USGS-OFR-94-433 USGS-OFR-94-433

U.S. DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

DATA REPORT AND DESCRIPTION OF TECHNIQUES
FOR THE 1993 SEASON OF THE SAN FRANCISCO BAY AREA
REGIONAL BROAD-BAND TRANSECT, CALIFORNIA
(PASSCAL EXPERIMENT P9220)

by

John R. Evans!, John M. Coakley!,
and the Broadband Transect Working Group
(H.M. Iyer!, Stan Ruppert?, Susan Schwartz®, John Vidale', and George Zandt?)

Open-File Report 94433

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial stan-
dards or the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive
purposes only and does not imply endorsement by the U.S. Government.

Although these programs have been used by the U.S. Geological Survey, no warranty, expressed or implied, is
made by the USGS as to the accuracy and functioning of the programs and related program material, nor shall
the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connec-
tion therewith.

1U.S. Geological Survey, Menlo Park, California
Y .awrence Livermore National Laboratory, Livermore, California
3University of California, Santa Cruz, California

=

I have made this letter longer than usual, because I lack the time to make it short.

—Blaise Pascal, Lettres Provinciales, #16, 1656—1657

Contents

eTa (o Ta et £ 1o) £ O RO PR 3
DeSCHPUON Of VAULLScoviieniiniciiciesi i st st b srs e she st sbe b eb s sabbsh e beb s bbb sb e e sn s b senas 3
2.1 Vault Temperature SIADILILY ..cccoecevreirrrreieeniineiiiiesiiniini et se st st se s sseesbesasatsbesae e seseses e sens 4
FAEIA PIOCEAUIEScveeveneriireciieicr ettt sesasassas st srestassa st sasaesrsstsaaabsssasas shsbaeb e sasnaR s e beb bt a e s s bt s 5
3.1 GPS Timing Stability versus WWVB Radi0c.cccccocoiiviiiiemimiieniniiinieitccnse et sesenne 5
Description Of the DAtac.c.cciviiieiniieniiciiienesisase s s s s s s sb e et e b s s b s a b e enes 6
ACKNOWIEAZEIMENLS ..cuveveriirieieerceercere ettt sttt et st e s sae st et b e sh e s sa b snsas sh e bbb e b bbb se R s b s e sb e b s b e 7
RELEIENCES «cuveeeerierirrrinrirniecrinnicte it se s cras e s besa s sas b eebessr s am e s s s bbb e s bbb e s b e s d b etk b besaaebn e sbeshes sbssubesbnsreotns 7
Appendix A: Vault Construction ChecKIiStccvvimiviiinminniniirrs s 8
Appendix B: Standard Field Notes for TIANSECTcoveeimirimiinenieieniiiiieens e e sse st st s sene 12
Appendix C: Script cutpaste and Examples Of ItS USEccerrmivinniinicncinnccnicninssis s ssensnsne 19

. Appendix D: Script seltran and Program sum2cut SOUrce Codecvminminmininmmmnesiseseessseninens 22
. Appendix E: Program dz Example and Source Code ...t 27
. Appendix F: Manual Page and Source Code for Ghwwvb ...t 42
. Appendix G: Manual Page and Source Code fOr @ACIkocivimviiiiiciiiiniinr st 77
. Appendix H: Manual Pages and Source Code for Portions of librmf and libqccevevvvevivinrinnnnnens 88
s TADIES .oeeeeceeeeeeeeiie ettt bbb e e RS e eSS E sbe bR e SR e rR e b e R bRt s 118

. Figure Captions and FIGUIEScvcmiieiemiiimiiiciinit et s sbosses st ses s sas s sesesessss st sovensassens 139

1. Introduction

We are searching for the San Andreas fault. The surface trace of the fault is very well mapped, of course,
but the location of deeper shearing, particularly in the Earth’s upper mantle, is poorly known. The location of
this shearing is a matter of ongoing conjecture and study (e.g., Furlong et al., 1989), and is important because it
constrains and may modify interpretations and modeling of Earth-strain measurements. These, in turn, affect the
evaluation and mitigation of earthquake hazards, particularly for areas with long quiescent periods between
earthquakes.

We are using a polarization effect called "shear-wave splitting” in the waves of distant earthquakes to
identify and characterize deforming regions in the mantle (cf. Silver and Chan, 1991). Succinctly, the slow,
shearing distortions of the upper mantle line up crystals in those rocks. These crystal alignments affect seismic
wave velocities, making them depend strongly on the polarization of the waves and the direction of wave travel.
One result is that the shear wave splits into two waves of slightly different speeds. The time lag between these
waves’ arrivals and the polarization direction direction of the waves allow us to measure the crystal alignment,
and from that infer the location, direction, and amount of shearing in the mantle. This mantle shearing distorts
the Earth’s overlying crust, causing earthquakes.

This "Transect” experiment was to be the prototype of its genre, to demonstrate the technique’s efficacy in
a relatively simple region possibly sporting a large lateral offset between surface and mantle shearing locations.
The southern part of the San Francisco Bay Area has a small number of subparallel major faults (San Andreas,
Hayward, and Calaveras) and some authors (e.g., Furlong et al., 1989) propose that the mantle shearing is
occurring near the Hayward and Calaveras faults, some 40-60 km east of the San Andreas. Hence, we designed
a linear array of seismographs running perpendicular to the fault traces (Figure la).

Because of uncertainty in the distribution of mantle shearing, and to evaluate older and neighboring tec-
tonism that could affect our interpretations, we spanned the whole region from near the coast, north of Santa
Cruz, California, to the foothills of the Sierra Nevada, near Columbia, California (a State historic park in the
Mother Lode). We planned seven to eight broadband-seismograph vaults along this line, spaced to obtain the
maximum detail available from these (long wavelength) shear waves. Our array also takes advantage of two
permanent broadband seismographs operated by the University of California, Berkeley (stations MHC at Mount
Hamilton, and CMB at Columbia). Each or our vaults was to be occupied by continuously recording digital
seismographs and modern broadband seismometers whenever such equipment was available. We planned a total
of about 12 months recording, distributed over about three years, and mostly from Autumn into Spring, due to
the limited availability of such equipment.

This project was begun in December, 1993, then cancelled unexpectedly in October, 1994. It is not clear
whether it will be restarted by the USGS or others in this working group in a later year. In our one year of
operation, we installed three of the vaults (Table 1), obtained preliminary data from two of them, developed and
refined all major field procedures and major data processing methods and software, obtained most materials
required for the remaining vaults, and were close to receiving permission for two more vault sites. Indeed, per-
mitting sites proved the most onerous part of the study, since each vault’s construction disrupts a moderately
large area (about 10x10 m) and requires dirt-road travel in the wet season, while USGS policy and budget do
not permit substantial compensation to landowners. We are deeply indebted to the landowners who allowed us
to construct these vaults.

This report describes the methods we developed, releases the data obtained to date, and releases some
related software, particularly a reliable, robust automatic WWVB time-code reader.

2. Description of Vaults

The necessity of using broadband instruments (which require both hard rock sites to mitigate site-response
anomalies, and thermal stability to reduce long-period instrumental noise); anticipated rainy season operations
over a period of several years; and the high value of the equipment to be used (~$40k per site), drove the deci-
sion to build semi-permanent, secure, winter-rated, hard-rock vaults. We explored numerous design alternatives,
and the practices of other investigators using temperature- and tilt-sensitive equipment. Budgetary limitations
necessitated a simple, relatively inexpensive design—our solution is illustrated in Figure 1b. Indeed, construc-
tion of these vaults proved to be largely a one-day task, with an expenditure of about $2k per site in materials

and contracts.

The vault consists of two short sections of 42-inch diameter (107-cm) galvanized steel culvert placed on
end in an excavation, with at least the longer of them bottoming on bedrock (the "sensor vault"). A four-inch
diameter (10-cm) ABS plastic pipe connects the culverts below ground, so that signal and power lines may pass
between the "sensor vault” and the "recorder vault”. In the most recent variant, standard T and U fittings and
two-inch (5-cm) ABS pipe create a rain-resistant cable route to the surface near the recorder vault, to support
external solar panels and time-code receivers. All three ends of the ABS fixture are pressure fit with removable
polyethylene-foam stoppers, to reduce air circulation, water-vapor condensation, and invasion by animals such as
endemic black widow spiders and cable-chewing rodents. The entire assembly, including the joints in the cul-
vert, is sealed with industrial-grade silicon rubber caulking. Both culverts are floored by four to six inches of
sidewalk-grade premixed concrete (10-15 cm; about ¥4 ton). A few strands of heavy-wire reinforcing are used
in any recorder vault not bottoming on bedrock Once adequately cured (i.e., about a week after pouring), the
concrete is sealed with a commercial mix of Latex™ and Portland cement—a widely available basement sealer.
In addition to choosing sites with relatively deep water tables, the various sealant efforts to date have been
effective in eliminating water seepage into the vaults, reportedly a major problem with some vault designs.
Even so, some condensation, particularly on the upper parts of the vault walls and on the inside of the lid was
observed, and more so in the less-insulated recorder vault.

Each culvert section is sealed by a custom-made steel lid ($140 each, $280 per site) fabricated by a local
metal-spinning shop. They are of eighth-inch thick (3.2 mm) galvanized steel, with handles of bent stainless
steel bar welded to two opposite sides. The inside of each lid is covered with a two-inch thick (5-cm) layer of
polyethylene foam for thermal insulation, lid-vibration damping, and the vault air-and-animal seal. Hardened
steel chain passes over the lid, through each handle, and down into the concrete on either side for security. The
chain is pulled tight to prevent wind damage and lid rattling. They are bolted to the culvert at the bottoms and
again about one foot (30 cm) below the lid, the latter to prevent the chain from being pulled off to the side of
the lid, and the vault opened. The chains are locked with hardened padlocks having boron-steel hasps. This,
and any other security system, can be overcome—site-access control and low site visibility from traveled roads
and trails remain the principal sources of security. Remote areas on ranches often are optimal in this regard.

Inside the sensor culvert, a Y4-inch plywood inner lid supported by "2x4" (inch) studs maintains free air-
space around the seismometer, and holds up bags of polystyrene foam between the inner and outer lids. This
foam and the surrounding soil are the thermal insulation for the sensor. The thermal "mass” of underlying rock
and concrete, and of the sensor package, damp remaining temperature variations. The foam layer should be at
least 24 inches thick (61 c¢m), but was only about 18 inches thick (46 c¢m) in early vaults, including the one
tested for thermal stability (Section 2.1).

Vault construction requires about one day of labor by about three people, plus about six hours (and travel
time) for a full-sized backhoe equipped with a narrow bucket and "rock teeth”. A standard 90-psi jackhammer
also may be required for more massive rock—the contractor should bring several spare bits since they are likely
to dull or break in such use. Bids for backhoe services ranged from $60/hour to $100/hour in central California,
with $65-$75/hour being the norm. Jackhammer rentals typically ranged from $140 to $150 per day, with
compressor. We paid about $800-$900 per vault for these services. An additional day of labor by two people is
required to prepare the culvert vault modules and other items (cleaning, sealing, edge preparation, and installing
lids and chains), and to load two pickup trucks with the required items. Finally, another two hours are needed
about a week later, after the concrete cures, for applying concrete sealant and affixing metal sensor baseplates
(which we attached with concrete-patch material), and for curing of these items to the point where an instrument
can be installed. Our materials and equipment checklist for these operations is in Appendix A.

2.1 Vault Temperature Stability

To test the sensor vault for thermal stability, we used a Type-K thermocouple with an inexpensive com-
mercial adaptor (Fluke™ 80TK) designed for use with digital volt-meters. Output of the adaptor (1 mV/°C) was
recorded at a low continuous sample rate on an available seismograph channel. The RefTek ™ 72A-07 used has
a ~0.5 MQ input impedance, while Fluke™ DVMs have 10 MQ input impedance. Based on conversations with
Fluke™ engineers and a simple shunt resistor test on a Fluke™ DVM, this difference depressed temperature
readings about 0.4°C on the RefTek™ at room temperature—Iless than the precision of the thermocouple
(#1.1°C) and the 80TK (+2°C) at 20°C. On a RefTek™ 72A-02, with ~2 MQ input impedance, the reading
would be depressed about 0.1°C. The internal 9-V battery of the 80TK appears to operate it continuously for

-5-

several weeks, at least. (Note that the battery-check mode of the Fluke™ 80TK fails completely for anything
but a 10 MQ impedance.)

We made several abortive attempts to use this setup, which yielded erratic voltage anomalies but also sug-
gested large (~6°C) diurnal fluctuations in vault air temperature near the seismometer. We guessed that conden-
sation on the exposed thermocouple tip might be altering leakage-current resistances, and subsequently immersed
the thermocouple tip in heat-sink silicon grease. We also put the thermocouple tip in thermal, but not electrical,
contact with the dome of the Streckeisen™ STS-2 inside the vault. Because of the large suspected diurnal
cycle, at this point we also stacked two wooden freight pallets on top of the vault lid and covered them with a
canvas tarpaulin, open on the north but shading the vault lid fully. (The alternative is burying the vault lid
under 20 cm of soil.) In combination, these techniques seemed to work, providing credible data and a greatly
reduced diurnal cycle. The 5.8-day long record for this arrangement is shown in Figure 2. It indicates a one-
day exponential cool-down period, followed by a ~0.3°C peak-peak diurnal cycle, plus a long linear drift that
may be due to outside weather changes (the drift is —0.2 °C/day). The diurnal cycle has a maximum of about
0.4°C peak-peak and RMS of 0.084°C.

With the 36-inch long (91-cm) culvert section of our early sensor-vault design, protruding about 3 inches
(8 cm) from the ground, a 12-inch (30-cm) air gap at the bottom, and four inches (10-cm) of concrete, there are
only 17 inches (43 cm) left for styrene insulation from the ground surface down to the inner lid. We conclude
that this 43-cm insulation layer is inadequate without additional surface insulation. The vault design in Figure
1 shows a 42-inch long (107 cm) culvert section for the same reason. We have not determined whether this
culvert length (yielding a 58-cm insulation layer) is sufficient. Providing shade to the vault lid is a reasonable
precaution in all cases, only being careful not to create any wind-driven rattle in these surface-insulating materi-
als.

3. Field Procedures

For several reasons, we chose a very cautious and thorough operational procedure. This study was the
first-author’s first with broadband seismometers and IRIS/PASSCAL RefTek ™ recorders (called a "DAS" by PAss-
CAL). The vaults are few, expensive, and widely spaced. Suitable teleseisms (A=100° and m;2>6.0) are rare.
Most of those recorded in the western United States have northwest, southwest, or southeast azimuths—about
parallel or perpendicular to anticipated anisotropy axes. So they will excite only one of the mantle’s polariza-
tion directions and cannot generate the other polarization of shear wave, and there is no shear-wave splitting to
measure. Hence, it is desirable that all stations run with high reliability, to be certain of capturing the rare use-
ful events. To obviate events lost by triggering errors, we recorded continuously. Available disk sizes allowed
a maximum of 10 to 20 samples per second, which is sufficient for teleseismic work but not really adequate for
the local and regional earthquakes that we also recorded. Servicing intervals ranged from one to two weeks,
depending on sample rate.

To speed field operations and allow more reliable data recovery, we swapped disks rather than copying
data in the field. Lastly, we anticipated that some servicing personnel would be relatively inexperienced with
these instruments. Our resulting field procedure is described best by our field notes form (Appendix B). It is
methodical, detailed, and deliberately redundant.

3.1 GPS Timing Stability versus WWVB Radio

Because of reported problems with timing in some older PASSCAL instruments, particularly with Omega
radios, we chose to use the new GPS time-base receivers, which are used to correct the internal RefTek™
TCXO at hourly intervals whenever a GPS lock can be obtained. We also chose to record WWVB radio time-
code as a backup. We recorded 80-s bursts of WWVB at 250 samples per second every three hours, from True
Time™ 86-3 receivers. The recording window began 10-s before the minute, yielding one full code cycle and
10-s end buffers. Because this receiver first detects the signal, then attempts to clean it up with a comparator
circuit and signal-following threshold, the time of signal transitions (which mark the seconds) can be more vari-
able than in the raw, detected signal. One of us (J. Evans) earlier developed a successful WWVB time-code
reader (ahwwvb—Appendix F) that preprocesses the signal through running-median filters (Evans, 1982) and an
edge-finding algorithm. This processing cleans the signal in a manner that preserves the transitions times of the
input signal, and is highly robust to radio noise typical of WWVB. Hence, we chose to record only the detected
output of the receiver (pin E, "DC test”, of the 86-3).

-6-

Reading these time-code bursts with program ahwwvb, and comparing these automatically derived time
readings to the GPS-tracking internal RefTek™ time base, yielded very hopeful results (Figure 3). No GPS
errors were detected, and the two time bases tracked each other very closely—nearly always within one sample
interval of the WWVB time-code (4 ms). The new GPS time base receivers appear to be very reliable in the
field, with all detected errors attributable to noise and reading errors of the WWVB time-codes.

Several WWVB segments were unreadable because of a large spike very near the minute mark. This
spike may be caused by power cycling in the RefTek™, from which the WWVB receiver draws its power;
hence, it may be appropriate to move the WWVB recording window off the even hour. However, we have not
pursued the cause of these occasional spikes.

Bob Busby of PASSCAL reports (E-mail, 05 January 1994): "We have compared the accuracy of Omega
and GPS external clocks to a pulse input from a GOES and find the PHASE ERRORS reported by the DAS to
be correct, when properly interpreted. There are rare cases during a hardware failure of the clock that things go
awry. There also remain occasional mislabeling of packets by the DAS which can result in a file start time
mislabeled by a sample or two-these errors are tracked in the .err file ref2segy produces.” Those phase errors
are generally well under 1 ms.

4. Description of the Data

In 1993, we obtained data at two vault sites (SFT2 and SFT5, Table 1) during two brief recording periods,
one in the Spring and one in the Summer (Table 2). The most useful data set is from the Summer recording
period, which was mostly with Streckeisen T™ $TS-2 broadband sensors, and was largely simultaneous at the two
vaults. Events extracted from these continuous records are described in Table 3. Time bases for both recording
periods were GPS clocks; the Spring period had WWVB backup, successfully verifying GPS accuracy.

In the field, data disks were swapped to save time and reduce field-operations errors. In the lab, these data
were double copied to ExaByte™ tapes, first with wrendump, a simple image of the disk, and then with
ref2segy (1o disk) and tar (disk to ExaByte™), making a set of PASSCAL SEG-Y files in day-sorted subdirec-
tories. These SEG-Y files were then checked with the pgl program for quality control and event discovery or
event evaluation. As the experiment progressed, we developed partially automated techniques for event
identification. (An effort to start a triggered channel to collect a local trigger list was abandoned. It was
impeded by the high microseism levels on broadband instruments, difficulties in making the triggered stream
work consistently, and our wish to extract every conceivably useful event for coauthors and the IRiS DMC.
Further efforts in trigger tuning might be effective, but the ready availability of near-real-time catalogs for this
region made such efforts redundant.)

We recording all three components continuously at 10 sps (samples per second) when using the RefTek ™
72A-02 (Spring recording period) and at 20 sps when using the RefTek™ 72A-07 (Summer), since the latter
does not support 10 sps (it lacks the DSP chip required to compute the necessary decimation filters). Lists of
events were gathered from the CalNet regional 1-Hz network operated by the USGS, and from the USGS
National Earthquake Information Service (NEIS), which monitors several world-wide and regional networks.
Data from both centers are available on-line. We used the QED service of NEIS (Appendix E) via telnet, and
the gfetch program supported here in Menlo Park for CalNet (Appendix D). We produced software to sift each
data set and produce input for our event-extraction script, cutpaste (Appendix C), which runs several PASSCAL-
supported programs to extract events from the continuous data stream. It remains necessary to move continuous
files between day-directories manually when events overlap day boundaries in the continuous stream.

The Iris DMC, with this Open-file Report, receives for general distribution copies of the wrendump tapes
and tar tapes of all extracted events, the latter in both SEG-Y and xdr-ah format.

Our philosophy and the details of event extraction evolved over the course of this experiment. We even-
tually settled on extracted generous windows around every QED teleseism with any pgl-visible phase on station
SFTS (often only a weak surface wave), plus local and regional CalNet events as follows: two annuli are taken
about SFTS5, extracting all events of M; >2.0 from 0 to 200 km away, and all events of M; 23.5 from 200 to 400
km away. A few smaller local events noted during pgl scans were also extracted, but this latter effort was inter-
mittent. Teleseisms were extracted for windows from one minute before the earliest iasp9! phase to at least one
minute after the last visible surface wave. This is a very generous extraction policy, so many of the extracted
events are very small. Only one large SKS phase at appropriate distance was obtained (event "93219.001221"

-7-

during the Summer run), which has about 25 s of SKSac and SKKSac before the S arrival (Figure 4). The large
event near Guam also was captured (event "93220.084555"). Both these events were recorded with STS-2 sen-
sors at both SFT2 and SFTS at 20 sps.

5. Acknowledgements

We wish to thank the generous landowners who let us build and operate these vaults (Helen Gerber and
the Wells family at SFTS, J. Howard Craven at SFT2, and Gary Stoddard at SFT4), and in all cases showed spe-
cial interest, thoughtfulness, and forgiveness of our leaming curves. Such people make this work possible and
often a joy. In addition, we would like to thank the many people who helped us find vault sites or install the
vaults. Their names are numerous, but Larry Cox, Arlene Evans, Bud McCrary, Satish Sheth, Roberta Smith,
Gene Tobar, David Toshikian, Jim Weaver, and Gerry Weber stand out.

We thank the IRIS consortium and PASSCAL program for the use of their instrumentation and the generous
assistance supplied by both PASSCAL instrumentation centers, particularly Bob Busby, Marcos Alvarez, Steve
Michnick, and Paul Friberg. Bernard Chouet gave us liberal access to his Streckeisen’™ STS-2 throughout this
recording season, and Joe Fletcher gave us full use of his two low-power STS-2’s during the Summer recording
interval. Barbara Romanowicz and many others at the University of California, Berkeley and Santa Cruz, gave
advice and support. Bob Urhammer performed noise analysis for SFT2 and SFT5. Malcolm Johnson and Doug
Myren provided extensive and invaluable advice on thermally and geometrically stable vault design issues from
their broad experience with tilt meters.

Several stalwarts helped us in the heavy construction of these vaults, and the sometimes arduous prepara-
tions for it. They are Marcos Alvarez, Bill Lutter, Gonzalo Mendoza, Angus Miller, and Alwyn Ross.

The following are trade names, trade marks, or model names of various organizations. They are cited sub-
ject to the disclaimers on the title page of this report: 72A-02, 72A-07, 80TK, 86-3, Brunton, DAS, EHT, Exa-
Byte, Fluke, IRIS, Latex, PASSCAL, RefTek, SCSI, SEG-Y, Sharpie, Streckeisen, STS-2, Trimble, and True Time.
Some of the software names used are also recognized product names of various organizations, cited as above (at
least, fsc, ftp, pgl, QED, qfetch, gselect, ref2segy, segymerge, segy2ah, tar, telnet, troff, and wrendump).

Lastly, we would like to thank Mother Earth, which put on the most remarkable display of California
Spring wildflowers we have ever seen—and the first two authors are California natives.

6. References
Evans, J. R., Running median filters and a general despiker, Bull. Seismol. Soc. Am., 72, 331-338, 1982,

Furlong, K. P., Hugo, W. D., and Zandt, G., Geometry and evolution of the San Andreas fault zone in northern
California, J. Geophys. Res., 94, 3100-3110, 1989.

Silver, P. G., and Chan, W. W., Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res.,
96, 16,429-~16,454, 1991,

7. Appendix A: Vault Construction Checklist

The following file is available via anonymous fip on computer "andreas.wr.usgs.gov", in file
"~ftp/pub/outgoing/evans/equipment_list".

TOOLS AND MATERIALS TO TAKE RCR THE (UNSTRUCTION OF ONE SF-BAY TRANSECT VALLT
(August 1993)

(C = vault Construction; I = vault finish and instrument
Installation; S = regular Servicing of instrument)

Class: For:
Item CIS Quantity
Materials:
Tubs (with chains & locks attached) * _ _ 2 each
Lids (fit checked, insulation in) * 2 each
A389 locks (hardened) * 2 each
ABS pipe (4" ID)iiiiiiiiiiin * 1 8-foot length
Foam plugs for ABS pipe * 2 each
Imner lid il _¥ 1 each
dry-wall screws _x 9 each
Tegs oo Y 3 each
Styrofoam peanuts _* 20 cubic feet
Small, thick garbage bags _* 20 each
Recorder vault inmer lid _xx as needed
Resources:
Vehicles (with spark arrestors) 211 as shown
Tie-down rope and rug scraps * as needed
People ... 441 as shown
Making concrete:
Sidewalk concrete premix (90# bags) * _ _ 20 bags
Wheel barrowl * 1 each
or, mixing barrel * 1 each
Hoe (for mixing), * 1 each
Concrete trowel * _ 1 each
S-gallon water jugs *1 _ 10 each
Concrete sealant _x ¥ 100 square feet
Brush for concrete sealant _ x 1 each
Turpentine or paint thinner X 1 quart
Concrete patch iivi ., _x ¥ 20 square feet
Wire brush (surface preparation) ¥ 1 each
Scrub brush (surface preparation) _x 1 each
Digging: 4
Backhoe and operator * 1 each
Jackhammer, compressor, operator * 1 each
Small jackhammer * 1 each (if rock is fragile)
Sledge (3#) ..., * ko 1 each
Sledge (10#) ... i, * 1 each
Pick (large; good fit) * 1 each

Breaker/Digger bar * ok ox 1 each
Cold chisels (rock)ot * ok ok 1 set
General Tools:
MacCloud toolcoviiiiinininn. * 1 each
Shovels ... * * as needed
Crosscut saw for ABS * 1 each
12 V water pump and hoses * ok 1 set
Metal-cutting saw for culvert ¥k 1 each
Caulking gun it * ok ok 1 each
Caulking (clear silicon rubber) * k% 4 tubes
Drill (hand) i * ok 1 each
Bits ..o * x 1 each
Crescent wrench oiun. * ok % 2 each
Files (metal, flat) * ok ok 2 each
Files (metal, round) * % % 1 each
Rasp (fine, ABS)coiiint, o 1 each
Solvent (alcohol) and wipes il 4 bottles + 4 boxes
General tool box, * ok X 1 set
Soft brush, broom, dust pan _* 1 set
4-foot 2X4 (straight edge) s 1 each
Level (2-3” long)coviiiininin.s, *ox 1 each
Bucket (1-2 gal) i, * k% 1 each
Mixing stick o 1 each
Scoop (small)cciiviinnnnnn, * ko 1 each
SPONEES .t i e e _ 2 large
Duct tapeciiiinininnnnennenannn. _xx 1 roll
Site protection:
Plywood coversccoviininnnn. * 8 small
Pallet (for concrete bags) o 1 each
Tarpaulin (for concrete bags) * 1 each
People protection:
Ear protection i * ok 1 per person
Eye protectiont * 1 each
Tick repellent and/or insect spray * ok ox 2+ bottles/cans
Sun hat * ok ok 1 each per person
Sun SCTEem ... iitiiiiiii i e, * ok 1 bottle
Helmets (when near backhoe) * 1 per person
GloveS . viviiii i e ok 1 pair per person
Hand soap for cleanup * kX 1 each
3/4" plywood, ~3X6' (to lie on) * k% 1 each
Fence making (as needed):
Barbed wirel *ox 1 spool
"T-bar” PoStS, * 15+ each
Post Driverccviiiiiiiiin.., * 1 each
Pliers (fencing)civiinnennnn. * ok 1 each
Pliers (locking) * %ok 1 each
Pliers (regular)c.ou... * x % 1 each
WIiTe L1€S . .iiriniiiiiirierieiaeenrennn *ox 60 each (at least)
% %

Wire SLAYS tiviiniinennetienneannnnens 24 each (at least)

- 10 -

Instrumentation:
Seismmetersciiirtineniienneenan

Jug line il
Low-noise ampsc.coiiinann.
Battery, 12V, 100 AH

Solar panel, 40W
Power regulator for solar
Terminal strip and leads
Battery COVerc.vinieeinnnnnn

a DAS still powered up

Base plate(s)ccoiiiiiiiiiinn,
Epoxy for leg anchor
Mainual(S)vvevr it

DAS

....................................

Disk, 230 MBytesccveiienneenan..

SCSI cable, DAS-Disk

Power cable, DAS-Disk
Power cable, Battery-DAS

Power cable, Battery-Solar

Gramets for cables
WWB radioccuvveiiiecnnraneanss

ANtennaceieinrenearonaa
Cables (antenna, DAS)

Lead brick to hold down cables
GPS clock .. i e e

Cable, DAS-GPS

Battery, 12V, 100 AH

Solar panel, 40W
Power regulator for solar
Thumb screwsc.vevn...
Battery COVEr ... ianenananns

Manual(s)couuuievmmnninnnann..
Wooden blocks--DAS off concrete
Maps, site and adjacent
Master clock i,

Box-cablecciitiiiiiiininnennns

WW radio and antenna
Desiccantiiiietinitiiieiaa

Glass tape for desiccant

Camera and film,
Brunton compassceiieiiiieniaaan
Recording thermometer or themmocouple ..
Grommets for antenna leads
Blank field notesc.oiii...
Last trip’s field notes
Gardening knee pad,
Small stool or vault-rim seat

....................................

EHT, with external-battery adaptor

Lap-

top PC with fsc software

Labels for used disks
Pallet and plywood for shade

Spare battery and cable for retrieving-

* X X X X X X X X X X X X X X X X X X X £ X X X X £ X X X X X X X X % * X X X £ X X X

®* * ¥ x x|

*|

*}

*|

%* * %|

% X X X X X 2 * x|

* X R X X X X X ¥|

a
a

>=

a

>=

1
S

s
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
S
1
as
2
1
2
>=1
1
1
1
1
1

1

pl
2

3-camponent set
3-camponent set
needed (STS-2)
needed (STS-2)
each

each

set

each

set
set
set
set
each
each
each
each
each
each
per exterior cable
each
each
each
each
each
each
each
each
each
set
each
set
set
set
each
each
set
needed
roll
needed
each
set, as needed
each
per DAS
per DAS
each
each
each
each
each, if available
enty
sets

- 11 -

dfice:
Calculator (with trig) ¥ ko 1 each
Drawing compasscouevevuinnnn. _x ¥ 1 each
Protractor, _xx 1 each
Triangle, _ X ¥ 1 each
Notebook for genmeral use ¥ ¥ ox 1 each
Clipboard oo, _xx 1 each
Labeling pens (Sharpie, etc.) * ok X several

Other:
Canvass/plasticmat oo as needed
Mirror (small) ok as needed
Mirror (large)o, ¥ x as needed
Sun wmbrella, IR blocking * ok % 1 each
Umbrella standcoinn.n. *oxoH 1 each
Backpack for regular gear * % 1 each

-12 -

8. Appendix B: Standard Field Notes for Transect

The following field notes are designed very conservatively since these are high-value sites that may be serviced
by relatively inexperienced personnel. They are part instruction manual and part data sheet. They are specific
to our procedures (continuous broad-band recording with dual GPS and WWVB time sources). A copy of the
troff input script for these notes is in anonymous fip on computer “andreas.wr.usgs.gov", in file
"~ftp/pub/outgoing/evans/DAS_SFTransect_data_sheet". It may be a useful starting point for some other PASS-
CAL studies. This Open-File Report serves to release them to the public, subject to the limitations cited on the
title page.

la. Arrive:

2a.

-13 -

PASSCAL Station-Visit Instructions and Notes
(form last modified 02 August 93; Evans and Coakley, USGS)

M

D/1993 =

——

Purpose: [] Regular visit; [] Install (do 18a and 20 now); [_] Remove; Other:
1b. Plug in EHT, and then do COMMNCTNS—RECV PRMS: [], or explain why not

Julian, utc (all dates and times are to be in UTC).

Verify STATION—EXP NAME: SF BAY LP TRANSECT; STATION—EXP CMMNT: P9220

2b. Verify STATION—STN NUMBR; STATION—STN NAME (code); STATION—STN CMNT (full name):
(] #5, SFT5, INGRAM CANYON VAULT

[] #1, SFT1, SANTA CRUZ VAULT
(] #2, SFT2, FERN PEAK VAULT
[#4, SFT4, SAN ANTONIO VALLEY VAULT

[#7, SFT7, WOODWARD RESERVOIR VAULT

or# ’

3. Weather:
Wind Temp. Clouds Humidity Precip. Lightning
BER! [Qcold [Jclear [low [(Qnone [none
[light [Qeool []scattered clouds [] moderate [(Jtight [nearby
[] moderate (O mild [partly cloudy] high [Jheavy []] distant
(] strong [Jwarm [] mosty cloudy [active
[gale+] hot (] fully overcast [rare

4. Sensor: [] STS-2 (S/N:
(] SVMH-1 (SN’s: V=
S/N(s) read from [] sensor, [] DAS, or

) [] Fluke 80TK (set for °C only [))
, E=)

. N=

For your information: Expected Channels and Streams

Signal Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6
Vertical 72A-07 72A-02
North 72A-07 72A-02
East T72A-07 72A-02
WWVB 72A-02
Temperature -02 or -07
Stream Signals Rate (sps) Data Size Trigger Comment (expected
Recorded T2A-02 (-07) | 72A-02 (-07) Type events/day; cf. step 7)
1 V,N,E 10 (20) 32 (32) Continuous 3600-s blocks (24)
2 V.N,E 1 (N/A) 16 (N/A) Continuous 3600-s blocks (24)
3 raw WWVB 250 (N/A) 16 (N/A) Timed Every 3 hours (8)
4 V,N,E 100 (20) 32 32) Triggered | For locals and regionals (~207?)
5 Fluke 80TK 1 (20) 16 (32) Continuous 3600-s blocks, °C (24)

-14 -

Sa. EHT software version: (UTILITIES—VERSN NOS—FST)
5b. DAS serial number: (UTILITIES—VERSN NOS—ID = DAS faceplate: [])
5c. DAS software version: (UTILITIES—VERSN NOS—CPU)
5d. DSP software version: (UTILITIES—VERSN NOS-—DSP)

6. Check battery voltages via DVM:

Primary DAS supply: VDC (DAS will fail below 11.5 VDC).
This supply is a [_| 72A-04 (Pins D-A) or [_] deep-discharge marine battery (measured at lugs).
Solar panel: VDC or [] none installed.
Sensor supply: VDC or [] no sensor supply installed. [] solar panel also installed for sensor.
WWVB supply: VDC or [_] none or powered by DAS (for 72A-02, circle two as found):
For 72A-02, want DIAGNOSTICS—ACQUISITION—C1—12V. Got C1: OFF CS 12V BOTH
For 72A-07, N/A. Got C4: OFF CS 12V BOTH

7. Check DAS status (UTILITIES—DAS STATE). Record:
KIN OMGA []500,[] 50,] 5; or []NO UTC CLOCK, or UTC

ACQ STRT ON (circle one each column)
STOP OFF
EVENTS: (Is "EVENTS" reasonable (estimate via stream table, p. 1)? [] yes, [] no)
BLKS US: Streams: [] are as expected,
BLKS AV: or

If no Master Clock is available: DAS time is [_| visually close, or is [_] fast, [] slow by
~ w.r.t. reference standard of

8. Check external clock status (UTILITIES—XCLK STAT)
[[] Omega or [] GPS; Time of last lock: Julian, : urc. TYPE
S/N of radio (from box):

For Omega clock, verify that leap second is 18 (STATION—XCK SETUP—LEAP SECS): [
(Have you received parameters from this DAS so the value is meaningful?)

9. If Master Clock is available, use it to check and reset DAS clock: TIME—SET TIME—enter next minute—set
up Master Clock (5V positive going pulse, thumb wheel to same next-minute)-—connect to COMM,
press PULSE (but not more than 30-s before the minute), wait for that minute, then:

OId time: Y: 3 H: M: . S
New time: Y: I H: M: .000s
Disconnect Master Clock and reconnect GPS, if in use: []

-15 -

10. Verify mass-position offsets: for STS-2, measure VDC with a DVM at host-box Monitor
connector (notice the order); for SV/H-1, draw it as you see it relative to the ticks:

STS-2 Element U: Element W: Element V:
(old) (Pins F-T) (Pins F-U) (Pins F-V)
STS-2 Element U: Element W: Element V:
(newt) | (Pins F-T) (Pins F-U) (Pins F-V)
SV/H-1 | Vertical:]] l North:]] I East: I | r
(old) Connector Connector Connector
at this end | J J at this end I | [at this end | | |

[] t did or [] did not recenter STS-2.

11. For STS-2, recenter if any element is more than 1.0 VDC. Depress the button on the "host box” for at
least 0.5 s. You should hear clicks and motor sounds from the sensor, if it is exposed. The recentering
sequence lasts about 30 s. Re-check offsets and recenter again if necessary. Repeat up to 8 times; after that
tilting one support legs away from bubble-center may be necessary as a work-around (turn power off and lock
all three elements first!), though this is a rarely needed option.

Never open the sensor package in the field (or at all if you haven’t been instructed in that risky opera-
tion). For that matter, never move an unlocked STS-2, or significantly bump even a locked one—$20K
and a 15-month waiting list—the manufacturer will not repair these instruments.

For SV/H-1, if you doubt centering (due to a dead channel, for example) open the vault and recenter mass to
tick marks via the knurled support leg of the SH-1 and the knurled spring-tension knob of the SV-1.

[] vault opened before calibration [] vault opened after calibration (] vault not opened
Recentered SV/H-1: [] Vertical, [_] North,] East.
Other actions taken:

12. If acquisition has stopped and RAM is full, or if installing site: check here [_] and wait to do this step until
after step 24 (that is, after restarting the DAS and shortly before leaving the site).

Calibrate the sensor (72A-02 only): DAS must be acquiring data, that is, "START ON" (verify: [).

For STS-2 install the jumper plug in the Monitor connector of the host box ([]), press DIAGNOSTICS—
ACQUISITION—C4 (it responds "CS"—note this time below) ([]), and leave it on for 15 minutes while you
remain very still or leave the vicinity (at least 10 m and be quiet). (The "free period" of this instrument is 2
minutes, and the sensor is very tilt sensitive. The C4 relay connects the DAS "test bus” to the input-connector
of channels 4, 5, and 6 and starts the calibration sequence. The DAS performs a series of mass-drop calibrations
via the calibration coils.) After the allotted time, press C4 three times, until it responds "OFF" ([[]). Lastly,
remove jumper ([_]). (Standard settings: duration 60 s, step ON, interval 360 s, step size 361 s, amplitude 8.0
V, output to COIL.)

For SV/H-1 sites, there is no jumper. Press DIAGNOSTICS—ACQUISITION—C4 ([]). Wait very quietly for
2 minutes. Then turn C4 to "OFF" via three strokes ([]). (Standard settings: duration 120 s, step ON, interval
30 s, step size 31 s, amplitude 1.0 V, output to COIL.)

Calibration start time: Julian, : : UTC
Turn off EHT until 30 s from end (or it shuts itself off at the most inconvenient moments).

-16 -

13. Stop acquisition. (From the main menu, do COMMNCTNS—STOP ACQ—YES,

and wait for it to return to COMMNCTNS menu with a beep)
Time of the beep: Julian, : : UTC

14. Verify reasonable sensor signals on active channels (MONITOR—enter 15 s—CHAN,

72A-02: 245,6; 72A-07: 1,2,3; Temperature: 3):

Channel 1 2 3 4 5 6
Max/Min and / / / / /

Sketch and/or

Comment

(Press "X" to exit back to CHAN menu.)

15. Check SCSI status (UTILITIES—SCSI STAT). Spins disk and indicates length used.

Write all 7 digits of Iength used:

Do 16a and 16b for 72A-02 OR 16a and 16¢ for 72A-07:
16a. Label old disk (for 72A-02) or transfer disk (for 72A-07) with:

16b.

16¢.

[] Station name (and, if huddled, which sensor(s))
[]DAS SN

[Time of STOP ACQ (Year:Julian day:hour:minute uTc)
[Your initials

Swap disks ([] Yes or [_] N/A) (for 72A-02): remove power cable, remove SCSI cable, attach power
cable, attach SCSI cable. Take home the old disk—it contains the data!

Write down the size of the new disk you attach: MBytes (typically 230 MBytes).

(If unsure, try UTILITIES—SCSI STAT and write down total + 1000.)

Copy data from internal disk to transfer disk (for 72A-07) (] Yes or [_] N/A): connect the transfer disk to its
battery, wait 15 s for it to spin up, connect its SCSI cable to DAS, do UTILITIES—NEXT MENU—COPY
SCSI—(COPY DISK TO) DISK—YES, wait until "WAITING ..." goes off and EHT beeps, disconnect SCSI
cable, power down transfer disk. Remember not to bump or move the transfer disk while it is spinning.

17. Swap batteries as needed:

[[J none changed

Primary DAS supply: VDC (DAS will fail below 11.5 VDC).
This supply is a [] 72A-04 (Pins D-A) or [_] deep-discharge marine battery (measured at lugs).
If in use, is solar panel properly connected? [] Yes
Sensor supply: VDC or [] no sensor supply installed. [] solar panel also installed for sensor.

-17 -

18a. Only upon initial site installation ([]), DAS replacement ([]]), or serious DAS trouble ([]) (check one):
Consider doing COMMNCTNS—RECV PRMS, then do a rigorous DAS initialization (UTILITIES-—NEXT
MENU—SYS INIT, then give password "IRIS"). Warning: this function clears everything in the DAS, includ-
ing wiping out your parameter set—everything is set to factory default values. If you do this step (18a), then
skip step 18b but do step 20 (reprogramming the DAS).

Or
18b. Clear the DAS’s RAM (UTILITIES—NEXT MENU—CLEAR RAM—YES): []

19. Format (that is, erase) the disk (UTILITIES—NEXT MENU—FRMT SCSI—DISK—YES): []
(You may see "—WREN" instead, which is an anachronism meaning "—DISK"). Should hear clicks.

20. If necessary, reprogram the DAS, typically as follows:
(a) Load existing parameters from DAS to EHT (COMMNCTNS—RECV PRMS) OR [_] done in step 1b.
Upon site installation or other SYS INIT, the EHT may or may not have a more correct
set of parameters to start from ([]). You may need to do COMMNCTNS—LOAD PRMS first ().
(b) Modify parameters on EHT as needed (e.g., add or change sensor S/N’s, which are generally
unknown to the author of an fsc file). Write any changes in "Synopsis", below.
(c) Send modified parameters from EHT to DAS (COMMNCTNS-—SEND PRMS) ([)).

Synopsis of parameter changes: [] none, [] all new (fsc file:), and/or:

21. Verify that you still have reasonable sensor signals (DIAGNOSTICS—OFFSET-—set 0:15—CHAN,
72A-02: 24,5,6; 72A-07: 1,2,3; Temperature: 3) (At your discretion, instead use
MONITOR—enter 15 s—CHAN to get an actual picture of the data);

Channel 1 2 3 4 5 6

Max

Min

Ave; or
Sketch and/or
Comment

-18 -

A o o B o o B o o S L 0 S I B o e e e o o o o O R S L o

Perform steps 22 and 23 within 3 minutes of one another (limited by the WWVB stream). This restriction is
a work-around for a bug that eats up pre-event memory in DAS software versions 2.46 and 2.47. (For the
fastest sampling rate possible, the lag would need to be under 10 s.)

22. Perform system reset (UTILITIES—SYS RESET—YES—CONTINUE): [_]

23. Start acquisition (COMMNCTNS—START ACQ—set 0:0—YES and wait for the DAS STATE display).
Time STRT ON is verified by beep and status display: Julian, : : UTC
EVENTS:

BLKS US:
BLKS AV:
Streams: [_] are as expected, or

- e e e

24. Restart power to the WWVB radio (for 72A-02, circle two as you actually see them):
For 72A-02, want DIAGNOSTICS—ACQUISITION—C1—12V. Got C1: OFF CS 12V BOTH
For 72A-07, N/A. Got C4: OFF CS 12V BOTH

Remember to do step 12 (calibration) now, if it was deferred.
25. Remember not to unplug anything from the DAS except the EHT.

26. Depart at M/ D/1993 = Julian, ~ : UTC.

27. Operator(s) name(s):
[J John M. Coakley; [] John R. Evans; [_] Gonzalo Mendoza
Others present:

Comments, and any troubles noted (as needed, use margins (except left margin), and use backs of sheets):

.19 -

9. Appendix C: Script cutpaste and Examples of Its Use

The following listing is the cut-and-paste event-extraction script "cufpaste”, used to generate event files from
continuous-record files. A copy of the cutpaste script is in anonymous fip on computer "andreas.wr.usgs.gov", in
file "~ftp/pub/outgoing/evans/event_extraction/cutpaste/cutpaste”. This Open-File Report serves to release them
to the public, subject to the limitations cited on the title page. Following the cutpaste listing is a short example
of a script that calls cutpaste for the desired events. Such calling scripts form a sufficient record of extraction

activities and comments (e.g., Table 3 is derived from our own cutpaste-calling scripts).
Listing of cuipaste Seript

#!/bin/sh

#

Merge file for STS-2, SV/H-1, or QMG-3ESP data.
#

Usage:

cutpaste (123
argc: 1
#

where "1 2 3" or "4 5 6" are the triplet of channels to convert,
"dddd" is the 4-digit serial number of the DAS, "sts2", "svhl", or
"3esp" are the respective instrument type, "ssss” is the station name,
"YY JJJ hh nm ss”" is the start time of the file, and "rrr" is the
length of record to produce (seconds), and "blah blah"” is a comment.

!
2 4 5 6 7 8 91011

Produces cut and pasted SBG-Y files (one per channel), named
"YYMMD. hhmms's .<s ts2{svhl [3esp>.ssss.<1[2[3141516>" and a single
cut and pasted ah file (containing three channels), named
“YYMMID. hhmms s .<s ts2 | svhl I3esp>.ssss.ah".

Bugs: does no checking, just hammers away. Assumes you are asking for
samething reasonable and are in the right directory.

SBEG-Y filename format: R<Julian day>.<stream number>/hh.mm.ss.dddd.c

I I I I T I I T W I

Changed output filename format (reversed station and instrument fields)
on 01 Sept 93 to make segy2ah pick up the correct station name (which
it takes from the second-to-last "."-separated field). No change to

input format (still jug then site).

#

dest=/passcallO/data/SFT/extracts # Destination directory
#

prog=30

V=81

shift ; N=§1

shift ; E=$1

shift ; =81

shift ; jug=S$1
shift ; site=$1
shift ; YY=$1
shift ; JJJ=$1
shift ; hh=S$1
shift ; nm=$1
shift ; ss=$1
shift ; len=§1
shift ; coment=$1

456) dddd (sts2 | svhl | 3esp) ssss YY JJJ hh mm ss rrr "blah blah"
3

13

- 20 -

#

echo "----cecmnaann pwdt----e-eioeoo-
echo "$prog SV SN SE S$DAS $jug S$site SYY:$JJJ:$hh:$mm:$ss $len
#

if [-f ‘1s *.SDAS.[$VSNSE] | head -1°]; then

echo "Processing...”

segymerge -c *.SDAS.8V -s $YY:$JJJ:8hh:$mm:§ss -1 Slen -t 1 > SYYSJJJ.$hhSmmSss.Sjug.Ssite.SV
segymerge -c¢ *.$DAS.IN -s $YY:$JJJ:8hh:$nm:$ss -1 $len -t 1 > YYJJJ.$hhSmmSss.Sjug.$site.SN
segymerge -¢ *.SDAS.SE -s $YY:$JJJ:$hh:$mm:Sss -1 $len -t 1 > YYJJJ.hhrmSss.Sjug.Ssite.SE

if [-f *ls YYJJJ.$hhSmmSss.$jug.$site. [$VSNSE] | head -1*]; then
segy2ah YYJJJ.$hhSmm$ss.$jug.$site. [SVINSE]
cat YYSJJJ.$hhSmm$ss.$jug.$site. [SVENSE].ah > YYSJJJ.ShhSmmSss.$jug.$site.ah
/bin/mm YYJJJ.$hhSmmSss.$jug.$site. [SVSNSE].ah

®

Should discard 0-length files here...
echo 'Moving to $dest:"
Is -1a YYSJJJ.$hhSmmSss.$jug.$site. [SVSNSE] $YYSJJJ.$hh&mSss.$jug.$site.ah
mv -i YYJJJ.Shhmmss.$jug.$site. [SVSNSE] $YYSJJJ.ShhSmmSss.$jug.$site.ah $dest
fi
i

Example of cutpaste Usage

#!/bin/csh

Run a series of the cutpaste script, starting from directory above
those (e.g., R216.01) created by ref2segy.

#

BHEBBHBEHBR BB BRBBRUH B R BB RREHHRRBHH B HH BB R BB RHG BB HBRSRH B BB HE R BB HY
L=local, R=regional, T=teleseism, (L/R at about S-P = 10 s;

R/T at about distance 3-6 degrees, based on frequency content).

#

L/R generated fram CalNet listings via shell "seltran”, which

calls "qfetch” and "sum2cut” (Appendix D).

R/T generated fram USGS QED (NEIS) system lists, via program "dz"

(Appendix E).

HEBRBBRUB BB BB BBHRBEH B BB H BB BB BB BRBHER B BRBRBHR B BE BB ERBHBBEBHE B BB
#

Start 216:20:13:47

d2.
do.

00 h9.1"
75 h0.9"

#

04 August 93

cd R216.01

#

cutpaste 123 7064 sts2 sfiS 93 216 20 20 07 099 “"v smCalNet L/R, m2.7 d1.57 h4.9"
#

05 August 93

cd ../R217.01

:

cutpaste 123 7064 sts2 sftS 93 217 10 19 31 120 "sm CalNet L/R, m2.8
cutpaste 123 7064 sts2 sftS 93 217 18 43 58 094 "sm CalNet L/R, ml.9

#
06 August 93
cd ../R218.01
#

- 21 -

cutpaste 123 7064 sts2 sft5 93 218 00 31 45 150 "CalNet L/R, m3.1 d42.06 h15.4"
Unidentified surface wave ~03:34 (similar to offshore N. CA events of late)

cutpaste 123 7064 sts2 sft5 93 218 11 01 42 098 "sm CalNet L/R, m2.6 d1.45 h8.4"
cutpaste 123 7064 sts2 sft5 93 218 23 34 31 093 "CalNet L/R, m2.6 d0.54 h7.2"

#

SPANS DAY BREAK (002320 070%*20):

cutpaste 123 7064 sts2 sfts 93 219 00 12 21 6100 “"nice T, @NORTHEAST OF TATWAN"
#

07 August 93

cd ../R219.01

#

cutpaste 123 7064 sts2 sftS 93 219 06 16 00 1560 "T, OFF GOAST OF JALISAD, MEXIQD"
cutpaste 123 7064 sts2 sftS 93 219 13 43 30 120 "CalNet L/R, m3.5 d1.39 hl18.4"
cutpaste 123 7064 sts2 sft5 93 219 18 03 00 15420 "T, @SOUTH OF FIJI ISLANDS"

#

08 August 93

cd ../R220.01

#

Ignore "T, @IINAHASSA PENINSULA, SULAMESI mS5.4/4.9 d112 h62; weak spectral-only surface wave"

cutpaste 123 7064 sts2 sftS 93 220 08 45 55 23650 "T, @SOUTH OF MARIANA ISLANDS (GUAM) "
cutpaste 123 7064 sts2 sftS 93 220 20 14 40 4340 "T, @MRIANA ISLANDS"

#

09 August 93

cd ../R221.01

#

cutpaste 123 7064 sts2 sft5 93 221 02 19 15 195 "CalNet L/R, m3.0 d2.07 h15.4"
cutpaste 123 7064 sts2 sft5 93 221 02 49 00 900 "Unidentified surface wave"

cutpaste 123 7064 sts2 sftS 93 221 05 32 45 150 "CalNet L/R, m3.0 d2.46 h2.5"
cutpaste 123 7064 sts2 sft5 93 221 09 26 42 4160 "T, @ARIANA ISIANDS m5.3/5.5 d84 h60"
cutpaste 123 7064 sts2 sft5 93 221 11 50 00 12300 "T, @HINDU KUSH REGICN"

cutpaste 123 7064 sts2 sfiS 93 221 21 40 18 094 "CalNet L/R, m2.1 d0.69 h5.4"
cutpaste 123 7064 sts2 sft5 93 221 23 08 41 099 “v smCalNet L/R, m2.1 d1.53 h12.9"
#

10 August 93

cd ../R222.01

#

cutpaste 123 7064 sts2 sft5 93 222 01 04 57 15603 "T, @FFW. GOAST OF S. ISLAND, N.Z"
cutpaste 123 7064 sts2 sft5 93 222 05 52 56 101 "CalNet L/R, m2.6 d1.98 hO.1"
cutpaste 123 7064 sts2 sft5 93 222 09 04 50 12970 "T, @MRIANA ISLANDS"

#

Stop 222:18:41:27

-22-

10. Appendix D: Script seltran and Program sum2cut Source Code

The script seltran runs USGS program gfetch, which finds the most current CalNet local-earthquake information
for a specified date range. This result is piped to USGS program gselect to extract two distance-magnitude sets.
The selected event summary lines are finally translated by program sum2cut, listed below, into the form used by
shell cutpaste to extract events from the continuous data stream.

Both the source code and the script are available via anonymous fip from "andreas.wr.usgs.gov" in directory
"~ftp/pub/outgoing/evans/event_extraction". This Open-File Report serves to release them to the public, subject
to the limitations cited on the title page.

Script seltran

#!/bin/csh
Shell to gather events for extraction fram SFT continuous data.

£

Run two annuli about SFTS, taking all events of M>=2.0 out to
200 km, and M>=3.5 fram 200 to 400 km. Then run sum2cut on
each file to convert formats and set time windows.

#

#

#

#

USAGE: seltran datel date2 > output_file

$1 $2

Format of dates is that of qfetch: [CCJYWMDhhmmss[+-offset]
#

John R. Evans, USGS, Menlo Park, 09/93.

#
r

sh -n andreas “qfetch -time $1 $2 | \
gselect -magnitude 2.0 10.0 -delta 37.505053 -121.328514 0.0 200.0" > \
seltran. templ.xxx

#

rsh -n andreas "qfetch -time $1 $2 | \
gqselect -magnitude 3.5 10.0 -delta 37.505053 -121.328514 200.01 400.0" >> \
seltran. templ ., xxx

#

sort seltran.templ.xxx > seltran.temp2.xxx

/bin/mm seltran. templ.xxx

#

suncut < seltran. temp2.xxx

/bin/rm seltran. temp2.xxx

Source Code of sum2cut Follows:

sum2cut.c Fri Oct 8 09:59:14 1993
/*

* SUM2CUT (SUMmary card to CUTpaste formatter)

*

* USAGE: seltran < summary_cards > output_file

-

* BUGS:

L

* Update CENTURY appropriately.

*

* Station coordinates list hardwired. Change STA structure, and
* NSTA appropriately.

*

*

/

finclude <stdio.h>

#include <math.h>

#include <string.h>

finclude <local/local.h>
#include <local/stdtyp.h>
#include <local/mathconst.h>
#include <local/date_time.h>

#define MAX(a,b) (((a)y>(b)} 2 (a} : (b)) /* Larger value */
#define MAXBUF 40 /* decode.h buffer size */
finclude <local/decode.h>

#define STR_LEN 256 /* Maximum scratch-string length */
#define CENTURY 1900

/* Coordinates of possible station(s) from
which to calculate delta and azimuth */

#define SFT2NAM "sft2®

¢define SFT2LAT 37.153042

#define SFT2LON -121.812232

fdefine SFT2ELEV 518

fdefine SFT4NAM “sfr4"

#define SFT4LAT 37.38883

#define SFT4LON -121.49450

#define SFT4ELEV 660

#define SFTSNAM “sftS"

#define SFTSLAT 37.505053

#define SFTSLON -121.328514

#define SFTSELEV 312

#define NSTA 3

typedef struct ({ /* Station information */
char code[5]); /* Name */
double lat; /* Location (+N, degrees) */
double 1lon; /* (+E, degrees) */
double elev; /* meters */

} STA:

typedef struct { /* Station information */
TIME ot; /* Origin time */
double lat; /* Epicenter (+N, degrees) */
double 1lon; /* (+E, degrees) */

} EVENT;

#define strneg !strncmp

void datime (), /* =-1q (YMDhms <- epochal) */
void delaz (); /* -1q (geocen.c) */
void error () /* -1q (error.c) */
void exit (}; /* UNIX C library */
bool isleap(): /* -1lq */
void read_ev () /* Defined below */
void refpt(}: /* -1q (geocen.c) */
TIME timvar(); /* -1lg (YMDhms -> epochal) */
main{arge, argv)
int argce;
char **argv;
{
char in_str(STR_LEN]; /* Input buffer */
int styr, stmo, stday, sthr, stmn;

double stsec;
double delta, az0, azl;

int yr, mo, day, hr, mn, jday:
double sec, lat, lon;
double depth, mag;

double Ptime;

.23 -

sum2cut.c Fri Oct 8 09:59:14 1993 -24 -

int seci, dur;
TIME start_t;

int 1i; /* Dummy */
STA stations[10]; /* Statlon list */
/* Bulld station 1list the dumb way */

(void) strncpy(stations[0].code, SFT2NAM, 5);
stations([0].lat = SFT2LAT;

stations[0}.lon = SFT2LON;

stations[0]}.elev = SFT2ELEV;

(void) strncpy (stations[1l]).code, SFT4NAM, 5);
stations[l].lat = SFT4LAT;

stations([l]}.lon = SFT4LON;

stations[l).elev = SFT4ELEV;

(vold) strncpy (stations[2}.code, SFTSNAM, 5);
stations(2}.lat = SFTSLAT;

stations[2]).lon = SFTSLON;

stations([2],elev = SFTSELEV;

if (argc > 1)
error ("Usage: %s < summary_cards > output_file", argv(0]):

/* Main loop--read summary card, output NSTA cutpaste lines */
while(fgets(in_str, sizeof(in_str), stdin) != NULL) {
read_ev(in_str, &yr, &mo, &day, &hr, &mn, s&sec,
&lat, &lon, &depth, &mag);

/* Loop over statlons for output */
for (ii = 0 ; ii < NSTA ; ii++4) {

/* Infer record window */

#define PAD_BEG 30.0 /* Pad record window at front */

#define PAD_END 60.0 /* Pad record window at rear */

#define DEG2KM 111.2

#define P_VEL 5.0 /* Nominal P velocity (km/s) */

#define LR_VEL 28.16 /* Nominal surface-wave velocity
(s/degree) */

refpt ({stations({ii}).lat * RAD), (stations[ii].lon * RAD)):;
delaz(lat * RAD, lon * RAD, &delta, &az0, &azl);

delta *= DEG;

az0 *= DEG:

azl *= DEG;

/* Start at ~P time - PAD_BEG */

Ptime = delta * DEG2KM / P_VEL;

start_t = timvar (CENTURY + yr, mo, day, hr, mn, sec,
GREGORIAN) ;

start_t += Ptime - PAD BEG;

(void)datime (start_t,
&styr, &stmo, &stday, &sthr, &stmn, &stsec,
GREGORIAN) ;

jday = yrday (stmo, stday, isleap(styr, GREGORIAN)):

seci = stsec;

/* End at nominal surface-wave time + PAD END */
dur = (delta * LR _VEL -~ Ptime) + PAD_BEG + PAD_END;

/* Output */
(void)printf (
“cutpaste 123 dddd 3333 %s .,
stations[ii].code);
{(void)printf{
“$2d $03d %02d %02d %02d $03d \"CalNet L/R, ",
styr - CENTURY, jday, sthr, stmn, seci, dur);
(void)printf(
“m%3.11f d%.21f h%.11f, @%5.21fN%7.21fE\"\n",
mag, delta, depth, lat, lon);

}

return (0);
I

/*

* Read an event line from QEDs defaulting numbers to zero and

* strings to null if not present. Returns TRUE if it seems to

* be an event line, otherwise FALSE.

*
930408 0032 53.41 37 21.36 121 43.04 8.24 1.6 42 58 3. 0.07 0.
930726 0310 18.27 36 50.92 121 35.26 9.16 2.3 60 39 3. 0.16 0
*/

sum2cut.c Fri Oct 8 09:59:14 1983
void
read_ev{in_str, yr, mo, day, hr, mn, sec, lat, lon, depth, mag)

char in_stri{l:
int *yr, *mo, *day, *hr,
double *sec;
double *lat, *lon;
double *depth;
double *mag:

{
double latm, lonm;
*yr = 0;
*mo = 07
*day = 0;
*hr = 0;
*mn = 0;

*sec = 0.0;
*lat = 0,0;
*lon = 0.0;
*depth = 0.0
*mag = 0.0;

*yr = DECODE (in_str, 2, atol):
*mo = DECODE ((in_str + 2), 2,
*day = DECODE((in_str + 4), 2,
*hr = DECODE ({in_str + 7), 2,
*mn = DECODE {(in_str + 9), 2,
*sec = (double)DECODE((in_str
*lat = (double)DECODE((in_str
latm = (double)DECODE((in_str
*lat = *lat + latm / 60.;

*lon = (double)DECODE((in_str
lonm = (double)DECODE((in_str
*lon = - (*lon + lonm / 60.);
*depth = (double)DECODE((in_st
*mag = (double)DECODE((in_str

/* Input buffer

mn; / Origin time

/* Epicenter
/* h (km)
/* ML

atol);
atol):
atol);
atol);
+12), 5
+18), 2
+21), 5

atof);
atof);
atof):;

+ 27), 3, atof):
+ 31), S5, atof):
/* Make E+ */
r + 38), 5, atof);
+ 46), 3, atof);

-25-

*/
*/

*/
*/
*/

Makefile Fri Oct 8 09:59:09 1993 -26 -

-

RS T T U BN U DU DU PN TR TS U DUSE QU JUIS U DR NS T TUL NS SUS DR N ZNL NN DU DL PRL SN JEE BN Lt e

-

Generic Makefille for programs.,
Works for any mix of sun3, sun4, Fortran, and C (I hope!).

“make install” fails the first time unless the executable has
already been copied to S (BINDIR).

The following is required in the user’s .cshre:

setenv ARCH ‘/bin/arch®
1f(SARCH == “sun3") then
setenv FLOAT -£68881
else
setenv FLOAT *“”
endif
setenv DIR_USR /usr/local
setenv DIR_SRC /usr/src/local

Who oMk Hh Wk Wk R W Wh Wk %R Wk dR Wk dh dR Wk Wk

£77
cc

-u $(FLOAT) =-DS (ARCH)
$(FLOAT) -D$ (ARCH) -g
$ (DIR_USR)

m
g
o
2]
LI I I I]

L]

PROG sum2cut
SRCARC = $(PROG).src.a

FSRCS
CSRCS = sum2cut.c
SCRIPT = seltran

OBJECTS = S(FSRCS:%.f=$(ARCH)/%.0) $(CSRCS:%.c=$ (ARCH)/%.0)

LIBS = ~1q -lm
LLIBS = ${LIBS)

INCLS =

OTHERS = Makefile $(SCRIPT).sh $({INCLS)
OTHERBIN=

P = enscript -r2 -p-

S (ARCH) /$ (PROG) : $ {(OBJECTS)
S$(CC) $(CFLAGS) $(OBJECTS) $(LIBS) -o $@

$ (OBJECTS) : $ (INCLS)

$ (ARCH) /%.0: %&.cC
S(CC) $(CFLAGS) -c $(@F:.o=.c) -o S@

S (ARCH)/%.0: %.f
$(FC) S(FFLAGS) -c $(@F:.o=.f) -0 $@

install: $(ARCH)/install $ (ARCH)/$ (PROG) $(SCRIPT).sh
¥ /bin/rm install
ln -s S(ARCH)/install install
/bin/mv $(BINDIR)/S (PROG} $(BINDIR}/S(PROG).old
cp $ (ARCH) /S (PROG) S (BINDIR)
chmod 755 $(BINDIR)/$(PROG)
cp $(SCRIPT).sh $(BINDIR)/S (SCRIPT}
chmod 755 $(BINDIR)/$(SCRIPT)
@touch install
@touch $(ARCH)/install

CAUTION: do not run "make clean" on more than one machine at a time;
the archive commands ("ar*) might conflict.
clean:

/bin/rm $(ARCH)/S(PROG) $(OBJECTS) $(BINDIR)/S{(PROG).old

ar ruv $(SRCARC) S({FSRCS) $(CSRCS) $(OTHERS) $(OTHERBIN)

lint: $(FSRCS) $(CSRCS) $(INCLS)
/usr/bin/lint -xh -u $(FSRCS) $(CSRCS) $(LLIBS) > lint

print: $(FSRCS) $({CSRCS} $({OTHERS)
* pr -166 $? | $P

enscript §?

@touch print

printall:

pr -166 $(FSRCS) §$(CSRCS) $(OTHERS) | S$P
enscript $(FSRCS) $(CSRCS) $(OTHERS)
@touch print

printexport:
pr -t S$(FSRCS} $(CSRCS) $(OTHERS)

This program reads listings produced from the USGS/NEIS on-line hypocenter reporting service called QED,
and produces input appropriate for the cutpaste script. The QED service can be reached via the Internet by "tel-
net neis.cr.usgs.gov”, and logging in as user "QED". Select option "q", give your name and institution, select
option "d" to specify a date window, and finally select option "g" ("go") to obtain the needed event listing. Use
text-selection options on your workstation to copy the listing to a file that is then passed to dz (edit out all but
date and event lines). An example of such an (edited) listing (accessed 23 December 1993) and the resulting

output from dz follow:

DEC 18
032212.
205356.
211028.
224419.

DEC 19
072144.

OO0

080314.1
083855.7

103134.17

114532.

DEC 20
003659.
030352.
083406 .
135619.
155657.
173659.

38

62

15

25

51

42.
61.
L7528 131.
62.
32.

.824N 122.
63.
.918N 150.
20.

361N 149.

5718 173.

353N 94.
63.
37.
.29 N 126.
.213N 62.

348N 151.
636N 118.

.750N 174.

118N 122.
882N 150.

206N 150.
333N 115.

YYYY/MV/ID hh:nm:ss.ss

+SKIP

1993/12/18 03:22:12.90
1993/12/18 20:53:56.00
1993/12/18 21:10:28.70

1993/12/18 22:44:19.90
(Delta/back-amm:

delta

76.25

*

code

1
2
3
4
5

P
pP
PcP
sP
PP

-27-

11. Appendix E: Program dz Example and Source Code

15W 5G

81W 100 4.3

663W 1367

88IW 33N 5.6

27W 33N 4.

—

241W 10G 4.1

833W 5G

69 E 33N S.
614E 33N 5.

N W

986W 33N 4.3

028W 5G
570W 60G

314E 33N 6.0

473W 10G
404W 5G

n_

Example of Input to dz

41 CENTRAL ALASKA
15 CENTRAL ALASKA
82 TONGA ISLANDS

—_ O
— Q0 Q0

21 CENTRAL ALASKA

[T N
- ©
—_ = OO
ocwoNuu

46 SCUTHMESTERN PAKISTAN

12 ORBAIN. ML 2.9 (GS).
13 SOUTHERN ALASKA

5.8 82 TANIMBAR ISLANDS REG.,

OO = OO -
AN O NN aN

Resulting Output from d:

Lat,N Long,W h,km mb Ms delta azimuth

38.824 -122.757 5

1.732 320.024

0.0 0.0
63.361 -149.817 100 4.3 0.0 31.038 335.495
0.0 0.0

62.918 -150.663 136

31.027 334.360

-20.571 -173.881 33 5.6 5.7 76.251 229.926

time(s)

705.26
715.61
716.88
719.70
876 .40

11
11
11
11
14

(min s) dT/dD hh:mm:ss.ss
45.26 5.6799 22:56:05.16
55.61 5.6945 22:56:15.51
56.88 4.3197 22:56:16.78
59.70 5.6913 22:56:19.60
36.40 8.4227 22:58:56.30

35 NORTHERN CALIFORNIA. ML 3.1

15 NEAR CGOAST OF OAXACA, MEXICQD

41 CALTRORNIA-NEVADA BORDER REGICN.
25 MINDANAO, PHILIPPINE ISLANDS

12 ANDREANDF ISLANDS, ALEUTIAN IS.

38 CENTRAL ALASKA. ML 3.4 (AEIC).
14 CALIF. -BAJA CALIF. BORDER

F-E region

NORTHERN CALIFORNIA
CENTRAL ALASKA
CENTRAL ALASKA

TANGA ISLANDS

s£12=075.730/229.638, sft4=076.075/229.826, sft5=076.251/229.926)

(est fram JB)

cutpaste

smp

1993/12/19 07:21:44.10
1993/12/19 08:03:14.10
1993/12/19 08:38:55.70

1993/12/19 10:31:34.10
(Delta/back-azm:

delta

102.55

PKiKP
pPKiKP
sPKiKP
SKiKP
S

S

sS
SKSac
SKKSac
ScS
SPn
pSKSac
PnS
sSKSac
SS
PKKPd f
PKKPbc
SKKPdf
PKKSdf
SKKSdf
P'P’df
§'S°df
S§'S’ac

IR

23

code

OO0 N B W N e

b b bt bt b bk pd ek s
0NN EWN-=QO

Pdiff
pPdiff
sPdiff
PP
PKiKP
pPKiKP
sPKiKP
SKiKP
SKSac
pSKSac
sSKSac
SKKSac
Sdiff
pSdiff
sSdiff
SP

Ps
PKKPbc

1050

1060.

1064

1261.

1287
1301
1305

1312.

1313

1317.

1323
1327
1328

1331.
1582.

1847

1859.
2058.
2062.

2273

2342.
3201.

3213

2147

.12
98
.95
14
.91

.09

.57
90
.90
63
.76
.06
.49
23
91
.02
03
25
23
.22
58
94
.43

.22

15.353

7.290

time

832
843
847

1086.
1094.
1104.
1108.
1306.

1469

1484.
1488.

1507
1534
1548

1552.
.76
1634.

1629

1791

(s)

.80
.37
.41
07
00
85
83
39
.75
32
37
.57
.65
.59
83

19

.62

17
17
17
21
21
21
21
21
21
21
22
22
22
22
26
30
30
34
34
37
39
53
53

35

dddd jjjj sfts

30
40

44.

27.

41
45
52
53

57.

11
22
47

59.
18.
22.
53.

21

33.

47

- 28 -

.12
.98
95
.14
91
.09
.57
.90
.90
63
.76
.06
.49
.23
.91
.02
03
25
23
22
.58
.94
43

.22

93 352 22 55 05

-94.277
63.348 -151.241
37.636 -118.833

126.690

13
14
14
18
18
18
18
21
24
24
24
25
25
25
25
27
27
29

{min

52

3.

7

6.
14.

24

28.
46.
29.
44.
48.

7

34.
48.
52.

9.
14.

51

s)

.80
37
.41
07
00
.85
83
39
75
32
37
.57
65
59
83
76
19
.62

1
1
1
1

10.

11

10.

7
7
8

12.

7

12.

7

15.

-1

-2.
-1.

-1
-1

-1.
-1.
-2.

28.

3
1

wn O W

.4975
.4968
.4969
.5536
9685
.0094
9954
.2666
.5423
.0658
8483
.2797
8330
.2759
1157
.6060
1875
5475
.5473
.4894
8160
6197
2053

1600

4.1 0.0
4.1 0.0
0.0 0.0

33 5.34.9

dT/dD

00 00 00] & A A RN

1
[S =

.4389
.4389
.4389
.5051
.8188
.8182
.8183
. 8639
.7029
.7131
.7103
.1031
.3233
.3233
.3233
.5677
.5609
.9638

23
23

23:
23:

23

23:

23

23.
23:
23:

23

23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:
23:

23:

:01:
:02
02:
05:
:05:
06:
:06:
06:
06:
06:
:06:
06:
06:
06:
10:
15:
15:
18:
18:
22:
23:
37:
37:

20:

2201

32.595
31.506
1.982

102.549 289.555
sf12=102.303/289.160, sft4=102.464/289.420, sft5=102.549/289.555)

50.
:00

21

05
12
13

23

42

07.

02

.88
04.
.04
47.
00.

85

81
99

.47
.80
.80
17.
.66
26.
28.
31.
.81
06.
18.
38.
42.
13.
22.
41.
53.

53

96
39
13

92
93
15
13
12
48
84
33

12

"T, @TONGA ISLANDS m5.6/5.7 476 h33"

125.501
334.656
85.452

hh:mm:ss.ss

10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:

11

45:
45:
45:
49:
49:
49
50:
53:
56:
56:
56:
56:
:08.
22.
26.
43,
48.
:25.

57

57:
57:
58:
58:
:01

26.
37.
.51
.17
48.
58.

41
40

02

03

41

90
47

10
95

.93
20.

49

.85
18.
22.
.67

42
47

75
69
93
86
29
72

NEAR (DAST OF QAXACA, MEXIMD
CENTRAL ALASKA
CALTFORNIA-NEVADA BORDER REGIO

MINDANAD, PHILIPPINE ISLANDS

- 29 .

19 PKKPdf 1800.98 30 0.98 -1.8550 11:01:35.08
20 SS 1964.01 32 44.01 13.8199 11:04:18.11
21 SKKPbc 2010.49 33 30.49 -2.7106 11:05:04.59
22 SKKPdf 2013.36 33 33.36 -1.8275 11:05:07.46
23 PKKSbe 2014.49 33 34.49 -2.7101 11:05:08.59
24 PKKSdf 2017.35 33 137.35 -1.8274 11:05:11.45
25 SKKSdf 2229.59 37 9.59 -1.7946 11:08:43.69
26 SKKSac 2231.59 37 11.59 -2.5204 11:08:45.69
27 P'P’df 2293.12 38 13.12 -1.9200 11:09:47.22
28 S'S’ac 3146.04 52 26.04 -2.9314 11:24:00.14
29 §'Sdf 3155.66 52 35.66 -1.8597 11:24:09.76

(est from JB) IR 2887.79 48 7.79 28.1600 11:19:41.89

cutpaste 123 dddd jjjj sftS 93 353 10 44 27 2814 T, @ANDANAD, PHILIPPINE ISLANDS m5.3/4.9 dl

#*SKIP**
1993/12/19 11:45:32.10 25.213 62.614 33 117.173 355.990 SOUTHMESTERN PAKISTAN

5.25.1
1993/12/20 00:36:59.80 51.750 -174.986 33 4.3 0.0 39.720 308.708 ANDREANOF ISLANDS, ALEUTIAN IS
1993/12/20 03:03:52.30 42.118 -122.028 5 0.0 0.0 4.644 353.578 CORBAN
1993/12/20 08:34:06.80 61.882 -150.570 60 0.0 0.0 30.321 332.870 SCUTHERN ALASKA

1993/12/20 13:56:19.30 -6.752 131.314 33 6.0 5.8 107.855 275.251 TANIMBAR ISLANDS REG
(Delta/back-azm: sft2=107.503/274.835, sft4=107.734/275.109, sft5=107.855/275.251)

delta # code time(s) (min s) dT/dD hh:mm:ss.ss

.4389 14:10:35.65
.4389 14:10:46.22
.4389 14:10:50.26
.8678 14:14:43.09
.8673 14:14:53.93
.8674 14:14:57.91
.3138 14:15:04.68
.9091 14:18:15.70
.2885 14:21:12.88
.2969 14:21:27.51
.2946 14:21:31.55
.9360 14:21:52.49
.9572 14:22:04.18
.9360 14:22:07.31
.9360 14:22:11.30
.3233 14:22:38.12
.3233 14:22:52.05
.3233 14:22:56.29

107.86 1 Pdiff 856.35 14 16.35
2 pPdiff 866.92 14 26.92
3 sPdiff 870.96 14 30.96
4 PKiKP 1103.79 18 23.79
5 pPKiKP 1114.63 18 34.63
6 sPKiKP 1118.61 18 38.61
7 PP 1125.38 18 45.38
8 SKiKP 1316.40 21 56.40
9 SKSac 1493.58 24 53.58
10 pSKSac 1508.21 25 8.21
11 sSKSac 1512.25 25 12.25
12 SKSdf 1533.19 25 33.19
13 SKKSac 1544.88 25 44.88
14 pSKSdf 1548.01 25 48.01
15 sSKSdf 1552.00 25 52.00
16 Sdiff 1578.82 26 18.82
17 pSdiff 1592.75 26 32.75
18 sSdiff 1596.99 26 36.99

— L
O O O © 00 00 00 = k= O\ = B P = o] = —~ B A A

19 SP 1684.89 28 4.89 .2077 14:24:24.19
20 SP 1686.52 28 6.52 .2372 14:24:25.82
21 PS 1689.29 28 6.29 .2008 14:24:28.59
22 PS 1690.83 28 10.83 .2370 14:24:30.13

g
w

. 1450 14:25:54.72
.4368 14:26:09.67
.8790 14:26:10.37
.8543 14:29:35.03
.8537 14:29:39.03
.8574 14:29:42.88
.8573 14:29:46.87

23 PKKPbc 1775.42 29 35.42
24 PKKPab 1790.37 29 50.37
25 PKKPdf 1791.07 29 51.07
26 SKKPbc 1995.73 33 15.73
27 PKKSbe 1999.73 33 19.73
28 SKKPdf 2003.58 33 23.58
29 PKKSdf 2007.57 33 27.57

[T T T S
—_ NN

- 30 -

30 SS 2036.57 33 56.57 13.5324 14:30:15.87
31 SKKSac 2217.88 36 57.88 -2.6457 14:33:17.18
32 SKKSdf 2219.97 36 59.97 -1.8308 14:33:19.27
33 P'P'df 2282.91 38 2.91 -1.9271 14:34:22.21
34 S§'S’ac 3130.07 52 10.07 -3.0873 14:48:29.37
35 8'S’df 3145.73 52 25.73 -1.8824 14:48:45.03

(est fram JB) IR 3037.19 50 37.19 28.1600 14:46:56.49
cutpaste 123 dddd jjjj sftS 93 354 14 09 36 2940 T, @TANIMBAR ISLANDS RBG m6.0/5.8 d108 h33"

R SK] Pr*
1993/12/20 15:56:57.70 62.206 -150.473 10 0.0 0.0 30.496 333.417 CENTRAL ALASKA
1993/12/20 17:36:59.70 32.333 -115.404 S 0.0 0.0 7.092 135.061 CALIF

Source Code of dz Follows:

The source code 1is available via anonymous ftp from “"andreas.wr.usgs.gov" in directory
"~ftp/pub/outgoing/evans/event_extraction". This Open-File Report serves to release them to the public, subject
to the limitations cited on the title page.

dz.c Thu Dec 23 10:37:57 1993 -31-

~
*

DZ -- simple distance, azimuth, and traveltime calculator,
input from QED, calls ttimes with distance value, outputs
all relevant data. Positive North and East.

27 Sept 93, add output of "epick® “pick* files for each event.
Only outputs for channel code “v*, i.e., for rotated traces.
Reguires change in logic so all stations get computed delta/azm
and one pick structure is made for each. Also added output of
all backazimuths to facilitate correct rotations later.

USAGE: dz QED_file_name > output_ file
BUGS:
WARNING: epick "pick" files have times for SFT5 exactly, but

estimates values for other sites from ttimes-output slownesses.
Interpret with care.

F % 3 % % % 3 3 o+ # F K 4 F F F * #

Must have the following links in place:
ln -s /we/itch/evans/src/resids/iasp91/iasp9l.hed .
ln -s /we/itch/evans/src/resids/iasp91/iasp9l.tbl .

*

* Works only on Sun3 "evanss"--fragile. Fixable, but need ttimes
* available and need to change path names appropriately.

-

* Creates and destroys files *ttimes.in.junk" and “"ttimes.out.junk".
*

* Remember to update DATA_YEAR, CENTURY, the definitions of

* central_lat and central_lon, and the format of "cutpaste" output
* (the station name) as needed. Not neat, but functional.

*

* Also, change (0, MIN_MAG_O), (MID_DELTA, MIN_MAG_l) and

* (180, MIN_MAG_2) which define a bi-linear distance-magnitude

* rule determining which epicenters from the imput file are

* processed and which are skipped. {The minimum magnitude so

* determined is compared to the maximum of mb and Ms.)

*

*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <local/local.h>
#include <local/stdtyp.h>
#include <local/mathconst.h>
#include <local/date_time.h>
#include "pick_struct.h"

#define MAX(a,b) (((a)>(b)) ? (a) : (b)) /* larger value */

#define MAXBUF 40 /* decode.h buffer size */
#include <local/decode.h>

/* Maximum size of QED event-list */

#define MXQED 2000

#define FE_LEN 31 /* Flinn-Engdahl array length */

#define STR_LEN 256 /* Maximum scratch-string length */
#define DATA_YEAR 1993

#define CENTURY 1900

#define MIN_MAG 0O 2.5 /* minimum mb at zero distance */

#define MID_DELTA S. /* slope-bread distance (deg) */

#define MIN MAG_1 4.9 /* minimum mb at MID_DELTA */

#define MIN_MAG_2 5.6 /* minimum mb at the antipode */

/* Coordinates of possible station(s) from
which to calculate delta and azimuth */

#define SFT2NAM “sfta*

#define SFT2LAT 37.153042

#define SFT2LON -121.812232

#define SFT2ELEV 518

#define SFT4NAM “sfr4q"

#define SFT4LAT 37.38883

#define SFT4LON -121.49450

#define SFT4ELEV 660

#define SFTS5NAM "sfts5"

#define SFTSLAT 37.505053

#define SFTSLON -121.328514

#define SFTSELEV 312

#define NSTA 3

typedef struct { /* Station information */
char code [5]; /* Name */

double lat; /* Location (+N, degrees) */

dz.c Thu Dec 23 10:37:57 1993 -32-
double lon; /* (+E, degrees) */
double elev; /* meters */
double delta:; /* Distance to event, degrees */

} STA;

/* Surface wave

nominal velocity (s/degree) */

#define LR_VEL 28.16

typedef struct { /* Known-event information */
TIME ot; /* Origin time */
double lat; /* Hypocenter (+N, degrees) */
double lon; /* +E, degrees */
float depth; /* kilometers */
float mag; /* mb */
float ms; /* Ms */
char fe[FE_LEN] /* Flinn-Engdahl region name */
double delta; /* Distance (degrees) */
double back; /* Back azimuth (degrees) */
int hit; /* Number of times triggered on */

} QEDMAP;

#define strneq !strncmp
void ep_out ()7 /* Defined below */
int build_ged(): /* Defined below */
void ph_sav(); /* Defined below */
bool read_ev () /* Deflned below */
char *tm_str(); /* Defined below */
char *tm_cut ()7 /* Defined below */
void datime () : /* -1q (YMDhms <- epochal) */
void delaz{): /* -1q (geocen.c) */
FILE *fopen(); /* Unix C library */
FILE *efopen(); /* -1q (efopen.c) */
void error{).; /* =-1q (error.c) */
bool isleap(): /* -1q */
void refpt (): /* -1q (geocen.c) */
void report () ; /* -lq (error.c) */
TIME timvar (); /* =1q (YMDhms -> epochal) */

#define MAXPHASE 100 /* Maximum number of phases */
int npcks; /* Number of phases for event */
TIME ph_t [MAXPHASE]; /* Phase travel time */
double ph_sl1[{MAXPHASE): /* Phase slowness, s/degree *x/
double ph_s2[MAXPHASE]; /* Phase slowness derivative, s/d"2 222 */
char ph_n[MAXPHASE) (7); /* Phase name */

main({arge, argv)

int argc:
char **argv;

{
int yr, mo, day, hr, mn;
double sec;
int nged; /* Number of events read */
int i1; /* Dummy */
int 332 /* Dummy */
int skiped_last = FALSE; /* OQutput flag */
float min_mag; /* Minimum magnitude to pass */
char ged_name[40]); /* Name of "QED” file */
FILE *qed_file;
QEDMAP gedm[MXQED]); /* QED-event map */
FILE *tt_file; /* ttimes I/0 files */
char in_str{STR_LEN]; /* Input buffer */
char ttout{16]; /* Qutput buffer for time of day */
char sys_str{256]; /* ttimes command buffer */
ool first_ph = TRUE; /* Take note of first-arriving phase */
TIME phltime; /* Its traveltime */
double central_lat = SFTSLAT; /* Latitude of station */
double central lon = SFTSLON; /* Longitude of station */
STA stations[10]; /* Station list */

/* Bulld station list the dumb way */

{void) strncpy(stations(0).code, SFT2NAM, 5);
stations{0].lat = SFT2LAT;

stations[0].lon = SFT2LON;

stations[0]).elev = SFT2ELEV;

(void) strncpy (stations[1l].code, SFT4NAM, 5);

dz.c

Thu Dec 23 10:37:57 1993 -33-

stations(1l).lat = SFTALAT;
stations(l].lon = SFT4LON;
stations{l].elev = SFT4ELEV;

(void) strncpy(stations[2).code, SFTSNAM, 5);
stations{2].lat = SFTSLAT;

stations{2).lon = SFTSLON;

stations{2).elev = SFTSELEV;

/* Check usage */
1f (argc < 2}
error (“*Usage: %s QED_file name > output_file",

ged_name[0] = °\0";
—=-argc, argv++;
(vold) strcpy (qed_name, *argv); /* “QED* file name

argv{0]);

*/

/* Use middle station as reference point for build_ged */

refpt { (central_lat * RAD), (central_lon * RAD));

/* Read in QED list */
if((qged_file = fopen(qed_name, "r")) == NULL)

error ("Error opening \"QED\" file \“%s\".,", qged name);

if ((nged = build_ged(gedm, ged_file)) > 0) {

(void)printf ("YYYY/MM/DD hh:mm:ss.ss Lat,N Long,W");
(void)printf(* h,km mb Ms delta azimuth F-E region\n");

/* Run ttimes for each event, extracting the useful fraction */

sys_str{0] = "\0’;

(void) strcat (sys_str,
»/we/geotele/evans/usr/ttimes");

(void)strcat (sys_str, “ < ttimes.in.Jjunk");

(void) strcat (sys_str, * > ttimes.out.Jjunk"):

for (i1 = 0 ; i1 < nged ; 1i++) (

/* Bother only with qualifying magnitudes */

if (gedm(ii).delta < MID_DELTA) (
min_mag = MIN_MAG_0 +
(MIN_MAG_1 - MIN_MAG_0)

*

gedm([i1]).delta / MID DELTA;

}

else {
min_mag = MIN_MAG_l +

(MIN_MAG_2 - MIN_MAG_1)

*

(qedm(ii].delta - MID_DELTA) /

(180.0 - MID_DELTA):;
1

if (MAX(qedm([ii).mag, gedm{ii).ms) >= min_mag) {

if (skiped_last)
(void)printf (“\n"};
skiped_last = FALSE;

/* Create input to ttimes, and run ttimes */

tt_file = fopen("ttimes.in.Jjunk", "w"};

(void) fprint f(tt_file,

“all\n\n%.3f\n%,31f\n-1\n-1\n",
gedm{ii).depth, gedm{ii].delta);

(void) fclose (tt_file);

if ((system(sys_str) & 0377) == 127)
error(“ttimes call failed!"):

/* Output relevent event information */

datime (qedm(ii).ot,

&yr, &mo, &day, &hr, &mn, é&sec,

GREGORIAN) ;

(void) printf ("\n%41/%021/%021 %021:%021:%05.2f
yr, mo, day, hr, mn, sec):

(void)printf("%7.31f %8.31f %3.0f *“,
gedm([ii).lat, gedm[ii].lon,

qedm([ii].depth);

(void)printf(“%3.1f $3.1f %7.31f %7.31f *~,
qedm{ii] .mag, qedm{ii).ms,

qedm{ii).delta,

gedm{ii].back);
(void)printf (“%s\n",

qedm{ii].fe):

/* Calculate and output all deltas

and backazimuths */
(void)printf (" (Delta/back-azm:

"

dz.c Thu Dec 23 10:37:57 1993 -34 -

for (33 = 0 ; 33 < NSTA ; Jj++) {
double delta, az0, azl;

refpt ({stations[33j).lat * RAD),
(stations[3j).lon * RAD));

delaz{qedm[i1i].lat * RAD,
gedm([ii}.lon * RAD,
&delta, &az0, &azl);

az0 *= DEG;

delta *= DEG;

stations(jj).delta = delta;

(voidyprintf ("%s=%07.31£/%07.31¢f",
stations[33).code,
delta, az0);
1f (33 == NSTA - 1)
{void)printf (*)\n*);
else
(vold)printf(, *):
}
(vold)printf (“\n");

/* copy through the useful parts of ttimes
output */
npcks = 0; /* Start epick phase list */
tt_file = fopen(“"ttimes.out,junk*, "r");
while (fgets(in_str, sizeof(in_str), tt_file) !=
NULL)
1f (strneq("Source depth (km):",
in_str, 18}))
break;
while(fgets(in_str, sizeof(in_str), tt_filej !=
NULL) {
if (strneqg(
"Enter delta: Source depth (km):*,
in_str, 32))
break;
else {
if (strneq(“Enter delta: ",
in_str, 14)) {
in_str[53 + 14) = ’\0";
(void)printf(
“$s hh:mm:ss.ss\n",
in_str + 14);
}
else |{
TIME tt = 0;
tt = (double)DECODE (
(in_str + 22), 9, atof};
if (¢t > 0.0) |
if (first_ph) {
phltime = tt;
first_ph = FALSE;
}
in_str (53]} = "\0’;
(void)printf ("%s $s\n",
in_str, tm_str(
gedm[ii).ot, tt,
ttout)):;

/* Save phase for
epick "pick" file */
ph_sav(in_str, tt);
}
else
(vold)printf("ss", in_str);

I

/* Protect DECODE from leftovers */
for (33 = 0 ; 33 < STR_LEN ; 33++4)
in_str(j3j] =

/* Estimate surface waves */

sec = gedm{ii).delta * LR _VEL;

mn = sec / 60;

(vold)printf (* (est from JB) LR");

(void)printf (* $10.2f%4i%7.2£%11.4f $s\n\n",
sec, mn, {sec - (mn * 60)), LR_VEL,
tm_str{gedm([ii).ot, sec, ttout)):;

(void) fclose (tt_file);

first_ph = TRUE;

if ((system("/bin/rm ttimes.out.junk") &
0377) == 127)

dz.c Thu Dec 23 10:37:57 1993 -35-
report (*rm call failed...");

/* Output for “cutpaste®” script
(from (first phase - PAD_FRONT)
to (LR + PAD_REAR}} */

#define PAD_FRONT 60.0 /* s */
#define PAD_REAR 700.0 /* s */

(void)printf (“cutpaste 123)
(void)printf (“dddd jjjj sftS ")z
(void)printf (“%s %$4d \"T, @%s ",
tm_cut ((TIME) (gedm([ii] .ot + phltime -
PAD_FRONT + 0.5), ttout},
(int) (sec - phltime +
PAD_FRONT + PAD_REAR},
qedm({ii).fe);
(void)printf(*m%3.1£f/%3.1f d%.01f h$.0f\"\n",
qedm{ii).mag, qedm[ii}.ms,
qedm{ii).delta, qedm(il].depth};

/* Output phase list to epick “pick" file */
ep_out (qedm({ii).ot, ttout,
qedm[ii}.delta, stations};
}

/* Report skipped events FYI */
else {
datime (gedm{ii].ot,
&yr, &mo, &day, &hr, &mn, &sec,
GREGORIAN) ;

1f (!skiped_last)
(void)printf ("\n**SKIP**\n"};
skiped_last = TRUE:

(vold)printf(“%41/%021/%021 %021:%02i:%05.2f
yr, mo, day, hr, mn, sec);

(void)printf("%7.31f %8.31f %3.0f ",
qedm{ii).lat, qgedm[ii]).lon,
qedm([ii]).depth};

(void)printf(“%3.1f %3,.1f %7.31f %7.31f *,
qedm([ii).mag, qedm[ii}.ms,
qedm{ii).delta,
qedm([ii]).back};

(void)printf (“$s\n",
qgedm{ii].fe):

)

if ((system(“/bin/rm ttimes.in.Jjunk") & 0377) == 127)
report ("rm call falled..."):
)

(void) fclose (qed_file);
)

/*
* Given two TIME variables, add, and return time string “hh:mm:ss.ss".
*/

char *
tm_str(tl, t2, str)
TIME tl;
TIME t2;
char *str;
{
int yr, mo, day, hr, mn;
double sec;
datime ((tl1 + t2), &yr, &mo, &day, &hr, &mn, &sec, GREGORIAN);
(void)sprintf(str, "%021:%021:%05.2f%, hr, mn, sec);
return (str);
}
/Q

* Given one TIME varlable, returns time string "yy 33jj hh mm ss".
*/

char *
tm_cut (tt, str)
TIME tt;
char *str;
{
int yr, mo, day, hr, mn, Jjday:

double sec;

dz.c Thu Dec 23 10:37:57 1993 -36 -

datime (tt, &yr, &mo, &day, &hr, &mn, &sec, GREGORIAN);
jday = yrday(mo, day, isleap(yr, GREGORIAN});
(void) sprintf(str, "$021 %031 %02i %021 %o02i",

yr - CENTURY, jday, hr, mn, (int)sec):

return (str);

* Read an event line from QEDs defaulting numbers to zero and
* strings to null if not present. Returns TRUE if it seems to
* be an event line, otherwise FALSE.

*/

bool
read_ev(in_str, hr, mn, sec, lat, lath, lon, lonh, depth, mag,
char in_strl):; /* Input buffer
int *hr, *mn;
double *sec;
double *lat, *lon;
float *depth, *mag, *ms;
char *lath, *lonh;
char fell: /* Flinn-Engdahl buffer

int ii; /* Dummy
bool rd;

rd = FALSE;

*hr = 0;

*mn = Q7

*sec = 0.0;

*lat = 0;

*lath = ‘\0’;

*lon = 0;

*lonh = ‘\0‘;

*depth = 0;

*mag = 0,

*ms = 0;

for (ii = 0 ;7 ii < FE_LEN ; ii++)
fe(ii] = *\0’;

*hr = DECODE (in_str, 2, atoi):;

*mn = DECODE({(in_str + 2), 2, atol);

*sec = (double)DECODE({in_str + 4), 4, atof);
*lat = (double)DECODE({in_str + 10}, 6, atof);
*lath = in_str(16];

*lon = (double)DECODE((in_str + 18), 7, atof);
*lonh = in_str(25]);

*depth = (float)DECODE ((in_str + 27), 3, atof};
*mag = (float)DECODE((in_str + 32), 3, atof);
*ms = (float)DECODE((in_str + 36), 3, atof):

(void) strcpy (fe, (in_str + 48)):
fe[FE_LEN - 1] = *\0’;

/* strip trailing comments (avoiding l-character abreviations)

for (i1 = 2 ; i1 < FE_LEN ; 1i++4) |

1f ((fe[ii) == ‘.’ && fe[il - 2] != "+ 7) || fe[li]

fe{ii) = *\0’;
break;

}

ms,

*/

*/

*/

*/

== '\n') {

/* Kludge, since there seems no other guarantee in QED listings */

if ((*lath == 'N’ || *lath == ’n’ || *lath == S’ || *lath ==
(*lonh == *E’ || *lonh == ‘e’ || *lonh == ‘W’ ||

rd = TRUE;

return (rd);
}

/’
* Read "QED™ file and build data base of events.
*/

int

build_ged(gedm, qed_file)
QEDMAP gqedm([]; /* Known-event map
FILE *ged_file;

{
int nqed;
char in_str[STR_LEN]; /* Input buffer
int yr = DATA_YEAR, mo = 0, day, hr, mn;

double sec;

double 1lat, lon;

float depth, mag, ms;
char lath, lonh;

'sS") &&
*lonh == ‘w’})

*/

*/

Thu Dec 23 10:37

fe[FE_LEN];
delta, az0,

dz.c

char

double azl;

:57 1983

-37 -

/* Flinn-Engdahl buffer

int ii;

/* refpt called from here in other versions.

nged = 0;

while (fgets(in_str, sizeof(in_str), ged_file)

i1 = intmo(in_str);

1f (41 1= 0) {

}

/* Dummy

mo = ii;
1f (sscanf(in_str + 3,

“gd", s&day)

In “dz",

I= NULL)

/* Always present above events

t= 1

*/
*/

called from main.

{

*/

)

error ("Could not read day in QEDs");

i1f (read_ev(in_str, &hr, &mn, &sec,

&lat, &lath, &lon,

&lonh,

&depth,

smag,

/* Clear input string to avoid problems
* with sugsequent event and non-event lines */

for (41 = 0 ;

in_str(ii) =

1f (lath != *N")
lat = -lat;
1=

if (lonh *E")

lon = -lon;

/i
delaz(lat * RAD,
delta *= DEG;
az0 *= DEG;

1f (mo == 0)

ii < STR_LEN ;
‘N0’ ;

11++4)

Calculate distance to event */
lon * RAD,

&delta,

error ("Programming error."):;

if (nqed >= MXQED)

error (“"Too many QED entries."):

/* Save event information */

qedm{nged] .ot =

timvar (yr, mo,

qedm{nqed].lat = lat;
qedm{nged].lon = lon;

day, hr,

gedm{nged).depth = depth;

gedm{nged) .mag = mag;
gedm{nqged] .ms = ms;

mn,

&az0,

sec,

(voild) strcpy (gedmnged]. fe,

fe):

qedm{nqed) .delta = delta;

qedm[nqed] .back

= az0;

qgedm([nqed) .hit = 0;

nqged++;
}
}
return (nged):

/i
* Add picks for one phase to the epick
*/

volid
ep_out (ot, str, delta, stations)
TIME ot:
char str{j;
double delta;
STA stations[]):
{
FILE *ep_file;
PMAIN pck;
int iph, ist;
double ddelta;
/* Open file (construct name
str{2) = str(3];
str{3) = str(4};
str[4) = str(5);
str{5] = *.’;
str{6) = str(7];

ems, fe)) {

&azl);

GREGORIAN} ;

“pick" file

/* Event origin time */
/* "cuspaste" string passed in */
/* “center"™ (SFT5) delta, deg */
/* Station list */
/* Output stream */
/* An epick *“pick” *x/

from "cuspaste" string)

*/

*/

dz.c Thu Dec 23 10:37:57 1993 -38-

str[7] = str(8};
str(8] = str(l10};
str[9) = str{ll};

str{l10] = str{l13};
str[ll} = strf{l4};
strfl2] = * .’
str{l13] = ‘e’;
str(l4) = ’p‘:
str{l15] = *\0‘;

ep_file = efopen{str, “w"}:;

/* Create and write out epick "pick™ structures */
for (iph = 0 ; 1iph < npcks ; iph++} {
for (ist = 0 ; ist < NSTA ; ist++) {

(void) strcpy (pck.stcode, statlons(ist].code);
{void) strcpy (pck.chan, “v"):

(void) strcpy (pck.phcode, ph_n{iph});
ddelta = stations[ist).delta - delta;
pck.t = ot + ph_t[iph] + ddelta * ph_sl{iph];
/* (ph_sl{iph] + ph_s2(iph] * ddelta / 2): */
pck.setime = 999,999;

pck.onset = * ‘’;
pck.pol = ¢ ‘;
pck.qual = "1i‘; /* Meaning “iaspigi” */

pck.amp = 0.0;
pck.freq = 0.0;

if (fwrite((char *)&pck, sizeof{pck), 1, ep file) != 1)
report {"Can't write picks");

}

/* Clean up */
(void) fclose (ep_file);
)

/Q
* Save phase traveltimes and names for epick “pick" file.
*/
void
ph_sav{in_str, tt)
char *in_str;
TIME tts
{
int i3z

if (npcks == MAXPHASE)
report {*Toc many phase names--ignored\n$s”, in_str):

else {
ph_t{npcks} = tt;
ph_sl{npcks] = (double)DECODE((in_str + 46), 10, atof);
ph_s2[npcks] = (double)DECODE ((in_str + 65), 10, atof);

(void) strncpy (ph_n[npcks], in_str + 14, 6):
ph_ninpcks][6] = "\0‘;
for (33 =57 33 >= 0 : 33--)
if(ph_n{npcks) (3] == * *
ph_n[npcks] (33] = “\0’;

npcks++;

intmo.c

Fri Oct 8 09:58:20

/* Character month -> integer month */

#include <string.h>

tdefine strneq

tdefine streqg

int

intmo (chmo)
char

{

if (strneg(chmo,

else

else

else

else

else

else

else

else

else

else

else

else

if
if
if
if
if
if
if
if
if
if

if

!strncmp
!stremp

*chmo;

return (1),
(strneq(chmo,
return(2);
(strneq(chmo,
return(3);
(strneq(chmo,
return(4);
(strneq (chmo,
return(5);
(strneq (chmo,
return(6);
(strneq(chmo,
return(7);
{strneq(chmo,
return(8);
(strneq (chmo,
return(9);
(strneq (chmo,
return(10);
(strneqg(chmo,
return(11);
(strneq(chmo,
return(l12);

return(0);

“Jan",

“Feb",
“Mar",
“Apr",
"May*,
*Jun",
“Jul",
“Aug",
“Sep"”,
“Oet",
“Nov",

“Dec",

3) 11

strneq {chmo,

3)
3)
3)
3)
3)

3)

|

14

1993

“JAN"
strneq(chmo,
strneq (chmo,
strneg(chmo,
strneq (chmo,
strneq(chmo,
strneq(chmo,
strneq (chmo,
strneq (chmo,
strneq(chmo,
strneq{(chmo,

strneq (chmo,

.3

“FEB",
“MAR",
“APR",
“MAY",
“JUN",
»JuL”,
“RUG™,
“SEP™,
“ocT",
“Nov,

“DEC",

-30 -

3))
3))
3
3N
3
3))
3))
3))
3
3

3))

pick_struct.h Fri Oct B8 09:58:26 1993 - 40 -
/* STCSIZE should be abandoned in favor of using CODESI2ZE from ahhead.h */

/'

* STCSIZE and CHANSIZE define the maximum number of PRINTABLE characters
* in the respective strings. These strings, therefore, MAY NOT BE NULL
* TERMINATED. Use ’strnemp(..., STCSIZE)’ and ’... "$.*s", STCSIZE,

* stcode ...’ and such.

*/

#define STCSIZE 4 /* Length of station code */

#define CHANSIZE 6 /* Length of channel code */

#define PHCSIZE 8 /* Length of phase code */

#define NULL_TIME 1.0el0

/* Indespensable part of a PICK */

typedef struct {
char stcode[STCSIZE);/* Station code */
char chan [CHANSIZE); /* Channel code */
char phcode [PHCSIZE];/* Phase code */
TIME ts /* Arrival time */
float setime; /* Standard error of arrival time */
char onset; /* ‘e’ or ‘i’ */
char pol; /* Polarity: ‘u’ or ’d’ */
char qual; /* Pick quality */
float amp; /* Amplitude */

/* Note: convention (e.g. peak-to-peak */
/* vs. zero-to-peak) 1s not enforced by */
/* program (but is important). */
float freq:; /* Frequency */
} PMAIN;

/* Time from clock or radio time channel */
typedef struct ({

/* Related things measured from a trace */
typedef struct {
PMAIN pm; /* Required */
CODE_T c_t; /* Optional */
} PICK:

Makefile Fri Oct 8 09:58:16 1993 -41 -

»

B P P L P UL PO DL Pl UL JUS SUE DU DI L0 200 DU JUIL NS SN WS DU ZUS 2N Jue pue BN EL TN SN PN T 2 PN

Generic Makeflle for programs.
Works for any mix of sun3, sun4, Fortran, and C (I hope!}.

"make install" fails the first time unless the executable has
already been copied to $(BINDIR).

The following is required in the user’s .cshrc:

setenv ARCH ‘/bin/arch*
1f(SARCH == “sun3") then
setenv FLOAT -£68881
else
setenv FLOAT *"
endif
setenv DIR_USR /usr/local
setenv DIR_SRC /usr/src/local

W owWe W Wk MR Mk Wk ke Wk Mk Nk Mk Rk gk Wk Wk ke W

FC = £77

cc = cC

FFLAGS = ~u $ (FLOAT) ~D$ (ARCH)
CFLAGS = $(FLOAT) -D$ (ARCH) -g
BINDIR = $(DIR_USR)

PROG = dz
SRCARC = $(PROG).src.a

FSRCS =
CSRCS = dz.c \
intmo.c

OBJECTS = $(FSRCS:%,f=$(ARCH)/%.0) $(CSRCS:%.c=$ (ARCH)/%.0)

LIBS = ~-1q -1lm
LLIBS = $(LIBS)

INCLS =
OTHERS = Makefile $(INCLS)
OTHERBIN=
P = enscript ~r2 -p-

$ (ARCH) /$ (PROG) : $ (OBJECTS)
$(CC) $(CFLAGS) $(OBJECTS) $(LIBS) ~o $@

$(OBJECTS) : $(INCLS)

$(ARCH) /%.0: %.cC
$(CC) $(CFLAGS) =-c $(@F:.o=.c) ~-o $@

S (ARCH) /%.0: %.f
$(FC) $(FFLAGS) ~c $(@F:.o=.f) ~o $@

install: $(ARCH)/install $ (ARCH)/$ (PROG)
1 /bin/rm install
In ~s $(ARCH)/install install
/bin/mv $(BINDIR}/$(PROG} $(BINDIR)/$(PROG).old
cp $ (ARCH)/$ (PROG) $ (BINDIR)
chmod 755 $(BINDIR) /S (PROG)
@touch install
@touch $(ARCH)/install

CAUTION: do not run “make clean® on more than one machine at a time;
the archive commands ("ar*) might conflict.
clean:

/bin/rm $(ARCH)/$ (PROG) $(OBJECTS) $(BINDIR)/$ (PROG).old

ar ruv $(SRCARC) $(FSRCS} $(CSRCS) $(OTHERS) $ (OTHERBIN)

lint: $(FSRCS) $(CSRCS) $(INCLS)
/usr/bin/lint -xh -u $(FSRCS) $(CSRCS) $(LLIBS) > lint

print: S$(FSRCS) $(CSRCS) $(OTHERS)
L pr -166 $2 | SP

enscript $?

@touch print

printall:

pr ~-166 $(FSRCS) ${CSRCS) $(OTHERS) | $P
enscript $(FSRCS) $(CSRCS) $ (OTHERS)
@touch print

printexport:
pr -t $(FSRCS) $ (CSRCS) $ (OTHERS)

_42.

12. Appendix F: Manual Page and Source Code for ahwwvb

The algorithm used in the ahwwvb time-code reader is an amalgam of robust processes coded in C and
FORTRAN—several running-median filters, an edge-finding algorithm, and an L1 fit to the second ticks. The
latter, and the BCD deciphering code that follows, are taken from Carl Johnson’s earlier efforts, while the signal
preprocessors are creations of the first author of this Report. The signal processors were designed from general
principals (Evans, 1992) and optimized by tests on real data, mostly of 100 sps. It also works well at 250 sps,
but is only lightly tested at other sample rates. It is the most reliable automated WW VB reader known to us.

Both the source code and the manual page are available via anonymous ftp from "andreas.wr.usgs.gov"” in direc-
tory "~ftp/pub/outgoing/evans/wwvb". This Open-File Report serves to release them to the public, subject to the
limitations cited on the title page.

Source code for the running-median routine (from the first author’s librmyf), and relevant routines from Bruce
Julian’s libg are listed in Appendix H. The I/O library libah is available from Lamont-Doherty ("ftp
lamont.ldeo.columbia.edu” in compressed file "/pub/ah.tar.Z").

-43 -
AHWWYVB (3P) MISC. REFERENCE MANUAL PAGES AHWWVB (3P)

SYNOPSIS
ahwwvb -m min_rate ah_file [-vb code channel 1 [-v][-la | <1 list file Y [-y year 1 [r ls][-d
delay] [-nc]

DESCRIPTION

Reads a WWVB radio time-code trace in (xdr) AH format, infers sampling rate and the NTIS/UTC time
of the first sample. Accordingly, changes the WWYVB trace starting time and digitizing interval, as well
as those of any other traces indicated. Affects all traces listed in list_file (in the same format as epick’s
list_file), or else changes all traces in ah_file (-la, the default). If -Iis used, copies through, unchanged,
all other traces encountered. Performs simple relatedness checks on traces to be changed, but only with
the -la option. Simply asks whether they all have the same length, original sampling interval, and ori-
ginal starting time.

ahwwvb is intended primarily for correcting start time and digitizing interval of data from "five-day
recorders” and other instruments that record WWVB radio time code in parallel with seismic data, but
which may give inaccurate start time or digitizing interval due to inaccurate internal clocks or analog-
instrumentation foibles. Hence, ahwwvb assumes that all traces to be changed are exactly the same
time interval and that all traces from that parallel record are targeted for the change. Since AH has no
formal way of associating a group of traces, this game is somewhat dangerous. You may get bizarre
results if you change too few or too many traces. Logs the changes it makes in the AH header.

ahwwvb does significant signal massaging to extract robustly the most accurate time. Uses a combina-
tion of several running-median filters and an edge-finding algorithm to interpret the WWVB trace into a
binary time series. This binary series is decoded by Carl Johnson’s routine, the operation of which is
partly mysterious. The translation to binary includes a number of empirically set parameters for deter-
mining what a sharp corner really is and how extreme the signal massaging may be. These may need
adjustment in some cases (see file ahwwvb.h). Also biases the result to account for a filtered versus
unfiltered WWYVB trace. Uses an L1 fit (in C. Johnson’s code) to calculate fractional seconds of the
start time, and the sampling interval.

It is often the case that part of the starting time can be inferred, but not all of it. Fractional seconds
and sample interval are found most often, then units and tens of seconds, and lastly (as one group) the
Julian day, hour, and minute. Any one of these not found by interpreting WWVB is simply set to
respective values taken from the original AH header, with appropriate warnings sent to stdout. WWVB
does not tell one the year, so that is taken from the original AH header or overridden by the -y option.

One of the sad discoveries made in writing ahwwvb is that current five-day playback procedures are
very poor. Many files have varying digitizing rates, witnessed by varying intervals between WWVB
"ticks", and some files have drastic fluctuations in rate. Based on my small test sample, these all
appear to be increases in sample interval (WWYVB appearing compressed) lasting on the order of 10 s
and often occurring several times per minute. Presumably, the tape-speed compensation is not working
properly and the recorder slows episodically (this mechanical dragging is known to be common near the
terminal end of tapes, due to imperfections in the recorder design and, to a lesser degree, maintenance).
Even this veteran observer failed to notice many of these fluctuations until looking at the tick intervals
rather closely, so I have added some diagnostics to ahwwvb, to wit a statistical evaluation of tick inter-
vals. This problem often is accompanied by a computed digitizing rate different from that requested.
The work-around (other than fixing the tape-speed compensation!) is to check the time of a WWVB tick
mark near each your picks, using epick to repick WWVB where necessary. Data digitized in real time
from the networks are, as one expects, rock constant in sampling rate.

ahwwvb teports the value of variable ires if -v flag is set. ires means:

0 = total failure to decode WWVB,

1 = sample interval and fractional “sec” decoded successfully,

2 = units of "sec" decoded too,

3 = all of "sec" decoded,

(4 is not used)

5 = WWVB was fully decoded (Julian day, hour, and minute too)

USGS Menlo Park Last change: June 17, 1992 1

AHWWYVB (3P)

ARGUMENTS
-m

ah_file
OPTIONS
-vb

-V

-la
-1

-d

-r

SEE ALSO

-44 -
MISC. REFERENCE MANUAL PAGES AHWWYVB (3P)

min_rate is the lowest sampling rate (samples per second) that this trace could possibly be.
This figure is used to design a long running-median filter to clip off noise spikes shorter than
60% (-r) or 80% (-s) of the shortest valid signal pulse (0.2 s, in the case of WWVB). You
should give the highest reasonable number but not overestimate, or valid data could be clipped
and unreadable as well. You may disable filtering by giving any min_rate < 15 sps. I know of
no good reason, aside from bad judgement in sampling rates, to override the filtering. If filter-
ing is done, ahwwvb prefilters with a series of shorter RMF windows to improve edge fidelity.
In any case, ahwwvb tells you what it did or did not do.

The (xdr) AH file containing the WWVB trace and possibly other traces.

code and channel identify the WWVB trace in ah_file. Defaults are "WWVB" and either
"TIME", "time", or "T", respectively.

Cause verbose output that provides a trace of the processing done. The default is to print out
only the summary message and any error messages. (Users with scripts designed to digest the
output of early versions of ahwwvb should invoke this option.)

(Default) All traces in ah_file are changed.

list_file must contain one or more AH file names and trace sequence-numbers; only these traces
are changed. The WWVB trace must be listed here (a check is made). list_file is in the same
format as for epick.

year is the year of the first sample in the file. It overrides the year found in the original AH
header.

delay is the total lag of the recorded WWYVB signal behind UTC. It is typically 18+5 ms radio
lag + the flight time. delay is given in ms (default 0). The start time is set earlier than the
recorded WWVB signal by this amount.

Is the WWYVB trace "rounded” (-r, the default) or "sharp" (-s)? That is, does the trace appear
to have passed through a low-pass filter, as is the case for the five-day recorder (the discrimina-
tors apply low pass filters to all traces). WWYVB digitized by CUSP, for example, is more
nearly raw, with apparently sharp transitions. However, WWVB received on a TrueTime®
radio and digitized at 1000 sps on a PASSCAL recorder shows significantly rounded transi-
tions, with about 5 ms from the start of the transition to the steepest slope.

The issue is where to infer that the original WWYVB signal transitioned. For -r, it is assumed
to be one sample interval before the steepest first difference; for -s, it is taken to be at the
same sample interval as the steepest first difference. This distinction makes only a one-
sample-interval difference. In all cases, the true transition time is assumed to be midway in
the identified sample interval. It is preferable to use -s with -d to compensate explicitly when
you know the time lag caused by filiering ("-d (time_of steepest_slope -
time_of actual_transition + any_other_lags)").

By default, ahwwvb updates the traces themselves, as described. This action can be suppressed
by the -nc ("no change") flag, in which case, the result is still reported but nothing is done
with it. The -nc option us useful for tests and to those who record clock corrections elsewhere
(and apply them to results rather than to the original data). -

epick—X11 ah picking routine derived and extended from Lamont’s sunpick. tcpick invokes epick in a
mode allowing one to manually read (and optionally correct to) a recorded time code like WWVB.

ahclk—called by ahwwvb to make the actual changes to AH headers.

USGS Menlo Park Last change: June 17, 1992 2

-45 -
AHWWYVB (3P) MISC. REFERENCE MANUAL PAGES AHWWYVB (3P)

Other ah filters.

BUGS
list_file must be sorted with all the traces for any particular file together and in ascending numerical
order within each file. mkahlist does that for you. Someday, ahclk could be made smarter about this,
but it hasn’t been yet.
ahwwvb should be smart enough to add the WWVB trace ID to any list_file, but it isn’t.
Uses inflagrevious FORTRAN spaghetti code of C. Johnson, so it is largely a mystery how the inter-
preter works (or doesn’t). Watch out for errors (particularly 1-, 10-, and 60-s errors?).
ahwwvb cannot be used as a UNIX filter.
Either ahwwvb or ahclk should check relatedness for the -1 option too.
Would be more accurate with a rawer WWVB. TrueTime® receivers try make the trace pretty by
thresholding the signal to a running mean of the signal, thereby damaging the information contained
(adding non-constant small delays to the transitions).
The -r transition bias is utterly empirical, set from years of experience almost exclusively with 100 sps
five-day recorder data. It should at least be user-controllable or, better yet, knowledgeable of the filter-
ing.
Should offer a way of holding the digitizing rate fixed, for the case of digital recorders.
ahwwvb is new and tested on only ten examples—keep your eyes open!
The filtering and L1 fit are noticeably slow at high sample rates. 2-minute 1000-sps records decode in
about 7 minutes on a Sun 3/60.
ahwwvb has been used at 100, 200, and 1000 sps. It probably will work out to 2000 sps, but there are
some poorly understood magic numbers in C. Johnson’s code, and these may cause it to fail at some
high rate. Of course, it will certainly fail below 5 sps because WWVB has meaningful pulses as short
as 0.2 s.

AUTHOR

John R. Evans, USGS, Menlo Park, CA. Original written March 16, 1992. -nc flag added June 17,
1992. Made to work for high sampling rates (at least to 1000 sps) June 23, 1992.

USGS Menlo Park Last change: June 17, 1992 3

ahwwvb.c Fri Oct 8 09:57:42 1993 - 46 -

AH filter AHWWVB (AH WWVB reader):
Read WWVB and change AH headers accordingly. See "ahwwvb.man".

*

*

*

* dbxtool -I , ~I /we/itch/evans/src/lib/rmf /we/itch/evans/usr.sun3/ahwwvb &

* stop in median

* when at “"/we/itch/evans/src/lib/rmf/cmedian.c*:143 { print lout,arrout(iout] ; }
* when ((iout & 100) == 0) { print lout,arrout(iout) ; }

* stop {f (iout == 15000)

* run -m 990 06.29.0192.4.ah ~vb 0192 4 -nc

*/

#include <stdio.h>

#include <math.h>

#include <rpc/rpc.h>
#include <local/ahhead.h>
#include <local/stdtyp.h>
#include <local/date_time.h>

#define MIN(a,b) {{{a) < (b)) 2 {a) : (b)) /* Smaller value */

#define MAX(a,b) ({{a) > (b)) 2 (a) : (b)) /* larger value */

#include "ahwwvb.h"

#define strneqg !strncmp

#define streq !stramp
void error(); /* -1q (error.c) */
void report {); /* -1q {error.c) */
FILE +*efopen(); /* =1g (efopen.c) */
char *emalloc(); /* -1lg */
char *erealloc(); /* ~-1lq */
void mnday () ; /* -1q */
bool isleap{): /* -lg *x/
TIME timvar (); /* =1g */
void datime{); /* -lq */
/* xdr_gethead () -lah */
/* mkdatspace () -1lah */
/* xdr_getdata() -lah */
int read_wwvb(); /* Defined below */
TIME ah2epoch{) ; /* Defined below */
int seq_ok ()} /* Defined below */
void ch_flles(): /* Defined below */
void decode WWVB(); /* Defined below */
void tick_size(): /* Defined below */
static int icomp(); /* Defined below */
int is_wwvb(): /* Defined below */
void to_bin(); /* Defined below */
static int fcomp ()7 /* Defined below */
bool is_max{): /* Defined below */
bool is_min(); /* Defined below */
void wwvb_ ()7 /* wwvb, f *x/
char *progname;

main(argc, argv)
int arge;
char **argv;

{
FILE *ah_file;
char ah_name[NM_LEN]; /* Name of AH file with WWVB trace */
XDR xdr_in;
int n_traces; /* Total traces in ah_file */
int itrace;
int wwvb_seq; /* Poslition of WWVB trace */
ahhed wwvb_head; /* Space for WWVB AH header */
float *wwvb_trace; /* Polinter to WWVB AH trace */
FILE *1list_file; /* listfile a la “epick" */
char list_name[NM_LEN];
int all_traces; /* Over-ride listfile and change

all traces */

int change_ah; /* Actually change ah traces? */
int yr, mo, day, hr, mn;
double sec;
bool verbose = FALSE; /* Write out gory details? */
FILE *temp file; /* listfile a la "epick® */
char temp_name[NM LEN); /* List file name actually

passed to AHCLK */

float min_rate; /* Minimum digitizing rate possible */

ahwwvb.c Fri Oct 8 09:57:42 1993 -47 -

int RMF_win; /* Resulting maximal RMF window length */
char wwvb_code[CODESIZE]: /* WWVB trace code */

char wwWvb_chan[CHANSI2E}; /* WWVB trace channel */

int year = 0; /* Year of trace; overrides ahheader */
TIME new_st; /* New starting time */
double new_int; /* New sampling interval */

TIME old_st; /* Original starting time */
double old_int; /* Original sampling interval */

char sys_str[STR_LEN]; /* Scratch string */

int sysret;

bool rounded; /* 1Is the trace “rounded" (filtered)? */
TIME lagg: /* Set clock back by this ammount */

/* Initialize */

new_st = NULL; /* No-change flag */
new_int = -1.; /* No-change flag */
min_rate = -1,07 /* Flag no-value-given */
RMF_win = -1; /* Flag no-value-given */
ah_name{0] = *\0’; /* Flag no-value-given */
all_traces = TRUE; /* Default: change all traces */

change_ah = TRUE;

list_name{0] = “\0’;
list_file = (FILE *) NULL;

(veid) strcpy (wwvb_code, “WWVB®);
(void) strepy (wwvb_chan, DEFAULT_CHAN); /* == “TIME", “time®, or “T" */

rounded = TRUE;
lagg = 0.0;

/* Check usage */
progname = argv{0};
if (argc < 4)
error("Usage: %s -m min_rate ah_file {-vb code chan] [-v] ([-la | -1 listfile] [~y year] [-r | -s]) [-d delay}] [
-ncl*,
argv{0]):

/* Interpret command line arguments */
for (--argc, argv++; argc; --argc, argv++) {

/* Minimum sampling rate implies RMF window length */
if (strneq(*argv, “-m“, 2)) {
~=argec, argu++;
if (sscanf((*argv), "$f", smin_rate) != 1)
error ("Unreadable mimimum digitization rate.");
}

/* listfile name, or do all traces */
else if (strneq(*argv, "-1", 2)) {
if (strneq(*argv, "-1la", 3)) {
all traces = TRUE;

else {
all traces = FALSE;
--argc, argv++;
(void) strepy (1ist_name, *argv);

}

/* Verbose output? */

else if (strneq(*argv, "-v", 2) && !strneq(*argv, "-vb", 3)) {
printf ("RHWWVB verbose output:\n");
verbose = TRUE;

}

/* WWVB code and channel names */
else if (strneq(*argv, “-vb", 3)) |
-=-argc; argv++;
if (argec < 2)
error (“Bad WWVB code or channel.");
(void) strcpy (wwvb_cede, *argv):
-=argec; argv++;
(void) strcpy (wwvb_chan, *argv):
}

/* new sampling interval */
else if (strneq(*argv, "-y", 2)) {
-=-argec; argu++;
if ((sscanf({(*argv), "%d", &year) != 1))
error(“Bad year in -y option.”);

ahwwvb.c Fri Oct 8 09:57:42 1993 -48 -
}

/* "Rounded" or “sharp" WWVB trace? */

else if (strneq(*argv, "-r", 2))
rounded = TRUE;

else if (strneq{*argv, “-s%, 2})
rounded = FALSE;

/* Radio + flight time lag */
else if (strneq(*argv, *-d", 2)) {
--argc; argv++;
if ((sscanf((*argv), "$lf", &lagqg) != 1))
error {"Bad delay in -d option."):
if (lagg < 0.0)
error {“NEGATIVE delay given--non-causal!*®};
}

/* Do not change traces */
else if (strneq(*argv, “-nc", 3})
change_ah = FALSE;

/* WWVB-containing AH-file name */
else
(void) strcpy (ah_name, *argv):;
}

/* Check for required arguments */
if (ah_name{0] == “\Q0’)
error ("No WWVB-containing AH file given (\"ah_file\"}."):
if (min_rate < 0.0)
error("No valld minimum sampling rate (*min_rate\”} given."};

/* Modify RMF window length */
if (rounded)
RMF win = 1 + 2 *
((int) (0.2 * min_rate * RMF_FUDGE_r) - 2};
else
RMF_win =1 + 2 *
((int) (0.2 * min_rate * RMF_FUDGE_s) - 2);

if (RMF_win < 3) {
RMF_win = 0;
if (verbose) |
printf (“Sampling interval toc low;"}:
printf(* no RMF filtering done.\n"):;
}
}
else if {verbose)
printf ("Longest RMF window is of %d points.\n", RMF_win};

/* Inform user */
i1f (verbose)
1f (rounded)
printf ("Compensating for low-pass filtered WWVB.\n");
else
printf (*Assuming unfiltered WWVB.\n");

if (verbose && (lagg > 0.0)
printf (*Correcting for $f ms flight time + radic lag.\n", lagg):

/* Get WWVB trace and header */
ah_file = efopen{ah name, “r"):;
xdrstdio_create(&xdr_in, ah_file, XDR_DECODE);

n_traces = read_wwvb(&xdr_in, wwvb_code, wwvb_chan,
&wwvb_head, &wwvb_trace, &wwvb_seq, ah_name,
all traces, &old_st, &old_int);

xdr_destroy(&xdr_in);
(void) fclose (ah_file);

/* Interpret WWVB */

{void) decode_WWVB (rounded, year, min_rate, RMF_win,
wwvb_head, wwvb_trace, &new_st, &new_int, old st, old int,
verbose) ;

new_st += (lagg / 1000.0); /* Remove any delay */

/* By default, change ah traces accordingly. */
if (change_ah) {

/* (-la) Create temporary list_file,
a complete list of traces in ah_file */

if (all_traces) {
(void) sprintf(temp_name, "%s.XXXXXX“, ah_name):;
(void)mktemp (temp_name) ;

temp_file = efopen(temp_name, "“w");

ahwwvb.c Fri Oct 8 09:57:42 1993 - 49 -

for (itrace = 1 ; itrace <= n_traces ; itrace++)
fprintf(temp_file, *“%s $d\n", ah_name, itrace);

(void) fclose (temp_file);
)

/* (~1) check that WWVB trace is in list_file
and check sequence in listfile */

else {
if (1ist_name[0] == ’\0‘)
error (“Requires listfile name."):;
list_file = efopen(list_name, "r"):
rewind (list_file);
if (!seq_ok(list_file, ah_name, wwvb_seq})
error(*listfile out of sequence or WWVB trace not listed there.");

(void) fclose (1ist_file);

(void)strcpy (temp_name, list_name);

/* Spawn AHCLK to make the necessary changes in AH headers */
ch_files(temp_name, TRUE, new_st, TRUE, new_int, verbose);
/* Clean up and exit */

if (all_traces) {
(void) sprintf(sys_str, “/bin/rm -f %s", temp_name);
1f {((sysret = ((system(sys_str) >> 8) & 0377)) == 127)
report (“Could not delete temporary list file.");
#if DEBUG
printf(*/bin/rm returns %d.\n", sysret);
#endif DEBUG

}

/* In all cases, report the result. */
(void)datime (new_st, &yr, &mo, &day, &hr, &mn, &sec, GREGORIAN);

printf (“\n ahwwvb \n");
printf (“File \"%s*, code \"%s\", channel \“§s\":\n",
ah_name, wwvb_code, wwvb_chan);
printf(“sStart time = %04d/%02d/%02d %02d:%02d:%07.41f UTC\n",
yr, mo, day, hr, mn, sec);
printf("Sample interval = %,101f s (%1f sps)\n”,
new_int, 1. / new_int):
printf ("~ \n\n");

/* Clean up and quit */
free ((char *)wwvb_trace);
exit (0);

}

/ﬁ
* Check sequence in listfile and presence of WWVB.
* 1f either is awry, return FALSE,

*/
typedef struct {
char fname_in[NM_LEN];
int rec_num;
int ugid;
} TLIST:
int
seq_ok (1ist_file, ah_name, wwvb_seq)
FILE *list_file;
char *ah_name;
int wWwvb_seq;
{
char in_str(STR_LEN]; /* One line from list file */
int i;
int same_nm;
int seq;
int rv;
int vb;
int nlines;
TLIST *file_list [MX LST): /* known AH-file names */

rv = TRUE;

ahwwvb.c Fri Oct 8 09:57:42 1993 -50 -

i
/t

vb = FALSE;
nlines = 0;
file list{0] =~ (TLIST *)emalloc{sizeof (TLIST}):

while (fgets(in_str, sizeof(in_str), list_file) != NULL) {
if (sscanf(in_str, “&s%did”,
file_list[nlines]->fname_in,
&(file_list{nlines]->rec_num),
&(file_list[nlines]->ugid))
>= 2) {

if (streg(file_list([nlines]->fname_in, ah_name)
&& (file_list[nlines]->rec_num == wwvb_seq))
vb = TRUE;

same_nm =~ TRUE;
seq ~ file_list{nlines]}->rec_num;
for(i ~ nlines ; i >~ 0 ; -=-1) {
if (streq(file_list[nlines]->fname_in,
file_list(il]->fname_in)) ({
if (!same_nm)
rv = FALSE;
1f (file_list([l]->rec_num >= seq
&& i1 < nlines)
rv = FALSE;
else
seq = file_list(i]->rec_num;
}

else {
same_nm = FALSE;
}
}

nlines++;
if (nlines >= MX_LST)
error(“listfile too long.");
file listinlines] = (TLIST *)emalloc(sizeof (TLIST));

else
error (“Bad listfile format.*);
}

for (1 = 0 ; 1 <= nlines :; 1i++)
free ((char *)file_list{i]):

return (rv && vb);

* Call AHCLK to change the AH file headers.

*/

void

ch_files (temp_name, start, new_st, interval, new_int, verbose)

char *temp_name; /* List file name actually passed to AHCLK */
int start; /* Change start time if TRUE */
TIME new_st; /* Recalculated start time */
int interval; /* Change sampling interval if TRUE */
double new_int; /* Recalculated sampling interval */
bool verbose; /* Write out gory detalls? */

int yr, mo, day, hr, mn;

double sec;

char sys_str[STR_LEN];
char add_str[STR_LEN];
int sysret;

(vold) sprintf(sys_str, “ahclk -1 %s*, temp_name);
1f (start) {
(void)datime (new_st, &yr, &mo, &day, &hr, &mn, &sec, GREGORIAN);
(void) sprintf(add_str, " -s %04d %02d %02d %02d %02d %1f“,
yr, mo, day, hr, mn, sec);
(void) strcat (sys_str, add_str);
}
if (interval) {
(void)sprintf(add_str, * -1 $%.101f", new_int};
(void) strecat (sys_str, add_str);
I

/* Report change */

if (verbose) {
printf(*\nChanging start time and interval ...\n", sys_str);
printf(*\t&s\n\t*, sys_str);

}

if ((sysret = ((system(sys_str) >> B) & 0377)} == 127)
report (*Trouble changing AH files. CONDITION OF FILES UNKNOWN!");

ahwwvb.c

else if (verbose)

#1f DEBUG

Fri Oct 8 09:57:42 1993

-51-

printf("... successful.\n\n", sys_str);

printf ("AHCLK returns %d.\n"”, sysret);

#endif DEBUG

}
/

check.
/

* * * * * *

int

Read all trace and header palrs.
its sequence (position)
traces in the AH file.
be released elsewhere,

Return the WWVB trace and header,
within the AH file,
Allocates space for wwvb_trace, which must

If "-la“ option is in force, make relatedness

and the total number of

read_wwvb(xdr_in, wwvb_code, wwvb_chan, wwvb_head, wwvb_trace,
wwvb_seq, ah_name, all_traces, old_st, old_int)

XDR
char
char
ahhed
float
int
char
int
TIME
double

ahhed
float
int

bool
bool

long
TIME
TIME
float

while (TRUE)

*xdr_in;
*wwvb_code;
*wwvb_chan;
*wwvb_head;
**wwvb_trace;
*wwvb_seq;
*ah_name;
all_traces;
*old_st:
*old_int;

temp_head;
*temp_trace;
n_traces = 0;

first = TRUE;

GCT_IT = FALSE;

t_length;
t_start;
t_temp;
t_int;

/* Read header */

if (xdr_gethead(&temp_head, xdr_in)

/* Relatedness check */

break;

1f (all_traces) {

}

/*

1f (first) |{

/*
/i
/*
/i
/i
/i
/*
/i
/*

/t
/i
/*

/*
/*

/*
/*
/*
/*

WWVB trace code */
WWVB trace channel */
Space for WWVB AH header */
Pointer to WWVB AH trace */
Position of WWVB trace */
Name of AH file with WWVB trace */
TRUE if "-la" */
Return original starting time */
and sampling interval */
Space for arbitrary AH header */
Pointer to WWVB AH trace */
Total traces in ah_file */
Flag first trace */
Flag whether WWVB found at all */
Trace length */
Original trace start time */
Original trace start time */
Original trace sampling interval */

t= 1)

first = FALSE;

t_length

temp_head.record.ndata;

t_start = ah2epoch(temp_head.record.abstime);
t_int = temp_head.record.delta;

else {

t_temp = ah2epoch(temp_head.record.abstime);

if (temp_head.record.ndata != t_length

Successful */

n_traces++;

i
Il

t_temp != t_start
temp_head.record.delta != t_int)

error (*Traces not all related!*®);

/* Allocate trace storage */
temp_trace = (float *)mkdatspace (étemp_head);

/*

/*
if

Read trace */
if (xdr_getdata(&temp_head,

(char *)temp_trace, xdr in) == -1)

error ("Error reading data record.");

Save WWVB when found
(is_wwvb(temp_head, wwvb_code,

*/

wwvb_chan)) {

*wwvb_head = temp_head;
*wwvb trace = temp_trace;
*wwvb_seq = n_traces;

/* Pass back originals */
*old_st = ah2epoch(temp_head.record.abstime);
*old_int = temp_head.record.delta;

ahwwvb.c Fri Oct 8 09:57:42 1993 -52.

GOT_IT = TRUE;

else
free ({char *)temp_trace);
}
if (GOT_IT)
return{n_traces);
else
error (“No WWVB trace found in %d trace{s) in \"%s\“.*,
n_traces, ah_name);
}
TIME
ah2epoch (ah_t)
struct ah_time ah_t; /* Given an AH-header time ... */
/* ... return epochal time */
{
return(timvar((int)ah_t.yr, (int)ah t.mo, (int)ah_t.day,
(int)ah_t.hr, (int)ah_t.mn, (double}ah_t.sec,
GREGORIAN}) ;
}
/i
* Determine whether this trace is a WWVB trace.
*/
int
is_wwvb (temp_head, wwvb_code, wwvb_chan)
ahhed temp_ head; /* Space for arbitrary AH header */
char *wwvb_code; /* WWVB trace code */
char *wwvb_chan; /* WWVB trace channel if ==
DEFAULT_CHAN, recognizes both
*TIME” and "T” (note caps) */
{
if (streg(temp_head.station.code, wwvb_code)) {
1f (streqg(wwvb_chan, DEFAULT_CHAN)) {
if (streq(temp_head.station.chan, "TIME")
|| streq{temp head.station.chan, “time")
|| streq(temp_head.station.chan, "T"))
return (TRUE);
else
return (FALSE):
}
else {
i1f (streqg(temp_head.station.chan, wwvb_chan}}
return (TRUE):
else
return (FALSE):
}
}
else
return (FALSE);
}
/i

* Massage and decode WWVB trace, the latter by calling C. Johnson’s

* routines. Report the signal processing and any fudges needed. Complle
* and report statistics on lengths of WWVB “"ticks" to reveal inconstant

* digitizing rates.

*/

void
decode WWVB(rounded, year, min_rate, RMF_win, wwvb_head, wwvb_trace,
new_st, new_int, old_st, old_int, verbose)

bool rounded; /* Is the trace “rounded" (filtered)? */
int year; /* Year; overrides ahheader if != 0 */
ahhed wwvb_head; /* WWVB AH header */
float *wwvb_trace; /* Pointer to WWVB AH trace */
TIME *new_st; /* New starting time */
double *new_int; /* New sampling interval */
float min_rate; /* Minimum digitizing rate possible */
int RMF_win; /* Resulting maximal RMF window length */
TIME old_st; /* Original starting time */
double old_int; /* Original sampling interval */
bool verbose; /* Write out gory details? */

{
int ns; /* Number of samples in time code */
int strt; /* Starting point in time code */
int *ks; /* Record to decode */
float step: /* Sampling rate */

int ires; /* Decoding *“score” (synch. level) */

ahwwvb.c Fri Oct 8 09:57:42 1993 -53.

/* Time of first sample as returned by WWVB routine of C. Johnson */

long kda; /* {“Julian") day of year */
long khr; /* Hour of day */
long kmn; /* Minute of hour */
float sec; /* Seconds past minute */
double threshold; /* Threshold {mean of trace) for
reducing float to binary ({int) */

int 11, 33; /* Loop dummies */
int RMF_half; /* Half-width RMF window length */
/* Variables for epochal time translation */
TIME tpt;
int tpyr, tpmo, tpdy, tphr, tpmn;
double tpsec;

#1f DEBUG

for (11 = 0 ; ii < wwvb_head.record.ndata ; ii++)
printf(“$f\n", wwvb_trace(il]);
#endif DEBUG

/* Despike with long-window running-median filter (maximal
filter sequence would be 3, 5, 7, 9, ..., RMF_win,
which is slow but not prohibative.) */

1f (RMF_win >= 3) |

/* First kill single-point spikes, which are common
and can draw edges toward them by one sample */
if (RMF_win > 3) {
if (verbose)
printf{"Running RMF prefilter of 3 points ...\n");
(void)median (wwvb_trace, wwvb_trace,
(int)wwvb_head.record.ndata, 3, FALSE);

}

/* And kill two-point splkes for the same reason */
if (RMF_win > 5) {
if (verbose)
printf(“Running RMF prefilter of 5 points ...\n");
(void)median (wwvb_trace, wwvb trace,
(int)wwvb_head.record.ndata, 5, FALSE);

}

/* And do a half window for really long final windows */
RMF_half =1 + 2 * (RMF_win / 4);
if (RMF_half > 9) {
1f (verbose)
printf ("Running RMF prefilter of %d points ...\n",
RMF_half);
(void)median (wwvb_trace, wwvb_trace,
(int)wwvb_head.record.ndata, RMF_half, FALSE):

}

/* Run the near-maximal RMF fllter */
if (verbose)
printf ("Running main RMF filter of %d points ...\n",
RMF_win);
{void)median (wwvb_trace, wwvb_trace,
(int)wwvb_head.record.ndata, RMF_win, FALSE);

#if DEBUG
for (41 = 0 ; i1 < wwvb_head.record.ndata ; ii++)

printf("$£\n", wwvb_trace[ii])):
#endif DEBUG

/* Trim unfiltered ends */
ns = wwvb_head.record.ndata - RMF_win + 1;
strt = (RMF_win - 1) / 2;

else {
/* Use entire (unfiltered) trace */
ns = wwvb_head.record.ndata;
strt = 0;

}

/* Interpret the trace into binary */

ks = {(int *)emalloc(sizeof(int) * ns);
(void) to_bin(rounded, min_rate, wwvb_head.record.ndata,
strt, ns, wwvb_trace, ks);

#1f DEBUG
for (11 = 0 ; i1 < strt ; 1i++4)
printf (*-1\n%);
for (33 =0 : 33 < ns : 33++)
printf ("sd\n", ks[33]);

ahwwvb.c Fri Oct 8 09:57:42 1993 -54 -

for (ii = 0 ; i1 < strt ; 1i++)
printf ("=1\n");
#endif DEBUG

/* Decode WWVB with C. Johnson’s FORTRAN spaghetti */
if (verbose)
printf (“Interpreting time series ...\n");
wwvb_ (&ns, ks, &step, &kda, &khr, &kmn, &sec, &ires);
if (ires <= 0)
1f (kda == ~1)
error ("ELSKEW apparantly in infinite loop. Giving up.*}:
else
error ("WWVB was completely unreadable (ires=%d).",
ires);

/* Since ires > 0, new sampling interval OK. Verify and report it. */
if ((min_rate > 0.0) &6 (1. / step) < min rate) {
fprintf(stderr, "New sampling interval is lower");
fprintf(stderr, * than -m argument claimed.\n"):;
error ("Filtering may have failed; files NOT changed.®);

else
*new_int = step;

if (verbose && (*new_int != old_int))
printf (*Sampling rate changed from %.3f to %.3f sps.\n",
1. / old_int, 1. / (*new_int));

/* Compile and report statistics on the duration of WWVB "ticks" */
tick_size(ns, ks, step, verbose);

/* 1f partly decoded, fill in any unknowns with old values */

/* lres: */
/* 0 = total fallure to decode */
/* 1 = fractional “sec" OK */
/* 2 = units of “sec" OK tco */
/* 3 = all of "sec" OK */
/* 5 = fully decoded (Jday, hour, and minute OK too) */

(void) datime (old_st,
stpyr, &tpmo, &tpdy, &tphr, &tpmn, &tpsec, GREGORIAN);

if (ires < 5) {
printf ("WWVB was only partly readable (ires=%d):\n", ires):;

printf ("\tDefaulting to original month (%d), day (%d),”,
tpmo, tpdy);
printf(* hour (%d), and minute (%d).\n", tphr, tpmn):

/* 1f part of seconds unknown, default them to old values */
if (ires < 3) {
double tens, units, fracs;

if (sec < 0.0 || tpsec < 0.0)
error ("Programming bug 1.%);

1f (ires == 1) {
units = aint (tpsec);
fracs = sec - aint ((double}sec);
tpsec = units + fracs;

printf ("\tUsing WWVB fractional seconds"):;
printf (" (%.3f) with original units®, fracs):;
printf (" of seconds (%$.0f s).\n", units);

}

else Lf (ires == 2) {
tens = 10, * aint (tpsec / 10.};
fracs = (sec / 10.,);
fracs = 10, * (fracs - aint(fracs)).
tpsec = tens + fracs;

printf ("\tUsing WWVB units and fractional");
printf (* seconds (%.3f) with original*, fracs);
printf(* tens of seconds (%.0f s).\n", tens);

else
error ("Programming bug 2.%);

}

else if (ires == 3)
tpsec = sec;

else
error ("Programming bug 3.%"):

ahwwvb.c Fri Oct 8 09:57:42 1893 -55-

}

/* Decide what year to use. If 0 (the default),
use the original trace starting year) */
if (year > 0) {
if (verbose)
if (year != tpyr)
printf ("Changing year to %d.\n", year):
else
printf ("Keeping year at %d.\n", year):;
tpyr = year;
}
else if (verbose)
printf (*Defaulting year to %d.\n", tpyr);

/* 1f fully decoded, use WWVB date and time */
if (ires == 5) {
/* Translate J-day to month and day */
mnday (kda, isleap(tpyr, GREGORIAN), s&tpmo, &tpdy):

tphr = khr;
tpmn = kmn;
tpsec = sec;

)

/* Set start time back to beginning of wwvb trace */
tpsec -= (float)strt * step;

/* Take second ticks to be half way between the 0 and 1
samples of the binary trace */
tpsec -= 0.5 * step;

/* Resolve and store new starting time via epochal time. */
*new_st = timvar(tpyr, tpmo, tpdy, tphr, tpmn, tpsec, GREGORIAN};

/* Clean up */
free ((char *)ks):

/*

* Compile and report statistics on WWVB “tick™ lengths.

*/

void

tick_size(ns, ks, step, verbose)

int
int
float
bool

int
int
int
bool
int
float

ns; /* Number of samples in time code */
ks; / Record to decode */
step; /* Sampling rate */
verbose; /* Write out gory details? */
wdth (MAXTRANS]; /* Tick widths */
n_wdth; /* How many there are */
ii; /* Loop dummy */
first; /* Flag first transition */
last; /* Previous tick location */
span; /* Range of intervals */

/* Gather tick widths */

n_wdth = 0;

first = TRUE;

for (41 = 0 ; 11 < ns - 1 ; ii++4) |

}

if ((ks(ii + 1] - ks[ii})) == 1) { /* Up tick */
1f (first) {
last = 1i;

first = FALSE;
}

else |
wdth{n_wdth} = il - last;
last = ii;
n_wdth++;

/* Sort widths */
(void) gsort {{char *)wdth, n_wdth, sizeof(int), icomp};

/* Report various ranges and deviations */

span =

(step * wdth{nint (0.95 * (double) (n_wdth - 1))1])

- (step * wdth(nint (0.05 * (double) (n_wdth - 1)}1);

if (verbose || (span > SPAN_WARN * step)) {

printf("\nSecond intervals range from %.3f to %.3f s.\n",
step * wdth([0}, step * wdth[n_wdth - 1});

if (span > SPAN_WARN * step)
printf ("WARNING: *“);
printf(*5th and 95th percentiles differ by %.3f s.\n\n", span);

ahwwvb.c Fri Oct 8 09:57:42 1993 - 56 -

This empiricle artifice accounts

and probably much other,

}
}
/‘-
* Comparison rule for gsort
*/
static int
icomp(a, b)
int *a, *b;
{
i1f (*a > *b)
return (1);
else if (*a < *b)
return (-1);
else
return (0);
}
,*
* Interpret WWVB code into binary by finding transition points.
*
* If "rounded==TRUE", the transition is taken to happen 1 sample before
* the interval with the largest slope.
* for low-pass filtering of WWVB by the playback discriminator, and is
* about right near 100 sps. If "rounded==FALSE", the interval with the
* largest slope 1is taken to be the interval with the transition. This
* assumption 1s appropriate for CUSP data,
*
* If the difference peak has a flat top, binary output transitlions at
* the earliest part of peak.
*
* This routine CHANGES the input trace (wwvb_trace).
*/
void

to_bin(rounded, min_rate, npts, strt, ns, wwvb_trace, ks)

bool rounded; /* Is the trace “rounded" (filtered)? */
float min_rate; /* Minimum digitizing rate possible */
long npts; /* Number of samples in input code */
int ns; /* Number of samples in output code */
int strt; /* Starting point of output within
the input array */
float *wwvb_trace; /* Pointer to WWVB AH trace */
int *ks; /* Record to decode */
{
float *mins, *maxs; /* Arrays of mins and maxs */
int nmins, nmaxs; /* Number of mins and maxs */
float min_th, max_th; /* Thresholds for mins and maxs */
int scan_win; /* Window length for "global" extreema */
int i1, 33, kk: /* Loop dummies */
bool first: /* Flag first transition */
int new_val, old_val; /* Used in binary translator */
int bias; /* Put transitions of the binary

/* Initialize */

trace this many sample intervals
from the largest~first-difference
interval */

mins = (float *)emalloc(sizeof(float}));

nmins = 0;

maxs = (float *)emalloc(sizeof(float));

nmaxs = 0;

if (rounded)

bias = ~1;
else

bias = 0;

/* Take first difference of input
(points contain the following-interval first difference) */

for (11 = 0 ; 14 < npts - 1 ; ii++4)

wwvb_trace(ii] = wwvb_trace[il + 1] - wwvb_trace([ii];
wwvb_trace(ii] = wwvb_trace[ii - 1]: /* kludge */

/* To determine appropriate thresholds in the first difference,
first collect all local mins and max’s */
for (i1 = strt + 1, 33 =1 ; 33 < ns - 1 ; ii++, 33+4) |

1f (wwvb_trace[ii] > wwvb trace(ii - 1}
&& wwvb _trace[ii) > wwvb_trace(iil + 1]) {

maxs[nmaxs] = wwvb_trace[ii];

nmaxs++;

maxs = (float *)erealloc((char *)maxs,

ahwwvb.c Fri Oct 8 09:57:42 1993 -57-

sizeof (float) * (nmaxs + 1}):
}

if (wwvb_trace(ii] < wwvb_trace(ii - 1]
&& wwvb_trace[ii] < wwvb_trace([ii + 1]) {

mins(nmins] = wwvb_trace{ii]:

nmins++;

mins = (float *)erealloc{(char *)mins,
sizeof (float) * (nmins + 1));

}

if (nmaxs <= 0)

error {"No local maxima found in first difference.");
if (nmins <= 0)

error ("No local minima found in first difference.");

/* Use TH_FUDGE * the TH_PER’th percentile as the threshold */

(void) gsort ((char *)maxs, nmaxs, sizeof(float}, fcomp):
max_th = TH_FUDGE * maxs{(int) ((float)nmaxs * TH_PER / 100.)]:

{(void)gsort ({(char *)mins, nmins, sizeof{float), fcomp);
min_th = TH_FUDGE * mins[({int) ((float)nmins * (1.0 - TH_PER / 100.))}:

/* Find transition points and translate to binary */

/* Find the “global" peaks by scanning for the min/max a window */
scan_win = MAX(1, 0.1 * min_rate); /* May fall at low sampling rates */

/* Value prior to first transition not known at beginning */
first = TRUE;
for (i1 = strt, 33 = 0 ; J3 < ns - (1 + blas) ; {i++, J3++) |
if (is_max(wwvb_trace, 1i, npts, scan_win, max_th)) {
new_val = 1;
old_val = 0;
ks[33 + 1 + bias] = new_val;

if (first) {
for (kk = 0 ; kk < Jj + 1 + bias ; kk++)
ks [kk] = old_val;
first = FALSE;

}

else if (is_min(wwvb_trace, ii, npts, scan_win, min_th)) {
new_val = 0;
old_val = 1;
ks[33 + 1 + bilas] = new_val;

if (first) {
for (kk = 0 ; kk < J3 + 1 + bias ; kk++)
ks[kk] = old_val:
first = FALSE:

}

else if (!first)
ks(J) + 1 + bilas] = new_val;

}

/i—
* Comparison rule for gsort
*/

static int
fcomp(a, b)
float *a, *b;
{
if (*a > *b)
return (1);
else if (*a < *b)
return (-1};

else
return (0},

}
/l
* Find “global* maximum.
=/
bool
is_max (wwvb_trace, ii, npts, scan_win, max_th)

float *wwvb_trace; /* Pointer to WWVB AH trace */

int ii; /* Index to wwvb_trace */

ahwwvb.c Fri Oct 8 09:57:42 1993 - 58 -

long npts; /* Number of samples in input code */
int scan_win: /* Window length for *“global®" extreema */
float max_th; /* Threshold */
{
int left, right; /* Window indicies *x/
int 33: /* Loop dummy */

/* If not a local maximum (or flat), it cannot be a glocbal maximum */
if (wwvb_trace(li] < wwvb_trace[MAX (0, ii - 1)]

1] wwvb_trace{ii) < wwvb_trace[MIN(npts, il + 1)])

return (FALSE):

/* Is it the largest point in window? */
left = MAX(0, ii - (int)(scan_win / 2));
right = MIN{npts, 1i + (int) (scan_win / 2)):
for (33 = left ; 33 < right ; Ji++)
if (wwvb_trace{}j] > wwvb_trace(ii])
return {(FALSE);

/* If the point at ii IS a local maximum (or flat),
IS {one of) the largest point(s) in the window, and
IS greater than the threshold,
it is a "global maximum* =*/
if (wwvb_trace(ii] >= max th)
return (TRUE);

else
return (FALSE);
}
/t
* Find "global* minimum,
*/
bool
is min(wwvb_trace, ii, npts, scan_win, min_th)
float *wwvb_trace; /* Pointer to WWVB AH trace */
int i1z /* Index to wwvb_trace */
long npts; /* Number of samples in input code */
int scan_win; /* Window length for “global" extreema */
float min_th; /* Threshold */
{
int left, right; /* Window indicies */
int 33: /* Loop dummy y

/* 1f not a local minimum (or flat), it cannot be a global minimum */
if (wwvb_trace[ii] > wwvb_trace[MAX(0, il - 1)]

Il wwvb_trace(ii] > wwvb_trace[MIN(npts, ii + 1)])

return (FALSE):

/* Is it the smallest point in window? */
left = MAX(0, 1i - (int) (scan_win / 2));
right = MIN(npts, ii + (int) (scan win / 2));
for (33 = left ; 33 < right ; Ji++)
if (wwvb_trace[j3] < wwvb trace[il])
return (FALSE):;

/* If the point at ii IS a local minimum (or flat),
IS {one of) the smallest point(s) in the window, and
IS less than the threshold,
it is a "global minimum* */
if (wwvb_trace(ii] <= min th)
return (TRUE};
else
return ({(FALSE);

ahwwvb.h Fri Oct 8 09:57:43 1993

/*
* AH filter AHWWVB (AH WWVB reader) include file.
*/

#define NM_LEN 128 /* Maximum file-name length */
#define STR_LEN 256 /* Maximum scratch-string length */
#define MX_LST 1024 /* Maximum line count of listfile */

/* Recognize WWVB channel names *"TIME*, "time", or “T* */
#define DEFAULT_CHAN *DFult*™

/* Reduce RMF window by this factor
to account for slow transitions in the reclever */

#define RMF_FUDGE_r 0.60
fdefine RMF_FUDGE_s 0.80

/* Use TH_FUDGE * the TH_PER’th percentile as the threshold
determining what a "sharp corner* is (for interpreting trace
into binary form). */

#define TH_FUDGE 0.5
tdefine TH_PER 98.

/* How many WWVB "ticks" to compile statistics on */
#define MAXTRANS 2000

/* A warning is issued if WWVB "ticks" (95th - 5th percentile)
vary by more than this many sample intervals */
#define SPAN_WARN 5.0

-59 -

ahhead.h Fri Oct 8 09:57:42 1993 - 60 -

/* structure for data file header -~ witte, 11 June 85 */

#define AHHEADSIZE 1024

#define CODESIZE 6

#define CHANSIZE 6

#define STYPESIZE 8

#define COMSIZE 80

f#define TYPEMIN 1

#define TYPEMAX 6

fdefine LOGSIZE 202

f#define LOGENT 10

#define NEXTRAS 21

f#define NOCALPTS 30

typedef struct |
fleoat x;
float y:
} vector;

typedef struct
float r;
float i
} complex;

typedef struct {
double r;
double 1i;
} d_complex;

typedef struct {
float XX
float Yy:
float xy:
} tensor;

struct ah_time {
short yr: /* year */
short mo; /* month */
short day; /* day */
short hr; /* hour */
short mn; /* minute */
float sec; /* second */
}:

struct calib {
complex pole; /* pole */
complex zere; /* zero */
bs

struct station_info {
char code [CODESIZE); /* station code */
char chan (CHANSIZE); /* lpz,spn, etc. */
char stype[STYPESIZE];/* wwssn, hglp,etc. */
float slat; /* station latitude */
float slon; /* - longitude */
float elev; /* - elevation */
float Ds; /* gain */
float AOQ; /* normalization */
struct calib cal [NOCALPTS]; /* calibration info */
b2

struct event_info {
float lat; /* event latitude */
float lon; /* " longitude *x/
float dep: /* - depth */
struct ah_time ot; /* * origin time >/
char ecomment [COMSIZE]; /* comment line
P:

struct record_info {
short type; /* data type (int, float,...) */
long ndata; /* number of samples */
float delta; /* sampling interval */
float maxamp; /* maximum amplitude of record */
struct ah_time abstime;/* start time of record section */
float rmin; /* minimum value of abscissa */
char rcomment [COMSIZE]; /* comment line
char log{LOGSIZE}; /* log of data manipulations */

IH

typedef struct {
struct
struct
struct
float
} ahhed;

station_info station; /* station info */
event_info event; /* event info */
record_info record; /* record info */

extra[NEXTRAS]; /* freebles */

*/

*/

ahhead.h Fri Oct 8 09:57:42 1993 -61 -

#define FLOAT

#define COMPLEX
#define VECTOR
#define TENSOR
#define DOUBLE
#¢define INTEGER

~N e W N

elskew.f Fri Oct 8 09:57:41 1993 -62-

c
c_i-i_i_i-t_t-ﬁ_Q-t-i_t-*-t-t-t-l_t_t_t-t-Q-t_t_ﬁ-t-ﬁ-ﬁ_ﬁ-t-ﬁ-'_'-i_t_!
c
c~----glskew : 11 solution to n equations in m unknowns
c
subroutine elskew (m,n,at,d,gu,gd,small,x)
c
c Note : transpose form
[o}
c find x(i) to minimize:
c
c n m
c esum = sum{skewnorm(k, sum (d{(k)-at{i,k)*x({1)) }))
c k=1 i=1
c
c { gu(k), if (er.gt.+small))
c skewnorm(k,er) = er * { 0.0 , if error is small)
c { gd(k), if (er.lt.-small))
c
C=~—=- Note: This routine has been modified to accept the transpose of
c the ’"a’ matrix. This was done because it is more convenient
c to set up a packed transpose when one does not know
c the number of equations a priori.
c ~Carl
[}
real at({m,n),x(m),d(n),gu{n),gd{(n)
real w(2000),£(2000),b(4,4),col(4),row{4)
real sc(4),q9(4),gp(4),gm{4)
real hit,small,wt,oldk,gr,tk,t,esum
[}
integer k(2000)
integer i,3,k,1,m,n,kick,loop,ml,mh, new
c
Cm=——- Also change value in format statement 160
integer*4 looped,MXLOOP
parameter (MXLCOP=100000)
c
if (m.lt.5.and.n.1t.501) goto 5
return
c
5 looped = 0O
(o]
do 30 J=1,m
x{j)=0.
do 10 i=l,m
10 b(i, J)=0.
sc(3)=0.
do 20 i=1,n
sc(j) =sc (}) +abs(at (3,1))
20 continue
b(3, 3)=n/sc(J)
30 continue
C
do 40 i=1,n
£(1)=d (1)
k(1)=1
40 continue
loop=0
50 loop=loop+l
kick=1l+mod (loop-1,m)
if (loop.le.m) goto 190
c
Cmm—— find best equation to -kick- out of basis
do 110 i=1,m
gp(i)=0.
gm{i)=0.
g{i)=0.
110 continue
c
do 135 1=1,n
if (abs(f(l)).lt.small) goto 120
if (f(1).gt.small) hit=gu{l)
1f (£(1).1t.small) hit=gd (1)
do 115 j=1,m
g(} =g{J)-at (j,1)*hit
115 continue
goto 135
c
120 do 130 i=1,m
wt=0,
do 125 3=1,m
wt=wt+at (J,1)*b(J, 1)
125 continue

if (wt.1t.0.) gp(i)=gp(i)-gu(l)*wt
if (wt.gt.0.) gp(i)=gp(l)-gd(l)*wt
if (wt.gt.0.) gm(i)=gm(i)=-gu(l)*wt
1f (wt.1t.0.) gm(i)=gm{i)-gd{(l)*wt

elskew.f Fri Oct 8 09:57:41 1993 -63 -

130 continue
135 contlinue
c
oldk=0.
do 150 i=1,m
gr=0.

do 140 j=1,m
gr=gr+g (3} *b (3, 1}
140 continue
if ((gr+gp(i))}* (gr+gm(i)).1t.0.) goto 150
tk=min(abs (gr+gp(i)),abs (gr+gm(i)}}
if (tk.gt.oldk) kick=i
if (tk.gt.oldk) oldk=tk
150 continue

c
if (oldk.eq.0.) return
c
Comeme—- Give up if seem to be in infinite loop.
c Message this with zero vector (not adequate in general!)
c
looped = looped + 1
if (looped.gt.MXLOOP} then
do 160 j=1,m
x(J) = 0.0
160 continue
return
endif
c
190 continue
c
Cmm=== find scalar t where x=x0+(col of b)*t
do 60 i=1,n
w{i)=0.
do 60 j=1,m

wil)=w(i)+at (3, 1) *b(j, kick}
60 cont inue
call skewer (2000,n,w,f,gu,gd,small, k,t,ml,mh)

Cm === pick out new basis
new=Kk (ml}
do 70 l=ml,mh
1f (abs(w(new)).lt.abs(w(k(1)))) new=k(l}
70 continue
t=f (new) /w (new}
esum=0.
do 80 i=1,n
fy=f(4)y-w(l)*t
1f (£(1).gt. 0.) esum=esum+gu (i)}*£ (1)
if (f(1).1lt. 0.) esum=esum+gd (i}*£ (1)
80 continue

G- update x and basis matrix as descrived(transposed) in hadley p.
do 90 3=1,m
col (J)=b (3, kick)
X (3)=x(J) tcol (I} *t
row {3)=0.
do 85 i=1,m
row(Jj)=row(j)-at (1, new) *b (1, j) /w(new)
85 continue
90 cont inue
row({kick)=1./w{new)-1.
do 100 i=1,m

do 95 j=1,m
b(i,3)=b(L, 3)+col (1) *row(])
95 continue

100 continue

goto 50
c

end
c
C_Q_f—ﬁ_ﬁ_i_t-f-ﬁ_t_t-t_ﬁ_t_t_t_ﬁ_ﬁ_t_t_ﬁ_*_i_ﬁ_t..i_h_t_t—ﬁ_ﬁ-ﬁ_*_ﬂ_t_i
c

subroutine skewer (nd,n,w,f,gu,gd,small,k,t,ml,mh)
c
c solve rank 1 overdetermined equations with skew norm
c
c inputs- n,w,f,u,d, small, k. outputs- k,t,ml,mh,
c
c find t to minimize
c
c n
c ls = sum skewnorm(k, £ (k}-w(k)*t}
c k=1
c
c where:
c (gu{k)*(er-small) if er.gt.+small gu.gt.0
c skewnorm(k,er) =(gd(k)*(er+small) if er.lt.-small gd.lt.0
c (0.) if abs(er).le.small.ge.O.

el

D oOnNno0

10

20

30

40

50

60

10

skew. £ Fri Oct 8 09:57:41 1993 -64 -

ggu,ggd,w,and f are referenced indirectly as w(k(i)),i=1,n etc.
minima will be at equations k{(ml),k(ml+l),...k(mh)

real w{nd), f{nd),gu{nd), gd(nd)
real ¢ (2001)
real gn,gp,small,er,t,gnt,gplx,gmix, grad,gpt

integer k (nd)
integer low,large,ml,mh,itry,n, kix,i,1,k,mlt,mht,nd, ixg

low=1
large=n
ml=n
mh=1
gn=0.
gp=0.

do 50 itry=1l,n
kix=low+mod ((large-low) /3+itry, large~low+l)
1=k (kix)
if (abs(w(l)).eq.0.) goto S0
t=~f (1) /w(l)
f(l)y=w(l)*t
do 10 i=low,large
1=k (1)
er=f (1)-w(l)*t
g(l)=0.
if (er.gt.small) g{l)=-w(l)*gu{l)
if (er.lt.-small) g(l)=-w(l)*gd(l)
continue
call split{low, large,k,g,mlt,mht)
gnt=gn
do 20 i=low,mlt
ixg=k (1)
gnt=gnt+g (ixg)
continue
gpt=gp
do 30 i=mht,large
ixg=k (1)
gpt=gpt+g (ixg)
continue
gplx=0,
gmix=0.
do 40 i=mlt,mht
1=k (1)
1f (w(l).1t.0.) gplx=gplx-w(l)*qu(l)
if (w(l).gt.0.,) gplx=gplx-w(l)*gd(l)
1f (w(l).gt.0.) gmix=gmix-w(l)*gu(l)
if (w(l).1t.0.) gmix=gmix-w(l)*gd(l)
continue
grad=gnt+gpt
if ((grad+gplx)* (grad+gmix).1t.0.) goto 60
if (grad.ge.0.) low=mht+l
if (grad.le.0.) large=mlt-1
if (low.gt.large) goto 60
if (grad.ge.0.) gn=gnt+gmix
1f (grad.le.0.) gp=gpt+gplx
if ((grad+gplx).eq.0.) ml=mit
if ({(grad+gmix).eq.0.) mh=mht
cont inue

mlie=minO (ml,mlt)
mh=max0 (mh,mht)

return
end

PR N R TR U N NN N N PR N S 2N NSNS NS N NG R 50 N0 NN NS JNL PR L TS SR N Pk

subroutine split (low, large,k,g,mlpass,mhpass)

given g(k (1)),1i=low, large

then rearrage k(i),i=low,large and find ml,mh so that
(g(k(i)),i=low, (ml-1)) .1lt. O and
(g(k(i)),i=ml,mh)=0, and

{(g(k{i)),i=(mh+1),large) .gt.O.

real g(5000)

integer k(large)
integer ml,mh, ixg, keep,k,ii, i, ixgml, ixgmh,
* mlpass,mhpass, low, large

ml=1low
mh=large
ml=ml-1
ml=ml+1l

elskew.f

30
40

50

60

70

ixg=k (ml)

i1f (g(ixg@)) 20,30,30
mh=mh+1

mh=mh~-1

ixg=k (mh)

if (g(ixg)) S50,50,40
keep=k (mh)

k (mh) =k (ml)

k (ml)=keep

ixgml=k (ml)

ixgmh=k (mh)

if (g(ixgml).ne.g(ixgmh)) goto 10

do 60 i=ml,mh

1i=1

ixg=k (1)

if (g(ixg).ne.0.0) goto 70
continue

mlpass=ml
mhpass=mh
return

keep=k (mh)

k (mh) =k (11)
k (1i)=keep
goto 30

end

Fri Oct 8 09:57:41 1993

-65 -

wwvb. £ Fri Oct 8 09:57:42 1993 - 66 -

c

[R e e e R e o e P P P R e e L e P LS L Tt AL 8 S o0 P L P oS 2o

c

c-----wwvb : wwvb decodor (determines absolute time of first sample)

000000 NOO0AN0000NONODNNRONODNDNDO0O0N0D000O0

(2]

c*

o*

c

c

[

o]

in

out

*x *x

usage : call wwvb(minrat, ns, ks, step, kda, khr, kmn, sec, ires)

*® whk kR Rk * R R E 23 kR kR ®
ns : number of sample in time code
ks : record to decode (standard integers,
already massaged into unspikey binary)
step : sampling rate
kda : ("Julian") day of year {ires = 5)
(-1 indicates infinite loop exit from elskew)
khr : hour of day (ires = 5)
kmn : minute of hour {ires = 5)
sec : seconds past minute (ires = 3, 5)
seconds past 10 sec mark (ires = 2)
seconds past 1 sec mark (ires = 1)
ires : synchronization level obtained

0 = total fallure to decode

= 1 second synch. (fractional *sec" now OK)

= 10 second synch., (units of "sec" OK too)

= minute synch, (all of “sec” now OK)

= fully decoded (day, hour, and minute OK too)

[P S

blame : carl johnson (9 apr 63)

Modified for hard typing and external signal processing by
J. R. Evans, USGS, Menlo Park, March, 1992.
Also demystified the use of “tO" and “td" in *“rdecod"
common block--they had been assumed to form a
sequential pair in memory due to their places in
the common block (dangerous and obscure programming).
These values now are buffered through "tt*",

subroutine wwvb (ns, ks, step, kda, khr, kmn, sec, ires)

real s,slast,wt,rate,sdel,step,small,x3l0,x360,
* secs, tt (2}
real sum,sex

integer ks(l}

integer i,11,42,13,14,15,3,31,32,3s,ns,1s,ismax, isyn,nsyn,
* ires,krate, 110, max10,mknt,iat,itick,ntick,n,
- kode, 310, nl10, j60, imn, imn10, jmin, ibase,ihr,ihrlo0,
- ida,1dal10,idal00

integer kblas,ksls

integer*4 kda
integer*4 khr
integer*4 kmn

real sec

include ‘rdecod.inc’

ismax = ns - 1

kda = 0

c*~---signal conditioning
c*---- [replaced by robust processing in the calling routine)

C.

c*----bjas calculation

c* sum = 0.0

c* do 120 is=1, ns

c* sum = sum + ks{is)

c*120 continue

c* kbias = sum / ns

C‘

c*—-——convert to binary representation
c* do 130 is=1, ns

c* ksis =0

c* if (ks(is) .gt. kbias) ksis =1
c* ks(is) = ksis

c*130 continue

o*

c*----first order deglitching

c* do 150 is = 2, ismax

c* if {(ks(is) .ne. ks(is-1) .and. ks(is) .ne. ks(is+1)
c* * ks (is) = ks{is+l)

c*150 continue

c

c---~-Calculate approximate digitization interval

c

do 220 isyn = 1, MAXSYN

wwvb

220

(2]

230

(2]

.£ Fri Oct 8 09:57:42 1393

xsyn(isyn) = 0
continue

Rising-edge detector

isyn = 0

do 230 is = 1, ismax
if (isyn .lt. MAXSYN) isyn = isyn + 1
if (ks(ils) .eq. 1) goto 230
if (ks(is+l) .eq. 0) goto 230
ksyn(isyn) = ksyn(isyn) + 1
isyn = 0

continue

Calculate approximate sampling period ("step")
kper = 0
mknt = 0
do 250 isyn = 1, MAXSYN
if (ksyn(isyn) .le. mknt) goto 250
mknt = ksyn (isyn)
krate = isyn
continue

rate = 0.0
wt = 0.0
do 260 i=1, 3
§ = krate + 1 - 2
rate = rate + j * ksyn(3)
wt = wt + ksyn(3)
continue
rate = rate / wt
step = 1.0 / rate
write(*, *) ‘rate, step :’, rate, step

ires = 0
if (krate .le. 1 .or. krate .ge. MAXSYN) return

Cm === Calculate time code phase

slast = -10.0

do 315 i=1, 10
k10(i) = 0O

continue

nsyn = 0

do 320 is = 1, ismax
if (ks(is) .eq. 1) goto 320
if (ks(is+1) .eq. 0) goto 320
s = is * step
sdel = s - slast
if (sdel .1lt. 1.0 - 2.0 * step) goto 320
slast = s
if (sdel .gt. 1.0 + 2.0 * step) goto 320
is = s
s =8 - Js

Cmmmom Initial crude phase estimate

320

345

110 = 10.0 * s

110 = 110 + 1

if (110 .gt. 10) 110 = 1
k10(110) = k10(i10) + 1

nsyn = nsyn + 1

ksyn(nsyn) = is

type *, nsyn, ls, s

if (nsyn .ge. MAXSYN} goto 340
continue
if (nsyn .1lt. 10) goto 680

First crude phase (fractional seconds) estimate
maxl0 = 0
do 345 i=1, 10
i1f (k10(i) .lt. maxl0) goto 345
max1l0 = k10 (i)
t0 = (i-1) * 0.10
continue
type *, ‘crude t0 :’, tO

Setup normal equations (to find start-time fractional
seconds and sample interval): t = t0 + step * is

do 350 i=1, nsyn

gu(i) = 1.0

gd(i) = -1.0

fat = 2 *» (1 - 1)

at (iat + 1) = 1.0

at (iat + 2) = ksyn(i)

XX = step * ksyn(i) - tO

t(l) = anint (step * ksyn(i) - t0)
type *, 1, ksyn(i), t(i), xx

-67 -

wwvb. f Fri Oct 8 09:57:42 1983 - 68 -

350 continue
c
[Solve for final “t0" and “step“
small = step * 0.01
call elskew (2, nsyn, at, t, gu, gd, small, tt)
c
c-----If exited apparant infinite loop, then bug out, indicating garbage
if (tt{l).eq.0.0 .and. tt(2).eq.0.0) then
ires = 0
kda = -1
return
endif

t0 = tt (1)

td = tt(2)

if (t0 .1t. 0.0) t0O = t0 + 1.0
if (t0 .ge. 1.0) tO = t0 - 1.0
step = td

sec = t0 + td

Cm—=== Valid sampling interval (“"step®) and
c fractional seconds of start time ("sec*)
ires =1

write(*, *) ’sync. 1 :*, sec

do 380 i=1, nsyn
ti = t0 + step * ksyn(i)
type *, ti
380 continue

0O00000n0n

----- Translate time code elements (0-fubar, l~zero, 2-one, 3-mark)
ntick = ismax * step
if {(ntick .gt. MAXSYN) ntick = MAXSYN

[s]

rate = 1,0 / step

krate = rate

do 490 itick = 1, ntick
11 = anint {{itick - t0) / step) + 0.5
if (41 ,1t. 1) goto 470
12 = 11 + 0.2 * rate
13 = i1 + 0.5 * rate
i4 = i1 + 0.8 * rate
15 = 11 + rate

Cm== =~ Test first segment
n=12 - 11
=0
do 425 i=1, n
3 =3 + ks(i1 + 1)

425 continue
if (3 .1t. 0.7 * n) goto 470
kode = 1

fubar

[Test second segment
n =43 - 12
j =0
do 435 i=1, n
J =3 + ks(42 + 1)

435 continue
if (3 .1t. 0.3 * n) goto 450
if (3 .1t. 0.7 * n) goto 470
kode = 2

tick = zero
fubar

[Test third part
n =14 - 13
j =0
do 445 i=1, n
3 =3 + ks(i3 + 1)
445 continue
if (3 .1t. 0.3 * n) goto 460 ! tick =~ one
1f (3 .1t. 0.7 * n) goto 470 ! fubar
kode = 3
goto 460
c
c~----Test third segment low
450 n = 14 - {3
j =0
do 455 i=1, n
3 =9 + ks (i3 + 1)
455 continue
if (3 .gt. 0.3 * n) goto 470 ! fubar
c
c-—~-Test fourth segment low
460 n =15 - 14
=0
do 465 i=1, n
§ =3 + ks{i4 + 1)

wwvb. £ Fri Oct 8 09:57:42 1993

465 continue
if (3 .gt. 0.3 * n) goto 470 ! fubar
goto 480
c
Cmmm= Fubar
470 kode = 0
c
480 ksyn(itick) = kode
31 = i1 + 1
32 = 15
c write (*, 5480) itick, kode, (ks(3), 3I=31, 32)
5480 format (* ’, 215, * :’, 681i1)
c
490 continue
c
c write(*, 5490) (ksyn(i), 1=1, ntick)
5490 format(* ’, 60il)
c
Cmmm—=— 10-second synchronization
{10 = 0
c
do 520 i=1, 10
k10(i) =0
520 continue
c

do 530 i=1, ntick
110 = 110 + 1
if (110 .gt, 10) {10 =1
if (ksyn(i) .eq. 3) k10(110) = k10(i10) + 1
530 continue

410 = 0
nlo = 0
do 540 i=1, 10
if (kx10(i) .1it. nl0) goto 540
310 = 1
nl0 = k10(310)
540 continue

c
if (310 .1t, 1) return
x310 = (310 - tO) / step
secs = 9.0 - step * (xjl10 - 1.0)
c
c if (secs .ge., 10.0) secs = secs - 10.0
c if (secs .1lt. 0.0) secs = secs + 10.0
c
if (secs .ge. 10.0) then
secs = secs - 10,0
410 = 310 + 10
endif
c
if (secs .1lt. 0.0) then
secs = secs + 10.0
310 = 310 - 10
endif
c
Cmmm—= Units of seconds also now valid.
sec = secs
ires = 2
c
c write(*, *) ‘sync. 10 :’, sec
c
Cmmm Minute synchronization
j60 = 310 - 10
c

550 360 = 460 + 10
if (360 .gt. ntick) return
if (ksyn(3j60 + 1) .ne. 3) goto 550

c
Cmm=m- Minute mark found
xj60 = (360 - t0) / step
secs = 59,0 - step * (xJ60 - 1.0)
if (secs .ge., 60.0) secs = secs - 60.0
if (secs .lt. 0.0) secs = secs + 60.0
c
c-----Tens of seconds also now valid
sec = secs
ires = 3
c
c write(*, *) ‘sync. 60 :’, sec
c
c do 580 i=1, 300
c sex = sec + (i-1) * step
c type *, i, ks(i), sex
c 580 continue
c

[Translate BCD time-of-day code
c-----Minutes

- 69 -

wwvb. £ Fri Oct 8 09:57:42 1983 - 70 -

jmin = -1
620 Jmin = Jmin + 1
ibase = 360 + 60 * (Jmin - 1)
1f (ibase + 2 ,1lt. 1) goto 620
if (ibase + 8 .gt. ntick) goto 6BO

call binary (3, ksyn(ibase+2), imnl0)
if (imnl0 ,lt. 0) goto 620
if (imnl0 .gt. 5) goto 620

call binary (4, ksyn(lbase+6), imn)
if (imn .lt. 0) goto 620

if (imn .gt. 9) goto 620

xmn = 10 * imnl0 + imn - Jmin

if (kmn .gt. 59) goto 620

if (kmn .lt. O) kmn = kmn + 60

jmin = =1
640 jmin = Jmin + 1
ibase = 3460 + 60 * (jmin - 1)
if (ibase + 13 .1lt, 1) goto 640
if (ibase + 19 .gt. ntick) goto 680

c
call binary (2, ksyn(ibase+13), ihrl0)
if (ihrl0 .1lt. 0) goto 640
if (ihrl0 .gt. 2) goto 640

c
call binary (4, ksyn(ibase+16), ihr)
if (ihr .1lt. 0) goto 640
1f (ihr .gt. 9) goto 640

c
khr = 10 * ihrl0 + ihr
1f (khr .gt. 23) goto 640
if (kmn + Jjmin .gt. 59) khr = khr - 1
if (khr .eq. -1) khr = 23

c

Cm=~== Day of year

jmin = -1
660 Jmin = Jmin + 1
ibase = 360 + 60 * (Jmin - 1)
i1f (ibase + 23 .1lt. 1) goto 660
if (ibase + 34 .gt. ntick) goto 680

call binary (2, ksyn(ibase+23), 1dal00)
if (1dal00 .1lt. O) goto 660
1f (1dal00 .gt. 3} goto 660

c
call binary (4, ksyn(ibase+26), idal0)
if (i1dal0 .lt. 0) goto 660
if (i1dal0 .gt. 9) goto 660
c
call binary (4, ksyn(ibase+3l), ida)
1f (ida .lt. 0) goto 660
if (ida .gt. 9) goto 660
c
kda = 100 * idal00 + 10 * idal0 + ida
1f (1da .gt. 366) goto 660
if (kmn + Jmin .gt. 59 .and. khr .eq. 23) kda = kda -1
c
Cwm e Translatlion successfull (day, hour, and minute also now valid)
ires = 5
return
(o]
c~---~Translation failure, return with seconds past minute
680 return
end
(o4
C_t-i-i_ﬁ_ﬁ_'_ﬁ_ﬂ-'-t_*-Q_ﬁ_*-*~'-Q-t-t-*-‘-l-i-t-l_ﬁ_ﬁ_t-ﬁ_i_i..t_i_i_i
(o]
c-----binary : translate binary time code filelds
subroutine binary (n, kd, ires)
o4
integer kd(1)
integer i,n,ires,ival
c
ival = 0
ires = =1
do 10 i=1, n
if (kd(i) .lt. 1) return
if (kd(i) .gt. 2) return
ival = ival + ival + kd(i) -1
10 continue
ires = ival
c

return
end

rdecod. inc Fri Oct 8 09:57:41 1993 -71 -

z-ﬂ-t-t-‘-'-'_.-Q_*-'_i_i_*_Q-i_*_*_*-.-t_t-ﬁ_t_'-ﬁ-t-t_ﬁ_'_i_t-ﬁ_ﬁ_u_t
c
c-~=~=-rdecod.inc : variables needed for decoding
c

real*4 sec

integer*4 ksyn

real*4 gu

real*4 gd

real*4 at

real*4 t

integer*4 k10

real*4 to

real*4 td

integer*4 MAXSYN

parameter (MAXSYN = 2500)
c ksyn (MAXSYN) binary blips
c gu (MAXSYN) upper constraint
c gd (MAXSYN) lower constraint
c at (2*MAXSYN) coef, norm. eqgs.
c t (MAXSYN) right hand side
c k1C{1C0)
c t0, td calculated by ELSKEW called by IRIGE and WWVB
c CAUTION: Due to overly clever programming, it
c was essential that t0, td remained a sequential
c pair in memory. This has been demystified in
c WWVB.

common /rdecod/ ksyn (MAXSYN)}, gu (MAXSYN}, gd(MAXSYN),
* at (2*MAXSYN), t (MAXSYN), k10(100), tO, td

Makefile Fri Oct 8 09:57:41 1993 -72 -

D e N e R o O e R R s S e R Lt D N e R Ll C L S P S S

Generic Makefile for programs.
Works for any mix of sun3, sun4, Fortran, and C (I hope!}).

“make install® falls the first time unless the executable has
already been copied to $(BINDIR).

The following is required in the user's .cshrc:

setenv ARCH ‘/bin/arch®
1f(SARCH == “sun3") then
setenv FLOAT -f68881
else
setenv FLOAT **
endif
setenv DIR_USR /usr/local
setenv DIR_SRC /usr/src/local

W MR Wk MR Wk dh W UK WR Nk UR R GR WRR

FC = £77

cC = cC

FFLAGS = -u $(FLOAT) -D$(ARCH) -Bstatic
CFLAGS = $(FLOAT) -DS(ARCH} -Bstatic
BINDIR = ${DIR_USR)

PROG = ahwwvb
SRCARC = S(PROG).src.a

FSRCS = elskew.f \
wwvb. f
CSRCS = ahwwvb.c
OBJECTS = $(FSRCS:%.f=S$(ARCH)/%.0) $(CSRCS:%.c=$ (ARCH)/%.0)

LIBS = S$(DIR_USR)/librmf.a -lg -lm -lah
LLIBS = $(LIBS)

INCLS = rdecod.inc ahhead.,h

OTHERS = Makefile ahwwvb.man announce announce.rev \
announce,rev2 $(INCLS)

OTHERBIN=

$ P = enscript -r2 -p-

$ (ARCH) /$ (PROG) : $ (OBJECTS)
$(CC) $(CFLAGS) S(OBJECTS) S$(LIBS) -o $@

$ (OBJECTS) : $ (INCLS)

S (ARCH) /8%.0: %.c
$(CC) $(CFLAGS) -c $(RF:,o=,c) -o $@

$(ARCH)/%.0: %.f
$(FC) $(FFLAGS) -c $(@F:.o=.f} -0 $@

install: S(ARCH)/install $ (ARCH)/S(PROG)
] /bin/rm install
ln -s S$(ARCH)/install install
/bin/mv $(BINDIR)/S(PROG) $(BINDIR)/$ (PROG).old
cp $(ARCH) /$ (PROG) $ (BINDIR)
chmod 755 $(BINDIR)/$(PROG)
@touch install
@touch $(ARCH)/install

CAUTION: do not run “make clean" on more than one machine at a time;
the archive commands (*ar*) might conflict.
clean:

/bin/rm S (ARCH)/$(PROG) $(OBJECTS) $(BINDIR)/$(PROG).old

ar ruv $(SRCARC) $(FSRCS) $(CSRCS) $(OTHERS) $(OTHERBIN)

lint: S$(FSRCS) S (CSRCS) S(INCLS)
/usr/bin/lint -xh -u S$(FSRCS) $(CSRCS) $(LLIBS) > lint

print: $(FSRCS) S(CSRCS} $(OTHERS)
pr ~166 $2 | S$P

enscript $?

@touch print

printall:

] pr ~166 $(FSRCS) $(CSRCS) $(OTHERS) | SP
enscript $(FSRCS) $(CSRCS) $(OTHERS)
@touch print

printexport:
pr -t S$(FSRCS) $(CSRCS) S (OTHERS)

announce Fri Oct 8 09:57:50 1993 -73 -

To: dawson@lyers croker@iyers moses@andreas michael@andreas julianfandreas oneill@andreas AWalter lindh@gsvax0 lyer@gsvax0
Cc: evans@evanss
Subject: AHWWVB

My new WWVB interpreter for xdr-AH files ls now ready. It has been
tested at 100 sps on eight five-day-recorder examples from Arlzona and
one CUSP example from Pasadena. It should work well, but could require
a little tweeking for your own cases. It probably has the most robust
signal massaging of any WWVB reader--I spent the better part of a week
looking at time codes and making that processing smarter. It uses a
series of running-median filters and an edge finder, After massaging,
it uses Carl Johnson’s inflagrevious FORTRAN spaghetti to interpret the
time code. Carl’s routine determines digitizing interval and fractional
seconds by an L1 fit, so the results are pretty good, though variations
of 0.02 s along the trace are routine with five-day recorders,

The result is good enough to have shown Just how bad current five-day
recorder digitizing is--tape speed, and therefore digitizing rate, vary
by as much as 40% in the worst cases (2 of the B tested!) producing a
visible telescoping of the WWVB signal. AHWWVB tries to warn you

about these problems by reporting any apparent fluctuations in WWVB
second-intervals in the massaged trace.

Source code and documentation are in:
iyers:i/we/itch/evans/src/proc/ahwwvb

Sun3 executable is:
evanss:/we/ltch/evans/usr.sun3/ahwwvb

Sun4 executable is:
iyers:/we/itch/evans/usr,sun4/ahwwvb

AHWWVB spawns an AHCLK job to make the actual file changes, so you need
that routine too, AHCLK also is used by EPICK to change flle start
time and digitizing rate, and is a sometimes-useful filter by itself,

Source code and documentation are in:
iyers:/we/itch/evans/src/proc/ahclk

Sun3 executable is:
evanss:/we/itch/evans/usr.sun3/ahclk

Sun4 executable is:
iyers:/we/itch/evans/usr.sun4/ahclk

To compile, you also need my RMF library (which also contains a rather
good general despiker):

Source code is in:
iyers:/we/itch/evans/src/lib/rmf

Sun3 binary is:
evanss:/we/itch/evans/usr.sun3/librmf.a

Sun4 binary is:
iyers:/we/itch/evans/usr.sun4/librmf.a
I*11 put coples of the manual pages for AHWWVB in your boxs.

Good luck!
John Evans

announce.rev Fri Oct 8 09:57:49 1993 -74 -
To: dawson@iyers croker@iyers moses@andreas michael@andreas julian@andreas oneill@andreas AWalter lindh@gsvax0 lyer@gsvax0
Cc: evans@evanss

Subject: AHWWVB

A "-nc" (no change) option has been added to AHWWVB to supress changes
to the ah traces themselves, The default is to change the trace data.

AHWWVB now also prints (stdout) a summary of the results, as follows:

————— cmeemeeeeeeee-e~3hwwVvb -
File "tbnhl1320.xdr", code "LTB6", channel "spT":
Start time = 1990/11/08 13:20:01.3316 UTC

Sample interval = 0.0101375813 s (98.642859 sps)

Some folks prefer to collect a list of clock corrections rather than
applying them to the traces. Hence the ability to get this message
without changing the trace data.

Please let me know if you discover any bugs.

--John Evans

announce.rev2 Fri Oct 8 09:57:49 1993 =15 -

To: dawson@iyers croker@iyers michael@andreas julianfandreas oneill@andreas AWalter
Cc: evans@evanss
Subject: AHWWVB

More diddling with AHWWVB (hopefully this will be all for awhlle):

There is now a "-v*" flag to make it verbose (formerly the only
cholce). 1If missing, one only receives warnings and the final
answer.

With ~v, it will act as before but with addition of two lines of output
("AHWWVB verbose output:™ and “Interpreting time serles ...*), the
former at the beginning and the latter when it finishes filtering and
starts trylng to interpret the cleaned up trace. There are also a
number of minor punctuation changes for the sake of consistancy. Two
typlcal examples are appended here. Script writers take note.

Bruce ran into another bug for high sample rates, The L1 fitter
sometimes went into an infinite loop. This should now be fixed and
a trap installed just in case.

Please let me know if you discover any other bugs.

--John Evans

{yers{evans}:111==> ahwwvb -m B0 tbnhl320.xdr ~vb LTB6 spT =-v
AHWWVB verbose output:

Longest RMF window {s of 15 points.

Compensating for low-pass filtered WWVB.

Running RMF prefilter of 3 points ...

Running RMF prefllter of 5 points ...

Running main RMF fllter of 15 points ...

Interpreting time series ...

Second intervals range from 0.993 to 1.004 s.
5th and 95th percentiles differ by 0.010 s.

Defaulting year to 1890.
Changing start time and interval ...

ahclk ~1 tbnhl1320.xdr.a28305 -s 1990 11 08 13 20 1.331641 -i 0.0101375813
... successful.

- ahwwvb
File *tbnhl1320.xdr", code “LTB6é", channel "spT":
Start time = 1890/11/08 13:20:01,3316 UTC
Sample interval = 0.0101375813 s (98.642859 sps)

iyers{evans}:112==> ahwwvb -m 990 06.29.0192.4.ah -vb 0192 4 -nc

- ahwwvb: ———
File “06.29.0192.4.ah", code "0192", channel "4":
Start time = 1991/04/10 14:06:29,2087 UTC

Sample interval = 0,0009999890 s (1000.011012 sps)

iyers{evans}:113==>

BugReport_10_23 92 Fri Oct 8 09:57:50 1993 - 76 -
BUG REPORT for AHWWVB.
The lags given with option *-d" were applied with reversed sign

in versions prior to 23 Oct 92. If you have source code, change
one line of ahwwvb.c as follows:

from: new_st -= lagg / 1000.0; /* Remove any delay */
to: new_st += (lagg / 1000.0); /* Remove any delay */
Otherwlise, get binaries from:

Sund iyers:/we/itch/evans/usr.sun4

Sun3 evanss:/we/itch/evans/usr.sun3

Sorry about this, folks.

--John

-77 -

13. Appendix G: Manual Page and Source Code for ahclk

The program ahclk is a C program called by ahiwwvb to actually make the changes to start time and sample rate
in an xdr-ah seismogram’s header. Program ahclk is a creation of the first author. Both the source code and the
manual page are available via anonymous ftp from "andreas.wr.usgs.gov" in directory
"~ftp/pub/outgoing/evans/wwvb”. This Open-File Report serves to release them to the public, subject to the lim-
itations cited on the title page.

-78 -

AHCLK (3P) MISC. REFERENCE MANUAL PAGES AHCLK (3P)

SYNOPSIS

ahclk -1 list_file [-s year mo dy hr mn sec] [-i new_interval]

DESCRIPTION

Changes starting time and/or digitizing interval in the header of one or more traces listed in list_file
(same format as list_file used by epick). Copies through, unchanged, all traces encountered that are
NOT listed in list_file.

ahclk is intended primarily for correcting start time and digitizing interval of data from "five-day
recorders” and other instruments that record a time code in parallel with seismic data, but which may
give inaccurate start time or digitizing interval due to inaccurate internal clocks or analog-
instrumentation foibles. Hence, it assumes that all traces in list_file are exactly the same time interval
as all the other traces listed. You will get bizarre results if this is not so.

ahclk can be used to correct for clock drift and similar errors that apply individually or to a subset of
traces in the AH file by listing just the appropriate trace(s) in list_file.

ARGUMENTS
-1 list_file must contain one or more AH file names and trace sequence-numbers.
OPTIONS
-S year mo dy hr mn sec is the time of the first sample in the file (e.g. "-s 1990 10 20 11 04
20.071™). Replaces "ahhead->record->abstime” in the ah header. These six values must all be
positive.
-i new_interval is the new sampling interval (seconds). Replaces "ahhead->record->delta" in
the ah header. new_interval must be positive.
SEE ALSO

epick—X11 ah picking routine derived and extended from Lamont’s sunpick. epick calls ahclk 10
invoke changes in trace timing derived from "alternate time" picks (i.e., of time codes recorded in
parallel with seismograms). ahclk may be used as a stand-alone filter in the normal way as well.

Other ah filters.

BUGS
list_file must be sorted with all the traces for any particular file together and in ascending numerical
order within each file. mikahlist does that for you. Someday, ahclk could be made smarter about this,
but it hasn’t been yet. ahclk does verify this ordering, however.
Should get smart enough to check relatedness of traces being changed.

AUTHOR

John R. Evans, USGS, Menlo Park, CA. Original written September 25, 1990.

USGS Menlo Park Last change: October 18, 1990 1

ahclk.c Mon Nov 15 16:05:29 1993 -79 -

/!
* AH filter AHCLK (AH CLocK change):
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <local/ahhead.h>

#define NM_LEN 128 /* Maximum file-name length */
#define STR_LEN 256 /* Maximum scratch-string length */
#define MX_LST 256 /* Maximum line count of listfile */

#define strneq !strncmp

#define streq Istrcmp
struct ah _time NULL_AH_TIME; /* NULL starting time */
void error(); /* -1q (error.c) */
void report {); /* -1q (error.c) */
FILE *efopen(); /* -1q (efopen.c) */

char *progname;

main(arge, argv)

int argc;
char **arqQv;

{
FILE *1list_file; /* listfile a la “"epick” */
char 1ist_name(NM_LEN]);
void filter (): /* Defined below */
struct ah _time new_st; /* New starting time */
double new_int; /* New sampling interval */
vold mod_files(); /* Defined below */
int seq_ok (}; /* Defined below */

/* Initialize */
(void)bzero((char *) (4NULL _AH_TIME), sizeof (NULL AH_TIME)):;

new_st = NULL_AH_TIME; /* No-change flag */
new_int = -1.; /* No-change flag «/

list_name[0] = °\O';
list_file = (FILE *) NULL;

/* Check usage */
1f {(argc < 5)
error ("Usage: %s -1 listfile [-s year mo dy hr mn sec] (-1 new_interval}",
argv{0]}:

progname = argv(0]);

/* Interpret command line arguments */
for (--argec, argv++; arge; --arge, argv++) |

/* listfile name */
1f (strneq(*argv, “-1", 2)) {

--arge, argv++;

(void) strcpy (1ist_name, *argv):
)

/* new start time */
else if (strneqg(*argv, "=-s", 2)) {
--argec; argvt+;
if (argec < 6)
report ("Bad start time");
new_st.yr = atol (*argv); =--argc; argv++;
new_st.mo = atol (*argv); --argc; argvtt;
new_st.day = atol (*argv); --argc; argv++;
new_st.hr = atol (*argv): --argc: argv++;
new_st.mn = atoi (*argv):; ~--argc; argv++:
1f (sscanf((*argv), "%f", &(new_st.sec)) != 1)
report (“Bad start time");
}

/* new sampling interval */
else 1f (strneq(*argv, "-i", 2)) {
--arge; argv++;
if ((sscanf((*argv), "%1f", &new_int) != 1) ||
(new_int <= 0.))
report (“Bad sampling interval");

error(“Illegal option \"ss\“", *argv):;
}

/* Open seismogram listfile */
if(list_name (0] == *\O")

error (“Need listfile name");
list_file = efopen(list_name, "r"):

ahclk.c Mon Nov 15 16:05:29 1993 -80-

/* Check sequence in listfile */
rewind (list_file):
if (!seq_ok(list_file))
error(“listfile out of sequence®);

/* Process the named files */
rewind (list_file);
(vold)mod_files(list_file, new_st, new_int);

/* Exit */
(void) fclose (1ist_file);:
exit (0);

}

/t

* Modify all files in list_file; copy all others unchanged.

*/

void

mod files(list_file, new_st, new_int)
FILE *list_file; /* listfile a la “epick" */
struct ah_time new_st; /* New starting time */
double new_int; /* New sampling interval */

{
void close_out (}; /* Defined below */
int copy_head () : /* Defined below */
ahhed tmp_head; /* Space to return ah header */
vold copy_trace(); /* Defined below */
char fname_in[NM_LEN]: /* Input AH-file nanme */
FILE *ah_fp_in:
XDR xdr_in;
char fname_out [NM_LEN]; /* Temporary output file name */
FILE *ah_fp_outs
XDR xdr_out;
int ugid;
int rec_num;
int cur_rec;
char cur_file[NM_LEN];
char in_str(STR_LEN]; /* One line from list file */

/* Read list file, processing AH files as it goes */
ah_fp in = NULL;

ah_fp_out = NULL;

cur_file(0] = *\O";

cur_rec = 0;

while (fgets(in_str, sizeof(in_str), list_file) != NULL) {
if (sscanf(in_str, "%s%d%d", fname_in, &rec_num, &ugid) < 2)
error("Bad listfile format.");

/* Open AH file if not already open */
1f (!streq(cur_file, fname_in}) {

/* I1f input file is already open, copy through
any remaining traces, then clese the output
file and overwrite fname_in with it */

if (ah_fp_in != NULL)

close_out{fname in, ah_fp in, &xdr_in,
fname_out, ah_fp_out, &xdr_out);

/* Open AH file, attach toc XDR stream */

{void) sprintf (fname_out, "%s.XXXXXX", fname_in);
(void)mktemp (fname_out);

ah_fp_in = efopen(fname_in, "r");

ah_fp out = efopen(fname_out, “w");
xdrstdio_create(&xdr_in, ah_fp_in, XDR_DECODE);
xdrstdio_create (&xdr_out, ah_fp out, XDR_ENCODE) ;

cur_rec = 17
{void) strepy (cur_file, fname_in);
}

/* Copy through any unaffected traces prior to target trace */
while (cur_rec < rec_num) {
{void) copy_head(&tmp_head, &xdr_in, &xdr_out,
NULL_AH_TIME, -~1.):
{void) copy _trace(sxdr_in, &xdr_out, tmp_head);
cur_rec++;
}

/* Modify and copy affected traces */
if (cur_rec == rec_num) {

ahclk.c Mon Nov 15 16:05:29 1993 -81-

(void) copy head(&tmp_head, &xdr_in, &xdr_out,
new_st, new_int);

(void) copy_trace (&xdr_in, &xdr_out, tmp_head);

cur_rect++;

else
error("This should never happen--see Evans"):;

}

/* Close out last file pair */
close_out (fname_in, ah_fp in, &xdr_in, fname_out, ah_fp_out, &xdr_out);
)

/t
* Close out a file pair, overwriting input file with output file.
*/

void
close out (fname in, ah_fp_in, xdr in, fname_out, ah_fp out, xdr_out)
char fname_in[]; /* Input AH-file name */
FILE *ah_fp in;
XDR *xdr_in;
char fname_out[]: /* Temporary output file name */
FILE *ah_fp_ out;
XDR *xdr_out;
{
int copy_head(); /* Defined below *x/
ahhed tmp_head; /* Space to return ah header */
char sys_str[STR_LEN]; /* "system" call argument */
/* Copy through any unaffected traces remaining in file */
while (copy_head(stmp_head, xdr_in, xdr_out, NULL_AH_TIME, -1.})
(void) copy_trace(xdr_in, xdr_out, tmp_head);
/* Close files */
xdr_destroy(xdr_in);
xdr_destroy(xdr_out};
(void) fclose (ah_fp_in});
(void) fclose (ah_fp_out});
/* Overwrite input file with output file */
(void) sprintf(sys_str, “/bin/mv -f %s %s",
fname_out, fname_in):
if ((system(sys_str) & 0377) == 127)
report ("File overwrite (mv) failed!*®);
}
/i
* Copy through an AH trace, changing start time and sampling interval
* as requested. (new_st == NULL AH_TIME) prevents change of starting
* time. (new_int <= 0.) prevents change of sampling interval.
* Hence "copy_head(hd, xdr_in, xdr_out, NULL_AH_TIME, -1.)" copies
* header unchanged.
*
* Returns copled header in *"hd". Returns TRUE after successful copy,
* or FALSE if header could not be read properly (e.g., at end-of-file).
*

/

int
copy_head (hd, xdr_in, xdr_out, new_st, new_int)
ahhed *hd; /* Space to return ah header */
XDR *xdr_in;
XDR *xdr_out;
struct ah_time new_st; /* New starting time */
double new_int; /* New sampling interval */
({
void log_ahclk(}: /* Defined below */

/* Read header */
1f (xdr_gethead(hd, xdr_in) != 1)
return (FALSE);

/* Log any changes that will be made */
(void) log_ahclk (hd, new_st, new_int);

/* Change start time */

if (!strneq((char *) (snew_st), (char *) (4NULL AH_TIME),
slzeof (new_st)))
hd->record.abstime = new_st;

/* Change sampling interval */
if (new_int > 0.}
hd->record.delta = new_int;

/* Write header */
if (xdr_puthead(hd, xdr_out) != 1)
error (“Error writing header.");

ahclk.c Mon Nov 15 16:05:29 1993 -82-
return (TRUE);
}
/ﬁ
* Log any changes made by ahclk.
*/
void
log_ahclk{hd, new_st, new_int)
ahhed *hd;
struct ah_time new_st; /* New starting time */
double new_int; /* New sampling interval */
{
char log_str[STR_LEN];/* Log message written to ahhead */
void log_app(): /* Defined below */
if (!strneq{(char *) (énew_st), (char *) (&NULL AH_TIME),
sizeof (new_st))) {
(void) sprintf(log_str,
*%s: abstime was %d %d %d %d %d $f;“, progname,
hd~->record.abstime.yr, hd->record.abstime.mo,
hd->record.abstime.day, hd->record.abstime.hr,
hd~>record.abstime.mn, hd->record.abstime.sec);
(void)log_app{hd, log_str):;
}
if (new_int > 0.) {
{void) sprintf(log_str,
"%s: delta was %f;", progname, hd->record.delta);
{void)log_app(hd, log_str);
}
}
/i

* Append log_str to log message in ahhead "hd".
*/

#define MIN(a,b) (((a)<(b)) 2 (a) : (b))/* Smaller value */
void
log_app(hd, log_str)
ahhed *hd:
char log_str[];
{
int strl;
void ch_app(); /* Defined below */
/* Find end of non-blank part of log */
for (strl = MIN(LCGSIZE - 1, strlen(hd->record.log})) :
(strl >= 0) && {(hd->record.log[strl] == ; =-=-strl);
/* I1f find *null* at start of string, overwrite
if {(strl == 4 && strneq(hd->record.log, “"null",
strl = 0;
/* Append new log message */
if (strl != 0)
(void)ch_app(&strl, hd, * “);
(void)ch_app(&strl, hd, log_str);
}
/i
* Append characters to log until full,
*/
void
ch_app(strl, hd, log_str)
int *strl;
ahhed *hd;
char log_str[]}:
{
int i;
int 1_len;
i=20
1_len = strlen(log_str);
while((*strl < (LOGSIZE - 1)) && (i < 1_len))
hd->record.log[(*strl)++]) = log_str[i++];
hd->record.log[*strl] = *\0’;
}
/ﬂ
* Copy through an AH trace, unchanged.
~/
void

copy_trace (xdr_in, xdr_out, hd)

ahclk.c Mon Nov 15 16:05:29 1993 -83-

}

/i

XDR *xdr_in;

XDR *xdr_out;
ahhed hd;

float *darray;

/* Rllocate trace storage */
darray = (float *)mkdatspace(&hd);

/* Read trace */
if (xdr_getdata(&hd, (char *)darray, xdr_in) == -1)
error (“Error reading data record");

/* Write trace */
1f (xdr_putdata(shd, (char *)darray, xdr_out) == -1)
error ("Error reading data record”);

/* Deallocate trace storage */
free ((char *)darray);

* Check sequence in listfile

*/

typedef

} TLIST;

int

struct {

char fname_in[NM_LEN];
int rec_num;

int ugid;

seq_ok (1ist_file)

{

FILE *list_file;

char in_str[STR_LEN]);

int i;

int same_nm;

int seqr

int rv;

int nlines;

TLIST *file_list [MX_LST]; /* known AH-file names
rv = TRUE;

nlines = 0;
file_list[0] = (TLIST *)emalloc(sizeof (TLIST));

while (fgets({in_str, sizeof(in_str), list_file) != NULL) {
if(sscanf(in_str, "%st%dsd",
file_list(nlines]->fname_in,
&(file_list[nlines]->rec_num),
&(file_list({nlines]->ugid))
>= 2} {

same_nm = TRUE;
seq = file_list([nlines)->rec_num;
for(i = nlines ; 1 >= 0 ; --1) {

1f (streq(file list([nlines]->fname_in,

file_list([i]->fname_in)) {
if (!same_nm)
rv = FALSE;

if (file_list[i]->rec_num >= seq

&& 1 < nlines)
rv = FALSE;
else

seq = file_list{i)->rec_num;

}

else {
same_nm = FALSE;
}
t

nlines++;
if (nlines >= MX_LST)
error("listfile too long");

file_list([nlines] = (TLIST *)emalloc(sizeof (TLIST));

else
error ("Bad listfile format.");
}
for (i = 0 ; 1 <= nlines ; 1i++4)
free ((char *)file_list([i]);
return rv;

/* One line from list file

*/

ahhead.h Fri Oct 8 09:57:14 1993 -84 -

/* structure for data file header -- witte, 11 June 85 */

#define AHHEADSIZE 1024

#define CODESIZE 6

#define CHANSIZE 6

#define STYPESIZE 8

#define COMSIZE 80

#define TYPEMIN 1

#define TYPEMAX 6

#define LOGSIZE 202

#define LOGENT 10

#define NEXTRAS 21

#define NOCALPTS 30

typedef struct {
fleoat x;
float y:
} vector;

typedef struct {
float r;
float i;
} complex;

typedef struct {
double r;
double i;
} d_complex;

typedef struct {
float XX;
float yy:
float xy?
} tensor;

struct ah_time {
short yr; /* year */
short mo; /* month */
short day; /* day */
short hr; /* hour */
short mn; /* minute */
fleat sec; /* second */
bs

struct calib {
complex pole; /* pole */
complex zero; /* zero */
b2

struct station_infe {
char code [CODESIZE]; /* station code */
char chan{CHANSIZE); /* 1lpz,spn, etc. */
char stype[STYPESIZE);/* wwssn, hglp,etc. */
float slat; /* station latitude */
float slon; /* " longitude */
fleoat elev; /* " elevation */
float Ds; /* gain */
fleoat AQ; /* normalization */
struct calib cal [NOCALPTS]); /* calibration info */
i:

struct event_info {
fleat lat; /* event latitude */
float lon; /* - longitude */
float dep: /* " depth */
struct ah_time ot; /* " origin time */
char ecomment {COMSIZE]; /* comment line
b

struct record_info {
short type:; /* data type (int,float,...) */
long ndata; /* number of samples */
float delta; /* sampling interval */
float maxamp; /* maximum amplitude of record */
struct ah_time abstime;/* start time of record section */
fleoat rmin; /* minimum value of abscissa */
char rcomment {COMSIZE]; /* comment line
char log[LOGSIZE]; /* log of data manipulations */
b

typedef struct {
struct station_info station; /* station info */
struct event_info event; /* event info */
struct record_info record; /* record info */
float extra[NEXTRAS]; /* freebies */

} ahhed;

*/

*/

ahhead.h Fri Oct 8 09:57:14 1993 -85-

#define FLOAT
#define COMPLEX
#define VECTOR
#define TENSOR
fdefine DOUBLE
#define INTEGER

NS W

Makefile Fri Oct 8 09:57:13 1983 - 86 -
I
'_t-‘*-i-‘_._i_i-t-'-ﬁ-t_"-l_i_'-'_ﬂ_t-"-ﬁ_t-"_i_t-‘-i_t_'-*_l_t_t-t-t_t

§
4 Make file for AHCLK.

CFLAGS= $(FLOAT) -g¢g -D$(ARCH)
SRCS= ahclk.c

0OBJS= $(SRCS:%.c=$ (ARCH) /%.0)
LIBS= -lah -lqg

BIN = ${DIR_USR)

prog: $ (ARCH) /ahclk

$ (ARCH) /ahclk: $ (OBJS)
cc -o $@ S (CFLAGS) $(OBJS) $(LIBS)

$(ARCH)/%.0: &.cC
cc $(CFLAGS) -c $(@F:.o=.c) -o S@

install: $(ARCH)/ahclk
cp $(ARCH) /ahclk $(BIN)

lint: $(SRCS)
/usr/bin/lint -xh -u $(SRCS) $(LIBS) > lint

clean:
-@rm $ (ARCH)/*.0 $(ARCH)/ahclk
cli -1 -sExp -f \
-m"USGS Computer Program ahclk; Version 1.0; John R. Evans* \
$ (SRCS) Makefile test_ah.in test_ah.out

README Fri Oct 8 09:57:13

In order to use the makefile in this
directory, the following MUST be
in your .cshrc file

#start here

setenv ARCH ‘/bin/arch*®
1f($ARCH == "sun3") then
setenv FLOAT -£68881
else
setenv FLOAT *“*
endl f

d#end here

1983

- 87 -

- 88 -

14. Appendix H: Manual Pages and Source Code for Portions of librmf and libg

The library librmf contains C and FORTRAN programs for running-median filters and automated despikers
based upon them. The routine median from this library is used by ahwwvb to filter the WWVB trace, and is
listed here. Several routines from Bruce Julian’s library libg are used by ahwwvb and ahclk, and are listed here.
The source code for these routines is available via anonymous fip from "andreas.wr.usgs.gov” in directory
"~fip/pub/outgoing/evans/library_stuff’. This Open-File Report serves to release them to the public, subject to
the limitations cited on the title page.

A descriptive writeup for the median filter is in file "median.writeup” of that ftp directory. Manual pages for the
date and time routines of libg are included, and listed here. The routines efopen, emalloc, and erealloc act just
like their standard C counterparts, fopen, malloc, and realloc, but performing error reporting. Manual pages are
unavailable for the other routines.

.89 -

CALENDAR (3Q) MISC. REFERENCE MANUAL PAGES CALENDAR (3Q)

NAME

jdn, date, yrday, mnday, isleap, ckdate — calendar routines

SYNTAX

#include <local/date_time.h>
#include <local/qerr.h>

Iong jdn(yr, mo, da, caltyp)
int yr, mo, da, caltyp;

void date(n, pyr, pmo, pda, caltyp)
long n;
int *pyr, *pmo, *pda, caltyp;

int yrday(mo, da, leap)
int mo, da, leap;

void mnday(d, leap, pmo, pda)
int d, leap, *pmo, *pda;

int isleap(yr, caltyp)
int yr, caltyp;

int ckdate(yr, mo, da, caltyp)
int yr, mo, da, caltyp;

DESCRIPTION

NOTES

These routines perform computations about the calendar.

Jdn returns the Julian Day Number of the day beginning at noon of the calendar date specified by the
arguments yr, mo, and da. Date performs the inverse computation, decoding the Julian Day Number n
and storing the results indirectly, through its pointer arguments pyr, pmo, and pda. In both routines,
the argument caltyp specifies which calendar is to be used: GREGORIAN (modern) or JULIAN (old-
style). These calendar-type codes are defined in the include file date_time.h.

Yrday returns the day of the year corresponding to day number da of month number mo. Mnday per-
forms the inverse computation, determining the month and day of the month corresponding to the nth
day of the year, and storing them through the pointer arguments pmo and pda. In both functions the
boolean argument leap specifies whether the year in question is a leap year

Isleap returns a boolean value telling whether year yr is a leap year in the calendar of type caltyp. Itis
suitable for use as the argument leap to routines yrday and mnday.

Ckdate returns the value 0 if the date specified by arguments yr, mo, and da is legal in the calendar of
type caltyp, and otherwise one of the values EBADDAY, EBADMONTH, or EBADYEAR, defined in

the file qerr.h.

Do not confuse the Julian Day Number, which counts days since 1 January 4713 of the old-style calen-
dar, with the day of the year, which is sometimes incorrectly called the ‘‘Julian day’’.

SEE ALSO

date_time(3Q)

A list of the dates when various countries adopted the Gregorian calendar is given in the ‘‘Explanatory
Supplement to The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac’’,
published periodically by Her Majesty’s Stationary Office.

Sun Release 4.1 Last change: 1

- 90 -
CALENDAR (3Q) MISC. REFERENCE MANUAL PAGES CALENDAR (3Q)

EXAMPLES
The following fragment of code...
#include <local/date_time.h>

AUTHOR
Bruce R. Julian, USGS Menlo Park, Calif.

Sun Release 4.1 Last change: 2

-91 -

DATE_TIME (3Q) MISC. REFERENCE MANUAL PAGES DATE_TIME (3Q)
NAME

timvar, datime — time routines
SYNTAX

#include <local/date_time.h>

TIME timvar(yr, mo, da, hr, mn, sec, caltyp)
int yr, mo, da, hr, mn;
double sec;
int caltyp;

datime(t, pyr, pmo, pda, phr, pmn, psec, caltyp)
TIME t;
int *pyr, *pmo, *pda, *phr, *pmn;
double *psec;
int caltyp;

DESCRIPTION

These routines convert conventional dates and times-of-day to TIME (double precision) variables, a
form that is computationally efficient and has enormous dynamic range (2.9x10"* seconds to 10° years)
and resolution (one part in 10'7). This form is more than adequate for all purposes, ranging from geo-
logic to picosecond scales. Using ordinary language-defined arithmetic operators, TIME variables may
be subtracted from one another to produce time intervals, time intervals may be added and subtracted
from each other and multiplied or divided by dimensionless values, and time intervals may be added to
or subtracted from times to produce new times.

Timvar converts a calendar date and time of day into a TIME variable. Datime performs the inverse
transformation, decoding the TIME variable ¢ and storing the results indirectly, through its pointer argu-
ments. Caltyp specifies which calendar is to be used: GREGORIAN (modern) or JULIAN (old-style).

The C-language include file date_timeh defines the type TIME, the calendar-type codes GRE-
GORIAN and JULIAN, and the constant time intervals YEAR, LEAPYEAR, WEEK, DAY, HOUR,
MINUTE, SECOND, MILLISEC, MICROSEC, and NANOSEC, as well as a few things useful with
the calendar(3Q) routines.

BUGS
No allowance is made for ‘‘leap seconds’’, which are periodically inserted to keep the earth and the
clock synchronized for the convenience of navigators.

SEE ALSO

calendar(3Q)

A list of the dates when various countries adopted the Gregorian calendar is given in the ‘‘Explanatory
Supplement to The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac’’,
published periodically by Her Majesty’s Stationary Office.
EXAMPLES

The following fragment of code finds the number of fortnights between two epochs:

#include <local/date_time.h>

double fort;

fort = (timvar(1983, 5, 31, 14, 50, 12.34, GREGORIAN) -

timvar(1950, 1, 1, 0, 0, 0.0, GREGORIAN))/(14*DAY);

AUTHOR
Bruce R. Julian, USGS Menlo Park, Calif.

Sun Release 4.1 Last change: 1

calendar.c Tue Jan 11 15:05:05 1994

#ifndef lint

-92.

static char recsid{}="$Header: calendar.c,v 1.1 90/11/25 12:45:10 julian Exp S$%;

#endif

/'

* Calendar computations (cld and new-style)
* Bruce R. Julian, USGS Menlo Park, CA

*/

#include <local/local.h>

#include <local/date_time.h>

#include <local/gerr.h>

/* floor (x/y)}, where x, y>0 are integers, using integer arithmetic */

#define qfloor(x, y) (x>0 2 (x}/y : =((y=-1=~(x))/y))

static int eom{2} [15]) = {
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
{ 0o, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335,
12

/* Recognize leap years */

bool
isleap(yr, cal)

int yr; /* Year

int cal; /* Calendar type
{

bool 1;

if (yr < 0)

yI++;

1 = (yr$4 == 0);
if (cal == GREGORIAN)
1 = 1 && (yr$100 != 0 {| yr%400 == 0);
return 1;
}

/* Check calendar date for legality */

int
ckdate(y, m, d, cal}
int y, m ,d; /* Year, month, date
int cal: /* Calendar type
{
int *et = eom(isleap(y, cal)i;
if (y == 0) return EBADYEAR;
if (m< 1 > 12) return EBADMONTH;

Il m
if (d <1 }j{ d > et[m}j-et[m-1])) return EBADDAY;
return O0;

}

/* Compute day of year */

int

yrday (mo, day, 1p)
int mo, day: /* Month, date
bool ip; /* Leap Yyear?

{
return eom[lp) [mo-1} + day:
}

/* Calculate month, date from day of year */

void
mnday (d, lp, pm, pd)
int d; /* Day of year
bool ip; /* Leap year?
int *pm, *pd; /* Month, date
1
int i;
int *et = eom|[1lp};

for (i=1; d>et[i]; i++)

.
v

*pm = 1i;
*pd = d - et{i-1};
}

/* Compute Julian Day Number from calendar date */
long
jdn{yr, mo, day, cal)

int yr, mo, day; /* Year, month, date
int cal; /* Calendar type
{
if (yr < 0)
YI++:

/* Move Jan. & Feb. to end of previous year */
if (mo <= 2) {

--yr:

mo += 127

365, 396,
366, 397,

*/
*/

*/
*/

*/
*/

*/
*/
*/

*/
*/

424 1},
425 1},

calendar.c Tue Jan 11 15:05:09 1994 .93 .

return gfloor((long) (4*365+1)* (yr+4712), 4) + eom[0] [mo-1] + day +
(cal==GREGORIAN ? =-qfloor({yr, 100) + gfloor(yr, 400) + 2 : 0);

}

/* Compute calendar date from Julian Day Number */

void
date (n, py, pm, pd, cal)
long n; /* Julian Day Number */
int *py, *pm, *pd; /* Year, month, date */
int cal; /* Calendar type */
{
long d, t;
int y?

/* Find position within cycles that are nd days long */
$define CYCLE(n, nd)} { t=gfloor{d-1,nd); y+=t*n; d-=t*nd; }

/* The same, with bound on cycle number */
#define LCYCLE(n, nd, 1) { t=qfloor(d-1,nd}; if (t>1}) t=1; y+=t*n; d=-=t*nd; }

y = -4799;
1f (cal == GREGORIAN)} {
d = n + 31739; /* JD ~31739 = 31 Dec 4801 B.C. */
CYCLE (400, 146097) /* Four-century cycle */
LCYCLE (100, 36524, 3) /* 100-year cycle */
}
else
d =n + 31777; /* JD =31777 = 31 Dec 4801 B.C. */
CYCLE (4, 1461) /* Four-year cycle */
LCYCLE (1, 365, 3) /* Yearly cycle */
1f (y <= 0)
--y;
*PY = ¥i

mnday ((int)d, isleap(y, cal), pm, pd):;

efopen.c Tue Jan 11 15:02:09 1994 -94 -

#ifndef lint
static char rcsid[)="SHeader: efopen.c,v 1.2 88/10/17 11:15:44 julian Exp $";
#endif
/i

* Open file, die 1f can‘t

* Bruce R. Julian, USGS Menlo Park, CA

*/
finclude <stdio.h>

void error();
FILE*
efopen(file, mode)
char *file, *mode;

{
FILE *fp:

if ({fp = fopen(file, mode)) == NULL)
error (“Can’t open file \"%s\", mode %s", file, mode);
return fp;

emalloc.c Tue Jan 11 15:02:17 1994 -95-

#ifndef lint
static char rcsid(]="$Header: emalloc.c,v 1.2 88/10/17 11:15:48 julian Exp $";
#endif
/Q
* Allocate memory, die if can’t
* Bruce R, Jullan, USGS Menlo Park, CA
*/
#define NULL [¢]
tdefine u_int unsigned

char *calloc(); /* Unix C library */
char *malloc(); /* Unlx C library */
void error(); /* libg.a */
char *realloc(); /* Unix C library */
char*

ecalloc(n, s)

u_int n, s;
{

char *p;

if ((p = calloc(n, s)) == NULL}
error (“Can’t allocate %u X %u bytes");
return p;
}

char*
emalloc(s)

u_int s?
{

char *ps

if ((p = malloc(s)) == NULL)
error(“Can‘t allocate %u bytes");

return p;
}
char*
erealloc(p, s)
char *p:

u_int s

1f ((p = realloc(p, s)) == NULL)
error (“Can’t reallocate %u bytes");
return p;

eopen.c Tue Jan 11 15:02:38 1994 -96 -

#ifndef lint

static char rcsid[)=“$Header: eopen.c,v 1.2 88/10/17 11:15:50 julian Exp $";
#endif

/t
* Open file, die 1f can’t
*/

void error{);

int

eopen(file, mode)
register char *file;
register int mode;

register int £
if ((f = open{file, mode)) < 0)

error(“Can’t open file \"%s*, mode %d*, file, mode);
return f;

error.c Tue Jan 11 15:02:43 1994

tifndef lint

-97-

static char rcsid[)="SHeader: error.c,v 1.4 90/04/08 12:32:22 julian Exp $“;

fendif

/i

* Report error, optionally die

* Bruce R. Julian, USGS Menlo Park, Calif. 14
*/

#include <stdio.h>

#include <local/stdtyp.h>

#include <varargs.h>

extern int sys_nerr:

extern int errbase, nerr;

extern char *sys_errlist[], *q_errlist[];
extern int errno;

extern char *progname;

void exit ()2

char *sprintf();

/* Return error message */

char
*ermsg (ier)
int ier;
{
static char s[12});

if (ier == 0)
return (NULL);
if (ier > 0 && ier < sys_nerr)
return (sys_errlist(ier]);
ier -= errbase;
if (ier > 0 && ier < nerr)
return (q_errlist{ier]):
else
return (sprintf(s, "Error %d",
}

/* Print error message */
/*VARARGS*/
static veid
msg(args)
va_list args;
{

Dec 1983

errbase+ier));

char *fmt; /* Format string

char *p:

if (progname)
(void) fprintf (stderr, "%s: *,
fmt = va_arg(args, char*):;
_doprnt (fmt, args, stderr);
if ((p = ermsg(errnc)) != NULL)
(void) fprint f(stderr, " (%s)*,
(void) fprintf (stderr, "\n");
}

/* Print error message but don’t die */
/*VARARGS*/
vold
report (va_alist)
va_decl
{
va_list args;

va_start (args);
msg(args);
va_end (args);

)

/* Print error message and die */
/*VARARGS*/
veid
error(va_alist)
va_del
{
va_list args:

va_start (args):
msg{args);
va_end(args);
exit (1);

progname) ;

p);

*/

median.c Tue Jan 11 15:08:13 1994 -08 -

/t

PR ORI JUE JUNE UL R JUSTDNNE JUNR NN DUIE JUNE DU DHR DU JUNR JUNL DS JUNE DR NN DU JEE JURE NN JUR JUR DR DR RS ZUR JWRE U DN SR
C-callable version of routine "median®, an odd-length running
median filter for floating-point data.

Arrays are zero-offset, standard C arrays:
arrin{0..arrlen-1}
arrout [0..arrlen-1]

This is a recoding, rather than an interfacing routine to the
FORTRAN version because the latter proved impractical due to 1/0
system interference between C and FORTRAN (and because these
difficulties are likely to rise anew each time a new compiler is
introduced even if I do circumvent them now).

FORTRAN version’s *1n* here is called “arrlen".
FORTRAN version’s "m® here is called “winlen".
FORTRAN version’s *n* here is called "hww".

*/

#include <stdio.h>
#define TRUE 1
4define FALSE 0

void
median{arrin, arrout, arrlen, winlen, iprint)

float arrin{], arrout(]:
int arrlen, winlen, iprint;

float *sort, sorttemp;

int *subs, substemp;

int hww, iold, inew, 33, lout, i, key;
int inok, ijunk;

void mederrf ():

if (iprint) {
fprintf (stdout, *\n Starting MEDIAN., Window length=%3i.,", winlen);
fprintf(stdout, * Array length=%10i.\n", arrlen);

}

hww = (winlen - 1) / 2; /* “Half-window width"”, which in a zero-offset
array also points to middle-point of window */

/* Test for errors */
inok = TRUE;

if (winlen < 3) {
fprintf (stderr, * Window length too small. winlen=%5i\n", winlen);
mederrf (&inok);

)

if (winlen > arrlen) ¢
fprintf(stderr, " Window length greater than trace length.\n");
mederrf (&inok);

}

/* Allocate window storage */
sort = (float *)malloc({winlen * sizeof (float}));
subs = (int *)malloc(winlen * sizeof (int)):;

if (({(2 * hww) + 1) != winlen) {
fprintf(stderr, ® Window must be odd length. winlen=%5i\n", winlen);
mederrf{&inck);

}

/* Proceed if input parameters are OK */
if (inok) {

/* “"Copy-on® ends of arrin where RMF is undefined */
for(33 = 0 ; 33 < hww ; J33++) {
arrout[Jjj) = arrin(33i):
}
for(j3 = arrlen - hww ; 33 < arrlen ; 3J3++) {
arrout [33] = arrin(jJ);
}

/* Fill sorting array for first time and bubble sort */
for(i = 0 ; I < winlen ; i++) {

subs([i] = {;

sort[i) = arrin(i);

1

key = TRUE;
while (key) { /* Ascending-order bubble sort */
key = FALSE;
for(i =1 ; 1 < winlen ; i++) {
if (sort{i - 1) > sort{i}) {

median.c Tue Jan 11 15:08:13 1994 -9 -

key = TRUE;

sorttemp = sort{i ~ 1];
sort[i - 1] = sort(i}:
sort[i] = sorttemp:;
substemp = subs[i - 1]
subs[i - 1] = subs([i};
subs(i] = substemp;

}

/* Put result (middle point of “sort") into “arrout® */
arrout [hww] = sort [hww];

/* Thereafter, drop in only the new point from *arrin* to save sorting time */

for(iout = hww + 1 ; fout < arrlen - hww ; iout++) {

iold = iout - (hww + 1); /* points to oldest element still in sort window */
inew = lout + hww; /* points to element to be added to sort window */
for(i = 0 ; subs(i] {= iold ; i++); /* find old point in sort array */

sort[i) = arrin[inew); /* replace old point in sort array */

subs[i] = inew;

while(i < winlen - 1) {(/* move point up list */

if(sort[i] > sort(i + 11} {
sorttemp = sort[i];
sort[i] = sort{i + 1];
sort (i + 1] = sorttemp:
substemp = subs[i];
subs[i] = subs[i + 1];
subs(i + 1] = substemp;
144

else {
break;
}

}
while(i > 0} { /* move point down list
if(sort[i - 1) > sort[i]) {
sorttemp = sort(i - 1]
sort (i - 1] = sort(i);
sort [1] = sorttemp;
substemp = subs{i - 1];
subs[i - 1) = subs[i);
subs[i] = substemp;
i--;

else {
break:;

}

/* Put result (middle point of "sort")} into "arrout"™ */
arrout [iout]) = sort[hww];

}

if (iprint) {(
fprintf{stdout, * Return from MEDIAN.\n\n");

}

/* Clean up */

free ((char *)sort);

free ((char *)subs);
}

/* Error message and flag for immediate exit */

void
mederrf (inok)

int *inok;
fprintf (stderr, " =—=---- Error in subroutine MEDIAN~---- \n"};

fprintf (stderr, * (Time series returned unfiltered.}\n");
*inok = FALSE;

*/

time.c Tue Jan 11 15:07:37 1994 -100 -

#ifndef 1lint

static char rcsid(]=“$Header: time.c,v 1.2 88/10/17 13:56:48 julian Exp $*;
#endif

/ﬁ

* Computations based on date and time of day

* Bruce R. Julian, USGS Menlo Park, CA

*/

#include <math.h>

#include <local/local.h>

#finclude <local/date_time.h>

/* Convert date and time to TIME variable */

TIME

timvar (yr, mo, da, hr, mn, sec, caltyp)
int yr, mo, da, hr, mn;
double sec;
int caltyp;

return (double)DAY* (jdn(yr, mo, da, caltyp)-BASEJDN) +
HOUR*hr + MINUTE*mn + SECOND*sec;
}

/* Convert TIME variable to date and time */

void

datime (t, pyr, pmo, pda, phr, pmn, psec, caltyp)
TIME t;
int *pyr, *pmo, *pda, *phr, *pmn;
double *psec;
int caltyp;

{
long d;

d = floor (t/DAY):

date (d+BASEJDN, pyr, pmo, pda, caltyp):
t -= d*DAY;

*phr = t/HOUR;

t -= (*phr)*HOUR;

*pmn = t/MINUTE;

*psec = t - (*pmn) *MINUTE;

born.h

idefine
#define
#define
#define
fdefine
#define

typedef

RHORHO

struct
float
fleoat
float
float
double

} SCATMDL;

double bexp(),

void

nmba W -Oo

Tue Jan 11 15:00:13 1554

vp, Vs;

rho;

s2([6};

a6} [3]):
(*bfunct) ();

bgauss () 7

/t
/‘
/‘
/‘
/ﬁ

Average wave speeds

Average density

Zero-lag covariances
Correlation distances

3-D Fourier transform function

born_pp(), born_ps(), born_sp(), born_ss();

- 101 -

*/
*/
*/
*/
*/

cmd opt.h Tue Jan 11 15:00:13 1994 - 102 -

/* CMD _OPT.H

* Include file for command-line argument processing
* Bruce R. Julian, USGS Menlo Park, Calif.

*/

#ifndef CMDOPT_H

#define CMDOPT_H

#include <local/stdtyp.h>

#ifndef DIM

#define DIM(x) (sizeof (x)/sizeof ((x)[0])) /* Dimension of array */

#endif DIM

struct command {
int (*c_func) ()¢ /* Function to be called for option */
char *c_name; /* Name of option in argument 1list */
char *c_args; /* Args (printed for documentation) */
char *c_comment; /* Printed out for documentation */

N

char *aarg():s

struct command *findname():

int isnarg();

double narg();

char *peekarg () :

void prt_help():

void prt_doc();

int eargc; /* Copy of argc */

char **eargv; /* Copy of argv */

int iarg:; /* Argument index */

int ncmd; /* No., of elements in cmd[] */

char *progname; /* For error messages */

#define PROCESS OPTS { \
progname = argv{0); \

eargc = argc; \
eargv = argv; \
nemd = DIM{cmd)}; \

for (iarg=1l; larg<eargc && eargv(iarg] [0]=="-"; iarg++) \
XEQCMD (eargv {iargj)): \
}
#define XEQCMD (s) (*findname (s)->c_func) ()
#endif CMDOPT _H

cuint

/*

*

.h Tue Jan 11 15:00:13 1994

cuint.h

* Cubic, bicubic, and tricubic interpolation

*/
#ifndef
#define

typedef

} PT2;
typedef

} PT3;

void
void
void
void
void
void

CUINT_H

CUINT_H

struct { /* Two-dimensional result

float £, /* Value
fx, fy, /* First derivatives
fxx, fxy, fyy: /* Second derivatives

struct { /* Three-dimensicnal result

float £, /* Value
fx, fy, fz, /* First derivatives
fxx, fxy, fyy. /* Second derivatives
fxz, fyz, fzz;

cucof ()

cuint ();

bcucof () ;

bcuint (};

tcucof () ;

tcuint ()

fendif CUINT_H

- 103 -

*/
*/
*/
*/

*/
*/
*/
*/

date time.h

/* DATE_TIME.H

* Include file for calendar and time routines
* Bruce R. Julian, USGS Menlo Park, Calif.

*/

#ifndef DATETIME _H

#define DATETIME_H

4define BASEJDN 2440588

/* Calendar codes */

fdefine GREGORIAN 1

4define JULIAN 0

/* Time intervals */

f§define SECOND 1

fdefine MINUTE {60* SECOND)
#define HOUR {60*MINUTE)
#define DAY {24*HOUR)
fdefine WEEK (7*DAY)
#define YEAR (365*DAY)
$#define LEAPYEAR (366*DAY)
#define MILLISEC (1e-3*SECOND)
fdefine MICROSEC (le-6*SECOND)
#define NANOSEC {1e-9*SECOND)
/* Data types */

typedef double TIME;

/* External functions */

int ckdate ()7
void date () ;
bool isleap ()
long 3dn();
void mnday ()7
TIME timvar ();
int yrday ()

fendif DATETIME_H

Tue Jan 11 15:00:13 1954

/* 1 January 1970

/* Modern calendar
/* Old-style calendar

- 104 -

*/

*/
*/

dec_float.h Tue Jan 11 15:00:14
/t

* /usr/include/local/dec_float.h

*/

typedef long DEC_FLOAT;
typedef struct dec_dble {
long h;
long 1;
} DEC_DOUBLE:

double cvdecf():

1994

- 105 -

decode.h Tue Jan 11 15:00:14 1994 - 106 -

#ifndef DECODE_H

#ifndef MAXBUF

#¢define MAXBUF 20
#endif MAXBUF

char dcbuf [MAXBUF]);

char *strnepy () ;

/* ASCII-to-numbei conversion (for Fortran-like formatted reading) */
/* char *s is beginning of fileld */

/* int 3 1s field length */

/* £ is conversion function */

#define DECODE(s, Jj, f) (dcbuf[j]="\0", f(strncpy(dcbuf, s, 3)))
#define HASDECPT index (dcbuf, *.’)

#endif DECODE_H

earthconst.h Tue Jan 11 15:00:14 1994 - 107 -

/* EARTHCONST.H
* Bruce R. Julian, USGS Menlo Park, Calif., 15 Dec 1983
*/

#ifndef EARTHCONST H
#define EARTHCONST H

#define REQUAT 6378.163 /* Equatorial radius */
#define RPCLAR 6356.177 /* Polar radius */
#define REARTH 6371 /* Egual-volume sphere */
#define FLATTENING (1/298.24) /* (REQUAT~-RPOLAR) /REQUAT */
#define KM (5280*12+0,0000254) /* Kilometers per mile

#define MILE (1.0/KM) /* Miles per kilometer */

fendif

£77types.h Tue Jan 11 15:00:14 1994 - 108 -

/* F77TYPES.H

* C data types used by f77 compiler (installatlon-dependent)
* Version for Integrated Solutions (4.2BSD) Unix

* Bruce R. Julian, USGS Menlo Park, Calif. 2 Jan 1986

*/
#define F77INT int /* Default integer data type */
#define F77L0G int /* Default logical data type */

#define F77SLARG long /* String-length argument type */

local.h Tue Jan 11 15:00:15 1994 - 109 -

/* LOCAL.H
* Bruce R. Julian, USGS Menlo Park Calif., Dec 15 1983
~/

#ifndef LOCAL_H
#define LOCAL_H

#include "stdtyp.h"
#1fndef NULL

#define NULL O
#endif NULL

#define PRIVATE static /* Better name for it */
#define FOREVER for(;; /* Infinite loop */
#define NOT !

#define YES 1 /* Truth value */
#define NO 0 /* Truth value */
#ifndef TRUE

#define TRUE 1 /* Truth value */
#define FALSE O /* Truth value */
#endif TRUE

#define DIM(x) (sizeof(x)/sizeof((x)([0]}) /* Dimension of array */
#ifndef MAX

f#define MAX(a,b) (((a)>(b)) 2 (a) : (b)) /* Larger value */
#endif MAX

#ifndef MIN

#define MIN{a,b) (((a)<(b)) 2 (a) : (b)) /* Smaller value */
#endif MIN

f#define ABS{a) ((a) > 0 2 (a) : =-(a)) /* Absolute value */
fdefine FAIL ~1 /* Function return */
#define FAILED == -1

#define SUCCEED 0 /* Function return */
#define SUCCEEDED != ~1

t#define STDIN O /* read() write() unit =/
#define STDOUT 1 /* read() write() unit */
#define STDERR 2 /* read() write{) unit =/
#define READ 0 /* Mode for open/() */
fdefine WRITE 1 /* Mode for open() */
#define UPDATE 2 /* Mode for open{) */
fdefine HEAD 0 /* Whence for lseek () */
#define HERE 1 /* Wrence for lseek{() */
#define TAIL 2 /* Whence for lseek({() */

#define reg register

#define repeat do

#define until(c) while (! (c}))

#define streq !strcmp /* String comparison */
#define strneq !strncmp /* String comparison */

#define ALLOC(x) (struct x *) malloc(sizeof(struct x))
#define TURN_ON(x, f) (x |= (£))

#define TURN_OFF (x, f) (x &= ~(£f))

#define IS_ON(x, f) (x & (f))

#define IS_OFF (x, f) (M (x & (£)))

#endif LOCAL_H

mathconsat .h Tue Jan 11 15:00:15 1994

/* MATHCONST . H
*/

4ifndef MATHCONST H

#define MATHCONST_H

/* PI and its relatives */

#define PI 3.14159265358979324

fdefine PIINV 0.318309886183790672 /* 1./P1 */
#define HALFPI 1.57079632679489662

#define TWOPI 6.28318530717958648

#define FOURPI 12.5663706143591730

#define SQRTPI 1.77245385090551603

#define PI32 5.56832799683170785 /* PI**1.5 */

/* Irrational square roots */

#define SQRT2 1.41421356237309505

#define SQRT3 1.73205080756887729

#define SQRTHALF 0.707106781186547524

/* Logarithms */

#define LN2 0.693147180559945310
#define LN10O 2.30258509299404568
#define LOG2 0.301029995663981195
#define LOGE 0.434294481903251828

/* Degrees per radian and vice-versa */
#define DEG 57.2957795130823209
#define RAD 0.0174532925199432957

/* One degree in radians, a la Mathematica */
#define Degree 0.0174532925199432957

/* Floating-point resolution (machine-dependent) */
#define EPS 5.96046448e-08
#define DEPS 1.38777878e-17

/* Euler’s constant */
#define E_GAMMA 0.5772156649015328606

/* Array subscripts */
#define X 0
#define ¥ 1
#define 2 2
#define XX
#define XY
#define ¥YX
#define YY
#define X2
#define 2X
tdefine Y2
#define 2Y
#define 2z
#endif

Vo WWNNRE PO

- 110 -

model3d.h Tue Jan
/t
* mod
*/
#ifndef MODEL3D_H
#define MODEL3D_H
#ifndef NULL
#define NULL 0
#endif NULL
typedef struct {
struct 1im {
float lat0, lonO,
int nx, ny, nz;
} limits;
float *xgrid; /*
float *ygrid; /*
float *zgrid; /*
float bbbl -H /*
float *EESXT /™
float *urgy; /*
float bkl ¥ /*
float ***sXy; /*
float *RASXT] /*
float *r*gyzy /*
float *RRSXYZ] /*
} MODEL3D;
typedef struct { /* A point
float s, /*
sx, Ssy. sz, /*

sXx, syy, szz, [/*
SXy, Sxz, syz;
} EPOINT;

void free_mdl (};
void sder ()
MODEL3D *rdmdl () ;
#endif MODEL3D_H

11 15:00:15 1994

el3d.h

rot;

[0..nx-1)

[0..ny-1)

[0..nz~1]

[0..nx-1][0..ny-1)[0..nz-1]
[0..nx~1] (0..ny-1][0..n2z~1)
{0..nx-1]({0..ny~1]([0..n2-1)
[0..nx~1])(0..ny-1]{0,.nz-1)
[0..nx-1] (0..ny-1](0..nz~1]
[0..nx-1) [0..ny-1][0..nz-1)
[0..nx~1](0..ny~1)[0..nz~-1}
[0..nx-1]) [0..ny-1][0..nz-1)

within the earth
Wave slowness
Spatial derivatives
Second derivatlives

- 111 -

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

gerr.h

/i

* Bruce R. Julian,
./

#ifndef QERR_H
#define QERR_H

#define ERRBASE
#define EBADDARY
#define EBADMONTH
#define EBADYEAR
#define EBADVALUE
#define EFEWDATA
#define ENOCONVRG
#define EUNDERFLOW
#define ENOSTATION
#define ESIZE
#define ESINGULAR
#define ETOODEEP
#define EBADPHASE
#define ENOFEAS
#define EINFIN
#define ENOTFOUND
#define ENOCUROR
#define ENOCURAM
#define ECANTBRACKET
fendif QERR_H

QERR.
USGS Menlo Park Calif.,

1000
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE
(ERRBASE

H

R I I T T T S S U,

1)
2)
3)
4)
S)
6)
7

9)
10)
11)
12)
13}
14)
15)
16)
17)
18)

/t
/ﬁ
/ﬂ
/ﬂ
/*
/*
/ﬁ
/*
/*
/*
/*
/*
/*
/*
/0
/*
/*
/‘

Tue Jan 11 15:00:15 1994 - 112 -

15 Dec. 1983

Illegal day

Illegal month

Illegal year

Illegal value

Not enough data

Convergence Fallure
Underflow

No such station
Inappropriate structure size
Singular matrix

Focal depth too great

No such phase

Constraints are inconsistent
Solution is unbounded

Can‘t find desired record

No current origin

No current average magnitude
Root not bracketed

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

quake.h Tue Jan 11 15:00:16 1994

/* QUAKE.H

* Bruce R. Julian, USGS Menlo Park Calif., Dec 15 1983

*/
fifndef QUAKE_H
#define QUAKE H

#include <local/stdtyp.h>
#include <local/date_time.h>

§ifndef NULL
#define NULL O
f#endif

f§define repeat do
#define until(c) while (! (c))

#define FOREVER for(::
#define NOT !

#define YES 1

#define NO O

#define TRUE 1

f#define FALSE 0

#define DIM(x) (slzeof(x)/sizeof ((x)[0])) /* Dimension of array

#ifndef MAX

#define MAX(a,b) ((a) > (b)y ? (a)
#endif MAX

fifndef MIN

#define MIN{a,b) ((a) < (b) 2 (a)
#endif MIN

/* Infinite loop
/* Truth value
/* Truth value

/* Truth value
/* Truth value

(b)) /* Larger value

(b)) /* Smaller value

#define ABS(a) ((a) > 0 2?2 (a) : -(a)) /* Absolute value

#define FAIL -1
#define SUCCEED 0
#define STDIN O
$#define STDOUT 1
#define STDERR 2
fdefine READ 0
#define WRITE 1
#define UPDATE 2

P Attt ERROR CODES ———
#define ERRBASE 1000
#define EBADDAY (ERRBASE + 1) /* Illegal calendar day
#define EBADMONTH (ERRBASE + 2) /* Illegal calendar month
#define EBADYEAR (ERRBASE + 3) /* Illegal calendar year
#define EBADVALUE (ERRBASE + 4) /* Illegal value
#define EFEWDATA (ERRBASE + 5} /* Not enough data
¢define ENOCONVRG (ERRBASE + 6) /* Falled to converge
f#define EUNDERFLOW (ERRBASE + 7) /* Arithmetic underflow
4define ENOSTATION (ERRBASE + 8) /* Unknown selsmograph station
#define ESIZE (ERRBASE + 9)
#define ESINGULAR (ERRBASE + 10) /* Matrix is singular
4define ETOODEEP (ERRBASE + 11) /* Focal depth too great
#define EBADPHASE (ERRBASE + 12} /* Unknown seismic phase code
[*mm—meeeemeeee EVENT ORIGIN STRUCTURE =-==—===—=
typedef struct {

TIME o_time; /* Origin time

float o_lat; /* Epicentral latitude (Rad)

float o_lon; /* Epicentral longitude (Rad)

float o_depth; /* Focal depth
} ORIGIN:

/* STATION
#define MXSTCOD 4
typedef struct {

char s_code {MXSTCOD]); /*

float gde(3); /*
float s_elev; /*
} STATION;
/* READING
#define CHANSIZE 6
#define MXPHCOD 8
/* Masks for flags: */
#define ASSOCIATED 01 /*
#define T_EXISTS 02 /*
#define USE_T 04 /*
#ifdef S1O
#define S_EXISTS 010 /*
tdefine USE_S 020 /*
fendif
typedef struct {
STATION sta; /*

char chan [CHANSIZE]; /*
char phcode [MXPHCOD]); /*
TIME atime; /*
float setime; /*
char onset; /*

/* Function return
/* Function return

/* read() write() unit
/* read() write() unit
/* read() write() unit

/* Mode for open|(}
/* Mode for open ()
/* Mode for open (}

- 113 -

STRUCTURE =

Station code
Geocentric direction cosines
Station elevation (m)

STRUCTURE =—mmmmmmmmmmmm

Phase comes from current event
Arrival time exists
Should use arrival time

Slowness-azimuth exists
Should use slowness-azimuth

Station structure

Channel code

Phase code

Arrival time

std. err. of arrival time (s)
‘e’ or 1’

*/

*/
*/
*/
*/
*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

—___t/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/

*/
*/
*/
*/

quake.h Tue Jan 11 15:00:16 1994 -114 -
char pol; /* Polarity: e.g. ‘u’ or "d’ */
char qual; /* Quality code */
float amp;
float freq:;

#ifdef SLO
float slowness; /* Slowness (s/Rad) */
float azimuth; /* Propagation azimuth (Rad) */
float seslow; /* std. exrr. of slowness {s/Rad) */

#endif
char flags;

)} READING;

#ifdef SLO

/* Array subscripts for slowness-vector components */

#define EAST 0

#define NORTH 1

#endif

[e ASSOCIATION STRUCTURE ===—ccommev */

typedef struct {
float delta; /* Epicentral distance (Rad) */
float aze; /* Epicenter =-> station azimuth (Rad) */
float azs; /* Station -> epicenter azimuth (Rad) */
float s1[3]; /* Slowness vector at hypocenter */
float s2(3}; /* Slowness vector at station */
int brnum; /* Branch number */
int ercode; /* From body-wave subroutine */
float atresid; /* Arrival-time residual */
float atsigma; /* Arrival-time std. err. *x/
float atwt; /* Arrival-time weight */
float atimp; /* Arrival-time importance */

§ifdef SLO
float szresid(2): /* slowness-azimuth residual (s/Rad) */
float szsigma; /* Std. err. of slowness-azimuth (s/Rad)*/
float szwt; /* Weight of slowness-azimuth obs. */
float szimp; /* Importance of slowness-azimuth obs. */

fendif

} ASSOC;

[———— RELOC CONTROL STRUCTURE ==—ccmmmmm */

typedef struct {
tbool hold(4]; /* Cordinate-restraint flags */
float epcvthresh; /* Convergence threshold for epicenter */
float fdevthresh; /* Convergence threshold for focal depth*/
float otcvthresh; /* Convergence threshold for origin time*/
float min_depth; /* Smallest allowed focal depth */
float max_depth; /* Largest allowed focal depth */
int max_iter; /* Iteration limit */
int max_damp; /* Damping-step limit */
float lstart; /* Initial damping parameter */
float Imin; /* Minimum damping parameter */
float 1fact; /* Change in lambda per step */
float zdamp; /* Relative depth damping */
float mu; /* Frequency of erratic data */
int iprint; /* Print-control flag */

} RLCTRL;

/* Subscripts for origin components */

#define ILAT 0

#define ILON 1

#define IDEPTH 2

fdefine ITIME 3

/* Print control */

#define NEVER 0

#define FINAL 1

fdefine ALL 2

[H e ORIGIN STATISTTICS STRUCTURE ===cemm */

typedef struct {
float chisq: /* Cchi squared */
float sumwt ; /* Sum of weights of readings */
int ndf; /* No. of degrees of freedom */
int iter; /* No, of iterations performed */
int ntasoc; /* No. of associated arrival-time obs. */
int ntused; /* No. of arrival-time obs. used */

#1fdef SLO
int nsasoc; /* No. of associated slowness obs. */
int nsused; /* No. of slowness obs. used */

fendif
tbool converged;
tbool held(4]:

} STATIS;

[Fmm———— -—- BODY~-WAVE RESULT STRUCTURE ======== */

typedef struct {
int bw_brnum; /* Branch number */
float bw_t; /* Travel time */

quake.h

float
float
float
float
float

} BWRSLT;

f#endif

Tue Jan 11 15:00:16 1994

bw_set;
bw_s1[3);
bw_s2([3):
bw_tdd;
bw_tdh;

/*
/t
/t
/t
/i

Std, err., of t

Slowness vector at hypocenter
Slowness vector at station
dp/ddelta

dp/dh

- 115 -

*/
*/
*/
*/
*/

station.h Tue Jan 11 15:00:16 1994 - 116 -

/* STABLE.H

* USGS Calnet seismograph-station tables

*/

#ifndef STABLE_H

#define STABLE_H

#define CSIZE 4

/* Structure describing open station file */

typedef struct stable {
char *idsta; /* List of station codes */
unsigned nsta; /* No., of codes in idsta */
FILE *fp: /* Station file w/
long offset:; /* Offset of info, of first sta.*/

} STABLE;

/* Structure containing info. for one station */

typedef struct stinfo {
char code {CSIZE]); /* Station code */
float lat, lon; /* Coordinates */
int ielev; /* Elevation (meters) */
float p_anom; /* P-time anomaly */

#if ©
float s_anom; /* S~time anomaly */

#endif 0
float dmag_anom; /* Duration-magnitude anomaly */
float amag_anom; /* Amplitude-magnitude anomaly */
int inst; /* Instrument code */
float t_dflt; /* Default pericd for amp_mag */
float cal_dflt; /* Calibration for amp_mag */

} STINFO;

STABLE *stopen{);

void stclose();

int stindex()?

int stget ()

#endif STABLE_H

Tue Jan 11 15:00:16 1994

- 117 -

stdtyp.h

/* STDTYP.H

* Version for PDP-11, VAX-1ll, and ISI V24
*/

#ifndef STDTYP_H
#define STDTYP_H
/* Specify machine characteristics */
#ifdef sun
fdefine USHORT
§define VOID
#define UTINY
fendif sun
#ifdef mc68000
4define USHORT
f#define VOID
#endif mc68000
#ifdef vax
f#define USHORT
#define UTINY
#define VOID
#endif vax
#ifdef pdpll
#define USHORT
#ifdef makedev
#define VOID
#endif makedev
fendif pdpll

/*
VA

/*
/t

/i
/*
/'

/*
/*
/*

typedef char tbits, tbool;
typedef int bool;

typedef unsigned int sizetype;
typedef long lbits;

typedef short bits, metachar;
#ifdef USHORT

#ifndef sun

typedef unsigned short
#endif sparc

fundef USHORT

f#else USHORT

typedef unsigned ushort;
#endif USHORT

#ifdef TINY

ushort;

typedef char tiny:
#undef TINY

#define TINY (n} (char) (n}
#else TINY

typedef char tiny;

#define TINY (n)
fendif TINY
#ifdef UTINY
typedef unsigned char
fundef UTINY
#define UTINY(n}
#else UTINY
typedef char
#define UTINY(n)
fendif UTINY
#ifndef VOID
fdefine void int
#endif VvOID
#define LURSHIFT (n,b)
#endif STDTYP_H

(char) {{((n) & 0x80) 2

utiny:
(unsigned char) (n)

utiny;
(unsigned) ((n) & OXFF)

{~OxF7 |

(({long) (n) >> (b)) &

Compiler supports void type */
Compiler supports unsigned char type */

Integrated Sclutions UNIX */
Compiler supports unsigned short type */

Compiler supports unsigned short type */
Compiler supports unsigned char type */
Compiler supports void type */

Compiler supports unsigned short type */
Crock to see if <sys/types.h> has been included */
<sys/types.h> has "typedef short void" */

/* Assumes 16-bit machine */

(n}) : (n))

(OX7FFFFFFF >> (b-1}})

- 118 -

15. Tables

Table 1. Station Locations and Descriptions.

Station Station Station Location Sensor Began Rock and Comments
Code Name Lat. (°N) Lon. (°E) El (m) Type (year.day)
SFT2 Fern Peak 37.15244 -121.81133 518 STS-2or 1993.127% Serpentinite, adjacent
37.153042 -121.812232 SV/H-1 to various Franciscant.
Surface insulation required.
MHC Mount 37.342 -121.642 1282 STS-1 1986.253 Franciscan (greenstone).
Hamilton Permanent UCB vault.
SFT4 San Antonio 37.38883 —-121.49450 600 STS-2 or 1993.228% Franciscan, metabasalt?
Valley SV/H-1 Surface insulation unknown.
SFTS Ingram 3750483 -121.32664 312 STS-2 or 1993.097f Franciscan graywacke
Canyon 37.505053 -121.328514 SV/H-1 (or metavolcanic)T.
Surface insulation required.
CMB Columbia 38.035 -120.383 719 STS-1 1992.176 Paleozoic marine limestone.
Permanent UCB vault,

tSecond set of coordinates derived from GPS, using medians. For SFT2 we used 230 GPS readings, for SFTS
1,985 readings. SFT2 GPS location is 104 m NW of the topographic-map location; SFTS GPS location is 167
m WNW of its topographic-map location. It is not clear which type of location is "better”, though the GPS

locations are relative to a
$In intermittent operation.

more modem datum.

- 119 -

Table 2. Recording Periods and Instrument Specifications

Date on | Date off SFT2, New Almaden
(day:hour:minute) sps sensor gain DAS notes

type) S/N:type*

128:03:08 137:19:03 10 STS-2 1 0540:-02 1

190:19:41 196:02:19 20 SV/H-1 32 7062:-07

196:03:57 201:20:35 20 STS-2 1 7062:-07

201:21:20 210:01:35 20 STS-2 1 7062:-07

210:03:57 ~221:02:35 20 STS-2 1 7062:-07 Disk filled

Date on Date off SFTS, Ingram Canyon

097:01:38 103:19:39 10 STS-2 1 0540:-02 i)

104:01:25 110:21:14 10 STS-2 1 0540:-02 1

110:23:37 125:21:36 10 STS-2 1 0540:-02 1

110:23:37 125:21:36 10 STS-2 1 0540:-02 i

097:02:21 103:20:48 10 SV/H-1 128 0547:-02 i

104:01:32 ~104:04:32 10 SV/H-1 128 0547:-02 DAS failedf t

110:23:20 125:22:08 10 SV/H-1 128 0547:-02 t

125:23:27 138:01:57 10 SV/H-1 32 0547:-02 1

191:02:12 197:02:07 20 SV/H-1 32 7064:-07

197:03:31 205:02:34 20 STS-2 1 7064:-07

205:03:13 ~216:01:51 20 STS-2 1 7064:-07 Disk filled

216:20:14 222:18:41 20 STS-2 1 7064:-07

197:03:11 205:03:24 20 Fluke 80TK 1 7080:-07

205:03:53 216:20:30 20 Fluke 80TK 32 7080:-07

216:23:33 222:19:17 20 Fluke 80TK 32 7080:-07

On 72A-02, the data are recorded at 10 sps with 32-bit data from a 16-bit analog-to-digital converter (ADC).
Decimation yields about 19-bits resolution. On a 72A-07, the sample rate is 20 sps with 32-bit recording from a
24-bit ADC. Gains are higher on the SV-1 and SH-1 because they are simple electromagnetic transducers,
without preamplification or feedback.

For vault-temperature tests (DAS S/N 7080), sample rate was 20 sps, because this is the lowest rate available on
a 72A-07, with 32-bit recording from a 24-bit ADC. These specifications far outreach the 80TK'’s and
thermocouple’s capabilities. Recording at 1 sps and 16 bits is appropriate when a spare channel of a 72A-02 is
available.

*For example, "0540:-02" means DAS serial number 0540, which is a 72A-02.

tWWVB recorded and evaluated as backup to GPS clock. All other intervals (72A-07 recorders) had only the
GPS clock.

IDAS failure is due to programming incompatibility (a 100 sps timed recording of the main-sensor channels,
with a repeat interval of 99 days, 23:59:59). The long repeat interval probably caused a DSP timeout after
several hours, by overreaching DAS software capabilities. This stream was intended to induce high-sample-rate
recording of the sensors during calibration, but was discontinued after this one recording interval,

-120 -

Table 3. Events Extracted from Continuous Records, 1993

DAS DAS | Sensor Site Start Time Length Event description(s) (L,R,T,V=
Channels | S/N Type Name | (day hr min sec) (s) Local, Regional, Teleseismic,
V N E Vehicular)

456 0540 | STS-2 | SFTS | 097 01 44 45¢% 915 Calibration

123 0547 | SV/H-1 | SFTS5 | 097 02 23 45 150 Calibration

456 0540 | STS-2 | SFTS | 098 00 32 30 75 small L

123 0547 | SV/H-1 | SFTS | 098 00 32 30 75

456 0540 { STS-2 | SFIS | 098 02 10 30 165 | R?

123 0547 | SV/H-1 | SFTS | 098 02 10 30 165

456 0540 { STS-2 | SFT5 | 098 10 37 00 120 small L

123 0547 { SV/H-1 | SFTS | 098 10 37 00 120

456 0540 | STS-2 | SFTS | 098 14 28 15 180 | L

123 0547 | SV/H-1 | SFT5 | 098 14 28 15 180

456 0540 | STS-2 | SFTIS | 098 15 59 00 135 L

123 0547 | SV/H-1 | SFTS | 098 15 59 00 135

456 0540 | STS-2 | SFTS | 098 16 49 45 135 | R

123 0547 | SV/H-1 | SFTS5 | 098 16 49 45 135 R

456 0540 STS-2 SFTS 098 19 21 00 1620 Dominican Republic, mS.1, 20-s L/R
seen

123 0547 | SV/H-1 | SFTS5 | 098 19 21 00 1620

456 0540 | STS-2 | SFT5 | 098 23 58 30 90 R

123 0547 | SV/H-1 | SFTS | 098 23 58 30 90

456 0540 | STS-2 | SFTS | 099 02 40 45 105 very small L?

123 0547 | SV/H-1 | SFT5 | 099 02 40 45 105

456 | 0540 | STS-2 SFTS | 099 06 58 00 120 | smallL

123 0547 | SV/H-1 | SFTS | 099 06 58 00 120

456 0540 | STS-2 | SFTS | 099 07 12 00 3600 | New Zealand, m5.8 (not seen)

123 0547 | SV/H-1 | SFTS | 099 07 12 00 3600

456 0540 | STS-2 | SFTS | 099 09 53 00 60 very small L

123 0547 | SV/H-1 | SFTS | 099 09 53 00 60

456 0540 | STS-2 | SFTS | 099 10 54 45 75 very small R?

123 0547 | SV/H-1 | SFTS | 099 10 54 45 75

456 0540 | STS-2 | SFT5 | 099 11 48 30 2560 | Luzon, m5.4, 20-s L/R seen

123 0547 | SV/H-1 | SFT5 | 099 11 48 30 2560

456 0540 | STS-2 SFTS | 099 16 25 00 60 very small L?

123 0547 | SV/H-1 | SFT5 | 099 16 25 00 60

456 | 0540 | STS-2 | SFI5 | 099 17 37 15 105 very small R?

123 0547 | SV/H-1 | SFTS5 | 099 17 37 15 105

456 0540 | STS-2 SFT5 | 099 21 20 20 70 small L

123 0547 { SV/H-1 | SFT5 | 099 21 20 20 70

456 0540 | STS-2 SFT5 | 099 21 52 00 9 | L

123 0547 | SV/H-1 | SFT5 | 099 21 52 00 90

456 0540 | STS-2 SFTS5 100 00 15 00 360 Good T or R (unknown hypocenter),
small L at end

123 0547 | SV/H-1 | SFT5 | 100 00 15 00 360

tFile names for this event, for example, are: "93097.014445.sts2.sft5.4", "93097.014445 sts2.sft5.5",

"93097.014445 sts2.5t5.6", and "93097.014445.sts2.sft5.ah".

-121 -

Table 3 (continued)

DAS DAS | Sensor Site Start Time Length Event description(s) (L.R,T,V=
Channels | S/N Type Name | (day hr min sec) (s) Local, Regional, Teleseismic,
V NE Vehicular)

456 0540 | STS-2 SFTS 100 03 30 20 60 L?, low-frequency, S-P~8 s

123 0547 | SV/H-1 | SFTS5 100 03 30 20 60

456 0540 | STS-2 SFT5 100 08 15 30 120 R

123 0547 | SV/H-1 | SFTS 100 08 15 30 120

456 0540 | STS-2 SFTS 100 09 28 00 60 very small L?

123 0547 | SV/H-1 | SFTS 100 09 28 00 60

456 0540 | STS-2 SFTS 100 10 02 45 60 very small L?, low-frequency

123 0547 | SV/H-1 | SFTS 100 10 02 45 60

456 0540 | STS-2 SFTS 100 16 53 30 60 small L

123 0547 | SV/H-1 | SFT5 100 16 53 30 60

456 0540 | STS-2 SFTS 101 00 04 10 125 very small R?

123 0547 | SV/H-1 | SFTS 101 00 04 10 125

456 0540 | STS-2 SFTS 101 00 25 45 60 small L

123 0547 | SV/H-1 | SFTS 101 00 25 45 60

456 0540 | STS-2 SFTS 101 06 45 50 60 small L

123 0547 | SV/H-1 | SFTS 101 06 45 50 60

456 0540 STS-2 SFT5 101 07 12 00 5400 New Zealand, m5.8, and Volcano
Island, m5.0, 20-s L/R seen

123 0547 | SV/H-1 | SFTS5 101 07 12 00 5400

456 0540 | STS-2 SFTS 101 12 27 00 90 L

123 0547 | SV/H-1 | SFTS 101 12 27 00 90

456 0540 | STS-2 SFTS 101 19 41 00 60 small L

123 0547 | SV/H-1 | SFTS 101 19 41 00 60
456 0540 | STS-2 SFTS5 102 03 21 00 75 L

123 0547 | SV/H-1 | SFTS5 102 03 21 00 75
456 0540 | STS-2 SFT5 102 06 43 45 90 very small L/R?

123 0547 | SV/H-1 | SFTS5 102 06 43 45 90
456 0540 | STS-2 SFT5S 102 07 57 45 75 small L/R

123 0547 | SV/H-1 | SFT5 102 07 57 45 75

456 0540 | STS-2 SFT5 102 08 40 10 65 very small L?

123 0547 | SV/H-1 | SFT5 102 08 40 10 65
456 | 050 | STS-2 | SFTS 102 10 00 00 7200 | Noise sample, momning

123 0547 | SV/H-1 | SFTS 102 10 00 00 7200
456 0540 | STS-2 SFT5 102 21 47 00 75 very small L

123 0547 | SV/H-1 | SFTS 102 21 47 00 75
4 56 0540 STS-2 SFTS 102 22 00 00 7200 Noise sample, afternoon

123 0547 | SV/H-1 | SFT5 102 22 00 00 7200

456 0540 | STS-2 SFT5 103 09 05 30 60 very small R?
123 0547 | SV/H-1 | SFTS 103 09 05 30 60

456 0540 | STS-2 SFT5 103 19 19 30 960 Calibration

123 0547 | SV/H-1 | SFTS 103 20 42 45 180 Calibration
456 0540 | STS-2 SFTS 104 06 04 00 3600 Large T, Fox Islands, Aleutians mS5.6

h33

- 122 -

Table 3 (continued)

DAS DAS | Sensor Site Start Time Length Event description(s) (L.R,T,V=

Channels | S/N Type Name | (day hr min sec) (s) Local, Regional, Teleseismic,

V N E Vehicular)

456 0540 | STS-2 | SFTS 104 11 54 45 75 very small R?

456 0540 | STS-2 | SFT5 104 12 14 30 9 | L

456 0540 | STS-2 | SFT5 104 12 16 15 105 nice L

456 0540 | STS-2 | SFT5 104 19 58 30 90 small R or V?

456 0540 { STS-2 | SFTS 105 13 42 15 1065 small T, Fiji m4.9 h457

456 0540 | STS-2 | SFTS 105 16 26 45 75 very small R?

456 0540 | STS-2 | SFTS 105 21 36 45 75 small R or T? No QED hypocenter
found

456 0540 | STS-2 | SFIS 106 04 14 00 960 small T, Alaska m5.2 h32

456 0540 | STS-2 SFT5 106 14 18 30 3990 | T, Fiji m5.9 h569; S SS

456 0540 | STS-2 | SFT5 106 17 16 15 75 small L

456 0540 | STS-2 | SFIS 106 20 34 00 120 R, S-P~23s

4 56 0540 STS-2 SFTS 107 12 43 45 255 very small R, d5.28; P and S

456 0540 | STS-2 SFT5 107 13 37 00 105 R, S-P~10s

456 0540 | STS-2 | SFTS 107 15 51 30 120 | L, S-P~7s

456 0540 | STS-2 | SFTS 107 20 43 30 1890 T, Fiji m5.7 h33; S SS surface

456 0540 | STS-2 | SFTS 108 09 25 45 2775 T, Peru m6.2 h91; P S SKS surface
P'P?

456 0540 | STS-2 | SFTS 108 14 22 45 3735 T, Pacific-Antarctic Ridge m5.5 h10;
weak S, long ringing surface

456 0540 | STS-2 | SFT5 109 02 31 00 150 R, northern California m3.6

456 0540 | STS-2 | SFT5 109 18 09 10 140 | odd L/R, emergent, S-P~10s

456 0540 | STS-2 | SFTS 109 21 14 50 6070 | T, Indonesia m6.0 h82; PPP PKiKP
SKS Sdiff SP/PS SS SKKS, several
surface modes

456 0540 | STS-2 | SFTS 110 01 34 15 165 R, S-P~35s

456 0540 | STS-2 | SFTS5 110 05 38 45 150 | R, California-Nevada border d1.9

456 0540 | STS-2 | SFTS 110 08 25 45 3615 weak T, MacQuarie m? hl10; surface
wave only

456 0540 | STS-2 | SFTS 110 12 38 10 95 small R, S-P~10s

456 0540 | STS-2 SFT5 110 12 43 30 105 R, S-P-10s

456 0540 | STS-2 | SFTS 110 16 36 30 690 small T, Fiji m5.6 h592; P, very small
S

456 0540 | STS-2 | SFTS 110 20 56 30 930 Calibration

456 0540 | STS-2 SFTS 110 23 53 10 200 small R? S-P~15s

123 0547 | SV/H-1 | SFTS 110 23 53 10 200

456 0540 | STS-2 | SFT5 111 01 38 00 135 small R or V, §-P~13s

123 0547 | SV/H-1 | SFT5 111 01 38 00 135

456 0540 | STS-2 SFTS5 111 10 06 30 150 small R, S-P~26s

123 0547 | SV/H-1 | SFTS 111 10 06 30 150

456 0540 | STS-2 | SFTS 111 15 45 15 105 small R (V?), S-P~15s

123 0547 | SV/H-1 | SFTS 111 1545 15 105

- 123 -

Table 3 (continued)

DAS DAS | Sensor Site Start Time Length Event description(s) (L,R,T,V=

Channels | S/N Type Name | (day hr min sec) (s) Local, Regional, Telescismic,

V NE Vehicular)

4 56 | 0540 | STS-2 | SFTS5 112 00 27 30 3270 | R, S-P-60s, southern California

123 0547 | SV/H-1 | SFT5 112 00 27 30 3270

456 | 0540 | STS-2 | SFTS 112 03 32 00 195 | R, no S?, northern California

123 0547 | SV/H-1 | SFT5 112 03 32 00 195

4 56 | 0540 | STS-2 | SFTS 112 05 55 45 135 | R, S-P-23s

123 0547 | SV/H-1 | SFT5 112 05 55 45 135

4 56 | 0540 | STS-2 | SFTIS 112 06 37 00 90 | R, S-P~10s

123 0547 | SV/H-1 | SFIS 112 06 37 00 90

4 56 | 0540 | STS-2 | SFTIS 114 03 17 15 105 | very small R, S-P~13s

123 0547 { SV/H-1 | SFTS 114 03 17 15 105

4 56 | 0540 | ST<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>