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FIGURES

Figure 1. Ground-water study site on Cape Cod, Massachusetts, showing the location
of the contaminant plume and the screened well used in the well-purging
EXPEIIITIENL. ..eiuiieueiiieieerteeteeeeeeeteettesee et e s atesseeaseesasestseeanasbasseseanaessunaesaesnne

2. Diagram of well and multilevel sampler layout for well-purging experiment:
A. cross-sectional view, B. plan VIEW. ........occcciiiiiiiiiininceee e



CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATED
WATER-QUALITY UNITS

Multiply By To Obtain
inch (in.) 254 millimeter
foot (ft) 0.3048 meter
mile (mi) 1.609 kilometer
square foot (ft2) 0.0929 square meter
acre 0.4047 square hectometer
gallon (gal) 3.785 liters
cubic foot per second (ft3/s) 0.02832 cubic meter per second

Temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F)
by use of the following equation:
°F = 1.8(°C) + 32

Sea Level: In this report “sea level” refers to the National Geodetic Vertical Datum of 1929
(NGVD of 1929) - a geodetic datum derived from a general adjustment of the first-order level nets
of both the United States and Canada, formerly called Sea Level Datum of 1929.

Abbreviated water-quality units used in this report: Chemical concentrations and water tempera-
ture are given in metric units. Chemical concentration is given in milligrams per liter (mg/L) or
micrograms per liter (Lm/L). Milligrams per liter is a unit expressing the concentration of chemi-
cal constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One
thousand micrograms per liter is equivalent to one milligram per liter. For concentrations less than
7,000 mg/L, the numerical value is the same as concentrations in parts per million.

Specific conductance of water is expressed in microsiemens per centimeter at 25 degrees Celsius

(WS/cm). This unit is equivalent to micromhos per centimeter at 25 degrees Celsius (umho/cm),
formerly used by the U.S. Geological Survey.
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HYDROLOGIC AND CHEMICAL DATA FROM AN
EXPERIMENT TO EXAMINE TEMPORAL VARIABILITY
IN WATER SAMPLES FROM SCREENED WELLS

ON CAPE COD, MASSACHUSETTS
Edited By Thomas E. Reilly

ABSTRACT

An experiment was designed to evaluate the changing chemical composition of the water
pumped from a well screened in a physically and chemically heterogenous aquifer. Well F453-63, at
the U.S. Geological Survey Toxic-Substances Hydrology research site located on Cape Cod,
Massachusetts, was selected because it was known that the screen penetrated both the oxic and anoxic
zones of the sewage plume from the Otis Air Base sewage-disposal sand beds. The experiment was
conducted on August 12, 1992. Well F453-63 was sampled over time as it was pumped continuously,
and three multilevel samplers were used to document the vertical distribution of selected chemicals in
the ground water in the immediate vicinity of the well. All water samples collected during the
experiment were analyzed in the field for specific conductance and pH. The samples were
subsequently analyzed for concentrations of ferrous iron (Fe*z), total iron, boron, calcium, chloride,
phosphorus, potassium, magnesium, manganese, sodium, zinc, and nitrogen species (including
nitrous oxide, ammonium, nitrite and nitrate). The results of these chemical analyses along with
appropriate physical measurements of the site and aquifer material are documented in this data report.

INTRODUCTION
by Thomas E. Reilly

Water that enters a well through a well screen is derived from layers of porous material. These
layers have different thicknesses and areal extents and can be characterized by different physical
properties, such as hydraulic conductivity, and chemical properties. Layers defined by one property
may not coincide with those defined by a different property. The water withdrawn from the well is a
composite of the waters present in these different layers along the length of the screen. The length of
well screens can span vertical distances shorter than 1 foot or longer than a hundred feet. The rate of
water withdrawn from each layer is variable and depends on the hydraulic conductivity, screen
placement, pump-intake placement, and other factors.



Wilson and Rouse (1983), Rivett and others (1990), Gibs and Imbrigiotta (1990), Reilly and Gibs
(1993), and others have observed that chemical concentrations of various constituents can change in
the water discharging from a well over the time of sampling. Reilly and Gibs (1993) simulated a
hypothetical system to illustrate that the composition of water discharging over time from a
physically and chemically heterogeneous aquifer can change over time depending on the distribution
of the chemical constituents of the water and the hydraulic conductivity of the aquifer. They showed
that changes over time are not necessarily due to the evacuation of the stagnant water in the well
casing but can also be due to the transport of the chemical constituents through the aquifer to the well.

The purpose of this report is to present the data collected from an experiment performed at Cape
Cod, Mass., to test the hypotheses that (1) the observed concentration of constituents in the water
sampled from a screened well is due to the flux of these constituents into the well as determined by
the hydraulic conductivity and chemical distribution near the well, and (2) the flux of these
constituents can change during pumping due to the flow and transport of the chemicals in the aquifer
near the screen.

EXPERIMENTAL DESIGN
by Thomas E. Reilly and Denis R. LeBlanc

The experiment was designed to evaluate the changing chemical composition of the water
discharged from a well screened in a physically and chemically heterogenous aquifer. Well F453-63,
at the U.S. Geological Survey Toxic-Substances Hydrology research site located on Cape Cod,
Massachusetts, was selected because it was known that the screen penetrated both the oxic and anoxic
zones of the sewage plume from the Otis Air Base sewage-disposal sand beds (fig. 1). The ground-
water chemistry differs in the oxic and anoxic zones (Kent and others, 1994), thereby providing a
heterogeneous chemical environment along the screened interval of well F453-63. Three multilevel
samplers were installed near well F453-63 to describe the chemical distribution in the immediate
vicinity of the screened well (fig. 2).

WELL AND MULTILEVEL SAMPLER INSTALLATION
by Stephen P. Coppola and Denis R. LeBlanc

Well F453-63 is constructed of 2.067-inch inside-diameter (ID) flush-jointed threaded polyvinyl
chloride (PVC) pipe with four sections of 9-ft-long 0.010-inch-slotted PVC screens (Appendix 1).
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The screen extends from an altitude of 4.7 to 43.7 ft above sea level. The well was installed by a
drive-and-wash technique to minimize disturbance of the aquifer around the well (Morin and others,
1988). The initial water-table altitude was 44.33 ft above sea level at the time of the test. The volume
of water residing in the casing and screened section of the well is approximately 0.923 fit3,

Three multilevel samplers were installed near well F453-63 (fig. 2). The samplers were installed
by a drive-and-wash technique described by LeBlanc and others (1991). Each multilevel sampler
consists of 15 color-coded polyethylene tubes (0.25-inch outside diameter); however, only 13 or 14
ports on each sampler were located in the saturated zone at the time of the experiment. The tubes run
from land surface down the inside of a 1.25-inch ID PVC casing and out holes spaced every 3.3 ft
drilled through the PVC. The open, down-hole end of each tube is screened with a fine nylon fabric
secured with stainless steel wire.

DISTRIBUTION OF HYDRAULIC CONDUCTIVITY
by Kathryn M. Hess

The horizontal hydraulic conductivity along well F453-63 ranges from 78 to 969 ft/d. These
values of hydraulic conductivity were estimated by means of a field hydraulic test that is a
modification of a standard aquifer test where by a well is pumped and the drawdown is observed in
the well. A highly sensitive, impeller flowmeter is used to measure the discharge within the well at
various points along the screened interval instead of measuring only the total discharge flowing from
the pumped well as is done in a standard aquifer test. The gain in discharge between two flowmeter
measurement points is related to the hydraulic conductivity of the aquifer over that interval. Rehfeldt
and others (1989) presented the details of this method.

The result of this hydraulic test is a profile of hydraulic conductivity which shows the small-scale
vertical variability in horizontal hydraulic conductivity along the screened interval. The 70 values of
hydraulic conductivity estimated at approximately half-foot intervals for well F453-63 are given in
Appendix 2. The screened interval in this well covers 39 ft; this long-screened well was installed
specifically for this hydraulic test. The three breaks in the hydraulic-conductivity profile indicate the
locations of short unscreened sections containing the threaded joints of the casings.

These hydraulic-conductivity data for well F453-63 are a subset of 668 values estimated in wells
within 100 feet of each other estimated by the flowmeter method and previously used to statistically
quantify the variability of hydraulic conductivity in the aquifer (Hess and others, 1992). The
measured hydraulic-conductivity values are similar to those estimates previously reported for this



sand and gravel aquifer based on the results of an aquifer test (Garabedian and others, 1988), a
natural-gradient tracer test (LeBlanc and others, 1991), grain-size analyses (LeBlanc, 1984), and
permeameter measurements of cores (Wolf, 1988). The horizontal-hydraulic-conductivity data vary
by more than one order of magnitude (78 to 969 ft/d) over a vertical interval of less than 40 feet.

WELL PUMPING SYSTEM AND MEASUREMENT OF PUMPING RATE
AND WATER LEVELS
by Denis R. LeBlanc, Paul L. Provencher, Scott A. Boutilier, and Thomas E. Reilly

The experiment was conducted on August 12, 1992. Well F453-63 was sampled over time as it
was pumped continuously, and the multilevel samplers were used to document the vertical
distribution of selected chemicals in the ground water in the immediate vicinity of the well. A
variable-rate submersible Keck! pump (model SP-81 with Teflon discharge tubing) was set 0.6 ft
below the static water level in well F453-63 (about 0.1 ft above the top of the screen). The continuous
discharge from the screened well was measured 15 times during the 5-hour experiment by means of a
graduated cylinder; discharge ranged from 0.047 to 0.051 ft3/min, indicating that a volume equivalent
to one casing volume was pumped about every 20 minutes. Water-level measurements were made
before pumping, just prior to the end of the test, and 30 minutes after the end of the test. Drawdown in
the pumped well, measured with a steel tape, was 0.02 ft after 5 hours of pumping and was
approximately zero 30 minutes after the end of the test.

CHEMICAL ANALYSES OF WATER SAMPLES

The long-screened well F453-63 was pumped for 5 hours. The first sample was collected 5
minutes after discharge began. Samples were then collected every 10 minutes for the first 2 hours, and
every 15 minutes for the remaining 3 hours. Water samples were collected from the three multilevel
samplers before and after the test to observe any changes in concentrations in the immediate vicinity
of the well screen. Multilevel sampler F453M2 was also sampled halfway through the experiment.
All water samples were analyzed in the field for specific conductance and pH. The samples were
subsequently analyzed for concentrations of ferrous iron (Fe+2), total iron, boron, calcium, chloride,
phosphorus, potassium, magnesium, manganese, sodium, zinc, and nitrogen species (including
nitrous oxide, ammonium, nitrite and nitrate).

IThe use of brand names in this report is for identification purposes only and does not constitute endorsement by
the U.S. Geological Survey.



Water samples were collected from the pumped well in a 1-L polyethylene bottle that had been
rinsed twice with the pumped water prior to collection of the sample. Part of the sample was decanted
immediately onsite into a 60-mL bottle and preserved for later analysis of Fe*?. The remainder of the
sample was split as soon as possible at a nearby field laboratory later in the day into other bottles for
separate analysis of specific constituents. The sample for nitrous oxide was collected by filling a 30-
mL syringe directly from the discharge tubing from the pump and injecting the water from the syringe
into a sealed serum bottle.

Water samples were collected from the multilevel samplers by pumping each port separately with
a peristaltic pump fitted with Norprene tubing that could be connected directly to the sampler tubes.
About 400 mL, about twice the volume of water standing in the tube of the deepest port, was pumped
first, and this water was used to rinse a 1-L polyethylene bottle. The bottle was then filled to the top,
and the sample was split into other bottles for specific analyses as described for the pumped-well
samples. The sample for nitrous oxide was collected by filling the 30-mL syringe directly from the
Norprene tubing on the peristaltic pump.

Immediate splitting of all the samples from the 1-L polyethylene bottle (not just the Fe*?) and
analysis of pH and specific conductance would have been possible. However, samples warmed
quickly on the hot summer day and measurement of the temperature-sensitive parameters was
difficult. An additional consideration was that 968 sample bottles needed to be filled (some filtered
and preserved) and it was impossible to process the samples as quickly as they were collected. It was
decided before the test was begun that the stable climate and sample preparation facilities in the
nearby laboratory would produce more consistent pH measurements, and keep sample splitting and
preparation manageable. The samples were handled in the nearby laboratory as quickly as possible,
and all samples were split and the specific conductance and pH analyzed within hours after collection.
However, for stability considerations, the ferrous iron (Fe+2) sample was filtered and preserved
immediately on site.

Measurement of specific conductance and pH
by Denis R. LeBlanc and Thomas E. Reilly

At the nearby field laboratory, 60-mL polyethylene bottles for specific conductance and pH
analyses were rinsed once with the sample from the 1-L bottles and filled. The pH sample bottle was
overfilled so that there was no headspace. The samples were allowed to come to room temperature
and were analyzed later the same day.



The specific conductance was measured with a HACH model 44600 conductivity meter. The
probe was rinsed with the sample and inserted directly into the bottle to make the measurement. The
specific conductance measurements for the pumped well are given in Appendix 3 and for multilevel
samplers F453M1, F453M2, and F453M3 are given in Appendix 4a, 4b, and 4c, respectively.

The pH was measured with a Beckman model 011 meter and an Orion 81-72B pH probe. The
pH probe was inserted directly into the sample bottle, and the millivolt reading was recorded after it
stabilized (usually within 3 to 4 minutes). The millivolt readings were then converted to pH using a
relation between millivolts and pH that had been determined with standards for each set of samples.
The relation was obtained by linear regression of measurements of the millivolt readings of standard
buffer solutions (pH 4 and 7) before and after each set of samples (each set usually consisted of all
samples from a multilevel sampler at a given time of collection) against the known pH of the buffers.
The pH measurements for the pumped well are given in Appendix 3 and for multilevel samplers
F453M1, F453M2, and F453M3 are given in Appendix 4a, 4b, and 4c, respectively.

Chemical analysis of ferrous iron
by Kimberly W. Bussey and Douglas B. Kent

Samples for ferrous iron were collected and acidified on site. Within 5 minutes of the
collection of the water sample in a 1-L bottle, about 40 to 50 mL of sample was filtered (0.45 pm
filter) into a 60-mL bottle that had been rinsed with about 10 mL of filtered sample. To reduce the rate
of oxidation of Fe*?, samples were acidified with 100 uL of 6N hydrochloric acid (HCI). These
samples were then analyzed within 2 weeks using spectrophotometric determination.

Samples were diluted with deionized water, to fall within a concentration range of Oto 1 ppm,
at a ratio of 1:50 into smaller vials. The total volume of solution was 10 mL. To each vial, 0.4 mL of
Ferrozine reagent (1.5 mM) and 1 mL of buffer solution were added. The absorbance was determined
at 562 nm wavelength in 1 cm cells. Standards were run before and after groups of about 8 to 14
samples. The absorbance measured was corrected for minor instrument drift and then converted to
concentration by a linear regression that was determined from the standards run before and after each
set. The ferrous iron concentrations are given in Appendix 5 and Appendix 6 for the pumped well and
the multilevel samplers, respectively.



Chemical analysis of boron, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium,
and zinc
by Linda D. Anderson

The samples for the cation determinations were collected in 60 mL bottles and acidified. This
entailed rinsing the bottle with sample from the 1-L bottle, rinsing the filter with the sample, filtering
the sample (0.45 um filter) into bottle, and then adding 100 uL. HCL (6N trace-metal grade) to the
sample. The samples were refrigerated and sent to the laboratory. The analyses were done using an
Inductively Coupled Plasma Spectrophotometer (Thermal Jarrel Ash, ICAP-AES 61). Detection
limits are listed in Appendix 7. Analytical precision for all the elements except sodium and potassium
is less than 2 percent (20, relative standard deviation) except near the detection limit, where
deviations increase to about 10 percent. Analytical precision for sodium is 10 percent and for
potassium is 25 percent. The cation results for the water from the pumped well are given in Appendix
8. The results for multilevel samplers F453M1, F453M2, and F453M3 are given in Appendices 9a,
9b, and 9c, respectively.

Chemical analysis of nitrous oxide, ammonium, nitrate, and nitrite
by Myron H. Brooks

Nitrate, nitrite, ammonium, and nitrous oxide determinations were performed on all water
samples. Water samples for nitrate, nitrite, and ammonium analyses were filtered (0.45 pm filter)
from the 1-L bottle, and the filtrate was collected in 60-mL bottles. The water sample for nitrate and
nitrite analysis was preserved by freezing, and the sample for ammonium analysis was preserved by
addition of 200 pHL of concentrated sulfuric acid. A sample for nitrous oxide analysis was collected in
a 50-mL serum bottle capped with a butyl-rubber stopper. The bottle contained 330 uL of 12.5 N
NaOH as a preservative. The water sample was collected by filling a 30-mL syringe using positive
pressure supplied by the Keck or peristaltic pump, outfitting the syringe with a 22-gauge needle,
adjusting the volume of the syringe to 25 mL, and injecting the sample through the butyl-rubber
stopper.

Nitrate, nitrite, and ammonium concentrations were measured by using automated
colorimetric methods. Nitrate concentrations were measured by cadmium reduction followed by
diazotization with sulfanilamide and coupling with N-(1-napthyl) ethylenediamine; nitrite
concentrations were measured by the same technique without the cadmium reduction. Ammonium
concentrations were measured by reaction with hypochlorous acid and salicylate in the presence of
nitroferricyanide. Detection limits, precision, and accuracy for all three analytical techniques were



estimated by Antweiler and others (in press). Nitrous oxide concentrations were measured by
injecting headspace samples into a gas chromatograph equipped with an electron capture detector.
The instrument was calibrated with standard gas mixtures, and aqueous concentrations were
calculated on the basis of empirical solubility relations. Precision of this method was estimated from
replicate analysis to be 0.33 uM. The nitrogen species concentrations in the water from the pumped
well are given in Appendix 5, and from the multilevel samplers F453M1, F453M2, and F453M3, in
Appendices 10a, 10b, and 10c, respectively.

Chemical analysis of chloride
by Raymond L. Van Hoven and Rosalynd A. Williams

The water samples for chloride analysis were obtained from the 1-L bottles. The samples were
filtered (0.45 pm filter) into 60-mL bottles. The analyses were done by ion chromatography using a
Dionex Series 40001 instrument with suppressed conductivity detection and an eluent degas module
operating under standard conditions for inorganic-ion analysis. Calibration standards of 12.5, 25.0,
and 50.0 mg/L were prepared by serial dilution of a 1,000 mg/L stock solution. Analytical precision
under the selected operating conditions was evaluated by six replicate analyses of a 25 mg/L standard.
The relative standard deviation was 0.5 percent. The estimated detection limit is 25 pg/L.

All samples were filtered through an in-line 0.2 im Nuclepore polycarbonate filter during the
injection. A calibration standard was run after every five samples to correct for any calibration drift.
Chloride concentrations for the water from the pumped well are given in Appendix 5, and from the
multilevel samplers F453M1, F453M2, and F453M3, in Appendix 11.

SUMMARY

An experiment was conducted on August 12, 1992, to examine the concentration of various chemical
constituents during purging of a 2-inch well with a 39-ft-long screened interval. The purpose of the
experiment was to examine the hypothesis that the distributions of hydraulic conductivity and
chemical concentrations near a well affect the concentrations in water pumped from the well as it is
purged. The data collected and the results of the chemical analysis of the water samples are presented
in this data summary report.
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Appendix 1. -- Construction information for well F453-63

Land-surface altitude, in feet above sea level: 67.45 ft
MP (Measuring Point) height: 1.50 ft
MP altitude: 68.95 ft

Well has four lengths of 0.010-inch-slotted screen that are nominal 2-inch ID PVC pipe with
flush-jointed threaded connections.

Screen Depth below land surface, in ft Depth below MP, in ft Altitude, in ft
Section
No. Top Bottom Top Bottom Top Bottom
1 23.78 32.78 25.28 34.28 43.67 34.67
2 33.82 42.79 35.32 4429 33.63 24.66
3 43.83 52.80 45.33 54.30 23.62 14.65
4 53.78 62.75 55.28 64.25 13.67 4,70
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Appendix 2. Hydraulic conductivities along well F453-63 as estimated by the flowmeter method

Interval Altitude, in ft c?ﬁiﬁléiy Interval Altitude, in ft Clc;lrzlt(li;zﬁ]\fty
Top Bottom Middle in ft/d Top Bottom Middle in ft/d
43.57 4245 43.0 293 23.46 2297 23.2 413
42.45 41.96 422 518 2297 22.44 22.7 413
41.96 4144 41.7 969 22.44 2195 22.2 305
41.44 40.94 41.2 754 2195 21.46 21.7 345
40.94 40.45 40.7 257 21.46 20.96 21.2 181
40.45 39.96 40.2 261 20.96 2044 20.7 279
39.96 39.44 39.7 215 2044 19.95 20.2 500
39.44 38.94 39.2 180 19.95 19.46 19.7 372
38.94 38.45 38.7 304 19.46 18.96 19.2 471
3845 37.96 38.2 287 18.96 18.44 18.7 360
37.96 37.47 377 137 18.44 17.95 18.2 97.0
37.47 36.94 37.2 251 17.95 1745 17.7 78.1
36.94 36.45 36.7 111 17.45 16.96 17.2 208
36.45 3596 36.2 89.8 16.96 16.44 16.7 145
35.96 3547 357 90.6 16.44 1594 16.2 151
3547 34.94 352 340 15.94 15.45 15.7 159
34.94 34.45 34.7 177 1545 14.96 15.2 177
33.46 32.94 332 256 14.96 14.44 14.7 258
32.94 3245 327 625 13.45 12.96 13.2 370
32.45 31.95 32.2 399 12.96 1243 12.7 159
31.95 31.46 31.7 360 1243 11.94 12.2 234
31.46 30.94 31.2 192 11.94 11.45 11.7 282
30.94 3045 30.7 219 11.45 10.96 11.2 257
3045 29.95 302 200 10.96 10.47 10.7 358
29.95 29.46 29.7 221 10.47 9.94 10.2 488
29.46 28.94 29.2 236 9.94 945 9.7 282
28.94 28.44 28.7 267 9.45 8.96 9.2 287
28.44 27.95 28.2 329 8.96 8.46 8.7 298
2795 27.46 27.7 297 8.46 7.94 8.2 244
27.46 26.94 272 353 7.94 7.45 7.7 162
26.94 26.44 26.7 491 7.45 6.96 7.2 134
26.44 25.95 26.2 326 6.96 6.46 6.7 118
2595 25.46 25.7 239 6.46 5.94 6.2 193
25.46 2493 25.2 321 594 5.45 57 191
2493 24.44 247 387 5.45 5.02 52 208
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Appendix 3. -- Change in pH and specific conductance over time in water from well F453-63,
August 12,1992

Specific
Time pH Conductance
(uS/cm)
1035 6.22 329
1040 6.32 330
1050 6.33 337
1100 6.33 332
1110 6.31 331
1120 6.32 331
1130 6.32 331
1140 6.31 331
1150 6.31 330
1200 6.30 329
1210 6.30 329
1220 6.30 330
1230 6.29 333
1245 6.29 330
1300 6.29 327
1315 6.26 328
1330 6.29 325
1345 6.29 329
1400 6.31 327
1415 6.27 326
1430 6.29 327
1445 6.29 327
1500 6.29 330
1515 6.30 327
1530 6.25 328
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Appendix 5. -- Concentrations of chloride, ferrous iron and nitrogen species over time in the
water from well F453-63.

Time Chloride Nitrous Ammonium Nitrite Nitrate Ferrous
(mg/L) Oxide (UM) (ug/L-N) (mg/L-N) (mg/L-N)  Iron (mg/L)
1035 37.5 50 370 0.01 3.16 2.8
1040 37.3 42 460 0.02 2.27 8.0
1050 36.7 5.1 420 0.06 3.08 8.4
1100 36.5 5.1 400 0.08 3.69 79
1110 36.4 5.6 600 0.09 3.92 79
1120 36.1 53 510 0.09 2.82 7.6
1130 36.8 5.4 490 0.10 4.31 7.9
1140 36.1 5.5 490 0.10 4.35 7.4
1150 35.8 52 370 0.10 4.66 7.3
1200 36.1 6.0 370 0.10 4.73 8.1
1210 35.9 5.4 520 0.10 5.12 7.0
1220 35.8 5.4 360 0.10 5.02 7.0
1230 36.2 5.6 380 0.12 438 7.0
1245 36.0 5.8 360 0.10 4.98 7.0
1300 355 5.5 530 0.10 5.08 6.8
1315 35.7 5.8 310 0.11 4.67 6.2
1330 35.2 5.5 470 0.10 5.00 6.0
1345 354 5.1 430 0.11 4.94 6.1
1400 35.5 53 440 0.10 4.97 6.4
1415 35.2 53 310 0.10 5.04 6.3
1430 353 5.5 320 0.11 4.74 6.0
1445 354 5.0 330 0.10 4.82 6.2
1500 354 57 310 0.11 4.93 5.8
1515 35.0 5.1 350 0.10 5.11 6.2
1530 353 5.7 na® na na 54

a. not analyzed
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Appendix 7. Detection limits for cation analyses.

Detection limit

Element (mg/L)

Boron 0.01
Calcium 0.01
Iron 0.01
Magnesium 0.04
Manganese 0.01
Phosphorus 0.1

Potassium 0.4

Sodium 0.1

Zinc 0.01
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