 56.53             | 1.33     |
| 5 (2)              | 208.25     | 210.25    | 2        | 1.53      | 4.96     | 53.35      | 4,864     | 10,421    | 11,661    | 5,014    | 57.86             | 1.26     |
| 6 (2) <sup>1</sup> | 231.55     | 234.28    | 1.55     | 1.12      | 5.53     | 52.22      | 4,956     | 10,367    | 11,724    | 5,176    | 55.86             | 1.27     |
| 7 (1)              | 244.48     | 245.43    | 0.95     | 0.39      | 5.73     | 52         | 4,656     | 9,701     | 11,018    | 4,931    | 53.26             | 1.4      |
|                    |            | Total     | 9.66     |           |          |            |           |           |           |          |                   |          |
|                    | Weighted   | averages  |          | 1.6       | 6.78     | 50.14      | 4.986     | 10.033    | 11.586    | 5,252    | 57.51             | 1.3      |

Bench contains a lost-coal-core interval.

Coal-bed analyses

| [Value  | s are wei | ghted ave | rages of | samples | from ea  | ch bed; ir | parenthes | es are co | al-bench  | numbers | included i | n_beds]  |
|---------|-----------|-----------|----------|---------|----------|------------|-----------|-----------|-----------|---------|------------|----------|
|         | Sampled   | interval  | Coal     | As rece | eived va | lues-%     | Hea       | ting valu | ies - Btu |         | _ Volatile | Apparent |
| Bed     |           |           | thick-   | Total   |          |            | As        |           |           | MMM     | matter     | specific |
| number  | Top       | Bottom    | ness     | sul fur | Ash      | Moisture   | received  | Dry       | DAF       | free    | (DAF-%)    | gravity  |
| A (1,2) | 178.96    | 180.81    | 1.05     | 2.76    | 10.13    | 47.09      | 5,004     | 9,457     | 11,696    | 5,372   | 59.64      | 1.33     |
| B (4,5) | 205.61    | 210.25    | 2.95     | 1.53    | 6,83     | 48.4       | 5,141     | 10,039    | 11,505    | 5,439   | 57.44      | 1.28     |
|         |           | Total     | 9.66     |         |          |            |           |           |           |         |            |          |
|         | Weighted  | averages  |          | 1.85    | 7.7      | 48.06      | 5,105     | 9,886     | 11,555    | 5,421   | 58.02      | 1.3      |

Note: Coal samples collected for analyses from this hole were not all correctly labeled by bench: bench 2 is sample 1B, bench 3 contains samples 2A-C, bench 4 is sample 3, bench 5 contains samples 4A and 4B, bench 6 contains samples 5A and 5B, and bench 7 is sample 6; to convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Table 2-18. Selected coal-analyses values from drill hole TP-23, Thar Desert, Sindh Province, Pakistan

[Analyses of 2 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|         |           |           |          |         | Coal     | -sample a  | nalyses    |           |         |          |            |          |
|---------|-----------|-----------|----------|---------|----------|------------|------------|-----------|---------|----------|------------|----------|
|         | Sampled   | interval  | Coal     | As rec  | eived va | lues-%     | Heatin     | g values  | - Btu   |          | Volatile   | Apparent |
| Sample  |           |           | thick-   | Total   |          |            | As         |           |         | MMM      | matter     | specific |
| number  | Top       | Bottom    | ness     | sulfur  | Ash      | Moisture   | received   | Dry       | DAF     | free     | (DAF-%)    | gravity  |
| 1       | 205.51    | 206.51    | 1        | 2.11    | 19.44    | 43.77      | 4,080      | 7,257     | 11,092  | 4,958    | 62.42      | 1.37     |
| 2       | 234.54    | 235.19    | 0.65     | 2.84    | 13.57    | 44.47      | 4,928      | 8,875     | 11,746  | 5,507    | 59.59      | 1.31     |
|         |           | Total     | 2.35     |         |          |            |            |           |         |          |            |          |
|         | Weighted  | averages  |          | 2.4     | 17.13    | 44.05      | 4,414      | 7,894     | 11,349  | 5,174    | 61.31      | 1.35     |
|         |           |           |          |         | Coal     | -bench and | alyses     |           |         |          |            |          |
| [Values | are weigh | hted aver | ages for | samples | from ea  | ch bench;  | in parentl | heses are | numbers | of sampl | es in each | bench]   |
|         | Sampled   | interval  | Coal     | As rec  | eived va | lues-%     | Heating    | yalues    | - Btu   |          | Volatile   | Apparent |
| Bench   |           |           | thick-   | Total   |          |            | As         |           |         | MMM      | matter     | specific |
| number  | Top       | Bottom    | ness     | sulfur  | Ash      | Moisture   | received   | Dry       | DAF     | free     | (DAF-%)    | gravity  |
| 1 (1)   | 205.51    | 206.51    | 1        | 2.11    | 19.44    | 43.77      | 4,080      | 7,257     | 11,092  | 4,958    | 62.42      | 1.37     |
| 2 (1)   | 234.54    | 235.19    | 0.65     | 2.84    | 13.57    | 44.47      | 4,928      | 8,875     | 11,746  | 5,507    | 59.59      | 1.31     |
|         |           | Total     | 2.35     |         |          |            |            |           |         |          |            |          |
|         | Weighted  | averages  |          | 2.4     | 17.13    | 44.05      | 4,414      | 7,894     | 11,349  | 5,174    | 61.31      | 1.35     |

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

Table 2-19. Selected coal-analyses values from drill hole TP-25, Thar Desert, Sindh Province, Pakistan

[Analyses of 3 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |          |        |        | Coal     | -sample a | nalyses  |          |        |       |          |          |
|--------|----------|----------|--------|--------|----------|-----------|----------|----------|--------|-------|----------|----------|
|        | Sampled  | interval | Coal   | As rec | eived va | lues-%    | Heatin   | g values | - Btu  |       | Volatile | Apparent |
| Sample |          |          | thick- | Total  |          |           | As       |          |        | MMM   | matter   | specific |
| number | Top      | Bottom   | ness   | sulfur | Ash      | Moisture  | received | Dry      | DAF    | free  | (DAF-%)  | gravity  |
| 1      | 200.22   | 200.62   | 0.4    | 1.87   | 7.03     | 43.83     | 4,744    | 9,687    | 11,310 | 4,977 | 55.82    | 1.37     |
| 2      | 206.38   | 207.38   | 1      | 1.59   | 5.97     | 43.54     | 5,879    | 11,520   | 13,046 | 6,142 | 65.87    | 1.3      |
| 3      | 236.25   | 236.55   | 0.3    | 2.49   | 5.07     | 46.64     | 4,631    | 10,143   | 11,409 | 4,699 | 57.85    | 1.54     |
|        |          | Total    | 1.7    |        |          |           |          |          |        |       |          |          |
|        | Weighted | averages | ;      | 1.81   | 6.06     | 44.16     | 5,392    | 10,846   | 12,349 | 5,613 | 62.09    | 1.36     |

| [Values | are weig | nted aver | ages for | samples | <u>f</u> rom ea | ch bench; | in parent | heses are | numbers | of sampl | <u>es in each</u> | bench]   |
|---------|----------|-----------|----------|---------|-----------------|-----------|-----------|-----------|---------|----------|-------------------|----------|
|         | Sampled  | interval  | Coal     | As rece | eived va        | lues-%    | Heatin    | g values  | - Btu   |          | Volatile          | Apparent |
| Bench   |          |           | thick-   | Total   |                 |           | As        |           |         | MMM      | matter            | specific |
| number  | Top      | Bottom    | ness     | sul fur | Ash             | Moisture  | received  | Dry       | DAF     | free     | (DAF-%)           | gravity  |
| 1 (1)   | 200.22   | 200.62    | 0.4      | 1.87    | 7.03            | 43.83     | 4,744     | 9,687     | 11,310  | 4,977    | 55.82             | 1.37     |
| 2 (1)   | 206.38   | 207.38    | 1        | 1.59    | 5.97            | 43.54     | 5,879     | 11,520    | 13,046  | 6,142    | 65.87             | 1.3      |
| 3 (1)   | 236.25   | 236.55    | 0.3      | 2.49    | 5.07            | 46.64     | 4,631     | 10,143    | 11,409  | 4,699    | 57.85             | 1.54     |
|         |          | Total     | 1.7      |         |                 |           |           |           |         |          |                   |          |
|         | Weighted | averages  |          | 1.81    | 6.06            | 44.16     | 5,392     | 10,846    | 12,349  | 5,613    | 62.09             | 1.36     |

Table 2-20. Selected coal-analyses values from drill hole TP-28, Thar Desert, Sindh Province, Pakistan

[Analyses of 6 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |          |          |        |         | Coal    | -sample an | alyses   |           |          |       |          |          |
|--------|----------|----------|--------|---------|---------|------------|----------|-----------|----------|-------|----------|----------|
|        | Sampled  | interval | Coal   | As rece | ived va | lues-%     | Hea      | ting valu | es - Btu |       | Volatile | Apparent |
| Sample |          |          | thick- | Total   |         |            | As       |           |          | MMM   | matter   | specific |
| number | Top      | Bottom   | ness   | sulfur  | Ash     | Moisture   | received | Dry       | DAF      | free  | (DAF-%)  | gravity  |
| 1      | 193.94   | 194.54   | 0.6    | 4.74    | 10.87   | 46.92      | 4,403    | 8,294     | 10,431   | 4,584 | 55.91    | 1.37     |
| 21     | 213.3    | 213.72   | 0.42   | 0.45    | 4.57    | 50.5       | 5,156    | 10,417    | 11,476   | 5,386 | 55.95    | 1.24     |
| 3A     | 214.99   | 216.09   | 1.1    | 2.64    | 5.05    | 51.7       | 5,039    | 10,432    | 11,651   | 5,111 | 57.29    | 1.23     |
| 3B     | 216.09   | 217.19   | 1.1    | 0.21    | 3.13    | 58.05      | 4,698    | 11,198    | 12,100   | 4,846 | 58.98    | 1.27     |
| 3C     | 217.19   | 218.34   | 1.15   | 1.52    | 5.61    | 50.5       | 5,182    | 10,468    | 11,805   | 5,387 | 57.68    | 1.3      |
| 4      | 219.34   | 219.79   | 0.45   | 0.12    | 8.06    | 48.35      | 5,148    | 9,969     | 11,813   | 5,629 | 59.3     | 1.2      |
|        |          | Total    | 4.49   |         |         |            |          |           |          |       |          |          |
|        | Weighted | averages |        | 2.18    | 5.71    | 51.85      | 4,936    | 10,305    | 11,638   | 5,123 | 57.67    | 1.27     |

Some values shown for this coal sample were affected by changing the air-drying moisture loss from 33.97 to 43.97 due to a presumed typographical error on the coal analysis sheet.

|                 | Sampled  | ghted ave<br>interval | Coal           |              | ived va |          | in parent | values - |        |             | Volatile          | Apparent |
|-----------------|----------|-----------------------|----------------|--------------|---------|----------|-----------|----------|--------|-------------|-------------------|----------|
| Bench<br>number |          | Bottom                | thick-<br>ness | Total sulfur |         | Moisture | As        |          | DAF    | MMM<br>free | matter<br>(DAF-%) | specific |
|                 | 107 O/   |                       |                |              | Ash     |          | received  | Dry      |        |             | 55.91             | 2.07     |
| 1 (1)           | 193.94   | 194.54                | 0.6            | 4.74         | 10.87   | 0.6      | 1         | 8,294    | 10,431 | 4,584       |                   |          |
| 2 (1)           | 213.3    | 213.72                | 0.42           | 0.45         | 4.57    | 50.5     | 5,156     | 10,417   | 11,476 | 5,386       | 55.95             | 1.24     |
| 3 (3)           | 214.99   | 218.34                | 3.35           | 2.23         | 4.61    | 53.37    | 4,976     | 10,696   | 11,851 | 5,119       | 57.98             | 0.36     |
| 4 (1)           | 219.34   | 219.79                | 0.45           | 0.12         | 8.06    | 48.35    | 5,148     | 9,969    | 11,813 | 5,629       | 59.3              | 1.2      |
|                 |          | Total                 | 4.49           |              |         |          |           |          |        |             |                   |          |
|                 | Weighted | averages              |                | 2.18         | 5.71    | 51.85    | 4.936     | 10,305   | 11.638 | 5.123       | 57.67             | 1.27     |

| [Value  | s are wei | ghted ave | rages of | samples | from eac | ch bed; i | n parenthes | es are d | oal-bench | numbers | included i | n beds]  |
|---------|-----------|-----------|----------|---------|----------|-----------|-------------|----------|-----------|---------|------------|----------|
|         | Sampled   | interval  | Coal     | As rece | eived va | lues-%    | Heating     | values   | - Btu     |         | Volatile   | Apparent |
| Bed     |           |           | thick-   | Total   |          |           | As          |          |           | MMM     | matter     | specific |
| number  | Top       | Bottom    | ness     | sul fur | Ash      | Moisture  | received    | Dry      | DAF       | free    | (DAF-%)    | gravity  |
| A (2-4) | 213.3     | 219.79    | 4.22     | 1.82    | 4.98     | 52.55     | 5,012       | 10,590   | 11,810    | 5,200   | 57.92      | 1.26     |

Note.--To convert Btu (British thermal unit) heating values to kilogram-calories multiply by .556.

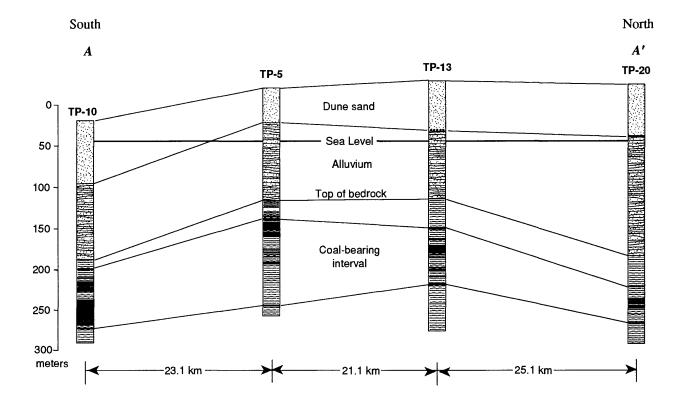
Table 2-21. Selected coal-analyses values from drill hole TP-30, Thar Desert, Sindh Province, Pakistan

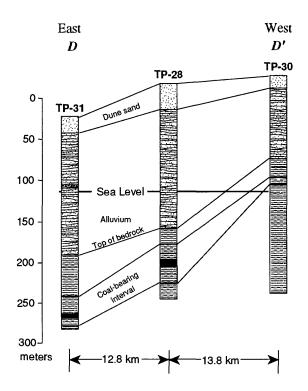
[Analyses of 2 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]

|        |            |          |        |         | Coal    | -sample an | alyses   |        |        |       |          |          |
|--------|------------|----------|--------|---------|---------|------------|----------|--------|--------|-------|----------|----------|
|        | Sampled in | nterval  | Coal   | As rece | ived va | lues-%     | Heating  | values | - Btu  |       | Volatile | Apparent |
| Sample |            |          | thick- | Total   |         |            | As       |        |        | MMM   | matter   | specific |
| number | Top        | Bottom   | ness   | sul fur | Ash     | Moisture   | received | Dry    | DAF    | free  | (DAF-%)  | gravity  |
| 1      | 123.28     | 123.93   | 0.65   | 1.31    | 7.17    | 46.01      | 4,615    | 9,665  | 11,373 | 4,893 | 58.59    | 1.39     |
| 2      | 131.24     | 132.11   | 0.87   | 1.68    | 6.6     | 47.77      | 4,483    | 9,745  | 11,376 | 4,690 | 56.32    | 1.35     |
|        |            | Total    | 1.52   |         |         |            |          |        |        |       |          |          |
|        | Weighted   | averages |        | 1.52    | 6.84    | 47.02      | 4,539    | 9,711  | 11,375 | 4,777 | 57.29    | 1.37     |
|        |            |          |        |         | Coal    | -bench ana | lyses    |        |        |       |          |          |

| [Values | are weig | hted aver | ages for | samples | from ea  | ch bench; | in parenth | eses are | numbers of | sample | s in each | bench]   |
|---------|----------|-----------|----------|---------|----------|-----------|------------|----------|------------|--------|-----------|----------|
|         | Sampled  | interval  | Coal     | As rec  | eived va | lues-%    | Heating    | values   | - Btu      |        | Volatile  | Apparent |
| Bench   |          |           | thick-   | Total   |          |           | As         |          |            | MMM    | matter    | specific |
| number  | Top      | Bottom    | ness     | sul fur | Ash      | Moisture  | received   | Dry      | DAF        | free   | (DAF-%)   | gravity  |
| 1 (1)   | 123.28   | 123.93    | 0.65     | 1.31    | 7.17     | 46.01     | 4,615      | 9,665    | 11,373     | 4,893  | 58.59     | 1.39     |
| 2 (1)   | 131.24   | 132.11    | 0.87     | 1.68    | 6.6      | 47.77     | 4,483      | 9,745    | 11,376     | 4,690  | 56.32     | 1.35     |
|         |          | Total     | 2.35     |         |          |           |            |          |            |        |           |          |
|         | Weighted | averages  |          | 1.52    | 6.84     | 47.02     | 4,539      | 9,711    | 11,375     | 4,777  | 57.29     | 1,37     |

Table 2-22. Selected coal-analyses values from drill hole TP-31, Thar Desert, Sindh Province, Pakistan


[Analyses of 5 coal samples by the Pakistan Council of Scientific and Industrial Research Fuel Research Centre, Karachi; DAF, dry, ash free; MMM, moist, mineral matter; depths and thicknesses in meters; drill-hole locations are shown on figure 2]


|                  | Coal-sample analyses |          |        |                      |       |          |          |           |          |          |         |          |
|------------------|----------------------|----------|--------|----------------------|-------|----------|----------|-----------|----------|----------|---------|----------|
|                  | Sampled              | interval | Coal   | As received values-% |       |          | He       | ating val | Volatile | Apparent |         |          |
| Sample<br>number |                      |          | thick- | Total                |       |          | As       |           |          | MMM      | matter  | specific |
|                  | Тор                  | Bottom   | ness   | sul fur              | Ash   | Moisture | received | Dry       | DAF      | free     | (DAF-%) | gravity  |
| 1                | 217.62               | 218.12   | 0.5    | 2.72                 | 14.35 | 44.79    | 4,620    | 8,367     | 11,305   | 5,213    | 57.01   | 1.56     |
| 2A               | 239.1                | 240.1    | 1      | 2.65                 | 7.96  | 47.05    | 5,334    | 10,073    | 11,856   | 5,602    | 56.2    | 1.29     |
| 2B               | 240.1                | 241.1    | 1      | 10.59                | 18.25 | 46.29    | 3,627    | 6,752     | 10,228   | 3,597    | 59.02   | 1.86     |
| 20               | 241.1                | 241.97   | 0.87   | 1.23                 | 5.2   | 52.4     | 5,265    | 11,059    | 12,417   | 5,473    | 56.33   | 1.34     |
| 3                | 243.32               | 244.56   | 1.24   | 0.73                 | 5.05  | 48.17    | 5,383    | 10,386    | 11,508   | 5,632    | 55.08   | 2.13     |
|                  |                      | Total    | 4.49   |                      |       |          |          |           |          |          |         |          |
|                  | Weighted             | averages |        | 3.6                  | 9.58  | 47.95    | 4.886    | 9.438     | 11,455   | 5,109    | 56.62   | 1.68     |

| [Value | es are weig | hted ave | rages fo | r sample: | s from e             | ach bench; | in parent | heses are | numbers | of sampl | es in each | bench]   |
|--------|-------------|----------|----------|-----------|----------------------|------------|-----------|-----------|---------|----------|------------|----------|
|        | Sampled     | interval | Coal     | As rec    | As received values-% |            |           | ating val |         | Volatile | Apparent   |          |
| Bench  |             |          | thick-   | Total     |                      |            | As        |           |         | MMM      | matter     | specific |
| number | Top         | Bottom   | ness     | sulfur    | Ash                  | Moisture   | received  | Dry       | DAF     | free     | (DAF-%)    | gravity  |
| 1 (1)  | 217.62      | 218.12   | 0.5      | 2.72      | 14.35                | 44.79      | 4,620     | 8,367     | 11,305  | 5,213    | 57.01      | 1.56     |
| 2 (3)  | 239.1       | 241.97   | 2.87     | 4.99      | 10.71                | 48.4       | 4,718     | 9,215     | 11,459  | 4,864    | 57.22      | 1.5      |
| 3 (1)  | 243.32      | 244.56   | 1.24     | 0.73      | 5.05                 | 48.17      | 5,383     | 10,386    | 11,508  | 5,632    | 55.08      | 2.13     |
|        |             | Total    | 4.49     |           |                      |            |           |           |         |          |            |          |
|        | Weighted    | averages |          | 3.6       | 9.58                 | 47.95      | 4,886     | 9,438     | 11,455  | 5,109    | 56.62      | 1,68     |

| [Value | s are wei | ghted ave | rages of | samples | from  | each bed; | in parenthes | es are c | oal-bench  | numbers  | included i | n beds]  |
|--------|-----------|-----------|----------|---------|-------|-----------|--------------|----------|------------|----------|------------|----------|
|        | Sampled   | interval  | Coal     | As rece | eived | values-%  | He           | ating va | lues - Btu | <u> </u> | Volatile   | Apparent |
| Bed    |           |           | thick-   | Total   |       |           | As           |          |            | MMM      | matter     | specific |
| number | Top       | Bottom    | ness     | sulfur  | Ash   | Moisture  | received     | Dry      | DAF        | free     | (DAF-%)    | gravity  |
| A(2,3) | 239.1     | 244.56    | 4.11     | 3.7     | 9     | 48.33     | 4,919        | 9,568    | 11,474     | 5,096    | 56.58      | 1.69     |

| THE PERSONNEL PROPERTY AND RESIDENCE OF THE PERSONNEL PROPERTY AND ADDRESS OF THE PERSONNEL PROPERTY AND ADD |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPENDIX 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Structural cross sections A-A' through H-H' across the Thar coal field, Sindh Province, Pakistan. The eight cross sections are on five figures; figures 3-1 through 3-5. The datum is sea level for all cross sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





**Figure 3-1.** Structural cross sections A-A' and D-D'; lines of cross sections are shown on figure 2. Elevations, depths to geologic contacts and coal beds, and total depths of the drill holes shown may be found on the large-scale stratigraphic columns of these drill holes in appendix 1.

83

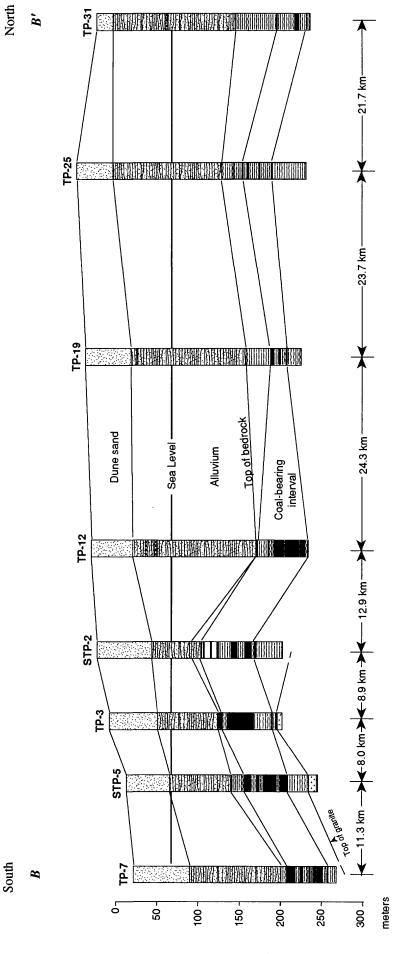



Figure 3-2. Structural cross section B-B'; line of cross section is shown on figure 2. Elevations, depths to geologic contacts and coal beds, and total depths of the drill holes shown may be found on the large-scale stratigraphic columns of these drill holes in appendix 1.

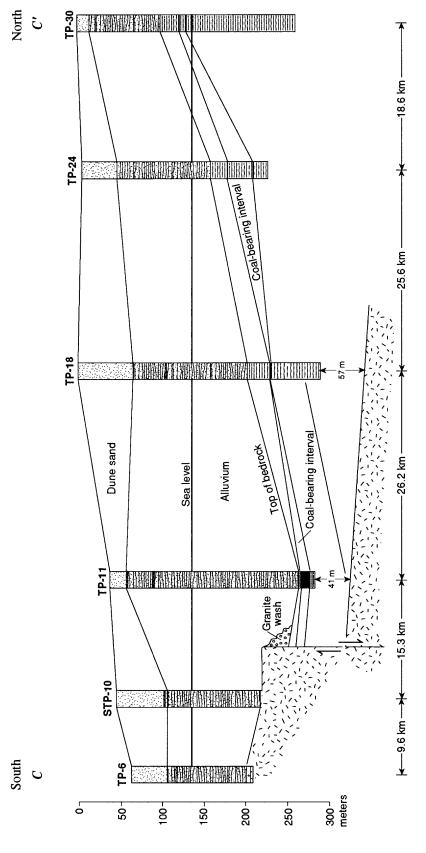
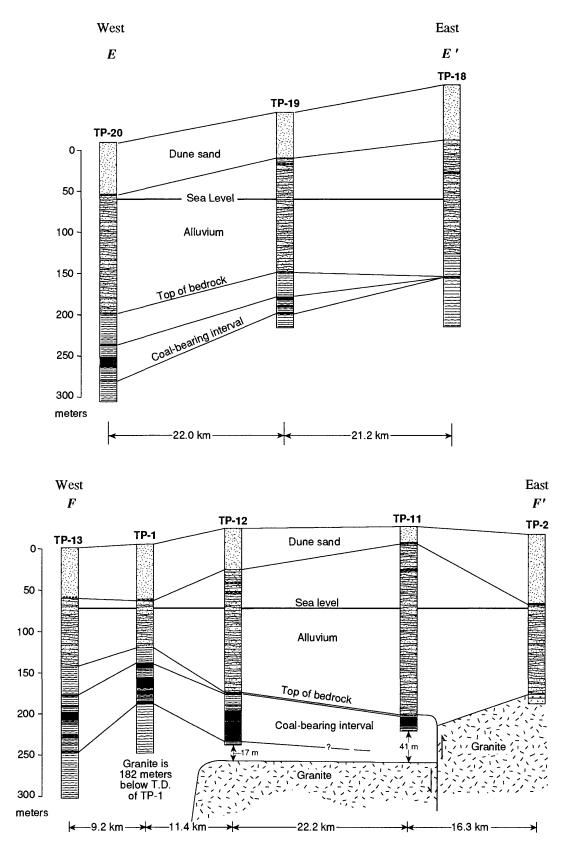
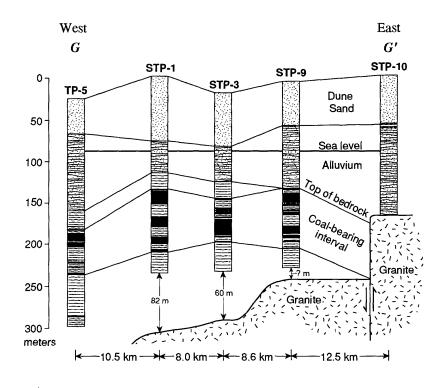
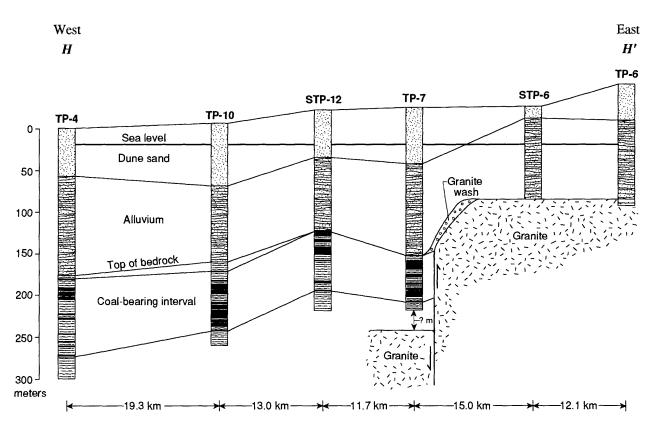






Figure 3-3. Structural cross section C-C'; line of cross section is shown on figure 2. Elevations, depths to geologic contacts and coal beds, and total depths of the drill holes shown may be found on the large-scale stratigraphic columns of these drill holes in appendix 1.



**Figure 3-4.** Structural cross sections E-E' and F-F'; lines of cross sections are shown on figure 2. Elevations, depths to geologic contacts and coal beds, and total depths of the drill holes shown may be found on the large-scale stratigraphic columns of these drill holes in appendix 1.





**Figure 3-5**. Structural cross sections G-G'and H-H'; lines of cross sections are shown on figure 2. Elevations, depths to geologic contacts and coal beds, and total depths of the drill holes shown may be found on the large-scale stratigraphic columns of these drill holes in appendix 1.