U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

BIBLIOGRAPHY ON THE OCCURRENCE, PROPERTIES, AND USES OF
ZEOLITES FROM SEDIMENTARY DEPOSITS, PRE-1985

by

Richard A. Sheppard and Evenne W. Sheppard

Open-File Report 94-294-A

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Denver, Colorado
1994
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Description of bibliography</td>
<td>1</td>
</tr>
<tr>
<td>Zeolite bibliography</td>
<td>3</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY ON THE OCCURRENCE, PROPERTIES, AND USES OF ZEOLITES FROM SEDIMENTARY DEPOSITS, PRE-1985

by

Richard A. Sheppard and Evenne W. Sheppard

ABSTRACT

This bibliography is an alphabetical listing of about 3,000 publications and formal releases, including patents and selected abstracts, from the world literature on the occurrence, properties, and uses of zeolites from sedimentary deposits for the period prior to 1985. The bibliography is available as hard copy or on a 3.5-inch floppy diskette, which was prepared on a Macintosh computer using EndNote Plus software. Computer searches of the bibliography can be made by author, year, title, journal, publisher, and keywords.

INTRODUCTION

Zeolites were discovered more than two centuries ago, and nearly 50 distinct species now have been recognized. Numerous zeolites also have been synthesized, but most have no natural counterparts. Zeolites occur in rocks that are diverse in lithology and age, and they have formed in many different geological environments. The most common and perhaps best known zeolite occurrences are in the cavities and fractures of igneous rocks, particularly basaltic rocks. Most of the large, attractive zeolite specimens in museum collections have been obtained from igneous rocks. In recent years, zeolites have been recognized as important rock-forming constituents in low-grade metamorphic rocks and in various sedimentary rocks, particularly rocks that were originally rich in vitric material. The zeolites in sedimentary rocks are very finely crystalline and do not appeal to mineral collectors, but deposits of this type are voluminous and have economic potential for many industrial, environmental, and agricultural processes.

DESCRIPTION OF BIBLIOGRAPHY

This compilation is an alphabetical listing of about 3,000 publications and formal releases, including patents and selected abstracts, from the world literature on the occurrence, properties, and uses of zeolites from sedimentary deposits for the period prior to 1985. Certain bibliographic entries concerning the properties of zeolites from other geologic settings and the results of laboratory syntheses have been included herein because these reports supplement our understanding of natural zeolites in sedimentary environments. Another compilation for publications that were released during 1985-1992 is available as U.S. Geological Survey Open-File Report 93-570-A and B.

The bibliography is available as hard copy or on a 3.5-inch floppy diskette. The diskette was prepared on a Macintosh computer using EndNote Plus software. EndNote Plus works with Macintosh models 512KE and up, and System 4.2 or later. To perform bibliographic searches of the diskette, either the EndNote Plus program or the less-expensive but limited EndNote Plus demonstration disk must be installed on a Macintosh computer. New bibliographic references can be added with the EndNote Plus program but
cannot be added with the demonstration disk. Searches can be made by author, year, title, journal, publisher, or keywords.

The keywords added to each bibliographic entry include the zeolite name as well as terms relating to the fields of geology, properties, and uses. Keywords under geology are the following: formation name and age of the host rock, lithology (includes tuff, sandstone, shale or mudstone, and carbonate), depositional environment (includes fluvial, lacustrine, marine, subaerial, soil, and hydrothermal or geothermal), location (includes country and state), and resources. The keywords under properties are the following: chemical composition, cell dimensions, refractive indices, cation exchange, adsorption, isotopes, heating, synthesis, and modification. Keywords under uses are the following: agriculture (includes plant, animal, and aquaculture), rad (radioactive) waste, pollution, energy, building materials, beneficiation, and health. Search items can be combined by using the Boolean And, Or, and Not features.

Alberti, A. (1979). "Possible 4-connected framework with 4-4-1 unit found in heulandite, stilbite, brewsterite, and scapolite." American Mineralogist 64: 1188-1198.

Aleshin, E. P., G. M. Belonenko, V. Vakulenko, A. A. Vernichenko, et al. (1980). "Composition for developing an

such as air by adsorption." Germany Offen. Pat. DE 3.150.688 : 39 p.

Anakchyan, E. K., M. M. Dubinin and A. A. Isirikyan (1978). "Thermostability of aquacomplexes with alkaline and

Tseolitov : 227-231.

135-139.

reaction between portland cement and clinoptilolite." Advances in Ceramics : 429-440.

absorption spectra of adsorbed molecules of ammonia, anthracene, and diphenylamine." Azerbaidzhanskii Khimicheskii Zhurnal (5): 14-16.

oxide (Cr₂O₃) and lanthanum oxide (La₂O₃)." Doklady Akademii Nauk Azerbaidzhanskoii SSR 39(6): 40-43.

Azerbaidzhanskii Khimicheskii Zhurnal (1): 53-56.

Azerbaidzhanskii Khimicheskii Zhurnal (6): 115-117.

Banerjee, S. P. (1980). “Sorption and desorption studies of crystal violet and malachite green on and from synthetic

Bilotta, G. and P. Vallero (1984). "Removal of ammonium ion by chemical treatment and zeolites." Cuoio, Pelli...

Fedorov, N. F., L. V. Kozhevnikova, O. E. Lugina and V. B. Borisova (1984). “Zeolites as an effective additive for...

Survey Professional Paper 400-B: B302-B304.

Gilbert, C. M. and M. G. Mc Andrews (1948). “Authigenic heulandite in sandstone, Santa Cruz County, California.”

Gorokhov, V. K., P. M. Lyan, E. N. Isaeva, L. I. Kalacheva and E. V. Sichkar (1980). "Possible use of natural sorbents in

International Geological Congress. 19-52.

Jolly, W. T. (1971). Zeolite and prehnite-pumpellyite facies in the Keweenawan basalts of northern Michigan (Pt.) 2, The role of volatiles (abs.). *17th Annual Institute on Lake Superior Geology.* Duluth, Minnesota, University of Minnesota, Duluth, Minnesota. 34.

Kane, U. T. and M. Slaughter (1966). "The crystal structure of the zeolite epistilbite, Ca$_3$Al$_6$Si$_{18}$O$_{48}$·15 H$_2$O [abs.]." American Mineralogist 51: 264.

Technologia de Alimentas 24(2): 286-288.

Technologia de Alimentas 24(2): 286-288.

Nakajima, W., M. Aki and S. Kinoshita (1984). “Analcime-group zeolites in the system $\text{Na}_2\text{Al}_2\text{Si}_5\text{O}_{14}\cdot\text{H}_2\text{O}$ (high silica analcime)-$\text{CaAl}_2\text{Si}_4\text{O}_{12}\cdot\text{H}_2\text{O}$ (wairakite).” *Kenkyu Shuroku–Kobe Daigaku Kyoikugakubu* 72: 105-121.

Zeolite Bibliography (Pre-'85)

Zeolite Bibliography (Pre-'85)

Shimazu, M. and T. Kawakami (1967). "Distribution of zeolite and other minerals in the Maze basalts, Niigata

Thompson, A. B. (1971). “\(P_{CO_2}\) in low grade metamorphism; zeolite, carbonate, clay mineral, prehnite relations in the system \(CaO-Al_2O_3-SiO_2-CO_2-H_2O\).” Contributions to Mineralogy and Petrology 33: 145-161.

Van Houten, F. B. (1962). "Cyclic sedimentation and the origin of analcime-rich upper Triassic Lockatong Formation,

Yankov, M., K. Dimitrov, T. Bezukhanova and V. Nenova (1982). "IR spectroscopic study of the structure and acid

