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INTRODUCTION

The Mount Baker 30- by 60-minute quadrangle encompasses rocks and structures that represent the essence of
North Cascade geology. The quadrangle is mostly rugged and remote and includes much of the North Cascade
National Park and several dedicated Wilderness areas managed by the U.S. Forest Service. Geologic exploration
has been slow and difficult. In 1858 George Gibbs (1874) ascended the Skagit River part way to begin the
geographic and geologic exploration of the North Cascades. In 1901, Reginald Daly (1912) surveyed the 49th
parallel along the Canadian side of the border, and George Smith and Frank Calkins (1904) surveyed the United
States' side. Daly's exhaustive report was the first attempt to synthesize what has become an extremely
complicated geologic story.

Modem geologic work began almost a half a century later when, in 1948, Peter Misch began his intensive
study of the range (1952, 1966, and see other references). His insights set the stage for all later work in the North
Cascades. Considerable progress in understanding the North Cascades in light of modern plate tectonic theory has
been made by E.H. Brown and his students. We have used much of their detailed geologic mapping (Fig. 2).
Although our tectonic reference frame has changed much with the recognition of plate tectonics and exotic

terranes, Misch's observations prove to be remarkably accurate.

Our work in this quadrangle began in 1983 as part of a project to map and compile the geology of the
Concrete 1° by 2° quadrangle at 1:100,000 scale. We have mapped in cooperation with the Division of Geology
and Earth Resources, Washington Department of Natural Resources. We have also benefited by the cooperation

and helpfulness of the National Park Service and the U.S. Forest Service.
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GENERAL GEOLOGY

Rocks in the Mount Baker quadrangle represent almost all the geologic events recorded in the entire North
Cascades: 1) pre-mid-Cretaceous assembly of Mesozoic and Paleozoic terranes that have different paleogeographic
origins and structural and metamorphic histories (Tabor and others, 1989; Tabor 1994), 2) mid- to Late Cretaceous
thickening by thrusting and (or) pluton accumulation (Misch, 1966; McGroder, 1991; Brown and Walker, 1993)
accompanied and followed by regional metamorphism, 3) Eocene strike-slip faulting, extensional faulting, basin
development, and continued metamorphism and plutonism (Johnson, 1985; Brown, 1987; Miller and Bowring,
1990; Haugerud and others, 1991; Miller and others, 1993), 4) growth of the Cascade magmatic arc in Oligocene
to Holocene time (Vance and others, 1986; 1987; Smith, 1993; Tabor and others, 1989), and 5) Quaternary glacial
erosion and deposition of glacial-derived sediments (Booth, 1987, 1990).

The Straight Creek Fault and the Ross Lake Fault Zone divide the rocks of the quadrangle into a core of deep-
seated, thoroughly metamorphosed rocks, flanked by less metamorphosed rocks on either side (Fig. 1). These
major faults are thought to be predominantly strike-slip (Misch, 1977a; Vance and Miller, 1981, 1992; Miller and
others, 1993; Miller, 1994), though the rocks of the metamorphic core have been uplifted 15-25 kilometers
relative to rocks on either side. The Straight Creek Fault, although now predominantly obliterated by Tertiary arc
plutons, almost bisects the quadrangle. It separates core rocks from the Northwest Cascades System on the west.
Estimates of right-lateral strike slip on the Straight Creek Fault range from about 90 to 190 km (Vance and Miller,
1981, 1992; Vance, 1985; Monger in Price and others, 1985; Kleinspehn, 1985; Coleman and Parrish, 1991;
McGroder, 1991). Miller and Bowring (1990) described structural evidence of an early episode of strike slip on
the Ross Lake fault, and Haugerud (1985) and Miller (1994) indicated a strong discontinuity in metamorphic grade
and history across the zone. Kriens (1988) and Kriens and Wernicke (1990a, b) suggested that the Ross Lake fault
zone is a minor dislocation in an essentially uninterrupted cross-section of a Mesozoic arc ranging from the deep
roots in the North Cascade core to the unmetamorphosed marine and terrestrial deposits of the Methow region to

the east.

ROCKS WEST OF THE STRAIGHT CREEK FAULT

West of the Straight Creek fault, the North Cascades appear to be composed of two fundamental regional
structural blocks separated by a complex tectonic belt and high-angle faults (Fig. 3; see also Tabor and others,
1989; Tabor 1994). The northeastern structural block, exposed primarily in the Mount Baker quadrangle, is

mostly composed of Paleozoic and Mesozoic volcanic arc and associated clastic wedge deposits along with more



00, 121

0c .04 00, 7T1
! . R bl T T - T~ " - 7
) —\Mgse_:z; / N N\\W\ AL
m\; Vi, ;/1\.3\ J.w./&.\ 5 A/www\w\wﬂ\\( & w\ 8 '
| 00v¥0073 e 340377 w7 \\
/. - s ;
%y £
u/
¥
BN
E
2
J,/
Lo
f L3I e
SN 7o -
S T - |
ﬂ - - - _- - had - — — — ©|||I| .s.@
- - - - T . T T —_ —_ - i
- - — e
\ .WF?H iy
| g =
S
NIIN020H _T ww
v o ) T T
00 uw.v L — =

"UONEOLIPOW 1SBPOW O} Ojlll YUM pesn ejep Yony ‘v
‘ejep uonejidwoo dew jo seainog - ‘g ainbig

(ss61) 1edde}

(1L eyed ‘ggel) Jeddey

(s961-,961) eiep

AeAing [esibojoen ‘g peysiqndun
pue (1 eje|d ‘2.61) ‘sieyio pue zjeels
(1 eyeid ‘ce6l)

AeubBineg Uy umoig pue Aubineg

(g eyed ‘si61) JelleH

(11 eyeld ‘os6t) pruebney

(1 ereld ‘ggel) uuelrd

(2661) "wwod ueyum *q ‘r ‘yomobeiq
(1 ereid ‘ce61) seyuedien

‘v depy

~ ©

Or~-ANMIT W ©



00 121 00, 22 ‘pesn ejep awog 'g
O 8y~~~ "~ : . : - ‘ejep uonejdwos
! dew jo seainog ‘oo g ainbiy
f ooy |

»

)

(1 eteid ‘oget) sefeiz 1¢
(s861 ‘eolnesg 158104 SN 40}
dew peysigndun) seifeiz o¢
(1 e1eld ‘9261) eoellEM 62
(1 ®eld ‘1261) sieyio pue zieeys g2
(1 eveid ‘6L61) preebiopuog 22
(1 eteid ‘og6t) ywws 92
(1 eteid ‘so6l) Jolepius G2
(2’1l ‘B14 '1661) tedde) ¢2
(2't 'sbBiy ‘0661) lepoly ee2
(1 eleid ‘0861) Apey €2
(1 ereid ‘2261) @100 22
(6261) yosiy 12
(1 eteid ‘ogel) 16617 02
(ve61 ‘eoinieg 1s8104°S"N 10)
dew peysiigndun) sieyio pue seuor 6 |
(1 eteid ‘pg6l) seuor @i
(1 ejeid ‘2e61) uosuyor £1
(1 eteid) veeL ‘Nemer ol
(1 o1eid '0g61) sewer S|
(v661)""unwwos uelum sem ‘YlelpiH eyl
(1 esnsojoue ‘6z61) oibnd ¢ 1L
(1 eig)d '1g61) eSseid €1
(e661) "wwoo uenum "q‘r ‘yomoberq ezt
(1 e1eid ‘6861) yomobeiq, 2t
() oveid ‘0661) Aien. L4
(2861) sieujo pue umoig: 01
(ce6t ‘L ejeid) yemyoel 6

‘g dew

L e

wy/

§04¥1L
mv
LELE T 1

L(/x\)v

XAXXKX AN

AKX XXX

o////)

P 14 N%

L
m ino:waa.“
R ; e

. e

XXX YV XYY

0y

00 .6




08,84 RS SN I ‘dew uo pasn jou
A ; 0 : ejep inq Aj@Alsuaixe paynsuo) ‘9
! y : ‘gjep uoljejidwod dew jo $82IN0S

"juod g ainbiy

s s e,
P

ool ] (z eveid ‘Sz61) JopesyuOp 6%
(1x ereyd ‘Lg61) 1 D ‘Yws 8y
(vo61) supied pue Yws esy
(1 dew ‘i661) Jeddet Ly
(6 eteid '0061) HessNY 9t
(1 oty ‘Lg61) uosueqoy St
(g1 By ‘sg6l) |epely ey
(1 eyeid ‘1o6L) uebey v
(€ 'z ‘v 'sby ‘LL6}) WOSIN €V
(1-2 ereid ‘9961L) YosSIN 2TV
A ajeld .thS 18AB8) O 1%°4
(51 ‘s’ ¥ 'sBy
‘gL61) sieyio pue ‘Ailes|ooy 0¥
(s-1 sejeld 'sgel) susuy 6¢
(z "By 'L861) JempeQ pue JejieH ege
(1z By ‘6961) e ge¢
(svi'evi'ecL’8EL’ LEL'62L LEt
‘9ZL'LLyL 'sBy ‘996t) Jeuueq L€
(ot pue gt sieeys ‘2L6L) AleQ 9€
(oe61) Aewxoud qse
(2 "By ‘ec6l) squoo)y ege
(0z eieid ‘zp61) %00D S¢€
(v oreid ‘1861) uesuelsuuy v¢
(sy eeid ‘sget) welg ¢¢
(1 1e8ys ‘H xipuedde ‘6.61) [eIydeg Z€

"0 dew

00 .64




thoroughly metamorphosed oceanic rocks, thrust in the mid-Cretaceous into a series of nappes. The overall
structure has been likened to a regional mélange by Brown (1987) who, broadening the earlier terminology of
Misch (1966, p. 128), called this structural block the Northwest Cascade System. The southwestern block,
exposed just south of the Mount Baker quadrangle, is mostly Mesozoic clastic rocks of submarine fan origin and
relatively unmetamorphosed oceanic rocks. Tabor and others (1982, 1989, 1993), Frizzell and others (1987), and
Tabor (1994) described this block as the western and eastern mélange belts.

Rocks of the Northwest Cascade System

Four major nappes, stacked along folded thrusts, and their probably autochthonous footwall comprise the
Northwest Cascades System (Figs. 3 and 4). The structural stratigraphy of the Northwest Cascades System
(NWCS) appears to be consistent over a wide area of northwest Washington. The rocks in the three lowermost
nappes and the autocthon differ enough in lithology, structure, and metamorphic history to warrant consideration
as separate terranes, but the highest and youngest Gold Run Pass Nappe consists of slices of the lower nappes and

autochthon.

Harrison Lake terrane

Wells Creek Volcanics and Nooksack Group. At the bottom of the exposed stack of nappes are the Middle
Jurassic Wells Creek Volcanics of Misch (1966) (see also Franklin, 1985) overlain by and interfingering
stratigraphically with the Nooksack Group of Danner (1958). These units appear correlative with similar rocks
exposed west of Harrison Lake, British Columbia, and thus we consider them to belong to the Harrison Lake
terrane of Monger (1986, 1993). Misch (1966) noted that, although the Wells Creek Volcanics and Nooksack
Group look autochthonous, the bottom of the Wells Creek is not exposed, and they too might be part of an
allochthonous nappe. Sondergaard (1979) considered the Nooksack to be a submarine fan deposit associated with
a volcanic arc. Locally abundant megafossils in the Nooksack indicate a Late Jurassic and Early Cretaceous age
(Misch, 1966). The Nooksack is generally not strongly penetratively deformed, although commonly it has slaty
cleavage. Sevigny (1983), Jones (1984), and Ziegler (1986) reported minor metamorphic lawsonite,

pumpellyite, and aragonite.
Excelsior and Welker Peak nappes

Chilliwack Group and Cultus Formation. Structurally overlying the Nooksack Group along the Excelsior
thrust fault (the Church Mountain fault of Misch (1966) is the Chilliwack Group of Cairnes (1944) composed of
partly metamorphosed basaltic and andesitic volcanic rocks, sandstone, siltstone, shale and minor limestone.
Marble in the Chilliwack yields fossils ranging in age from Silurian (?) and Devonian to Permian but most are
Mississippian. Rocks are slaty to phyllitic, and planar structures are low-angle. Christenson (1981) and
Blackwell (1983) described lawsonite and aragonite as common metamorphic minerals; Smith (1988) reported rare
glaucophane. Monger (1970), Christenson (1981), Blackwell (1983), and Sevigny and Brown (1989) considered
the Chilliwack to have been developed in an arc setting. The Chilliwack is depositionally overlain by the little
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deformed and little metamorphosed Cultus Formation of Daly (1912), a Triassic to Early Jurassic marine and
dacitic volcanic unit (Monger, 1970). The Chilliwack Group and Cultus Formation occur mainly in the Excelsior
nappe (Fig. 3). The Excelsior nappe contains significant internal thrusts, rocks of the Chilliwack Group and
Cultus Formation are regionally overturned, and they have penetrative fabrics in most locales, suggesting a pre-
mid Cretaceous, possible pre-Late Jurassic tectonic event not seen in the underlying Nooksack Group (Haugerud
and others, 1992).

A unit with similarities to the clastic facies of the Chilliwack Group, the Mount Josephine unit, the
Darrington Phyllite, and the clastic parts of the Elbow Lake unit is the slate of Rinker Ridge. It is poorly exposed
in the lower Skagit River valley of the Mount Baker quadrangle. Good exposures in the Sauk River quadrangle
(Tabor and others, in press) to the south indicate that the slate of Rinker Ridge is consistently less deformed and
recrystallized than the Darrington Phyllite, has a protolith that was generally sandier than that of the Darrington
and less sandy than that of the Mount Josephine unit, and appears to be a fault bounded block within extensive
outcrops of Easton Metamorphic Suite. Tabor and others (op.cit.) discuss the possible protoliths for the slate of
Rinker Ridge and tentatively assign it to the Chilliwack Group. We show it to be part of the Excelsior nappe in

Figure 3.

Bell Pass mélange. The Chilliwack Group and Cultus Formation are overlain along the Welker Peak thrust by
the Bell Pass mélange, much of which is comprised of the Elbow Lake Formation of Brown and others (1987), a
mélange-like assemblage of foliated sandstone, argillite (phyllite), ribbon chert, basalt, and very rare marble.
Commonly in or associated with the Elbow Lake assemblage are ultramafic rocks, various blocks of gneiss and
schist, and granitoid rocks ranging from granite to gabbro in composition. These are locally mapped as the Twin
Sisters dunite, the Baker Lake blueschist unit of Brown and others (1987), the Vedder Complex of Armstrong and
others (1983), and the Yellow Aster Complex of Misch (1966). Ages of radiolarians from chert blocks in the
Elbow Lake Formation are Pennsylvanian, Triassic, and Jurassic (Brown and others, 1987; C.D. Blome, written
commun., 1988, 1991). Gneiss and schist of the Vedder Complex yield K-Ar ages indicating Permian
metamorphism (Armstrong and others, 1983). Zircons from Yellow Aster paragneiss have discordant U-Pb ages
interpreted to be Precambrian and probably representing detritus derived from Proterozoic basement (Mattinson,
1972; Rasbury and Walker, 1992). We consider these rocks to make up the Welker Peak nappe (Fig. 3). In part,
the Bell Pass mélange is coincident physically and in concept with the thick tectonic zone at the base of the mid-
Cretaceous Shuksan thrust fault as described by Misch (1966, 1980), which separates more thoroughly
metamorphosed rocks of the Easton Metamorphic Suite—equivalent to Misch's (1966) Shuksan Metamorphic
Suite—from the structurally underlying Nooksack and Chilliwack Groups. However, we suspect that some of the
mixing and deformation within the Bell Pass mélange predates mid-Cretaceous tectonism and is unrelated to the

Shuksan thrust.



Shuksan nappe

Easton Metamorphic Suite, The Easton Metamorphic Suite, also referred to the Easton terrane (Tabor and
others, 1989), is composed of the Shuksan Greenschist and the Darrington Phyllite. It generally overlies lower
nappes along the Shuksan thrust fault. The Easton records a more thorough episode of high P/T metamorphism
than the other units in the NWCS. The well-recrystallized Shuksan Greenschist commonly bears blue amphibole,
and the Darrington Phyllite locally contains lawsonite. Most workers interpret the protolithic shale and local
sandstone of the Darrington Phyllite to have been deposited on the ocean floor basalt protolith of the Shuksan
Greenschist (Brown, 1986; Dungan and others, 1983; Haugerud and others, 1981), but in some areas phyllite and
greenschist are clearly interlayered, suggesting depositional interfingering. Based on isotopic analysis, Brown
and others (1982) and Armstrong and others (1983) considered the Easton to have a Middle to Late Jurassic
depositional age (about 150-160 Ma) and an Early Cretaceous metamorphic age (about 120-130 Ma), with

evidence for local earlier metamorphism (Brown and others, 1982).

The semischist and phyllite of Mount Josephine crops out in extensive tracts along the west side of the
Mount Baker quadrangle and farther west. These rocks overlie the Bell Pass mélange along a thrust here correlated
with the Shuksan thrust. Rocks of this unit are similar lithologically to the Darrington Phyllite and were so
correlated by many workers (Misch, 1966; Miller, 1979; Brown and others, 1987; Gallagher and others, 1988),
but differ in that their protolith was sandier and that they appear less thoroughly recrystallized than the
Darrington. Greenschist and blueschist intercalations are lacking and rare metavolcanic rocks are greenstones.
Based on metamorphic and structural history, Gallagher and others (1988) considered metatonalite with a Middle
Jurassic protolith age and associated metavolcanic rocks surrounded by the semischist and phyllite of Mount
Josephine, and cropping out about 14 km west of the Mount Baker quadrangle, to be magmatic arc rocks
depositionally tied to the semischist and phyllite which they considered to be Darrington Phyllite. Although this
correlation may indeed be correct and the differences in lithology and grade of the Mount Josephine rocks and the
Darrington Phyllite due to sedimentary facies changes and decrease in metamorphism from east to west, this

transitional relation has yet to be documented and we here consider the Mount Josephine rocks a separate unit.

ROCKS BETWEEN THE STRAIGHT CREEK FAULT AND THE ROSS LAKE FAULT ZONE

In the Mount Baker quadrangle, the high-grade metamorphic core of the North Cascades is made up of the
Chelan Mountains terrane and plutons that intrude it, as well as the Skagit Gneiss Complex, derived from the
supracrustal rocks of the Chelan Mountains terrane by more-intense metamorphism and pervasive deep-seated
intrusion. K-Ar ages of schists and gneisses in much of the region west of the Ross Lake Fault Zone are almost all
middle and late Eocene, reflecting early Tertiary unroofing and cooling of these deep-crustal rocks. Much of the

core has been intruded by arc-root magma of the Tertiary Chilliwack composite batholith.



Rocks derived from the Chelan Mountains terrane

Rocks derived from the Chelan Mountains terrane include the Napeequa unit, the metaplutonic rocks of the
Marblemount-Dumbell-Entiat belt, and the Cascade River unit. Rocks of the Napeequa unit are mostly micaceous
quartzite, fine-grained homblende schist, and amphibolites derived from a protolith of oceanic chert and basalt.
Minor marble and small bodies of metamorphosed ultramafic rock are also characteristic. Mica schist and

hornblende mica schist probably derived from shale and sandstone are common,

The Marblemount Meta Quartz Diorite of Misch (1966) comprises the northern end of the
Marblemount-Dumbell-Entiat plutonic belt which stretches about 128 km southeast from the Mount Baker
quadrangle. Protolith of the Marblemount Meta Quartz Diorite is Late Triassic in age based on U-Pb analyses of
zircons (Mattinson, 1972). Tabor and others (1989) suggested deposition of the Cascade River unit protolith in a
forearc or intra-arc basin wherein intrusion of arc-root plutons, such as the Marblemount pluton, was followed by
rapid unroofing and further deposition of arc volcanic rocks.

Protolith of the Cascade River unit was a thick sequence of arc-derived clastic rocks with minor volcanic
rocks (Misch, 1966; Tabor and others, 1989), now metamorphosed to plagioclase-rich mica schist,
metaconglomerate, and amphibolitic schist. Prominent in the metaconglomerate are clasts of the Marblemount
Meta Quartz Diorite of Misch (1966). Minor constituents of the unit are silicic schists (metatuff), marble, and
amphibolite. Zircons from a dacitic metatuff yielded Late Triassic U-Pb ages.

The original contact between the oceanic rocks of the Napeequa unit and locally-coarse arc-derived
metaclastic rocks of the Cascade River unit is now obscured by faulting, folding, and metamorphism. Tabor and
others (1989), Haugerud (1989) and Dragovich and Derkey (1994) proposed that the protolith arc of the Cascade
River unit was deposited on the oceanic crust of the Napeequa unit protolith. Without direct information on the
protolith age of the Napeequa unit this relation remains uncertain and original juxtaposition by faulting is
possible.

Based on perceived stratigraphy in the Cascade River unit, Dragovich and others (1989), Dragovich (1989),
Dougan and Brown (1991) and Dougan (1992) considered the Napeequa unit to have been thrust over the Cascade
River unit and then downfolded along a north-plunging synform in its primary area of exposure along the southern
border of the Mount Baker quadrangle. Tabor and others (in press) suggest that the Napeequa is exposed in the core
of a south-plunging antiform (Fig. 1), an interpretation adopted here without consensus.

Large amounts of tonalitic to granodioritic magma intruded the supracrustal rocks of the Chelan Mountains
terrane in Late Cretaceous and earliest Tertiary time. The plutons were deformed and partially recrystallized to
orthogneiss, a process that continued into the early Tertiary as shown by Eocene K-Ar ages and fabrics similar to
demonstrably Eocene fabrics in the nearby Skagit Gneiss Complex (Haugerud, 1985; Haugerud and others, 1991).
The Eldorado Orthogneiss was intruded at 90 Ma and is strongly deformed and extensively recrystallized;
according to McShane and Brown (1991), Brown and Walker (1993) and McShane (1992), it intruded rocks of the

Chelan Mountains terrane at relatively shallow depths, at pressures of 3—4 kb. Subsequent loading, at least in part



by superjacent magmas, increased metamorphic pressures in the vicinity of the Eldorado Orthogneiss to 7-8 kb
(Brown and Walker, 1993). The orthogneiss of Marble Creek was intruded at about 75 Ma and is extensively
deformed and recrystallized. The orthogneisses of Haystack Creek and Mount Triumph are lithologically similar
to orthogneiss bodies within the Skagit Gneiss Complex which have 60-70 Ma U-Pb zircon ages. QOrthogneiss of
Alma Creek is less deformed and perhaps slightly younger. The Hidden Lake stock, apparently on the edge of the
deep orogen, was intruded at 75 Ma and is less deformed than the above-mentioned bodies, but nonetheless is
extensively recrystallized.

The Skagit Gneiss Complex (Skagit Gneiss of Misch, 1966) is banded biotite gneiss, banded amphibolite
gneiss and large bodies of tonalitic orthogneiss, all mostly migmatitic. The banded gneisses contain abundant
orthogneiss layers on all scales. Small bodies of mafic gneiss, mafic migmatite, ultramafic rock and marble crop
out also. All of the complex is pervaded by concordant to discordant deformed bodies of light-colored tonalitic
pegmatite. Based on composition and observed transition to the protoliths, the banded gneisses appear to be
highly metamorphosed Cascade River and Napeequa units. The orthogneiss of The Needle yields discordant U-Pb
zircon ages and reveals textural evidence of multiple deformation suggesting it is a highly metamorphosed pluton
of the Late Triassic Marblemount intrusive episode (Haugerud and others, 1991). Much of the Skagit is permeated
by dikes and irregular bodies of granite and, locally, granitic pegmatite which are characterized by a prominent
lineation and weak, or absent, foliation; isotopic ages of the granites indicate middle Eocene intrusion (Haugerud
and others, 1991).

Miller and others (1993), Brown and Walker (1993), and Brown and others (1994) discuss evidence that rocks
in the vicinity of the Skagit Gneiss Complex were not buried deeply until after 90 Ma. U-Pb zircon ages of several
bodies of migmatitic orthogneiss, which probably correspond to the age of intrusion, are Late Cretaceous and
earliest Tertiary (Miller and others, 1989; Haugerud and others, 1991). Deformed granite bodies with middle
Eocene protolith ages demonstrate that ductile deformation and recrystallization of at least parts of the complex

continued into the middle Eocene.

ROCKS IN THE ROSS LAKE FAULT ZONE

Regionally the northwest-trending Ross Lake Fault Zone juxtaposes the higher-grade North Cascade core
rocks with a little-metamorphosed sequence of Mesozoic marine and terrestrial deposits of the Methow terrane to
the east. In the Mount Baker quadrangle several faults in the zone separate higher-grade metamorphic core rocks
from a sliver of lower-grade schist and phyllite—the Little Jack terrane—and a sliver of essentially
unmetamorphosed Late Paleozoic and Mesozoic oceanic rocks—the Hozomeen terrane. For much of their contact,
the Hozomeen terrane overlies the Little Jack terrane along a low-angle thrust which probably predates the high-
angle faults of the Ross Lake Fault Zone.



Hozomeen terrane

The Hozomeen Group of Caimes (1944) is the sole component of the Hozomeen terrane. Following the
example of McTaggart and Thompson (1967) we have, in reconnaissance, roughly subdivided the unit into: a
lowermost exposed unit of probable upper Paleozoic greenstone with minor chert and limestone; a middle unit of
predominantly Middle and Late Triassic ribbon chert and argillite, and an upper unit of predominantly Late
Triassic greenstone, clastic sedimentary rocks, ribbon chert, and limestone, with minor Jurassic chert and clastic
sedimentary rocks. These three units appear to correlate with the upper 3 of McTaggart and Thompson's 4 units.
Preliminary examination of poorly preserved fossils raised the possibility that some rocks of the
southwesternmost part of the Hozomeen, adjacent to or within the Ross Lake fault zone, are as young as mid-
Cretaceous (C.D. Blome, written commun., 1988), but further collecting has failed to substantiate this age, which
we now believe to be spurious. Hozomeen rocks are deformed, but have not developed much slaty cleavage. The
Late Triassic alkali-basalt protolith of the uppermost unit originated as a within-plate seamount(s) (Haugerud,
1985). Ray (1986) considered the Hozomeen to be a dismembered ophiolite, with volcanic rocks including both

arc tholeiites and oceanic island—seamount subalkaline basalts.

Within the Ross Lake fault zone, the Ruby Creek Heterogeneous Plutonic Belt of Misch (1966) comprises a
group of plutons ranging from diorite to granodiorite in composition and intruding rocks of the Little Jack terrane
and of the Skymo Complex of Wallace (1976). Gneissic and massive plutons suggest a long history of intrusion
during and after deformation in the Ross Lake Fault Zone (Misch 1966). The only age available from the Ruby
Creek belt is middle Eocene (Miller and others, 1989), from a body that on structural grounds must be among the
youngest components of the belt. Other components are lithologically similar to tonalite of the Black Peak

batholith and may be early Late Cretaceous like the Black Peak (Miller and others, 1993).

The Skymo Complex of Wallace ( 1976), of unknown age, consists of locally orthopyroxene-bearing mafic
to ultramafic cumulate igneous rocks intruded by clinopyroxene gabbro. Wallace (1976) reports that many of the
earlier mafic-ultramafic rocks are extensively recrystallized to granulite-facies mineral assemblages. The unit is
faulted against the phyllite and schist of Little Jack Mountain, in part along low-angle faults. Skymo rocks are
also faulted against ort.hognéiss of the Skagit Gneiss Complex on the west, but are partially engulfed in tonalitic
material associated with the metamorphism affecting the Skagit (Staatz and others, 1972) indicating little

displacment of the Skymo Complex relative to the Skagit since Late Cretaceous—early Tertiary metamorphism.

Rocks derived from the Little Jack terrane

Phyllite and schist of Little Jack Mountain are derived from the Little Jack terrane. Most of the unit is
biotitetamphibole-bearing metapelite and lesser meta-arenite, with minor fine-grained amphibolite and rare
recrystallized ribbon chert and marble. Scattered pods of meta-ultramafic rocks are characteristic of the unit.
Metadacite porphyry dikes are abundant, some with little deformation and others strongly lineated and (or)
foliated. The protolith age is pre-Late Cretaceous but otherwise unknown; we tentatively consider it to be

Mesozoic, the age of most dominantly clastic terranes in the Pacific Northwest.



Metamorphism ranges from amphibolite facies on the southwest side of outcrop belt, adjacent to the Skymo
Complex, to sub-greenschist facies on the northeast, off the quadrangle to the east. Mica schist locally contains
garnet, staurolite, andalusite, and sillimanite. The age of dynamothermal metamorphism is not well constrained
but we suspect it is Late Cretaceous to middle Eocene, the same as metamorphism of the adjoining Skagit Gneiss
Complex. The Little Jack unit appears to be thermally metamorphosed as well by plutons of the middle Eocene

and older Ruby Creek Heterogeneous Plutonic Belt.

SYN- AND POST-METAMORPHISM FAULTING AND DEPOSITION

At the same time as Eocene metamorphism continued in the Skagit Gneiss Complex, extension at shallower
levels, associated with strike-slip faulting, opened depressions where fluviatile feldspathic sandstone and
conglomerate accumulated (Tabor and others, 1984; Johnson, 1985; Heller and others, 1987). Most of such
deposits are preserved outside of the Mount Baker quadrangle, but a few remnants crop out in the quadrangle.
Sandstone and conglomerate of the Eocene Chuckanut Formation crop out along the western side of the
quadrangle, in part separated from underlying older rocks by low-angle extensional faults. Smaller patches of
probably partly correlative rocks (mapped as unnamed sandstone and conglomerate, other), are preserved on
Mount Despair, near Bacon Peak, under and near the volcanic rocks of Big Bosom Buttes, and along the Straight
Creek Fault. Young unnamed sandstone and conglomerate crops out along the Straight Creek Fault north of
Marblemount where a clast of Marblemount Meta Quartz Diorite with a zircon fission track age of 45 Ma (J.A.

Vance, written commun., 1993) shows the deposit to be late middle Eocene or younger.

ROCKS OF THE CENOZOIC CASCADE MAGMATIC ARC

Although the Cascade magmatic arc came to life at about 36 Ma (Vance and others, 1987; Smith, 1993), the
oldest Cascade arc rock in the Mount Baker quadrangle is the 32-Ma granodiorite of Mt. Despair, an early phase of
the Chilliwack composite batholith. Arc-root plutons of the batholith range from gabbro to alaskite in
composition and from 32 to 2.5 Ma in age. In the quadrangle, plutons of the batholith with ages >30 Ma appear
to belong to the Index family of arc-root plutons as defined by Tabor and others (1989). Those in the range of
about 30 to 20 Ma are in the Snoqualmie family, and those <20 Ma are in the Cascade Pass family.

Volcanic rocks of the Cascade magmatic arc are sparse, preserved in down-faulted blocks in a scattered areas.
They commonly were erupted on eroded early phases of the Chilliwack composite batholith and then intruded by
younger phases. The volcanic rocks of Big Bosom Buttes, of Mount Rahm, and of Pioneer Ridge range from
dacite to less common andesite and basalt in composition and are probably Oligocene in age. The volcanic rocks
of Hannegan Pass are mostly rhyolitic to dacitic and erupted in the Pliocene. The volcanic deposits of Swift Creek

are mostly rhyolitic and are Pliocene and (or) Pleistocene. The Swift Creek deposits underlie andesitic breccia and

lava of Mount Baker volcano, an active calc-alkaline stratovolcano.
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QUATERNARY GLACIAL AND NON-GLACIAL DEPOSITS

Glaciations in the Mount Baker Quadrangle are represented by deposits of both alpine and ice-sheet glaciers.
Valley-bottom and valley-wall deposits in the upland trunk drainages (such as Big and Little Beaver Creek,
Goodell Creek, Thunder Creek, and the Cascade River) include till and outwash from alpine glaciers that originated
at the drainage headwalls. Most of these deposits probably date from the Evans Creek stade of the Fraser
glaciation (Armstrong and others, 1965), about 20,000 yr. B.P., but were probably augmented during the Vashon
stade, about 15,000 yr. B.P., when the high peaks in the eastern two-thirds of the Mount Baker quadrangle appear
to have once again been a significant ice source. Additional deposits have been derived from lesser expansions of
these same glaciers in Holocene time.

In the western part of the quadrangle, deposits derived from the Puget lobe of the Cordilleran ice sheet fill
many of the lower valleys and mantle the upland surfaces. Virtually all deposits date from the Vashon stade of the
Fraser glaciation culminating about 15,000 yr. B.P. (Booth, 1987). In general the surface altitude of the ice sheet
increased to the north, reflecting the major source area in British Columbia (Booth, 1986). The projected high
altitude of the Puget lobe ice-sheet surface at this latitude indicates that it would have submerged most of the
western part of the quadrangle and much of the mountainous eastern part.

Unvegetated moraines and outwash are common in many alpine cirques in the quadrangle, especially below
still-active alpine glaciers.

Beds of fine volcanic ash are exposed in roadcuts along the Skagit River west of Damnation Creek. The
deposits are too small to show at map scale. The ash must have been deposited in a short-lived lake dammed by
the landslides between Damnation Creek and Bacon Creek. F.F. Foit (Washington State University, written
commun. to Jon Riedel, 1989) identified the ash as Mazama ash which is about 6850 years old.

A landslide of more than usual extent clogs the valley floor of the North Fork of the Nooksack River and
lower Glacier Creek (Cary and others, 1992a; Carpenter, 1993; Carpenter and Easterbrook, 1993). Radiocarbon
ages from logs buried beneath the deposit led Carpenter (1993) to infer deposition at about 2.7 ka.

DESCRIPTION OF MAP UNITS

QUATERNARY UNITS

Non-Glacial Deposits

Ql Landslide deposits (Holocene)—Diamictons composed of angular clasts of bedrock and
surficial deposits derived from upslope. Commonly shown without letter symbol; arrows denote
downslope direction of movement. Includes both transported material and unstable scarp area if
present. Heller and Dethier (1981) describe landslides in the lower Skagit River valley. Locally

mapped as:
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Qlc

Qmw

Qt

Qb

Qam
Qag

Church Mountain landslide—Thick diamicton forming hilly deposit mostly of volcanic rocks of the
Chilliwack Group exposed on Church Mountain. Carpenter (1993) and Carpenter and Easterbrook

(1993) refer to this deposit as the Church Mountain sturtzstrom

Mass wastage deposits (Holocene and Pleistocene)—Colluvium, soil, or landslide debris
with indistinct morphology, mapped where sufficiently continuous and thick to obscure
underlying material. Unit is gradational with units Qf and QI

Talus deposits (Holocene)—Non-sorted angular gravel to boulder diamicton. At lower altitudes
gradational with Qf. At higher altitudes includes small rock-avalanche deposits as well as some
Holocene moraines, rock glaciers, and protalus rampart deposits that lack characteristic
morphology. Surfaces generally unvegetated. Mostly mapped from aerial photos in alpine
valleys. Grades into Qf

Alluvial-fan deposits (Holocene)—Poorly sorted cobble to boulder gravel, deposited either as
a discrete lobe at the intersection of a steep stream with a valley floor of lower gradient or as a
broad apron on steep sideslopes. Gradation with Qt, especially in granitic terrane where fans
along major valleys commonly merge with talus. Many fans mapped from aerial photo
interpretation of cone-shaped topography. Includes many post-glacial mudflow deposits in
eastern and southern drainages from Mount Baker Volcano (Hyde and Crandall, 1978)

Younger alluvium (Holocene)—Moderately sorted deposits of cobble gravel to pebbly sand
along rivers and streams. Generally unvegetated surfaces; gradational with both units Qf and Qb.
Includes lahar deposits derived from Mount Baker volcano in the North Fork of the Nooksack
River (Cary and others, 1992b)

Bog deposits (Holocene and Pleistocene)—Peat and alluvium. Poorly drained and
intermittently wet. Grades into unit Qyal

Older alluvium (Holocene and Pleistocene)—Similar to unit Qyal, but standing above
modemn flood plain level and generally separated from it by a distinct topographic scarp. Age of

deposits presumed younger than that of unit Qvr but relations are ambiguous in some localities
Glacial Deposits

Alpine glacial moraine (Holocene)—Boulder till; sparsely vegetated to unvegetated

Alpine glacial deposits (Holocene and Pleistocene)—Ranges from boulder till in uplands
and upvalley to gravel or sand outwash on broad valley floors. On valley sides and uplands
includes areas veneered with drift but also includes subordinate areas of bedrock, alluvial fans,
colluvium, or talus deposits. On valley floors also includes small fans, bogs, and modern stream

alluvium. Areas of thin, sparse drift not distinguished from bedrock.
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Qvg

Qvr

Qvt

Qva

Qpf

Qbsc
Qbs
Qbv

Glacial deposits undivided—Mostly morainal deposits (Qvt) but includes outwash. Includes Qyal,
Qf, and Qa. In area of North Fork of the Nooksack may include some deposits of Sumas Stade.
East-derived glacial erratics littering the ground surface on Grandy Ridge and the ridges north and
south of Jackman Creek indicate that during Vashon time there was a significant contribution of

North Cascade ice to the Puget lobe of the Cordilleran ice sheet

Deposits of the Fraser Glaciation of Armstrong and others (1965) (Pleistocene)

Deposits of the Vashon Stade of the Fraser Glaciation of Armstrong and others
(1965) (Pleistocene)—Divided into:

Recessional outwash deposits—Stratified sand and gravel, moderately to well-sorted, and well-
bedded silty sand to silty clay. This deposit formed predominantly in outwash plain and valley
train environments in the lowland areas

Till—Mainly compact diamicton with subangular to rounded clasts, glacially transported and
deposited. In ice-marginal areas or where covered by a thin layer of recessional outwash, contact
w.ith units Qvi or Qvr is gradational. Mapped areas also include deposits of units Qf, Qmw, and
Qyal too small or too poorly exposed to show at map scale

Advance outwash deposits—Well-bedded gravely sand, fine-grained sand, and bedded silt, generally
firm and unoxidized; deposited by proglacial streams and in proglacial lakes

Non-Glacial and Glacial Deposits

Alluvium and mass-wastage deposits, undivided (Holocene and
Pleistocene)—Includes deposits of units Qf, Qyal, Qmw, Qvt, and Qvr, intermixed on the sides
and floors of upland stream valleys. Similar to unit Qag in heterogeneity but occurring where

deposits of alpine glaciers have been later obscured or are absent

Non-glacial and glacial sedimentary deposits older than Fraser Glaciation
(Pleistocene)—Moderately to deeply weathered, moderately sorted sand with volcanic clasts.

Exposed only in the western part of the quadrangle along the southern boundary

ROCKS OF THE CASCADE MAGMATIC ARC

Deposits of Mount Baker volcano (Holocene and Pleistocene)
Sulphur Creek cinder cone—Composed principally of loose blocks of scoreaceous olivine basalt
Sulphur Creek flow—Aa flow of olivine basalt

Volcanic rocks of present-day cone—Mostly plagioclase-phyric pyroxene andesite flow rock,
breccia, and tuff. Some pyroxene- and homblende-phyric andesite (Swan, 1980). Commonly
very fresh
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Qbm

Qbbx
Qbbf

Qlv

QPsl

QPsr

QPsm

QPsb

QPsrd

QPsrf

QPss

Tcla

Miscellaneous flows—Commonly two-pyroxene andesite in isolated and highly eroded flows.
Includes ridge-capping flows as well as isolated valley-bottom flows. Includes some ridge-
capping flows and the isolated remnant near Wells Creek considered by Easterbrook (1975) to be
remnants of the Black Buttes volcano and yielding K-Ar whole rock ages of 400 ka (Table 2, nos.
1 and 2).

Breccia and tuffs of Black Buttes volcanic center—Includes some two-pyroxene andesite flow rock

Ridge-capping andesite flows associated with Black Buttes volcanic center

Lake Shannon volcanic neck (Pleistocene or older)—Andesite

Volcanic deposits of Swift Creek (Pleistocene and Pliocene?)—Hildreth (1994) has

described some of these deposits as fill of his Kulshan caldera. Mapped as:

Lake deposits—Thinly bedded rhyolite tuff and lapilli tuff. Mostly white, weathering brown and
yellow. Locally contorted by intruding rhyolite or andesite flows. Scattered clasts of older rocks
locally

Rhyolite tuff and breccia—Biotite-hornblende rhyolite tuff and breccia with quartz and K-feldspar
phenocrysts. White to brown, poorly bedded, commonly vitrophyric but widely altered to
carbonates

Mudflow breccia—Diamictite of rhyolite clasts and abundant older rocks in white tuffaceous matrix

Basalt and (or) andesite flow rock—Brown to black olivine basalt and pyroxene andesite; some
hornblende andesite. Rocks generally more altered than similar-looking Mount Baker andesites

Rhyolite dome or plug—Biotite rhyolite vitrophyre. Zircons have a fission-track age of 1.5 Ma
(Table 2, no. 3)

Rhyolite and dacite flow rock—Similar to clasts in breccia of unit QPsr. Some with brown
hornblende and hypersthene

Slide block—Block of Nooksack Group rock engulfed in tuff

Rocks of the Chilliwack composite batholith (Pliocene, Miocene, and

Oligocene)—Rocks of the Chilliwack batholith range in composition from gabbro to granite.
Most of the calc-alkaline plutons are of intermediate composition and are mediuni-grained
hypidiomorphic granular. Tepper (1985, 1991) has made the most complete study of the
batholith to date, and our descriptions below draw heavily on his work. For detailed chemical,
isotopic, and petrologic data as well as petrogenesis and source of magma see Tepper (1991) and

Tepper and others (1993). Mapped as:

Cascade Pass family

Granodiorite of Lake Ann stock (Pliocene)—Medium-grained biotite—hypersthene-clinopyroxene

granodiorite and granite, locally with minor hornblende. CI (color index)=12-18 (James, 1980).
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Biotite from the pluton and from hornfels within a few meters of the pluton yielded K-Ar ages of
2.7 and 2.5 Ma respectively (Table 2, nos. 7, 8). Detailed petrographic and chemical data are in
James (op.cit.)

Tenm Quartz monzonite and granite of Nooksack Cirque (Pliocene)—Ranges from quartz monzodiorite to
granite, predominantly with uralitic hornblende and relict clinopyroxene. CI=7-15. Intrudes
Tcid which intrudes 3.6-Ma volcanic rocks of Hannegan Pass

Terg Granite of Ruth Mountain (Pliocene)—Biotite granite and granodiorite, commonly with large
twinned perthite crystals. Some minor homblende. CI=4-17. Intrusive contacts not observed,
but pluton is faulted against Tcid. As mapped includes part of Tepper's (1991) granodiorite of
Ruth Mountain

Tcid Quartz diorite and quartz monzodiorite of Icy Peak (Pliocene)—Biotite-clinopyroxene quartz diorite
to quartz monzodiorite with some hypersthene and uralite. Some rock is plagioclase-porphyritic.
CI=15-32. Intrudes 3.6-Ma volcanic rocks of Hannegan Pass

Tcgp Granite porphyry of Egg Lake (Pliocene)}—Hornblende granite and granodiorite porphyry with
phenocrysts of quartz, plagioclase, and hornblende in a xenomorphic matrix of K-feldspar, quartz
and plagioclase. Commonly altered. Intrudes Mineral Mountain phase. At Egg Lake the granite
porphyry underlies the volcanic rocks of Hannegan Pass, but a dike of this rock intrudes the
northern arcuate fault bounding the volcanic rocks of Hannegan Pass, suggesting that the granite
porphyry is about the same age as the volcanic rocks overall. Similar rocks crop out on Easy
Ridge. Tepper (1991) includes this rock in his granodiorite porphyry of Copper Ridge.

Tergd Granodiorite of Ruth Creek (Miocene)—Biotite granodiorite, locally with quartz eyes up to 1 cm;
CI=3-7 (Tepper, 1991). Biotite and whole-rock Rb-Sr analyses define an age of 8.7 Ma (Table 2,
no. 10). As mapped includes Tepper's porphyritic tonalite of Hannegan trail, a dike-like body
which intruded Tcrgd and, nevertheless, yielded a zircon fission track age of 8.7 Ma (Table 2, no.
9)

Tcdeg Granite of Depot Creek (Miocene)—Biotite hornblende granite with relict clinopyroxene cores in

hornblende. A small stock in Depot Creek cirque which intrudes Tcreg

Tercg Granite of Redoubt Creek (Miocene)—Biotite-pyroxene-hornblende granite, granodiorite, quartz
monzonite, and quartz monzodiorite, commonly altered, with pinkish cast. CI ranges from 2 to
20 but most CI=15-17. Some rocks are porphyritic allotriomorphic and vermicular;
micrographic quartz is common (Tepper, 1991). Hornblende yields a K-Ar age of 10.8 Ma (Table
2, no. 11). Mathews and others (1981) report a ca. 12 Ma K-Ar age for a stock at the head of
McNaught Creek in Canada, which lies along trend just north of the quadrangle, and which we
interpret to be part of the Redoubt Creek pluton (Table 2, no. 12)
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Tcgh

Tebx

Tesg

Tept

Teptt

Tcbg

Tevt

Tevtd

Granodiorite of Hagan Glacier (Age uncertain)—Biotite granodiorite, micrographic, highly altered.
We observed no contacts but plug-like shape suggests this rock intrudes Tcbrg. As mapped
includes lithologically-similar stocks cropping out in Sulphide Creek and upper Noisy Creek

Intrusive breccia (Age uncertain)—On north ridge of Mount Blum consists of alaskite and other
intermediate plutonic rocks mixed with hypabyssal volcanic rocks in altered porphyroclastic
xenomorphic and cataclastic matrix of rhyolitic composition; rock is thermally metamorphosed.
Breccia is cut by or marginal to a variety of silicic dike rocks. Near Tapto Lakes mafic plutonic-
rock clasts such as diorite are mixed with andesite clasts in an altered dacitic matrix (Moore,
1972)

Gabbronorite of Mount Sefrit (Miocene)—Mostly olivine-bearing gabbronorite with minor two-
pyroxene diorite, homnblende diorite, and quartz diorite. Rocks are dark, partly because of swarms
of minute dark inclusions in calcic plagioclase (Tepper, 1985). An Rb-Sr isochron age is 23 Ma
(Table 2, no. 13)

Perry Creek phase (Miocene and Oligocene)—Mostly hornblende-biotite tonalite and granodiorite,
commonly with relict clinopyroxene. Quartz is typically mesostasic. CI=15-25. As mapped
may include several plutons. K-Ar ages on hornblende and biotite range from about 22 to 25 Ma
(Table 2, nos. 15, 16, 18); a single biotite age of 32 Ma (Table 2, no. 17) seems too old. Locally
mapped as:

Tectonized tonalite (Miocene and Oligocene)—Shattered and locally cataclastic to mylonitic,
highly altered tonalite and granodiorite; mafic minerals chloritized. Includes homfels and

shattered and recrystallized plutonic and hypabyssal rocks

Snoqualmie family

Biotite granodiorite of Little Beaver Creek (Oligocene)—Mostly hornblende-biotite granodiorite
and minor granite, locally quartz and plagioclase porphyritic; CI=3-10. Intrudes Tcpt, although
appears to be about the same age, with homblende and biotite K-Ar ages of about 25 and 23 Ma
respectively (Table 2, no. 14)

Chilliwack valley phase (Oligocene)—Biotite-hornblende tonalite, granodiorite, and minor quartz
diorite, commonly with subhedral plagioclase prisms in quartz mesostasis. Minor
clinopyroxene, locally. CI=7-30 but mostly 15-20. Two K-Ar hornblende ages are about 24 and
27 Ma and a biotite age is 26 Ma (Table 2, nos. 19, 20). The errors suggest that an age of about
26 Ma is about right, which is appropriate for evidence that the tonalite of this phase intrudes the
34-Ma gabbro of Copper Lake (Tcclg). Tepper (1991) describes a small part of this unit as the
tonalite of Copper Mountain. Unit probably includes several plutons. Locally mapped as:

Dark tonalite (Oligocene)—Pyroxene-hormblende tonalite with distinctive dark vitreous

appearance in outcrop
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Index family

Tcbrg Baker River phase (Oligocene)—Mostly biotite hornblende granodiorite, with minor tonalite and
quartz diorite, locally with clinopyroxene. Subhedral plagioclase in quartz mesostasis common.
CI=7-25 but for most rocks in southern part CI=13-18 and, in Skagit Range, CI=17-20. Mostly
tonalite and quartz diorite in Skagit Range. Engels and others (1976) interpreted a K-Ar age of an
impure hornblende sample to place an older limit of 27 Ma on the southern part of this unit, but
these same rocks appear to be intruded by 30-Ma alaskite of the Mount Blum pluton and hence
may be older. Tonalite included in this phase in the Skagit Range may be younger because it
intrudes the volcanic rocks of Big Bosom Buttes which in turn depositionally overlie 31-Ma
granite and granodiorite of Mineral Mountain. Tepper (1991) describes this unit in part as the
granodiorite of Hannegan Peak. Locally mapped as:

Tcbrp Price Glacier pluton (Oligocene)—Biotite-hornblende quartz diorite with mesostasic quartz.
CI=16-18. Tepper (1991) describes some of this unit as part of his granodiorite of Ruth

Mountain. Age uncertain

Test Tonalite of Silesia Creek (Oligocene)—Hornblende-biotite tonalite with inclusions and layers of
biotite granodiorite and granite; some granitic xenoliths to 200 m long. Tonalite displays
prominent flow alignment of feldspar and mafic minerals. Except for flow structure this pluton is
petrologically similar to the 22-25-Ma Perry Creek and the 31(?)-Ma Baker River phases of the
batholith. Concordant K-Ar ages of hornblende and biotite are about 30 Ma (Table 2, no. 21)

Tcba Biotite alaskite of Mount Blum (Oligocene)—Medium-grained biotite granite with prominent
perthite prisms, rare hornblende, locally quartz phyric. CI=1-4. Two K-Ar biotite ages are 29.4
and 30.8 Ma. Biotite and whole-rock Rb-Sr analyses give an age of about 30 Ma. Zircon fission
track ages from adjacent homfels are about 20 Ma (Table 2, nos. 22, 23). These ages suggest that
the alaskite is older than the tonalite of the Baker River phase of the Chilliwack batholith, but
above Blum Lakes, where the contacts are mostly gradational, the alaskite contains inclusions of

the tonalite suggesting it is at least slightly younger

Tembg Mineral Mountain phase (Oligocene)—Biotite granite and granodiorite with some tonalite, quartz
monzodiorite and quartz monzonite. Characterized by conspicuous quartz eyes up to several cm
across which are glomerocrysts of rounded quartz grains with K-feldspar in the curved triangular
interstices. Biotite dominates and is usually the only mafic phase, but homblende is more
abundant than biotite in a few rocks. CI=1-19 but mostly <10. Rock is commonly pinkish and
with chloritized biotite. Intruded by tonalite of Chilliwack valley phase, partly faulted against
Baker River phase, and grades downward into granodiorite of Mount Despair by gradual increase

in homblende.
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Teda

Tcht

Temg

Temge

Teclg

A chloritized granodiorite from east of the Chilliwack River above the younger Chilliwack
valley phase of the batholith contains hornblende and biotite which yield K-Ar ages of about 26
and 23 Ma respectively (Table 2, no. 25). These minerals may have lost argon as K-Ar ages of
muscovite and biotite from near Canada, well removed from younger plutons, are concordant at
29.5 and 30.9 Ma respectively (Table 2, no. 26). Homblende from a dike cutting Tcmbg on
Mineral Mountain yielded a K-Ar age of about 32 Ma (Table 2, no. 27). The K-Ar ages and field
relations indicate that in general the Mineral Mountain phase is older than most of the tonalite
such as the Perry Creek phase (at about 22-25 Ma). However, U-Pb analyses of zircon from the
Mineral Mountain phase suggested an age of about 7 Ma (Table 2, no. 24), more in agreement
with Tepper (1991) who shows the rock to be chemically and lithologically similar to the
granodiorite of Ruth Creek which he dated at 8.7 Ma. We here tentatively adopt the older age of
about 31 Ma for the Mineral Mountain phase

Granodiorite of Mount Despair (Oligocene)—Biotite-hornblende granodiorite with minor tonalite,

quartz diorite and quartz monzodiorite. Conspicuous quartz eyes which are glomerocrysts of
rounded quartz grains with K-feldspar in the curved triangular interstices. CI=7-20 but mostly
about 10-12; hornblende usually predominates. An array of isotope ages by different methods
ranges from about 30 to 35 Ma (Table 2, nos. 28-36). The pluton is probably about 32 Ma. It is
sharply intruded by 30-Ma alaskite of the Mount Blum pluton and appears to grade into the 31-Ma
Mineral Mountain phase. Locally mapped as:

Agmatite—Swarms of dark rounded inclusions from 1/4 to several meters across composed of

mafic biotite homblende quartz diorite and fine-grained tonalite in a lighter-colored granodiorite

and tonalite matrix

Heterogeneous tonalite and granodiorite of Middle Peak (Age uncertain)}—Ranges from quartz diorite

to biotite granite. Many rocks hornfelsic. Includes amphibolite of unknown origin

Miscellaneous gabbros and diorites (Age uncertain)—Pyroxene homblende gabbro, diorite and

quartz diorite. Much uralite. Tepper (1991) describes several occurrences together with the
gabbronorite of Mount Sefrit. Age uncertain. See also Moore (1972) and Tepper (1988) for mafic
plutons north of Whatcom Pass. Locally mapped as:

Inclusion-rich diorite of Ensawkwatch Creek—Layered hypersthene hornfels inclusions in diorite

and quartz diorite.

Gabbro of Copper Lake (Oligocene)—Hornblende gabbro and diorite with CI=25-40. Tepper

(1991) describes a small core of hornblende gabbro bearing poikilitic hornblende surrounded by
hornblende diorite. A 3-point Rb-Sr isochron for the gabbro gives an age of 34 Ma (Table 2, no.
38), an age supported by evidence of intrusion by tonalite of the 26-Ma Chilliwack valley phase
of the batholith
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Volcanic rocks of Hannegan Pass (Pliocene)

Thb Volcanic breccia—Mostly clinopyroxene-hornblende andesite clasts along with many clasts of
older rocks in andesite tuff matrix. Many andesite dikes, sills and/or flows. Hornblendes from
two separate clasts of andesite yield K-Ar ages of 3.6 and 3.3 Ma (Table 2, nos. 4, 5)

Thmb Monolithologic breccia—Angular debris of older rocks, probably talus, and/or debris flow deposits

Tht Tuff—White to light brown dacite tuff and welded tuff, some rhyolite tuff, and rare andesite tuff and
flow rocks, commonly highly altered. Bedding obscure. Zircon from a vitrophyric flow yields a
FT age of 4.4 Ma (Table 2, no. 6). Further descriptions of volcanic rocks of Hannegan Pass are in
Staatz and others (1972)

Tdt Tonalite of Cascade Pass dike (Miocene)—Medium-grained hornblende-biotite tonalite,
hypidiomorphic granular with small glomeroporphyrocrysts of mafic minerals. Massive and
coarsely jointed, with local areas of disseminated sulfide minerals. The dike has finer-grained,
porphyritic, chilled margins; contact lit-par-lit complexes are common, and alteration is locally
pervasive (Tabor, 1963). A number of samples from south of the Mount Baker quadrangle yielded
K-Ar hornblende and biotite ages ranging from 16-19 Ma (Tabor and others, in press).

Concordant pairs suggest that the age of this pluton is about 18 Ma

Tvr Volcanic rocks of Mount Rahm (Oligocene)—Dacitic to less commonly andesitic breccias,
tuffs and flows with some feldspathic sandstone and conglomerate interbeds. Welded dacite tuff
common. Originally called the Skagit Volcanic Formation by Daly (1912), included in the
Hannegan Volcanics by Misch (1966), and renamed the Skagit Volcanics by Staatz and others
(1972). The names Skagit Volcanic Formation and Skagit Volcanics were abandoned by Haugerud
and others (1991). Rocks are older than the 22 to 25 Ma phase of the batholith (Tcpt) that
intrudes them. K-Ar ages of about 13 Ma reported by Mathews and others (1981) have been reset
by the young Redoubt Creek pluton that intrudes the volcanics of Mount Rahm

Volcanic rocks of Big Bosom Buttes (Oligocene) Unconformably overlie the 30-Ma
granite of Mineral Mountain but appear to be intruded by tonalite of the Baker River phase, an
anomalous relationship (see Tcbrg). Mapped as:

Tvbb Breccia—Predominantly dacite breccia; minor tuff beds. Forms massive cliffs. Scattered clasts of
older rocks including light-colored granitic rocks

Tvbd Dacite tuff—Biotite dacite tuff, commonly ash-flow tuff and bedded fine grained tuff. Includes dacite
on Middle Peak
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Tvpd
Tvpb

Tusy
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Monolithologic granite breccia—Angular blocks of biotite granite from a few cm to several meters
across in a granitic sand matrix. Scattered volcanic fragments. Derived from granite of Mineral

Mountain (Tcmbg)

Volcanic rocks of Pioneer Ridge (Oligocene)

Dacite flows—Plagioclase- and quartz-phyric dacite. Mafic minerals altered to smectites

Mudflow breccia—Clasts of dacitic volcanic rock and abundant clasts of underlying metamorphic

rock. Some volcanic-lithic wacke. Locally strongly thermally metamophosed

Unnamed sandstone and conglomerate, young (middle Eocene and (or)

younger)—West of lower Bacon Creek, mostly coarse cobble conglomerate with clasts derived
from the Marblemount Meta Quartz Diorite (TKm) one of which yielded a zircon fission track age
of 45 Ma (Table 2, no. 41). Assuming that age was not reset after deposition, unit is middle

Eocene or younger

Chuckanut Formation (Eocene)—Mostly plagioclase arkose, biotite-rich with minor

muscovite, buff-weathering, medium to thick-bedded, fluvial, and minor interbeds of siltstone,
mudstone and very fine-grained sandstone. Minor pebble to cobble conglomerate. Conspicuous
cross beds, convolute bedding, and plant fossils. Sandstone is locally thinner-bedded and more
lithic. Ochre-colored silty beds near base of unit may be paleosols. Basal beds, where exposed,
commonly include bull-quartz pebble conglomerate which appears to have been derived from
underlying Easton Metamorphic Suite. Small amounts of anthracite have been mined from
deformed, pyritic beds near basal contact north of Coal Pass (Moen, 1969).

Chuckanut beds within the map area have been referred to the Bellingham Bay, Slide, and
Warnick Members by Johnson (1982, 1984) which he felt ranged from early to middle Eocene in
age. J.A. Vance (oral commun., 1993) reports that detrital zircon populations separated from
numerous samples of Chuckanut Formation each show an age peak of ca. 56 Ma, implying that

most of the unit is younger than this

Unnamed sandstone and conglomerate, other (Age uncertain)—Thick to thin bedded

fluviatile arkosic sandstone and interbedded argillite, siltstone and very fine-grained sandstone.
Locally has conspicuous crossbeds, fossil leaves, and fossil logs. Basal beds commonly rich in
angular fragments of underlying rocks. Southeast of Berdeen Lake includes conglomerate with
clasts of granitic rock, geenstone, gneiss, schist, phyllite, minor sandstone and limestone, and
abundant well-rounded cobbles of quartzite. On Mount Despair, pebble to cobble conglomerate
with clasts of gneiss, metachert, and minor pegmatite; intruded by granodiorite of Mount Despair,

indicating unit here is early Oligocene or older. Converted to biotite hornfels, commonly with
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cordierite and (or) andalusite, in proximity to younger plutons. These rocks may correlate in part
with the Chuckanut Formation (Tcs) or other early Tertiary fluviatile deposits (see Tabor and

others, in press)

ROCKS BETWEEN THE STRAIGHT CREEK FAULT AND THE ROSS LAKE FAULT ZONE

Skagit Gneiss Complex (Tertiary and Late Cretaceous)—Heterogeneous complex of
supracrustal schist, amphibolite, rare marble and ultramafic rock intruded in a lit-par-lit fashion
by mostly hornblende-biotite and biotite tonalite orthogneiss. Orthogneiss bodies range from a
few centimeters thick in the banded gneisses to several kilometers thick in the mapped
orthogneiss. Abundant deformed dikes and sills of light-colored pegmatitic tonalite. Misch
(1966, 1968), Misch and Onyeagocha (1976), Yardley (1978), Babcock and Misch (1988, 1989),
Haugerud and others (1991), and Whitney (1992a, b) describe the rocks and discuss their
petrogenesis. Mapped as:

TKsgp Granite pegmatite (associated with TKeb)—Granite pegmatite in mostly layer-parallel sills and
dikes; country rock sparse to absent between multiple intrusions. Quartz in pegmatite generally
highly strained, mylonitic to blastomylonitic

TKsbg Banded gneiss, mostly biotite gneiss—Biotite schist, biotite-garnet schist, biotite paragneiss
(some t+ garnet, cummingtonite), hornblende-biotite paragneiss, gneissic hornblende-biotite
tonalite, and tonalite gneiss. Strongly layered rocks with minor amphibolite gneiss, and
homblende schist. Commonly strongly migmatitic with concordant and crosscutting light-
colored dikes of foliated, lineated fine-grained to pegmatitic leucotonalite and lineated granite and

granodiorite

TKsbga Banded gneiss, mostly amphibole gneiss and amphibolite—Homblende and biotite-hornblende
paragneiss, gneissic amphibolite, hornblende schist, biotite schist and paragneiss, and tonalite
gneiss. In some mapped areas, homblendic rocks are conspicuous but may not be dominant.
Commonly strongly migmatitic with concordant and crosscutting light-colored dikes of foliated,
lineated fine-grained to pegmatitic leucotonalite and lineated granite and granodiorite

TKso Orthogneiss—Gneissic hornblende-biotite tonalite. Relatively uniform crystalloblastic granitoid
gneiss with rare relict euhedral oscillatory-zoned plagioclase crystals. Hornblende or biotite may
predominate. Garnet locally. Quartz and biotite commonly moderately to highly strained.
Locally migmatitic with concordant and crosscutting light-colored dikes of foliated, lineated fine-
grained to pegmatitic leucotonalite. Concordant to moderately discordant U-Pb ages of zircons

from several bodies of orthogneiss suggest original igneous crystallization between 75 and 60
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Ma (Table 2, nos. 55, 56, 59, 60, 62). A biotite K-Ar age of 30 Ma from Newhalem (Table 2, no.
55) must reflect subsequent heating by the nearby Chilliwack batholith. Locally mapped as:
Mafic orthogneiss—Hornblende diorite orthogneiss. Some amphibolite and hornblendite
Mafic migmatite—Heterogeneous homblende tonalite migmatite and orthogneiss rich in slivers
of homblendite and amphibolite. Cross-cutting light-colored dikes of light-colored, fine-grained
to pegmatitic, foliated and lineated tonalite and lineated granite and granodiorite

Orthogneiss of The Needle—Hornblende tonalite to granodiorite orthogneiss with distinctive
texture of ca. 1 mm equant crystals forming cm-sized patches rich in quartz, feldspar, hornblende,
or biotite. Dominant foliation locally axial-planar to small folds of an earlier foliation. U-Pb
ages of zircons are discordant, ranging from 113 to 122 Ma (Table 2, no. 61), considerably older
than other orthogneiss in the Skagit. Haugerud and others (1991) suggest the gneiss is a
recrystallized Triassic pluton, coeval with Marblemount Meta Quartz Diorite

Ultramafic rock—Includes hartzburgite gneiss, talc-tremolite schist, anthophyllite-talc-tremolite
schist, chlorite-rich blackwall, and retrograde serpentinite. Common relict chromite attests to
igneous origin. For discussion see Whitney and Evans (1988), Misch and Rice (1975), Haugerud
and others (1991), Tabor and others (1989). Shown in small outcrop with burst symbol only

Marble and calcsilicate rocks. Shown with star symbol where outcrop too small to show at map

scale

Orthogneiss of Marble Creek (Tertiary and Late Cretaceous)—Biotite tonalite to
granodioriote gneiss with minor homblende, muscovite, and well-formed igneous(?) epidote.
Ranges from granitoid gneiss with integranular quartz and relict euhedral oscillatory zoned
plagioclase crystal to highly strained flaser gneiss with anastomosing mylonitic quartz and
biotite. Pluton is rich in screens and rafts of supracrustal schists and pods of ultramafic rock. U-
Pb ages of zircon are slightly discordant at about 75 Ma (Table 2, nos. 46). Haugerud and others
(1991) interpret this to be the age of intrusion. K-Ar ages of muscovite and biotite—about 50 and
44 Ma respectively (Table 2, no. 47)—reflect Eocene unroofing

Orthogneiss of Haystack Creek (Tertiary and Late Cretaceous)—Hornblende biotite
gneiss, with blotchy patches of aggregate mafic minerals. K-Ar ages of muscovite and biotite,
about 48 and 44 Ma respectively (Table 2, no. 45) reflect Eocene unroofing

Orthogneiss of Alma Creek (Tertiary and Late Cretaceous)—Biotite leucogranodiorite
and leucotonalite gneiss, with minor muscovite. Alma Creek Leucotronhjemite of Misch (1966).
Hypidiomorphic granular with highly strained quartz; biotite commonly decussate. CI<10. Local

2-4 cm diameter orbicules are biotite which tangentially rims quartzofeldspathic cores.
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Muscovite and biotite K-Ar ages of about 49 and 39 Ma respectively (Table 2, no. 44) reflect
Eocene unroofing. Smaller irregular bodies northwest of Skagit River not shown

TKto Orthogneiss of Mount Triumph (Tertiary and Late Cretaceous)—Gneissic medium-
grianed biotite hornblende tonalite. Coarse green epidote locally intergrown with homblende
and biotite. Weak foliation and lineation and common cataclasis. Contact metamorphism by
adjacent Chilliwack composite batholith has annealed some of earlier deformation

TKhl Hidden Lake stock (Tertiary and Late Cretaceous)—Biotite metatonalite with good relict
hypidiomorphic granular texture. Plagioclase mostly filled with well-crystallized epidote and
muscovite; some grain margins have recrystallized and quartz is sutured. Some K-feldspar is
microcline. Rock is massive and sharply intrusive. Haugerud and others (1991) interpret 75 Ma
zircon U-Pb (Table 2, no. 49) to represent primary crystallization. A 38 Ma K-Ar biotite age
probably reflects Tertiary unroofing, perhaps with additional argon loss due to reheating by a
subjacent intrusion of the Cascade magmatic arc

TKeb Eldorado Orthogneiss (Tertiary and Late Cretaceous)—Biotite-hornblende tonalite to
biotite granodiorite gneiss; Ford and others (1988) report quartz monzodiorite southeast of quad.
Medium-grained subhedral to euhedral sodic plagioclase commonly filled with epidote or
clinozoisite and set in matrix of crystalloblastic to mylonitic quartz, K-feldspar, homblende,
biotite, and epidote; accessory sphene, apatite, zircon, and opaque oxides; commonly well-
aligned prismatic aggregates of hornblende and biotite, but in many rocks mafic minerals are
aligned in a streaky planar fabric. Common mafic enclaves locally define strong flattening and
weak strike-parallel elongation. Gradational over several 100 meters into Keof. For further
descriptions of lithology and mineral parageneses see McShane (1992). Concordant U-Pb
isotope ages of zircon of about 88 to 92 Ma from hornblende gneiss (Table 2, no. 63; Mattinson,
1972) indicate that the protolith of the Eldorado is Late Cretaceous. Hornblende K-Ar age of 43
Ma (southeast of quad; see Engels and others, 1976) reflects Eocene unroofing. Locally mapped
as:

TKef Flaser gneiss border zone—Fine- to medium-grained biotite-hornblende metatonalite and
metagranodiorite flaser gneiss, with patches of sodic plagioclase mosaic and rare simple crystals

set in mylonitic fabric of finer-grained quartz, plagioclase, and mafic minerals
Rocks derived from the Chelan Mountains terrane

TKm Marblemount Meta Quartz Diorite of Misch (1966) (Tertiary and Late
Cretaceous)—Meta-quartz diorite and tonalite and gneiss; light-colored metatonalite dikes.
Locally unmetamorphosed hornblende tonalite north of Skagit River; greenschist facies meta-
quartz diorite at and south of Skagit River; locally gneissic in Cascade River area. Most common

rock has CI =16-54 (Ford and others, 1988), is medium-grained, pale green, has numerous
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anastomosing shears rich in chlorite, epidote, and actinolitic hornblende, and varies from
massive with relict hypidiomorphic granular texture to highly foliate and mylonitic. Plagioclase
commonly transformed to unzoned, complexly twinned albite filled with epidote and (or) white
mica. Concordant U-Pb ages of zircons are about 220 Ma (Late Triassic; Table 2, no. 69)
reflecting protolith crystallization (Mattinson, 1972). A 94 -Ma K-Ar age from metamorphic
muscovite from a schistose light-colored dike in the pluton (Table 2, nos. 68) could reflect early
Late Cretaceous metamorphism of part of the unit, early Late Cretaceous cooling following earlier
metamorphism, or (and) a combination of excess argon and latest Cretaceous to early Tertiary

heating and argon loss. Locally mapped as:

TKmf Flaser gneiss border zone—Dark-colored epidote-chlorite-muscovite-quartz-plagioclase flaser
gneiss, locally with chlorite schist. Subhedral to subidioblastic sodic plagioclase in a foliate
matrix, locally with biotite

TKns Napeequa unit (Tertiary and Late Cretaceous)—Predominantly fine-grained hornblende-
mica schist, mica-quartz schist, hornblende schist, amphibolite, garnet-biotite schist, and minor
hornblende-zoisite schist, hornblende garbenschiefer, calc-silicate schist, marble, and ultramafic
rock. In the Cascade River area and in the Straight Creek Fault zone, phyllitic muscovite-
chlorite-quartz schist predominates. Rocks are mostly white, tan, brown to black, locally
greenish with conspicuous compositional banding. Fine lamellar foliation, locally
blastomylonitic. On outcrop scale the schist is isoclinally folded, commonly crenulated or
contorted; small crinkle folds on prominent foliation surfaces.

K-Ar ages of hornblende, muscovite, and biotite are about 55, 46 and 49 Ma respectively,
reflecting Eocene unroofing (Table 2, nos. 66, 67). Locally mapped as:

TKnm Marble and minor amphibolite. Shown with star symbol or line symbol where outcrops too small
to show at map scale

TKm Ultramafic rock—Serpentinite, talc-magnesite schist, talc schist, tremolite-talc schist, and olivine-
talc rocks. Shown with burst where too small to show at map scale

TKc Cascade River unit (Tertiary and Late Cretaceous)—Mostly fine-grained highly fissile
green, brown, and black micaceous schist ranging from phyllitic sericite-quartz schist to
granoblastic biotite- and muscovite-biotite-quartz-albite (or oligoclase) schist and fine-grained
paragneiss. Many rocks have garnet, less commonly staurolite and kyanite. Rare chloritoid.
Hommblende-biotite-andesine schist, garbenschiefer, and fine-grained amphibolite common.
Calcareous mica schist locally. Homblende is commonly blue-green. Relict clastic textures

common in metasandstone; unit includes small-pebble metaconglomerate. Most descriptions

abstracted from Tabor (1961) Locally mapped as:
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TKce Metaconglomerate—gray to dark green rocks ranging from boulder conglomerate with weak
foliation to highly schistose rocks in which clasts are so highly attenuated that they are only
visible on surfaces cut perpendicular to fabric lineation. Identifiable clast protoliths are quartzite,
volcanic, and granitoid rocks, including rocks derived from the protolith of the Marblemount
unit. A K-Ar age of muscovite from a meta-quartz diorite clast in metaconglomerate is about 46
Ma, reflecting Eocene unroofing, and is a younger age limit for metamorphism (Table 2, no. 64)

TKemv Metavolcanic rocks—Fine grained leucogreenschist, commonly with relict highly flattened
phenocrysts of plagioclase or mafic minerals. Silicic mica schist (metarhyolite) about 500 m
stratigraphically above the Marblemount contact (Cary, 1990) and structurally overlain by
metaconglomerate yields concordant zircon ages of about 220 Ma (Table 2, no. 65). For further

descriptions see Dragovich (1989) and Cary (op.cit.)

ROCKS IN THE ROSS LAKE FAULT ZONE

TKhr Ruby Creek Heterogenous Plutonic Beit of Misch (1966) (Tertiary and Late
Cretaceous)—Heterogneous gabbro to granodiorite in small masses and dikes. Plutons of the
belt intrude phyllite and schist of Little Jack Mountain and, east of quad along State Route 20,
intrude Skagit Gneiss Complex. Much medium-colored hornblende biotite tonalite, fine to
medium grained, locally cataclastic. Abundant light-colored hornblende biotite tonalite to
granodiorite. Just east of the quadrangle on SR 20, U-Pb analyses of zircons from an undeformed
light-colored tonalite yield an age of 48 Ma (Miller and others, 1989). Locally shown
containing:

TKhrs Prominent remnants of Skymo Complex of Wallace (1976)—Similar to TKhr but with many small

masses of metagabbro and meta-ultramafic rock

TKsmc  Skymo Complex of Wallace (1976) (Tertiary and Late Cretaceous)— Troctolite,
gabbronorite, and anorthosite intruded by irregular patches and veins of lighter-colored medium-
to coarse-grained gabbro and rare tonalitic pegmatite. Gabbro-norite locally grades to
pyroxenite. Troctolite and gabbronorite weather orange-brown. Oikocrystic orthopyroxene in
gabbronorite. Troctolite, gabbronorite, and anorthosite weakly layered, cumulate origin is
probable. Unit is highly faulted and cut by mylonitic zones. Wallace (op. cit.) describes gneissic
granulites and considered the rocks to have been metamorphosed in the granulite facies. For

additional description see Wallace (op. cit) and Kriens (1988)
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Rocks derived from the Little Jack terrane

Phyllite and schist of Little Jack Mountain (Mesozoic)—Mostly quartz-mica phyllite

and biotite schist with local staurolite, garet, andalusite, and sillimanite. Rare ribbon chert,
local marble, and ubiquitous pods of metapyroxenite, talc-bearing metaperidotite, and
serpentinite. Local amphibolite and hornblende-biotite schist. Biotite commonly
porphyroblastic. Intruded by dacite porphyry dikes ranging from undeformed to mylonitic with
strong, mostly NW-trending, stretching lineation. Some description in Staatz and others (1972)
and Wallace (1976). Locally mapped as:

Ultramafic rocks (Mesozoic)—Metaperidotite and metapyroxenite. Shown by burst symbo! for

outcrop too small to show at map scale

Hozameen terrane

Hozomeen Group of Cairnes (1944) (Mesozoic and Paleozoic)

Greenstone, clastic sedimentary rocks, limestone, chert (Jurassic and Triassic)—Heterogeneous,
discontinuously bedded greenstone, greywacke, argillite, marble and ribbon chert. Local chaotic
mixing suggestive of deposition by submarine landslides. Greenstones commonly derived from
Ti-rich basalt, locally with good pillows. Partially recrystallized to prehnite-pumpellyite facies.
Limestones mostly coarsely-recrystallized, gray, and in discrete 0.1-10 m pods. Deformational
fabric ranges from none to (mostly) incipient slatey cleavage. Description modified from
Haugerud (1985). Unit Mzhgs corresponds to the uppermost of 4 units described by McTaggart
and Thompson (1967). Radiolarians in correlative rocks north of quad yield Late Triassic (Table
1, nos. 83f-86f) and Jurassic (Table 1, nos. 81f, 82f) ages

Chert (Triassic)—Mostly ribbon chert and slatey argillite with minor greenstone and marble.
Radiolarians yield Middle and Late Triassic ages (Table 1, nos. 77f, 78f, 80f). Probably
corresponds to 3rd highest of 4 units described by McTaggart and Thompson (1967)

Greenstone with minor argillite, chert, and limestone (late Paleozoic)}—Mostly pillow basalt,
pillow breccia, flows, and minor basaltic tuff, with minor argillite, ribbon chert, limestone.
Partially recrystallized to prehnite-pumpellyite facies. Radiolarians from off quad to east are
Permian (Table 1, no. 87f). Probably corresponds to 2nd highest of 4 units described by
McTaggart and Thompson (1967). Ray (1986) reports some chemical data from Hozomeen
greenstones. Locally mapped as:

Limestone, chert and minor greenstone and metatuff—Mostly gray well-recrystallized limestone.

Conodonts from a limestone north of Mount Hozomeen are Early to Middle Pennsylvanian in age

(Table 1, no. 76f)
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ROCKS WEST OF THE STRAIGHT CREEK FAULT

Rocks of the Northwest Cascade System

Welker Peak and Excelsior nappes

Conglomerate of Bald Mountain (Age uncertain)—Coarse polymictic conglomerate, chert-

pebble conglomerate, grey lithic sandstone, and phyllitic black to silvery argillite. Polymictic
conglomerate includes clasts of chert, argillite, green metatonalite, dacite, buff-weathering
calcite-cemented quartzose sandstone, and rare bedded lithic sandstone. Clast-supported, pebbles
and boulders well rounded. Clasts in conglomerates locally flattened and boudinaged. Rare
siltstone and shale interbeds. East of Goat Mountain contains abundant fossil plant material. See
Johnson (1982, 1984) for further description.

Two chert clasts yield possible Triassic and Late Triassic radiolarians. Poorly preserved
pollen from a shale interbed suggests a Late Cretaceous to early Tertiary age (Table 1, nos. 1f-3f),
which led Johnson (1982, 1984) to consider unit a member of the Chuckanut Formation.

Deformation of unit makes a pre-Tertiary age more likely. Locally mapped as:

Sandstone and argillite—Highly indurated, thin- to medium-bedded sandstone; beds generally

disrupted. Sandstone poorly sorted, rich in chert clasts. Black argillite, flakey to slatey. Minor

chert-pebble conglomerate beds

Rocks of the Bell Pass mélange

Bell Pass mélange undivided (Cretaceous and Late to Middle (?) Jurassic )—Disrupted argillite, slate,

phyllite, sandstone, semischist, ribbon chert, and basalt of the Elbow Lake Formation of Brown
and others (1987), with tectonic clasts of meta-igneous rocks, gneiss, schist, ultramafic rocks,
and marble. Sandstone commonly lithic subquartzose, either volcanic rich and(or) chert rich;
argillite is mostly scaley, and grades into slate and phyllite. Greenstones are recrystallized mafic
basalt, mafic tuff, diabase, and gabbro and commonly make the most prominent outcrop.
Metamorphic minerals in greenstones and metasedimentary rocks are chlorite, epidote, albite,
pumpellyite, rare actinolite, carbonate and indistinct masses of pumpellyite and(or) lawsonite.

Ribbon chert of the Elbow Lake unit, commonly highly deformed and locally occurring as
resistant knockers, yields mostly Jurassic and Triassic radiolarians; a few late Paleozoic forms
have been identified (Table 1, nos. 29f—47f). Sevigny and Brown (1989) report chemical
characteristics of the high-Ti greenstones of the unit.

Tectonic clasts within the Bell Pass mélange are locally mapped as:

Blueschist of Baker Lake (Jurassic to Cretaceous)—Metabasaltic rocks, meta-ribbon chert, and
marble, characterized by distinctive (for the NWCS) high pressure/low temperature crossite +

lawsonite + aragonite metamorphism. Metabasaltic rocks range from very fine-grained schistose
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metatuff to incipiently recrystallized basalt. Protolith assemblage—especially basalt with high-
Ti clinopyroxene—appears correlative with the Elbow Lake unit, indicating metamorphism is
younger. Brown and others (1987) report a 127 Ma whole rock K-Ar age of uncertain significance
(Table 2, no. 74). Leiggi (1986) and Brown and others (1981, 1987) describe petrographic and
chemical aspects of the unit
Yellow Aster Complex of Misch (1966) (Paleozoic)—Medium- to coarse-grained feldspathic
gneisses and associated weakly deformed plutonic rocks. Divided into:

Non-gneissic rocks—Metagabbro, metadiabase, metatonalite, and minor gneissic igneous
rocks. May include Mesozoic or late Paleozoic intrusive rocks similar to MzPzg and MzPzt

Gneissic rocks—Layered siliceous gneiss, quartz-rich pyroxene gneiss, gneissic megacrystic
granite, and minor marble as well as associated metagabbro, metadiabase, and metatonalite.
Includes areas lacking siliceous gneiss but with strongly mylonitic quartz-rich meta-igneous
rocks. Talus blocks east of Park Butte show lithologic gradation from graphitic marble to quartz-
rich pyroxene gneiss, establishing that at least some of gneiss is metasedimentary. Gneissic
granite with K-feldspar megacrysts known only from Kidney Creek, northwest of Church
Mountain. Most rocks are highly strained and recrystallized in amphibolite or upper greenschist
facies. Locally, intruded by associated metagabbro, metadiabase, and metatonalite. Descriptions
and chemical data in Blackwell (1983), Sevigny (1983), and Sevigny and Brown (1989).

Discordant U-Pb ages of zircon and sphene from pyroxene gneisses range from 64 to 912 Ma

(Table 2, nos. 84-88). Mattinson (1972) interpreted a 1.4 Ga (Proterozoic) Pb-Pb age for
pyroxene gneiss, thought to be orthogneiss, to represent a minimum protolith age for rock
metamorphosed at about 400 Ma (Devonian) and perhaps at about 270 Ma (Permian) as well.
Rasbury and Walker (1992) report similar analyses of single zircon grains, but interpret the

zircons to be detrital relics of 1.85 Ga crust

Ultramafic rocks—Serpentinite and serpentinized hartzburgite. For descriptions see Sevigny
(1983)

Ultramafic rocks—Serpentinite and partially serpentinized dunite and hartzburgite. Detailed
descriptions of petrography, chemistry, and metamorphism are in Leiggi (1986). Outcrops too
small to show at map scale shown with burst symbol. Locally mapped as:

Twin Sisters Dunite of Ragan (1961)—Dunite and minor harzburgite, locally serpentinized.
Enstatite-bearing dunite with accessory chromite and chromium diopside; olivine has a high-
temperature tectonite fabric indicative of a mantle origin (Christensen, 1971; Hersch, 1974;
Levine, 1981). High-temperature metamorphic layering of chromite and pyroxenes generally
steep and parallel to the long axis of the body as are zones of finely-recrystallized olivine

(Ragan, 1963). On the basis of gravity and magnetic measurements, Thompson and Robinson
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(1975) show the mass to be a plate-like body, mostly less than 2 km thick, but with a
serpentinite keel on the west (see cross-section CC')

Pyroxenite—Massive pyroxenite consisting of mostly enstatite and minor olivine and
serpentine minerals
Vedder Complex of Armstrong and others (1983) (Permian)—Amphibolite, blueschist, micaceous
quartzite, and mica quartz schist. Some gamet. Amphiboles are hornblende, actinolite, and
barroisite. Some amphibolites are albite-porphyroblastic. In the quadrangle, K-Ar ages range
from 196 to 283 Ma (Table 2, nos. 75-80), and in the type area on Vedder Mountain, 13 km
northwest of the quadrangle, Rb-Sr ages of minerals and rocks are in the 229-285 Ma range
(Armstrong and others, 1983). Petrographic, chemical, and isotopic data are in Armstrong and
others (1983)
Marble—Coarsely crystalline marble. Outcrops near Anderson Creek too small to show at map

scale shown with star symbol

Slate of Rinker Ridge (Cretaceous and Late to Middle Jurassic)—Slate and semischist.
Similar to semischist and phyllite of Mount Josephine, but less thoroughly recrystallized.
Exposed only in lower Skagit River valley. Structural position suggests this protolith of this
unit was sedimentary rock of the Chilliwack Group. Metamorphism presumably is coeval with
deformation in the Excelsior and Welker Peak nappes, of probable Middle to Late Jurassic and (or)

Cretaceous age. For more thorough description of unit see Tabor and others (in press)

Gabbroic intrusions (Mesozoic and Paleozoic)—Metagabbro, metadiabase and minor
mafic metatonalite. Generally highly cataclastically deformed and altered to chlorite, epidote,
albite, pumpellyite, and carbonate. Many rocks with very fine-grained high-relief minerals
replacing plagioclase, probably pumpellyite and (or) lawsonite

Tonalitic intrusions (Mesozoic and Paleozoic)—Metatonalite, commonly strongly
cataclastically deformed. Metatonalite in Cultus Formation consists of albitic plagioclase and
quartz, commonly in micrographic intergrowths, with <10% chlorite, epidote, and opaque ore
minerals which have replaced homblende and (or) biotite. Some of these rocks are described by
Blackwell (1983).

Stock near Lake Ann has largely undeformed hypidiomorphic granular texture with relict
green hornblende in quartz-rich mesostasis. It intrudes the probable Late Permian rocks of Mount

Herman (Chilliwack Group)

Chilliwack Group and Cultus Formation undivided (Mesozoic and Paleozoic)
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JTRc Cultus Formation (Early Jurassic and Late Triassic)—Tuffaceous siltstone, sandstone, and
argillite, mostly thin-bedded to finely laminated. Much rhythmite. Medium-bedded sandstone on
Loomis Mountain. For further description, see Blackwell (1983). Radiolarians from several
localities are Triassic (Table 1, nos. 5f, 6f, 8f), but in the area of Frost Creek on the northern
border of the map, a chert layer yields probable Middle to Late Jurassic radiolarians (Table 1, no.
7f). Locally mapped as:

JTRcd Dacite and associated tuffaceous sedimentary rocks—Generally light green vitreous metadacite with
microphenocrystic plagioclase. Interbedded limestone on Loomis Mountain contains Triassic
corals (Table 1, no. 4f)

PDcs Chilliwack Group (Permian, Carboniferous, and Devonian)—Mostly basalt, andesite,
dacite, volcanic breccia and tuff, marble, well-bedded gray to brown and black argillite and
volcanic subquartzose sandstone with minor pebble conglomerate, and rare chert. Graded beds,
scour structures, and load casts locally prominent; some rhythmite. Locally sandstone beds
strongly disrupted in argillite matrix. Rocks grade rapidly from little-deformed to phyllitic with a
pronounced foliation generally subparallel to bedding. Most rocks partially recrystallized in sub-
greenschist facies. Chilliwack Group rocks are described by Misch (1966), Monger (1970),
Blackwell (1983), Christianson, (1981) and Smith (1985, 1988).

Fusulinids and macrofossils in limestone range from Devonian to Permian (Table 1, nos.
9f-27f). Distinctive 1- to 3-cm diameter crinoid columnals led Danner (1966) to correlate many
marble outcrops with his Red Mountain limestone unit, which he considered to be Pennsylvanian.
Liszak (1982) restudied the Red Mountain fauna and determined a Mississippian (late Visean) age,
which we adopt for all the large-crinoid limestones of the NWCS (Table 1, nos. 12f, 15f, 17f, 19f,
23f, 24f). Single crystal U-Pb ages of detrital zircons from Chilliwack clastic rocks in the
Jackman Creek area (Table 2, nos. 81-82) suggest Late Devonian deposition of the original
sediments (McClelland and Mattinson, 1993). Locally mapped as:

Pemv Volcanic rocks of Mount Herman (Permian)—Breccia, pillows, pillow breccia, and associated
volcanic sandstone of basalt or basaltic andesite composition. Most volcanic rocks plagioclase-
porphyritic, some amygdaloidal. Weathers orange-brown; dark to light green on fresh surface

Pcms Sedimentary rocks of Mount Herman (Permian)—Volcanic sandstone, argillite, and limestone.
Generally well-bedded and with little foliation. Radiolarians from siliceous siltstone interbedded
with limestone southeast of Coleman Pinnacle are ?Late Permian in age (Table 1, no. 28f)

PDcv Volcanic rocks—Mostly basaltic greenstone, with subordinate andesite and rare dacite or rhyolite.
Breccia and tuff predominate. Mafic volcanic rocks commonly with relict plagioclase and
clinopyroxene in a chlorite-epidote matrix, commonly with carbonate. Plagioclase is mostly

recrystallized as albite. Includes some gabbro and diabase
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Limestone and marble—Mostly coarsely crystalline, gray to black, and petroliferous; in small

isolated pods and blocks; locally fossiliferous

Harrison Lake terrane

Gabbroic intrusions (Early Cretaceous?)—Metagabbro with relict clinopyroxene. Altered to
chlorite, epidote, albite, carbonate, and montmorillonoids after olivine(?). Intrudes Nooksack
Group northwest of Mount Baker. Lithologically similar dikes form swarm to southeast of
intrusion

Nooksack Group (Early Cretaceous and Late and Middle(?) Jurassic)—Described here
as sedimentary rocks, though much of the unit is incipiently recrystallized (Brown and others,
1981; 1987). Mapped as:

Argillite and sandstone—Predominantly massive to laminated black argillite. Locally with thin to
medium beds of mostly lithic-volcanic sandstone. Minor limey siltstone and limestone. Some
beds heavily bioturbated. Local detrital muscovite. Cleavage weakly developed north of Mount
Baker, but pronounced to south. Argillite near top of Wells Creek Volcanics of Misch (1966) rich
in pyrogenic plagioclase and quartz phenocrysts. Belemnite molds characteristic. Locally
abundant macrofossils indicate most of the unit is Late Jurassic to Early Cretaceous in age (Table
1, nos. 48f-75f). Misch (1966) and Sondergaard (1979) describe unit in more detail

Thick bedded sandstone and argillite—V olcanic lithic sandstone with minor interbeds of argillite

Grit and thick bedded sandstone—Poorly rounded to angular pebble conglomerate and volcanic-
lithic sandstone. Minor interbeds of argillite

Volcanic rich conglomerate and sandstone—Massive to locally well-bedded pebble to boulder
conglomerate rich in dacite and tonalite clasts. Boulders to 1 meter diameter. Some well-bedded
volcanic sandstone and tuff. Belemnite fragments common

Wells Creek Volcanics of Misch (1966) (Middle Jurassic)—Incipiently recrystallized

andesite, dacite, dacite breccia and tuff with some argillite interbeds. Metamorphic pumpellyite,
chlorite, epidote, albite. See Misch (1966, 1977b) and Franklin (1985) for further description.
U-Pb ages of zircon from a wuff are 173-175 Ma (Table 2, no. 70) and are interpreted by J.M.
Mattinson (cited in Franklin, 1985) to indicate crystallization at about 175-180 Ma

Shuksan nappe

Easton Metamorphic Suite (Early Cretaceous)

Darrington Phyllite—Silvery to black quartzose graphitic phyllite, with mimor greenschist,
metachert, and muscovite-quartz-albite schist. Commonly with multiple crenulation lineations
and abundant quartz veins. Dominant foliation is commonly second-generation or later.

Mineralogy is quartz—albite-white mica—chlorite, + lawsonite, gamnet, margarite. Thin sections
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show well-crystallized white mica: fine grain size in hand sample reflects tendency of rock to
break along post-peak metamorphic pressure-solution cleavage surfaces along which fine
insoluble material has concentrated. Locally interlayered with Kes

Kes Shuksan Greenschist—Greenschist and lesser blueschist. Locally includes iron- and manganese-
rich quartzite (metachert), greenstone, and graphitic phyllite. Rare relict clinopyroxene in some
greenschist. Schist varieties include dark-green, fine-grained, muscovite-chlorite-epidote-
actinolite schist with common knots and masses of epidote, quartz-albite-chlorite veins, and
relict pillow or breccia structure, and well-layered light green chlorite-rich schist that appears to
be metamorphosed tuff. Blueschist bears Na-amphibole (crossite-soda actinolite-riebeckite) +
hematite (Brown, 1986). Locally interlayered with Ked.

Bulk compositions indicate a basaltic, largely MORB, protolith (Street-Martin, 1981;
Dungan and others, 1983). Armstrong (1980) and Brown and others (1982) proposed that the
protolith age of the Easton Metamorphic Suite is Jurassic, possibly Late Jurassic. More recently
a Middle Jurassic protolith age has been interpreted from a 163 Ma 206pb/238y zircon age of a
metadiorite within rocks west of the quad thought to be correlative with the Darrington Phyllite
(Brown, 1986; Gallagher and others, 1988).

Epidote balls, knots and masses formed during early static hydrothermal metasomatism; the
balls are vesicle fillings (Haugerud, 1980; Haugerud and others, 1981; compare, Misch, 1965).
Co-occurrence of abundant white mica, Na-amphibole and hematite suggest oxidation and
incorporation of potassium during submarine weathering.

Subsequent blueschist-facies metamorphism involved large strains, as schists are commonly
conspicuously layered on the centimeter scale, and foliation and layering are tightly folded on the
outcrop scale. Metamorphism at P~8 kb, T~400°C (Brown, 1986) is dated by K-Ar and Rb-Sr at
120-130 Ma (Table 2, nos. 79, 80). Latest Jurassic metamorphism at higher temperatures is
evident at Gee Point, south of the Mount Baker quadrangle (Brown and others, 1982; Armstrong
and Misch, 1987; Tabor and others, in press)

Keu Ultramafic rock—Serpentinite, silica-carbonate rock, and forsterite-enstatite-tremolite-chlorite
rock on Mount Sefrit (Tepper, 1985) and west of Grandy Creek. Shown with burst symbol only

Kjs Semischist and phyllite of Mount Josephine (Early Cretaceous?)—Graphitic sericite-
plagioclase-quartz phyllite and semischistose lithic-volcanic subquartzose sandstone. Protolith
thin to medium bedded. Locally highly contorted, but generally lacks prominent multiple

crenulations characteristic of the Darrington Phyllite. Locally mapped as:

Kju Ultramafic rock——Serpentinite and silica-carbonate rock
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LIST OF ILLUSTRATIONS

Figure 1. Simplified geologic map of the Mount Baker 30 x 60 minute quadrangle.
Figure 2. Sources of map compilation data.
Figure 3. Generalized map of nappes of the Northwest Cascade System.

Figure 4. Diagram showing stacking of nappes and thrusts in the Northwest Cascade System. On Cross

Section sheet.
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